WO2012160691A1 - プロジェクタおよび処理方法 - Google Patents

プロジェクタおよび処理方法 Download PDF

Info

Publication number
WO2012160691A1
WO2012160691A1 PCT/JP2011/062081 JP2011062081W WO2012160691A1 WO 2012160691 A1 WO2012160691 A1 WO 2012160691A1 JP 2011062081 W JP2011062081 W JP 2011062081W WO 2012160691 A1 WO2012160691 A1 WO 2012160691A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
data
video signal
processing
osd
Prior art date
Application number
PCT/JP2011/062081
Other languages
English (en)
French (fr)
Inventor
俊幸 川名
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to JP2013516144A priority Critical patent/JP5630851B2/ja
Priority to PCT/JP2011/062081 priority patent/WO2012160691A1/ja
Publication of WO2012160691A1 publication Critical patent/WO2012160691A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/431Generation of visual interfaces for content selection or interaction; Content or additional data rendering
    • H04N21/4318Generation of visual interfaces for content selection or interaction; Content or additional data rendering by altering the content in the rendering process, e.g. blanking, blurring or masking an image region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/44008Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving operations for analysing video streams, e.g. detecting features or characteristics in the video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/478Supplemental services, e.g. displaying phone caller identification, shopping application
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/12Overlay of images, i.e. displayed pixel being the result of switching between the corresponding input pixels

