WO2012155764A1 - 一类由烯烃制备高支化烷烃的催化体系 - Google Patents

一类由烯烃制备高支化烷烃的催化体系 Download PDF

Info

Publication number
WO2012155764A1
WO2012155764A1 PCT/CN2012/074545 CN2012074545W WO2012155764A1 WO 2012155764 A1 WO2012155764 A1 WO 2012155764A1 CN 2012074545 W CN2012074545 W CN 2012074545W WO 2012155764 A1 WO2012155764 A1 WO 2012155764A1
Authority
WO
WIPO (PCT)
Prior art keywords
oily
complex
group
alkyl
alkane mixture
Prior art date
Application number
PCT/CN2012/074545
Other languages
English (en)
French (fr)
Inventor
唐勇
陶闻杰
孙秀丽
李军方
王峥
Original Assignee
中国科学院上海有机化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110126431.9A external-priority patent/CN102786435B/zh
Priority claimed from CN201210098399.2A external-priority patent/CN103360517B/zh
Application filed by 中国科学院上海有机化学研究所 filed Critical 中国科学院上海有机化学研究所
Priority to EP12785810.8A priority Critical patent/EP2711356B1/en
Priority to ES12785810T priority patent/ES2797651T3/es
Priority to JP2014510649A priority patent/JP6175052B2/ja
Priority to US14/118,172 priority patent/US9315755B2/en
Publication of WO2012155764A1 publication Critical patent/WO2012155764A1/zh
Priority to US15/078,830 priority patent/US10294440B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/06Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton
    • C07C251/08Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton being acyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/20Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups being part of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/24Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/45Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having at least one of the nitrogen atoms doubly-bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/52Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • C10G50/02Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation of hydrocarbon oils for lubricating purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/12Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step
    • C10G69/126Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step polymerisation, e.g. oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/10Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/20Non-coordinating groups comprising halogens
    • B01J2540/22Non-coordinating groups comprising halogens comprising fluorine, e.g. trifluoroacetate
    • B01J2540/225Non-coordinating groups comprising halogens comprising fluorine, e.g. trifluoroacetate comprising perfluoroalkyl groups or moieties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/30Non-coordinating groups comprising sulfur
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/20Acenaphthenes; Hydrogenated acenaphthenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/304Pour point, cloud point, cold flow properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • the invention relates to the field of base oils in the field of catalysis and lubricating oils, in particular to a class of X-diimine nickel, palladium catalysts and preparation techniques thereof, and under the action of such catalysts, direct realization of olefins such as ethylene, propylene and butene Process for the preparation of oily hyperbranched alkanes and use of oily hyperbranched alkanes.
  • Industrial base oils for lubricating oils are mixtures of various branched alkanes obtained by petroleum cracking or alpha-olefin oligomerization. Among them, hydrazine is a very important and excellent lubricating base oil obtained by oligomerization of ⁇ -olefins.
  • the main raw materials are ⁇ -octene, ⁇ -pinene, ⁇ -dodecene and other expensive high-grade ⁇ . - olefins.
  • the premise of obtaining high-quality base oils is that it is necessary to first catalyze the oligomerization of ethylene to obtain ⁇ -olefins, especially ⁇ -pinene. It is technically difficult to selectively produce ⁇ -olefins of C6 or higher.
  • the preparation of high-performance base oils directly from inexpensive olefins such as ethylene, propylene, and butene is economical and efficient.
  • inexpensive olefins such as ethylene, propylene, and butene
  • Nickel complexes were considered to be only catalysts for olefin oligomerization before 1995.
  • the well-known SHOP catalyst can catalyze the oligomerization of ethylene to obtain a series of ⁇ -olefins in accordance with the Flory distribution.
  • Braokhart et al. J. Am. Chem. Soc. 1995, 117, 6414.
  • Polymerization obtained branched high molecular weight polyethylene, the melting point (Tm) of the polymer is between 39-132 ° C, lower than ordinary polyethylene resin.
  • Du Pont has applied for a number of patents in this regard (WO 96/23010, WO 98/03521, WO 98/40374, WO 99/05189, WO 99/62968, WO 00 /06620, US 6, 103,658, US 6,660,677) This type of polymeric product is protected.
  • An oily polyethylene can be obtained from the corresponding cationic palladium system.
  • the polyolefin has a high degree of branching, but its catalytic activity is very low, and the catalyst is known to have a very serious ⁇ - ⁇ elimination phenomenon. Under the action of the catalyst, ⁇ - The elimination of carbon-carbon double bonds and Pd-H species is the most important route for this type of catalytic cycle, so the polymer has high unsaturation (high bromine number).
  • the morphology and properties of polyethylene are closely related to its degree of branching, and the catalyst structure is the core of the control of polyethylene structure.
  • the polyethylene obtained by the nickel-based catalyst of Braokhart et al. already has a certain degree of branching, but still cannot meet the requirements of applications such as lubricating base oils, and the product is in a solid state.
  • Industrial synthetic lubricants are required to maintain viscosity over a wide temperature range, that is, to have a high viscosity index, while having a lower pour point, comparable to a third type of oil (class III base oil) or The pour point is lower.
  • the degree of branching BI of the polymer can be better correlated with these properties of the lubricating oil.
  • the characterization of the NMR of the H NMR is 0. 5_2. 1 section.
  • the pour point of the lubricating oil will decrease, that is, the lubricating oil will change from liquid to solid. The temperature will decrease and the pour point will help to expand the application of the lubricant.
  • the goal of synthetic lubricants is to ensure that the lubricants remain liquid at reduced temperatures, while having a high viscosity index and maintaining a high viscosity at high temperatures such as 100 °C.
  • the catalyst system can directly produce a highly branched oily polymer from an inexpensive olefin such as ethylene, propylene or butene.
  • Another object of the invention is to provide a use of a novel class of catalytic systems for the synthesis of highly branched alkanes.
  • Another object of the present invention is to provide a class of highly branched alkanes useful in advanced lubricating base oils.
  • Z and Y are each hydrogen, dC 4 alkyl or dC 4 haloalkyl, unsubstituted or substituted phenyl, or Z and Y together with an adjacent carbon atom constitute an unsubstituted or substituted group selected from the group consisting of: An anthracenyl, phenanthryl and C5-C8 cycloalkyl group, wherein the substituted phenyl, indenyl, phenanthryl or cycloalkyl has from 1 to 5 substituents selected from the group consisting of halogen, dC 4 alkane And dC 4 haloalkyl;
  • RR 2 , R 3 and R 4 are each H, halogen, dC 8 alkyl, dC 8 haloalkyl, unsubstituted or substituted phenyl, -0-R a , -CH 2 -0-R a , -SR b Or -CH 2 -SR b , wherein ⁇ and R b are respectively dC 8 alkyl, unsubstituted or substituted phenyl, and RR 2 , R 3 and R 4 satisfy the condition: R ⁇ R 3 and/or R 2 ⁇ R 4 ; the substituted phenyl group has 1 to 5 substituents selected from the group consisting of halogen, dC 4 alkyl and dC 4 haloalkyl;
  • R 5 , R 6 and R 7 are each independently halogen, nitro, hydrogen, dC 8 alkyl, Ci-C 8 haloalkyl, -0-R a , -CH 2 -0-R a , or -N (FQ 2 , wherein ⁇ 8 is an alkyl group, an unsubstituted or substituted phenyl, and ⁇ 4 is alkyl or haloalkyl; said substituted phenyl substituted with 1-5 substituents selected from the group group: halo, dC 4 Alkyl and dC 4 haloalkyl.
  • 1-3 substituents of RR 2 , R 3 and R 4 are dC 8 alkyl, dC 8 haloalkyl or unsubstituted or substituted phenyl, and 1-3 substituents are H Or halogen.
  • the substituted phenyl group has 1-3 substituents.
  • Z and Y together with adjacent carbon atoms constitute an unsubstituted or substituted fluorenyl group.
  • R 1 and R 2 are selected from the group consisting of H, methyl, halogen or -CH 2 -0-R a .
  • R 1 and R 2 are selected from the group consisting of phenyl, benzyl, halogen or -CH 2 -0-R a .
  • R 1 and R 2 are selected from the group consisting of: -SR b or -CH2-SR, and in a second aspect of the invention, a complex is provided, the complex being the present invention A complex formed on the one hand with a divalent metal salt selected from the group consisting of nickel, palladium or a combination thereof.
  • Z, Y, RR 2 , R 3 , R 4 , R 5 , R 6 and R 7 are as defined above;
  • X is halogen, dC 4 alkyl, C 2 -C 6 alkenyl, allyl or benzyl.
  • X is chlorine, bromine, iodine, methyl, allyl or benzyl.
  • X is chlorine, bromine or iodine.
  • the compound of the first aspect is reacted with a divalent metal salt in an inert solvent to form a complex described in the second aspect, wherein the metal precursor is a divalent nickel compound or a divalent palladium compound.
  • the metal precursor comprises: NiCl 2 , NiBr 2 , Nil 2 , (DME)NiBr 2 , PdCl 2 , PdBr 2 , Pd(OTf) 2 , Pd(OAc) 2 or a combination thereof .
  • reaction is carried out under almost anhydrous conditions (e.g., water content ⁇ 0.1%).
  • reaction is carried out under an inert atmosphere such as nitrogen.
  • step (a) or the step (b) is heated in an inert solvent for 1-96 hours (preferably, 2-72 hours).
  • 0.001 to 100% of a corresponding catalyst for promoting the condensation reaction is added to the step or step (b), wherein acetic acid, p-toluenesulfonic acid, TiCl 4 , orthosilicate are preferred.
  • the ratio of the compound A to the B in the step (a) is (0.7 - 1.2): 1.
  • the ratio of the compound C to D in the step (b) is (0.7 - 1.2): 1.
  • the inert solvent in the step (a) or the step (b) comprises: an alcohol, an aromatic hydrocarbon, an aliphatic hydrocarbon, a halogenated hydrocarbon, an ether, an ester solvent.
  • the inert solvent in the step (a) or the step (b) is methanol, ethanol, toluene, xylene or trimethylbenzene.
  • the olefin comprises an unsubstituted C 2 -C 1Q olefin, substituted. Olefins or combinations thereof.
  • the olefin is ethylene, propylene, butylene or any combination thereof.
  • the olefin is any combination of ethylene, propylene and/or butene with other c 5 -c 12 olefins. In another preferred embodiment, the olefin is ethylene.
  • the oily polyethylene is highly branched; more preferably, the high branching refers to polyethylene.
  • the number of methyl groups corresponding to 1000 methylene groups (CH 2 ) is 100-500.
  • a cocatalyst is also present in step (a).
  • the cocatalyst is selected from the group consisting of alkylaluminum reagents (e.g., alkyl aluminoxanes, diethylaluminum chloride and ethylaluminum dichloride).
  • alkylaluminum reagents e.g., alkyl aluminoxanes, diethylaluminum chloride and ethylaluminum dichloride.
  • reaction temperature of the step (a) is from 0 to 100 °C.
  • reaction conditions of the step (a) are: pressure (gauge pressure) 0.1-3 MPa, the cocatalyst is an alkyl aluminoxane or diethyl aluminum chloride, wherein the promoter aluminum and the nickel in the catalyst The molar ratio is 10-5000.
  • step (a) is carried out under a polymerization solvent selected from the group consisting of toluene, n-hexane, dichloromethane, 1,2-dichloroethane, chlorobenzene, tetrahydrofuran or a combination thereof.
  • a polymerization solvent selected from the group consisting of toluene, n-hexane, dichloromethane, 1,2-dichloroethane, chlorobenzene, tetrahydrofuran or a combination thereof.
  • step (a) can be carried out in an oily polyethylene or oily alkane mixture.
  • the method further includes the steps of:
  • the oily alkane mixture has the following characteristics:
  • step of step (a) and step (b) further comprises the step of: separating the oily polyolefin.
  • step (b) can be carried out in an inert solvent or directly with an oily polyolefin as a solvent.
  • an oily olefin polymer having the following characteristics: 1000 methylene corresponding to a methyl group of 100 to 500 and a molecular weight of 300 to 500,000 g/ Mol.
  • the oily polymer is prepared by the method of the fifth aspect of the invention.
  • the oily olefin polymer is an oily polyethylene.
  • an oily alkane mixture characterized in that the oily alkane mixture has the following characteristics: 1000 methylene corresponding to a methyl group of 100 to 500 and a bromine number of less than 0.5 g/100 g.
  • the oily alkane mixture is a hydrogenated product of the oily polyolefin described in the sixth aspect. In another preferred embodiment, the oily alkane mixture is a hydrogenated product of an oily polyethylene.
  • oily alkane mixture is prepared by the following method:
  • the oily alkane mixture has the following characteristics:
  • step of step (a) and step (b) further comprises the step of: separating the oily polyethylene.
  • the hydrogenation reaction is simultaneously carried out in the step (a).
  • step (b) may be carried out in an inert solvent or directly with an oily polyolefin as a solvent.
  • oily alkane mixture of the seventh aspect of the invention which is used as a base oil for lubricating oils, an additive for lubricating oils, a plasticizer or a processing aid for resins.
  • a lubricating oil comprising the oily alkane mixture of the seventh aspect.
  • the lubricating oil contains from 0.1 to 100% by weight, preferably from 1 to 90% by weight, of the oily alkane mixture.
  • the complex of the second aspect of the invention which is used as a catalyst for the polymerization of olefins.
  • the olefin polymerization is carried out under homogeneous conditions.
  • the catalyst is supported on an inorganic or organic support.
  • an oily alkane mixture having the following characteristics: (a) a viscosity index of from 100 to 300; (b) a pour point of from -50 ° C to -10 ° C (c) a molecular weight of 300 to 500,000 g/mol; and (d) a number of methyl groups corresponding to 100 to 500 per 1000 methylene groups.
  • the oily alkane mixture further has the following characteristics:
  • the oily alkane mixture has a viscosity index of from 150 to 300, more preferably from 180 to 300, most preferably from 200 to 290.
  • the degree of branching is 0.20 to 0.50, preferably 0.22 to 0.45, more preferably 0.24 to 0.40.
  • the oily alkane mixture has a molecular weight of from 500 to 500,000 g/mol, more preferably from 800 to 200,000 g/mol, from 1000 to 100,000 g/mol.
