WO2012160952A1 - 射出成形方法 - Google Patents

射出成形方法 Download PDF

Info

Publication number
WO2012160952A1
WO2012160952A1 PCT/JP2012/061442 JP2012061442W WO2012160952A1 WO 2012160952 A1 WO2012160952 A1 WO 2012160952A1 JP 2012061442 W JP2012061442 W JP 2012061442W WO 2012160952 A1 WO2012160952 A1 WO 2012160952A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold cavity
mold
molten resin
injection molding
injection
Prior art date
Application number
PCT/JP2012/061442
Other languages
English (en)
French (fr)
Inventor
岡本 昭男
宮本 和明
利和 岩本
裕一郎 福田
Original Assignee
宇部興産機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産機械株式会社 filed Critical 宇部興産機械株式会社
Priority to KR1020167028512A priority Critical patent/KR101732897B1/ko
Priority to KR1020137033818A priority patent/KR101675889B1/ko
Priority to US14/118,218 priority patent/US9636852B2/en
Priority to JP2012534474A priority patent/JP5152438B2/ja
Publication of WO2012160952A1 publication Critical patent/WO2012160952A1/ja
Priority to US15/204,973 priority patent/US10040225B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • B29C44/0461Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities by having different chemical compositions in different places, e.g. having different concentrations of foaming agent, feeding one composition after the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • B29C44/083Increasing the size of the cavity after a first part has foamed, e.g. substituting one mould part with another
    • B29C44/086Increasing the size of the cavity after a first part has foamed, e.g. substituting one mould part with another and feeding more material into the enlarged cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/58Moulds
    • B29C44/586Moulds with a cavity increasing in size during foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1635Making multilayered or multicoloured articles using displaceable mould parts, e.g. retractable partition between adjacent mould cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • B29C45/1705Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles using movable mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products