Definitions

  • the present invention relates to a projector and a processing method, and more particularly to a projector and a processing method that perform OSD processing, color unevenness correction, and trapezoidal distortion correction.
  • Patent Document 1 describes a projector that corrects color unevenness.
  • the projector described in Patent Document 1 corrects the VT characteristic of a liquid crystal panel, a memory that holds uneven color correction data obtained from the luminance level of the display screen, an optical system for projecting light onto the display screen, and the like.
  • a correction circuit a characteristic of light transmittance (T) corresponding to the amplitude (V) of the video signal, and the correction circuit corrects the VT characteristic so that it has linearity. .
  • the projector described in Patent Document 1 When the projector described in Patent Document 1 receives a video signal, the projector corrects the video signal using a correction circuit, and adds color unevenness correction data held in a memory to the video signal.
  • FIG. 1 is a block diagram illustrating a configuration example of a projector that performs color unevenness correction and trapezoidal distortion correction.
  • the projector 90 performs OSD (On (Screen Display) processing.
  • the OSD process is a process of combining, for example, OSD data representing the brightness and contrast amount of the screen with the video displayed on the screen.
  • the projector 90 includes a memory 97 that holds OSD data, a video processing unit 91 that receives a video signal and performs video processing such as resolution conversion on the video signal, and an OSD that combines the OSD data with the video data subjected to the video processing.
  • Color combining unit 92 trapezoidal distortion correcting unit 93 that corrects the keystone distortion of the projection screen, color unevenness correction data, and color unevenness that corrects color unevenness caused by non-uniformity in the plane of the liquid crystal panel or optical system
  • the correction unit 94 receives an OSD process execution instruction by a user operation
  • the CPU 96 controls the data selector 95 to output the OSD data held in the memory 97 from the data selector 95 to the OSD synthesis unit 92; It has.
  • the OSD composition unit 92 accepts OSD data from the data selector 95, and synthesizes the OSD data with the video data subjected to the video processing by the video processing unit 91.
  • the video data is supplied to the trapezoidal distortion correction unit 93.
  • the keystone distortion correction unit 93 When the keystone distortion correction unit 93 receives the video data from the OSD synthesis unit 92, the keystone correction unit 93 performs trapezoidal distortion correction on the video data, and then the color unevenness correction unit 94 corrects the color unevenness on the video data subjected to the trapezoidal distortion correction. Perform color shading correction by combining data. Therefore, the projector 90 can correct the color unevenness caused by the liquid crystal panel and the like, and can correct the trapezoidal distortion of the projection screen.
  • the color unevenness correction data can be combined with the video data by using the OSD combining unit 92 so that the color unevenness correcting unit 94 is not required.
  • the trapezoidal distortion correction unit 93 performs the trapezoidal distortion correction on the video data after the color unevenness correction. Not done properly. The reason will be described with reference to FIGS. 2a to 2c.
  • FIG. 2a is a diagram showing an example of color unevenness caused by the liquid crystal panel.
  • FIG. 2A shows a projection screen when an image having the same color on the entire surface shown in the video signal is projected from the projector 90 onto the screen.
  • the uneven color appearing in the horizontal direction is shown by different stripe patterns.
  • FIG. 2b is a diagram showing color unevenness correction data for correcting the color unevenness shown in FIG. 2a.
  • Different color unevenness correction data is prepared for each of the different color unevenness regions shown in FIG. 2a, and color unevenness correction is performed on the video signal using different color unevenness correction data for each region.
  • the original image having the same color as the entire surface shown in the video signal is reproduced on the projection screen.
  • FIG. 2c is a diagram illustrating the uneven color correction data obtained by performing the trapezoidal distortion correction on the uneven color correction data illustrated in FIG. 2b.
  • the trapezoidal distortion correction unit 93 performs the trapezoidal distortion correction by keeping the lower base of the projection screen distorted into a trapezoid as Xa and reducing the upper base from Xa to Xb.
  • the projector 90 shown in FIG. 1 it is possible to correct the color unevenness on the video data by using the OSD synthesis unit 92 without providing the color unevenness correcting unit 94 so that the projector has a simple configuration. is there.
  • the OSD processing performed by the OSD combining unit 92 is performed before the trapezoidal distortion correction processing, if color unevenness correction is performed on the video signal using the OSD combining unit 92, the video signal after color unevenness correction is performed. Therefore, the keystone distortion correction is performed, and the uneven color correction is not appropriately performed.
  • An object of the present invention is to provide a projector and a processing method with a simple configuration capable of correcting a trapezoidal distortion of a projection screen while correcting color unevenness using a processing unit that performs OSD processing.
  • the projector of the present invention includes a holding unit that holds OSD data for performing OSD processing and first correction data for correcting color unevenness, and a distortion correction parameter for correcting trapezoidal distortion of a projection screen. Is received, the first correction data held in the holding means is subjected to correction processing according to the distortion correction parameter, recorded as second correction data in the holding means, and an image is obtained using the distortion correction parameter. Distortion processing means for performing trapezoidal distortion correction on a signal, and when the video signal is received, the second correction data is combined with the video signal, and when an instruction to execute the OSD processing is received, held by the holding means Combining processing means for combining the OSD data with the video signal.
  • the correction method of the present invention is a correction method performed by the projector, and holds OSD data for performing OSD processing and first correction data for correcting color unevenness in a holding unit, and
  • the distortion correction parameter for correcting the trapezoidal distortion is received
  • the first correction data held in the holding unit is corrected according to the distortion correction parameter and recorded as the second correction data in the holding unit.
  • the second correction data is combined with the video signal
  • the keystone distortion correction is performed on the combined video signal using the distortion correction parameter
  • an instruction to execute the OSD process is issued.
  • the OSD data held in the holding means is combined with the video signal.
  • FIG. 3 is a block diagram showing a configuration of the projector in the present embodiment.
  • the projector 1 is a projection display device that performs OSD processing, color unevenness correction, and trapezoidal distortion correction.
  • OSD On Screen Display
  • a trapezoidal distortion correction parameter for correcting the trapezoidal distortion of the projection screen is input.
  • the trapezoidal distortion correction parameter indicates, for example, a ratio of reducing or expanding the upper base and the lower base of the projection screen with respect to a reference value serving as a reference for the size of the projection screen.
  • the projector 1 includes a processing unit 10, a trapezoidal distortion correction unit 40, a light source 51, a display unit 52, and a memory 70.
  • the processing unit 10 includes a video processing unit 11, a level detection unit 12, a synthesis unit 20, a data selector 21, a CPU (Central Processing Unit) 30, and a processing selector 31.
  • the memory 70 can generally be referred to as holding means.
  • the memory 70 holds OSD data 71 for performing OSD processing and color unevenness correction data 72 for correcting color unevenness caused by the display unit 52.
  • the OSD data 71 is data for displaying the contrast amount of the screen, for example.
  • color unevenness correction data 72 for example, correction values of pixels (pixels) indicated in the video signal are shown.
  • the color unevenness correction data 72 shown in FIG. 2A can be referred to as first correction data.
  • Data stored in the holding area 75 in the memory 70 is input to the data selector 21.
  • the memory 70 holds the color unevenness correction data for each level of the video signal as the color unevenness correction data 72.
  • FIG. 4 is a diagram showing an example of color unevenness correction data held in the memory 70.
  • the memory 70 holds in advance color unevenness data 1 to 4 suitable for each division range in which the gradation range of the video signal is divided into a plurality of as the color unevenness correction data 72.
  • the CPU 30 is a computer that controls the data selector 21, the process selector 31, and the memory 70.
  • the CPU 30 When the CPU 30 receives the trapezoidal distortion correction parameter input by the user operation, the CPU 30 supplies the process selector 31 with a reverse correction instruction signal instructing execution of the reverse correction processing on the color unevenness correction data 72.
  • the process selector 31 supplies the color unevenness correction data 72 from the data selector 21 to the trapezoidal distortion correction unit 40.
  • the CPU 30 when receiving the trapezoidal distortion correction parameter, supplies the data selector 21 with a color unevenness selection signal that specifies the color unevenness correction data 72.
  • the CPU 30 supplies the data selector 21 with a color unevenness selection signal for designating color unevenness data one by one from the color unevenness data 1 to 4 of the color unevenness correction data 72.
  • the data selector 21 outputs the color unevenness correction data 72 specified by the color unevenness selection signal to the processing selector 31.
  • the CPU 30 when receiving the trapezoidal distortion correction parameter, supplies the trapezoidal distortion correction parameter to the trapezoidal distortion correction unit 40.