  • a process for the preparation of the oily alkane mixture according to the eleventh aspect comprising the step of obtaining an oily alkane mixture by hydrogenation reaction of an oily olefin polymer, wherein the oily olefin polymer has the following Features: 1000 methylene corresponding to 100-500 methyl groups and molecular weight 300-500,000 g/moL
  • the oily olefin polymer (i.e., oily polyolefin) contains from about 100 to about 500 alkyl branches per 1000 methylene groups and contains 20 per 100 methyl branches. - 100 ethyl branches, 2-50 propyl branches, 20-100 butyl branches, 2-50 pentyl branches and 20-200 hexyl or longer branches.
  • a lubricating oil comprising a base oil and an additive, the base oil being the oily alkane mixture of the eleventh aspect.
  • the additive is selected from the group consisting of a viscosity index improver, a pour point depressant, an antioxidant, a detergent dispersant, a friction moderator, an oil agent, an extreme pressure agent, an anti-foaming agent, and a metal passivation.
  • the additive is selected from the group consisting of a viscosity index improver, a pour point depressant, an antioxidant, a detergent dispersant, a friction moderator, an oil agent, an extreme pressure agent, an anti-foaming agent, and a metal passivation.
  • Figure 1 shows a polymer nuclear magnetic carbon spectrum prepared in an example of the present invention.
  • Figure 2 shows the structure of the complex in one example of the present invention. detailed description
  • the inventors have conducted extensive and intensive research to prepare novel ligand compounds, complexes and catalytic systems by changing the structure of the catalyst, thereby catalyzing the direct polymerization of ethylene for the first time to obtain a highly branched oily polymer.
  • the catalytic system can also directly catalyze the direct polymerization of olefins such as propylene and butene to obtain a highly branched oily polymer.
  • the oily polymer of the present invention can be used to prepare highly branched alkanes with excellent properties, which greatly reduces the cost of high-grade lubricating oils.
  • the present invention has been completed on this basis. the term
  • Class I base oil means that the production process is based primarily on physical processes and does not alter the base oil produced by the hydrocarbon structure. The quality of Group I base oils is greatly affected by the raw materials and is limited in performance.
  • Group II base oil refers to a base oil produced by a combination process (a combination of a solvent process and a hydrogenation process). Although the properties such as thermal stability have been improved, the properties such as viscosity index and pour point are not satisfactory.
  • Class II I base oil refers to a base oil produced by a full hydrogenation process. Although Class II I base oils have the advantage of low volatility, some properties such as viscosity index and pour point are still not sufficient for certain applications.
  • Representative olefins include substituted or unsubstituted C2-C10 olefins, preferably C2-C6 olefins such as ethylene, propylene, butylene, and the like.
  • the kind and amount of the substituent are not particularly limited, and usually one monomer may have 1 to 5 substituents, and representative substituents include, but are not limited to, a hydroxyl group, an ester group, a silyl group, a silyl group, an amine group ( Substituted amine), cyano, halogen, ketone carbonyl, heterocyclic substituent, carboxy, trifluoromethyl.
  • Representative substituted olefins are various functionalized polar monomers that are still capable of undergoing polymerization.
  • each group is as defined above.
  • Functional groups which may be present in the Z, Y, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 substituted hydrocarbyl groups include hydroxy, ether, ester, dialkylamino, carboxy, oxo (aldehyde) Ketone), nitro, amide, thioether.
  • Preferred groups are hydroxy, ether, dialkylamino groups.
  • Z and Y are each independently methyl, phenyl, or phenyl substituted by alkyl, halogen, alkoxy; said halogen includes fluorine, chlorine, bromine or iodine; said alkoxy
  • the group is preferably a methoxy group, an ethoxy group or an isopropoxy group; the alkyl group-substituted phenyl group is preferably a phenyl group substituted by a 6 alkyl group, more preferably a dC 4 alkyl group, most preferably a methyl group, an ethyl group, Isopropyl and butyl groups, the substituent group may be in any position of the phenyl ring which may be substituted
  • Z and Y together with adjacent carbon atoms form a mercapto group .
  • Z and Y together with adjacent carbon atoms form a cyclohexyl group.
  • R 1 2 is ⁇ 8 ⁇ 8 alkyl group or a substituted alkyl group, and R 3, R 4 is hydrogen, halogen or CF 3; with the proviso that I 1, R 2 and R 3, R 4 are not identical;
  • R 11 2 is 8 hydrocarbyl or 8- substituted alkyl
  • R 3 is hydrogen, halogen or CF 3
  • 11 4 is an 8- substituted alkyl group.
  • RR 2 is dC 4 alkyl or ⁇ 4 substituted alkyl
  • R 3 is halogen or CF 3 and R 4 is halogen.
  • R 1 and 11 2 are 11, methyl, halogen, -CH 2 -0-Ra or -0-Ra.
  • R 1 and R 2 are phenyl, benzyl, halogen, -CH 2 -0-Ra or -0-Ra.
  • R1 and R2 are selected from the group consisting of: -SR b or -CH 2 -SR b .
  • R 5 , R 6 , R 7 are hydrogen, dC 8 alkyl, dC 8 substituted alkyl, halogen, nitro, methoxy, dimethylamino, trifluoromethyl;
  • the substituted alkyl group is preferably an alkyl group substituted by a halogen, an alkoxy group or a phenoxy group;
  • the halogen includes fluorine, chlorine, bromine or iodine;
  • the alkoxy group is preferably a methoxy group or an ethoxy group. Isopropoxy group, more preferably methoxy.
  • the compound of formula I can be reacted with a divalent nickel or a divalent palladium metal salt to form the corresponding nickel or palladium complex.
  • X may be halogen, dC 4 alkyl, C 2 -C 6 alkenyl, allyl, benzyl; the CC 4 alkyl group is preferably a methyl group; the halogen is preferably bromine, chlorine or iodine.
  • X is chlorine, bromine, iodine, methyl, allyl or benzyl.
  • X is chlorine, bromine or iodine.
  • the ligand compound I of the present invention can be reacted with a corresponding divalent metal precursor in an inert solvent to form a complex.
  • the divalent nickel or divalent palladium metal salt as the metal precursor of the reaction comprises: NiCl 2 , NiBr 2 , Nil 2 , (DME) NiBr 2 (DME) NiCl 2 , (DME) NiI 2 PdCl 2 , PdBr 2 , Pd(OTf) 2 and Pd(OAc) 2 .
  • the metal complex of the present invention can catalyze the polymerization of ethylene under the action of a cocatalyst to give an oily polymer. Preparation of ligand compounds and complexes
  • the invention also provides a synthesis of a compound of the formula S, comprising the steps of:
  • a corresponding catalyst for promoting the condensation reaction such as acetic acid, p-toluenesulfonic acid, TiCl 4 , orthosilicate.
  • a corresponding catalyst for promoting the condensation reaction such as acetic acid, p-toluenesulfonic acid, TiCl 4 , orthosilicate.
  • the diketone A and the amine B are mixed in an inert solvent, and activated under the activation of 0.001-100% acetic acid or the like to form a monoimine C, and C continues to react with the amine D to obtain a product represented by the formula (I).
  • the inert solvent may be all solvents commonly used in condensation reactions, including alcohols, aromatic hydrocarbons, aliphatic hydrocarbons, halogenated hydrocarbons, ethers, ester solvents, preferably alcohol solvents such as methanol, ethanol; aromatic hydrocarbon solvents may also be given Excellent results, such as toluene, xylene, toluene, etc.
  • different substituent groups should be selected for the two amines B and D, especially RR 2 and R 3 , R 4 , but the substituent groups at the 2 and 6 positions in the same amine compound may be the same. Or different.
  • the step (a) or the step (b) is preferably heated separately in an inert solvent for 1-96 hours.
  • step (a) or the step (b) it is preferred in the step (a) or the step (b) to add 0.001 to 100% of a corresponding catalyst for promoting the condensation reaction, of which acetic acid, p-toluenesulfonic acid, TiCl 4 and orthosilicate are preferred.
  • the ratio of the preferred compounds A to B in the step (a) is (0.7 - 1.2): 1.
  • the ratio of the preferred compounds C to D in the step (b) is (0.7 - 1.2): 1.
  • the preferred inert solvents in step (a) or step (b) are alcohols, aromatic hydrocarbons, aliphatic hydrocarbons, halogenated hydrocarbons, ethers, ester solvents.
  • step (a) or step (b) is methanol, ethanol, toluene, xylene or trimethylbenzene.
  • Step (a) The separated C is separated and purified or directly subjected to the step (b) without separation and purification.
  • the invention also provides a method of preparing a complex.
  • compound I and a metal precursor including NiCl 2 , NiBr 2 Nil 2 or (DME)NiBr 2 , (DME)NiCl 2 , (DME)NiI
  • inertia The effect in the solvent is obtained.
  • the inert solvent may be any solvent which is conventionally used and does not affect the progress of the reaction, and includes alcohols, aromatic hydrocarbons, aliphatic hydrocarbons, halogenated hydrocarbons, ethers, esters, nitrile solvents, preferably halogenated hydrocarbon solvents.
  • halogenated hydrocarbon and a lipid solvent and preferred examples are dichloromethane, 1,2-dichloroethane, ethyl acetate, and tetrahydrofuran.
  • Ri-R 7 X is as described above.
  • DME means ethylene glycol dimethyl ether; when X is a hydrocarbon group, such as a methyl group or a benzyl group, it is often possible to use a corresponding chloride or bromide oxime with a methyl Grignard reagent or a benzyl Grignard reagent.
  • X in the complex is a halogen or a hydrocarbon group or any other group which can coordinate with the nickel metal, such as a nitrogen-containing compound or an oxygen-containing compound, as long as the complex is in the alkyl group.
  • This catalysis can be achieved by the formation of Ni-C bonds or Ni-H bonds by the action of aluminum.
  • the present invention provides a catalytic system capable of catalyzing the polymerization of olefins such as ethylene to obtain a mixture of high-branched alkane, the catalytic system comprising 1) a complex of a nickel, palladium metal precursor and a ligand of formula I; 2) Hydrogenation system.
  • each group is as defined above.
  • the catalytic system composed of the above catalyst and the hydrogenation catalyst can realize the direct preparation of highly branched alkanes from inexpensive olefins such as ethylene, propylene and butylene.
  • the hyperbranched alkane refers to an aliphatic hydrocarbon having a methyl group number of from 100 to 500 and a bromine number of less than 0.5 g/100 g per 1000 methylene groups in the polymer chain.
  • this method consists of the following two steps.
  • the metal complex is a complex of compound I with divalent nickel or palladium, preferably a nickel complex of the formula ⁇ .
  • the cocatalyst is a reagent capable of promoting the catalytic reaction, and may be an alkyl aluminum compound or an organic boron reagent.
  • the alkyl aluminum compound includes any compound containing a carbon-aluminum bond, including methyl aluminoxane (MAO), modified methyl aluminoxane (MMAO), triethyl aluminum, triisobutyl aluminum. , diethyl aluminum chloride, ethyl aluminum dichloride, and the like.
  • the molar ratio of the promoter aluminum to the nickel or palladium in the catalyst is 10-5000; the methylaluminoxane or the aluminum alkyl reagent can be used as a co-catalyst to assist the nickel or palladium complex to catalyze the polymerization of the olefin to obtain an oily polyolefin, and
  • the structure of the aluminoxane or the aluminum alkyl reagent does not affect the promotion, but the degree of branching or molecular weight of the resulting polymer may vary depending on the structure of the promoter, wherein methylaluminoxane The best results were obtained with diethylaluminum chloride and ethylaluminum dichloride.
  • A1C1 3 alone or in combination with an alkyl aluminum compound can also be a pro-catalytic effect.
  • the highly branched polyolefins (e.g., polyethylene) of the present invention can be hydrogenated to form highly branched alkanes.
  • the structure of the highly branched polyolefin (e.g., polyethylene) is determined by comparing the molecular weight measured by 13 C NMR and high temperature GPC with the actual molecular weight measured by high temperature laser light scattering.
  • the polymer obtained in Example 41 has a molecular weight of 4570 g/mol as measured by GPC, and the molecular weight measured by laser light scattering is 46,400 g/mol, thereby demonstrating that the structure of the highly branched polyethylene is spheroidal. .
  • the hyperbranched alkane has a molecular weight of between 500 and 500,000 g/mol and is a clear, transparent oil.
  • the hyperbranched alkane means that the alkane has a spheroidal or dendritic structure, ie, R 8 R 9 CH(CH 2 ) n CHR 1Q R u or R 8 R 9 R 1Q C(CH 2 ) n CHR
  • the contact time of ethylene with nickel or palladium complex and alkyl aluminum compound in an inert solvent in step 1 may vary from 0.5 hours to 72 hours, and the reaction temperature ranges from 0 to - At 100 degrees, the pressure (referred to as gauge pressure) varies from 0.1 to 3 Mpa (l-30 atmospheres).
  • the hyperbranched oily polyethylene obtained in the step 1 is reacted with a reducing agent or the oily polyethylene is contacted with hydrogen under the action of one or more reducing catalysts to obtain a highly branched oily alkane mixture.
  • the bromine number is below 0.5 g/100 g.
  • the reduction catalyst may be any catalyst which can promote the hydrogenation process, preferably from hydrogenation catalysts such as Pd/C, Pd(OH) 2 , Pt0 2 , ruthenium, nickel, ruthenium, etc., and the reduction reagent includes any conventional reagent capable of reducing double bonds.
  • hydrogenation catalysts such as Pd/C, Pd(OH) 2 , Pt0 2 , ruthenium, nickel, ruthenium, etc.
  • the reduction reagent includes any conventional reagent capable of reducing double bonds.
  • step of step (1) and step (2) further comprises the step of: separating the oily polyethylene.
  • the hydrogenation reaction is simultaneously carried out in the step (1).
  • the step (2) may be carried out in an inert solvent or directly with an oily polyethylene as a solvent; the step (1) may be carried out in an inert solvent or in an oily polyethylene as a solvent.