Definitions

  • the present invention relates to an injection molding method such as a sandwich molded product having a surface layer and an inner layer, and a hollow molded product having a hollow portion inside.
  • a sandwich molded product comprising a surface layer and an inner layer included in the surface layer.
  • an injection molding method co-injection method
  • two methods, a multistage molding method and a simultaneous molding method are mainly known.
  • the molten resin for the surface layer is injected and filled into the mold cavity, then the molten resin for the inner layer is injected and filled into the molten resin for the surface layer, and the mold cavity is filled with these two molten resins. Yes (see Patent Document 1).
  • the surface layer molten resin and the inner layer molten resin are arranged on the outer peripheral side, and the inner layer molten resin is at the center.
  • the molten resin for the surface layer injected previously is injected and filled, and the mold cavity is filled with these two molten resins (see Patent Document 2).
  • a hollow molded product having a hollow portion inside is known.
  • a hollow injection molding method gas assist injection molding method
  • the hollow injection molding method is a method in which a molten resin is injected and filled into a mold cavity, a pressurized gas is injected into the molten resin to form a hollow portion, and the injected pressurized gas is discharged (See Patent Document 3).
  • molding is usually performed with the volume of the mold cavity constant, but a method of expanding the volume of the mold cavity in conjunction with injection of pressurized gas is also known (Patent Document). 4).
  • This method of expanding the volume of the mold cavity in conjunction with the injection of the pressurized gas is called a high hollow molding method in distinction from the normal hollow injection molding method, and the hollow volume inside the hollow molded product is reduced. It is a method that can be made larger.
  • Patent Documents 1 to 4 have a problem in that molten resin or pressurized gas injected later may be ejected from the molten resin injected and filled in the mold cavity first. .
  • the injection filling amount of the molten resin that is first injected and filled into the mold cavity is set to an amount less than the volume of the mold cavity, and a so-called short shot state is obtained.
  • the first molten resin is injected and filled.
  • the thermal conductivity of the gas in the mold cavity is lower than the thermal conductivity of the inner surface (metal, etc.) of the mold cavity. Therefore, among the molten resin first injected and filled in the mold cavity, the mold The portion in contact with the gas in the cavity is slower in cooling and solidification and weak in strength than the portion in contact with the inner surface of the mold cavity.
  • the injection molding method of Patent Document 4 was expanded by injecting and filling molten resin into a mold cavity, then expanding the mold cavity, and then injecting pressurized gas into the molten resin.
  • the molten resin is flowed to expand the size of a desired molded product.
  • the injection molding method of Patent Document 4 for example, the flow of the molten resin is disturbed in a complicated product shape, a reinforcing rib structure on the back surface, a displacement portion of the product thickness, and the like, and there is a possibility that a gas burst failure may occur.
  • An object of the present invention is to provide an injection molding method capable of suppressing the occurrence of resin reversal failure and gas burst failure.
  • one injection molding method is an injection molding method for molding a molded product using a first mold and a second mold capable of forming a mold cavity, Clamping the first mold and the second mold to form the mold cavity, and after completion of the mold clamping process, the mold cavity is injected and filled with foamable molten resin.
  • the mold cavity is expanded by a predetermined amount to foam the foamable molten resin.
  • molten resin or gas is injected into the foamable molten resin in the mold cavity.
  • pressurized gas is injected into the mold cavity, and the mold cavity It is further provided with a pressurizing step for pressurizing the inside at a pressure equal to or higher than a foaming expansion pressure of the foamable molten resin, and a pressurized gas discharging step for discharging the pressurized gas after the start of the first injection filling step. Also good.
  • the second injection filling step is a step of injecting pressurized gas into the foamable molten resin in the mold cavity via a pressurized gas flow path
  • the pressurizing step is It is preferable that the pressurized gas is injected into the mold cavity via the pressurized gas flow path used in the second injection filling step.
  • the mold cavity expanding step is a step of expanding the mold cavity so that the volume of the mold cavity is larger than the volume of the molded product.
  • the mold cavity is configured such that the volume of the mold cavity becomes the volume of the molded product after the mold cavity expansion process is completed and after the second injection filling process is started.
  • a mold cavity reduction process for reducing the cavity by a predetermined amount may be further provided.
  • the mold cavity expanding step is a step of expanding the mold cavity so that the volume of the mold cavity is less than the volume of the molded product.
  • the 2 injection filling step is a step of injecting the foamable molten resin for the inner layer into the foamable molten resin in the mold cavity, and the injection molding method is performed after the start of the second injection filling step.
  • a mold cavity re-expansion step of expanding the mold cavity by a predetermined amount so that the volume of the mold cavity becomes the volume of the molded product and foaming the foamable molten resin for the inner layer may be further provided.
  • the mold cavity re-expansion step is a step of expanding the mold cavity so that the volume of the mold cavity is larger than the volume of the molded product
  • the injection molding method is
  • the method further comprises a mold cavity reduction step of reducing the mold cavity by a predetermined amount so that the volume of the mold cavity becomes the volume of the molded product after the completion of the mold cavity re-expansion step.
  • At least one of expansion and contraction of the mold cavity is at least one of a mold opening / closing operation by a mold opening / closing mechanism of the injection molding apparatus and a moving operation of the movable part in the mold. May be performed.
  • Another injection molding method is an injection molding method for molding a sandwich molded product comprising a surface layer and an inner layer using a first mold and a second mold capable of forming a mold cavity, The first mold and the second mold are clamped to form a mold cavity, and after completion of the mold clamping process, the mold cavity is filled with non-foamable molten resin.
  • the mold cavity expanding step is a step of expanding the mold cavity so that the volume of the mold cavity is larger than the volume of the molded product.
  • the mold cavity is configured such that the volume of the mold cavity becomes the volume of the molded product after the mold cavity expansion process is completed and after the second injection filling process is started.
  • a mold cavity reducing step for reducing the cavity by a predetermined amount may be further provided.
  • At least one of expansion and contraction of the mold cavity is at least one of a mold opening / closing operation by a mold opening / closing mechanism of the injection molding apparatus and a moving operation of the movable part in the mold. May be performed.
  • FIG. 3 is a schematic cross-sectional view showing a first injection filling step of the injection molding method according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view showing a mold cavity expanding step of the injection molding method according to Example 1.
  • 6 is a schematic cross-sectional view showing a second injection filling step of the injection molding method according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view showing a cooling and solidifying step of an injection molding method according to Example 1.
  • FIG. 2 It is a schematic sectional drawing which shows the state of the foamable molten resin for surface layers in the mold cavity expansion process of the injection molding method which concerns on Example 1.
  • FIG. It is a schematic sectional drawing which shows the flow state of the non-foaming molten resin for inner layers at the time of the start of the 2nd injection filling process of the injection molding method which concerns on Example 1.
  • FIG. It is a schematic sectional drawing which shows the flow state of the non-foaming molten resin for inner layers at the time of completion of the 2nd injection filling process of the injection molding method which concerns on Example 1.
  • FIG. 2 It is a schematic sectional drawing which shows the 2nd injection filling process of the injection molding method which concerns on Example 2 of this invention.
  • FIG. 6 is a schematic cross-sectional view showing a mold cavity reduction step of an injection molding method according to Example 2.
  • FIG. It is a schematic sectional drawing which shows the 2nd injection filling process of the injection molding method which concerns on Example 3 of this invention.
  • 6 is a schematic cross-sectional view showing a mold cavity re-expansion step of an injection molding method according to Example 3.
  • FIG. It is a schematic sectional drawing which shows the 1st injection filling process of the injection molding method which concerns on Example 4 of this invention.
  • 10 is a schematic cross-sectional view showing a mold cavity expanding step of an injection molding method according to Example 4.
  • FIG. 10 is a schematic cross-sectional view showing a second injection filling step of the injection molding method according to Example 4.
  • FIG. 1 It is a schematic sectional drawing which shows the cooling solidification process of the injection molding method which concerns on Example 4.
  • FIG. It is a schematic sectional drawing which shows the product extraction process of the injection molding method which concerns on Example 4.
  • FIG. It is a schematic sectional drawing which shows the state of the non-foaming molten resin for surface layers in the mold cavity expansion
  • FIG. It is a schematic sectional drawing which shows the flow state of the non-foaming molten resin for inner layers at the time of the start of the 2nd injection filling process of the injection molding method which concerns on Example 4.
  • FIG. It is a schematic sectional drawing which shows the 2nd injection filling process of the injection molding method which concerns on Example 5 of this invention.
  • 10 is a schematic cross-sectional view showing a mold cavity reduction step of an injection molding method according to Example 5. It is a schematic sectional drawing which shows the mold open state before the shaping
  • 10 is a schematic cross-sectional view showing a first injection filling step of an injection molding method according to Example 6.
  • FIG. 10 is a schematic cross-sectional view showing a mold cavity expanding step of an injection molding method according to Example 6.
  • 10 is a schematic cross-sectional view showing a second injection filling step of the injection molding method according to Example 6.
  • FIG. It is a schematic sectional drawing which shows the cooling solidification process of the injection molding method which concerns on Example 6.
  • FIG. 10 is a schematic cross-sectional view showing a mold cavity reduction step of an injection molding method according to Example 5. It is a schematic sectional drawing which shows the mold open state before the shaping
  • 10 is a schematic cross-sectional view showing
  • FIG. It is a schematic sectional drawing which shows the product extraction process of the injection molding method which concerns on Example 6.
  • FIG. It is a schematic sectional drawing which shows the state of the foamable molten resin in the metal mold
  • FIG. It is a schematic sectional drawing which shows the flow state of the pressurized gas in the 2nd injection filling process of the injection molding method which concerns on Example 6.
  • FIG. It is a schematic sectional drawing which shows the state of the hollow molded article in the cooling solidification process of the injection molding method which concerns on Example 6.
  • FIG. It is a schematic sectional drawing which shows the 2nd injection filling process (hollow part formation process) of the injection molding method which concerns on Example 7 of this invention.
  • the injection molding method according to Examples 1 to 5 relates to an injection molding method for molding a sandwich molded product that includes a surface layer and an inner layer, and the surface layer includes the inner layer.
  • the injection molding method according to Example 6 and Example 7 relates to an injection molding method for molding a hollow molded product having a hollow portion therein.
  • the sandwich molded product is one of multilayer molded products composed of various combinations of different materials, the same materials, different colors, and the same colors in resin molded products. Unlike a multilayer molded product in which another layer is laminated only on one surface of one layer, such a sandwich molded product is a multilayer molded product in which the inner layer is included in the surface layer. In recent years, the appearance and design of the resin molded product itself can be secured on the surface layer, and in recent years it has been suitable for cost reductions and environmental measures using plastic resource waste and waste plastic as raw materials. Sandwich molded products in which recycled resin or the like is used for the inner layer are used as resin molded products for large parts that use a large amount of resin, such as automobile bumpers, transportation / distribution pallets, or container boxes.
  • sandwich molded products are made of foamable resin for the purpose of weight reduction, vibration damping, heat insulation / sound insulation, and flexibility, or high strength resin, and electromagnetic wave / ionization blocking / absorbing resin.
  • Resin such that both front and back surfaces are designed surfaces, using functional resin such as water-absorbing resin, non-permeable resin, etc., and imparting functionality according to application, and also having excellent product appearance on the surface layer It is also used as molded products (opening and closing covers for home appliances and automobile inner layer parts).
  • the hollow molded product is a molded product having a hollow portion formed therein, and is formed mainly for the purpose of reducing the weight of the resin molded product.
  • FIGS. 1A to 1F are schematic cross-sectional views of a mold showing respective steps of a sandwich molded product injection molding method according to a first embodiment.
  • 2A to 2C are schematic cross-sectional views illustrating a process of forming a sandwich molded product.
  • the injection molding machine used in the injection molding method according to the first embodiment is a fixed mold 2 (first mold) and a movable mold 4 (second mold) capable of forming a mold cavity 9a. ),
  • a first injection unit 17 capable of injecting and filling the surface layer foamable molten resin 9b ′ (first material) into the mold cavity 9a, and the inner layer non-foamable molten resin 10b (second material) as the mold.
  • a second injection unit 18 capable of injection filling is provided in the cavity 9a.
  • the fixed mold 2 is attached to a fixed platen (not shown) standing on a base (not shown).
  • the fixed mold 2 includes a surface layer resin flow path 9c through which the surface layer foamable molten resin 9b 'injected from the first injection unit 17 flows into the mold cavity 9a, and the surface layer resin flow path.
  • a gate valve (resin cutoff / open switching valve) 9d provided in a gate portion communicating with the inside of the mold cavity 9a of 9c and the non-foamed molten resin 10b for the inner layer injected from the second injection unit 18 are formed into the mold cavity.
  • the movable mold 4 is attached to a movable platen (not shown) so as to face the fixed mold 2 and can be moved in the longitudinal direction of the injection molding machine (hereinafter referred to as mold opening / closing direction) by a mold opening / closing mechanism (not shown). Is arranged.
  • the fixed mold 2 and the movable mold 4 have a shared edge structure on their respective mold dividing surfaces (sometimes referred to as mold dividing surfaces, parting surfaces, and split surfaces).
  • the volume of the mold cavity is varied by the mold opening / closing operation of the mold opening / closing mechanism.
  • the shear edge structure is sometimes called a hollow structure or an inlay structure, etc., and is a structure generally known as a structure of a fitting portion that forms a dividing surface of a mold.
  • a predetermined amount of molten resin injected and filled into the mold cavity is formed between the fixed mold and the movable mold by forming a fitting portion that extends and can be inserted and removed while sliding on each other. Even if the mold is opened, it can be prevented from leaking out of the mold.
  • a mold having such a shear edge structure is an expanded foam molding method (sometimes called a core back foam molding method) in which the mold is micro-opened during the molding process or an in-mold coating molding method (in-mold coating). And sometimes referred to as an in-mold coating method).
  • the first injection unit 17 and the second injection unit 18 are arranged on the fixed mold 2 side by various methods such as a parallel type arrangement, a V-type arrangement, an oblique type arrangement, and an L-type arrangement.
  • the parallel mold arrangement is an aspect in which both the first injection unit 17 and the second injection unit 18 are arranged so as to be parallel to the longitudinal direction of the injection molding machine on the back side of the fixed mold 2.
  • the V-shaped arrangement is an aspect in which both the first injection unit 17 and the second injection unit 18 are arranged at a slight angle with respect to the longitudinal direction of the injection molding machine on the back side of the fixed mold 2. .
  • the main injection unit is arranged so as to be parallel to the longitudinal direction of the injection molding machine on the back side of the fixed mold 2, and the sub injection unit is arranged on the main injection unit on the back side of the fixed mold 2.
  • the L-shaped arrangement is such that the main injection unit is arranged in parallel to the longitudinal direction of the injection molding machine on the back side of the fixed mold 2, and the sub injection unit is on the side, top or bottom side of the fixed mold 2.
  • the injection molding machine is arranged so as to be orthogonal to the longitudinal direction.
  • positioning should just be suitably selected by injection filling specifications, such as the kind of molten resin used, and injection filling amount.
  • the injection molding machine used in the injection molding method according to the first embodiment is an injection molding machine dedicated to sandwich molding in which two or more injection units are arranged from the beginning, a commercially available retrofit injection unit is added. It may be a general purpose injection molding machine.
  • the injection molding method according to the first embodiment can be implemented in many cases even in an injection molding machine including a general-purpose injection molding machine in which only one set of injection units is arranged.
  • the gate valve is arranged at the end of the resin flow path on the mold cavity side, the resin flow paths of the first material and the second material are branched and independent in the mold. Even if it is a form, it may be a common form without branching.
  • either one of the first material and the second material, or a multi-point gate configuration in which both resin flow paths are further branched and injected and filled from a plurality of different gate positions may be used. .
  • the movable mold 4 is moved to the fixed mold 2 side by a mold opening / closing mechanism (not shown) from the mold open state before the molding cycle shown in FIG. 1A.
  • a clamping force is applied (a clamping process).
  • the volume of the mold cavity 9a formed by the fixed mold 2 and the movable mold 4 is less than the volume of the product (molded product), and injection filling of the surface layer foamable molten resin 9b ′ is performed.
  • the fixed mold 2 and the movable mold 4 are clamped so that the rate is approximately 100%.
  • the gate valve 9d of the surface layer resin flow path 9c is opened, and the surface layer containing a foaming agent is supplied from the first injection unit 17 through the surface layer resin flow path 9c.
  • the foamable molten resin 9b ′ is injected and filled into the mold cavity 9a (first injection filling step).
  • the gate valve 10d provided at the gate portion at the end of the inner layer resin flow path 10c on the mold cavity 9a side is closed, and the surface layer injected and filled into the mold cavity 9a.
  • the foamable molten resin 9b ′ does not flow back into the inner layer resin flow path 10c.
  • the mold cavity 9a is filled with the surface layer foamable molten resin 9b ', and at this time, the surface layer foamable molten resin 9b' in the mold cavity 9a is not in a foamed state. .
  • the substantially entire surface of the foamable molten resin 9b ′ for the surface layer comes into contact with the inner surface of the mold cavity 9a and is cooled to form a strong skin layer (cooled solidified layer) 9e that covers the substantially entire surface. High transferability to 9e is ensured.
  • the mold-clamping force imparted substantially uniformly to the substantially entire surface of the foamable molten resin 9b ′ for the surface layer suppresses the foamed cells from being exposed to the skin layer 9e when the skin layer 9e is formed. Therefore, even if the foamable molten resin for surface layer 9b ′ is a foamable molten resin containing a foaming agent, the appearance of the product is improved.
  • the foaming agent contained in the surface layer foamable molten resin 9b ′ will be described as a chemical foaming agent, but it may be a physical foaming agent. However, in that case, the structural requirements for mixing the physical foaming agent into the surface layer foamable molten resin 9b ′ as appropriate are necessary for the mold or the injection molding machine.
  • the surface layer foamable molten resin 9b ′ is a foamable molten resin containing a foaming agent
  • a pressurized gas such as air, nitrogen, carbon dioxide or the like is injected into the mold cavity 9a from a pressurized gas flow path (not shown), and the mold cavity 9a is foamed.
  • Pressure is applied at a pressure equal to or higher than the expansion expansion pressure of the foamable molten resin for surface layer 9b ′ containing the agent (pressurizing step), and after the start of the first injection filling step (that is, in the middle of the first injection filling step or A so-called gas counter pressure method may be performed in which the injected pressurized gas is discharged from the pressurized gas flow path (pressurized gas discharging step) after completion of one injection filling step.
  • the foamed cells are exposed to the skin layer (cooled solidified layer) substantially uniformly over the substantially entire surface of the foamable molten resin 9b ′ for the surface layer.
  • the volume of the mold cavity 9a formed by the mold clamping process More, at least the amount of cooling solidification shrinkage (volume) is injection filled so that the formation of a strong skin layer (cooling solidification layer) 9e of the foamable molten resin 9b ′ for the surface layer and high transferability to the skin layer 9e are achieved. It is preferable in securing.
  • the skin layer 9e is strong against the skin layer formed at the contact portion with the gas in the mold cavity, but is not a completely cured layer, and its temperature is the resin softening point temperature, Alternatively, it is a layer like a thin film showing rubber-like elastic behavior in the layer direction, which is still in the process of cooling and solidification at the glass solidification temperature or higher, and can follow the mold cavity 9a by expanding and contracting the volume of the mold cavity 9a.
  • the surface layer expandable molten resin 9b ′ is expanded (mold cavity expansion step or surface layer resin expansion foam molding step).
  • mold cavity expanding step after closing the gate valve 9d of the resin flow path 9c for the surface layer, a mold opening / closing mechanism (not shown) by a minute mold opening amount L1 in the direction of separating the movable mold 4 from the fixed mold 2 is performed. ), And the volume of the mold cavity 9a is made substantially the same as the volume of the product. As shown in FIG.
  • the surface layer 9 ′ formed by the surface layer foamable molten resin 9b ′ is composed of a skin layer 9e and a foam layer 9f ′ made of foam cells, as shown in FIG. 2A. It is formed as a foamed molded product.
  • the inner layer non-foaming molten resin 10b forming the inner layer 10 is opened from the second injection unit 18 through the inner layer resin flow channel 10c by opening the gate valve 10d of the inner layer resin flow channel 10c.
  • the skin layer (cooled solidified layer) 9e of the foamable molten resin 9b ′ for surface layer formed on the contact surface between the molten resin 9b ′ and the inner surface of the mold cavity 9a is penetrated to foam the foamable molten resin 9b ′ for surface layer.
  • the layer 9f ′ is injection filled (second injection filling step).
  • FIG. 2B shows the flow state of the non-foamed molten resin for inner layer 10b at the start of the second injection filling process
  • FIG. 2C shows the flow state at the time of completion.
  • the gate valve 10d of the inner layer resin flow path 10c is closed, and the mold cavity
  • the sandwich molded product 11a molded in 9a is cooled and solidified in a state where a predetermined clamping force is applied (cooling and solidifying step).
  • the movable mold 4 is opened from the fixed mold 2 by a mold opening / closing mechanism (not shown), The sandwich molded product 11a is taken out of the injection molding machine by a product take-out means (not shown), and the molding cycle is completed.
  • the gate mark (gate mark, injection mark) is transferred to the fixed mold 2 side of the sandwich molded product 11a
  • the fixed mold 2 side is a non-design surface
  • the opposed movable mold 4 side is a design surface. Therefore, when the product is taken out, it is extruded from the die by the product extruding means or the like from the fixed die 2 side which is a non-design surface.
  • the injection molding method according to the first embodiment has two or one injection unit.
  • two or one injection unit is connected to either the fixed mold 2 or the movable mold 4, or the fixed mold 2 side of the sandwich molded product, the movable mold
  • the difference in form such as which of the mold 4 side is a design surface or a non-design surface does not cause a large difference in the above-described effect, and the present invention can be implemented in such a different form.
  • the steps from FIG. 1A to FIG. the steps from FIG. 1A to FIG.
  • the filling rate of the non-foaming molten resin 10b for the inner layer with respect to the foaming molten resin 9b ′ for the surface layer is compared with the case where a non-foaming molten resin not containing a foaming agent is adopted as the molten resin for the surface layer. Even if it is set higher, sandwich molded product 11a having excellent product appearance can be continuously formed while suppressing resin reversal failure.
  • the foaming agent in the general sandwich injection molding method, is rarely used for the molten resin for the surface layer due to the problem of the foam cell being exposed to the skin layer.
  • the foamable molten resin containing the foaming resin containing the foaming agent is injected on the substantially entire surface by an injection filling process in which the volume of the mold cavity is reduced from the product volume so that the injection filling rate is approximately 100%. It can be used as a surface layer molten resin by imparting a mold clamping force substantially uniformly and suppressing the appearance of foamed cells to the skin layer during the formation of the skin layer.
  • a sandwich molded product that greatly improves the filling ratio of the molten resin for the inner layer to the product volume compared to a general sandwich molded product that uses a non-foamed molten resin containing no foaming agent as the molten resin for the surface layer. Can be molded.
  • the injection molding method according to Example 1 described above can more reliably suppress the occurrence of resin reversal defects than the conventional injection molding method for sandwich molded products described in Patent Documents 1 and 2.
  • the injection filling amount (volume) in the injection filling of the first material as the surface layer into the mold cavity that is performed first satisfies the volume of the mold cavity. Therefore, the mold cavity is not filled with the first material because it is a so-called short shot. Therefore, with respect to the skin layer (cooled solidified layer) formed at the contact portion by cooling in contact with the injection filled molten first material and the inner surface of the mold cavity having a high thermal conductivity, The skin layer formed in the contact portion with the gas having low thermal conductivity in the mold cavity such as the flow front end portion of the first material has low strength.
  • the injection filling amount (volume) of the second material as the inner layer is increased, and the ratio of the injection filling amount (volume) of the second resin (inner layer) to the product volume, that is, the filling of the molten resin for the inner layer to the product volume.
  • the ratio is set high, there is a problem that a so-called resin reversal failure occurs in which the second material is ejected from the weak skin layer portion formed in the first material.
  • the first material previously filled in the short shot is increased in the injection filling volume (volume) of the second material that is subsequently filled in the first material, these two types of molten resin are moved into the mold cavity.
  • the resin flow of the first material including the second material depends on the resin flow in the mold cavity. For this reason, the resin flow is disturbed in a complicated product shape, a reinforcing rib structure on the back surface, a product thickness displacement portion, etc., and resin inversion failure is likely to occur, and the second material that freely flows in the mold cavity after injection
  • the shape of the inner surface of the mold cavity is transferred to the skin layer (cooled solidified layer) formed on the surface of the first material only by the resin flow pressure applied nonuniformly by free flow.
  • there are restrictions such as making the product shape relatively simple and shortening the resin flow length from the gate part where the molten resin is filled into the mold cavity to the injection cylinder.
  • the second runner for the inner layer resin is concentric with the center portion of the first runner for the surface layer resin in the gate portion where the molten resin is filled into the mold cavity. Therefore, a laminar flow in which the inner layer resin flows concentrically at the center of the surface layer resin is formed.
  • these first and second runners are hot runners equipped with heat retaining and heating means for allowing the molten resin inside to flow and hold in a molten state, and in order to arrange both runners concentrically, an injection device The arrangement and configuration of these hot runners in the mold from the gate to the gate communicating with the mold cavity become complicated.
  • a gate “skin-limited gate” that allows only the surface layer to pass through is arranged, and such a thin portion is not made of a multi-layered structure, but can be formed only from the surface layer resin, thereby avoiding a resin reversal failure. It is described.
  • the injection molding method according to the first embodiment reduces the volume of the mold cavity 9a by reducing the volume of the mold cavity 9a from the product volume so that the injection filling rate is approximately 100% in the first injection filling step. Further, the inside of the mold cavity 9a is filled with the surface layer foamable molten resin 9b ', and the mold clamping force is applied to the surface layer foamable molten resin 9b' in the mold cavity 9a substantially uniformly. Thereby, the resin pressure of the foamable molten resin 9b ′ for the surface layer in the mold cavity 9a is increased substantially uniformly, and the surface pressure of the foamable molten resin 9b ′ for the surface layer is cooled by contact with the inner surface of the mold cavity 9a.
  • the injection molding method according to the first embodiment has the second injection filling with respect to the case where there is no volume fluctuation of the mold cavity 9a and there is the volume fluctuation of the mold cavity as in the injection molding method of Patent Document 4.
  • the injection filling resistance of the molten resin for the inner layer is surely lowered, and the effect of reducing the turbulence of the resin flow that occurs in the complicated product shape, the reinforcing rib structure on the back surface, the displacement part of the product thickness, etc.
  • the strength and density of the foam layer 9f 'of the surface layer foamable molten resin 9b' are filled with the non-foamable molten resin containing no foaming agent. Is low. Therefore, as shown in FIG. 2B, when the inner layer non-foaming molten resin 10b is injected and filled into the foam layer 9f 'of the surface layer foaming molten resin 9b' through the skin layer 9e, the inner layer non-foaming is performed.