  • the CPU 30 may supply the inverse number of the trapezoidal distortion correction parameter to the trapezoidal distortion correction unit 40 as a trapezoidal distortion correction parameter for reverse correction processing.
  • the trapezoidal distortion correction unit 40 can be generally called distortion processing means.
  • the trapezoidal distortion correction unit 40 When the trapezoidal distortion correction unit 40 receives the trapezoidal distortion correction parameter from the CPU 30, the trapezoidal distortion correction unit 40 performs trapezoidal distortion correction on the video signal using the trapezoidal distortion correction parameter. For example, the trapezoidal distortion correction unit 40 performs trapezoidal distortion correction that reduces the upper base of the video indicated by the video signal at a ratio indicated by the trapezoidal distortion correction parameter. The trapezoidal distortion correction unit 40 supplies the video signal subjected to the trapezoidal distortion correction to the display unit 52.
  • the trapezoidal distortion correction unit 40 receives the trapezoidal distortion parameter from the CPU 30 and the color unevenness correction data 72 from the processing selector 31, the keystone distortion correction data 72 is converted into the color unevenness correction data 72 according to the trapezoidal distortion correction parameter.
  • Reverse correction processing (hereinafter referred to as “reverse correction processing”) is performed.
  • the trapezoidal distortion correction unit 40 performs an inverse correction process for enlarging the upper base of the color unevenness correction data 72 at a ratio of the inverse of the trapezoidal distortion correction parameter using the inverse of the trapezoidal distortion correction parameter.
  • FIG. 5a is a diagram showing color unevenness correction data subjected to reverse correction processing.
  • a trapezoidal distortion correction parameter indicating a ratio (Xb / Xa) for reducing the upper base of the projection image from the reference value Xa to Xb is input by a user operation.
  • the trapezoidal distortion correction unit 40 Upon receiving the color unevenness correction data 72, the trapezoidal distortion correction unit 40 expands the upper base of the color unevenness correction data 72 at a ratio of the reciprocal number (Xa / Xb) of the keystone correction parameter in accordance with the trapezoidal distortion correction parameter. I do.
  • the trapezoidal distortion correction unit 40 records the uneven color correction data 74 after the reverse correction processing in the memory 70.
  • the CPU 30 stores only the rectangular portion of the horizontal size Xa indicated by the broken line in FIG. 5A among the color unevenness correction data 74 recorded in the memory 70 as the color unevenness correction data 73 for distortion correction in the holding area 75 in the memory 70. To record. Note that the color unevenness correction data 73 for distortion correction can be referred to as second correction data.
  • FIG. 5B is a diagram showing the uneven color correction data for distortion correction generated using the uneven color correction data after the reverse correction processing shown in FIG. 5A.
  • the processing unit 10 can be generally called a synthesis processing means.
  • the processing unit 10 When the processing unit 10 receives the video signal, the processing unit 10 synthesizes the color unevenness correction data 72 held in the memory 70 with the video signal and corrects the color unevenness of the video signal.
  • the processing unit 10 receives the video signal. Then, the level of the video signal is detected, and the color unevenness data corresponding to the detected level is combined with the video signal.
  • the processing unit 10 supplies the video signal on which the color unevenness correction has been performed to the trapezoidal distortion correction unit 40.
  • the trapezoidal distortion correction unit 40 performs trapezoidal distortion correction on the video signal using the trapezoidal distortion correction parameter.
  • the processing unit 10 when the processing unit 10 receives an OSD processing execution instruction input by a user operation, the processing unit 10 performs an OSD processing for combining the OSD data 71 held in the memory 70 with a video signal. The processing unit 10 performs color unevenness correction on the video signal subjected to the OSD process.
  • the processing unit 10 when the processing unit 10 receives an execution instruction for OSD processing, the processing unit 10 combines the OSD data with the video signal and distorts the video signal. Color unevenness correction data 73 for correction is synthesized.
  • the video processing unit 11 When receiving a video signal from a video signal supply device such as a personal computer, the video processing unit 11 performs predetermined video processing on the video signal. For example, when an analog video signal is received, the video processing unit 11 converts the analog video signal into digital signal video data as predetermined video processing, and performs resolution conversion processing on the video data. The video processing unit 11 supplies the video data subjected to the resolution conversion process to the level detection unit 12 and the synthesis unit 20.
  • the level detection unit 12 can be generally called detection means.
  • the level detection unit 12 detects the level of the video data. For example, the level detection unit 12 detects an APL (Average Picture Level) value of a video or a plurality of videos shown in the video data. Alternatively, the level detection unit 12 may detect the level of the video data for each pixel indicated in the video data, or for each block from a predetermined number of pixels. The level detection unit 12 supplies the CPU 30 with an APL value indicating the level of the video data.
  • APL Average Picture Level
  • the CPU 30 When the CPU 30 receives the APL value from the level detection unit 12, the CPU 30 supplies a correction instruction signal for instructing correction of video data to the process selector 31.
  • the process selector 31 When receiving the correction instruction signal, the process selector 31 supplies the video data output from the synthesis unit 20 to the trapezoidal distortion correction unit 40.
  • the CPU 30 When the CPU 30 receives an OSD processing execution instruction input by a user operation, the CPU 30 controls the data selector 21 to supply the OSD data 71 held in the memory 70 from the data selector 21 to the combining unit 20. .
  • the synthesizing unit 20 can be generally referred to as synthesizing means.
  • the synthesizing unit 20 When the synthesizing unit 20 receives the video data from the video processing unit 11 and receives the OSD data from the data selector 21, the synthesizing unit 20 performs OSD processing for synthesizing the OSD data with the video data.
  • OSD processing for synthesizing the OSD data with the video data.
  • an alpha calculator that performs alpha blending OSD processing is used as the combining unit 20.
  • FIG. 6 is a block diagram illustrating a configuration of the processing unit 10 that performs OSD processing.
  • the video processing unit 11, the data selector 21, the CPU 30, the memory 70 that holds the OSD data 71, and the alpha calculator 200 that is used as the synthesis unit 20 are used.
  • OSD data 71 for example, plane data 1 to 4 of OSD planes used for each of four applications are stored in advance.
  • the video processing unit 11 receives the video data and supplies the video data on which the predetermined video processing has been performed to the first input terminal A of the alpha calculator 200.
  • the data selector 21 supplies one plane data selected from the plane data 1 to 4 to the second input terminal B of the alpha calculator 200 according to the control of the CPU 30.
  • the CPU 30 When the CPU 30 receives an execution instruction for OSD processing, the CPU 30 supplies an OSD selection signal for designating plane data specified by the execution instruction to the data selector 21, and the data selector 21 is designated by the OSD selection signal. Output plain data.
  • the CPU 30 supplies an alpha value indicating the transmittance of the plane data to be combined with the video data to the third input terminal ⁇ of the alpha calculator 200.
  • the alpha computing unit 200 is an arithmetic circuit used in the synthesizing unit 20 that performs alpha blending OSD processing.
  • the alpha calculator 200 receives video data from the first input terminal A, receives plane data from the second input terminal B, and receives an alpha value from the third input terminal ⁇ .
  • the alpha calculator 200 then combines the plane data B with the video data A with the transmittance indicated by the alpha value ⁇ .
  • FIG. 7 is a diagram showing a detailed configuration of the alpha calculator 200.
  • the alpha calculator 200 includes an adder 211, multipliers 221 and 222, and a subtractor 231.
  • the subtracter 231 When the subtractor 231 receives the alpha value ⁇ from the third input terminal, the subtracter 231 supplies the subtracted value (1 ⁇ ) obtained by subtracting the alpha value ⁇ from “1” to the multiplier 221.
  • the multiplier 221 When the multiplier 221 receives the video data A from the first input terminal and receives the subtraction value (1- ⁇ ) from the subtractor 231, the multiplier 221 multiplies the video data A by the subtraction value (1- ⁇ ) (first multiplication value (1 ⁇ )). A ⁇ (1 ⁇ )) is supplied to the adder 211.
  • the multiplier 222 When the multiplier 222 receives the plane data B from the second input terminal and receives the alpha value ⁇ from the third input terminal, the multiplier 222 adds a second multiplication value (B ⁇ ⁇ ) obtained by multiplying the plane data B by the alpha value ⁇ . 211.
  • the adder 211 When the adder 211 receives the first multiplication value from the multiplier 211 and receives the second multiplication value from the multiplier 212, the adder 211 adds the first multiplication value and the second multiplication value and outputs the video data Y.
  • the alpha calculator 200 outputs the video data Y that has been subjected to the OSD processing using the following equation.
  • the color correction is performed by synthesizing, for example, the color correction data 73 for distortion correction with the video data on which the OSD process has been performed.
  • the synthesis unit 20 performs color unevenness correction using the alpha calculator 200 shown in FIG.
  • FIG. 8 is a block diagram illustrating a configuration of the processing unit 10 that performs color unevenness correction using the alpha calculator 200. Since the configuration other than the alpha computing unit 200 is the same as that shown in FIG. 3, the same reference numerals are given and detailed description thereof is omitted here.
  • color unevenness data 1 to 4 suitable for each divided range in which the range of the APL value of the video signal is divided into four stages are stored in advance as color unevenness correction data 73 for distortion correction.