  • the step (2) can also be accomplished as follows: a) when performing the step (1), simultaneously introducing hydrogen gas to directly obtain a highly branched oily alkane; b) after performing the step (1), not performing Treating, introducing hydrogen into the polymerization system to obtain a highly branched oily alkane; c) after carrying out the step (1), without treatment, directly adding one or more reduction catalysts to the polymerization system for hydrogenation, thereby obtaining Highly branched oily alkane; d) After carrying out step (1), the oily polyethylene is separated and subjected to a hydrogenation reaction.
  • the above reaction can be carried out in an inert solvent, preferably an alcohol, an alkane, an aromatic hydrocarbon and a halogenated hydrocarbon, wherein in the step (1), a C 5 - C 12 saturated hydrocarbon such as hexane, heptane or a halogenated hydrocarbon such as two is preferable.
  • a C 5 - C 12 saturated hydrocarbon such as hexane, heptane or a halogenated hydrocarbon such as two is preferable.
  • Preferred in the step (2) are C 5 - C 12 saturated hydrocarbons such as hexane, heptane; halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloro Ethane; aromatic hydrocarbons such as toluene and xylene.
  • the catalyst system can also efficiently catalyze the polymerization of propylene and butene to obtain an oily polymer, or contact with any combination of ethylene, propylene or butene to achieve the above catalytic reaction. Oily polymer.
  • the ethylene, propylene or butene system contains some other C 5 -C 12 olefins, such as hexene and octene, the above-mentioned catalytic polymerization results are not affected, and the obtained polymer is still oily and has a high degree of support.
  • the polymer is a dendritic or spherical, spheroidal polymer which can also obtain highly branched alkanes by hydrogenation step (2).
  • the step of step (1) and step (2) further comprises the step of: separating the oily polyethylene.
  • the above The operation of directly obtaining a highly branched alkane by ethylene is equally applicable to these olefins, that is, in another preferred embodiment, the hydrogenation reaction is simultaneously carried out in the step (1); in another preferred embodiment, the step (2) may be The hydrogenation reaction is carried out in an inert solvent or directly as an oily polyolefin; the step (1) can be carried out in an inert solvent or in an oily polyolefin as a solvent.
  • olefins used in the present invention may have a double bond at the end group or an internal olefin, and do not affect the catalytic effect.
  • the internal olefin refers to a double bond at any position other than the terminal group.
  • the internal olefin of the same olefin may be a mixture of a plurality of isomers or a single internal olefin, for example, for butene.
  • 2-C4 a mixture of one or more isomers may be used at the same time without affecting the above polymerization. Oily olefin polymer and oily hydrocarbon mixture
  • the catalyst disclosed in the present invention can be applied to various ethylene, propylene, butene polymerization process equipment and conventional reduction process equipment which have been used in the industry. It can be used under heterogeneous conditions using homogeneous conditions or after loading on an organic or inorganic carrier.
  • the invention also provides an oily ethylene polymer and a process for the preparation thereof.
  • the oily polyethylene of the present invention is highly branched; and the high branching means that the number of methyl groups corresponding to 1000 methylene groups (CH 2 ) in the polyethylene is from 100 to 500.
  • a representative preparation method includes the steps of:
  • composition of the present invention is used as an olefin polymerization catalyst at a temperature ranging from 0 to 100 ° C and a pressure (gauge pressure)
  • a cocatalyst is also present in the step; more preferably, the cocatalyst is selected from the group consisting of: an aluminum alkyl reagent
  • step (a) is carried out under a polymerization solvent selected from the group consisting of toluene, n-hexane, dichloromethane,
  • the cocatalyst may be an alkyl aluminoxane MAO (or a modified alkyl aluminoxane)
  • MMAO aluminum alkyl or organoboron reagent.
  • the molar ratio of the promoter to the catalyst in nickel or palladium is from 1 to 5000.
  • the resulting polymer contains a large number of branches, and the total number of branches can be quantitatively analyzed by 13 C NMR by judging the signals (integral areas) of C3 ⁇ 4 and C3 ⁇ 4. Further, since the mode of terminating the catalytic cycle is the elimination of ⁇ -tellurium of the metal, it is inevitable that the polymer chain contains a double bond, and the resulting oily polyolefin mixture has high unsaturation.
  • the oily polymer obtained by catalyzing ethylene polymerization using a nickel catalyst has a bromine number of 38 g/100 g.
  • the step (a) in the representative preparation method may further be that the complex of the present invention is in the presence of an olefin polymerization catalyst at 0-100 ° C, and the pressure (gauge pressure) varies from 0.1 to 3 Mpa (l). -30 atmospheres), catalytically polymerizing propylene, butene or any combination of ethylene, propylene, butene, and other C 5 -C 12 olefins to form an oily polyolefin.
  • the present invention also provides a high-branched oily alkane mixture which is a hydrogenated product of the oily polyolefin of the present invention.
  • the oily polyolefin comprises an oily polyethylene, an oily polypropylene, an oily polybutene or an oily copolymer obtained by a catalyst under the action of a catalyst.
  • the oily alkane mixture of the present invention has a molecular weight of from 500 to 500,000 g/mol, and a methyl group (CH3) per 1000 methylene groups (CH2) of from 100 to 500.
  • the hyperbranched alkane has a spheroidal or dendritic structure,
  • R 8 -R 12 has the structure of R 13 R 14 CH(CH 2 ) m CHR 15 R 16 or R 13 R 14 R 15 C(CH 2 ) n CHR 15 R 16 R 17 , R 13 -R 17 Structure having R 18 R 19 CH(CH 2 ) X CHR 2 °R 21 or R 18 R 19 R 2 °C(CH 2 ) X CHR 2 °R 21 R 22 , R 18 , R 19 , R 20 R 21 And R 22 is hydrogen, a linear or branched alkane, and n, m and X are each an integer of from 1 to 500, preferably an integer of from 1 to 300, more preferably an integer of from 1 to 100.
  • Such hyperbranched alkane mixtures of the present invention have a high viscosity index of from about 100 to about 300, preferably from about 150 to about 300; a pour point of from about -50 to about -10 ° C, while at 100 ° C.
  • the viscosity is from about 5 to about 100 cSt.
  • the alkane mixture is an oily polymer having a molecular weight of from about 500 to about 500,000 g/mol and a degree of branching BI of at least 0.20.
  • a distinguishing feature of the alkane mixture of the present invention is that the number of methyl groups per 1000 methylene groups is from about 100 to about 500, preferably from 200 to 400. This feature makes the alkane mixture of the present invention microscopically different from a general linear polymer, and more like a spheroidal or dendritic structure, and thus more suitable as a base oil for lubricating oils.
  • the alkane mixture of the present invention contains from about 20 to about 100 ethyl branches, from about 2 to about 50 propyl branches, from about 20 to about 100 butyl branches, from about 2 to about 50 per 100 methyl branches.
  • the oily alkane mixture of the present invention has a low bromine number and can satisfy the requirements of the base oil.
  • an oily polymer obtained by catalyzing ethylene polymerization using a nickel catalyst has a bromine number of 38 g/100 g, and its bromine number is reduced to 0.38 g/100 g after hydrogenation.
  • the performance is significantly better than that of a commercially available PAO base oil.
  • the viscosity index (Viscosity index) of the commercial PAO is 139, and a highly branched oil of the present invention is disclosed.
  • the Viscosity index of alkanes can be as high as 261.
  • such highly branched saturated alkanes may be added with various additives or reinforcing agents, such as antifreeze, and in addition, such highly branched saturated alkanes may also be used as additives to improve the resin.
  • Processability for example as a plasticizer in the processing of polymers.
  • Both the terminal olefin or the internal olefin can be directly used for this purpose, so that the internal olefin is also better utilized.
  • the highly branched alkane of the present invention has a low bromine number, a high viscosity index, and can be used as a base oil or processing aid for advanced lubricating oils.
  • the second step was to replace the aniline with 2,6-dichloroaniline, and the other operating conditions were the same to obtain an orange solid.
  • v(cm _1 ) 3052, 2960, 2923, 2865, 1674, 1640, 1602, 1463, 1433, 1242, 1077, 1033, 831, 779, 760, 730; C 30 H 26 C1 2 N2 (484.45) : Anal.Calc. C 74.22, H 5.40, N 5.77; Found C 73.99, H 5.39, N 5.65.
  • Example 3
  • v (cm _1) 3058, 2960, 2922, 2865, 1677, 1640, 1594, 1547, 1462, 1425, 1282, 1241, 1080, 1032, 925, 831, 792, 778, 759, 725 C 30 H 26 Br 2 N 2 (574.35): Anal. Calc. C 62.74, H 4.56, N 4.88; Found C 62.69, H 4.60, N 4.73.
  • Example 5 8.30-6.
  • the second step was to replace the aniline with p-methoxyaniline, and the other operating conditions were the same to obtain an orange-red solid.
  • 1H NMR (300 MHz, CDC1 3 ): ⁇ 7.94-6.61 (13H, m), 3.00-2.52 (2H, m), 1.26-0.91 (12H, d); 13 C NMR (75 MHz, CDC1 3 ): 161.3, 154.7, 146.9, 141.4, 135.5, 131.2, 129.4, 129.1, 129.0, 128.3, 128.0, 127.6, 126.7, 124.5, 123.8, 123.7, 123.6, 123.2, 118.5, 117.7, 77.0, 28.3, 23.5, 23.4 , 23.1, 22.3; Anal. Calcd. C 76.84, H 5.62, N 5.78; Found C 76.63, H 5.62, N 5.73.
  • the second step was to replace the aniline with N,N-dimethylaniline, and the other operating conditions were the same to obtain an orange-red solid.
  • 1H NMR (300 MHz, CDCI3): ⁇ 8.18-6.58 (13 H, m), 3.04 (8H, m), 1.22- 0.91 (12H, d); 13 C NMR (75 MHz, CDCI3): 161.8 , 159.2, 148.3, 147.4, 141.0, 135.6, 129.5, 129.2, 128.7, 128.3, 127.5, 124.1, 123.4, 123.3, 123.0, 120.7, 112.9, 77.0, 40.8, 28.3, 28.2, 23.7, 23.4, 23.3.
  • the second step was to replace the aniline with p-chloroaniline, and the other operating conditions were the same to obtain an orange-red solid.
  • 1H NMR (300 MHz, CDC1 3 ): ⁇ 8.17-6.60 (13H, m), 3.01-2.97 (2H, m), 1.23-0.93 (12H, d); 13 C NMR (75 MHz, CDC1 3 ): 161.4, 160.9, 150.1, 147.0, 131.1, 141.2, 129.5, 129.4, 129.1, 128.9, 128.4, 128.2, 127.8, 127.5, 124.4, 124.1, 123.7, 123.5, 123.1, 119.8, 119.2, 77.4, 77.0, 28.2 , 23.5, 23.4, 23.3, 23.1; Anal. Calcd. C 79.89, H 6.03, N 6.21; Found C 79.82, H 6.13, N 6.07.
  • 8.38 (1 ⁇ , d), 8.06-7.98 (3 H, d), 7.70-7.63 (2 H, m), 7.50 (1 H, t), 7.38 (1 H, t), 7.18 (2 H, d), 7.10 ( 1 H, m), 2.66 (2 H, m), 1.28-1.04 (12 H, d).
  • the second step was carried out by replacing 2,6-dichloroaniline with 2,6-dibromoaniline to obtain a ligand L1j.
  • Example 14 According to the synthesis method of Example 8, the second step was carried out by replacing o-isopropylaniline with o-trifluoromethylaniline to obtain a ligand Llm.
  • 1H NMR (300 MHz, CDC1 3 ): 5 8.27 - 6.62 (12H, m).
  • Example 14
  • the second step was carried out by replacing o-isopropylaniline with o-tert-butylaniline to obtain a ligand Lln.
  • 1H NMR (300 MHz, CDC1 3 ): ⁇ 8.26-6.50 (12 ⁇ , m), 1.33-1.02 (9 ⁇ , m); Anal.Calc. C 56.70, H 3.45, N 4.56; Found C 56.56, H 3.33, N 4.32.
  • Example 16 According to the synthesis method of Example 1, the second step was carried out by substituting p-trifluoromethylaniline for aniline to obtain a ligand Llo.
  • 1H NMR (300 MHz, CDCI3): ⁇ 7.94-6.61 (13 H, m), 3.00-2.52 (2 H, m), 1.26-0.91 (12 H, d);
  • Example 17 According to the synthesis method of Example 1, the second step was to replace the aniline with 3,5-ditrifluoromethylaniline to obtain the ligand Llp.
  • 1H NMR (300 MHz, CDCI3): ⁇ 8.08-6.47 (12 ⁇ , m), 2.98-2.48 (2 ⁇ , m), 1.24-0.88 (12 ⁇ , m); 13 C NMR (75 MHz, CDCI3) : 162.3, 161.1, 153.2, 152.8, 146.7, 146.3, 141.5, 140.8, 135, 4, 134.3, 133.4, 133.0, 132.7, 131.9, 131.6, 130.8, 130.0, 129.5, 129.1, 128.9, 128.5, 128.1, 128.0, 127.7 , 124.7, 124.6, 124.5, 123.9, 123.6, 123.5, 123.3, 123.2, 120.4, 119.2, 117.8, 116.3, 77.0, 28.4, 23.6, 23.5, 22.8, 22.6.
  • Example 17 Example 17
  • the second step was to replace the aniline with o-phenoxymethylene aniline to obtain a ligand L1q.
  • Example 39 was repeated except that the complex la was replaced with the complex lb (2 ⁇ ), and 0.22 mL (0.9 mol/L) of a toluene solution of a promoter ethylaluminum chloride was added.
  • the polyethylene bromide value is 33 g/100 g, and the molecular weight of the material is 50,000 g/molo.
  • Example 39 was repeated except that the complex la was replaced with the complex lc (2 mol).
  • Example 39 was repeated except that the complex la was replaced with the complex le(5 ⁇ ).
  • Example 39 was repeated except that the complex la was replaced with the complex lf (5 ⁇ ).
  • Example 39 was repeated, except that the complex la was replaced with the complex lg (5 ⁇ ).
  • Example 39 was repeated except that the complex la was replaced with the complex lh (5 ⁇ ).