  • the molten molten resin 10b is filled by compressing the foamed gas into the foamed cell by the injection pressure and resin flow, or the inner layer while destroying the foamed cell sequentially from the portion where the strength and density of the foamed layer 9f ′ are weak.
  • the non-foaming molten resin 10b is replaced.
  • the inner layer non-foaming molten resin 10b is filled / replaced only in the foam layer 9f ′, so that the resin inversion failure is suppressed and the inner layer non-foaming is performed.
  • the preferential flow effect that can specify the filling / replacement part of the expandable molten resin 10b and the decrease in the density of the foamed layer 9f ′ are substantially the same as the amount (volume) in which the non-foamable molten resin 10b for inner layer is filled / replaced.
  • the filling ratio control effect of the non-foamed molten resin for inner layer 10b with respect to the product volume is produced. Therefore, by controlling the expansion ratio that controls the foam cell density of the foam layer by micro mold opening control, it is possible to control the filling ratio of the non-foamed molten resin 10b for the inner layer to the product volume and the non-foamed molten resin 10b for the inner layer.
  • the inner layer non-foamable molten resin can be applied to any part due to the preferential flow effect. Selective flow to fill 10b is possible.
  • the inner layer non-foamed molten resin 10b is injected and filled into the foam layer 9f ′ made of foam cells having low strength and density.
  • the injection filling resistance of the non-foamable molten resin 10b for the inner layer is greatly reduced, and the non-foamed inner layer by the foamed layer 9f ' Synergistic effect with the preferential flow effect of the expandable molten resin 10b can reliably prevent the resin reversal failure of the non-foamed molten resin 10b for the inner layer and further increase the filling ratio of the non-foamed molten resin 10b for the inner layer to the product volume. Can be set.
  • the resin reversal failure is further suppressed by the strong skin layer 9e formed on the substantially entire surface of the foamable molten resin 9b ′ for the surface layer, and high transferability to the skin layer 9e is ensured.
  • the foaming gas pressure in the foaming cell in the formed foamed layer varies depending on the type of chemical foaming agent and molding conditions, but generally 0.3 to 0.5 MPa. (Resin temperature 200 ° C.).
  • the injection filling resin pressure is generally 30 MPa to 50 MPa or more, although it differs depending on the type of resin and molding conditions.
  • the foamed gas in the foamed cell is changed in the foamed layer of the inner layer molten resin due to a large pressure difference between the foamed gas pressure in the foamed cell and the injection filled resin pressure.
  • the foaming gas in the foam cell is easily compressed to a volume that does not affect the product quality at all.
  • a small part of the foamed cell is remelted in the molten resin for the inner layer together with the broken foam cell debris, and is cooled and solidified while being taken into the molten resin for the inner layer, so that it does not exist as the foamed gas.
  • the volume of the foam layer 9f ′ (the foam layer 9f relative to the case where the foam layer 9f ′ is a molten layer that is not a foam layer).
  • the filling ratio of the non-foamed molten resin 10b for the inner layer to the product volume can be controlled by controlling the volume of the foam layer 9f ′ (the amount of decrease in density or the foam ratio) and the thickness of the skin layer 9e. it can.
  • the foam layer 9f ′ is not substantially completely replaced by the non-foamed molten resin 10b for the inner layer, and the surface layer 9 ′ is a layer in which the skin layer 9e and a part of the foam layer 9f ′ are mixed. Also good.
  • the inner layer non-foaming molten resin 10b is separated from the inner layer resin flow path 10c different from the surface layer foaming molten resin 9b ′. Since the skin layer (cooled solidified layer) 9e of the foamable molten resin 9b ′ for use is penetrated and injected into the foamable molten resin 9b ′ for the surface layer, the injection unit does not require laminar flow forming means such as a mixing nozzle. is there.
  • the resin flow paths 9c and 10c in the molten resin mold are hot runners, they are not complicated as in the structure of forming a laminar flow depending on the arrangement and configuration thereof, and any plural portions
  • the inner layer non-foaming molten resin 10b can be injected and filled into the surface layer foaming molten resin 9b '.
  • the non-foamed molten resin 10b for the inner layer is a skin layer (cooling solidified layer) of the foamable molten resin 9b ′ for the surface layer by a radiant output from a gate portion where the inner layer resin flow path 10c is connected to the inside of the mold cavity 9a.
  • No special gate structure or special gate valve for injecting and filling the non-foamed molten resin 10b for the inner layer into the foamable molten resin 9b 'for the surface layer is required for the die to penetrate 9e.
  • FIGS. 3A and 3B are schematic cross-sectional views of a mold showing steps different from the injection molding method according to Example 1 described above, among the injection molding methods according to Example 2.
  • FIG. 3A and 3B are schematic cross-sectional views of a mold showing steps different from the injection molding method according to Example 1 described above, among the injection molding methods according to Example 2.
  • FIG. 3A and 3B are schematic cross-sectional views of a mold showing steps different from the injection molding method according to Example 1 described above, among the injection molding methods according to Example 2.
  • the difference between the injection molding method according to the second embodiment and the injection molding method according to the first embodiment is that the mold cavity expansion process is performed so that the volume of the mold cavity 9a is larger than the volume of the product.
  • 9a is a process of expanding, and after the completion of the mold cavity expansion process and after the start of the second injection filling process (that is, in the middle of the second injection filling process or the completion of the second injection filling process)
  • the latter is provided with a mold cavity reduction process for reducing the volume of the mold cavity 9a to the volume of the product.
  • the other molding steps are basically the same as the injection molding method according to the first embodiment, and the same mold and injection molding machine as those described in the first embodiment can be used. Therefore, only differences from the injection molding method according to Example 1 will be described.
  • FIG. 3A shows a state immediately after the mold cavity expansion step and the second injection filling step are completed and the gate valve 10d of the inner layer resin flow path 10c is closed.
  • the mold cavity expanding step includes a mold opening / closing mechanism by a minute mold opening amount L1 ′ larger than the minute mold opening amount L1 in the direction of separating the movable mold 4 from the fixed mold 2.
  • the mold cavity 9a is opened by a mold (not shown) so that the volume of the mold cavity 9a is larger than the volume of the product.
  • the inner layer non-foaming molten resin 10b is still in a molten state.
  • the foam layer 9f 'of the surface layer foamable molten resin 9b' includes the resin type, product shape, product specifications, etc. (filling ratio of the molten resin for the inner layer to the product volume, weight reduction, uniformity, strength rigidity, etc. ),
  • the foamed cells are replaced with the non-foamed molten resin 10b for the inner layer at a desired ratio, but the foamed layer 9f ′ formed in a thin portion such as a reinforcing rib of the product (not shown) This is not a state where the inner layer non-foaming molten resin 10b is replaced.
  • the movable mold 4 is clamped by a mold opening / closing mechanism (not shown) until the micro mold opening amount L1 ′ reaches L2, and the volume of the mold cavity 9a is increased.
  • Reduce mold cavity reduction process.
  • the volume of the mold cavity 9a in the state where the mold is clamped from the minute mold opening amount L1 ′ to L2 is substantially the same as the product volume.
  • the increased non-foamed molten resin 10b for the inner layer is not replaced with the non-foamed molten resin 10b for the inner layer having a low injection filling resistance in the foamable molten resin 9b ′ for the surface layer by the mold cavity reduction process.
  • the foamed layer 9f 'flows and fills the foamed cell portion, or is replaced while destroying the foamed cell, and the filling resistance of the foamed cell portion having a low injection filling resistance is increased.
  • the volume of the mold cavity 9a is substantially the same as the product volume
  • the foamed cell portion of the thin portion such as the reinforcing rib of the product is also filled with the non-foamed molten resin 10b for the inner layer.
  • the inner layer non-foamed molten resin 10b is filled almost uniformly over the entire surface.
  • the movable mold 4 is not illustrated as in the injection molding method according to the first embodiment.
  • the mold is opened from the fixed mold 2 by the opening / closing mechanism, and the sandwich molded product 11b is taken out of the injection molding machine by a product take-out means (not shown) to complete the molding cycle.
  • the strong skin layer 9e formed on the substantially entire surface of the foamable molten resin 9b ′ for the surface layer in the first injection filling step is suppressed.
  • the injection molding method according to the second embodiment is a product like the injection molding method according to the first embodiment because the mold cavity expanding step is a step of expanding the volume of the mold cavity larger than the product volume by a predetermined amount.
  • the effect of reducing the injection filling resistance in the second injection filling step is further improved, the injection filling property of the non-foaming molten resin 10b for the inner layer is improved, and the volume of the mold cavity 9a is increased.
  • the density of the foamed layer 9f ′ can be further reduced, and the injection filling amount (volume) of the non-foaming molten resin 10b for inner layer that can be injected and filled can be physically increased.
  • the thickness of the skin layer formed on the part having a product thickness of 1 mm is 0.4 to 0.5 mm on one side.
  • the inner layer is used in the surface layer molten resin. It is very difficult to fill the molten resin.
  • the part having a product thickness of 1 mm is temporarily expanded to 1.5 to 2 mm by expanding the mold cavity volume, it is possible to fill the molten resin for the inner layer into this part.
  • the amount of expansion of the mold cavity volume to be temporarily expanded may be appropriately selected depending on the mold structure, the product shape, the filling ratio of the inner layer molten resin to the product volume, and the like.
  • the increased inner layer molten resin can be caused to flow to a portion having a low injection filling resistance by a mold cavity reduction process for reducing the volume of the mold cavity to the product volume. Therefore, the inner layer molten resin can be filled into a thin-walled portion that is difficult to be filled with the inner layer molten resin, such as a reinforcing rib of a product. As a result, the filling ratio of the inner layer molten resin to the product volume can be set high. Furthermore, since the injection molding method according to the second embodiment can apply a substantially uniform clamping force to the sandwich molded product by the mold cavity reduction process, the residual stress in the sandwich molded product is reduced, and at the time of cooling and solidification. The same effect as the injection compression molding method and the injection press molding method of suppressing the deformation of the molded product can be expected.
  • FIGS. 4A and 4B are schematic cross-sectional views of a mold showing steps different from the injection molding method according to Example 1 described above, among the injection molding methods according to Example 3.
  • FIG. 4A and 4B are schematic cross-sectional views of a mold showing steps different from the injection molding method according to Example 1 described above, among the injection molding methods according to Example 3.
  • FIG. 4A and 4B are schematic cross-sectional views of a mold showing steps different from the injection molding method according to Example 1 described above, among the injection molding methods according to Example 3.
  • the difference between the injection molding method according to the third embodiment and the injection molding method according to the first embodiment is that the mold cavity expanding step expands the mold cavity 9a so that the volume of the mold cavity 9a is less than the volume of the product.
  • the non-foaming molten resin for the inner layer is the foaming molten resin for inner layer 10b ′ containing a foaming agent, and after the start of the second injection filling process (that is, in the middle of the second injection filling process) Or after the completion of the second injection filling step), a mold cavity re-expansion step is performed in which the mold cavity 9a is expanded again so that the volume of the mold cavity 9a becomes the volume of the product.
  • the other molding steps are basically the same as the injection molding method according to the first embodiment, and the same mold and injection molding machine as those described in the first embodiment can be used. Therefore, only differences from the injection molding method according to Example 1 will be described.
  • FIG. 4A shows a state immediately after the mold cavity expanding step and the second injection filling step are completed and the gate valve 10d of the inner layer resin flow path 10c is closed.
  • the mold cavity expanding step opens and closes the mold by a minute mold opening amount L1 ′′ smaller than the minute mold opening amount L1 in the direction in which the movable mold 4 is separated from the fixed mold 2.
  • the mold is opened by a mechanism (not shown) so that the volume of the mold cavity 9a is less than the volume of the product.
  • the second material injected and filled in the second injection filling step is the inner layer foamable molten resin 10b ′ containing a foaming agent.
  • the movable mold 4 is not illustrated as in the injection molding method according to the first embodiment.
  • the mold is opened from the fixed mold 2 by the opening / closing mechanism, and the sandwich molded product 11c is taken out of the injection molding machine by the product take-out means (not shown), thus completing the molding cycle.
  • the injection molding method according to Example 3 is a foamable molten resin containing a foaming agent filled in a surface layer molten resin in a conventional sandwich molding product injection molding method by performing a mold cavity re-expansion step. It is possible to positively control the foamed state (foamed layer thickness, foaming rate, etc.) of the molten resin for the inner layer, which only depends on the resin flow and foamed state.
  • the mold cavity reduction process may be performed after either the mold cavity expansion process or the mold cavity reexpansion process, or after the mold cavity expansion process and the mold cavity reexpansion process, respectively. You can do it.
  • the mold cavity reduction process after the mold cavity expansion process, as described in the injection molding method according to the second embodiment, in the mold cavity expansion process, only the amount reduced by the mold cavity reduction process is used. It is sufficient to expand the mold cavity 9a more. The same applies to the case where the mold cavity reduction process is performed after the mold cavity re-expansion process, and the mold cavity 9a may be expanded by the amount reduced by the mold cavity reduction process.
  • FIGS. 5A to 5E are schematic cross-sectional views of a mold showing respective steps of a sandwich molded product injection molding method according to a fourth embodiment.
  • 6A and 6B are schematic cross-sectional views illustrating a process in which a sandwich molded product is formed.
  • the surface layer molten resin is a non-foamable molten resin containing no foaming agent. Since the other molding steps are basically the same as the injection molding method according to the first embodiment, detailed description thereof is omitted. Further, also in the mold and the injection molding machine, the surface layer expandable molten resin containing the foaming agent is changed to the surface layer non-foamable molten resin 9b not including the foaming agent, as described in Example 1. Since the same thing can be used fundamentally, description is abbreviate
  • the mold clamping step and the first injection filling step are performed by the same method as the injection molding method according to the first embodiment, and the mold cavity 9a having a volume smaller than the volume of the product is formed. At the same time, the mold cavity 9a is filled with the non-foamed molten resin 9b for the surface layer (FIG. 5A).
  • the injection filling rate of the non-foaming molten resin 9b for the surface layer is approximately 100%.
  • a substantially entire surface of the non-foamable molten resin 9b for the surface layer is brought into contact with the inner surface of the mold cavity 9a to be cooled, and a strong skin layer (cooled solidified layer) 9e covering the substantially entire surface; A surface layer 9 made of is formed.
  • the mold clamping force is applied to the non-foamed molten resin 9b for the surface layer in the mold cavity 9a substantially uniformly and high transferability to the skin layer on the inner surface of the mold cavity 9a is ensured, a sandwich molded product Improved product appearance.
  • the volume of the mold cavity 9a is reduced to the product.
  • a mold cavity expansion process for expanding the volume is performed.
  • the micro mold is interposed between the surface layer 9 and the mold cavity 9a of the movable mold 4.
  • the small opening operation is preferably controlled. Specifically, as shown in FIG. 5C, the amount of mold opening of the movable mold 4, that is, the volume expansion amount of the mold cavity 9a is injected into the surface layer non-foaming molten resin 9b for non-foaming for the inner layer.
  • the mold opening speed and mold position holding force by the mold opening / closing mechanism are controlled so as to be the same as the injection filling amount (volume) of the molten resin 10b or the predetermined amount (volume), and the gap described above is generated.
  • the movable mold 4 It is possible to open the movable mold 4 until the volume of the mold cavity 9a reaches the product volume, that is, until the micro mold opening amount L1, so that the strong skin layer of the non-foamed molten resin 9b for the surface layer It is preferable for forming a (cooled solidified layer) and ensuring high transferability to the skin layer.
  • the injection filling amount (volume) of the non-foamed molten resin 10b for the inner layer in the inner layer resin injection filling step is similarly adjusted in accordance with the volume expansion amount of the mold cavity 9a due to the mold opening of the movable mold 4. It is also possible to control them, or to control both of them together.
  • FIG. 6B shows a flow state of the non-foamed molten resin for inner layer 10b at the start of the second injection filling process.
  • the non-foaming for the surface layer formed on the contact surface between the gate valve 10d of the resin flow path 10c for the inner layer and the inner surface of the mold cavity 9a by interlocking the mold cavity expanding step and the second injection filling step.
  • the skin layer 9e of the adhesive molten resin 9b is in close contact, the skin layer 9e of the non-foamable molten resin 9b for the surface layer is penetrated while preventing the occurrence of resin reversal failure in the gate valve 10d.
  • the inner layer non-foaming molten resin 10b can be injected and filled into the surface layer non-foaming molten resin 9b.
  • the gate valve 10d of the inner layer resin flow path 10c is closed, and a predetermined mold clamping force is applied to the sandwich molded product 11d molded in the mold cavity 9a. It is made to transfer to the cooling solidification process which cools and solidifies in the state. Then, after the cooling and solidification of the sandwich molded product 11d molded in the mold cavity 9a is completed, as shown in FIG. 5E, the movable mold 4 is opened from the fixed mold 2 by a mold opening / closing mechanism (not shown), The sandwich molded product 11d is carried out of the injection molding machine by a product take-out means (not shown), and the molding cycle is completed.
  • the sandwich molded product 11d can be continuously formed.
  • the mold clamping force to the non-foamable molten resin for surface layer 9b filled in the reduced mold cavity is alleviated by the mold cavity expanding step, and the non-foaming property for surface layer is reduced.
  • the pressure inside the molten resin 9b can be reduced.
  • the non-foaming property of the non-foaming molten resin 10b for the inner layer is reduced.
  • the filling ratio of the molten resin 10b can be set high.
  • the mold cavity 9a is increased in volume as the injection filling amount (volume) of the non-foaming molten resin 10b for the inner layer into the non-foaming molten resin 9b for the surface layer increases.
  • the volume of the mold cavity 9a is expanded to the product volume.
  • the injection filling resistance of the non-foamable molten resin 9b for the surface layer to the molten layer 9f is reduced by the mold cavity expanding step, and the non-foamable molten resin for the inner layer is reduced. Since the injection filling property of 10b can be improved, the second injection filling step can be performed by setting a high filling ratio of the non-foaming molten resin for inner layer 10b to the product volume.
  • the inner layer non-foaming molten resin 10b is replaced with the surface layer non-foaming molten resin 9b as shown in FIG. 5C.
  • the skin layer (cooled solidified layer) 9e of the non-foamed molten resin 9b for the surface layer is penetrated from the inner-layer resin flow path 10c different from 9c, and is injected and filled into the non-foamed molten resin 9b for the surface layer.
  • the injection molding machine used in the injection molding method according to the fourth embodiment does not require laminar flow forming means such as a mixing nozzle that joins the tip portions of a plurality of injection units.
  • the non-foaming molten resin for inner layer 10b can be injected and filled into the non-foaming molten resin for surface layer 9b from an arbitrary plurality of sites.
  • the non-foamed molten resin 10b for the inner layer is formed of the non-foamed molten resin 9b for the surface layer by a radiant output from the gate valve 10d disposed at the gate portion where the inner resin flow path 10c is connected to the mold cavity 9a.
  • a special gate structure or a special gate for injecting and filling the inner layer non-foaming molten resin 10b into the surface non-foaming molten resin 9b in the fixed mold 2 No gate valve is required.
  • FIGS. 7A and 7B are schematic cross-sectional views of a mold showing steps different from the injection molding method according to Example 4 described above, among the injection molding methods according to Example 5.
  • FIG. 7A and 7B are schematic cross-sectional views of a mold showing steps different from the injection molding method according to Example 4 described above, among the injection molding methods according to Example 5.
  • FIG. 7A and 7B are schematic cross-sectional views of a mold showing steps different from the injection molding method according to Example 4 described above, among the injection molding methods according to Example 5.
  • the mold cavity expansion step is such that the volume of the mold cavity 9a is larger than the volume of the product.
  • 9a is a process of expanding, and after completion of the mold cavity expansion process and after the start of the second injection filling process (that is, in the middle of the second injection filling process or the completion of the second injection filling process)
  • the latter is provided with a mold cavity reduction process for reducing the volume of the mold cavity 9a to the volume of the product.
  • the other molding steps are basically the same as the injection molding method according to the fourth embodiment, and the same mold and injection molding machine as those described in the first embodiment can be used. Therefore, only differences from the injection molding method according to Examples 1 and 4 will be described.
  • the mold cavity expanding step and the mold cavity reducing step are the same as those of the injection molding method according to the second embodiment, and thus detailed description thereof is omitted.
  • FIG. 7A shows a state immediately after the mold cavity expanding step and the second injection filling step are completed and the gate valve 10d of the inner layer resin flow path 10c is closed.
  • the molten layer 9f of the non-foaming molten resin 9b for the surface layer and the non-foaming molten resin 10b for the inner layer are still in a molten state.
  • the mold cavity expanding step is performed from the micro mold opening amount L1 in the direction in which the movable mold 4 is separated from the fixed mold 2 as in the injection molding method according to the second embodiment. This is a step of opening the mold by a mold opening / closing mechanism (not shown) by a large micro mold opening amount L1 ′ to make the volume of the mold cavity 9a larger than the volume of the product.
  • the movable mold 4 is clamped by a mold opening / closing mechanism (not shown) until the micro mold opening amount L1 ′ becomes L2 on the fixed mold 2 side.
  • the volume of the cavity 9a is reduced (mold cavity reduction step).
  • the volume of the mold cavity 9a at this time is substantially the same as the volume of the product.
  • the increased inner layer non-foamable molten resin 10b is flown and filled into the portion of the surface layer non-foamable molten resin 9b having a low injection filling resistance by the mold cavity reduction process.
  • the movable mold 4 is not illustrated in the same manner as in the injection molding method according to Example 1.
  • the mold is opened from the fixed mold 2 by the opening / closing mechanism, and the sandwich molded product 11e is taken out of the injection molding machine by the product take-out means (not shown), thus completing the molding cycle.
  • the mold cavity expanding step is a step of expanding the volume of the mold cavity larger than the product volume by a predetermined amount.
  • the injection filling amount of the inner layer non-foamable molten resin 10b that can be injected and filled is improved while improving the injection filling resistance reduction effect in the injection filling process, improving the injection filling property of the inner layer non-foamable molten resin 10b. Can be physically increased.
  • the non-foamed molten resin 10b for the inner layer is also applied to the thin portion such as the reinforcing rib of the product by the mold cavity reduction process.
  • the non-foamed molten resin 10b for the inner layer is formed by the strong skin layer 9e formed on substantially the entire surface of the non-foamed molten resin 9b for the surface layer in the first injection filling step.
  • the resin reversal failure is suppressed.
  • FIGS. 8A to 8F are schematic cross-sectional views of a mold showing respective steps of a hollow molded product injection molding method according to Example 6.
  • 9A, 9B, and 9C are schematic cross-sectional views illustrating a process in which a hollow molded article is molded.
  • the difference between the injection molding method according to the sixth embodiment and the injection molding method according to the first embodiment is that the injection molding method according to the first embodiment injects a sandwich molded product using the non-foamed molten resin 10b for the inner layer as the second material.
  • the injection molding method according to Example 6 is a hollow molding product injection molding method using the pressurized gas 10b ′′ as the second material. Since the other molding steps are basically the same as the injection molding method according to the first embodiment, detailed description thereof is omitted.
  • the injection molding machine used in the injection molding method according to the sixth embodiment includes a fixed mold 2 (first mold) and a movable mold 4 (second mold) capable of forming a mold cavity 9a. ), An injection unit 17 ′ capable of injecting and filling the foamable molten resin 9b ′′ (first material) into the mold cavity 9a, and the pressurized gas 10b ′′ (second material) into the mold cavity 9a. And a pressurized gas unit 18 'that can be supplied.
  • the fixed mold 2 is attached to a fixed platen (not shown) standing on a base (not shown).
  • the fixed mold 2 includes a resin flow path 9c ′ in which the foamable molten resin 9b ′′ injected from the injection unit 17 ′ flows into the mold cavity 9a, and a mold for the resin flow path 9c ′.
  • a gate valve (resin cutoff opening switching valve) 9d ′′ provided at a gate portion communicating with the cavity 9a and a pressurized gas 10b ′′ supplied from the pressurized gas unit 18 are injected into the mold cavity 9a.
  • the pressurization gas flow path 10c 'and the on-off valve 10d' provided at the connection portion of the pressurization gas flow path 10c 'at the end of the mold cavity 9a.
  • the movable mold 4 is attached to a movable platen (not shown) so as to face the fixed mold 2 and is arranged to be movable in the longitudinal direction of the injection molding machine by a mold opening / closing mechanism (not
  • the injection unit 17 ′ is provided on the back side of the fixed mold 2 so as to be parallel to the longitudinal direction of the injection molding machine, and the tip nozzle is arranged so as to be able to contact and separate from the fixed mold 2 from the back of the fixed platen.
  • the pressurized gas unit 18 ′ is a unit that can supply a predetermined amount of gas such as air, nitrogen, carbon dioxide, etc., at a predetermined pressure, which is used in a hollow portion forming process, which will be described later.
  • the pressure gauge, pressure control valve, gas flow rate control valve, check valve, air release valve, and the like are included.
  • the pressurized gas unit 18 ′ is disposed in the vicinity of the injection molding machine as one unit including a tank unit, and is connected to the pressurized gas flow path 10c ′ of the fixed mold 2 by piping, a gas hose, or the like.
  • pressurized gas can be supplied from utility piping in the factory where the injection molding machine is installed, the pressurized gas is supplied directly from the utility piping, and only necessary piping equipment is separately installed as a unit.
  • a form in which the unit is arranged on a fixed plate of an injection molding machine or the like is also possible.
  • the injection molding method according to Example 6 is performed in the same manner as the mold clamping step and the first injection filling step of the injection molding method according to Example 1 from the mold open state before the molding cycle shown in FIG. 8A.
  • the process and the injection filling process are performed to form a mold cavity 9a having a volume less than that of the product, and the mold cavity 9a is filled with the foamable molten resin 9b ′′ (FIG. 8B).
  • the injection molding method according to Example 6 as in the injection molding method according to Example 1, since the injection filling rate of the foamable molten resin 9b ′′ is approximately 100%, as shown in FIG.
  • the substantially entire surface of the expandable molten resin 9b ′′ comes into contact with the inner surface of the mold cavity 9a and is cooled, and a strong skin layer (cooled solidified layer) 9e covering the approximately entire surface of the expandable molten resin 9b ′′ is formed. Further, as in the case of a short shot, the foaming property including the foaming agent in the mold cavity 9a is compared with the form in which the molten resin is filled in the mold cavity with the resin flow pressure including the pressurized gas to be injected later.
  • the mold clamping force is applied substantially uniformly to the molten resin 9b ′′, high transferability to the skin layer 9e on the inner surface of the mold cavity 9a is ensured, and the foamable molten resin 9b ′′ containing a foaming agent is secured. Due to the mold clamping force applied substantially uniformly on the substantially entire surface, the foamed cells are prevented from appearing on the skin layer 9e when the skin layer 9e is formed. Therefore, as in the case of a short shot, the mold is formed only by the resin flow pressure applied nonuniformly by the free flow of the molten resin that freely flows in the mold cavity after injection by the pressurized gas injected later. The appearance of the product is improved with respect to a hollow molded product molded by a general hollow injection molding method in which the inner shape of the cavity is transferred to a skin layer (cooled solidified layer) formed on the surface of the molten resin.
  • the foamable molten resin 9b ′′ is cooled in the mold immediately after being injected and filled into the mold cavity 9a, and the cooling and solidification contraction proceeds. Therefore, at least the cooling and solidification is performed by the volume of the reduced mold cavity 9a. It is preferable to inject and fill only the amount of shrinkage (volume) in order to secure the formation of a strong skin layer (cooled solidified layer) 9e of the foamable molten resin 9b ′′ and high transferability to the skin layer 9e.