  • the video processing unit 11 When receiving the video signal, the video processing unit 11 supplies the video data on which the predetermined video processing has been performed to the second input terminal B of the alpha calculator 200.
  • the CPU 30 When the CPU 30 receives the APL value from the level detection unit 12, the CPU 30 supplies the data selector 21 with a color unevenness specifying signal for specifying the color unevenness data of the divided range including the APL value.
  • the data selector 21 Upon receipt of the color unevenness designation signal, the data selector 21 performs alpha calculation on one color unevenness data designated by the color unevenness designation signal from among the color unevenness data 1 to 4 of the color unevenness correction data 73 for distortion correction. Is supplied to the third input terminal ⁇ of the container 200.
  • the alpha calculator 200 receives “0” from the first input terminal A, video data from the second input terminal B, and color unevenness data from the third input terminal ⁇ . For this reason, in the alpha calculator 200, the multiplier 222 shown in FIG. 7 multiplies the video data input to the second input terminal B by the color unevenness correction data input to the third input terminal ⁇ to generate a video. Perform color shading correction on data.
  • FIG. 5c is a diagram illustrating video data obtained by performing trapezoidal distortion correction on the color unevenness correction data illustrated in FIG. 5b.
  • the trapezoidal distortion correction unit 40 supplies the video data subjected to the trapezoidal distortion correction to the display unit 52.
  • the light source 51 generates light and emits the light to the display unit 52.
  • the display unit 52 When receiving the video data from the trapezoidal distortion correcting unit 40, the display unit 52 modulates the light emitted from the light source 51 according to the video data, and projects the modulated image light onto the screen.
  • the display unit 52 includes, for example, a liquid crystal panel that modulates light from the light source 51 in accordance with video data, and an optical element such as a projection lens that projects light modulated by the liquid crystal panel onto a screen.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure of a method for processing color unevenness correction data.
  • the memory 70 holds the color unevenness data 1 to 4 shown in FIG. 4 as the color unevenness correction data 72 when the trapezoidal distortion correction is not performed.
  • the CPU 30 uses, as the trapezoidal distortion correction parameters input by the user operation, a lower base parameter in which the lower base size of the projection image distorted into a trapezoid is “Xa”, and an upper base in which the upper base size is “Xb / Xa”. Accept parameters. For this reason, as shown in FIG. 5c, the trapezoidal distortion correction unit 40 performs the trapezoidal distortion correction while keeping the size of the lower base of the projected image as Xa and reducing the size of the upper base from Xa to Xb.
  • the CPU 30 when receiving a trapezoidal distortion correction parameter input by a user operation, supplies a reverse correction instruction signal for instructing execution of reverse correction processing to the color unevenness correction data 72 to the process selector 31.
  • the process selector 31 can supply the data output from the data selector 21 to the trapezoidal distortion correction unit 40 (step S901).
  • the CPU 30 supplies the lower base parameter (Xa) and the reciprocal number of the upper base parameter (Xa / Xb) to the trapezoidal distortion correction unit 40 as trapezoidal distortion correction parameters for performing the reverse correction processing (step S902).
  • the CPU 30 supplies the data selector 21 with a color unevenness selection signal for designating the color unevenness data 1 out of the color unevenness data 1 to 4 in the memory 70.
  • the data selector 21 outputs the color unevenness data 1 specified by the color unevenness selection signal to the trapezoidal distortion correction unit 40 via the processing selector 31 (step S903).
  • the trapezoidal distortion correction unit 40 When the trapezoidal distortion correction unit 40 receives the trapezoidal distortion correction parameter for the reverse correction process and receives the color unevenness data 1, the trapezoidal distortion correction unit 40 performs the reverse correction process on the color unevenness data 1, for example, the reverse correction process as illustrated in FIG. Later color unevenness data 1 is generated.
  • the trapezoidal distortion correction unit 40 records the uneven color data 1 after the reverse correction processing in the memory 70 (step S904).
  • the CPU 30 copies only the rectangular portion of the horizontal size Xa shown in FIG. 5a in the uneven color data 1 after the reverse correction processing to another holding area 75 in the memory 70 as the uneven color data 1 for distortion correction. (Step 905).
  • the color unevenness data 1 processing method performed by the projector 1 is completed.
  • processing similar to steps S903 to S905 is sequentially performed one by one.
  • the projector 1 combines the OSD data 71, the memory 70 that holds the color unevenness correction data 72 (first correction data) for correcting the color unevenness, and the OSD data 71 into the video signal. And a processing unit 10 that performs OSD processing.
  • the keystone distortion correction unit 40 receives a distortion correction parameter for correcting the keystone distortion of the projection screen, the keystone distortion correction unit 40 performs reverse correction processing on the color unevenness correction data 72 in accordance with the trapezoidal distortion correction parameter and performs color unevenness for distortion correction.
  • the correction data 73 (second correction data) is recorded in the memory 70.
  • the processing unit 10 When the processing unit 10 receives the video signal, the processing unit 10 multiplies the video signal by the color unevenness correction data 73 for distortion correction to perform color unevenness correction, and then the trapezoidal distortion correction unit 40 performs the video signal after the color unevenness correction.
  • the trapezoidal distortion correction is performed using the trapezoidal distortion correction parameter.
  • the processing unit 10 receives an instruction to execute the OSD process, the processing unit 10 adds the OSD data 71 to the video signal, synthesizes the color unevenness correction data 73 for distortion correction with the video signal, and trapezoidal distortion with the video signal.
  • the correction unit 40 performs trapezoidal distortion correction.
  • the projector 1 can perform color unevenness correction by combining the video signal with the color unevenness correction data using the processing unit 10 that performs OSD processing. Therefore, since the processing unit 10 performs two processes, the OSD process and the color unevenness correction, the projector 1 does not need to be provided with separate processing circuits for the OSD process and the color unevenness correction. For example, in the projector 1, it is not necessary to provide the color unevenness correction unit 94 in the projector 90 shown in FIG. Therefore, in the present embodiment, the projector 1 can have a simple configuration.
  • the trapezoidal distortion correction unit 40 when the trapezoidal distortion correction unit 40 receives the trapezoidal distortion correction parameter, the color unevenness correction data 72 is subjected to reverse correction processing using the inverse of the trapezoidal distortion correction parameter, and the color unevenness correction data for distortion correction is obtained. 73 is recorded in the memory 70.
  • the processing unit 10 receives the video signal, the processing unit 10 performs color unevenness correction on the video signal using the color unevenness correction data 73 for distortion correction, and then the trapezoidal distortion correcting unit 40 converts the video signal into the video signal after the color unevenness correction. Perform trapezoidal distortion correction.
  • trapezoidal distortion correction is performed on the video data that has been corrected for color unevenness using the color unevenness correction data 73 that has been subjected to the reverse correction processing, and thus the color unevenness correction data after the trapezoidal distortion correction is held in the memory 70. It becomes the same shape as the uneven color correction data 72.
  • the uneven color correction data after trapezoidal distortion correction shown in FIG. 5c has the same shape as the uneven color correction data 72 shown in FIG. 2b. Therefore, the projector 1 can appropriately perform color unevenness correction on the video signal.
  • the projector 1 can correct color unevenness even when color unevenness correction is performed on a video signal using the processing unit 10 that performs OSD processing before trapezoidal distortion correction. Therefore, in the present embodiment, it is possible to realize a projector having a simple configuration capable of correcting the trapezoidal distortion of the projection screen while correcting the color unevenness using the processing unit 10.
  • the color unevenness correction data 72 is held in the memory 70 for each level of the video signal, and the trapezoidal distortion correction unit 40 performs a reverse correction process on each of the color unevenness correction data 72 to perform distortion.
  • Each of the color unevenness correction data 73 for correction is recorded in the memory 70.
  • the processing unit 10 includes a level detection unit 12 that detects the level of the video signal and a synthesis unit 20, and when the synthesis unit 20 receives the video signal, the color unevenness correction data 73 for distortion correction includes: Color unevenness correction data corresponding to the level detected by the level detector 12 is combined with the video signal.
  • the projector 1 can perform color unevenness correction suitable for the level of the video signal. Therefore, the color unevenness caused by the display unit 52 can be corrected more appropriately.
  • the vertical trapezoidal distortion correction process for correcting the trapezoidal distortion of the projection screen distorted in the horizontal direction of the projection screen has been described.
  • the trapezoidal distortion of the projection screen distorted in the vertical direction is described.
  • the present invention can also be applied to a projector that performs horizontal trapezoidal distortion correction that corrects.
  • the illustrated configuration is merely an example, and the present invention is not limited to the configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Projection Apparatus (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