  • Example 39 was repeated, except that the complex la was replaced with the complex ⁇ (1 ⁇ ), and the polymerization time was 5 min. Results: 4.2 g of oily polyethylene was obtained with a catalytic efficiency of 5.0*10 7 g/mol.h.atm. The 1000 methylene groups of polyethylene correspond to a methyl number of 200, and the molecular weight of the product is 110,000 g/mol.
  • Example 48
  • Example 39 was repeated, except that the complex la was replaced with the complex lj (l ⁇ ).
  • Oily polyethylene 10.0 g was obtained with a catalytic efficiency of 4.0*10 6 g/mol.h.atm.
  • the 1000 methylene groups of polyethylene correspond to a methyl number of 200.
  • the bromine number is 30 g / 100 g and the molecular weight of the product is 120,000 g/mol.
  • Example 49
  • Example 39 was repeated except that the complex la was replaced with the complex lk (5 ⁇ ).
  • Example 39 was repeated except that the complex la was replaced with the complex 11 (5 ⁇ ).
  • Example 39 was repeated except that the complex la was replaced with the complex lm (5 ⁇ ).
  • Example 39 was repeated except that the complex la was replaced with the complex 1 ⁇ (5 ⁇ ).
  • Example 39 was repeated, except that the complex la was replaced with the complex 1 ⁇ (5 ⁇ ).
  • the catalytic efficiency of oily polyethylene was 2.0* 10 6 g/mol.h.atm.
  • the 1000 methylene groups of polyethylene correspond to a methyl number of 280 and a bromine number of 55 g/100 g.
  • Example 39 was repeated, except that the complex la was replaced with the complex 1 ⁇ (5 ⁇ ).
  • Example 39 was repeated except that the complex la was replaced with the complex lq (5 ⁇ ).
  • Example 39 was repeated except that the complex la was replaced with the complex lr (5 ⁇ ), and the promoter MMAO 0.30 mL (1.9 mol/L) was added.
  • Example 39 was repeated except that the complex la was replaced with the complex lj (5 ⁇ ) and the solvent was changed to toluene.
  • the catalytic efficiency of the oily polymer is 5* 10 6 g/mol.h.atm, the bromine number is 40 g/100 g, and the molecular weight of the product is 200,000 g/mol o
  • Example 58 (solvent: n-hexane)
  • Example 39 was repeated, except that the complex 1a) was replaced with the complex 1_)' (5 ⁇ 0 1), and the solvent was changed to n-hexane.
  • Example 59 solvent: chlorobenzene
  • Example 39 was repeated except that the complex la was replaced with the complex lj (5 ⁇ ) and the solvent was changed to chlorobenzene.
  • Example 60 solvent dichloromethane
  • Example 39 was repeated, except that the complex la was replaced with the complex lj (5 ⁇ ), and the solvent was changed to dichlorocarb. The temperature was changed to 20 °C.
  • Example 39 was repeated except that the complex la was replaced with the complex lj (5 ⁇ ), and the promoter MMAO 0.30 mL (1.9 mol/L) was added.
  • Example 39 was repeated except that the complex lj (5 ⁇ ) was used to replace the complex la, and a promoter MAO 0.30 mL (1.5 mol/L) was added.
  • Example 39 was repeated except that the polymerization temperature was changed to 80 °C.
  • Example 39 was repeated except that the polymerization temperature was changed to 20 °C.
  • Example 65 was repeated, the ethylene pressure was changed to 5 atm, the solvent was changed to toluene, and the polymerization temperature was changed to 100 °C.
  • Example 39 was repeated, except that the complex Lla was changed to the complex lt, and a cocatalyst MMAO 0.30 mL (1.9 mol/L) was added.
  • Example 39 was repeated except that the complex Lla was changed to the complex lu, and a promoter MAO of 0.30 mL (1.5 mol/L) was added.
  • Example 39 was repeated, except that the complex Lla was changed to the complex lv.
  • Example 70 was repeated, and nickel perchlorate was changed to nickel trifluoromethanesulfonate.
  • Example 70 was repeated, changing nickel perchlorate to (COD)Ni.
  • the second step was carried out by replacing the aniline with o-thiophenylaniline to obtain a ligand L1w.
  • Example 39 was repeated, and an ethylene polymerization experiment was carried out using the complex lw instead of la to obtain 2.5 g of an oily polyethylene having an activity of 1.0*10 6 g/mol.h.atm.
  • Examples 78-82 are comparative examples made using the catalysts in the literature, under which the ethylene obtained only solid polyethylene under the same conditions as in Examples 39, 63, 64, 57, 62.
  • the ligand Lis was used in place of Lla, and other operating conditions were the same as in Example 18 to give a reddish brown complex with a yield of 80%.
  • Example 80 In a 200 mL polymerization bottle, purge the gas three times with nitrogen, then vacuum once, change the ethylene, add 25 mL of solvent DCE under ethylene atmosphere, and add 0.30 mL (0.9 mol/L) of cocatalyst diethylaluminum chloride. At 80 ° C, 1 atm, add the complex ls (5 ⁇ ), polymerize for 30 min, the reaction is finished, cut off the ethylene, the reaction solution is poured into acidified ethanol, solid polyethylene is precipitated, filtered, and the solid is vacuum dried to obtain 1.5 g, catalytic efficiency 0.6*10 6 g/m O lhatm.
  • Example 80 (compared to Example 64)
  • Example 84 Similar to Example 1, the first step was carried out by replacing 2,6-diisopropylaniline with 2,6-diphenylaniline, and the second step was carried out to obtain a ligand Llx. Anal. Calcd. C 89.23, H 4.99, N 5.78; Found C 82.50, H 6.24, N 5.30.
  • Example 84 Anal. Calcd. C 89.23, H 4.99, N 5.78; Found C 82.50, H 6.24, N 5.30.
  • Example 84 Anal. Calcd. C 89.23, H 4.99, N 5.78; Found C 82.50, H 6.24, N 5.30.
  • Example 39 was repeated, substituting the complex lx for la, to obtain an oily polyethylene of 7.6 g, an activity of 3.1 * 10' g/mol.h. atm, and a methyl group corresponding to 1000 methylene groups of 160.
  • Example 86
  • Example 87 According to the method of Example 1, the second step was carried out by substituting p-nitroaniline for aniline to obtain ligand Lly.
  • Example 87 Example 87
  • Example 89 Similar to the reaction conditions of Example 39, the complex ly was used instead of la, and propylene was used instead of ethylene to obtain 8.0 g of oily polypropylene, and the activity was 3.2*10 6 g/mol.h.atm, and 1000 methylene groups of polyethylene corresponded. The methyl number is 260 and the molecular weight is 1500.
  • Example 89
  • Compound 19 is a control compound. Hydrogenation to prepare oily hyperbranched terpene hydrocarbons (oily terpene hydrocarbon mixtures)
  • Example 47 In a 50 mL egg-shaped bottle, 2.5 g of the highly branched oily polyethylene obtained in Example 47 was added, and Pd/C 50 mg was added. 10 mL of n-hexane, after three times of gas exchange, react at room temperature overnight under normal pressure hydrogen atmosphere. The sampled nuclear magnetic hydrogen spectrum was found to have been completely hydrogenated, hydrogenation was stopped, filtered through a short silica gel column, and the filtrate was concentrated to obtain an oily hyperbranched alkane. The bromine number is 0.31 g/100 g. The corresponding number of methyl groups in 1000 methylene groups was 230, the viscosity index VI was 261, and the kinematic viscosity at 100 ° C was 7.9 cSt.
  • the polymer nuclear magnetic carbon spectrum is shown in Figure 1.
  • the product has a molecular weight of about 110,000 g/mol.
  • the product had a pour point of -15 ° C, a flash point of 194 ° C, and an evaporation loss of 3.8 (%WA ⁇ ).
  • Example 93 (no solvent)
  • Example 94 In a 50 mL egg-shaped bottle, 2.5 g of the highly branched oily polyethylene obtained in Example 47 was added, Pd/C 50 mg was added, and the gas was exchanged three times, and then reacted at room temperature overnight under an atmospheric hydrogen atmosphere to sample a nuclear magnetic resonance spectrum. It was found that the starting material had been completely hydrogenated, the hydrogenation was stopped, and the mixture was filtered through a short silica gel column, and the filtrate was concentrated to give an oily hyperbranched alkane having a bromine number of 0.33 g/100 to 1000 methylene groups corresponding to a methyl group of 260.
  • Example 94 Example 94
  • Example 92 was repeated, replacing Pd/C with Pd(OH) 2 . Results: The oily polyethylene bromine number was 0.39 g/100 g. Example 95
  • Example 92 was repeated, and the hydrogenated substrate was changed to the oily polyethylene obtained in Example 48.
  • Example 92 was repeated, and the hydrogenated substrate was changed to the oily polyethylene obtained in Example 41.
  • Example 39 when ethylene was changed to propylene, an oily polypropylene was obtained.
  • Example 92 was repeated to change the hydrogenated substrate to an oily polypropylene.
  • Example 98 The bromine value of the oily hyperbranched alkane was 0.10 g/100 g, the product pour point was -40 ° C, and the flash point was 190 °C.
  • Example 39 when ethylene was changed to butene, an oily polybutene was obtained. Hydrogenation under the same conditions as in the above Example 92 using a highly branched oily polybutene gave an oily hyperbranched alkane having a bromine value of 0.49 g / 100 g.
  • Example 99
  • the oily polybutene 3.2 g was obtained by the procedure of Example 39 using the complex li instead of la catalyzed 1-butene polymerization.
  • the oily polybutene was hydrogenated under the same conditions as in the above Example 92 to obtain an oily hyperbranched alkane having a bromine value.
  • This oily alkane has a pour point of -15 ° C, a flash point of 200 ° C and a viscosity index VI of 195.
  • Example 100
  • Example 101 The copolymerization of ethylene and 1-hexene (10%) was catalyzed by the complex la according to the method of Example 39 to obtain an oily polymerization. 5.8 g. This oily polymer was hydrogenated under the same conditions as in the above Example 92 to give an oily, highly branched alkane having a bromine value of 0.31 g / 100 g. The oily alkane had a pour point of -17 ° C, a flash point of 193 ° C and a viscosity index VI of 186.
  • Example 101 Example 101
  • Example 47 was repeated.
  • the olefin polymerization catalyst was contacted with ethylene, hydrogen gas was simultaneously introduced, and the hydrogenation was completed completely, and the filtrate was concentrated under reduced pressure to obtain a highly branched oily alkane having a bromine number of 0.48 g / 100 g, 1000
  • the methylene group has a methyl number of 320, a viscosity index of 189, a pour point of -26 ° C, and a flash point of 190 ° C.
  • Example 102
  • Example 47 was repeated, after the olefin polymerization catalyst was contacted with ethylene for 30 min, no treatment was carried out, Pd/C 50 mg was added, hydrogen gas was introduced, and the hydrogenation was completed completely, and the filtrate was concentrated under reduced pressure to obtain a highly branched oily alkane.
  • the number of methyl groups corresponding to 1000 methylene groups in the oily hyperbranched alkane is 260.
  • Example 47 after the olefin polymerization catalyst was contacted with ethylene for 30 minutes, the atmosphere was replaced with hydrogen without treatment, and the reaction was carried out under a hydrogen atmosphere until the hydrogenation was completed, and the filtrate was concentrated under reduced pressure to obtain a highly branched oily alkane. , bromine number is 0.34 g / 100 go Example 104
  • Example 92 was repeated, and the hydrogenated substrate was changed to the oily polyethylene obtained in Example 63.
  • Example 92 was repeated, and the hydrogenated substrate was changed to the oily polyethylene obtained in Example 49.
  • the oily polymer was hydrogenated under the same conditions as in the above Example 92 to obtain an oily hyperbranched alkane containing an alcoholic hydroxy group.
  • the bromine value was 0.30 g/100 g, and the oily alkane had a pour point of -30 ° C and a flash point of 193. °C, viscosity index VI is 180.
  • Example 111
  • the oily alkane polymer having a specific methyl group is not given in Examples 92 to 112, and it is determined that the number of methyl groups per 1000 methylene groups is from 160 to 350.
  • the product pour point was determined by reference to the pour point standard method of ASTM D97 petroleum based oil.
  • the color is measured by referring to the ASTM D 1500 standard method.
  • the density at 15.6 ° C was measured by the ASTM D 4052 standard method.
  • the kinematic viscosity at 100 ° C and 40 ° C measured according to the ASTM D 445 standard method.
  • the bromine is determined according to the standard method of ASTM D 92.
  • the flash point was determined according to the standard method of ASTM D 1 159.
  • the acidity was measured by the standard method of ASTM D 664.
  • the results are shown in Table 2.
  • the results show that the oily hyperbranched alkanes of the present invention are comparable to commercially available PAO or Group III base oils in pour point, flash point, chromaticity, and evaporation loss, but have a higher viscosity index than existing products and can be larger. Maintaining viscosity over the temperature range is more suitable as a base oil for lubricating oils.
  • Example 92 the polymerization was carried out by amplifying to obtain an oil as a base oil, and 0.2% by weight to 0.5% by weight of a methacrylate copolymer or a polyacrylate was added based on the mass thereof, and uniformly mixed to obtain a lubricating oil.
  • the pour point is -32 ° C to -40 ° C.
  • Example 115 According to Example 92, the oil was amplified by amplifying to obtain an oil as a base oil, and an acrylic high carbon alcohol ester and an acrylonitrile copolymer (500 mg/L oil) were added, and uniformly mixed to obtain a lubricating oil, and the pour point of the lubricating oil was lowered to - 20 ° C - 30 ° C
  • Example 116
  • Example 97 the polymerization was amplified to obtain an oil as a base oil, and based on the mass thereof, 0.02 wt% of 6 6-di-tert-butyl ⁇ -dimethylamino-p-cresol was added as an antioxidant additive, and 0.5 wt% of 2 wt was added.
  • Example 117 Example 117
  • Example 97 the polymerization was carried out by amplification to obtain an oil as a base oil, and based on the mass thereof, 1 wt% to 5 wt% of polyalkenyl succinimide or monoalkenyl succinimide or dialkenyl butyl group was added.