  • the skin layer 9e is strong against the skin layer formed at the contact portion with the gas in the mold cavity, but is not a completely cured layer, and its temperature is the resin softening point temperature, Alternatively, it is a layer like a thin film showing rubber-like elastic behavior in the layer direction, which is still in the process of cooling and solidification at the glass solidification temperature or higher, and can follow the mold cavity 9a by expanding and contracting the volume of the mold cavity 9a.
  • the foaming agent contained in the foamable molten resin 9b ′′ containing the foaming agent will be described on the assumption that it is a chemical foaming agent. However, as described in Example 1, it may be a physical foaming agent. .
  • the injection molding method according to Example 6 is the same as the injection molding method according to Example 1, after the start of the mold clamping process (that is, in the middle of the mold clamping process or after the completion of the mold clamping process), In addition, before the start of the injection filling process, a pressurized gas such as air, nitrogen, carbon dioxide or the like is injected into the mold cavity 9a, and the inside of the mold cavity 9a is equal to or higher than the foaming expansion pressure of the foamable molten resin 9b ′′.
  • the injected pressurized gas is discharged (pressurization). (Gas discharge step), so-called gas counter pressure method may be performed.
  • gas counter pressure method When the expansion foam molding is performed with the foamable molten resin 9 ′′, the expansion of the foamed cells to the skin layer (cooled solidified layer) is applied to the substantially entire surface of the foamable molten resin 9 ′′ with mold clamping. It is possible to suppress by molding conditions such as force, injection conditions and mold temperature control. However, these molding conditions are complicated and may conflict with the molding conditions of the hollow molded product.
  • the expression of the foam cell to the skin layer (cooled solidified layer) can be more reliably suppressed, and a high product
  • the foamable molten resin 9b ′′ can be employed as the resin material of the hollow molded product. Thereby, further weight reduction of the hollow molded article suitable for weight reduction can be expected.
  • the pressurized gas used is the same as the pressurized gas used in the hollow part forming process described later, such as air, nitrogen, carbon dioxide, etc. There may be.
  • the pressurized gas unit 18 ′ places the pressurized gas in the mold cavity 9 a via the pressurized gas channel 10 c ′ of the fixed mold 2 and the on-off valve 10 d ′ of the pressurized gas channel 10 c ′. It can be supplied at a predetermined pressure.
  • the on-off valve 10d ′ is not a special on-off valve or the like for injecting pressurized gas into the molten resin.
  • the pressurized gas flow path and the related mechanism for injecting pressurized gas into the molten resin are used in the pressurizing process and the gas discharging process in the mold cavity in this gas counter pressure method.
  • the gas counter pressure method can be adopted without adding new components.
  • the pressurizing process in the mold cavity in this gas counter pressure method and the injection process of the pressurized gas in the hollow part forming process do not overlap, and the discharge process of each pressurized gas does not overlap. Since there is no problem, the pressurized gas unit 18 ′ and the pressurized gas flow path 10 c ′ used in the hollow portion forming process and related mechanisms are used in the pressurizing process and gas in the mold cavity 9 a in this gas counter pressure method. There is no problem in the molding process to use in the discharging process.
  • a mold cavity expanding step for expanding the volume of the mold cavity 9a to the product volume is performed, and thus injection filling is performed.
  • the foamable molten resin 9b ′′ is formed as a foamed molded product 9 ′′ composed of a skin layer 9e and a foamed layer 9f made of foamed cells.
  • the thickness of the foam layer 9f composed of the skin layer 9e and the foam cell of the foam molded body 9 ′′, the particle diameter of the foam cell, and the foaming ratio are the same as in the general expansion foam molding method.
  • the mold opening operation and mold temperature of the movable mold 4 are controlled so that the foamed state such as the desired foamed state is controlled.
  • the strength and density may be positively controlled so that the ratio can be set higher.
  • the open / close valve 10d ′ of the pressurized gas flow path 10c ′ is opened, and the pressurized gas 10b ′′ is sent from the pressurized gas unit 18 ′ through the pressurized gas flow path 10c ′ to the expandable molten resin 9b ′.
  • the skin layer (cooled solidified layer) 9e of the foam molded body 9 ′′ formed on the contact surface between the ′ and the inner surface of the mold cavity 9a is penetrated and injected into the foam layer 9f of the foam molded body 9 ′′.
  • FIG. 9B shows the flow state of the pressurized gas in the hollow portion forming step or the second injection filling step.
  • the foamable molten resin 9b ′′ is expanded and expanded in the mold cavity 9a by the injection filling process and the mold cavity expanding process, that is, the expanded foam molding process, before the hollow part forming process.
  • the skin layer 9e of the foam molded body 9 '' is pressed against the inner surface of the mold cavity 9a by the foaming gas pressure.
  • the on-off valve 10d ′ of the pressurized gas flow path 10c ′ and the skin layer 9e of the foamed molded product 9 ′′ are maintained in close contact with each other, the occurrence of defective gas burst in the on-off valve 10d ′ is prevented.
  • the pressurized gas 10b ′′ can be injected into the foam layer 9f of the foam molded body 9 ′′ through the skin layer (cooled solidified layer) 9e of the foam molded body 9 ′′.
  • the hollow molded product molded in the mold cavity 9a After the injection of the pressurized gas 10b ′′ into the foam molded body 9 ′′ is completed and the desired hollow portion is formed, as shown in FIG. 8E, the hollow molded product molded in the mold cavity 9a.
  • the process is shifted to a cooling and solidification process in which the mold is cooled and solidified in a state where a predetermined mold clamping force is applied to 11f.
  • the state of the hollow molded product in this cooling and solidifying step is shown in FIG. 9C.
  • the pressure from the pressurized gas unit 18 ′ is applied so that the mold clamping force is applied substantially uniformly to the substantially entire surface of the hollow molded body and the pressure necessary to form the hollow portion is maintained.
  • the pressurized gas supply and the supply gas pressure control be continued, if the gas pressure in the hollow portion is equal to or higher than the predetermined pressure, the on-off valve 10d ′ of the pressurized gas flow path 10c ′ is closed. good. Then, after the cooling and solidification process of the hollow molded article 11f molded in the mold cavity 9a is started (that is, in the middle of the cooling and solidification process or after the completion of the cooling and solidification process), from the pressurized gas flow path 10c ′.
  • the open / close valve 10d' of the pressurized gas flow path 10c ' is opened, and the foaming gas in the hollow part of the hollow molded product 11f is released.
  • the mixed pressurized gas is discharged.
  • the movable mold 4 is opened from the fixed mold 2 by a mold opening / closing mechanism (not shown), and the hollow molded product 11f is taken out of the injection molding machine by a product take-out means (not shown). Ends.
  • the gate mark to the fixed mold 2 side of the hollow molded product 11 f ( Since the gate trace and the injection trace) are transferred, the fixed mold 2 side is the non-design surface, and the opposed movable mold 4 side is the design surface. Therefore, the on-off valve 10d ′ for injecting the pressurized gas is also arranged on the non-design surface on the fixed mold 2 side, and the injection hole for the pressurized gas is also formed on the non-design surface on the fixed mold 2 side of the hollow molded product 11f.
  • the injection unit is connected to either the fixed mold 2 or the movable mold 4, or the fixed mold 2 side or the movable mold 4 side of the hollow molded product is connected.
  • a difference in form such as which is a design surface or a non-design surface does not cause a large difference in the above-described effect, and the present invention can also be implemented in such a different form.
  • the mold clamping force is reduced to substantially the entire surface of the foamable molten resin containing the foaming agent by the injection filling process in which the volume of the mold cavity is reduced from the product volume so that the injection filling rate is about 100%. It can be used by imparting it uniformly and suppressing the expression of foamed cells to the skin layer during the formation of the skin layer. Therefore, for a general hollow molded product using a non-foamable molten resin that does not contain a foaming agent, as described above, a hollow molded product in which the hollow ratio of the hollow portion to the product volume is significantly improved is molded. be able to.
  • the injection molding method according to Example 6 described above is more defective in gas rupture than the conventional injection molding methods (hollow injection molding method and high hollow injection molding method) for hollow molded articles described in Patent Documents 3 and 4. Can be reliably suppressed.
  • the injection filling amount (volume) in the injection filling of the molten synthetic resin (molten resin) into the mold cavity that is performed first is the volume of the mold cavity. Since it is a so-called short shot that is not sufficient to fill, the mold cavity is not filled with the molten synthetic resin. Therefore, the injection-filled molten synthetic resin forms a thin film-like skin layer (cooled solidified layer) that is formed at the contact portion when it is cooled in contact with the inner surface of the mold cavity having high thermal conductivity. On the other hand, the skin layer formed at the contact portion with the gas having low thermal conductivity in the mold cavity, such as the flow front portion of the molten synthetic resin, has low strength.
  • the ratio of the hollow volume to the product volume is increased by increasing the gas amount (volume) or increasing the gas pressure, That is, when the hollow ratio of the hollow portion with respect to the product volume is set high, there is a problem that a so-called gas burst failure occurs, in which gas is ejected from a weak skin layer portion formed in the molten synthetic resin.
  • a gas rupture defect occurs, an unintended gas rupture through-hole or an uneven part due to entrainment of the ruptured gas is formed on the design surface, resulting in poor appearance.
  • the gas pressure in the hollow portion decreases, the pressing force of the molten synthetic resin on the inner surface of the mold cavity due to the gas pressure decreases, and the transferability of the inner surface shape of the mold cavity to the skin layer, that is, the hollow molded product Product appearance deteriorates.
  • the hollow ratio of the hollow portion to the product volume cannot be set high.
  • the molten synthetic resin previously filled in a short shot is injected (injected) into the interior thereof, the molten synthetic resin fills the mold cavity as the gas injection (injection) amount (volume) increases. Therefore, the resin flow of the molten synthetic resin containing the gas depends on the resin flow in the mold cavity.
  • the resin flow is disturbed in a complicated product shape, a reinforcing rib structure on the back surface, a displacement portion of the product thickness, and the like, and a gas burst failure is likely to occur.
  • the product shape is made relatively simple, and the resin flow length from the gate part where the molten synthetic resin is filled into the mold cavity to the injection cylinder is shortened.
  • a mechanism for advancing and retreating the nozzles for injecting gas into the molten synthetic resin in the mold cavity is required in the mold, a plurality of such nozzles are provided, and the plurality of these nozzles are adapted to the inflow state of the molten synthetic resin.
  • Patent Document 3 in which gas is sequentially ejected from the nozzles of the nozzles, or these nozzles are sequentially retreated in accordance with the cooling and solidification state of the molten synthetic resin, the nozzle structure related to the mold structure and gas ejection is controlled. There is a problem of complexity.
  • the mold cavity is reduced by reducing the volume of the mold cavity from the product volume so that the injection filling rate becomes approximately 100%.
  • the inside of the cavity is filled with a foamable molten resin that is not foamed, and a mold clamping force is applied to the foamable molten resin in the mold cavity substantially uniformly.
  • a solid skin layer cooled solidified layer
  • a solid skin layer that is cooled and solidified by contact with the inner surface of the mold cavity is formed on substantially the entire surface of the foamable molten resin, and is subsequently injected into the foamable molten resin. Controls outflow of gas to the outside of the skin layer, so-called gas burst failure.
  • the injection molding method according to Example 6 is different from the injection molding methods of Patent Documents 3 and 4, and the volume of the mold cavity 9a is already substantially the same as the product volume in the hollow portion forming step. For this reason, the injection molding method according to the sixth embodiment has no volume variation of the mold cavity 9a, and the hollow portion is different from the case where there is a volume variation of the mold cavity 9a as in a general high hollow injection molding method.
  • the injection destination of the pressurized gas is not a molten resin as in the injection molding methods of Patent Documents 3 and 4, and the foam and the strength and density of the molten resin are low.
  • This is a foam layer 9f made of cells.
  • the pressurized gas 10b ′′ becomes its gas pressure. With the gas flow, the foam gas is compressed and injected into the foam cell, and the hollow portion is formed while destroying the foam cell sequentially from the portion where the strength and density of the foam layer 9f are weak.
  • the gas burst failure of the pressurized gas 10b is suppressed by the strong skin layer 9e formed on the substantially entire surface of the foamed molded product 9 ′′ in the injection filling process.
  • the pressurized gas is injected only into the foam layer 9f, it is possible to suppress the gas burst failure and to specify the hollow portion forming portion by the injection of the pressurized gas.
  • the effect of controlling the hollow ratio of the hollow portion with respect to the product volume is produced, in which the preferential flow effect and the density reduction of the foam layer 9f are substantially the same as the hollow portion (volume) formed by the injection of the pressurized gas.
  • the expansion ratio that controls the foam cell density of the foam layer with micro mold opening control it is possible to control the hollow ratio of the hollow part to the product volume, and only the part where the hollow part is to be formed is movable in the mold. If the foam layer is formed by expanding the volume of the mold cavity 9a with a core or the like, a selective flow in which a hollow portion is formed in an arbitrary portion is possible due to the preferential flow effect. As described above, in the injection molding method according to Example 6, in the hollow portion forming step, the hollow portion is formed by injecting the pressurized gas into the foamed layer 9f made of the foam cell having lower strength and density than the molten resin.
  • the hollow ratio of the hollow part to the product volume can be set high.
  • the foaming gas pressure in the foaming cell in the formed foamed layer varies depending on the type of chemical foaming agent and molding conditions, but generally 0.3 to 0.5 MPa. (Resin temperature 200 ° C.).
  • the foamed gas in the foamed cell is reduced by the pressure difference between the foamed gas pressure in the foamed cell and the pressurized gas pressure.
  • the pressurized gas is injected into the foamed layer, the foamed cells are sequentially destroyed without increasing the injection resistance.
  • the volume of the foamed layer 9f (the density of the foamed layer 9f relative to the case where the foamed layer 9f is a molten layer that is not a foamed layer). It is possible to form the hollow portion as a completely reduced portion or a ratio of expansion ratio). Therefore, the hollow ratio of the hollow portion with respect to the product volume can be controlled by controlling the volume of the foam layer 9f (the density drop or the foam ratio) and the thickness of the skin layer 9e.
  • the foamed layer 9f is not formed as a completely hollow portion, and the hollow molded product 11f is formed between the skin layer 9e of the foamed molded product 9 ′′ and a part of the foamed layer 9f.
  • a mixed layer may be used.
  • the pressurized gas 10b ′′ is, as shown in FIG. 8D, the molten resin flow path 9c ′ of the foamable molten resin 9b ′′.
  • the pressurized gas 10b '' is sent from the on-off valve 10d 'disposed at the connection portion where the pressurized gas flow path 10c' is connected to the inside of the mold cavity 9a to the skin of the foam molded body 9 "by gas pressure.
  • a special on-off valve or the like for injecting the pressurized gas 10b ′′ into the foamed molded product 9 ′′ is not required for the fixed mold 2.
  • FIGS. 10A to 10C are schematic cross-sectional views of a mold showing steps different from the injection molding method according to Example 6 described above, among the injection molding methods according to Example 7.
  • FIG. 10A to 10C are schematic cross-sectional views of a mold showing steps different from the injection molding method according to Example 6 described above, among the injection molding methods according to Example 7.
  • FIG. 10A to 10C are schematic cross-sectional views of a mold showing steps different from the injection molding method according to Example 6 described above, among the injection molding methods according to Example 7.
  • the difference between the injection molding method according to the seventh embodiment and the injection molding method according to the sixth embodiment is that the mold cavity expansion step is such that the volume of the mold cavity 9a is larger than the volume of the product.
  • the method further includes a mold cavity reduction process for reducing the volume of the mold cavity 9a to the volume of the product.
  • the other molding steps are basically the same as the injection molding method according to the sixth embodiment, and the mold and the injection molding machine can be basically the same as those described in the sixth embodiment. Therefore, only differences from the injection molding method according to Example 6 will be described.
  • FIG. 10A shows the formation of a hollow part in which the on-off valve 10d ′ of the pressurized gas flow path 10c ′ is opened and the pressurized gas 10b ′′ is injected from the pressurized gas unit 18 ′ into the foamed layer 9f of the foamed molded product 9 ′′.
  • the mold cavity expanding step includes a mold opening / closing mechanism by a minute mold opening amount L1 ′ larger than the minute mold opening amount L1 in the direction in which the movable mold 4 is separated from the fixed mold 2.
  • the mold cavity 9a is opened by a mold (not shown) so that the volume of the mold cavity 9a is larger than the volume of the product.
  • the foam layer 9f of the foam molded body 9 '' is a foam layer made of foam cells having low strength and density.
  • the foam layer 9f of the molten resin 9b has almost all foam cells destroyed and formed a hollow portion, but the foam layer 9f formed in a thin portion such as a reinforcing rib of a product (not shown) It is not the state formed as a hollow part.
  • injection of the pressurized gas 10b ′′ into the foamed layer 9f of the foamed molded product 9 ′′ is completed, and the desired shape is obtained in the mold cavity 9a.
  • a hollow molded product 11g having a hollow portion is formed.
  • the pressurizing gas 10b ′′ injected by a predetermined amount (volume) by the mold cavity reduction process is increased in the hollow portion, so that the increased pressurizing gas 10b ′′ is contained in the foam layer 9f.
  • the formation of the hollow part is continued while further destroying the foamed cells still remaining in the cell from the site where the strength and density are weak.
  • the pressurized gas 10b ′′ is also injected into the foamed cell portion of the foamed layer 9f formed in the thin-walled portion such as the reinforcing rib of the product to form a hollow portion.
  • the discharge of the pressurized gas in the hollow portion of the hollow molded product 11g is performed after the start of the mold cavity reduction process (that is, during the mold cavity reduction process or after the completion of the mold cavity reduction process). Is preferred.
  • the effect of increasing the pressurized gas pressure in the hollow part by the mold cavity reduction process is obtained. It is for improving. The same applies to the case where the gas counter pressure method is employed in the injection molding method according to the seventh embodiment.
  • the movable mold 4 is not illustrated as in the injection molding method according to the sixth embodiment.
  • the mold is opened from the fixed mold 2 by the opening / closing mechanism, and the hollow molded product 11g is taken out of the injection molding machine by the product take-out means (not shown), thus completing the molding cycle.
  • the strong skin layer 9e formed on substantially the entire surface of the foamable molten resin 9b ′′ in the injection filling process can be applied.
  • the gas burst failure of the pressurized gas 10b ′′ is suppressed.
  • the hollow ratio of the hollow portion to the product volume can be set high.
  • the injection molding method according to the seventh embodiment is a product like the injection molding method according to the sixth embodiment because the mold cavity expanding step is a step of expanding the volume of the mold cavity larger than the product volume by a predetermined amount.
  • the mold cavity expanding step is a step of expanding the volume of the mold cavity larger than the product volume by a predetermined amount.
  • the effect of reducing the injection resistance of the pressurized gas in the hollow portion forming step is further enhanced, the injection performance of the pressurized gas is improved, and the injected pressurized gas 10b ′′ is injected.
  • the amount (volume) can be physically increased.
  • the thickness of the skin layer formed on the part having a product thickness of 1 mm is generally 0.4 to 0.5 mm on one side. In this state, a pressurized gas is introduced into the molten resin.
  • a part having a product thickness of 1 mm is temporarily expanded to 1.5 to 2 mm by expanding the mold cavity volume, it is possible to inject pressurized gas into this part and to form a hollow part.
  • the expansion amount of the mold cavity volume to be temporarily expanded may be appropriately selected depending on the mold structure, the product shape, the hollow ratio of the hollow portion to the product volume, and the like.
  • the injection molding method according to Example 7 is excellent in product appearance by a mold cavity reduction process for reducing the volume of the mold cavity to the product volume, and includes a thin portion such as a reinforcing rib of the product.
  • a hollow molded product in which the hollow portions are formed substantially uniformly on the substantially entire surface can be formed.
  • the mold cavity reduction process can apply a substantially uniform clamping force to the hollow molded product 11g, the residual stress in the hollow molded product 11g is reduced, and deformation of the molded product during cooling and solidification is suppressed. The same effects as the injection compression molding method and injection press molding method can be expected.
  • the pressurized gas pressure in the hollow portion is increased by the mold cavity reduction process, so that the pressurized gas supply pressure of the pressurized gas unit 18 ′ is lowered than usual.
  • safety related to the pressurized gas unit 18 ′ can be improved, and equipment / pressurized gas management costs can be reduced.
  • the present invention can be implemented in various forms without being limited to the above embodiment.
  • the mold cavity expansion process, the mold cavity reexpansion process, and the mold cavity reduction process are performed using a mold having a shear edge structure.
  • the mold cavity volume is varied by the mold opening / closing operation of the mold opening / closing mechanism of the injection molding machine.
  • the means for varying the volume of the mold cavity is the mold opening / closing mechanism of such an injection molding machine.
  • the volume of the mold cavity such as the moving operation of the movable part in the mold, is opposed to the gas pressure in the mold cavity or the resin pressure in the mold cavity.
  • Any means capable of arbitrarily controlling the volume, variable speed, variable volume holding force (mold position holding force) and the like may be used.
  • the volume of the mold cavity can be varied by the mold opening / closing operation by the mold opening / closing mechanism of the injection molding machine.
  • the mold opening / closing mechanism is a toggle type clamping mechanism suitable for precision mold opening / closing control, preferably an electric toggle type clamping mechanism
  • the molten resin for the inner layer relative to the product volume is linked with other molding condition control.
  • the filling ratio or the hollow ratio of the hollow part, the product thickness and the hollow part thickness can be controlled with high accuracy.
  • the injection molding method according to the first to seventh embodiments may be performed by changing the volume of the mold cavity.
  • the injection molding method according to Examples 1 to 7 can be carried out. Specifically, by making the mold opening amount small in the mold cavity expansion process, by adjusting the temperature of the mold, etc., the molten resin skin layer in the vicinity of the mold dividing surface is formed thick, or in the vicinity of the mold dividing surface.
  • the filling ratio of the molten resin for the inner layer relative to the product volume or the hollow portion when a mold with a shear edge structure or the like is used
  • the surface layer molten resin employs a foamable molten resin containing a foaming agent, the foam formed as the surface layer is formed. Since the strength of the skin layer of the molded body is surely higher than the strength of the foamed layer consisting of foamed cells, the inner layer molten resin flows only in the foamed layer, so the surface layer molten resin does not contain a foaming agent. In contrast to the case of a molten resin, the prevention of leakage of the molten resin for the surface layer and the molten resin for the inner layer injected into the mold cavity from the mold dividing surface of the mold that has been micro-opened is further ensured.
  • the strength of the skin layer formed on substantially the entire surface of the molten resin is surely higher than the strength of the foamed layer made of foamed cells.
  • the molten resin injected and filled into the mold cavity leaks from the mold split surface of the mold that has been micro-opened. The prevention is high.
  • the mold cavity expansion process, the mold cavity re-expansion process, and the mold cavity reduction process of the injection molding method according to the first to seventh embodiments include a mold opening / closing operation by a mold opening / closing mechanism of an injection molding machine, and a movable part in the mold Whether the moving operation is performed in combination, or a combination of these, the shape of the sandwich molded product and the sandwich structure, the resin material of the surface layer and the inner layer according to the specifications of the sandwich molded product, and the product Mold to be used in view of the filling ratio of the inner layer molten resin to the volume, or the shape of the hollow molded product or the hollow part, the resin material according to the specifications of the hollow molded product, and the hollow ratio of the hollow part to the product volume, etc. It is possible to select an optimal form as appropriate, including this structure.
  • an insert decorative molding method in which a sheet-like insert material having decorating properties and functionality is integrally formed on the design surface of a resin molded product is also included in the present invention.
  • This is one of the injection molding methods that can make the most of the features. Specifically, if a sheet-like insert material having decorativeness and functionality is set on the design surface side of the mold and the injection molding method according to Examples 6 and 7 is performed, the pressurized gas Since the skin layer is pressed against the inner surface of the mold cavity only by pressure, the insert material and the skin layer surface are not suitable for a general hollow injection molding method that is not suitable for combination with such a skin decorative molding method.
  • Adhesion and high transferability of the inner surface of the mold cavity to the insert material integrated on the surface of the skin layer can be secured, and an insert-decorated hollow molded product with excellent product appearance can be formed. it can.
  • the insert material is a material having a decorative property or a design property, such as a material with a printed pattern, a soft feeling imparting material, or a brushed material, etc., which easily reduces the decorative property or the design property by heat or pressure
  • After ensuring the adhesion between the insert material and the skin layer surface and the high transferability of the inner surface of the mold cavity to the insert material in addition to controlling the mold opening / closing mechanism or moving operation of the movable part in the mold By combining pressure control such as pressurized gas pressure in the hollow part forming step for forming the hollow part, the pressure applied to the insert material is controlled appropriately, and the insert material is decorated and designed. Can be more effectively suppressed.
  • the mixing nozzle required for the injection unit in order to prevent the resin reversal failure, the mixing nozzle required for the injection unit, the coaxial arrangement of the hot runner for laminar flow formation, and the like
  • it does not require a special gate structure or a special gate valve that can reliably inject and fill the molten resin for the inner layer into the molten resin for the surface layer even with short hot shots, and it can improve the appearance of the product Even if the filling ratio of the molten resin for the inner layer to the product volume is set to be high, a sandwich molded product in which the resin reversal failure is suppressed can be formed.
  • the present invention can be practiced not only with an injection molding machine dedicated to sandwich molding but also with a general-purpose injection molding machine to which a commercially available post-injection injection unit is added.
  • a general-purpose injection molding machine to which a commercially available post-injection injection unit is added.
  • the general sandwich injection molding method is used for the molten resin for the surface layer due to problems such as the appearance of the foam cell on the skin layer.
  • the foaming melt containing foaming agent is produced by the injection filling process in which the volume of the mold cavity is reduced from the product volume so that the injection filling rate is about 100%. It can be used as a molten resin for the surface layer by imparting a mold clamping force substantially uniformly to substantially the entire surface of the resin and suppressing the appearance of the foamed cells to the skin layer during the formation of the skin layer.
  • a sandwich molded product that greatly improves the filling ratio of the molten resin for the inner layer to the product volume compared to a general sandwich molded product that uses a non-foamed molten resin containing no foaming agent as the molten resin for the surface layer. Can be molded. Further, even if the filling ratio of the inner layer molten resin to the product volume is set high, the resin inversion failure can be suppressed, so that more recycled resin can be used as the inner layer molten resin. Furthermore, since the injection molding method of the sandwich molded product according to Examples 1 to 5 does not require a special structure for the injection unit or the mold, a sheet-like skin material having decorating properties and functionality is used for the mold.
  • the injection molding method for hollow molded articles according to Examples 6 and 7 a structure in which a pressurized gas nozzle is arranged at the center of the nozzle of an injection unit, such as a general hollow injection molding method, or a pressurized gas is used.
  • the insert decorative molded product molded by the insert decorative molding method described above has recently been used in home appliances as a product that imparts decorating properties and functionality difficult to obtain with resin materials to resin molded products. Often used in products, office automation equipment, automotive parts, etc. In recent years, resin molded products have been required to be further reduced in weight in response to environmental problems. In view of the compatibility between the decorativeness and functionality of the resin molded product and the weight reduction, it is possible to expect further weight reduction of the hollow molded product suitable for the weight reduction of the resin molded product.
  • the insert-decorated hollow molded product that can be molded by a combination of the injection molding method of the hollow molded product according to 6 and 7 and such a skin decorative molding method is one of the optimal solutions. The industrial utility value is extremely high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