 本発明は、OSD処理を行う処理部を用いて色むらを補正しつつ投射画面の台形歪を補正する簡易な構成のプロジェクタを提供することを目的とし、OSDデータと、色むらを補正する色むら補正データと、を保持するメモリと、OSDデータを映像信号に合成するOSD処理を行う処理部と、を有するプロジェクタにおいて、台形歪補正部は、台形歪補正パラメータを受け付けると、台形歪補正パラメータに応じて色むら補正データに補正処理を行って歪補正用の色むら補正データとしてメモリに記録する。映像信号を受け付けると処理部は、歪補正用の補正データを映像信号に合成し、その映像信号に台形歪補正部が、台形歪補正パラメータを用いて台形歪補正を行う。

Description

プロジェクタおよび処理方法
 本発明は、プロジェクタおよび処理方法に関し、特には、OSD処理と色むら補正と台形歪補正とを行うプロジェクタおよび処理方法に関する。
 特許文献1には、色むらを補正するプロジェクタが記載されている。特許文献1に記載のプロジェクタは、表示画面の輝度レベルから求めた色むら補正データを保持するメモリと、表示画面に光を投射するための光学系と、液晶パネルのV―T特性を補正する補正回路と、を備えている。液晶パネルのV-T特性とは、映像信号の振幅(V)に応じた光の透過率(T)の特性のことであり、補正回路は、V―T特性がリニアリティを持つように補正する。
 特許文献1に記載のプロジェクタは、映像信号を受け付けると、補正回路を用いて映像信号を補正し、その映像信号にメモリに保持された色むら補正データを加算する。
 よって、液晶パネルや光学系に起因する画面の色むらを補正することができる。プロジェクタから、スクリーンに光が投射される投射画面の上下または左右の両端のそれぞれの光路長に差が生じている状況でプロジェクタが使用されると、投射画面に台形歪が生じてしまう。これに対し、色むらを補正すると共に投射画面の台形歪を補正するプロジェクタも存在する。
 図1は、色むら補正と台形歪補正とを行うプロジェクタの構成例を示すブロック図である。プロジェクタ90では、OSD(On Screen Display)処理が行われる。OSD処理とは、画面に表示されている映像に、例えば画面の明るさやコントラスト量を表すOSDデータを合成する処理のことである。
 プロジェクタ90は、OSDデータを保持するメモリ97と、映像信号を受け付け、映像信号に解像度変換などの映像処理を行う映像処理部91と、映像処理が行われた映像データにOSDデータを合成するOSD合成部92と、投射画面の台形歪みを補正する台形歪補正部93と、色むら補正データを有し、液晶パネルや光学系の面内の不均一性に起因する色むらを補正する色むら補正部94と、ユーザ操作によりOSD処理の実行指示を受け付けると、データ選択器95を制御して、メモリ97に保持されたOSDデータをデータ選択器95からOSD合成部92に出力させるCPU96と、を備えている。
 プロジェクタ90では、OSD処理の実行指示を受け付けると、OSD合成部92は、データ選択器95からOSDデータを受け付け、映像処理部91にて映像処理が行われた映像データにOSDデータを合成し、その映像データを台形歪補正部93に供給する。
 台形歪補正部93は、OSD合成部92から映像データを受け付けると、その映像データに台形歪補正を行い、その後に色むら補正部94が、台形歪補正が行われた映像データに色むら補正データを合成して色むら補正を行う。よって、プロジェクタ90は、液晶パネルなどに起因する色むらを補正すると共に投射画面の台形歪を補正することができる。
 プロジェクタ90では、色むら補正部94を不要とする簡易な構成となるように、OSD合成部92を用いて映像データに色むら補正データを合成することも可能である。しかしながら、OSD合成部92が映像データに色むら補正をした場合には、その後に台形歪補正部93が、色むら補正後の映像データに台形歪補正を行うことになるので、色むら補正が適切に行われない。その理由について図2a~図2cを参照して説明する。
 図2aは、液晶パネルに起因する色むらの一例を示す図である。図2aには、映像信号に示された映像内の全面が同一色の映像がプロジェクタ90からスクリーンに投射されたときの投射画面が示されている。図2aには、水平方向に現れている色むらがそれぞれ異なる縞模様で示されている。
 図2bは、図2aに示した色むらを補正する色むら補正データを示す図である。図2aに示した異なる色むらの領域ごとにそれぞれ異なる色むら補正データを用意し、各領域に異なる色むら補正データを用いて映像信号に色むら補正を行う。これにより、投射画面には、映像信号に示された全面が同一色の本来の映像が再現されることになる。
 図2cは、図2bに示した色むら補正データに台形歪補正が行われた色むら補正データを示す図である。図2cでは、台形歪補正部93が、台形に歪んだ投射画面の下底をXaのままにし、上底をXaからXbに縮小する台形歪補正を行う。
 OSD合成部92を用いて映像データに色むら補正を行い、その映像データに台形歪補正を行う場合において、図2aに示した色むらを補正するには、本来、台形歪補正後の色むら補正データは、図2bに示した色むら補正データと同じでなければならない。しかしながら、映像データに台形歪補正が行われる前にOSD合成部92が色むら補正を行うので、図2bに示した色むら補正データが、台形歪補正部93により、図2cに示した色むら補正データに変換されてしまい、色むら補正が適切に行われなくなる。
 よって、プロジェクタ90では、色むら補正部94を設けることなく、OSD合成部92を用いて映像データに色むら補正を行い、プロジェクタを簡易な構成にすることは困難であった。
特開平10-84551号公報
 特許文献1に記載のプロジェクタでは、映像信号に液晶パネルや光学系に起因する色むらを補正した後に、補正後の映像信号に台形歪補正を行うことも可能である。しかしながら、色むら補正をした後の映像データに台形歪補正が行われると、例えば、図2bに示した色むら補正データが、図2cに示した色むら補正データに変換されてしまい、色むら補正が適切に行われないという問題があった。
 また、図1に示したプロジェクタ90では、プロジェクタが簡易な構成となるように、色むら補正部94を設けることなく、OSD合成部92を用いて映像データに色むら補正を行うことも可能である。しかしながら、OSD合成部92で行われるOSD処理は、台形歪補正処理よりも前に行われるので、OSD合成部92を用いて映像信号に色むら補正が行われると、色むら補正後の映像信号に台形歪補正が行われることになり、色むら補正が適切に行われない。
 このため、OSD処理を行う処理部を用いて映像信号に色むら補正を行い、その映像信号に台形歪補正を行う簡易な構成のプロジェクタを実現することは困難であった。
 本発明の目的は、OSD処理を行う処理部を用いて色むらを補正しつつ投射画面の台形歪を補正することが可能な簡易な構成のプロジェクタおよび処理方法を提供することにある。
 本発明のプロジェクタは、OSD処理を行うためのOSDデータと、色むらを補正するための第1の補正データと、を保持する保持手段と、投射画面の台形歪を補正するための歪補正パラメータを受け付けると、前記保持手段に保持された第1の補正データに該歪補正パラメータに応じて補正処理を行って第2の補正データとして前記保持手段に記録し、前記歪補正パラメータを用いて映像信号に台形歪補正を行う歪処理手段と、前記映像信号を受け付けると、前記第2の補正データを該映像信号に合成し、前記OSD処理の実行の指示を受け付けると、前記保持手段に保持されたOSDデータを前記映像信号に合成する合成処理手段と、を含む。
 本発明の補正方法は、プロジェクタが行う補正方法であって、OSD処理を行うためのOSDデータと、色むらを補正するための第1の補正データと、を保持手段に保持し、投射画面の台形歪を補正するための歪補正パラメータを受け付けると、前記保持手段に保持された第1の補正データを該歪補正パラメータに応じて補正処理を行って第2の補正データとして前記保持手段に記録し、映像信号を受け付けると、前記第2の補正データを前記映像信号に合成し、前記合成された映像信号に前記歪補正パラメータを用いて台形歪補正を行い、前記OSD処理の実行の指示を受け付けると、前記保持手段に保持されたOSDデータを前記映像信号に合成する。
 本発明によれば、OSD処理を行う処理部を用いて色むらを補正しつつ投射画面の台形歪を補正する簡易な構成のプロジェクタを提供することが可能となる。
OSD処理と台形歪補正と色むら補正とを行うプロジェクタを示すブロック図である。 液晶パネルに起因する色むらを表す図である。 図2aに示した色むらを補正する色むら補正データを示す図である。 台形歪補正が行われた色むら補正データを示す図である。 本発明の実施形態におけるプロジェクタを示すブロック図である。 メモリに保持される色むら補正データの一例を示す図である。 逆補正処理が行われた色むら補正データを示す図である。 逆補正処理後の色むら補正データから生成された歪補正用の色むら補正データを示す図である。 台形歪補正が行われた歪補正用の色むら補正データを示す図である。 OSD処理を行う処理部の構成を示すブロック図である。 アルファ演算器の詳細構成を示す図である。 アルファ演算器を用いて色むら補正を行う処理部を示す図である。 色むら補正データの処理方法を示すフローチャートである。
 以下、本発明の実施形態について図面を参照して説明する。
 図3は、本実施形態におけるプロジェクタの構成を示すブロック図である。
 プロジェクタ1は、OSD処理と色むら補正と台形歪補正とを行う投射型表示装置である。プロジェクタ1では、ユーザ操作により、例えば、投射画面のコントラスト量を調整するために、OSD(On Screen Display)処理の実行の指示が入力される。また、投射画面の台形歪みを補正するための台形歪補正パラメータが入力される。台形歪補正パラメータは、例えば、投射画面の大きさの基準となる基準値に対して投射画面の上底と下底を縮小または拡張する比率を示す。