  • Diimide as a dispersant, 0.8wt% - 1.3wt% high base value synthetic calcium sulfonate or 2wt% _3wt% calcium alkylsalicylate as a cleaning agent, 0.1wt% - 0.5wt% methyl silicone polymerization
  • an anti-foaming agent a condensate of 0.4 wt% to 0.6 wt%/ ⁇ with an epoxide is used as an anti-emulsifier, and uniformly mixed to obtain a lubricating oil.
  • Example 90 the oil was amplified by amplifying to obtain an oil as a base oil, and based on the mass thereof, 0.1% by weight to 1.0% by weight of the alkylnaphthalene was uniformly mixed to obtain a lubricating oil.
  • Example 119
  • Example 97 the oil was amplified by amplifying to obtain an oil as a base oil, and 0.3 W t ° / acid ester was added as a friction modifier based on the mass thereof, and uniformly mixed to obtain a lubricating oil.
  • Example 120
  • Example 97 the polymerization was carried out by amplifying to obtain an oil as a base oil, and based on the mass thereof, 0. 2 wt o / / was added.
  • the zinc dialkyl dithiophosphate is used as an anti-oxidation anti-corrosion agent, and is uniformly mixed to obtain a lubricating oil.
  • Example 121
  • Example 97 the polymerization was amplified to obtain an oil as a base oil, and based on the mass thereof,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerization Catalysts (AREA)
  • Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

一类由烯烃制备高支化垸烃的催化体系
技术领域
本发明涉及催化领域和润滑油的基础油领域, 具体涉及一类 (X-二亚胺镍、钯催化剂及 其制备技术以及在这类催化剂作用下, 实现由乙烯、 丙烯、 丁烯等烯烃直接制备油状高支 化烷烃的方法和油状高支化烷烃的用途。 背景技术
工业上润滑油的基础油是多种支化烷烃的混合物, 通过石油裂解或者 α -烯烃齐聚 (ΡΑΟ)获得。其中, ΡΑΟ作为一类非常重要、 性能优异的润滑油基础油是通过 α -烯烃齐聚 获得, 主要原料是 α -辛烯, α -癸烯, α -十二碳烯等价格昂贵的高级 α -烯烃。
因此目前获得高品质基础油 ΡΑΟ的前提是必须先催化乙烯齐聚得到 α -烯烃, 特别是 α -癸烯。 选择性地生产 C6以上的 α -烯烃在技术上较为困难。 直接由乙烯、 丙烯、 丁烯等 廉价烯烃制备高性能基础油具有经济、 高效等优势, 然而由于缺乏高效的催化体系, 到目 前为止这一领域没有明显的进展。
1995年以前镍配合物均被认为只能作为催化烯烃齐聚的催化剂, 例如著名的 SHOP催 化剂可以高活性地催化乙烯齐聚得到符合 Flory分布的一系列 α -烯烃。 1995年, Braokhart 等人 (J. Am. Chem. Soc. 1995, 117, 6414.)利用 α-二亚胺镍配合物首次证明通过改变配体结 构控制活性中心的性质可以实现镍配合物催化乙烯聚合, 得到了支化的高分子量聚乙烯, 聚合物的熔点 (Tm)在 39-132 °C之间, 低于普通聚乙烯树脂。 Du Pont公司就此技术申请了 多个专利 (WO 96 /23010, WO 98 /03521 , WO 98 /40374, WO 99 /05189, WO 99 /62968, WO 00 /06620, US 6, 103,658 , US 6,660,677)对该类聚合产品予以保护。 由相应的阳离子 钯体系可以得到油状的聚乙烯, 聚烯烃支化度高, 但是其催化活性很低, 且已知该催化剂 具有很严重的 β-Η消除现象, 在该催化剂作用下, β-Η消除生成碳碳双键和 Pd-H物种成为 该类催化循环的最主要的途径, 因此该类聚合物不饱和度高 (溴值高)。
聚乙烯的形态、 性能与其支化度密切相关, 而催化剂结构是控制聚乙烯结构的核心。 Braokhart等人由镍系催化剂得到的聚乙烯已经具备一定的支化度,但仍不能满足如润滑油 基础油等用途的要求, 表现为产品为固体状态。
Sen等人 (J. Am. Chem. Soc. 1998, 120, 1932.)发现 Ni(II)、 Pd(II)/氯化铝可以催化乙烯 聚合得到高支化油状聚乙烯, 但其聚合物粘度指数较低, 不适合用于润滑油的基础油。 他们还发现 TaCl5, TiCl4/烷基氯化铝可以催化乙烯聚合得到油状聚乙烯, 其中聚合物基 本不含有甲基支链 (J Am. Chem. Soc. 2000, 122, 1867.), 他们就此技术申请了多个专利 (WO 98/33823 , WO 99/47627)对该产品和聚合方式进行了保护。
工业上合成润滑油的要求是能够在一个较大的温度范围内保持粘度,也就是有高的粘 度指数, 同时有较低的倾点, 要与第三类油(I I I类基础油)相当或者倾点更低。 聚合物的 支化度 BI可以较好的与润滑油这些性质相关联。 BI是聚合物中甲基氢积分与所有烷基氢积 分的比值, 甲基氢特征是 HNMR中 0. 5-1. 05的部分, 而所有烷基氢特征是 HNMR中 0. 5_2. 1的 部分。 一般, 随着 BI的增加, 润滑油的倾点会降低, 也就是说润滑油从液体转变为固体的 温度会降低, 倾点降低有利于拓展润滑油的应用领域。但是, BI的升高一般会导致润滑油 粘度指数的降低, 这对润滑油的使用又是不利的。所以, 合成润滑油的目标是保证润滑油 能够在降低的温度下保持液态, 同时具有高粘度指数, 在高温如 100°C时仍能保持较高的 粘度。
综上所述,目前尚缺乏令人满意的由乙烯等烯烃直接制备高支化度的油状聚合物的方 法和催化体系。因此本领域迫切需要开发高效的由乙烯等廉价烯烃直接制备高支化度的油 状聚合物的方法和相应的催化体系。 发明内容
本发明的目的是提供一类新型催化体系以及其中关键催化剂的制法。通过催化剂结构 的调控, 该催化体系可以实现由乙烯、丙烯或丁烯等廉价烯烃直接制备高支化度的油状聚 合物。
本发明的另一目的是提供一类新型催化体系在合成高支化烷烃中的用途。
本发明的另一目的是提供一类可用于高级润滑油基础油的高支化烷烃。
在本发明的第一方面, 一种下式 I所示的化合物,
Figure imgf000003_0001
式中,
Z和 Y分别为氢、 d-C4烷基或 d-C4卤代烷基、 未取代或取代的苯基, 或者 Z和 Y 与相邻的碳原子一起构成未取代或取代的选自下组的基团: 苊基、 菲基和 C5-C8环烷基, 其中,所述的取代的苯基、苊基、菲基或环烷基具有 1-5个选自下组的取代基: 卤素、 d-C4 烷基和 d-C4卤代烷基;
R R2、 R3和 R4分别为 H、 卤素、 d-C8烷基、 d-C8卤代烷基、 未取代或取代的苯 基、 -0-Ra、 -CH2-0-Ra、 -SRb或 -CH2-S-Rb, 其中 ^和 Rb分别为 d-C8烷基、 未取代或取 代的苯基, 并且 R R2、 R3和 R4满足条件: R^R3和 /或 R2≠R4; 所述的取代的苯基具有 1-5个选自下组的取代基: 卤素、 d-C4烷基和 d-C4卤代烷基;
R5、 R6和 R7分别为卤素、硝基、氢、 d-C8烷基、 Ci-C8卤代烷基、 -0-Ra、 -CH2-0-Ra、 或 -N(FQ2, 其中 为^ 8烷基、 未取代或取代的苯基, 而 为^ 4烷基或卤代烷基; 所述的取代的苯基具有 1-5个选自下组的取代基: 卤素、 d-C4烷基和 d-C4卤代烷基。
在另一优选例中, R R2、 R3和 R4中 1-3个取代基为 d-C8烷基、 d-C8卤代烷基或 未取代或取代的苯基,并且 1-3个取代基为 H或卤素。
在另一优选例中, 所述的取代的苯基具有 1-3个取代基。
在另一优选例中, Z和 Y与相邻的碳原子一起构成未取代或取代的苊基。
在另一优选例中, R1和 R2选自下组: H、 甲基、 卤素或 -CH2-0-Ra
在另一优选例中, R1和 R2选自下组: 苯基、 苄基、 卤素或 -CH2-0-Ra。 在另一优选例中, R1和 R2选自下组: -SRb或 -CH2-S-R, 在本发明的第二方面, 提供了一种配合物, 所述的配合物是本发明第一方面所述的 化合物与选自下组的二价金属盐形成的配合物: 镍、 钯或其组合。
在另一优选例中, 所述配
Figure imgf000004_0001
II
式中,
Z、 Y、 R R2、 R3、 R4、 R5、 R6和 R7的定义如上所述;
X为卤素、 d-C4烷基、 C2-C6烯基、 烯丙基或苄基。
在另一优选例中, X为氯、 溴、 碘、 甲基、 烯丙基或苄基。
在另一优选例中, X为氯、 溴或碘。 在本发明的第三方面, 提供了一种制备本发明第二方面所述的配合物的方法, 包括 步骤:
在惰性溶剂中, 将第一方面所述的化合物与二价金属盐进行反应, 从而形成第二方 面所述的配合物, 其中所述的金属前体为二价镍化合物、 二价钯化合物。
在另一优选例中, 所述的金属前体包括: NiCl2、 NiBr2、 Nil2、 (DME)NiBr2、 PdCl2、 PdBr2、 Pd(OTf)2、 Pd(OAc)2或其组合。
在另一优选例中, 所述反应在几乎无水条件 (例如, 水含量≤0.1%)下进行。
在另一优选例中, 所述反应在惰性气氛 (如氮气)下进行。 在本发明的第四方面, 提供了一种制备式 I化合物的方法, 包括步骤:
(a) 由式 A的二酮 B的胺化合物反应, 形成式 C化合物;
Figure imgf000004_0002
(b) 将式
Figure imgf000004_0003
式中, Z、 Y、 R R: R3、 R4、 R5、 R6和 R7的定义如上所述。 在另一优选例中, 所述步骤 (a)或步骤 (b)在惰性溶剂中分别加热 1-96小时 (较佳地, 2-72小时)。
在另一优选例中,所述步骤 或步骤 (b)中加入 0.001-100%相应的促进縮合反应的催 化剂, 其中优选醋酸、 对甲苯磺酸、 TiCl4、 原硅酸酯。
在另一优选例中, 所述步骤 (a)中化合物 A与 B的比例为 (0.7-1.2): 1。
在另一优选例中, 所述步骤 (b)中化合物 C与 D的比例为 (0.7-1.2): 1。
在另一优选例中, 所述步骤 (a)或步骤 (b)中的惰性溶剂包括: 醇、 芳香烃、 脂肪烃、 卤代烃、 醚、 酯类溶剂。
在另一优选例中, 所述步骤 (a)或步骤 (b)中的惰性溶剂是甲醇、 乙醇、 甲苯、 二甲苯 或三甲苯。 在本发明的第五方面, 提供了一种油状烯烃聚合物的制备方法, 包括步骤:
(a) 在第二方面所述的配合物作为烯烃聚合催化剂存在下, 对烯烃进行催化聚合, 形 成油状聚烯烃。
在另一优选例中, 所述的烯烃包括未取代的 C2-C1Q烯烃、 取代的 。烯烃或其组 合。
在另一优选例中, 所述的烯烃是乙烯、 丙烯、 丁烯或其任意组合。
在另一优选例中,所述的烯烃是乙烯、丙烯和 /或丁烯与其它 c5-c12烯烃的任意组合。 在另一优选例中, 所述的烯烃是乙烯。
在另一优选例中, 所述油状聚乙烯是高支化的; 更佳地, 所述的高支化指聚乙烯中
1000个亚甲基 (CH2)对应的甲基数为 100-500个。
在另一优选例中, 步骤 (a)中还存在助催化剂。
更佳地, 所述的助催化剂选自下组或其组合: 烷基铝试剂 (如烷基铝氧烷, 二乙基氯 化铝和乙基二氯化铝)。
在另一优选例中, 步骤 (a)的反应温度为 0-100°C。
在另一优选例中, 步骤 (a)的反应条件为: 压力 (表压 )0.1-3 MPa, 助催化剂为烷基铝 氧烷或二乙基氯化铝, 其中助催化剂铝与催化剂中镍的摩尔比为 10-5000。
在另一优选例中, 步骤 (a)在选自下组的聚合溶剂下进行: 甲苯、 正己烷、 二氯甲烷、 1、 2-二氯乙烷、 氯苯、 四氢呋喃或其组合。
在另一优选例中, 步骤 (a)可以在油状聚乙烯或油状烷烃混合物中进行。
在另一优选例中, 所述方法还包括步骤:
(b) 对步骤 (a)获得的油状聚烯烃进行加氢反应, 从而获得加氢的油状烷烃混合物。 在另一优选例中, 所述的油状烷烃混合物具有以下特性:
(i)聚合物链结构中每 1000个亚甲基对应 100-500个甲基;
(ii) 溴值小于 0.5 g/ 100 g;
(iii) 分子量 300-500,000 g/mol。
在另一优选例中, 在步骤 (a)和步骤 (b)之间还包括步骤: 分离油状聚烯烃。