 金型キャビティを形成可能な第1金型及び第2金型を用いて成形品を成形する射出成形方法であって、第1金型と第2金型とを型締めし、金型キャビティを形成する型締め工程と、型締め工程の完了後に、金型キャビティに発泡性溶融樹脂を射出充填し、金型キャビティ内を発泡性溶融樹脂で満たす第1射出充填工程と、第1射出充填工程の開始後に、金型キャビティを所定量だけ拡張させ、発泡性溶融樹脂を発泡させる金型キャビティ拡張工程と、第1射出充填工程の完了後で、かつ、金型キャビティ拡張工程の開始後に、金型キャビティ内の発泡性溶融樹脂内に溶融樹脂又はガスを注入する第2射出充填工程とを備える。

Description

射出成形方法
 本発明は、例えば、表層及び内層からなるサンドイッチ成形品や、内部に中空部を有する中空成形品等の射出成形方法に関する。
 従来から、表層と、この表層に内包された内層とからなるサンドイッチ成形品が知られている。サンドイッチ成形品を成形する射出成形方法(コ・インジェクション法)としては、主に、多段成形方法と同時成形方法の2つの方法が知られている。多段成形方法は、表層用溶融樹脂を金型キャビティ内に射出充填させた後、内層用溶融樹脂を表層用溶融樹脂内に射出充填させ、これら2つの溶融樹脂で金型キャビティ内を満たす方法である(特許文献1参照)。同時成形方法は、表層用溶融樹脂を金型キャビティ内に射出充填させた後、表層用溶融樹脂と内層用溶融樹脂とを、表層用溶融樹脂が外周側で、その中心に内層用溶融樹脂が配置されるような層流状態で、先に射出した表層用溶融樹脂内に射出充填させ、これら2つの溶融樹脂で金型キャビティ内を満たす方法である(特許文献2参照)。
 また、従来から、内部に中空部を有する中空成形品が知られている。中空成形品を成形する射出成形方法としては、例えば中空射出成形方法(ガスアシスト射出成形方法)が知られている。中空射出成形方法は、溶融樹脂を金型キャビティ内に射出充填させた後、加圧ガスを溶融樹脂内に注入させて中空部を形成させ、注入させた加圧ガスを排出させる方法である(特許文献3参照)。この中空射出成形方法は、通常、金型キャビティの容積を一定にして成形が行われるが、加圧ガスの注入に連動させて金型キャビティの容積を拡張させる方法も知られている(特許文献4参照)。この加圧ガスの注入に連動させて金型キャビティの容積を拡張させる方法は、通常の中空射出成形方法と区別して高中空成形方法と呼ばれており、中空成形品の内部の中空部容積をより大きくさせることができる方法である。
特開平08-174603号公報 特開2001-096566号公報 特開平10-272644号公報 特開2001-054919号公報
 しかしながら、特許文献1乃至4に記載の射出成形方法では、最初に金型キャビティ内に射出充填された溶融樹脂から、後に注入された溶融樹脂又は加圧ガスが噴出するおそれがあるという問題がある。
 すなわち、特許文献1乃至3に記載の射出成形方法は、最初に金型キャビティ内に射出充填される溶融樹脂の射出充填量を金型キャビティの容積未満の量とし、いわゆるショートショットの状態となるように最初の溶融樹脂を射出充填するものである。一般に、金型キャビティ内の気体の熱伝導率は、金型キャビティの内面(金属等)の熱伝導率よりも低いため、最初に金型キャビティ内に射出充填された溶融樹脂のうち、金型キャビティ内の気体と接触する箇所は、金型キャビティの内面と接触する箇所に比べて冷却固化が遅く、強度が弱い。このため、最初に金型キャビティ内に射出充填された溶融樹脂の内部に溶融樹脂又は加圧ガスを射出充填する際に、この強度の弱い箇所から溶融樹脂又は加圧ガスが噴出し、樹脂反転不良又はガス破裂不良が発生するおそれがある。
 また、特許文献4の射出成形方法は、金型キャビティ内に溶融樹脂を射出充填させた後、金型キャビティを拡張させ、その後、加圧ガスを溶融樹脂内に注入することにより、拡張された金型キャビティ内において溶融樹脂を流動させて所望の成形品の大きさに拡大させるものである。このため、特許文献4の射出成形方法では、例えば複雑な製品形状、裏面の補強リブ構造、製品の厚みの変位部等において溶融樹脂の流動が乱れ、ガス破裂不良が発生するおそれがある。
 本発明は、樹脂反転不良及びガス破裂不良の発生を抑制することが可能な射出成形方法を提供することを目的とする。
 上記の目的を達成するため、本発明に係る一の射出成形方法は、金型キャビティを形成可能な第1金型及び第2金型を用いて成形品を成形する射出成形方法であって、前記第1金型と前記第2金型とを型締めし、前記金型キャビティを形成する型締め工程と、前記型締め工程の完了後に、前記金型キャビティに発泡性溶融樹脂を射出充填し、前記金型キャビティ内を前記発泡性溶融樹脂で満たす第1射出充填工程と、前記第1射出充填工程の開始後に、前記金型キャビティを所定量だけ拡張させ、前記発泡性溶融樹脂を発泡させる金型キャビティ拡張工程と、前記第1射出充填工程の完了後で、かつ、前記金型キャビティ拡張工程の開始後に、前記金型キャビティ内の前記発泡性溶融樹脂内に溶融樹脂又はガスを注入する第2射出充填工程とを備えることを特徴とする。
 本発明に係る一の射出成形方法において、前記型締め工程の開始後で、かつ、前記第1射出充填工程の開始前に、前記金型キャビティ内に加圧ガスを注入させ、前記金型キャビティ内を前記発泡性溶融樹脂の発泡膨張圧力以上の圧力で与圧させる与圧工程と、前記第1射出充填工程の開始後に、前記加圧ガスを排出させる加圧ガス排出工程とを更に備えるとしても良い。この場合において、前記第2射出充填工程は、前記金型キャビティ内の前記発泡性溶融樹脂内に加圧ガス流路を介して加圧ガスを注入する工程であり、前記与圧工程は、前記第2射出充填工程において使用する加圧ガス流路を介して前記金型キャビティ内に加圧ガスを注入する工程であることが好ましい。
 本発明に係る一の射出成形方法において、前記金型キャビティ拡張工程は、前記金型キャビティの容積が前記成形品の容積よりも大きい容積となるように、前記金型キャビティを拡張させる工程であり、前記射出成形方法は、前記金型キャビティ拡張工程の完了後で、かつ、前記第2射出充填工程の開始後に、前記金型キャビティの容積が前記成形品の容積となるように、前記金型キャビティを所定量だけ縮小させる金型キャビティ縮小工程を更に備えるとしても良い。
 本発明に係る一の射出成形方法において、前記金型キャビティ拡張工程は、前記金型キャビティの容積が前記成形品の容積未満となるように、前記金型キャビティを拡張させる工程であり、前記第2射出充填工程は、前記金型キャビティ内の前記発泡性溶融樹脂内に内層用発泡性溶融樹脂を注入する工程であり、前記射出成形方法は、前記第2射出充填工程の開始後に、前記金型キャビティの容積が前記成形品の容積となるように、前記金型キャビティを所定量だけ拡張させ、前記内層用発泡性溶融樹脂を発泡させる金型キャビティ再拡張工程を更に備えるとしても良い。この場合において、前記金型キャビティ再拡張工程は、前記金型キャビティの容積が前記成形品の容積よりも大きい容積となるように、前記金型キャビティを拡張させる工程であり、前記射出成形方法は、前記金型キャビティ再拡張工程の完了後に、前記金型キャビティの容積が前記成形品の容積となるように、前記金型キャビティを所定量だけ縮小させる金型キャビティ縮小工程を更に備えることが好ましい。
 本発明に係る一の射出成形方法において、前記金型キャビティの拡張及び縮小の少なくとも一方は、射出成形装置の型開閉機構による型開閉動作、及び、金型内可動部の移動動作の少なくとも一つにより行われるとしても良い。
 本発明に係る他の射出成形方法は、金型キャビティを形成可能な第1金型及び第2金型を用いて、表層と内層とからなるサンドイッチ成形品を成形する射出成形方法であって、前記第1金型と前記第2金型とを型締めし、前記金型キャビティを形成する型締め工程と、前記型締め工程の完了後に、前記金型キャビティに非発泡性溶融樹脂を射出充填し、前記金型キャビティ内を前記非発泡性溶融樹脂で満たす第1射出充填工程と、前記第1射出充填工程の完了後に、前記第1金型及び前記第2金型の少なくとも一方を他方に対して所定量だけ微小型開きさせて、前記金型キャビティを拡張させる金型キャビティ拡張工程と、前記金型キャビティ拡張工程の開始後に、前記金型キャビティ内の前記非発泡性溶融樹脂内に溶融樹脂を射出充填する第2射出充填工程とを備えることを特徴とする。
 本発明に係る他の射出成形方法において、前記金型キャビティ拡張工程は、前記金型キャビティの容積が前記成形品の容積よりも大きい容積となるように、前記金型キャビティを拡張させる工程であり、前記射出成形方法は、前記金型キャビティ拡張工程の完了後で、かつ、前記第2射出充填工程の開始後に、前記金型キャビティの容積が前記成形品の容積となるように、前記金型キャビティを所定量だけ縮小させる金型キャビティ縮小工程を更に備えるとしても良い。
 本発明に係る他の射出成形方法において、前記金型キャビティの拡張及び縮小の少なくとも一方は、射出成形装置の型開閉機構による型開閉動作、及び、金型内可動部の移動動作の少なくとも一つにより行われるとしても良い。
 本発明によれば、樹脂反転不良及びガス破裂不良の発生を抑制することが可能な射出成形方法を提供することができる。
本発明の実施例1に係る射出成形方法の成形サイクル前の型開き状態を示す概略断面図である。 実施例1に係る射出成形方法の第1射出充填工程を示す概略断面図である。 実施例1に係る射出成形方法の金型キャビティ拡張工程を示す概略断面図である。 実施例1に係る射出成形方法の第2射出充填工程を示す概略断面図である。 実施例1に係る射出成形方法の冷却固化工程を示す概略断面図である。 実施例1に係る射出成形方法の製品取出工程を示す概略断面図である。 実施例1に係る射出成形方法の金型キャビティ拡張工程における表層用発泡性溶融樹脂の状態を示す概略断面図である。 実施例1に係る射出成形方法の第2射出充填工程の開始時における内層用非発泡性溶融樹脂の流動状態を示す概略断面図である。 実施例1に係る射出成形方法の第2射出充填工程の完了時における内層用非発泡性溶融樹脂の流動状態を示す概略断面図である。 本発明の実施例2に係る射出成形方法の第2射出充填工程を示す概略断面図である。 実施例2に係る射出成形方法の金型キャビティ縮小工程を示す概略断面図である。 本発明の実施例3に係る射出成形方法の第2射出充填工程を示す概略断面図である。 実施例3に係る射出成形方法の金型キャビティ再拡張工程を示す概略断面図である。 本発明の実施例4に係る射出成形方法の第1射出充填工程を示す概略断面図である。 実施例4に係る射出成形方法の金型キャビティ拡張工程を示す概略断面図である。 実施例4に係る射出成形方法の第2射出充填工程を示す概略断面図である。 実施例4に係る射出成形方法の冷却固化工程を示す概略断面図である。 実施例4に係る射出成形方法の製品取出工程を示す概略断面図である。 実施例4に係る射出成形方法の金型キャビティ拡張工程における表層用非発泡性溶融樹脂の状態を示す概略断面図である。 実施例4に係る射出成形方法の第2射出充填工程の開始時における内層用非発泡性溶融樹脂の流動状態を示す概略断面図である。 本発明の実施例5に係る射出成形方法の第2射出充填工程を示す概略断面図である。 実施例5に係る射出成形方法の金型キャビティ縮小工程を示す概略断面図である。 本発明の実施例6に係る射出成形方法の成形サイクル前の型開き状態を示す概略断面図である。 実施例6に係る射出成形方法の第1射出充填工程を示す概略断面図である。 実施例6に係る射出成形方法の金型キャビティ拡張工程を示す概略断面図である。 実施例6に係る射出成形方法の第2射出充填工程を示す概略断面図である。 実施例6に係る射出成形方法の冷却固化工程を示す概略断面図である。 実施例6に係る射出成形方法の製品取出工程を示す概略断面図である。 実施例6に係る射出成形方法の金型キャビティ拡張工程における発泡性溶融樹脂の状態を示す概略断面図である。 実施例6に係る射出成形方法の第2射出充填工程における加圧ガスの流動状態を示す概略断面図である。 実施例6に係る射出成形方法の冷却固化工程における中空成形品の状態を示す概略断面図である。 本発明の実施例7に係る射出成形方法の第2射出充填工程(中空部形成工程)を示す概略断面図である。 実施例7に係る射出成形方法の第2射出充填工程(中空部形成工程)が完了した状態を示す概略断面図である。 実施例7に係る射出成形方法の金型キャビティ縮小工程を示す概略断面図である。
 以下、本発明を実施するための形態について、添付図面を参照しながら詳細に説明する。実施例1乃至実施例5に係る射出成形方法は、表層と内層とからなり、表層が内層を内包するサンドイッチ成形品を成形する射出成形方法に関するものである。実施例6及び実施例7に係る射出成形方法は、内部に中空部を有する中空成形品を成形する射出成形方法に関するものである。
 サンドイッチ成形品は、樹脂成形品における、異材、同材、異色、同色様々な組み合わせからなる多層成形品の一つである。このようなサンドイッチ成形品は、1つの層の一方の表面にのみ別層が積層される多層成形品と異なり、内層が表層に内包される多層成形品であるため、内包される内層は略完全に表層には露出せず、樹脂成形品自体の外観性や意匠性は表層で確保可能なことから、近年、プラスチック製資源ごみや廃棄プラスチック等を原料とする、コストダウンや環境対応に適したリサイクル樹脂等が内層に採用されたサンドイッチ成形品が、自動車のバンパーや輸送・物流用パレット、あるいは、コンテナボックス等、使用樹脂量が多い大物部品用の樹脂成形品として採用されている。また、サンドイッチ成形品は、内層に、軽量化、制振性、断熱・遮音性、柔軟性付与を目的とした発泡性樹脂、あるいは、高強度樹脂や、電磁波・電離線の遮断・吸収性樹脂、吸水性樹脂、非透過性樹脂等の機能性樹脂を使用し、用途に応じた機能性を付与させつつ、表層により優れた製品外観性をも有する、表裏両面が意匠面となるような樹脂成形品(家電製品や自動車内層部品の開閉カバー等)としても採用される。中空成形品は、内部に中空部が形成された成形品であり、樹脂成形品の軽量化を主目的として形成されるものである。
 図1A乃至図1F及び図2A乃至図2Cを参照しながら本発明の実施例1に係る射出成形方法を説明する。図1A乃至図1Fは、実施例1に係るサンドイッチ成形品の射出成形方法の各工程を示す金型の概略断面図である。図2A乃至図2Cは、サンドイッチ成形品が成形される過程を示す概略断面図である。
 実施例1に係る射出成形方法に用いる射出成形機は、図1Aに示すように、金型キャビティ9aを形成可能な固定金型2(第1金型)及び可動金型4(第2金型)と、表層用発泡性溶融樹脂9b´(第1材料)を金型キャビティ9a内に射出充填可能な第1射出ユニット17と、内層用非発泡性溶融樹脂10b(第2材料)を金型キャビティ9a内に射出充填可能な第2射出ユニット18とを備える。
 固定金型2は、ベース(図示せず)に立設された固定盤(図示せず)に取り付けられている。また、固定金型2は、第1射出ユニット17から射出された表層用発泡性溶融樹脂9b´が金型キャビティ9a内に向けて流動する表層用樹脂流路9cと、この表層用樹脂流路9cの金型キャビティ9a内に連通されるゲート部分に設けられたゲートバルブ(樹脂遮断開放切替弁)9dと、第2射出ユニット18から射出された内層用非発泡性溶融樹脂10bが金型キャビティ9a内に向けて流動する内層用樹脂流路10cと、この内層用樹脂流路10cの金型キャビティ9a内に連通されるゲート部分に設けられたゲートバルブ10dとを有している。可動金型4は、可動盤(図示せず)に、固定金型2に対向するように取り付けられ、図示しない型開閉機構により射出成形機の長手方向(以下、型開閉方向という)に移動可能に配置されている。
 固定金型2及び可動金型4は、それぞれの金型の分割面(金型分割面、パーティング面、割面と呼称されることもある)がシェアエッジ構造となっており、射出成形機の型開閉機構による型開閉動作で、金型キャビティの容積を可変させるものである。シェアエッジ構造とは、くいきり構造、あるいはインロー構造等と呼称されることもあり、金型の分割面を形成する嵌合部の構造として一般的に知られた構造であり、型開閉方向に伸びて、互いに摺動しながら挿脱することのできる嵌合部を、固定金型と可動金型の間に形成することによって、金型キャビティ内に射出充填された溶融樹脂が、所定量、金型を型開きさせても金型外に漏れ出すのを防止することができる構造である。このようなシェアエッジ構造の金型は、成形工程中に金型を微小型開きさせる拡張発泡成形方法(コアバック発泡成形方法と呼称されることもある)や型内被覆成形方法(インモールドコーティング法、金型内塗装方法と呼称されることもある)等に採用される。
 第1射出ユニット17及び第2射出ユニット18は、固定金型2側において、例えば並行型配置、V字型配置、斜め型配置及びL字型配置等の種々の方法で配置されている。並行型配置は、第1射出ユニット17及び第2射出ユニット18の双方が、固定金型2の背面側において射出成形機の長手方向と平行となるように配置される態様である。V字型配置は、第1射出ユニット17及び第2射出ユニット18の双方が、固定金型2の背面側において射出成形機の長手方向に対して若干の角度を付けて配置される態様である。斜め型配置は、メイン射出ユニットが、固定金型2の背面側において射出成形機の長手方向と平行となるように配置され、サブ射出ユニットが、固定金型2の背面側においてメイン射出ユニットに対して斜めに配置される態様である。L字型配置は、メイン射出ユニットが、固定金型2の背面側において射出成形機の長手方向と平行となるように配置され、サブ射出ユニットが、固定金型2の側面、上面又は下面側において射出成形機の長手方向と直交するように配置される態様である。これらの配置は、使用される溶融樹脂の種類や、射出充填量等の射出充填仕様により適宜選択されれば良い。実施例1に係る射出成形方法に用いる射出成形機は、初めから2つ以上の射出ユニットが配置されたサンドイッチ成形専用の射出成形機であっても、市販されている後付け用の射出ユニットが追加された汎用射出成形機であっても良い。
 また、第1材料及び第2材料が同じ樹脂材料である場合、実施例1に係る射出成形方法において、第1材料及び第2材料のそれぞれの射出充填工程が一部だけでも重複するケースは稀なため、汎用射出成形機を含む、射出ユニットが1セットしか配置されていない射出成形機であっても、多くのケースにおいて、実施例1に係る射出成形方法を実施することができる。その場合、樹脂流路の金型キャビティ側端部のゲート部分にゲートバルブが配置されていれば、第1材料及び第2材料の樹脂流路は、金型内でそれぞれを分岐・独立させた形態であっても、分岐させず、共通化させた形態であっても良い。更に、それぞれの形態において、第1材料及び第2材料のいずれか一方、あるいは、双方の樹脂流路を更に分岐させて、複数の異なるゲート位置から射出充填させる多点ゲート形態であっても良い。
 実施例1に係る射出成形方法は、図1Aに示す成形サイクル開始前の型開き状態から、図1Bに示すように、可動金型4を図示しない型開閉機構により固定金型2側に移動させて可動金型4と固定金型2とを型閉じさせた後、型締力を付与させる(型締め工程)。この型締め工程は、固定金型2及び可動金型4により形成される金型キャビティ9aの容積が、製品(成形品)の容積未満で、かつ、表層用発泡性溶融樹脂9b´の射出充填率が略100%となるように、固定金型2及び可動金型4を型締めする工程である。
 次に、型締力を付与させた状態において、表層用樹脂流路9cのゲートバルブ9dを開放させて、第1射出ユニット17から表層用樹脂流路9cを介して、発泡剤を含む表層用発泡性溶融樹脂9b´を金型キャビティ9aに射出充填させる(第1射出充填工程)。なお、第1射出充填工程において、内層用樹脂流路10cの金型キャビティ9a側端部のゲート部分に設けられたゲートバルブ10dは閉じられており、金型キャビティ9a内に射出充填させた表層用発泡性溶融樹脂9b´が内層用樹脂流路10cに逆流することはない。この第1射出充填工程において、金型キャビティ9a内は、表層用発泡性溶融樹脂9b´で満たされ、この時点において、金型キャビティ9a内の表層用発泡性溶融樹脂9b´は発泡状態ではない。このため、表層用発泡性溶融樹脂9b´の略全面が金型キャビティ9aの内面と接触して冷却され、略全面を覆う強固なスキン層(冷却固化層)9eが形成されると共に、スキン層9eへの高い転写性が確保される。また、表層用発泡性溶融樹脂9b´の略全面に略均一に付与される型締力により、スキン層9e形成時における発泡セルのスキン層9eへの表出が抑制される。そのため、表層用発泡性溶融樹脂9b´が発泡剤を含む発泡性溶融樹脂であっても、製品外観性が向上する。
 ここで、表層用発泡性溶融樹脂9b´に含まれる発泡剤は、化学発泡剤であることを前提に説明するが、物理発泡剤であっても良い。ただし、その場合、表層用発泡性溶融樹脂9b´に適宜、物理発泡剤を混入させるための構成要件が、金型、あるいは、射出成形機に必要となる。また、表層用発泡性溶融樹脂9b´が発泡剤を含む発泡性溶融樹脂である場合、型締め工程の開始後(すなわち、型締め工程の途中、又は、型締め工程の完了後)で、かつ、第1射出充填工程の開始前において、金型キャビティ9a内に、図示しない加圧ガス流路から、空気、窒素、二酸化炭素等の加圧ガスを注入させ、金型キャビティ9a内を、発泡剤を含む表層用発泡性溶融樹脂9b´の発泡膨張圧力以上の圧力で与圧させ(与圧工程)、第1射出充填工程の開始後(すなわち、第1射出充填工程の途中、又は、第1射出充填工程の完了後)に、注入させた加圧ガスを該加圧ガス流路から排出させる(加圧ガス排出工程)、いわゆる、ガス・カウンター・プレッシャー法を行わせても良い。発泡剤を含む発泡性溶融樹脂で拡張発泡成形を行う場合、スキン層(冷却固化層)への発泡セルの表出は、表層用発泡性溶融樹脂9b´の略全面に略均一に付与される型締力や、射出条件や金型温度制御等の成形条件で抑制させることが可能である。しかしながら、これらの成形条件は複雑であり、サンドイッチ成形品の成形条件と相反する場合がある。このような場合であっても、このようなガス・カウンター・プレッシャー法が採用されれば、スキン層(冷却固化層)への発泡セルの表出をより確実に抑制することができ、高い外観性や意匠性を要求されるサンドイッチ成形品であっても、一般的に発泡剤を含まない非発泡性溶融樹脂が採用されるサンドイッチ成形品の表層用溶融樹脂として、発泡剤を含む発泡性溶融樹脂を採用することができる。
 表層用発泡性溶融樹脂9b´は、金型キャビティ9a内に射出充填された直後から金型内で冷却され、冷却固化収縮が進行するため、型締め工程により形成された金型キャビティ9aの容積より、少なくとも冷却固化収縮分(容積)だけ多く射出充填させた方が、表層用発泡性溶融樹脂9b´の強固なスキン層(冷却固化層)9eの形成とスキン層9eへの高い転写性を確保する上で好ましい。ここで、スキン層9eは、金型キャビティ内の気体との接触部に形成されるスキン層に対して強固ではあるが、完全に硬化している層ではなく、その温度が樹脂軟化点温度、あるいは、ガラス固化温度以上で冷却固化がまだ進行中の、層方向にゴム状の弾性挙動を示す薄膜のような層であり、金型キャビティ9aの容積の可変に伸縮して追従可能である。
 第1射出充填工程の開始後(すなわち、第1射出充填工程の途中、又は、第1射出充填工程の完了後)に、図1Cに示すように、金型キャビティ9aの容積を製品の容積まで拡張させ、表層用発泡性溶融樹脂9b´を発泡させる(金型キャビティ拡張工程又は表層用樹脂拡張発泡成形工程)。この金型キャビティ拡張工程は、表層用樹脂流路9cのゲートバルブ9dを閉じた後、可動金型4を固定金型2から離間する方向に微小型開き量L1だけ型開閉機構(図示せず)により型開きさせ、金型キャビティ9aの容積を製品の容積と略同じとさせる工程である。この金型キャビティ拡張工程により、図2Aに示すように、表層用発泡性溶融樹脂9b´により形成される表層9´が、スキン層9eと、発泡セルからなる発泡層9f´と、から構成される発泡成形体として形成される。
 第1射出充填工程の完了後で、かつ、金型キャビティ拡張工程の開始後(すなわち、金型キャビティ拡張工程の途中、又は、金型キャビティ拡張工程の完了後)に、図1Dに示すように、内層用樹脂流路10cのゲートバルブ10dを開放させ、内層10を形成する内層用非発泡性溶融樹脂10bを、第2射出ユニット18から内層用樹脂流路10cを介して、表層用発泡性溶融樹脂9b´と金型キャビティ9a内面との接触面に形成された表層用発泡性溶融樹脂9b´のスキン層(冷却固化層)9eを貫通させて、表層用発泡性溶融樹脂9b´の発泡層9f´内に射出充填させる(第2射出充填工程)。この第2射出充填工程の開始時における内層用非発泡性溶融樹脂10bの流動状態を図2Bに、完了時における流動状態を図2Cに示す。
 内層用非発泡性溶融樹脂10bの表層用発泡性溶融樹脂9b´内への射出充填が完了した後、図1Eに示すように、内層用樹脂流路10cのゲートバルブ10dを閉じ、金型キャビティ9a内に成形されたサンドイッチ成形品11aに所定の型締力を付与させた状態で冷却固化させる(冷却固化工程)。そして、金型キャビティ9a内に成形されたサンドイッチ成形品11aの冷却固化が完了した後、図1Fに示すように、可動金型4を図示しない型開閉機構により固定金型2から型開きさせ、図示しない製品取出手段によりサンドイッチ成形品11aを射出成形機外へ搬出させ、成形サイクルが終了する。
 ここで、実施例1に係る射出成形方法のように、2つの射出ユニットが固定金型2に接続される形態、あるいは、1つの射出ユニットが固定金型2に接続される形態においては、一般的にはサンドイッチ成形品11aの固定金型2側へゲート跡(ゲート痕、射出痕)が転写されるため、この固定金型2側が非意匠面、対向する可動金型4側が意匠面となる。そのため、製品を取り出す際は、非意匠面である固定金型2側から製品押出手段等で金型から押し出されるが、実施例1に係る射出成形方法は、2つ、あるいは、1つの射出ユニットがどのように配置されるか、2つ、あるいは、1つの射出ユニットが固定金型2及び可動金型4のいずれに接続されるか、あるいは、サンドイッチ成形品の固定金型2側、可動金型4側のいずれが意匠面で非意匠面か、等の形態の差異によって、上述した効果に大きな差異が生じることはなく、そのような異なる形態においても実施することができる。
 以上説明したように、表層用溶融樹脂が発泡剤を含む表層用発泡性溶融樹脂9b´の場合、必要に応じて、ガス・カウンター・プレッシャー法を採用して、図1Aから図1Fまでの工程を繰り返すことにより、表層用発泡性溶融樹脂9b´に対する内層用非発泡性溶融樹脂10bの充填率を、表層用溶融樹脂として発泡剤を含まない非発泡性溶融樹脂を採用した場合と比較して更に高く設定しても、樹脂反転不良を抑制しながら、製品外観性に優れたサンドイッチ成形品11aを連続して成形させることができる。また、実施例1に係る射出成形方法においては、一般的なサンドイッチ射出成形方法では、発泡セルのスキン層への表出等の問題で表層用溶融樹脂には使用されることが少ない、発泡剤を含む発泡性溶融樹脂を、射出充填率が略100%となるように金型キャビティの容積を製品容積より縮小させて行われる射出充填工程により、発泡剤を含む発泡性溶融樹脂の略全面に型締力を略均一に付与させて、スキン層形成時における発泡セルのスキン層への表出を抑制させることで、表層用溶融樹脂として使用することができる。そのため、発泡剤を含まない非発泡性溶融樹脂を表層用溶融樹脂として使用する一般的なサンドイッチ成形品に対して、製品容積に対する内層用溶融樹脂の充填比率を大幅に向上させたサンドイッチ成形品を成形させることができる。
 以上説明した実施例1に係る射出成形方法は、特許文献1及び2に記載されているサンドイッチ成形品の従来の射出成形方法よりも、樹脂反転不良の発生を確実に抑制することができる。
 すなわち、特許文献1に記載の複合成形方法においては、最初に行われる、表層となる第1材料の金型キャビティ内への射出充填における射出充填量(容積)が、金型キャビティの容積を満たすには足りない、いわゆる、ショートショットであるため、金型キャビティ内が第1材料で満たされることはない。そのため、射出充填された溶融状態の第1材料と熱伝導率の高い金型キャビティの内面と接触して冷却されることによりその接触部に形成されるスキン層(冷却固化層)に対して、該第1材料の流動先端部等、金型キャビティ内の熱伝導率の低い気体との接触部に形成されるスキン層は強度が弱い。その結果、内層となる第2材料の射出充填量(容積)を多くし、製品容積に対する第2樹脂(内層)の射出充填量(容積)の割合、すなわち、製品容積に対する内層用溶融樹脂の充填比率を高く設定すると、第1材料に形成された弱いスキン層部分から第2材料が噴出する、いわゆる、樹脂反転不良が発生するという問題がある。また、先にショートショットで充填された第1材料が、その内部に続いて充填される第2材料の射出充填量(容積)の増大に伴い、これら2種類の溶融樹脂が金型キャビティ内を満たすため、第2材料を内包する第1材料の樹脂流動は金型キャビティ内の樹脂流動に依存する。そのため、複雑な製品形状、裏面の補強リブ構造、製品の厚みの変位部等において樹脂流動が乱れ、樹脂反転不良が発生し易くなると共に、射出後の金型キャビティ内を自由流動する第2材料の、自由流動により不均一に付与される樹脂流動圧力のみで、金型キャビティの内面形状が第1材料表面に形成されたスキン層(冷却固化層)に転写される。その結果、樹脂反転不良を防止するため、製品形状を比較的単純な形状にしたり、溶融樹脂が金型キャビティ内に充填されるゲート部分から射出シリンダまでの樹脂流動長を短くしたりする制約を受けたり、金型キャビティ内に射出充填させた溶融樹脂に略均一に型締力が付与される一般的な射出成形方法により成形された樹脂成形品に対して、サンドイッチ成形品の製品外観性が低下するという問題がある。さらに、金型キャビティ容積(製品容積)に対する第1材料(表層)の充填比率が低い程、第2材料を内包する第1材料の樹脂流動長が長くなり、樹脂反転不良が発生し易くなることから、樹脂反転不良を防止するため、内層となる第2材料の射出充填前に、表層となる第1材料を所定量(容積)以上、金型キャビティ内に射出充填させる必要があり、製品容積に対する第2樹脂(内層)の充填比率を高く設定できないという問題がある。
 また、特許文献2に記載の射出成形方法においては、溶融樹脂が金型キャビティ内に充填されるゲート部分において、内層樹脂用の第2ランナーが、表層樹脂用の第1ランナーの中心部に同心円状になるように配置されるため、表層樹脂の中心部に同心円状に内層樹脂が流動する層流が形成される。しかしながら、これら第1及び第2ランナーは、内部の溶融樹脂を溶融状態で流動・保持させるための保温・加熱手段を備えたホットランナーであり、両ランナーを同心円状に配置させるために、射出装置から金型キャビティ内に連通されるゲート部分までの金型内におけるこれらホットランナーの配置及び構成が複雑になる。そのため、金型構造が複雑になると共に、樹脂流動長が長くなることにより樹脂圧損が大きくなり射出充填性の低下を招くという問題がある。また、ゲート部分にゲートバルブ(樹脂遮断開放切替弁)を設けると、せっかく形成させた層流がゲートバルブ通過により乱れるため、ゲートバルブ付の金型には採用できない。さらに、特許文献2に記載の射出成形方法においても、最初に行われる、表層となる表層樹脂の金型キャビティ内への射出充填はショートショットであり、ゲート部分から表層樹脂と内層樹脂とを層流で射出させても、特許文献1の射出成形方法と同様に、ゲート部分以降の内層樹脂を内包する表層樹脂の樹脂流動は金型キャビティ内の樹脂流動に依存するため、複雑な製品形状、裏面の補強リブ構造、製品の厚みの変位部等における樹脂反転不良の発生は十分に抑制することはできない。これは、同時成形方法の1つである、層流を形成させるために、複数の射出ユニットの先端部を結合させるミキシングノズルを介して金型キャビティ内に射出充填する場合も同様である。また、樹脂反転不良以外の、ショートショットに起因する諸問題も十分には解決されていない。加えて、特許文献2に記載の射出成形方法においては、多層構造に構成することが困難な部分(例えば、ビール箱の仕切板部や、OA機器や家電製品或いはコピー機の蓋部などにおいて見られるヒンジ部等)に、表層のみを通過させるゲート「スキン限定ゲート」を配設し、このような薄肉部分はあえて多層構造とはしないで、表層樹脂のみから形成し、樹脂反転不良を回避できると記載されている。この構成により、多層構造に構成することが困難な薄肉部分における樹脂反転不良は回避できる可能性があるが、ほとんどの樹脂成形品の裏面には、補強リブ構造や製品組み込み用のクリップ座構造等の薄肉部分が配置され、軽量化を目的とした更なる薄肉化が要求される状況を鑑みると、これら薄肉部分への「スキン限定ゲート」の追加により、これに接続されるホットランナーも追加される必要があり、ホットランナーの配置及び構成がますます複雑になる。また、従来、成形が困難とされる薄肉部分への内層の形成は考慮されておらず、多くのサンドイッチ成形体に要求される、製品容積に対する内層用溶融樹脂の充填比率向上は望めないという問題がある。