 本実施形態では、プロジェクタ1は、処理部10と、台形歪補正部40と、光源51と、表示部52と、メモリ70と、を備える。処理部10は、映像処理部11と、レベル検出部12と、合成部20と、データ選択器21と、CPU(Central Processing Unit)30と、処理選択器31と、を備える。
 メモリ70は、一般的に保持手段と呼ぶことができる。
 メモリ70は、OSD処理を行うためのOSDデータ71と、表示部52に起因する色むらを補正するための色むら補正データ72と、を保持する。OSDデータ71は、例えば、画面のコントラスト量を表示するためのデータである。
 色むら補正データ72には、例えば、映像信号に示される画素(ピクセル)のそれぞれの補正値が示されている。例えば、図2aに示した液晶パネルに起因する色むらを補正する場合にはメモリ70に、図2bに示した色むら補正データ72が保持される。なお、色むら補正データ72は、第1の補正データと呼ぶことができる。また、メモリ70内の保持領域75に記憶されたデータは、データ選択器21に入力される。
 本実施形態では、メモリ70は、色むら補正データ72として映像信号のレベルごとに色むら補正データを保持する。
 図4は、メモリ70に保持される色むら補正データの一例を示す図である。
 メモリ70には、色むら補正データ72として、映像信号の階調レンジが複数に分けられた分割レンジごとに適した色むらデータ1~4が予め保持されている。
 CPU30は、データ選択器21と処理選択器31とメモリ70とを制御するコンピュータである。
 CPU30は、ユーザ操作により入力された台形歪補正パラメータを受け付けると、色むら補正データ72への逆補正処理の実行を指示する逆補正指示信号を処理選択器31に供給する。CPU30から逆補正指示信号を受け付けると処理選択器31は、データ選択器21からの色むら補正データ72を台形歪補正部40に供給する。
また、CPU30は、台形歪補正パラメータを受け付けると、色むら補正データ72を指定する色むら選択信号をデータ選択器21に供給する。例えば、CPU30は、色むら補正データ72の色むらデータ1~4の中から1ずつ順番に色むらデータを指定する色むら選択信号をデータ選択器21に供給する。CPU30から色むら選択信号を受け付けるとデータ選択器21は、色むら選択信号にて指定された色むら補正データ72を処理選択器31に出力する。
 さらに、CPU30は、台形歪補正パラメータを受け付けると、その台形歪パラメータを台形歪補正部40に供給する。なお、CPU30は、台形歪補正パラメータを受け付けると、その台形歪補正パラメータの逆数を、逆補正処理用の台形歪補正パラメータとして台形歪補正部40に供給してもよい。
 台形歪補正部40は、一般的に歪処理手段と呼ぶことができる。
 台形歪補正部40は、CPU30から台形歪補正パラメータを受け付けると、台形歪補正パラメータを用いて映像信号に台形歪補正を行う。例えば、台形歪補正部40は、映像信号に示された映像の上底を、台形歪補正パラメータが示す比率で縮小する台形歪補正を行う。台形歪補正部40は、台形歪補正が行われた映像信号を表示部52に供給する。
 また、台形歪補正部40は、CPU30から台形歪パラメータを受け付け、処理選択器31から色むら補正データ72を受け付けると、台形歪補正パラメータに応じて色むら補正データ72に、台形歪補正とは逆の補正処理(以下「逆補正処理」と称する。)を行う。例えば、台形歪補正部40は、台形歪補正パラメータの逆数を用いて、色むら補正データ72の上底を台形歪補正パラメータの逆数の比率で拡大する逆補正処理を行う。
 図5aは、逆補正処理が行われた色むら補正データを示す図である。
 図5aでは、ユーザ操作により、投射画像の上底を基準値XaからXbに縮小する比率(Xb/Xa)を示す台形歪補正パラメータが入力されたことを想定している。
 台形歪補正部40は、色むら補正データ72を受け付けると、台形歪補正パラメータに応じて色むら補正データ72の上底を台形補正パラメータの逆数(Xa/Xb)の比率で拡大する逆補正処理を行う。台形歪補正部40は、逆補正処理後の色むら補正データ74をメモリ70に記録する。
 CPU30は、メモリ70に記録された色むら補正データ74のうち、図5aの破線で示した水平サイズXaの矩形部分だけを、歪補正用の色むら補正データ73としてメモリ70内の保持領域75に記録する。なお、歪補正用の色むら補正データ73は、第2の補正データと呼ぶことができる。
 図5bは、図5aに示した逆補正処理後の色むら補正データを用いて生成された歪補正用の色むら補正データを示す図である。
 図3に戻り、処理部10は、一般的に合成処理手段と呼ぶことができる。
 処理部10は、映像信号を受け付けると、メモリ70に保持された色むら補正データ72を映像信号に合成して、映像信号に色むら補正を行う。
 また、ユーザ操作により台形歪補正パラメータが入力され、メモリ70に歪補正用の色むら補正データ73が記録されている状況では、処理部10は、映像信号を受け付けると、メモリ70から歪補正用の色むら補正データ73を読み出し、その色むら補正データ73を映像信号に合成して色むら補正を行う。
 例えば、図4に示したように、映像信号のレベルごとに適した色むら補正データ73の色むらデータ1~4がメモリ70に記録されている状況では、処理部10は、映像信号を受け付けると、その映像信号のレベルを検出し、その検出したレベルに応じた色むらデータを映像信号に合成する。
 処理部10は、色むら補正が行われた映像信号を台形歪補正部40に供給する。処理部10から映像信号を受け付けると台形歪補正部40は、その映像信号に台形歪補正パラメータを用いて台形歪補正を行う。
 また、処理部10は、ユーザ操作により入力されたOSD処理の実行指示を受け付けると、メモリ70に保持されたOSDデータ71を映像信号に合成するOSD処理を行う。処理部10は、OSD処理が行われた映像信号に色むら補正を行う。
 例えば、メモリ70に歪補正用の色むら補正データ73が記録されている状況では、処理部10は、OSD処理の実行指示を受け付けると、OSDデータを映像信号に合成し、その映像信号に歪補正用の色むら補正データ73を合成する。
 映像処理部11は、例えばパソコンなどの映像信号供給装置から、映像信号を受け付けるとその映像信号に所定の映像処理を行う。例えば、アナログの映像信号を受け付けると映像処理部11は所定の映像処理として、アナログの映像信号をデジタル信号の映像データに変換し、その映像データに解像度変換処理を行う。映像処理部11は、解像度変換処理が行われた映像データをレベル検出部12と合成部20とに供給する。
 レベル検出部12は、一般的に検出手段と呼ぶことができる。
 レベル検出部12は、映像処理部11から映像データを受け付けると映像データのレベルを検出する。例えば、レベル検出部12は、映像データに示される映像または複数の映像のAPL(Average Picture Level)値を検出する。あるいは、レベル検出部12は、映像データに示される画素ごと、または、所定数の画素からならブロックごとに、映像データのレベルを検出してもよい。レベル検出部12は、映像データのレベルを示すAPL値をCPU30に供給する。
 CPU30は、レベル検出部12からAPL値を受け付けると、映像データの補正を指示する補正指示信号を処理選択器31に供給する。補正指示信号を受け付けると処理選択器31は、合成部20から出力される映像データを台形歪補正部40に供給する。
 また、CPU30は、ユーザ操作により入力されたOSD処理の実行指示を受け付けると、データ選択器21を制御して、メモリ70に保持されたOSDデータ71をデータ選択器21から合成部20に供給させる。
 合成部20は、一般的に合成手段と呼ぶことができる。
 合成部20は、映像処理部11から映像データを受け付け、データ選択器21からOSDデータを受け付けると、映像データにOSDデータを合成するOSD処理を行う。合成部20としては、例えば、アルファブレンディング方式のOSD処理を行うアルファ演算器が用いられる。
 図6は、OSD処理を行う処理部10の構成を示すブロック図である。
 OSD処理では、映像処理部11と、データ選択器21と、CPU30と、OSDデータ71を保持するメモリ70と、合成部20として用いられるアルファ演算器200と、が用いられる。
 メモリ70にはOSDデータ71として、例えば、4つのアプリケーションのそれぞれに用いられるOSDプレーンのプレーンデータ1~4が予め保持されている。
 OSD処理の実行指示が入力された状況において、映像処理部11は、映像データを受け付けると、所定の映像処理が行われた映像データをアルファ演算器200の第1入力端子Aに供給する。
 データ選択器21は、CPU30の制御に従ってプレーンデータ1~4の中から選択された1つのプレーンデータを、アルファ演算器200の第2入力端子Bに供給する。
 CPU30は、OSD処理の実行指示を受け付けると、その実行指示にて特定されるプレーンデータを指定するOSD選択信号をデータ選択器21に供給し、データ選択器21は、OSD選択信号にて指定されたプレーンデータを出力する。
 さらにCPU30は、映像データに合成するプレーンデータの透過率を示すアルファ値をアルファ演算器200の第3入力端子αに供給する。
 アルファ演算器200は、アルファブレンディング方式のOSD処理を行う合成部20に用いられる演算回路である。アルファ演算器200は、第1入力端子Aから映像データを受け付け、第2入力端子Bからプレーンデータを受け付け、第3入力端子αからアルファ値を受け付ける。そしてアルファ演算器200は、アルファ値αに示された透過率でプレーンデータBを映像データAに合成する。
 図7は、アルファ演算器200の詳細構成を示す図である。
 アルファ演算器200は、加算器211と、乗算器221および222と、減算器231と、を備える。
 減算器231は、第3入力端子からアルファ値αを受け付けると、「1」からアルファ値αを減算した減算値(1-α)を乗算器221に供給する。