在另一优选例中, 在步骤 (a)之中同时进行加氢反应。 在另一优选例中, 步骤 (b)可以在惰性溶剂中进行或直接以油状聚烯烃为溶剂进行加 氢反应。 在本发明的第六方面, 提供了一种油状烯烃聚合物, 所述的油状烯烃聚合物具有以 下特性: 1000个亚甲基对应的甲基数为 100-500个以及分子量 300-500,000 g/mol。
在另一优选例中, 所述的油状聚合物是用本发明第五方面所述的方法制备。
在另一优选例中, 所述的油状烯烃聚合物是油状聚乙烯。 在本发明的第七方面, 提供了一种油状烷烃混合物, 其特征在于, 所述的油状烷烃 混合物具有以下特性: 1000个亚甲基对应的甲基数为 100-500个且溴值小于 0.5 g/100 g。
在另一优选例中,所述的油状烷烃混合物是第六方面所述的油状聚烯烃的加氢产物。 在另一优选例中, 所述的油状烷烃混合物是油状聚乙烯的加氢产物。
在另一优选例中, 所述的油状烷烃混合物是用以下方法制备的:
(b) 对步骤 (a)获得的油状聚烯烃进行加氢反应, 从而获得加氢的油状烷烃混合物。 在另一优选例中, 所述的油状烷烃混合物具有以下特性:
(i)聚合物链结构中每 1000个亚甲基对应 100-500个甲基数;
(ii) 溴值小于 0.5 g/ 100 g; 和
(iii) 分子量 300-500000 g/mol。
在另一优选例中, 在步骤 (a)和步骤 (b)之间还包括步骤: 分离油状聚乙烯。
在另一优选例中, 在步骤 (a)之中还同时进行加氢反应。
在另一优选例中, 步骤 (b)可以在惰性溶剂中进行或直接以油状聚烯烃为溶剂进行加 氢反应。 在本发明的第八方面, 提供了本发明第七方面所述的油状烷烃混合物的用途, 它被 用作润滑油的基础油、 润滑油的添加剂、 增塑剂或树脂的加工助剂。 在本发明的第九方面, 提供了一种润滑油, 所述的润滑油含有第七方面所述的油状 烷烃混合物。
在另一优选例中, 所述润滑油含有 0. l-100wt% (较佳地 l-90wt%)所述油状烷烃混合 物。 在本发明的第十方面, 提供了本发明第二方面所述的配合物的用途, 它被用作烯烃 聚合的催化剂。
在另一优选例中, 所述的烯烃聚合是在均相条件下进行。
在另一优选例中, 所述的催化剂被负载在无机载体或有机载体上。 在本发明的第十一方面, 提供一种油状烷烃混合物, 所述油状烷烃混合物具有以下特 征: (a) 粘度指数为 100至 300; (b) 倾点为 -50°C至 -10°C; (c) 分子量为 300至 500, 000 g/ mol; 和 (d) 每 1000个亚甲基对应的甲基数为 100至 500个。 在另一优选例中, 所述油状烷烃混合物还具有以下特征:
(e)支化度 BI≥0.20; 和 /或
(f) 溴值 <0.5g/100g。
在另一优选例中, 所述油状烷烃混合物的粘度指数为 150-300, 更佳地 180-300, 最佳 地 200-290。
在另一优选例中, 所述支化度为 0.20〜0.50, 较佳地 0.22〜0.45, 更佳地 0.24〜0.40。 在另一优选例中, 所述油状烷烃混合物的分子量为 500至 500,000g/mol, 更佳地 800 至 200,000g/mol, 1000至 100,000g/mol。 本发明的第十二方面, 提供第十一方面所述的油状烷烃混合物的制备方法, 包括由油 状烯烃聚合物进行加氢反应得到所述油状烷烃混合物的步骤, 所述油状烯烃聚合物具有以 下特征: 1000个亚甲基对应的甲基数为 100-500个以及分子量 300-500,000 g/moL
在另一优选例中,所述油状烯烃聚合物 (即油状聚烯烃),每 1000个亚甲基中含有约 100 至约 500个烷基支链, 并且对于每 100个甲基支链含有 20-100个乙基支链、 2-50个丙基支 链、 20-100个丁基支链、 2-50个戊基支链和 20-200个己基或更长的支链。
更佳地, 每 1000个亚甲基中含有约 150至约 300个烷基支链, 并且对于每 100个甲基 支链含有约 50-100个乙基支链、 约 5-20个丙基支链、 约 30-80个丁基支链、 约 5-20个戊 基支链和约 50-100个己基或更长的支链。 本发明的第十三方面, 提供第十一方面所述的油状烷烃混合物的用途, 所述用途选自 下组:
(a) 用于制备润滑油;
(b) 用作润滑油的添加剂或基础油;
(c) 用作树脂的加工助剂; 或
(d) 用作增塑剂。 本发明的第十四方面, 提供一种润滑油, 包含基础油和添加剂, 所述基础油为第十一 方面所述的油状烷烃混合物。
在另一优选例中, 所述添加剂选自下组: 粘度指数改进剂、 倾点下降剂、 抗氧化剂、 清净分散剂、 摩擦缓和剂、 油性剂、 极压剂、 抗泡沫剂、 金属钝化剂、 乳化剂、 防腐蚀剂、 防锈剂、 破乳化剂、 抗氧抗腐剂、 或其组合。 本发明的第十五方面, 提供一种润滑油的制备方法, 包括将第十一方面所述的油 状烷烃混合物与添加剂混合均匀得到所述润滑油的步骤。
在另一优选例中, 所述添加剂选自下组: 粘度指数改进剂、 倾点下降剂、 抗氧化 剂、 清净分散剂、 摩擦缓和剂、 油性剂、 极压剂、 抗泡沫剂、 金属钝化剂、 乳化剂、 防腐蚀剂、 防锈剂、 破乳化剂、 抗氧抗腐剂、 或其组合。 应理解, 在本发明范围内, 本发明的上述各技术特征和在下文 (如实施例)中具体描述 的各技术特征之间都可以互相组合, 从而构成新的或优选的技术方案。 限于篇幅, 在此不 再 累述。 附图说明
图 1显示了本发明一个实例中制备的聚合物核磁碳谱。
图 2显示了本发明一个实例中的配合物结构。 具体实施方式
本发明人经过广泛而深入的研究,通过改变催化剂的结构,制备了新颖的配体化合物、 配合物和催化体系, 从而首次高活性地催化乙烯直接聚合得到高支化度的油状聚合物。通 过催化剂结构的调整,该催化体系还可以高活性地催化丙烯、丁烯等烯烃直接聚合得到高 支化度的油状聚合物。本发明的油状聚合物可用于制备性能优异的高支化烷烃, 大幅降低 高级润滑油的成本。 在此基础上完成了本发明。 术语
如本文所用, " I类基础油"指生产过程基本以物理过程为主, 不改变烃类结构所生 产的基础油。 I类基础油的质量受原料影响大, 在性能上受到限制。
如本文所用, " II类基础油 "指通过组合工艺 (溶剂工艺和加氢工艺相结合)制得的基 础油。 虽然其热稳定性等性能有所改善, 但粘度指数和倾点等性能尚不理想。
如本文所用, " II I类基础油"指用全加氢工艺制得的基础油。 虽然 II I类基础油具有 低挥发性等优点, 但其粘度指数和倾点等某些性能仍不能满足某些特定应用场合。
如本文所用, "烯烃"指含有 "c= c" 的可聚合的化合物。 代表性烯烃包括取代或 未取代的 C2-C10烯烃, 较佳地 C2-C6烯烃, 如乙烯、 丙烯、 丁烯等。 取代基的种类和数量 没有特别限制,通常一个单体可含有 1-5个取代基,代表性的取代基包括 (但并不限于)羟基、 酯基、 硅烷基、 硅醚基、 胺基 (取代胺基) 、 氰基、 卤素、 酮羰基、 杂环取代基、 羧基、 三氟甲基。 代表性的取代烯烃是仍可进行聚合反应的各种官能团化的极性单体。 配体化合物
本发明提供了式顶己体化合物。
Figure imgf000008_0001
式中, 各基团的定义如上所述。
可存在于 Z, Y, R1, R2, R3, R4, R5, R6和 R7中取代烃基的官能团包括羟基, 醚, 酯, 二烷基氨基, 羧基, 氧代 (醛酮), 硝基, 酰胺, 硫醚。 优选基团为羟基, 醚, 二烷基 胺基。 较佳地, Z和 Y分别独立的为甲基、 苯基、 或被烷基、 卤素、 烷氧基取代的苯基; 所 述的卤素包括氟、 氯、 溴或碘; 所述的烷氧基优选甲氧基、 乙氧基、 异丙氧基; 所述的被 烷基取代的苯基优选被 6烷基取代的苯基, 更优选 d-C4烷基, 最优选甲基、 乙基、 异 丙基和丁基, 取代基团可在苯环的任何可被取代的位
较佳地, Z和 Y与相邻的碳原子一起构成苊基基团
Figure imgf000009_0001
较佳地, Z和 Y与相邻的碳原子一起构成环己基。
较佳地, R 1 2为^ 8烷基或者^ 8取代烷基, 且 R3、 R4为氢, 卤素或 CF3 ; 条件 是 I 1、 R2与 R3、 R4不完全相同;
较佳地, R 1128烃基或者 8取代烷基, 且 R3为氢、 卤素或者 CF3, 1148 取代烷基。
较佳地, R R2为 d-C4烷基或者^ 4取代烷基, 且 R3为卤素或者 CF3, R4为卤素。 在另一优选例中, R1和 112为11、 甲基、 卤素、 -CH2-0-Ra或 -0-Ra。
在另一优选例中, R1和 R2为苯基、 苄基、 卤素、 -CH2-0-Ra或 -0-Ra。
在另一优选例中, R1和 R2选自下组: -SRb或 -CH2-S-Rb
较佳地, R5, R6, R7为氢、 d-C8烷基、 d-C8取代烷基、 卤素、 硝基、 甲氧基、 二甲 氨基、 三氟甲基;
所述的取代的烷基优选被卤素、烷氧基、苯氧基取代的烷基;所述的卤素包括氟、氯、 溴或碘; 所述的烷氧基优选甲氧基、 乙氧基、 异丙氧基, 更优选甲氧基。
Figure imgf000009_0002
式中, 各基团的定义如上所述。 配合物
在本发明中,式 I化合物可以与二价镍或二价钯金属盐作用形成相应的镍或钯配合物。 在本发明中, 优选式 Π的配合物:
Figure imgf000009_0003
(Π) 式中, 各基团的定义如上所述。
X可以为卤素、 d-C4烷基、 C2-C6烯基、 烯丙基、 苄基; 所述的 C C4烷基优选甲基; 所述的卤素优选溴、 氯或碘。
在另一优选例中, X为氯、 溴、 碘、 甲基、 烯丙基或苄基。
在另一优选例中, X为氯、 溴或碘。
在本发明中, 可在惰性溶剂中, 将本发明的配体化合物 I与相应的二价金属前体进行 反应, 从而形成配合物。
在本发明中, 所述的二价镍或二价钯金属盐作为反应的金属前体包括: NiCl2、 NiBr2、 Nil2 、 (DME)NiBr2 (DME)NiCl2、 (DME)NiI2 PdCl2、 PdBr2、 Pd(OTf)2和 Pd(OAc)2
本发明的金属配合物可以在助催化剂作用下催化乙烯聚合得到油状的聚合物。 配体化合物和配合物的制备
本发明还提供了式顶 S体化合物的合成, 包括步骤:
(a) 由相应的二酮 A与胺化合物 B反应获得^
(b) 由 C与胺化合物 D反应获得配体 I。
所述的化合物 A、 B、 C、 D具有如下所示的结构式:
Figure imgf000010_0001
反应中需要加入 0.001-100%相应的促进縮合反应的催化剂, 例如醋酸、 对甲苯磺酸、 TiCl4、 原硅酸酯等。 具体为首先由二酮 A与胺 B在惰性溶剂中混合, 在 0.001-100%醋酸 等的活化下作用生成单亚胺 C, C继续与胺 D作用得到式 (I)所示的产物。所述的惰性溶剂 可以是縮合反应常用的所有溶剂, 包括醇、 芳香烃、 脂肪烃、 卤代烃、 醚、 酯类溶剂, 优 选醇类溶剂, 例如甲醇、 乙醇; 芳香烃类溶剂也可以给出优秀的结果, 例如甲苯、二甲苯、 三甲苯等。为得到好的效果, 两种胺 B与 D上应该分别选择不同的取代基团, 特别是 R R2与 R3、 R4, 但是同一个胺化合物中 2位和 6位的取代基团可以相同或不同。
所述步骤 (a)或步骤 (b)优选在惰性溶剂中分别加热 1-96小时。
所述步骤 (a)或步骤 (b)中优选需要加入 0.001-100%相应的促进縮合反应的催化剂, 其 中优选醋酸、 对甲苯磺酸、 TiCl4、 原硅酸酯。
所述步骤 (a)中优选化合物 A与 B的比例为 (0.7-1.2): 1。
所述步骤 (b)中优选化合物 C与 D的比例为 (0.7-1.2): 1。
所述步骤 (a)或步骤 (b)中优选的惰性溶剂是醇、 芳香烃、 脂肪烃、 卤代烃、 醚、 酯类 溶剂。
所述步骤 (a)或步骤 (b)中优选的惰性溶剂是甲醇、 乙醇、 甲苯、 二甲苯或三甲苯。 步骤 (a) 生成的 C分离提纯后或者不分离提纯直接进行步骤 (b)。
本发明还提供配合物的制备方法。 以镍配合物为例, 可以在无水无氧的条件下, 由化 合物 I与金属前体, 包括 NiCl2、 NiBr2 Nil2或 (DME)NiBr2、(DME)NiCl2、(DME)NiI2在惰性 溶剂中作用得到。所述的惰性溶剂可以是常规用到的、 不影响该反应进行的任何溶剂, 包 括醇、 芳香烃、 脂肪烃、 卤代烃、 醚、 酯类、 腈类溶剂, 优选卤代烃类溶剂, 其中在卤代 烃和脂类溶剂中可以取得更优的结果, 较佳的例子有二氯甲烷、 1,2-二氯乙烷、 乙酸乙酯、 四氢呋喃。
其中, Ri-R7, X的定义如前所述。 DME是指乙二醇二甲醚; 当 X为烃基时, 例如为甲 基或苄基时, 常常可以由相应的氯化物或溴化物 Π与甲基格氏试剂或苄基格氏试剂在常规 的类似反应的反应条件下作用得到, 且无论配合物 Π中 X是卤素或者烃基或者其他任何可 以与镍金属配位的基团, 例如含氮化合物、含氧化合物, 只要该配合物在烷基铝的作用下 可以形成 Ni-C键或者 Ni-H键, 即可以实现这个催化作用,这些化合物在催化乙烯聚合的过 程中均具有相同的活性中心, 并因此而表现出相同或相似的性质。 催化体系和应用
本发明提供了一种可催化乙烯等烯烃聚合得到高支化度烷烃混合物的催化体系,所述 的催化体系包含 1)镍、 钯金属前体与式 I所示的配体形成的配合物; 2)氢化体系。
Figure imgf000011_0001
(I)
式中, 各基团的定义如上所述。
由上述的催化剂以及加氢催化剂一起组成的催化体系可以实现由乙烯、丙烯、丁烯等 廉价烯烃直接制备高支化烷烃。所述的高支化烷烃是指聚合物链中每 1000个亚甲基对应的 甲基数为 100-500、 溴值低于 0.5g/100g的脂肪烃。 通常, 该方法包含以下两个步骤,
1)上述的金属配合物和助催化剂共同作用, 由烯烃(如乙烯)直接制备高支化的油状 聚烯烃 (如聚乙烯) 。
2)对步骤 (1)获得的油状聚烯烃(如聚乙烯)进行加氢反应, 从而获得加氢的油状烷烃 混合物。
所述的金属配合物为化合物 I与二价镍或钯形成的配合物,优选结构式 Π所示的镍配合 物。