 これに対し、実施例1に係る射出成形方法は、第1射出充填工程において、射出充填率が略100%となるように、金型キャビティ9aの容積を製品容積より縮小させることにより、縮小させた金型キャビティ9a内が表層用発泡性溶融樹脂9b´により満たされ、金型キャビティ9a内の表層用発泡性溶融樹脂9b´に型締力が略均一に付与される。これにより、金型キャビティ9a内における表層用発泡性溶融樹脂9b´の樹脂圧力が略均一に高められ、表層用発泡性溶融樹脂9b´の略全面に金型キャビティ9aの内面との接触により冷却固化された強固なスキン層(冷却固化層)が形成され、後に表層用発泡性溶融樹脂9b´内に射出充填される内層用非発泡性溶融樹脂10bの表層外部への流出、いわゆる、樹脂反転不良を抑制すると共に、金型キャビティ面の該スキン層への高い転写性が確保される。このように、実施例1に係る射出成形方法によれば、特許文献1及び2の射出成形方法のような、射出後の金型キャビティ内を自由流動する表層用溶融樹脂の、自由流動により不均一に付与される樹脂流動圧力のみで、金型キャビティの内面形状が表層用溶融樹脂表面に形成されたスキン層(冷却固化層)へ転写される一般的なサンドイッチ成形品の射出成形方法で成形されたサンドイッチ成形品に対して、製品外観性が向上する。
 また、実施例1に係る射出成形方法は、金型キャビティ拡張工程において、金型キャビティ9aの容積が既に製品容積と略同じである。このため、実施例1に係る射出成形方法は、金型キャビティ9aの容積変動がなく、特許文献4の射出成形方法のような金型キャビティの容積変動がある場合に対して、第2射出充填工程の前に確実に内層用溶融樹脂の射出充填抵抗を低下させ、複雑な製品形状、裏面の補強リブ構造、製品の厚みの変位部等において生じる樹脂流動の乱れを低下させるという効果を生じさせ、内層用溶融樹脂の射出充填抵抗の低下に寄与すると共に、内層用溶融樹脂の樹脂反転不良の抑制効果を向上させることができる。
 さらに、実施例1に係る射出成形方法は、表層用発泡性溶融樹脂9b´の発泡層9f´が、発泡剤を含まない非発泡性溶融樹脂で満たされた状態に対して、その強度及び密度が低い。このため、図2Bに示すように、スキン層9eを貫通させて、内層用非発泡性溶融樹脂10bを表層用発泡性溶融樹脂9b´の発泡層9f´に射出充填させると、内層用非発泡性溶融樹脂10bはその射出圧力と樹脂流動により、発泡セル内にその発泡ガスを圧縮させて充填され、又は、発泡層9f´の強度及び密度が弱い部位から順次、発泡セルを破壊しながら内層用非発泡性溶融樹脂10bと置換されていく。このように、実施例1に係る射出成形方法は、発泡層9f´にのみ、内層用非発泡性溶融樹脂10bが充填・置換されるため、樹脂反転不良が抑制されると共に、内層用非発泡性溶融樹脂10bの充填・置換部分を特定可能な優先流動効果や、発泡層9f´の密度低下分が、内層用非発泡性溶融樹脂10bが充填・置換される量(容積)と略同じになる、製品容積に対する内層用非発泡性溶融樹脂10bの充填比率制御効果を生じさせる。そのため、微小型開き制御で発泡層の発泡セル密度を制御する発泡倍率制御により、製品容積に対する内層用非発泡性溶融樹脂10bの充填比率制御が可能になると共に、内層用非発泡性溶融樹脂10bを充填させたい部分のみ、金型内の可動中子等により金型キャビティ9aの容積を拡張させて発泡層を形成させれば、優先流動効果により、任意の部分に内層用非発泡性溶融樹脂10bを充填させる選択流動が可能になる。このように、実施例1に係る射出成形方法は、第2射出充填工程において、強度及び密度が弱い発泡セルからなる発泡層9f´に内層用非発泡性溶融樹脂10bを射出充填させるため、表層用溶融樹脂として発泡剤を含まない非発泡性溶融樹脂を使用した場合と比較して、内層用非発泡性溶融樹脂10bの射出充填抵抗を大幅に低下させ、発泡層9f´による内層用非発泡性溶融樹脂10bの優先流動効果との相乗効果により、内層用非発泡性溶融樹脂10bの樹脂反転不良を確実に防止できると共に、製品容積に対する内層用非発泡性溶融樹脂10bの充填比率を更に高く設定することができる。また、表層用発泡性溶融樹脂9b´の略全面に形成された強固なスキン層9eによって樹脂反転不良が更に抑制され、また、スキン層9eへの高い転写性が確保される。
 ここで、化学発泡剤を使用した場合、形成された発泡層内の発泡セル内の発泡ガス圧力は、化学発泡剤の種類や成形条件により相違するが、一般的に0.3~0.5MPa(樹脂温度200℃)とされている。これに対して、射出充填樹脂圧力(射出圧力)は、樹脂の種類や成形条件により相違するが、一般的に30MPa~50MPa、あるいは、それ以上とされている。実施例1の第1射出充填工程においては、このような発泡セル内の発泡ガス圧力と射出充填樹脂圧力との大きな圧力差により、発泡セル内の発泡ガスが、内層用溶融樹脂の発泡層内への射出充填時に、その射出充填抵抗を増加させる要因になることはなく、発泡セル内のほとんどの発泡ガスは、製品品質に全く影響しない程度の容積まで容易に圧縮され、内層用溶融樹脂内に残留し、ごく一部が、破壊された発泡セルの残骸と共に、内層用溶融樹脂中に再融解され、内層用溶融樹脂中に取り込まれたまま冷却固化され、発泡ガスとしては存在しなくなる。その結果、使用する樹脂の組み合わせや、製品形状及び成形条件によっては、図2Cに示すように、発泡層9f´の容積(発泡層9f´が発泡層でない溶融層である場合に対する、発泡層9f´の密度低下分、又は、発泡倍率分)を略完全に、内層用非発泡性溶融樹脂10bに置換させることが可能である。そのため、発泡層9f´の容積(密度低下分、又は、発泡倍率分)やスキン層9eの厚みを制御することにより、製品容積に対する内層用非発泡性溶融樹脂10bの充填比率を制御することができる。本実施例1のように、発泡層9f´を略完全に内層用非発泡性溶融樹脂10bに置換させず、表層9´をスキン層9eと発泡層9f´の一部との混在する層としても良い。
 またさらに、実施例1に係る射出成形方法は、第2射出充填工程において、内層用非発泡性溶融樹脂10bを表層用発泡性溶融樹脂9b´とは別の内層用樹脂流路10cから、表層用発泡性溶融樹脂9b´のスキン層(冷却固化層)9eを貫通させて、表層用発泡性溶融樹脂9b´内に射出充填させるため、射出ユニットにミキシングノズル等の層流形成手段は不要である。また、これら溶融樹脂の金型内の樹脂流路9c、10cがホットランナーであっても、その配置及び構成等により層流を形成させる構造のように複雑になることはなく、任意の複数部位から内層用非発泡性溶融樹脂10bを表層用発泡性溶融樹脂9b´内に射出充填させることができる。また、内層用非発泡性溶融樹脂10bは、内層用樹脂流路10cが金型キャビティ9a内に接続されるゲート部分から、射出力により表層用発泡性溶融樹脂9b´のスキン層(冷却固化層)9eを貫通させるため、金型に、内層用非発泡性溶融樹脂10bを表層用発泡性溶融樹脂9b´内に射出充填させるための特殊なゲート構造や特殊なゲートバルブ等を必要としない。
 次に、図3A及び図3Bを参照しながら本発明の実施例2に係る射出成形方法を説明する。図3A及び図3Bは、実施例2に係る射出成形方法のうち、上述した実施例1に係る射出成形方法と異なる工程を示す金型の概略断面図である。
 実施例2に係る射出成形方法が実施例1に係る射出成形方法と異なる点は、金型キャビティ拡張工程が、金型キャビティ9aの容積が製品の容積よりも大きい容積となるように金型キャビティ9aを拡張させる工程である点と、金型キャビティ拡張工程の完了後で、かつ、第2射出充填工程の開始後(すなわち、第2射出充填工程の途中、又は、第2射出充填工程の完了後)に、金型キャビティ9aの容積を製品の容積まで縮小させる金型キャビティ縮小工程を備えている点である。これ以外の成形工程は、実施例1に係る射出成形方法と基本的に同じであり、また、金型及び射出成形機も実施例1において説明したものと基本的に同じものを用いることができるため、実施例1に係る射出成形方法との相違点についてのみ説明する。
 図3Aは、金型キャビティ拡張工程及び第2射出充填工程が完了し、内層用樹脂流路10cのゲートバルブ10dが閉じられた直後の状態を示す。実施例2に係る射出成形方法において、金型キャビティ拡張工程は、可動金型4を固定金型2から離間する方向に、微小型開き量L1よりも大きい微小型開き量L1´だけ型開閉機構(図示せず)により型開きさせ、金型キャビティ9aの容積を製品の容積よりも大きい容積とさせる工程である。
 図3Aに示す状態において、内層用非発泡性溶融樹脂10bは、まだ溶融状態が維持されている。また、表層用発泡性溶融樹脂9b´の発泡層9f´は、樹脂種類や、製品形状、及び、製品仕様等(製品容積に対する内層用溶融樹脂の充填比率、軽量化、均一性、強度剛性等)に応じて、発泡セルが内層用非発泡性溶融樹脂10bに所望する割合で置換されてはいるが、図示しない、製品の補強リブ等の薄肉部分に形成された発泡層9f´は、まだ、内層用非発泡性溶融樹脂10bに置換された状態ではない。そして、図3Aに示す金型キャビティ拡張工程の完了後で、かつ、第2射出充填工程が完了した直後の状態、あるいは、第2射出充填工程の途中の状態(実施例1の図1Dの状態)から、図3Bに示すように、可動金型4を固定金型2側に微小型開き量L1´がL2になるまで、図示しない型開閉機構により型締めさせ、金型キャビティ9aの容積を縮小させる(金型キャビティ縮小工程)。微小型開き量L1´からL2になるまで型締めさせた状態の金型キャビティ9aの容積は、製品容積と略同じである。この金型キャビティ縮小工程により、増加させた内層用非発泡性溶融樹脂10bは、表層用発泡性溶融樹脂9b´内の射出充填抵抗の低い、内層用非発泡性溶融樹脂10bに置換されていない発泡層9f´の発泡セル部分へと流動し充填され、あるいは、発泡セルを破壊しながら置換され、射出充填抵抗の低い発泡セル部分の充填抵抗が高まる。そして、金型キャビティ9aの容積が製品容積と略同じ状態となる際には、製品の補強リブ等の薄肉部分の発泡セル部分にも内層用非発泡性溶融樹脂10bが充填され、製品の略全面に内層用非発泡性溶融樹脂10bが略均一に充填される。
 そして、図3Bに示す状態から、金型キャビティ9a内に成形されたサンドイッチ成形品11bの冷却固化が完了した後、実施例1に係る射出成形方法と同様に、可動金型4を図示しない型開閉機構により固定金型2から型開きさせ、図示しない製品取出手段によりサンドイッチ成形品11bを射出成形機外へ搬出させ、成形サイクルが終了する。
 実施例2に係る射出成形方法によれば、実施例1に係る射出成形方法と同様に、第1射出充填工程において表層用発泡性溶融樹脂9b´の略全面に形成された強固なスキン層9eにより、内層用非発泡性溶融樹脂10bの樹脂反転不良が抑制される。
 また、実施例2に係る射出成形方法は、金型キャビティ拡張工程が金型キャビティの容積を製品容積より所定量大きく拡張させる工程であることにより、実施例1に係る射出成形方法のように製品容積にまで拡張させる場合に対して、第2射出充填工程における射出充填抵抗の低減効果を更に向上させ、内層用非発泡性溶融樹脂10bの射出充填性を向上させると共に、金型キャビティ9aの容積拡張により発泡層9f´の密度を更に低下させ、射出充填可能な内層用非発泡性溶融樹脂10bの射出充填量(容積)を物理的に増加させることができる。また、諸条件にもよるが、一般的に、製品厚みが1mmの部分に形成させるスキン層厚みは片面で0.4~0.5mmであり、この状態において、表層用溶融樹脂内に内層用溶融樹脂を充填させることは非常に困難である。しかしながら、製品厚みが1mmの部分を金型キャビティ容積の拡張により一時的に1.5~2mmに拡張させれば、この部分への内層用溶融樹脂の充填は可能となる。この一時的に拡張させる金型キャビティ容積の拡張量は、金型構造や、製品形状、及び製品容積に対する内層用溶融樹脂の充填比率等により、適宜選択されれば良い。
 さらに、実施例2に係る射出成形方法は、金型キャビティの容積を製品容積まで縮小させる金型キャビティ縮小工程により、増加させた内層用溶融樹脂を射出充填抵抗の低い部位へと流動させることができるため、製品の補強リブ等のような、内層用溶融樹脂を充填させることが困難な薄肉部分にも内層用溶融樹脂を充填させることができる。また、その結果、製品容積に対する内層用溶融樹脂の充填比率を高く設定することができる。さらに、実施例2に係る射出成形方法は、金型キャビティ縮小工程によりサンドイッチ成形品に略均一な型締力を付与させることができるので、サンドイッチ成形品内の残留応力を低下させ、冷却固化時の成形品変形を抑制するという射出圧縮成形方法や射出プレス成形方法と同様の効果が期待できる。
 次に、図4A及び図4Bを参照しながら本発明の実施例3に係る射出成形方法を説明する。図4A及び図4Bは、実施例3に係る射出成形方法のうち、上述した実施例1に係る射出成形方法と異なる工程を示す金型の概略断面図である。
 実施例3に係る射出成形方法が実施例1に係る射出成形方法と異なる点は、金型キャビティ拡張工程が、金型キャビティ9aの容積が製品の容積未満となるように金型キャビティ9aを拡張させる工程である点と、内層用非発泡性溶融樹脂が発泡剤を含む内層用発泡性溶融樹脂10b´である点と、第2射出充填工程の開始後(すなわち、第2射出充填工程の途中、又は、第2射出充填工程の完了後)に、金型キャビティ9aの容積が製品の容積となるように、金型キャビティ9aを再度拡張させる金型キャビティ再拡張工程を備えている点である。これ以外の成形工程は、実施例1に係る射出成形方法と基本的に同じであり、また、金型及び射出成形機も実施例1において説明したものと基本的に同じものを用いることができるため、実施例1に係る射出成形方法との相違点についてのみ説明する。
 図4Aは、金型キャビティ拡張工程及び第2射出充填工程が完了し、内層用樹脂流路10cのゲートバルブ10dが閉じられた直後の状態を示す。実施例3に係る射出成形方法において、金型キャビティ拡張工程は、可動金型4を固定金型2から離間する方向に、微小型開き量L1よりも小さい微小型開き量L1´´だけ型開閉機構(図示せず)により型開きさせ、金型キャビティ9aの容積を製品の容積未満とさせる工程である。また、実施例3に係る射出成形方法において、第2射出充填工程において射出充填される第2材料は、発泡剤を含む内層用発泡性溶融樹脂10b´である。
 そして、第2射出充填工程の開始後(すなわち、第2射出充填工程の途中、又は、第2射出充填工程の完了後)に、図4Bに示すように、金型キャビティ9aの容積が製品の容積となるように、金型キャビティ9aを再度拡張させる(金型キャビティ再拡張工程)。これにより、表層用発泡性溶融樹脂9b´内に充填された内層用発泡性溶融樹脂10b´を発泡させる。
 その後、図4Bに示す状態から、金型キャビティ9a内に成形されたサンドイッチ成形品11cの冷却固化が完了した後、実施例1に係る射出成形方法と同様に、可動金型4を図示しない型開閉機構により固定金型2から型開きさせ、図示しない製品取出手段によりサンドイッチ成形品11cを射出成形機外へ搬出させ、成形サイクルが終了する。
 実施例3に係る射出成形方法は、金型キャビティ再拡張工程を行うことにより、従来のサンドイッチ成形品の射出成形方法において、表層用溶融樹脂内に充填された、発泡剤を含む発泡性溶融樹脂の樹脂流動や発泡状態に依存するしかなかった内層用溶融樹脂の発泡状態(発泡層厚みや発泡率等)を積極的に制御することができる。
 実施例3に係る射出成形方法において、実施例2に係る射出成形方法のように、金型キャビティ縮小工程を行うことが好ましい。この場合、金型キャビティ縮小工程は、金型キャビティ拡張工程及び金型キャビティ再拡張工程のいずれか一方の後に行うとしても良いし、これら金型キャビティ拡張工程及び金型キャビティ再拡張工程の後にそれぞれ行うとしても良い。なお、金型キャビティ拡張工程後に金型キャビティ縮小工程を行う場合には、実施例2に係る射出成形方法において説明したように、金型キャビティ拡張工程において、金型キャビティ縮小工程により縮小させる分だけ多めに金型キャビティ9aの拡張を行うようにすれば良い。また、金型キャビティ再拡張工程後に金型キャビティ縮小工程を行う場合も同様であり、金型キャビティ縮小工程により縮小させる分だけ多めに金型キャビティ9aの拡張を行うようにすれば良い。
 次に、図5A乃至図5E、図6A及び図6Bを参照しながら本発明の実施例4に係る射出成形方法を説明する。図5A乃至図5Eは、実施例4に係るサンドイッチ成形品の射出成形方法の各工程を示す金型の概略断面図である。図6A及び図6Bは、サンドイッチ成形品が成形される過程を示す概略断面図である。
 実施例4に係る射出成形方法が実施例1に係る射出成形方法と異なる点は、表層用溶融樹脂が発泡剤を含まない非発泡性溶融樹脂である点である。これ以外の成形工程は、実施例1に係る射出成形方法と基本的に同じであるため、その詳細な説明を省略する。また、金型及び射出成形機においても、発泡剤を含む表層用発泡性溶融樹脂が発泡剤を含まない表層用非発泡性溶融樹脂9bに変更される点以外は実施例1において説明したものと基本的に同じものを用いることができるため、説明を省略する。
 実施例4に係る射出成形方法は、まず、実施例1に係る射出成形方法と同様の方法により型締め工程及び第1射出充填工程を行い、製品の容積未満の容積からなる金型キャビティ9aを形成すると共に、金型キャビティ9a内を表層用非発泡性溶融樹脂9bで満たす(図5A)。実施例4に係る射出成形方法においても、実施例1に係る射出成形方法と同様に、表層用非発泡性溶融樹脂9bの射出充填率が略100%であるため、図6Aに示すように、表層用非発泡性溶融樹脂9bの略全面が金型キャビティ9aの内面と接触して冷却され、略全面を覆う強固なスキン層(冷却固化層)9eと、内部が溶融状態の溶融層9fとから構成される表層9が成形される。また、金型キャビティ9a内の表層用非発泡性溶融樹脂9bに略均一に型締力が付与され、金型キャビティ9a内面の該スキン層への高い転写性が確保されるため、サンドイッチ成形品の製品外観性が向上する。
 次に、図5Bに示すように、第1射出充填工程の開始後(すなわち、第1射出充填工程の途中、又は、第1射出充填工程の完了後)に、金型キャビティ9aの容積を製品容積まで拡張させる金型キャビティ拡張工程が行われる。ここで、可動金型4が固定金型2から微小型開き量L1になるまで型開きさせる動作を分かり易くするために、表層9と可動金型4の金型キャビティ9aとの間に微小型開き量L1と同じ隙間が図示されているが、実際には、この金型キャビティ拡張工程と同時に、あるいは、所定時間経過後に行われる第2射出充填工程に連動させて、可動金型4の微小型開き動作が制御されることが好ましい。具体的には、図5Cに示すように、可動金型4の型開き量、すなわち、金型キャビティ9aの容積拡張量が、表層用非発泡性溶融樹脂9b内に射出充填させる内層用非発泡性溶融樹脂10bの射出充填量(容積)の増加と同じ、あるいは、所定量(容積)少なくなるように、型開閉機構による型開き速度や型位置保持力等を制御させ、前述した隙間が生じないように金型キャビティ9aの容積が製品容積になるまで、すなわち、微小型開き量L1になるまで可動金型4を型開きさせることが、表層用非発泡性溶融樹脂9bの強固なスキン層(冷却固化層)の形成と該スキン層への高い転写性を確保する上で好ましい。また、逆に、可動金型4の型開きによる金型キャビティ9aの容積拡張量に合わせて、内層用樹脂射出充填工程における内層用非発泡性溶融樹脂10bの射出充填量(容積)を同様に制御させる、あるいは、双方を連動制御させても良い。
 次に、実施例1に係る射出成形方法と同様の方法により第2射出充填工程を行い、内層用非発泡性溶融樹脂10bを表層用非発泡性溶融樹脂9b内に射出充填させる(図5C)。この第2射出充填工程の開始時における内層用非発泡性溶融樹脂10bの流動状態を図6Bに示す。ここで、金型キャビティ拡張工程とこの第2射出充填工程とを連動させ、内層用樹脂流路10cのゲートバルブ10dと、金型キャビティ9aの内面との接触面に形成された表層用非発泡性溶融樹脂9bのスキン層9eとを密着させた状態を維持させることにより、ゲートバルブ10dにおける樹脂反転不良の発生を防止しつつ、表層用非発泡性溶融樹脂9bのスキン層9eを貫通させて、内層用非発泡性溶融樹脂10bを表層用非発泡性溶融樹脂9b内に射出充填することができる。なお、金型キャビティ拡張工程と第2射出充填工程との連動によらず、成形条件等で、ゲートバルブ10dと表層用非発泡性溶融樹脂9bのスキン層9eとの密着性が維持される場合においては、金型キャビティ拡張工程と内層用樹脂射出充填工程とを必ずしも連動させる必要はない。
 第2射出充填工程後、図5Dに示すように、内層用樹脂流路10cのゲートバルブ10dが閉じられ、金型キャビティ9a内に成形されたサンドイッチ成形品11dに所定の型締力を付与させた状態で冷却固化させる冷却固化工程に移行させる。そして、金型キャビティ9a内に成形されたサンドイッチ成形品11dの冷却固化が完了した後、図5Eに示すように、可動金型4を図示しない型開閉機構により固定金型2から型開きさせ、図示しない製品取出手段によりサンドイッチ成形品11dを射出成形機外へ搬出させ、成形サイクルが終了する。
 以上説明したように、図5Aから図5Eまでの工程を繰り返すことにより、製品容積に対する内層用溶融樹脂の充填比率を高く設定しても、樹脂反転不良を抑制しながら、製品外観性に優れたサンドイッチ成形品11dを連続して成形させることができる。
 実施例4に係る射出成形方法は、金型キャビティ拡張工程により、縮小させた金型キャビティ内に満たされた表層用非発泡性溶融樹脂9bへの型締力が緩和され、表層用非発泡性溶融樹脂9b内圧力を低下させることができる。このため、第2射出充填工程における内層用非発泡性溶融樹脂10bの射出充填抵抗を低下させ、内層用非発泡性溶融樹脂10bの射出充填性を向上させることにより、製品容積に対する内層用非発泡性溶融樹脂10bの充填比率を高く設定することができる。すなわち、実施例4に係る射出成形方法は、内層用非発泡性溶融樹脂10bの表層用非発泡性溶融樹脂9b内への射出充填量(容積)の増大に伴い、金型キャビティ9aがこれら2つの溶融樹脂で満たされた状態で、製品容積まで金型キャビティ9aの容積が拡張される。これにより、実施例4に係る射出成形方法によれば、図6Bに示すように、表層用非発泡性溶融樹脂9bの略全面に形成された強固なスキン層9eによって樹脂反転不良が抑制され、スキン層9eへの高い転写性も確保することができる。また、実施例4に係る射出成形方法によれば、金型キャビティ拡張工程により、表層用非発泡性溶融樹脂9bの溶融層9fへの射出充填抵抗を低下させて、内層用非発泡性溶融樹脂10bの射出充填性を向上させることができるため、製品容積に対する内層用非発泡性溶融樹脂10bの充填比率を高く設定して、この第2射出充填工程を行わせることができる。
 また、実施例4に係る射出成形方法は、第2射出充填工程において、内層用非発泡性溶融樹脂10bを、図5Cに示すように、表層用非発泡性溶融樹脂9bの表層用樹脂流路9cとは別の内層用樹脂流路10cから、表層用非発泡性溶融樹脂9bのスキン層(冷却固化層)9eを貫通させて、表層用非発泡性溶融樹脂9b内に射出充填させている。このため、実施例4に係る射出成形方法に用いる射出成形機には、複数の射出ユニットの先端部を結合させるミキシングノズル等の層流形成手段が不要である。また、これら溶融樹脂の樹脂流路がホットランナーであっても、その配置及び構成等により層流を形成させる構造のように複雑になることはなく、樹脂流動長を短くすることができるため、樹脂圧損が小さく射出充填性が良く、樹脂滞留が少ないため色換え性にも優れる。さらに、任意の複数部位から内層用非発泡性溶融樹脂10bを表層用非発泡性溶融樹脂9b内に射出充填させることができる。また、内層用非発泡性溶融樹脂10bは、内層用樹脂流路10cが金型キャビティ9aに接続されるゲート部分に配置されたゲートバルブ10dから、射出力により表層用非発泡性溶融樹脂9bのスキン層(冷却固化層)9eを貫通させるため、固定金型2に、内層用非発泡性溶融樹脂10bを表層内非発泡性溶融樹脂9b内に射出充填させるための特殊なゲート構造や特殊なゲートバルブ等を必要としない。
 次に、図7A及び図7Bを参照しながら本発明の実施例5に係る射出成形方法を説明する。図7A及び図7Bは、実施例5に係る射出成形方法のうち、上述した実施例4に係る射出成形方法と異なる工程を示す金型の概略断面図である。
 実施例5に係る射出成形方法が実施例4に係る射出成形方法と異なる点は、金型キャビティ拡張工程が、金型キャビティ9aの容積が製品の容積よりも大きい容積となるように金型キャビティ9aを拡張させる工程である点と、金型キャビティ拡張工程の完了後で、かつ、第2射出充填工程の開始後(すなわち、第2射出充填工程の途中、又は、第2射出充填工程の完了後)に、金型キャビティ9aの容積を製品の容積まで縮小させる金型キャビティ縮小工程を備えている点である。これ以外の成形工程は、実施例4に係る射出成形方法と基本的に同じであり、また、金型及び射出成形機も実施例1において説明したものと基本的に同じものを用いることができるため、実施例1及び4に係る射出成形方法との相違点についてのみ説明する。なお、実施例5に係る射出成形方法において、金型キャビティ拡張工程及び金型キャビティ縮小工程は、実施例2に係る射出成形方法と同様であるため、詳細な説明を省略する。
 図7Aは、金型キャビティ拡張工程及び第2射出充填工程が完了し、内層用樹脂流路10cのゲートバルブ10dが閉じられた直後の状態を示す。図7Aに示す状態において、表層用非発泡性溶融樹脂9bの溶融層9f及び内層用非発泡性溶融樹脂10bは、まだ溶融状態が維持されている。実施例5に係る射出成形方法において、金型キャビティ拡張工程は、実施例2に係る射出成形方法と同様に、可動金型4を固定金型2から離間する方向に、微小型開き量L1よりも大きい微小型開き量L1´だけ型開閉機構(図示せず)により型開きさせ、金型キャビティ9aの容積を製品の容積よりも大きい容積とさせる工程である。
 そして、図7Aに示す金型キャビティ拡張工程の完了後で、かつ、第2射出充填工程が完了した直後の状態、あるいは、第2射出充填工程の途中の状態(実施例4の図5Cの状態)から、実施例2に係る射出成形方法と同様に、可動金型4を固定金型2側に微小型開き量L1´がL2になるまで、図示しない型開閉機構により型締めさせ、金型キャビティ9aの容積を縮小させる(金型キャビティ縮小工程)。この際の金型キャビティ9aの容積は、製品の容積と略同じである。この金型キャビティ縮小工程により、増加させた内層用非発泡性溶融樹脂10bは、表層用非発泡性溶融樹脂9b内の射出充填抵抗の低い部位へと流動し充填される。
 そして、図7Bに示す状態から、金型キャビティ9a内に成形されたサンドイッチ成形品11eの冷却固化が完了した後、実施例1に係る射出成形方法と同様に、可動金型4を図示しない型開閉機構により固定金型2から型開きさせ、図示しない製品取出手段によりサンドイッチ成形品11eを射出成形機外へ搬出させ、成形サイクルが終了する。
 実施例5に係る射出成形方法は、実施例2に係る射出成形方法と同様に、金型キャビティ拡張工程が金型キャビティの容積を製品容積より所定量大きく拡張させる工程であることにより、第2射出充填工程における射出充填抵抗の低減効果を向上させ、内層用非発泡性溶融樹脂10bの射出充填性を向上させると共に、射出充填可能な内層用非発泡性溶融樹脂10bの射出充填量(容積)を物理的に増加させることができる。また、実施例5に係る射出成形方法は、実施例2に係る射出成形方法と同様に、金型キャビティ縮小工程により、製品の補強リブ等の薄肉部分にも内層用非発泡性溶融樹脂10bが充填され、製品の略全面に内層用非発泡性溶融樹脂10bが略均一に充填されるため、製品外観性に優れたサンドイッチ成形品を成形させることができる。また、その結果、製品の容積に対する内層用非発泡性溶融樹脂10bの充填比率を高く設定することができる。さらに、この金型キャビティ縮小工程により、サンドイッチ成形品11eに略均一な型締力を付与させることができるので、サンドイッチ成形品11e内の残留応力を低下させ、冷却固化時の成形品変形を抑制するという射出圧縮成形方法や射出プレス成形方法と同様の効果が期待できる。またさらに、実施例5に係る射出成形方法においても、第1射出充填工程において表層用非発泡性溶融樹脂9bの略全面に形成された強固なスキン層9eにより、内層用非発泡性溶融樹脂10bの樹脂反転不良が抑制される。
 次に、図8A乃至図8F、図9A、図9B及び図9Cを参照しながら本発明の実施例6に係る射出成形方法を説明する。図8A乃至図8Fは、実施例6に係る中空成形品の射出成形方法の各工程を示す金型の概略断面図である。図9A、図9B及び図9Cは、中空成形品が成形される過程を示す概略断面図である。
 実施例6に係る射出成形方法が実施例1に係る射出成形方法と異なる点は、実施例1に係る射出成形方法が第2材料として内層用非発泡性溶融樹脂10bを用いるサンドイッチ成形品の射出成形方法であるのに対し、実施例6に係る射出成形方法は、第2材料として加圧ガス10b´´を用いる中空成形品の射出成形方法である点である。これ以外の成形工程は、実施例1に係る射出成形方法と基本的に同じであるため、その詳細な説明を省略する。
 実施例6に係る射出成形方法に用いる射出成形機は、図8Aに示すように、金型キャビティ9aを形成可能な固定金型2(第1金型)及び可動金型4(第2金型)と、発泡性溶融樹脂9b´´(第1材料)を金型キャビティ9a内に射出充填可能な射出ユニット17´と、加圧ガス10b´´(第2材料)を金型キャビティ9a内に供給可能な加圧ガスユニット18´とを備える。
 固定金型2は、ベース(図示せず)に立設された固定盤(図示せず)に取り付けられている。また、固定金型2は、射出ユニット17´から射出された発泡性溶融樹脂9b´´が金型キャビティ9a内に向けて流動する樹脂流路9c´と、この樹脂流路9c´の金型キャビティ9a内に連通されるゲート部分に設けられたゲートバルブ(樹脂遮断開放切替弁)9d´と、加圧ガスユニット18から供給される加圧ガス10b´´を金型キャビティ9a内に注入させる加圧ガス流路10c´と、この加圧ガス流路10c´の金型キャビティ9a側端部の接続部分に設けられた開閉弁10d´とを有している。可動金型4は、可動盤(図示せず)に、固定金型2に対向するように取り付けられ、図示しない型開閉機構により射出成形機の長手方向に移動可能に配置されている。
 射出ユニット17´は、固定金型2の背面側において射出成形機の長手方向と平行となるように設けられ、固定盤の背面からその先端ノズルを固定金型2に対して接離可能に配置されている。加圧ガスユニット18´は、後述する中空部形成工程で使用される、空気、窒素、二酸化炭素等のガスを所定量、所定圧力で供給可能なユニットであって、タンクユニットと、タンクユニットに係る圧力計、圧力制御弁、ガス流量制御弁、逆止弁、大気開放弁等で構成される。この加圧ガスユニット18´は、タンクユニットを含む1つのユニットとして、射出成形機近傍に配置され、固定金型2の加圧ガス流路10c´と配管やガスホース等で接続されている。加圧ガスを射出成形機が設置されている工場のユーティリティー配管等から供給可能な場合は、それらユーティリティー配管から直接加圧ガスを供給させ、必要な配管機器類のみをユニットとして別置きする形態や、該ユニットを射出成形機の固定盤等に配置させる形態も可能である。
 実施例6に係る射出成形方法に用いる射出成形機において、固定金型2及び可動金型4の構成等の他の構成は、実施例1に係る射出成形方法に用いる射出成形機と同様であるため、その説明を省略する。
 実施例6に係る射出成形方法は、図8Aに示す成形サイクル開始前の型開き状態から、実施例1に係る射出成形方法の型締め工程及び第1射出充填工程と同様の方法により、型締め工程及び射出充填工程を行い、製品の容積未満の容積からなる金型キャビティ9aを形成すると共に、金型キャビティ9a内を発泡性溶融樹脂9b´´で満たす(図8B)。実施例6に係る射出成形方法においても、実施例1に係る射出成形方法と同様に、発泡性溶融樹脂9b´´の射出充填率が略100%であるため、図9Aに示すように、発泡性溶融樹脂9b´´の略全面が金型キャビティ9aの内面と接触して冷却され、発泡性溶融樹脂9b´´の略全面を覆う強固なスキン層(冷却固化層)9eが成形される。また、ショートショットの場合のように、後に注入させる加圧ガスを内包する樹脂流動圧力で金型キャビティ内に溶融樹脂が満たされる形態に対して、金型キャビティ9a内の発泡剤を含む発泡性溶融樹脂9b´´に略均一に型締力が付与されるため、金型キャビティ9a内面のスキン層9eへの高い転写性が確保されると共に、発泡剤を含む発泡性溶融樹脂9b´´の略全面に略均一に付与される型締力により、スキン層9e形成時における発泡セルのスキン層9eへの表出が抑制される。そのため、ショートショットの場合のように、後に注入させる加圧ガスにより、射出後の金型キャビティ内を自由流動する溶融樹脂の、自由流動により不均一に付与される樹脂流動圧力のみで、金型キャビティの内面形状が溶融樹脂表面に形成されたスキン層(冷却固化層)へ転写される一般的な中空射出成形方法で成形された中空成形品に対して、製品外観性が向上する。
 発泡性溶融樹脂9b´´は、金型キャビティ9a内に射出充填された直後から金型内で冷却され、冷却固化収縮が進行するため、縮小させた金型キャビティ9aの容積より、少なくとも冷却固化収縮分(容積)だけ多く射出充填させた方が、発泡性溶融樹脂9b´´の強固なスキン層(冷却固化層)9eの形成とスキン層9eへの高い転写性を確保する上で好ましい。ここで、スキン層9eは、金型キャビティ内の気体との接触部に形成されるスキン層に対して強固ではあるが、完全に硬化している層ではなく、その温度が樹脂軟化点温度、あるいは、ガラス固化温度以上で冷却固化がまだ進行中の、層方向にゴム状の弾性挙動を示す薄膜のような層であり、金型キャビティ9aの容積の可変に伸縮して追従可能である。