 乗算器221は、第1入力端子から映像データAを受け付け、減算器231から減算値(1-α)を受け付けると、映像データAに減算値(1-α)を乗算した第1乗算値(A×(1-α))を加算器211に供給する。
 乗算器222は、第2入力端子からプレーンデータBを受け付け、第3入力端子からアルファ値αを受け付けると、プレーンデータBにアルファ値αを乗算した第2乗算値(B×α)を加算器211に供給する。
 加算器211は、乗算器211から第1乗算値を受け付け、乗算器212から第2乗算値を受け付けると、第1乗算値と第2乗算値とを加算して映像データYを出力する。
 よって、アルファ演算器200は、次式を用いてOSD処理が行われた映像データYを出力する。
   Y = A×(1-α) + B×α
 図3に戻り、合成部20は、映像データにOSD処理を行うと、OSD処理が行われた映像データに、例えば歪補正用の色むら補正データ73を合成して色むら補正を行う。本実施形態では、合成部20は、図7に示したアルファ演算器200を用いて色むら補正を行う。
 図8は、アルファ演算器200を用いて色むら補正を行う処理部10の構成を示すブロック図である。アルファ演算器200以外の構成は、図3に示したものと同様であるため、同一符号を付してここでの詳細な説明を省略する。
 メモリ70には、歪補正用の色むら補正データ73として、映像信号のAPL値の範囲が4段階に分けられた分割レンジごとに適した色むらデータ1~4が予め保持されている。
 映像処理部11は、映像信号を受け付けると、所定の映像処理が行われた映像データをアルファ演算器200の第2入力端子Bに供給する。
 CPU30は、レベル検出部12からAPL値を受け付けると、そのAPL値が含まれる分割レンジの色むらデータを指定する色むら指定信号をデータ選択器21に供給する。
 データ選択器21は、色むら指定信号を受け付けると、歪補正用の色むら補正データ73の色むらデータ1~4の中から色むら指定信号にて指定された1つの色むらデータをアルファ演算器200の第3入力端子αに供給する。
 アルファ演算器200には、第1入力端子Aから「0」が入力され、第2入力端子Bから映像データが入力され、第3入力端子αから色むらデータが入力される。このため、アルファ演算器200では、図7に示した乗算器222が、第2入力端子Bに入力された映像データに、第3入力端子αに入力された色むら補正データを乗算して映像データに色むら補正を行う。
 図3に戻り、台形歪補正部40は、合成部20から処理選択器31を介して映像データを受け付けると、映像データに台形歪補正を行う。なお、図5cは、図5bに示した色むら補正データに台形歪補正が行われた映像データを示す図である。台形歪補正部40は、台形歪補正が行われた映像データを表示部52に供給する。
 光源51は、光を発生してその光を表示部52へ出射する。
 表示部52は、台形歪補正部40から映像データを受け付けると、光源51から出射された光を映像データに応じて変調し、その変調された画像光をスクリーンに投射する。表示部52は、例えば、光源51からの光を映像データに応じて変調する液晶パネルと、液晶パネルにて変調された光をスクリーンに投射するための投射レンズなどの光学素子とを備える。
 次にプロジェクタ1が行う補正方法について説明する。
 図9は、色むら補正データの処理方法の処理手順例を示すフローチャートである。
 図9では、メモリ70には、台形歪補正が行われないときの色むら補正データ72として、図4に示した色むらデータ1~4が保持されていることを想定する。さらにCPU30は、ユーザ操作により入力された台形歪補正パラメータとして、台形に歪んだ投射画像の下底サイズが「Xa」を示す下底パラメータと、上底サイズが「Xb/Xa」を示す上底パラメータとを受け付ける。このため、台形歪補正部40は、図5cに示したように、投射画像の下底のサイズをXaのままにし、上底のサイズをXaからXbに縮小する台形歪補正を行う。
 まず、CPU30は、ユーザ操作により入力された台形歪補正パラメータを受け付けると、色むら補正データ72への逆補正処理の実行を指示する逆補正指示信号を処理選択器31に供給する。逆補正指示信号を受け付けると処理選択器31は、データ選択器21から出力されるデータを台形歪補正部40に供給することが可能になる(ステップS901)。
 また、CPU30は、逆補正処理を行うための台形歪補正パラメータとして、下底パラメータ(Xa)と上底パラメータの逆数(Xa/Xb)とを台形歪補正部40に供給する(ステップS902)。
 さらにCPU30は、メモリ70内の色むらデータ1~4のうち色むらデータ1を指定する色むら選択信号をデータ選択器21に供給する。その色むら選択信号を受け付けるとデータ選択器21は、色むら選択信号にて指定された色むらデータ1を、処理選択器31を介して台形歪補正部40に出力する(ステップS903)。
 台形歪補正部40は、逆補正処理用の台形歪補正パラメータを受け付け、色むらデータ1を受け付けると、色むらデータ1に逆補正処理を行い、例えば、図5aに示したような逆補正処理後の色むらデータ1を生成する。そして台形歪補正部40は、逆補正処理後の色むらデータ1をメモリ70に記録する(ステップS904)。
 その後、CPU30は、逆補正処理後の色むらデータ1のうち、図5aに示した水平サイズXaの矩形部分だけをメモリ70内の別の保持領域75に歪補正用の色むらデータ1としてコピーする(ステップ905)。例えば、図5bに示した歪補正用の色むらデータ1がメモリ70に記録される。
 よって、プロジェクタ1にて行われる色むらデータ1の処理方法が終了する。なお、色むら補正データ72の色むらデータ2~4のそれぞれについても、図4に示したように、ステップS903~S905と同様の処理が1つずつ順番に行われる。
 本実施形態によれば、プロジェクタ1は、OSDデータ71と、色むらを補正する色むら補正データ72(第1の補正データ)と、を保持するメモリ70と、OSDデータ71を映像信号に合成するOSD処理を行う処理部10と、を有する。台形歪補正部40は、投射画面の台形歪を補正するための歪補正パラメータを受け付けると、その台形歪補正パラメータに応じて色むら補正データ72に逆補正処理を行って歪補正用の色むら補正データ73(第2の補正データ)としてメモリ70に記録する。そして処理部10は、映像信号を受け付けると、映像信号に歪補正用の色むら補正データ73を乗算して色むら補正を行い、その後に台形歪補正部40が、色むら補正後の映像信号に台形歪補正パラメータを用いて台形歪補正を行う。また、処理部10は、OSD処理の実行の指示を受け付けると、OSDデータ71を映像信号に加算し、その映像信号に歪補正用の色むら補正データ73を合成し、その映像信号に台形歪補正部40が台形歪補正を行う。
 このため、プロジェクタ1は、OSD処理を行う処理部10を用いて色むら補正データに映像信号を合成して色むら補正を行うことができる。よって、処理部10では、OSD処理と色むら補正との2つの処理が行われるので、プロジェクタ1には、OSD処理と色むら補正とのそれぞれの処理に別個の処理回路を設ける必要がない。例えば、プロジェクタ1では、図1に示したプロジェクタ90内の色むら補正部94を設ける必要がない。したがって、本実施形態ではプロジェクタ1を簡易な構成にすることができる。
 さらにプロジェクタ1では、台形歪補正部40が、台形歪補正パラメータを受け付けると、その台形歪補正パラメータの逆数を用いて色むら補正データ72に逆補正処理を行って歪補正用の色むら補正データ73をメモリ70に記録する。そして処理部10は、映像信号を受け付けると、歪補正用の色むら補正データ73を用いて映像信号に色むら補正を行い、その後に台形歪補正部40が、色むら補正後の映像信号に台形歪補正を行う。
 プロジェクタ10では、逆補正処理が行われた色むら補正データ73を用いて色むら補正した映像データに台形歪補正が行われるので、台形歪補正後の色むら補正データは、メモリ70に保持された色むら補正データ72と同じ形状となる。例えば、図5cに示した台形歪補正後の色むら補正データは、図2bに示した色むら補正データ72と同じ形状になる。このため、プロジェクタ1は、映像信号に色むら補正を適切に行うことができる。
 よって、プロジェクタ1では、台形歪補正よりも前にOSD処理を行う処理部10を用いて映像信号に色むら補正を行う場合にも、色むらを補正することができる。したがって、本実施形態では、処理部10を用いて色むらを補正しつつ、投射画面の台形歪みを補正することが可能な簡易な構成のプロジェクタを実現することができる。
 また、本実施形態では、メモリ70に、映像信号のレベルごとに色むら補正データ72が保持されており、台形歪補正部40は、色むら補正データ72のそれぞれに逆補正処理を行って歪補正用の色むら補正データ73のそれぞれがメモリ70に記録される。また、処理部10は、映像信号のレベルを検出するレベル検出部12と合成部20とを有し、合成部20は、映像信号を受け付けると、歪補正用の色むら補正データ73のうち、レベル検出部12が検出したレベルに応じた色むら補正データを映像信号に合成する。
 このため、プロジェクタ1は、映像信号のレベルに適した色むら補正を行うことができる。よって、表示部52に起因する色むらをより適切に補正することができる。
 なお、本実施形態では台形歪補正処理の一例として、投射画面の水平方向に歪んだ投射画面の台形歪みを補正する垂直台形歪み補正処理について説明したが、垂直方向に歪んだ投射画面の台形歪みを補正する水平台形歪補正を行うプロジェクタにも本発明を適用することができる。
 以上説明した実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。
 1 プロジェクタ
 10 処理部
 11 映像処理部
 12 レベル検出部
 20 合成部
 21 データ選択器
 30 CPU
 31 処理選択器
 40 台形歪補正部
 51 光源
 52 表示部
 70 メモリ
 200 アルファ演算器
 211 加算器
 221、222 乗算器
 231 減算器