所述的助催化剂为可促进该催化反应的试剂, 可以是烷基铝化合物或者有机硼试剂。 所述的烷基铝化合物包括任何一种含有碳-铝键的化合物, 包含甲基铝氧烷 (MAO)、 修饰的甲基铝氧烷 (MMAO)、 三乙基铝、 三异丁基铝、 二乙基氯化铝、 乙基二氯化铝等。 其中助催化剂铝与催化剂中镍或钯的摩尔比为 10-5000; 甲基铝氧烷或烷基铝试剂作为助 催化剂均可以实现帮助镍或钯配合物催化烯烃聚合得到油状聚烯烃,而且甲基铝氧烷或烷 基铝试剂的结构不会影响这种助催化作用,只是所得到的聚合物的支化度或分子量会因助 催化剂的结构而有所差异,其中在甲基铝氧烷和二乙基氯化铝、 乙基二氯化铝中可以取得 最优的结果。
在另一种情况下, A1C13单独或与烷基铝化合物一起起到助催化作用, 也可以起到理 想的效果。 本发明的高支化聚烯烃 (如聚乙烯), 可通过氢化, 形成高支化烷烃。
所述的高支化聚烯烃 (如聚乙烯)的结构由 13C NMR和高温 GPC测得的分子量与高温激 光光散射测得的实际分子量对比确定。例如实施例 41中得到的聚合物通过 GPC测得的分子 量为 4570 克 /摩尔, 而通过激光光散射测得的分子量为 4.64万克 /摩尔, 从而证明高支化聚 乙烯的结构是类球形的。
所述的高支化烷烃分子量在 500至 50万克 /摩尔之间, 为澄清透明的油状物。 所述的高 支化烷烃指该烷烃具有类球形或类似树枝状的结构, 即存在 R8R9CH(CH2)nCHR1QRu或者 R8R9R1QC(CH2)nCHR1QRuR12的结构, 其中 R8-R12具有 R13R14CH(CH2)mCHR15R16或者 R13R14R15C(CH2)nCHR15R16R17的结构 , R13-R17具有 R18R19CH(CH2)XCHR20R21或者 R18R19R2QC(CH2)XCHR2QR21R22的结构, R18、 R19、 R2Q、 R21、 R22为氢、 直链或含支链的烷 烃, n, m和 X分别为 1-500的整数, 优选 1-300的整数, 更优选 1-100的整数。
以乙烯为例,视具体要求, 步骤 1 中乙烯与镍或钯配合物和烷基铝化合物在惰性溶剂 中接触的时间可以在 0.5小时至 72小时范围内变化, 反应温度的变化范围为 0-100度, 压力 (指表压)变化范围为 0.1-3 Mpa(l-30个大气压)。
步骤 2中,将步骤 1中得到的高支化油状聚乙烯与还原试剂作用或者在一种或多种还原 催化剂的共同作用下将油状聚乙烯与氢气接触实现,得到高支化油状烷烃混合物的溴值低 于 0.5g/100g。还原催化剂可以是任何可以促进该氢化过程的催化剂,优选自 Pd/C,Pd(OH)2, Pt02, 铑、 镍、 釕等氢化催化剂, 还原试剂包括常规的可以将双键还原的任何试剂, 主要 有硼烷化合物、 三乙基硅烷等。
在另一优选例中, 在步骤 (1)和步骤 (2)之间还包括步骤: 分离油状聚乙烯。
在另一优选例中, 在步骤 (1)之中还同时进行加氢反应。
在另一优选例中, 步骤 (2)可以在惰性溶剂中进行或直接以油状聚乙烯为溶剂进行加 氢反应; 步骤 (1)可以在惰性溶剂中进行或以油状聚乙烯为溶剂进行聚合。
具体的, 步骤 (2)还可以通过如下方式完成: a) 在进行步骤 (1)时, 同时通入氢气, 从 而直接得到高支化油状烷烃; b) 在进行步骤 (1)后, 不进行处理, 在聚合体系中通入氢气, 从而得到高支化油状烷烃; c) 在进行步骤 (1)后, 不进行处理, 直接在聚合体系中加入一 种或多种还原催化剂进行氢化, 从而得到高支化油状烷烃; d)在进行步骤 (1)后, 将油状聚 乙烯分离并进行加氢反应。
上述反应可在惰性溶剂中完成, 优选醇、 烷烃、 芳香烃和卤代烃, 其中步骤 (1)中优 选 C5-C12的饱和烃, 例如己烷、 庚烷; 卤代烃, 例如二氯甲烷、 1,2-二氯乙烷、 1,1,2,2-四 氯乙烷; 芳香烃, 例如甲苯、 二甲苯。 步骤 (2)中优选 C5-C12的饱和烃, 例如己烷、 庚浣; 卤代烃, 例如二氯甲烷、 1,2-二氯乙烷、 1,1,2,2-四氯乙烷; 芳香烃, 例如甲苯、 二甲苯。
除了乙烯之外,通过调整催化剂中取代基团的结构, 该催化体系还可以高效地催化丙 烯、 丁烯聚合得到油状聚合物, 或与乙烯、 丙烯或丁烯的任意组合接触实现上述催化反应 得到油状聚合物。 当乙烯、 丙烯或丁烯体系中含有部分其它 C5-C12的烯烃时, 例如己烯、 辛烯时不影响上述的催化聚合结果, 所得到的聚合物依然为油状物, 具有高度的支化, 为 树枝状或球形、 类球形的聚合物, 该聚合物同样可以通过氢化步骤 (2) 获得高支化的烷 烃。 在另一优选例中, 在步骤 (1)和步骤 (2)之间还包括步骤: 分离油状聚乙烯。 上述的由 乙烯直接获得高支化烷烃的操作对于这些烯烃同样适用, 即在另一优选例中, 在步骤 (1) 之中还同时进行加氢反应; 在另一优选例中, 步骤 (2)可以在惰性溶剂中进行或直接以油 状聚烯烃为溶剂进行加氢反应; 步骤 (1)可以在惰性溶剂中进行或以油状聚烯烃为溶剂进 行聚合。
除乙烯外,其它用于本发明中使用的烯烃可以是双键在端基或为内烯烃,均不影响催 化效果。所说的内烯烃是指双键在除端基之外的任意位置,在应用中同一种烯烃的内烯烃 可以是多种异构体的混合物或单一一种内烯烃,例如,对于丁烯而言,可以有 1-C4, 2-C4, 其中 2-C4又有顺式和反式两种异构体, 使用中可以不局限于只用 1-C4或顺式 2-C4或反式 2-C4, 可以同时使用一种或几种异构体的混合物而不会对上述的聚合产生影响。 油状烯烃聚合物和油状院烃混合物
本发明公开的催化剂可以应用于目前工业上已经使用的各种乙烯、丙烯、丁烯聚合的 工艺设备和常用的还原工艺设备。可以使用均相条件也可以负载于有机载体或无机载体后 在非均相条件下使用。
本发明还提供了一种油状乙烯聚合物及其制备方法。 本发明的油状聚乙烯是高支化 的; 并且所述的高支化指聚乙烯中 1000个亚甲基 (CH2)对应的甲基数为 100-500个。
在本发明中, 代表性的制备方法包括步骤:
(a)将本发明配合物作为烯烃聚合催化剂存在下在 0-100°C、 压力 (表压) 变化范围为
0.1-3 Mpa(l-30个大气压), 对乙烯进行催化聚合, 从而形成油状聚乙烯。
较优的, 该步骤中还存在助催化剂; 更佳地, 所述的助催化剂选自下组: 烷基铝试剂
(如烷基铝氧烷, 二乙基氯化铝和乙基二氯化铝); 其中助催化剂铝与催化剂中镍的摩尔比 为 10-5000。
在另一优选例中, 步骤 (a)在选自下组的聚合溶剂下进行: 甲苯、 正己烷、 二氯甲烷、
1、 2-二氯乙烷、 氯苯、 四氢呋喃或其组合。
在一个优选例中, 所述的助催化剂可以是烷基铝氧烷 MAO(或修饰的烷基铝氧烷
MMAO)、 烷基铝或有机硼试剂。 其中助催化剂与催化剂中镍或钯的摩尔比为 1-5000。
由于这类镍、 钯配合物在反应过程具有以下特点: 1)可以进行快速的 β-Η消除生成含 双键的聚烯烃和含 Ni(Pd)-H键的活性物种; 2)含 Ni(Pd)-H键的活性物种与 a-烯烃的重新再 配位、 ***得到 Ni(Pd)-C键; 3)得到的 Ni(Pd)-C键再次与体系中的乙烯开始聚合反应; 4) 最终通过 β-Η消除终止催化循环反应。 所以生成的聚合物含有大量的支链, 支链的总数由 13C NMR通过判断 C¾和 C¾的信号 (积分面积)可以做出定量的分析。而且由于终止催化循 环的方式是金属的 β-Η消除, 所以不可避免地聚合物链中含有双键, 产生的油状聚烯烃混 合物的不饱和度高。例如, 在一优选例中, 利用镍催化剂催化乙烯聚合得到的油状聚合物 的溴值为 38 g/100 g。
在本发明中, 代表性的制备方法中步骤 (a)还可以是将本发明配合物作为烯烃聚合催 化剂存在下在 0-100°C、 压力 (表压) 变化范围为 0.1-3 Mpa(l-30个大气压), 对丙烯、 丁烯 或乙烯、丙烯、丁烯以及其它 C5-C12烯烃的任意组合进行催化聚合, 从而形成油状聚烯烃。
本发明还提供一类高支化油状烷烃混合物,所述混合物是本发明油状聚烯烃的加氢产 物, 其中油状聚烯烃包括油状聚乙烯、 油状聚丙烯、油状聚丁烯或上述的混合气体在催化 剂作用下得到的油状共聚物。 本发明的油状烷烃混合物的分子量为 500-500,000克 /摩尔, 每 1000个亚甲基 (CH2)对应的甲基数(CH3 ) 为 100-500个。 所述的高支化烷烃具有类球形 或类似树枝状的结构,
Figure imgf000014_0001
结构,其中 R8-R12具有 R13R14CH(CH2)mCHR15R16或者 R13R14R15C(CH2)nCHR15R16R17的结构, R13-R17具有 R18R19CH(CH2)XCHR2°R21或者 R18R19R2°C(CH2)XCHR2°R21R22的结构, R18、 R19、 R20 R21、 R22为氢、 直链或含支链的烷烃, n, m和 X分别为 1-500的整数, 优选 1-300的整 数, 更优选 1-100的整数。
本发明的这类高支化烷烃混合物有高粘度指数, 约 100-300, 较佳地约 150-300; 倾点 为约 -50°C到约 -10°C, 同时 100°C时的运动粘度在约 5到约 100 cSt。 该类烷烃混合物是油 状聚合物, 分子量为约 500至约 500, 000 g/ mol , 支化度 BI至少为 0. 20。
本发明烷烃混合物的一个显著特征是在每 1000个亚甲基对应的甲基数为约 100至约 500个,较佳地 200-400个。该特征使得本发明烷烃混合物在微观上不同于一般的线性聚合 物, 更呈现出类球形或类似树枝状的结构, 因而更适合用作润滑油的基础油。
此外, 本发明烷烃混合物对于每 100个甲基支链含有约 20-100个乙基支链、 约 2-50个 丙基支链、 约 20-100个丁基支链、 约 2-50个戊基支链和约 20-200个己基或更长的支链。
本发明油状烷烃混合物的溴值低, 可以满足基础油的要求。例如, 利用一例镍催化剂 催化乙烯聚合得到的油状聚合物的溴值为 38 g/100 g, 氢化后其溴值降低至 0.38 g/100 g。 这类高支化油状烷烃用作润滑油的基础油时性能明显优于目前商用的 PAO基础油, 例如: 商用 PAO的粘度指数 (Viscosity index)为 139, 而本发明公开的一例高支化油状烷烃的 Viscosity index可以高达 261。
为了提高其相应的物理性能,这类高支化的饱和烷烃可以在使用中添加各种填加剂或 增强剂, 例如防冻液、此外, 这类高支化的饱和烷烃还可以作为添加剂改善树脂的加工性 能, 例如作为聚合物加工过程中的增塑剂。
本发明的主要优点包括:
(a)利用新型催化剂体系, 首次高活性地实现了由乙烯直接得到高支化度的油状烷烃, 从而使基础油的制备不再严重依赖于价格昂贵的高级 α -烯烃, 大幅降低其成本。
(b)无论端烯烃或内烯烃都可以直接应用于该目的, 使内烯烃也得到更好的利用。
(c)可以免去高级 α -烯烃的生产以及高级 α -烯烃均聚合的生产 PAO两个复杂的环节。
(d)本发明的高支化烷烃具有低溴值, 高粘度指数, 可用于高级润滑油的基础油或加 工助剂。
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明本发明而 不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件 或按照制造厂商所建议的条件。除非另外说明, 否则百分比和份数是重量百分比和重量份 数。 实施例 1
配体 Lla的合成
Figure imgf000015_0001
100 mL 蛋形瓶中, , 加入苊醌 3.644g(20mmol), 加入甲醇 40mL, 加入 2, 6-二异丙 基苯胺 4.0mL(20mmol), 加入无水乙酸 2滴, 室温搅拌, TLC跟踪反应至结束, 减压浓縮, 中性氧化铝柱层析, EA:PE=1 :20-EA:PE=1 : 10得到橙黄色产物单亚胺,收率为 60%。1H NMR (300 MHz, CDC13): δ = 8.21 (2 H, m), 8.01 (1 Η, d), 7.82 (1 Η, t), 7.41 (1 Η, t), 7.27 (3 Η, s), 6.64 (1 Η, d), 2.84 (2 Η, m), 1.18 (6 Η, d), 0.90 (6 Η, d)。
100 mL蛋形瓶中, 加入单亚胺 1.708g(5.0 mmol), 加入甲醇 40mL, 加入苯胺 7.5mmol, 加入无水乙酸 2滴, 室温搅拌, TLC跟踪反应至结束, 减压浓縮, 中性氧化铝柱层析, EA:PE=1 :15得到橙黄色产物 Lla。 1H NMR (300 MHz, CDC13):^ =7.88-6.62 (14 H, m), 3.06 (2 H, m), 1.25-0.93 (12 H, d); 13C NMR (75 MHz, CDC13): 161.4, 151.6, 147.0, 141.1, 135.4, 130.9, 129.1, 128.7, 128.5, 127.6, 127.4, 124.2, 124.1, 123.6, 123.3, 118.1, 77.0, 28.1, 23.4, 23.3。 实施例 2
配体 Lib的合成
Figure imgf000015_0002
按实施例 1中配体 Lla的合成方法, 第二步用 2, 6-二氯苯胺替代苯胺, 其他的操作条 件相同,得到橙色固体。 1H NMR (300 MHz, CDCI3): δ = 8.32 (1 H, d), 8.10 (1 H, d), 7.96 (1.5 H, m), 7.53 (2 H, d), 7.41 (3 H, m), 7.38 (2 H, m), 6.91 (0.5 H, m), 6.58 (1 H, t),2.77 (2 H, m) ,1.29 (2 H, d), 0.97 (10 H, d), 13C NMR (75 MHz, CDC13): δ= 162.2, 157.8, 146.1, 133.1, 130.7, 127.5, 124.8, 124.4, 124.3, 123.39, 123.1, 122.7, 120.7, 77.4, 77.6, 28.5,27.9, 23.5,22.8。 IR(KBr): v(cm_1) = 3052, 2960, 2923, 2865, 1674, 1640, 1602, 1463, 1433, 1242, 1077, 1033, 831, 779, 760, 730; C30H26C12N2(484.45): Anal.Calc. C 74.22, H 5.40, N 5.77; Found C 73.99, H 5.39, N 5.65。 实施例 3