 ここで、発泡剤を含む発泡性溶融樹脂9b´´に含まれる発泡剤は、化学発泡剤であることを前提に説明するが、実施例1において説明した通り、物理発泡剤であっても良い。また、実施例6に係る射出成形方法は、実施例1に係る射出成形方法と同様に、型締め工程の開始後(すなわち、型締め工程の途中、又は、型締め工程の完了後)で、かつ、射出充填工程の開始前において、金型キャビティ9a内に、空気、窒素、二酸化炭素等の加圧ガスを注入させ、金型キャビティ9a内を発泡性溶融樹脂9b´´の発泡膨張圧力以上の圧力で与圧させ(与圧工程)、射出充填工程の開始後(すなわち、射出充填工程の途中、又は、射出充填工程の完了後)に、注入させた加圧ガスを排出させる(加圧ガス排出工程)、いわゆる、ガス・カウンター・プレッシャー法を行わせても良い。発泡性溶融樹脂9´´で拡張発泡成形を行う場合、スキン層(冷却固化層)への発泡セルの表出は、発泡性溶融樹脂9´´の略全面に略均一に付与される型締力や、射出条件や金型温度制御等の成形条件で抑制させることが可能である。しかしながら、これらの成形条件は複雑であり、中空成形品の成形条件と相反する場合がある。このような場合であっても、このようなガス・カウンター・プレッシャー法が採用されれば、スキン層(冷却固化層)への発泡セルの表出をより確実に抑制することができ、高い製品外観性や意匠性を要求される中空成形品であっても、中空成形品の樹脂材料として、発泡性溶融樹脂9b´´を採用することができる。これにより、軽量化に適した中空成形品の更なる軽量化が期待できる。
 射出充填工程において、このガス・カウンター・プレッシャー法が採用される場合、使用される加圧ガスは、後述する中空部形成工程に使用される加圧ガスと同じ、空気、窒素、二酸化炭素等であっても良い。また、加圧ガスユニット18´は、固定金型2の加圧ガス流路10c´及び加圧ガス流路10c´の開閉弁10d´を介して金型キャビティ9a内にそれら加圧ガスを所定量、所定圧力で供給可能である。さらに、開閉弁10d´は、加圧ガスを溶融樹脂内に注入させるための特殊な開閉弁等ではない。そのため、これら中空部形成工程において、溶融樹脂内に加圧ガスを注入させる加圧ガス流路や関連機構を、このガス・カウンター・プレッシャー法における金型キャビティ内の与圧工程やガス排出工程に使用すれば、新たな構成要件を追加することなく、ガス・カウンター・プレッシャー法が採用できる。このガス・カウンター・プレッシャー法における金型キャビティ内の与圧工程と、中空部形成工程における加圧ガスの注入工程とは重複しておらず、それぞれの加圧ガスの排出工程は重複しても問題ないため、中空部形成工程に使用される加圧ガスユニット18´及び加圧ガス流路10c´や関連機構を、このガス・カウンター・プレッシャー法における金型キャビティ9a内の与圧工程やガス排出工程に使用することは成形工程上も問題はない。
 次に、図8Cに示すように、実施例1に係る射出成形方法と同様に、金型キャビティ9aの容積を製品容積まで拡張させる金型キャビティ拡張工程が行われ、これにより、射出充填された発泡性溶融樹脂9b´´が、スキン層9eと、発泡セルからなる発泡層9fとからなる発泡成形体9´´として形成される。この金型キャビティ拡張工程においては、一般的な拡張発泡成形方法と同様に、発泡成形体9´´のスキン層9e及び発泡セルからなる発泡層9fの厚みや、発泡セルの粒径や発泡倍率等の発泡状態が所望の発泡状態になるように可動金型4の微小型開き動作や金型温度等が制御されるが、後に行われる中空部形成工程において、成形品容積に対する中空部の中空比率をより高く設定することができるように、積極的に強度及び密度が低くなるように制御されても良い。
 次に、図8Dに示すように、射出充填工程の完了後で、かつ、金型キャビティ拡張工程の開始後(すなわち、金型キャビティ拡張工程の途中、又は、金型キャビティ拡張工程の完了後)に、加圧ガス流路10c´の開閉弁10d´を開放させ、加圧ガス10b´´を、加圧ガスユニット18´から加圧ガス流路10c´を介して、発泡性溶融樹脂9b´´と金型キャビティ9a内面との接触面に形成された、発泡成形体9´´のスキン層(冷却固化層)9eを貫通させて、発泡成形体9´´の発泡層9f内に注入させる(中空部形成工程又は第2射出充填工程)。この中空部形成工程又は第2射出充填工程における加圧ガスの流動状態を図9Bに示す。この中空部形成工程の前の、射出充填工程及び金型キャビティ拡張工程、すなわち、拡張発泡成形工程により、発泡性溶融樹脂9b´´を金型キャビティ9a内で発泡膨張させているため、この中空部形成工程においても、発泡成形体9´´のスキン層9eは金型キャビティ9aの内面に発泡ガス圧力により押し付けられている状態である。同様に、加圧ガス流路10c´の開閉弁10d´と、発泡成形体9´´のスキン層9eとも密着させた状態が維持されるため、開閉弁10d´におけるガス破裂不良の発生を防止しつつ、発泡成形体9´´のスキン層(冷却固化層)9eを貫通させて、加圧ガス10b´´を発泡成形体9´´の発泡層9f内に注入することができる。
 加圧ガス10b´´の発泡成形体9´´内への注入が完了し、所望する中空部が形成された後、図8Eに示すように、金型キャビティ9a内に成形された中空成形品11fに所定の型締力を付与させた状態で冷却固化させる冷却固化工程に移行させる。この冷却固化工程における中空成形品の状態を図9Cに示す。このとき、中空成形体の略全面に型締力が略均一に付与されるように、また、中空部を形成させるために必要な圧力を維持させるように、加圧ガスユニット18´からの加圧ガス供給及び供給ガス圧力制御は継続されることが好ましいが、中空部内のガス圧力が所定圧力以上であれば、加圧ガス流路10c´の開閉弁10d´を閉じた状態であっても良い。そして、金型キャビティ9a内に成形された中空成形品11fの冷却固化工程の開始後(すなわち、冷却固化工程の途中、又は、冷却固化工程の完了後)に、加圧ガス流路10c´から加圧ガスユニット18´間の管路に配置された大気開放弁を開放させると共に、加圧ガス流路10c´の開閉弁10d´を開放させ、中空成形品11fの中空部内の、発泡ガスが混合された加圧ガスを排出させる。そして、図8Fに示すように、可動金型4を図示しない型開閉機構により固定金型2から型開きさせ、図示しない製品取出手段により中空成形品11fを射出成形機外へ搬出させ、成形サイクルが終了する。
 ここで、実施例6に係る射出成形方法のように、射出ユニット17´が固定金型2に接続される形態においては、一般的には中空成形品11fの固定金型2側へゲート跡(ゲート痕、射出痕)が転写されるため、この固定金型2側が非意匠面、対向する可動金型4側が意匠面となる。そのため、加圧ガスを注入させる開閉弁10d´も固定金型2側の非意匠面に配置され、加圧ガスの注入孔も中空成形品11fの固定金型2側の非意匠面に形成される。また、製品を取り出す際は、非意匠面である固定金型2側から製品押出手段等で金型から押し出される。しかしながら、実施例6に係る射出成形方法は、射出ユニットが固定金型2及び可動金型4のいずれに接続されるか、あるいは、中空成形品の固定金型2側、可動金型4側のいずれが意匠面で非意匠面か、等の形態の差異によって、上述した効果に大きな差異が生じることはなく、そのような異なる形態においても実施することができる。
 以上説明したように、必要に応じて、ガス・カウンター・プレッシャー法を採用して、図8Aから図8Fまでの工程を繰り返すことにより、製品容積に対する中空部の中空比率を高く設定しても、ガス破裂不良を抑制しながら、製品外観性に優れた中空成形品11fを連続して成形させることができる。ガス・カウンター・プレッシャー法が採用された場合は、この中空成形品11fの中空部内の加圧ガス排出の際に、金型キャビティ9a内の加圧ガスも同時に排出されるため、特に、ガス・カウンター・プレッシャー法個別の加圧ガスの排出制御は必要ない。また、実施例6に係る射出成形方法においては、一般的な中空射出成形方法では、発泡セルのスキン層への表出等の問題で、使用されることが少ない、発泡剤を含む発泡性溶融樹脂を、射出充填率が略100%となるように金型キャビティの容積を製品容積より縮小させて行われる射出充填工程により、発泡剤を含む発泡性溶融樹脂の略全面に型締力を略均一に付与させて、スキン層形成時における発泡セルのスキン層への表出を抑制させることで、使用することができる。そのため、発泡剤を含まない非発泡性溶融樹脂を使用する一般的な中空成形品に対して、上述したように、製品容積に対する中空部の中空比率を大幅に向上させた中空成形品を成形させることができる。
 以上説明した実施例6に係る射出成形方法は、特許文献3及び4に記載されている中空成形品の従来の射出成形方法(中空射出成形方法及び高中空射出成形方法)よりも、ガス破裂不良の発生を確実に抑制することができる。
 すなわち、特許文献3に記載の中空成形方法においては、最初に行われる、溶融合成樹脂(溶融樹脂)の金型キャビティ内への射出充填における射出充填量(容積)が、金型キャビティの容積を満たすには足りない、いわゆる、ショートショットであるため、金型キャビティ内が溶融合成樹脂で満たされることはない。そのため、射出充填された溶融合成樹脂が、熱伝導率の高い金型キャビティの内面と接触して冷却されることによりその接触部に形成される、薄い膜状のスキン層(冷却固化層)に対して、該溶融合成樹脂の流動先端部等、金型キャビティ内の熱伝導率の低い気体との接触部に形成されるスキン層は強度が弱い。その結果、溶融合成樹脂の射出充填後に、溶融合成樹脂内へガスを噴出させる際、ガス量(容積)を多くしたり、ガス圧力を高くしたりして、製品容積に対する中空部容積の割合、すなわち、製品容積に対する中空部の中空比率を高く設定すると、溶融合成樹脂に形成された弱いスキン層部分からガスが噴出する、いわゆる、ガス破裂不良が発生するという問題がある。ガス破裂不良が発生すると、意図しないガス破裂の貫通穴や破裂したガスの巻き込みよる凹凸部が意匠面に形成され、外観不良になる。また、中空部のガス圧力が低下するため、ガス圧力による溶融合成樹脂の金型キャビティ内面への押付け力が低下し、金型キャビティ内面形状のスキン層への転写性、すなわち、中空成形品の製品外観性が低下する。このため、特許文献3に記載の中空成形方法においては、製品容積に対する中空部の中空比率を高く設定することができない。また、先にショートショットで充填された溶融合成樹脂が、その内部に続いて噴出(注入)されるガス噴出(注入)量(容積)の増大に伴い、溶融合成樹脂が金型キャビティ内を満たすため、ガスを内包する溶融合成樹脂の樹脂流動は金型キャビティ内の樹脂流動に依存する。そのため、複雑な製品形状、裏面の補強リブ構造、製品の厚みの変位部等において樹脂流動が乱れ、ガス破裂不良が発生し易い。このようなガス破裂不良を防止するため、製品形状を比較的単純な形状にしたり、溶融合成樹脂が金型キャビティ内に充填されるゲート部分から射出シリンダまでの樹脂流動長を短くしたりする制約を受けるという問題がある。さらに、金型キャビティ内の溶融合成樹脂内へガスを噴出させるノズルを金型内で進退させる機構が必要なため、このようなノズルを複数個備え、溶融合成樹脂の流入状態に合わせてこれら複数のノズルから順番にガスを噴出させたり、溶融合成樹脂の冷却固化状態に合わせてこれらノズルを順番に後退させたりする特許文献3の形態では、金型構造とガス噴出に関連するノズルの制御が複雑になるという問題がある。
 また、特許文献4に記載の高中空射出成形方法においても、金型キャビティの容積の拡大に伴う、ガスを内包する溶融樹脂の樹脂流動が金型キャビティ内の樹脂流動に依存する点は、特許文献3に記載の中空射出成形方法と同様である。そのため、複雑な製品形状、裏面の補強リブ構造、製品の厚みの変位部等において樹脂流動が乱れ、ガス破裂不良が発生し易く、ガス破裂不良に係る問題は十分には解決されていない。
 これに対し、実施例6に係る射出成形方法は、射出充填工程において、射出充填率が略100%となるように、金型キャビティの容積を製品容積より縮小させることにより、縮小させた金型キャビティ内が、発泡しない状態の発泡性溶融樹脂により満たされ、金型キャビティ内の発泡性溶融樹脂に型締力が略均一に付与される。これにより、発泡性溶融樹脂の略全面に、金型キャビティの内面との接触により冷却固化された強固なスキン層(冷却固化層)が形成され、後に発泡性溶融樹脂内に注入される加圧ガスのスキン層外部への流出、いわゆる、ガス破裂不良を抑制する。また、金型キャビティの内面の該スキン層への高い転写性が確保されると共に、発泡剤を含む発泡性溶融樹脂の略全面に略均一に付与される型締力により、スキン層形成時における発泡セルのスキン層への表出が抑制される。このため、特許文献3及び4の射出成形方法のように、後に注入させる加圧ガスにより、射出後の金型キャビティ内を自由流動する溶融樹脂の、自由流動により不均一に付与される樹脂流動圧力のみで、金型キャビティの内面形状が溶融樹脂表面に形成されたスキン層(冷却固化層)へ転写される一般的な中空射出成形方法で成形された中空成形品に対して、製品外観性が向上する。
 また、実施例6に係る射出成形方法は、特許文献3及び4の射出成形方法と異なり、中空部形成工程において、金型キャビティ9aの容積が既に製品容積と略同じである。このため、実施例6に係る射出成形方法は、金型キャビティ9aの容積変動がなく、一般的な高中空射出成形方法のような金型キャビティ9aの容積変動がある場合に対して、中空部形成工程の前に確実に加圧ガスの注入抵抗を低下させ、複雑な製品形状、裏面の補強リブ構造、製品の厚みの変位部等において生じる樹脂流動の乱れを低下させるという効果を生じさせ、加圧ガスの注入抵抗の低下に寄与すると共に、加圧ガスのガス破裂不良の抑制効果を向上させることができる。
 さらに、実施例6に係る射出成形方法は、加圧ガスの注入先が、特許文献3及び4の射出成形方法のような溶融樹脂ではなく、溶融樹脂に対してその強度及び密度が低い、発泡セルからなる発泡層9fである。このため、図9Bに示すように、スキン層9eを貫通させて、加圧ガス10b´´を発泡成形体9´´の発泡層9fに注入させると、加圧ガス10b´´はそのガス圧力とガス流動により、発泡セル内にその発泡ガスを圧縮させて注入され、発泡層9fの強度及び密度が弱い部位から順次、発泡セルを破壊しながら中空部を形成させていく。その状態においても、射出充填工程において発泡成形体9´´の略全面に形成された強固なスキン層9eにより、加圧ガス10bのガス破裂不良が抑制される。このように、実施例6に係る射出成形方法は、発泡層9fにのみ、加圧ガスが注入されるため、ガス破裂不良を抑制すると共に、加圧ガスの注入による中空部形成部分を特定可能な優先流動効果や、発泡層9fの密度低下分が、加圧ガスの注入により形成される中空部(容積)と略同じになる、製品容積に対する中空部の中空比率制御効果を生じさせる。そのため、微小型開き制御で発泡層の発泡セル密度を制御する発泡倍率制御により、製品容積に対する中空部の中空比率制御が可能になると共に、中空部を形成させたい部分のみ、金型内の可動中子等により金型キャビティ9aの容積を拡張させて発泡層を形成させれば、優先流動効果により、任意の部分に中空部を形成させる選択流動が可能になる。このように、実施例6に係る射出成形方法は、中空部形成工程において、溶融樹脂よりも強度及び密度が弱い発泡セルからなる発泡層9f内に加圧ガスを注入させて中空部を形成させるため、複雑な製品形状、裏面の補強リブ構造、製品の厚みの変位部等においても、それら部位に形成された発泡層9fにより加圧ガスの流動が乱れにくく、ガス破裂不良をより確実に抑制しながら、製品容積に対する中空部の中空比率を高く設定することができる。
 ここで、化学発泡剤を使用した場合、形成された発泡層内の発泡セル内の発泡ガス圧力は、化学発泡剤の種類や成形条件により相違するが、一般的に0.3~0.5MPa(樹脂温度200℃)とされている。中空部形成工程においては、加圧ガス圧力を発泡ガス圧力よりも高くすることにより、このような発泡セル内の発泡ガス圧力と加圧ガス圧力との圧力差により、発泡セル内の発泡ガスが、加圧ガスの発泡層内への注入時に、その注入抵抗を増加させる要因になることはなく、発泡セルが順次破壊される。それに伴い、発泡セル内のほとんどの発泡ガスは圧縮され、形成された中空部において加圧ガスと混合されて圧力平衡状態となる。その結果、使用する樹脂の組み合わせや、製品形状及び成形条件によっては、図9Cに示すように、発泡層9fの容積(発泡層9fが発泡層でない溶融層である場合に対する、発泡層9fの密度低下分、又は、発泡倍率分)を略完全に、中空部として形成させることが可能である。そのため、発泡層9fの容積(密度低下分、又は、発泡倍率分)やスキン層9eの厚みを制御することにより、製品容積に対する中空部の中空比率を制御することができる。実施例6に係る射出成形方法のように、発泡層9fを略完全に中空部として形成させず、中空成形品11fを発泡成形体9´´のスキン層9eと発泡層9fの一部との混在する層としても良い。
 またさらに、実施例6に係る射出成形方法は、中空部形成工程において、加圧ガス10b´´が、図8Dに示すように、発泡性溶融樹脂9b´´の溶融樹脂流路9c´とは別の加圧ガス流路10c´から、発泡成形体9´´のスキン層(冷却固化層)9eを貫通させて、発泡成形体9´´の発泡層9f内に注入させるため、射出ユニットのノズル中心に加圧ガスノズルを配置させるような特殊な構造は不要であり、任意の複数部位から加圧ガス10b´´を発泡成形体9´´内に注入させることができる。また、加圧ガス10b´´は、加圧ガス流路10c´が金型キャビティ9a内に接続される接続部分に配置された開閉弁10d´から、ガス圧力により発泡成形体9´´のスキン層(冷却固化層)9eを貫通させるため、固定金型2に、加圧ガス10b´´を発泡成形体9´´内に注入させるための特殊な開閉弁等を必要としない。
 次に、図10A乃至図10Cを参照しながら本発明の実施例7に係る射出成形方法を説明する。図10A乃至図10Cは、実施例7に係る射出成形方法のうち、上述した実施例6に係る射出成形方法と異なる工程を示す金型の概略断面図である。
 実施例7に係る射出成形方法が実施例6に係る射出成形方法と異なる点は、金型キャビティ拡張工程が、金型キャビティ9aの容積が製品の容積よりも大きい容積となるように金型キャビティ9aを拡張させる工程である点と、金型キャビティ拡張工程の完了後で、かつ、中空部形成工程の開始後(すなわち、中空部形成工程の途中、又は、中空部形成工程の完了後)に、金型キャビティ9aの容積を製品の容積まで縮小させる金型キャビティ縮小工程を備えている点である。これ以外の成形工程は、実施例6に係る射出成形方法と基本的に同じであり、また、金型及び射出成形機も実施例6において説明したものと基本的に同じものを用いることができるため、実施例6に係る射出成形方法との相違点についてのみ説明する。
 図10Aは、加圧ガス流路10c´の開閉弁10d´を開放させ、加圧ガスユニット18´から加圧ガス10b´´を発泡成形体9´´の発泡層9fに注入させる中空部形成工程を示す。実施例7に係る射出成形方法において、金型キャビティ拡張工程は、可動金型4を固定金型2から離間する方向に、微小型開き量L1よりも大きい微小型開き量L1´だけ型開閉機構(図示せず)により型開きさせ、金型キャビティ9aの容積を製品の容積よりも大きい容積とさせる工程である。
 図10Aに示す状態において、発泡成形体9´´の発泡層9fは、強度及び密度が弱い発泡セルからなる発泡層である。また、溶融樹脂9bの発泡層9fは、ほとんどの発泡セルが破壊され中空部が形成されてはいるが、図示しない、製品の補強リブ等の薄肉部分に形成された発泡層9fは、まだ、中空部として形成された状態ではない。そして、図10Aに示す状態から、図10Bに示すように、加圧ガス10b´´の発泡成形体9´´の発泡層9f内への注入が完了し、金型キャビティ9a内に、所望する中空部が形成された中空成形品11gが成形される。
 そして、図10Aに示す金型キャビティ拡張工程の完了後で、かつ、中空部形成工程の途中の状態、あるいは、図10Bに示す中空部形成工程が完了した直後の状態から、図10Cに示すように、可動金型4を固定金型2側に微小型開き量L1´がL2になるまで、図示しない型開閉機構により型締めさせ、金型キャビティ9aの容積を縮小させる(金型キャビティ縮小工程)。微小型開き量L1´からL2になるまで型締めさせた状態の金型キャビティ9aの容積は、製品容積と略同じである。この金型キャビティ縮小工程により、所定量(容積)多く注入させた加圧ガス10b´´が、中空部内において増圧されるため、増圧された加圧ガス10b´´は、発泡層9f内にまだ残されている発泡セルの、その強度及び密度が弱い部位から、更に順次破壊しながら中空部の形成を継続させていく。そして、製品の補強リブ等の薄肉部分に形成された発泡層9fの発泡セル部分にも加圧ガス10b´´が注入されて中空部が形成される。
 中空成形品11gの中空部内の加圧ガスの排出は、この金型キャビティ縮小工程の開始後(すなわち、金型キャビティ縮小工程の途中、又は、金型キャビティ縮小工程の完了後)に行われることが好ましい。これは、冷却固化時の成形品変形を抑制するという射出圧縮成形方法や射出プレス成形方法と同様の効果を得るためと、金型キャビティ縮小工程による中空部内の加圧ガス圧力の増圧効果を向上させるためである。実施例7に係る射出成形方法において、ガス・カウンター・プレッシャー法が採用された場合も同様である。
 そして、図10Cに示す状態から、金型キャビティ9a内に成形された中空成形品11gの冷却固化が完了した後、実施例6に係る射出成形方法と同様に、可動金型4を図示しない型開閉機構により固定金型2から型開きさせ、図示しない製品取出手段により中空成形品11gを射出成形機外へ搬出させ、成形サイクルが終了する。
 実施例7に係る射出成形方法によれば、実施例6に係る射出成形方法と同様に、射出充填工程において発泡性溶融樹脂9b´´の略全面に形成された強固なスキン層9eにより、加圧ガス10b´´のガス破裂不良が抑制される。また、その結果、製品容積に対する中空部の中空比率を高く設定することができる。
 また、実施例7に係る射出成形方法は、金型キャビティ拡張工程が金型キャビティの容積を製品容積より所定量大きく拡張させる工程であることにより、実施例6に係る射出成形方法のように製品容積にまで拡張させる場合に対して、中空部形成工程における加圧ガスの注入抵抗の低減効果が更に高まり、加圧ガスの注入性を向上させると共に、注入可能な加圧ガス10b´´の注入量(容積)を物理的に増加させることができる。また、諸条件にもよるが、一般的に、製品厚みが1mmの部分に形成させるスキン層厚みは片面で0.4~0.5mmであり、この状態において、溶融樹脂内に加圧ガスを注入させ、中空部を形成させることは非常に困難である。しかしながら、製品厚みが1mmの部分を金型キャビティ容積の拡張により一時的に1.5~2mmに拡張させれば、この部分への加圧ガスの注入及び中空部の形成は可能となる。この一時的に拡張させる金型キャビティ容積の拡張量は、金型構造や、製品形状、及び製品容積に対する中空部の中空比率等により、適宜選択されれば良い。
 さらに、実施例7に係る射出成形方法は、金型キャビティの容積を製品容積まで縮小させる金型キャビティ縮小工程により、製品外観性に優れ、製品の補強リブ等の薄肉部分も含めて、製品の略全面に中空部が略均一に形成された中空成形品を成形させることができる。また、この金型キャビティ縮小工程により、中空成形品11gに略均一な型締力を付与させることができるので、中空成形品11g内の残留応力を低下させ、冷却固化時の成形品変形を抑制するという射出圧縮成形方法や射出プレス成形方法と同様の効果が期待できる。さらに、実施例7に係る射出成形方法は、この金型キャビティ縮小工程により中空部内の加圧ガス圧力が増圧されため、加圧ガスユニット18´の加圧ガス供給圧力を通常よりも下げることができ、これにより、加圧ガスユニット18´関連の安全性向上や、設備・加圧ガス管理コストの低減が期待できる。
 本発明は、上記の実施の形態に限定されることなく色々な形で実施できる。例えば、実施例1乃至7に係る射出成形方法において、説明及び図面を簡単にするために、金型キャビティ拡張工程、金型キャビティ再拡張工程及び金型キャビティ縮小工程が、シェアエッジ構造の金型を前提に、射出成形機の型開閉機構による型開閉動作で、金型キャビティ容積を可変させるものとしたが、金型キャビティの容積を可変させる手段は、このような射出成形機の型開閉機構による型開閉動作に限定されるものではなく、金型内可動部の移動動作等、金型キャビティの容積を、金型キャビティ内のガス圧力、あるいは、金型キャビティ内の樹脂圧力に対抗して、その容積、可変速度、可変容積保持力(型位置保持力)等を任意で制御可能な手段であれば良い。
 例えば、実施例1乃至7に係る射出成形方法のように、シェアエッジ構造の金型を前提に、射出成形機の型開閉機構による型開閉動作で、金型キャビティの容積を可変させるものであれば、製品の金型投影面の略全面に内層用溶融樹脂又は中空部が略均一に形成されたサンドイッチ成形品又は中空成形品が成形できる。この場合、型開閉機構が、精密型開閉制御に適したトグル式型締機構、好ましくは電動トグル式型締機構であれば、他の成形条件制御と連動させて、製品容積に対する内層用溶融樹脂の充填比率又は中空部の中空比率、並びに、製品肉厚及び中空部厚みが高精度で制御可能となる。
 また、部分的に製品容積に対する内層用溶融樹脂の充填比率又は中空部の中空比率を高めたい肉厚部分等がある場合は、その部位に可動中子等の金型内可動部を設け、部分的に金型キャビティの容積を可変させ、実施例1乃至7に係る射出成形方法を実施しても良い。
 さらに、シェアエッジ構造ではなく、型開閉方向に直交する平面のみで構成される金型分割面(PL面とも呼称される)を有する一般的な構造の金型であっても、若干の制約が生じるものの、実施例1乃至7に係る射出成形方法の実施は可能である。具体的には、金型キャビティ拡張工程における微小型開き量を小さくする、金型の温度調節等により、金型分割面近傍の溶融樹脂のスキン層を厚く形成させたり、金型分割面近傍の溶融樹脂をスキン層のみで形成させたりする、等の制約を前提とすれば、シェアエッジ構造等の金型が使用される場合に対して、製品容積に対する内層用溶融樹脂の充填比率又は中空部の中空比率は低くせざるを得ないが、金型キャビティ内に射出充填させた溶融樹脂が、微小型開きさせた金型の金型分割面から漏れることを防止することが可能となる。
 また、一般的な構造の金型の場合、実施例1乃至3に係る射出成形方法のように、表層用溶融樹脂が発泡剤を含む発泡性溶融樹脂を採用すれば、表層として形成される発泡成形体のスキン層の強度は発泡セルからなる発泡層の強度より確実に高いことから、内層用溶融樹脂は発泡層内のみを流動するため、表層用溶融樹脂が発泡剤を含まない非発泡性溶融樹脂である場合に対して、金型キャビティ内に射出充填させた表層用溶融樹脂や内層用溶融樹脂の、微小型開きさせた金型の金型分割面からの漏洩防止は更に確実となる。また、実施例6及び7に係る射出成形方法において、溶融樹脂の略全面に形成されるスキン層の強度は発泡セルからなる発泡層の強度より確実に高いことから、加圧ガスは発泡層内のみを流動するため、発泡剤を含まない非発泡性溶融樹脂の場合に対して、金型キャビティ内に射出充填させた溶融樹脂の、微小型開きさせた金型の金型分割面からの漏洩防止性は高い。
 実施例1乃至7に係る射出成形方法の金型キャビティ拡張工程、金型キャビティ再拡張工程及び金型キャビティ縮小工程を、射出成形機の型開閉機構による型開閉動作、及び、金型内可動部の移動動作のいずれの形態で行わせるか、あるいは、これらを組み合わせて行わせるかは、サンドイッチ成形品やサンドイッチ構造部分の形状、サンドイッチ成形品の仕様に係る表層や内層の樹脂材料、及び、製品容積に対する内層用溶融樹脂の充填比率等、又は、中空成形品や中空部の形状、中空成形品の仕様に係る樹脂材料、及び、製品容積に対する中空部の中空比率等を鑑み、使用する金型の構造も含めて、適宜、最適な形態を選択することができる。
 実施例6及び7に係る射出成形方法の別の形態として、加飾性や機能性を有するシート状のインサート材を樹脂成形品の意匠面に一体成形するインサート加飾成形方法も、本発明の特徴を活かすことができる射出成形方法のひとつである。具体的には、加飾性や機能性を有するシート状のインサート材を金型の意匠面側にセットして、実施例6及び7に係る射出成形方法が実施されれば、加圧ガスの圧力のみでスキン層が金型キャビティの内面に押し付けられるため、このような表皮加飾成形方法との組み合わせには適さない一般的な中空射出成形方法に対して、インサート材とスキン層表面との密着性、及び、スキン層表面に一体化されたインサート材への、金型キャビティ内面の高い転写性を確保することができ、製品外観性に優れたインサート加飾中空成形品を成形させることができる。また、インサート材が、加飾性や意匠性を有する、印刷絵柄付材料、ソフト感付与材料、あるいは、起毛材料等、熱や圧力で加飾性や意匠性を低下させ易い材料である場合、インサート材とスキン層表面への密着性、及び、インサート材への、金型キャビティ内面の高い転写性を確保した後、型開閉機構制御、あるいは、金型内可動部の移動動作制御に加えて、中空部を形成させる中空部形成工程における加圧ガス圧力等の圧力制御等を組み合わせることにより、インサート材に付与される圧力の適切な減圧制御を行わせ、インサート材の加飾性や意匠性の低下をより効果的に抑制することができる。
 実施例1乃至5に係るサンドイッチ成形品の射出成形方法によれば、樹脂反転不良を防止するために、射出ユニットに必要とされるミキシングノズルや、層流形成のためのホットランナーの同軸配置等、複雑なホットランナー配置や、ショートショットでも内層用溶融樹脂を表層用溶融樹脂内に確実に射出充填可能な特殊なゲート構造や特殊なゲートバルブ等を金型に必要とせず、製品外観性に優れ、製品容積に対する内層用溶融樹脂の充填比率を高く設定しても、樹脂反転不良が抑制されたサンドイッチ成形品が成形できる。そのため、サンドイッチ成形専用の射出成形機ではもちろん、そうではない、市販されている後付け用の射出ユニットを追加した汎用射出成形機であっても本発明を実施することができる。すなわち、高価なサンドイッチ成形専用の射出成形機を導入する必要がなく、需要に応じて汎用射出成形機を通常成形用とサンドイッチ成形用に低コストで使い分けることが可能となり、樹脂成形品の製造業者にとって産業上利用価値が極めて高い。
 また、近年、環境問題への対応等により、家電製品、OA機器、自動車部品等に採用される樹脂成形品には、軽量化やリサイクル樹脂の使用量増大等が求められる。実施例1乃至5に係るサンドイッチ成形品の射出成形方法においては、一般的なサンドイッチ射出成形方法では、発泡セルのスキン層への表出等の問題で、表層用溶融樹脂には使用されることが少ない、発泡剤を含む発泡性溶融樹脂を、射出充填率が略100%となるように金型キャビティの容積を製品容積より縮小させて行われる射出充填工程により、発泡剤を含む発泡性溶融樹脂の略全面に型締力を略均一に付与させて、スキン層形成時における発泡セルのスキン層への表出を抑制させることで、表層用溶融樹脂として使用することができる。そのため、発泡剤を含まない非発泡性溶融樹脂を表層用溶融樹脂として使用する一般的なサンドイッチ成形品に対して、製品容積に対する内層用溶融樹脂の充填比率を大幅に向上させたサンドイッチ成形品を成形させることができる。また、製品容積に対する内層用溶融樹脂の充填比率を高く設定しても、樹脂反転不良が抑制できるため、より多くのリサイクル樹脂を内層用溶融樹脂として使用することができる。さらに、実施例1乃至5に係るサンドイッチ成形品の射出成形方法は、射出ユニットや金型に特殊な構造を必要としないので、加飾性や機能性を有するシート状の表皮材を金型の意匠面側にセットして、金型内で樹脂成形品と一体成形させる表皮加飾成形方法等、公知の射出成形方法と組み合わせて行うことが容易である。そのため、実施例1乃至5に係るサンドイッチ成形品の射出成形方法と公知の射出成形方法とを組み合わせて、様々な樹脂成形品への要求に対応することが可能となり、産業上利用価値が極めて高い。
 実施例6及び7に係る中空成形品の射出成形方法によれば、一般的な中空射出成形方法のような、射出ユニットのノズル中心に加圧ガスノズルを配置させるような構造や、加圧ガスを発泡成形体内に注入させるための特殊な開閉弁等を必要とせず、製品外観性に優れ、製品容積に対する中空部の中空比率を高く設定しても、ガス破裂不良が抑制された中空成形品を成形することができる。そのため、中空射出成形専用の射出成形機ではもちろん、そうではない、加圧ガスユニットが後付けされた汎用射出成形機であっても実施例6及び7に係る射出成形方法を実施することができる。すなわち、中空射出成形専用の射出成形機を導入する必要がなく、需要に応じて汎用射出成形機を通常成形用と中空射出成形用に低コストで使い分けることが可能となり、樹脂成形品の製造業者にとって産業上利用価値が極めて高い。
 また、先に説明した、インサート加飾成形方法により成形されるインサート加飾成形品は、樹脂材料では得ることが困難な加飾性や機能性を樹脂成形品に付与させるものとして、近年、家電製品、OA機器、自動車部品等に多く採用される。また、近年、樹脂成形品には、環境問題への対応等により、更なる軽量化が求められている。このような、樹脂成形品への加飾性や機能性の付与と、軽量化の両立を鑑みれば、樹脂成形品の軽量化に適した中空成形品の更なる軽量化が期待できる、実施例6及び7に係る中空成形品の射出成形方法と、このような表皮加飾成形方法との組み合わせにより成形可能となるインサート加飾中空成形品は、最適な解決方法のひとつであり、その点においても産業上利用価値が極めて高い。
2 固定金型(第1金型)、4 可動金型(第2金型)、9a 金型キャビティ、9b 表層用溶融樹脂、9b´ 表層用発泡性溶融樹脂、9b´´ 発泡性溶融樹脂、10b 内層用溶融樹脂、10b´ 内層用発泡性溶融樹脂、10b´´ 加圧ガス、11a乃至11e サンドイッチ成形品、11f、11g 中空成形品