Claims (6)

  1.  OSD処理を行うためのOSDデータと、色むらを補正するための第1の補正データと、を保持する保持手段と、
     投射画面の台形歪を補正するための歪補正パラメータを受け付けると、前記保持手段に保持された第1の補正データに該歪補正パラメータに応じて補正処理を行って第2の補正データとして前記保持手段に記録し、前記歪補正パラメータを用いて映像信号に台形歪補正を行う歪処理手段と、
     前記映像信号を受け付けると、前記第2の補正データを該映像信号に合成し、前記OSD処理の実行の指示を受け付けると、前記保持手段に保持されたOSDデータを前記映像信号に合成する合成処理手段と、を含むプロジェクタ。
  2.  請求項1に記載のプロジェクタにおいて、
     前記保持手段は、前記映像信号のレベルごとに前記第1の補正データを保持し、
     前記歪処理手段は、前記歪補正パラメータを受け付けると、前記第1の補正データのそれぞれに前記歪補正パラメータに応じて前記補正処理を行って前記第2の補正データとしてそれぞれ前記保持手段に記録し、
     前記合成処理手段は、
     前記映像信号のレベルを検出する検出手段と、
     前記映像信号を受け付けると、前記第2の補正データのうち、前記検出手段が検出した映像信号のレベルに応じた第2の補正データを該映像信号に合成する合成手段と、を含む、プロジェクタ。
  3.  請求項1または2に記載のプロジェクタにおいて、
     前記歪処理手段は、前記歪補正パラメータを受け付けると、該歪補正パラメータを用いて前記台形歪補正を行い、該歪補正パラメータの逆数を用いて前記補正処理を行う、プロジェクタ。
  4.  請求項1から3項のいずれか1項に記載のプロジェクタにおいて、
     前記合成処理手段は、前記映像信号を受け付けると、前記第2の補正データを前記映像信号に乗算し、前記OSD処理の実行の指示を受け付けると、前記OSDデータを前記映像信号に加算する、プロジェクタ。
  5.  プロジェクタが行う補正方法であって、
     OSD処理を行うためのOSDデータと、色むらを補正するための第1の補正データと、を保持手段に保持し、
     投射画面の台形歪を補正するための歪補正パラメータを受け付けると、前記保持手段に保持された第1の補正データを該歪補正パラメータに応じて補正処理を行って第2の補正データとして前記保持手段に記録し、
     映像信号を受け付けると、前記第2の補正データを前記映像信号に合成し、前記合成された映像信号に前記歪補正パラメータを用いて台形歪補正を行い、前記OSD処理の実行の指示を受け付けると、前記保持手段に保持されたOSDデータを前記映像信号に合成する、補正方法。
  6.  請求項5に記載の補正方法において、
     前記補正データを前記保持手段に保持することは、
     前記映像信号のレベルごとに前記第1の補正データを前記保持手段に保持することを含み、
     前記第1の補正データに前記補正処理をすることは、
     前記保持手段に保持された第1の補正データのそれぞれに前記歪補正パラメータを用いて前記補正処理を行って前記第2の補正データとしてそれぞれ前記保持手段に記録することを含み、
     前記第2の補正データを前記映像信号に合成することは、
     前記映像信号を受け付けると、該映像信号のレベルを検出し、前記第2の補正データのうち、前記検出したレベルに応じた第2の補正データを該映像信号に合成することを含む、補正方法。
PCT/JP2011/062081 2011-05-26 2011-05-26 プロジェクタおよび処理方法 WO2012160691A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013516144A JP5630851B2 (ja) 2011-05-26 2011-05-26 プロジェクタおよび処理方法
PCT/JP2011/062081 WO2012160691A1 (ja) 2011-05-26 2011-05-26 プロジェクタおよび処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062081 WO2012160691A1 (ja) 2011-05-26 2011-05-26 プロジェクタおよび処理方法

Publications (1)

Publication Number Publication Date
WO2012160691A1 true WO2012160691A1 (ja) 2012-11-29

Family

ID=47216793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062081 WO2012160691A1 (ja) 2011-05-26 2011-05-26 プロジェクタおよび処理方法

Country Status (2)

Country Link
JP (1) JP5630851B2 (ja)
WO (1) WO2012160691A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000330507A (ja) * 1999-05-21 2000-11-30 Seiko Epson Corp 投射型表示装置
JP2003319292A (ja) * 2002-04-22 2003-11-07 Mitsubishi Electric Corp 投写型映像表示装置
JP2004304265A (ja) * 2003-03-28 2004-10-28 Seiko Epson Corp 画像処理システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
JP2006087037A (ja) * 2004-09-17 2006-03-30 Sharp Corp プロジェクタ
JP2009300961A (ja) * 2008-06-17 2009-12-24 Canon Inc 投写型表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000330507A (ja) * 1999-05-21 2000-11-30 Seiko Epson Corp 投射型表示装置
JP2003319292A (ja) * 2002-04-22 2003-11-07 Mitsubishi Electric Corp 投写型映像表示装置
JP2004304265A (ja) * 2003-03-28 2004-10-28 Seiko Epson Corp 画像処理システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
JP2006087037A (ja) * 2004-09-17 2006-03-30 Sharp Corp プロジェクタ
JP2009300961A (ja) * 2008-06-17 2009-12-24 Canon Inc 投写型表示装置

Also Published As

Publication number Publication date
JP5630851B2 (ja) 2014-11-26
JPWO2012160691A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5603014B2 (ja) 超解像表示の補正
US8102332B2 (en) Intensity scaling for multi-projector displays
TW200427339A (en) Image processing system, projector, information memorizing medium and image processing method
US7618146B2 (en) Multiscreen display system, multiscreen display method, luminance correction method, and programs
JP2002116500A (ja) 画像投影表示装置
KR20080015101A (ko) 색 변환 휘도 보정 방법 및 장치
WO2016157670A1 (ja) 画像表示装置、画像表示方法、情報処理装置、情報処理方法、及びプログラム
JP2007180979A (ja) 画像表示システム及び画像表示方法
JP2008039868A (ja) 液晶表示装置
JP2010063064A (ja) 画像処理装置、画像表示装置、画像処理方法及び画像表示方法
JP2009044488A (ja) プロジェクタおよび映像信号処理方法
JP2016075883A (ja) 投影システム、投影装置、投影方法、及びプログラム
US20180278905A1 (en) Projection apparatus that reduces misalignment between printed image and projected image projected on the printed image, control method therefor, and storage medium
JP2011193332A (ja) プロジェクターおよび映像の投写方法
JP2008033592A (ja) 画像処理装置および画像処理方法、並びにプログラム
US8201950B2 (en) Camera-based registration for projector display systems
JP5630851B2 (ja) プロジェクタおよび処理方法
JP2006106120A (ja) 映像表示装置及び映像信号処理装置
JP2008139709A (ja) 色処理装置およびその方法
WO2012108003A1 (ja) プロジェクタシステムおよび映像補正方法
JP4379029B2 (ja) 画像処理装置、画像処理方法および画像投射装置
JP5321089B2 (ja) 画像処理装置、画像表示装置、及び画像処理方法
US11388341B2 (en) Image processing apparatus, image processing method, and storage medium
JP2012129747A (ja) 画像投影装置及びその制御方法、プログラム
JP5141871B2 (ja) 画像処理方法及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/02/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11866179

Country of ref document: EP

Kind code of ref document: A1