Claims (10)

  1.  金型キャビティを形成可能な第1金型及び第2金型を用いて成形品を成形する射出成形方法であって、
     前記第1金型と前記第2金型とを型締めし、前記金型キャビティを形成する型締め工程と、
     前記型締め工程の完了後に、前記金型キャビティに発泡性溶融樹脂を射出充填し、前記金型キャビティ内を前記発泡性溶融樹脂で満たす第1射出充填工程と、
     前記第1射出充填工程の開始後に、前記金型キャビティを所定量だけ拡張させ、前記発泡性溶融樹脂を発泡させる金型キャビティ拡張工程と、
     前記第1射出充填工程の完了後で、かつ、前記金型キャビティ拡張工程の開始後に、前記金型キャビティ内の前記発泡性溶融樹脂内に溶融樹脂又はガスを注入する第2射出充填工程とを備える
     ことを特徴とする射出成形方法。
  2.  前記型締め工程の開始後で、かつ、前記第1射出充填工程の開始前に、前記金型キャビティ内に加圧ガスを注入させ、前記金型キャビティ内を前記発泡性溶融樹脂の発泡膨張圧力以上の圧力で与圧させる与圧工程と、
     前記第1射出充填工程の開始後に、前記加圧ガスを排出させる加圧ガス排出工程とを更に備える
     ことを特徴とする請求項1に記載の射出成形方法。
  3.  前記第2射出充填工程は、前記金型キャビティ内の前記発泡性溶融樹脂内に加圧ガス流路を介して加圧ガスを注入する工程であり、
     前記与圧工程は、前記第2射出充填工程において使用する加圧ガス流路を介して前記金型キャビティ内に加圧ガスを注入する工程である
     ことを特徴とする請求項2に記載の射出成形方法。
  4.  前記金型キャビティ拡張工程は、前記金型キャビティの容積が前記成形品の容積よりも大きい容積となるように、前記金型キャビティを拡張させる工程であり、
     前記射出成形方法は、前記金型キャビティ拡張工程の完了後で、かつ、前記第2射出充填工程の開始後に、前記金型キャビティの容積が前記成形品の容積となるように、前記金型キャビティを所定量だけ縮小させる金型キャビティ縮小工程を更に備える
     ことを特徴とする請求項1に記載の射出成形方法。
  5.  前記金型キャビティ拡張工程は、前記金型キャビティの容積が前記成形品の容積未満となるように、前記金型キャビティを拡張させる工程であり、
     前記第2射出充填工程は、前記金型キャビティ内の前記発泡性溶融樹脂内に内層用発泡性溶融樹脂を注入する工程であり、
     前記射出成形方法は、前記第2射出充填工程の開始後に、前記金型キャビティの容積が前記成形品の容積となるように、前記金型キャビティを所定量だけ拡張させ、前記内層用発泡性溶融樹脂を発泡させる金型キャビティ再拡張工程を更に備える
     ことを特徴とする請求項1に記載の射出成形方法。
  6.  前記金型キャビティ再拡張工程は、前記金型キャビティの容積が前記成形品の容積よりも大きい容積となるように、前記金型キャビティを拡張させる工程であり、
     前記射出成形方法は、前記金型キャビティ再拡張工程の完了後に、前記金型キャビティの容積が前記成形品の容積となるように、前記金型キャビティを所定量だけ縮小させる金型キャビティ縮小工程を更に備える
     ことを特徴とする請求項5に記載の射出成形方法。
  7.  前記金型キャビティの拡張及び縮小の少なくとも一方は、射出成形装置の型開閉機構による型開閉動作、及び、金型内可動部の移動動作の少なくとも一つにより行われる
     ことを特徴とする請求項1乃至6いずれか1項に記載の射出成形方法。
  8.  金型キャビティを形成可能な第1金型及び第2金型を用いて、表層と内層とからなるサンドイッチ成形品を成形する射出成形方法であって、
     前記第1金型と前記第2金型とを型締めし、前記金型キャビティを形成する型締め工程と、
     前記型締め工程の完了後に、前記金型キャビティに非発泡性溶融樹脂を射出充填し、前記金型キャビティ内を前記非発泡性溶融樹脂で満たす第1射出充填工程と、
     前記第1射出充填工程の完了後に、前記第1金型及び前記第2金型の少なくとも一方を他方に対して所定量だけ微小型開きさせて、前記金型キャビティを拡張させる金型キャビティ拡張工程と、
     前記金型キャビティ拡張工程の開始後に、前記金型キャビティ内の前記非発泡性溶融樹脂内に溶融樹脂を射出充填する第2射出充填工程とを備える
     ことを特徴とする射出成形方法。
  9.  前記金型キャビティ拡張工程は、前記金型キャビティの容積が前記成形品の容積よりも大きい容積となるように、前記金型キャビティを拡張させる工程であり、
     前記射出成形方法は、前記金型キャビティ拡張工程の完了後で、かつ、前記第2射出充填工程の開始後に、前記金型キャビティの容積が前記成形品の容積となるように、前記金型キャビティを所定量だけ縮小させる金型キャビティ縮小工程を更に備える
     ことを特徴とする請求項8に記載の射出成形方法。
  10.  前記金型キャビティの拡張及び縮小の少なくとも一方は、射出成形装置の型開閉機構による型開閉動作、及び、金型内可動部の移動動作の少なくとも一つにより行われる
     ことを特徴とする請求項8又は9に記載の射出成形方法。
PCT/JP2012/061442 2011-05-20 2012-04-27 射出成形方法 WO2012160952A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167028512A KR101732897B1 (ko) 2011-05-20 2012-04-27 사출 성형방법
KR1020137033818A KR101675889B1 (ko) 2011-05-20 2012-04-27 사출 성형방법
US14/118,218 US9636852B2 (en) 2011-05-20 2012-04-27 Injection molding method
JP2012534474A JP5152438B2 (ja) 2011-05-20 2012-04-27 射出成形方法
US15/204,973 US10040225B2 (en) 2011-05-20 2016-07-07 Injection molding method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011112939 2011-05-20
JP2011-112938 2011-05-20
JP2011112938 2011-05-20
JP2011-112939 2011-05-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/118,218 A-371-Of-International US9636852B2 (en) 2011-05-20 2012-04-27 Injection molding method
US15/204,973 Division US10040225B2 (en) 2011-05-20 2016-07-07 Injection molding method

Publications (1)

Publication Number Publication Date
WO2012160952A1 true WO2012160952A1 (ja) 2012-11-29

Family

ID=47217035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061442 WO2012160952A1 (ja) 2011-05-20 2012-04-27 射出成形方法

Country Status (4)

Country Link
US (2) US9636852B2 (ja)
JP (2) JP5152438B2 (ja)
KR (2) KR101675889B1 (ja)
WO (1) WO2012160952A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103655A1 (ja) * 2012-12-25 2014-07-03 宇部興産機械株式会社 サンドイッチ成形品の製造方法、射出成形機及びサンドイッチ成形品
JP2014124770A (ja) * 2012-12-25 2014-07-07 Ube Machinery Corporation Ltd 射出成形方法
JP2014124771A (ja) * 2012-12-25 2014-07-07 Ube Machinery Corporation Ltd 射出成形方法
JP2014168848A (ja) * 2013-03-01 2014-09-18 Ube Machinery Corporation Ltd 射出成形方法及び射出成形機
WO2014169380A1 (en) * 2013-04-17 2014-10-23 Husky Injection Molding Systems Ltd. Molding apparatus and molding process
JP2015020343A (ja) * 2013-07-19 2015-02-02 宇部興産機械株式会社 射出成形方法
JP2015020342A (ja) * 2013-07-19 2015-02-02 宇部興産機械株式会社 サンドイッチ成形部を有する樹脂成形品の射出成形方法及び成形用金型
WO2015128303A1 (en) * 2014-02-28 2015-09-03 Obrist Closures Switzerland Gmbh Cap made of foamed plastic material

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160952A1 (ja) 2011-05-20 2012-11-29 宇部興産機械株式会社 射出成形方法
DE102013107991A1 (de) * 2013-07-26 2015-02-19 Kraussmaffei Technologies Gmbh Verfahren zur endkonturgetreuen Herstellung mechanisch hoch belastbarer Kunststoff-Bauteile
JP5947828B2 (ja) 2014-04-08 2016-07-06 トヨタ自動車株式会社 繊維含有樹脂の処理装置、及び処理方法
EP3341174A1 (en) 2015-08-28 2018-07-04 Hollister Incorporated A method and apparatus for molding an elongated hollow article
EP3372379B1 (en) * 2015-11-06 2021-03-31 Bando Chemical Industries, Ltd. Molded-foam production process and molded foam
US10220559B2 (en) * 2016-05-18 2019-03-05 Axel Werner Van Briesen Method and apparatus for making form-in-place gaskets
WO2019152840A1 (en) * 2018-02-01 2019-08-08 Chunichi Precision Molding, Inc Injection molding assembly and method of forming a discrete part using an injection molding assembly
KR102019175B1 (ko) 2018-03-22 2019-11-04 주식회사 서연이화 발포 사출 금형용 미세형개제어장치 및 발포 사출 성형방법
KR102029950B1 (ko) 2018-03-22 2019-10-08 주식회사 서연이화 발포 사출 성형장치 및 방법
KR102085969B1 (ko) 2018-03-22 2020-03-06 주식회사 서연이화 발포 사출 성형장치 및 방법
KR102019864B1 (ko) 2018-04-24 2019-09-10 주식회사 서연이화 발포 사출 성형장치 및 방법
KR102124387B1 (ko) * 2019-08-27 2020-06-18 주식회사 티앤지 배터리의 냉각 판넬의 제조 방법
CN111391229B (zh) * 2020-03-25 2023-04-28 上汽通用汽车有限公司 一种皮革制品及其成型方法
CN115091681A (zh) * 2020-05-23 2022-09-23 侯奥 一种多功能发泡模具***及其使用方法
GB2598158A (en) * 2020-08-21 2022-02-23 Intersurgical Ag Improvements relating to sealing members
WO2022109406A1 (en) * 2020-11-20 2022-05-27 Arris Composites Inc. System and method for multi-material molding
CN117651635A (zh) 2020-12-02 2024-03-05 国际汽车配件集团北美公司 通过注射模制来制造的方法和制品
KR102594199B1 (ko) * 2021-07-29 2023-10-25 엘지전자 주식회사 중공형 부품 및 중공형 부품의 제조방법
KR102408586B1 (ko) * 2021-08-23 2022-06-16 광성기업 주식회사 금형 장치 및 사출 금형 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090658A (ja) * 1973-12-17 1975-07-19
JPS5434378A (en) * 1977-08-22 1979-03-13 Riyuuji Uematsu Method of manufacturing buffering synthetic resin moldings
JPH10211630A (ja) * 1996-11-29 1998-08-11 Beishin Kogyo Kk 発泡合成樹脂成形品の成形方法と成形品
JP2001162650A (ja) * 1999-12-08 2001-06-19 Japan Steel Works Ltd:The サンドイッチ発泡体の製造方法および製造装置
JP2008260245A (ja) * 2007-04-13 2008-10-30 Sekisui Chem Co Ltd 射出成形金型およびこの射出成形金型を用いた発泡成形品の製造方法
JP2009214498A (ja) * 2008-03-12 2009-09-24 Mazda Motor Corp 樹脂成形品の成形方法及び成形装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966372A (en) * 1973-05-28 1976-06-29 Asahi-Dow Limited Injection molding apparatus for forming a composite, foam-skin, article
US4124308A (en) * 1977-06-21 1978-11-07 Beloit Corporation Sequential co-injection unit adapted for structural foam molding
US4415680A (en) 1980-12-18 1983-11-15 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Water-impermeable polyolefin foam and process for preparing the same
JPH06166073A (ja) 1992-11-30 1994-06-14 Komatsu Ltd 発泡射出圧縮成形方法
JP3274942B2 (ja) 1994-12-22 2002-04-15 株式会社日本製鋼所 複合成形方法及び射出成形機
JP3276879B2 (ja) 1997-03-31 2002-04-22 株式会社イトーキクレビオ 中空成形体及びその製造方法並びに製造装置
US6146562A (en) * 1998-03-13 2000-11-14 Hettinga; Siebolt Method of injection molding an article with a cellular density distribution which gradually varies between a high density cellular exterior and a low density cellular interior
JP2000033628A (ja) * 1998-07-16 2000-02-02 Idemitsu Petrochem Co Ltd 軽量樹脂成形品およびその製造方法
JP2000033627A (ja) * 1998-07-16 2000-02-02 Idemitsu Petrochem Co Ltd 軽量樹脂成形品の製造方法および軽量樹脂成形品
JP3718389B2 (ja) 1999-07-27 2005-11-24 三菱樹脂株式会社 射出成形装置
JP4311822B2 (ja) 1999-08-19 2009-08-12 株式会社プライムポリマー 中空射出成形方法および成形金型
US20060066088A1 (en) * 2004-09-30 2006-03-30 Hier Michael J Inflatable airbag cushion formed with a blown elastomer core and methods of using and manufacturing same
US20060099395A1 (en) 2004-11-09 2006-05-11 Cowelchuk Glenn A Automotive interior trim assembly and method
JP4839728B2 (ja) * 2005-08-25 2011-12-21 宇部興産機械株式会社 熱可塑性樹脂の多層成形方法、及び多層成形装置
WO2012103451A2 (en) 2011-01-27 2012-08-02 New Balance Athletic Shoe, Inc. Injection molding systems and methods for forming materials used in footwear and materials manufactured by said systems and methods
WO2012160952A1 (ja) 2011-05-20 2012-11-29 宇部興産機械株式会社 射出成形方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090658A (ja) * 1973-12-17 1975-07-19
JPS5434378A (en) * 1977-08-22 1979-03-13 Riyuuji Uematsu Method of manufacturing buffering synthetic resin moldings
JPH10211630A (ja) * 1996-11-29 1998-08-11 Beishin Kogyo Kk 発泡合成樹脂成形品の成形方法と成形品
JP2001162650A (ja) * 1999-12-08 2001-06-19 Japan Steel Works Ltd:The サンドイッチ発泡体の製造方法および製造装置
JP2008260245A (ja) * 2007-04-13 2008-10-30 Sekisui Chem Co Ltd 射出成形金型およびこの射出成形金型を用いた発泡成形品の製造方法
JP2009214498A (ja) * 2008-03-12 2009-09-24 Mazda Motor Corp 樹脂成形品の成形方法及び成形装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103655A1 (ja) * 2012-12-25 2014-07-03 宇部興産機械株式会社 サンドイッチ成形品の製造方法、射出成形機及びサンドイッチ成形品
JP2014124770A (ja) * 2012-12-25 2014-07-07 Ube Machinery Corporation Ltd 射出成形方法
JP2014124771A (ja) * 2012-12-25 2014-07-07 Ube Machinery Corporation Ltd 射出成形方法
US10137620B2 (en) 2012-12-25 2018-11-27 Ube Machinery Corporation, Ltd. Method of manufacturing sandwich molded product, injection molding machine, and sandwich molded product
JP2014168848A (ja) * 2013-03-01 2014-09-18 Ube Machinery Corporation Ltd 射出成形方法及び射出成形機
WO2014169380A1 (en) * 2013-04-17 2014-10-23 Husky Injection Molding Systems Ltd. Molding apparatus and molding process
JP2015020343A (ja) * 2013-07-19 2015-02-02 宇部興産機械株式会社 射出成形方法
JP2015020342A (ja) * 2013-07-19 2015-02-02 宇部興産機械株式会社 サンドイッチ成形部を有する樹脂成形品の射出成形方法及び成形用金型
WO2015128303A1 (en) * 2014-02-28 2015-09-03 Obrist Closures Switzerland Gmbh Cap made of foamed plastic material
CN106170379A (zh) * 2014-02-28 2016-11-30 奥布里斯特封闭瑞士有限公司 一种由发泡塑料材料制备的盖子
US10618704B2 (en) 2014-02-28 2020-04-14 Obrist Closures Switzerland Gmbh Cap made of foamed polymeric material, and method of making same

Also Published As

Publication number Publication date
KR20160121617A (ko) 2016-10-19
JP5152438B2 (ja) 2013-02-27
US9636852B2 (en) 2017-05-02
US20140077406A1 (en) 2014-03-20
JP5152430B2 (ja) 2013-02-27
US10040225B2 (en) 2018-08-07
JPWO2012160952A1 (ja) 2014-07-31
JP2013006419A (ja) 2013-01-10
KR101675889B1 (ko) 2016-11-14
US20160318219A1 (en) 2016-11-03
KR101732897B1 (ko) 2017-05-08
KR20140035945A (ko) 2014-03-24

Similar Documents

Publication Publication Date Title
JP5152438B2 (ja) 射出成形方法
KR100919690B1 (ko) 발포사출 성형방법
WO2007023860A1 (ja) 熱可塑性樹脂の多層成形方法、及び多層成形装置
CA2618845C (en) Method for foam injection molding of thermoplastic resin
US20150035193A1 (en) Method Of Improving The Appearance Of Injection Molding And Foaming Product
US10137620B2 (en) Method of manufacturing sandwich molded product, injection molding machine, and sandwich molded product
JP6048827B2 (ja) 射出成形方法及び射出成形機
JP2001287237A (ja) 貼合成形品の射出成形方法
JP5151649B2 (ja) 積層品の成形装置及び成形方法
JP2006281698A (ja) 発泡成形品の成形方法及び発泡成形品の成形装置
JP2001334549A (ja) 複合成形品の製造方法および複合成形品
JP5376319B2 (ja) 積層射出成形用金型及び積層射出成形方法
JP5747665B2 (ja) 射出成形用金型
JP6048815B2 (ja) 射出成形方法
KR101860909B1 (ko) 사출 성형용 발포 성형장치 및 이를 이용한 발포 성형방법
EP0884156B1 (en) Process for producing thermoplastic resin hollow molded articles
JP6108227B2 (ja) サンドイッチ成形部を有する樹脂成形品の射出成形方法及び成形用金型
JP2014124771A (ja) 射出成形方法
JP2022131087A (ja) 射出成形機及び射出発泡成形方法
JPH08281699A (ja) 複合型樹脂成形品の製造方法及び樹脂成形用金型装置
JP2022015219A (ja) サンドイッチ成形品の射出成形方法
JPH06304944A (ja) スタンピング成形用型およびスタンピング成形方法
JP2004249494A (ja) 部分加飾成形品の成形方法
JP2004322446A (ja) 複層数発泡射出成形方法及びその成形品
JPH11333877A (ja) 樹脂成形品の成形方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012534474

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14118218

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137033818

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12789869

Country of ref document: EP

Kind code of ref document: A1