配体 Lie的合成
Figure imgf000016_0001
按实施例 1中配体 Lla的合成方法, 第二步用 2, 6-二溴苯胺替代苯胺, 其他的操作条 件相同, 得到橙红色固体。 1H NMR (300 MHz, CDC13): ^ = 8.33 (1 H, d), 8.05 (1 H, d), 7.91 (2 H, m), 7.69 (1.5 H, d), 7.49 (2 H, d), 7.28 (1 H, m), 7.15 (2 H,s), 6.71 (1 H, m), 6.69 (1 H, t) 6.51 (0.5 H, d), 1.23 (2 H, d), 0.97 (10 H, d); 13C NMR (75 MHz, CDC13): δ= 162.2, 157.5, 149.1, 146.2, 141.2, 135.3 , 134.7, 131.3, 128.9, 124.4, 120.8, 112.1, 77.0, 58.4, 28.0, 23.8, 23.1 23.0, 18.4。 IR(KBr): v(cm_1) = 3058, 2960, 2922, 2865, 1677, 1640, 1594, 1547, 1462, 1425, 1282, 1241, 1080, 1032, 925, 831, 792, 778, 759, 725; C30H26Br2N2(574.35): Anal.Calc. C 62.74, H 4.56, N 4.88; Found C 62.69, H 4.60, N 4.73。 实施例 4
配体 Lid的合成
Figure imgf000016_0002
在 lOOmL 蛋形瓶中, 加入苊醌 1.822g(10mmol), 2, 6-二氯苯胺 1.620g(10mmol), 对 甲苯磺酸 190mg(lmmol), 甲苯 50mL, 搅拌回流分水 3h, TLC跟踪反应结束, 冷却, 减压 浓縮, 中性氧化铝柱层析, EA:PE=1 :20分离得到单亚胺橙色产物。 NMR(300 MHz, CDCI3): 5=8.28-6.92 (9 H, m); IR(KBr): v^m"1) =3059, 1734, 1651, 1600, 1590, 1558, 1279, 1233, 1151, 1072, 1028, 910, 832, 791, 778, 768, 745, 687。
100 mL 蛋形瓶中, 加入单亚胺 1.631g(5.0 mmol), 加入甲醇 30mL, 加入无水乙酸 2 滴, 加入 2, 6-二甲基苯胺 0.93mL(7.5mmol), 室温搅拌, TLC跟踪反应确认结束, 减压 浓縮, 中性氧化铝柱层析, EA:PE=1 :15得到橙黄色产物。 1H NMR(300 MHz, CDC13): 5=8.30-6.57 (12 H, m), 2.15-1.90 (6 H, s); 13C NMR (75 MHz, CDC13): 5=162.7, 157.4, 148.8, 141.5, 131.0, 130.7, 129.3, 128.9, 128.5, 128.3, 128.1, 127.6, 124.9, 124.7, 124.5, 123.9, 123.0, 122.7, 122.3, 120.7, 77.0, 17.8, 17.6; IR(KBr): v(cm_1) =3059, 2918, 1681, 1640, 1592, 1557, 1469, 1431, 1282, 1243, 1199, 1075, 1031, 924,828, 774, 764, 729; Anal. Calcd. C 72.73, H 4.23, N 6.52; Found C 73.01, H 4.21, N 6.46。 实施例 5
配体 Lie的合成
Figure imgf000017_0001
按实施例 1中配体 Lla的合成方法,第二步用对甲氧基苯胺替代苯胺,其他的操作条件 相同,得到橙红色固体。 1H NMR (300 MHz, CDC13): ^ =7.94-6.61 (13 H, m), 3.00-2.52 (2 H, m), 1.26-0.91 (12 H, d); 13C NMR (75 MHz, CDC13): 161.3, 154.7, 146.9, 141.4, 135.5, 131.2, 129.4, 129.1, 129.0, 128.3, 128.0, 127.6, 126.7, 124.5, 123.8, 123.7, 123.6, 123.2, 118.5, 117.7, 77.0, 28.3, 23.5, 23.4, 23.1, 22.3; Anal. Calcd. C 76.84, H 5.62, N 5.78; Found C 76.63, H 5.62, N 5.73。 实施例 6
配体 Llf的合成
Figure imgf000017_0002
按实施例 1中配体 Lla的合成方法, 第二步用对 N,N-二甲基苯胺替代苯胺, 其他的操 作条件相同, 得到橙红色固体。 1H NMR (300 MHz, CDCI3): δ =8.18-6.58 (13 H, m), 3.04 (8 H, m), 1.22- 0.91 (12 H, d); 13C NMR (75 MHz, CDCI3): 161.8, 159.2, 148.3, 147.4, 141.0, 135.6, 129.5, 129.2, 128.7, 128.3, 127.5, 124.1, 123.4, 123.3, 123.0, 120.7, 112.9, 77.0, 40.8, 28.3, 28.2, 23.7, 23.4, 23.3。 实施例 7
配体 LI g的合成
Figure imgf000017_0003
按实施例 1中配体 Lla的合成方法,第二步用对氯苯胺替代苯胺,其他的操作条件相同, 得到橙红色固体。 1H NMR (300 MHz, CDC13): δ =8.17-6.60 (13 H, m), 3.01-2.97 (2 H, m), 1.23- 0.93 (12 H, d); 13C NMR (75 MHz, CDC13): 161.4, 160.9, 150.1, 147.0, 131.1, 141.2, 129.5, 129.4, 129.1, 128.9, 128.4, 128.2, 127.8, 127.5, 124.4, 124.1, 123.7, 123.5, 123.1, 119.8, 119.2, 77.4, 77.0, 28.2, 23.5, 23.4, 23.3, 23.1; Anal. Calcd. C 79.89, H 6.03, N 6.21; Found C 79.82, H 6.13, N 6.07。 实施例 8 配体 Llh的合成
Figure imgf000018_0001
100 mL蛋形瓶中, 加入苊醌 1.093g(6.0 mmol), 加入甲醇 40mL, 加入 2-三氟甲基 -4, 6-二溴苯胺 2.105g(6.6 mmol), 加入无水乙酸 2滴, 回流搅拌, TLC跟踪反应至结束, 减压 浓縮, 粗产物加入 20mL无水甲醇, 于冰箱中冷冻后过滤, 得到红色产品单亚胺。 iH NMR (300 MHz, CDC13): δ =6.846-8.245 (8 H, m)。 13C NMR (75 MHz, CDC13): 5=187.9, 184.5,
162.8, 161.0, 147.3, 144.4, 139.0, 138.2, 132.3, 130.6, 130.2, 129.5, 129.1, 128.9, 128.6, 128.4, 128.3, 123.1, 122.6, 122.4, 121.3, 117.2, 115.5, 113.3, 77.0; Anal.Calc. C 47.24, H 1.67, N 2.90; Found C 47.04, H 1.90, N 2.88。 MS(ESI)(m/z): 483.7(M+1)。
100 mL 蛋形瓶中, 加入单亚胺 1.449gC3mmol), 加入甲醇 40mL, 加入邻异丙基苯胺 0.39mL(3.15mmol), 加入无水乙酸 2滴, 回流搅拌, TLC跟踪反应至结束, 减压浓縮, 中 性氧化铝柱层析, CH2C12 :PE= 1 :2得到橙黄色产物, 无水甲醇结晶得到双亚胺。 iH NMR (300 MHz, CDCI3): 5=8.27-6.70 (12 H, m), 3.16-2.64 (1 H, m), 1.25-0.96 (6 H, m); 13C NMR (75 MHz, CDCI3): 5=163.0, 147.7, 137.8, 132.7, 130.8, 128.9, 128.6, 128.4, 127.8, 126.3,
125.9, 125.4, 123.6, 121.0, 116.6, 114.1, 113.9, 77.0, 28.4, 23.0, 22.7; Anal.Calc. C 56.02, H 3.19, N 4.67; Found C 56.05, H 3.20, N 4.52。 实施例 9
配体 Lli的合成
Figure imgf000018_0002
250mL 蛋形瓶中,加入 9,10-菲蒽2.(^(;9.6 1^1), 2, 6-二异丙基苯胺 3.2mL(16.9mmol), 10滴无水甲酸, 120mL无水甲醇, 回流反应 24h, TLC跟踪反应结束后, 将反应液于 -20° 冰箱中冷却过夜,过滤,得到墨绿色产品单亚胺。 1H NMR (300 MHz, CDC13): δ =8.38 (1 Η, d), 8.06-7.98 (3 H, d), 7.70-7.63 (2 H, m), 7.50 (1 H, t), 7.38 (1 H, t), 7.18 (2 H, d), 7.10 (1 H, m), 2.66 (2 H, m), 1.28-1.04 (12 H, d)。
50 mL蛋形瓶中, 加入单亚胺 311.4mgClmmol), 加入甲醇 25mL, 加入 2, 6-二氯苯胺 199.4mg(1.2mmol) , 回流搅拌, TLC跟踪反应至结束, 减压浓縮, 中性氧化铝柱层析, EA:PE=1 :50得到深红色产物,无水甲醇结晶得到 Lli。 1H NMR (300 MHz, CDC13): δ=8.46 (1 H, d), 8.46-6.83 (14 Η, m), 2.77-1.96 (2 Η, m), 0.82-0.67 (12 Η, d); 13C NMR (75 MHz, CDCI3): 5=162.2, 158.3, 146.4, 145.3, 135.0, 134.6, 134.4, 132.7, 132.3, 129.1, 129.0, 128.0, 127.8, 127.6, 127.1, 124.4, 124.2, 124.0, 123.5, 123.4, 123.2, 77.0, 27.6, 23.8, 22.7; Anal. Calcd. C 75.14, H 5.52, N 5.48; Found C 74.94, H 5.49, N 5.32。 实施例 10
配体 Llj的合成
Figure imgf000019_0001
按照实施例 9中的方法, 第二步用 2, 6-二溴苯胺代替 2, 6-二氯苯胺, 得到配体 Llj。 1H NMR (300 MHz, CDC13): 5=8.48-6.77 (14 H, m), 2.79-1.97 (2 H, m), 1.13-0.69 (12 H, m); 13C NMR (75 MHz, CDC13): 5=161.4, 158.0, 149.0, 145.3, 135.0, 134.6, 134.4, 132.7, 132.2, 131.3, 131.2, 129.2, 129.0, 128.0, 127.8, 127.1, 124.4, 124.2, 124.1, 123.5, 123.4, 113.3, 77.0, 27.6, 23.9, 22.9。 实施例 11
配体 Llk的合成
Figure imgf000019_0002
50mL 蛋形瓶中, 加入 1-苯基 -1,2-丙二酮 1.4mL(10.5mmol), 2, 6-二异丙基苯胺 2.2mL(10.5mmol), 无水甲酸 6滴, 无水甲醇 3mL, 室温搅拌 12h, TLC跟踪反应结束后, 减压浓縮, 中性氧化铝柱层析, EA:PE=1 :50得到产品, 无水甲醇结晶, 过滤得到黄色固 体单亚胺。 1H NMR (300 MHz, CDC13): δ=8.22 (2 H, d), 7.60 (1 H, t), 7.52 (2 H, t), 7.19 (3 H, m), 2.79 (2 H, m), 2.04 (3 H, s), 1.22 (2 H, d), 1.17 (2 H, d)。
50 mL 蛋形瓶中, 加入单亚胺 307.4mgClmmol), 加入甲醇 25mL, 加入 2, 6-二氯苯 胺 178.2mg(l .lmmol), 加入无水乙酸 2滴, 回流搅拌, TLC跟踪反应至结束, 减压浓縮, 中性氧化铝柱层析, EA:PE=1 :50得到黄色产物,无水甲醇结晶得到 Llk。1H NMR (300 MHz, CDCI3): 5=8.10-6.74 (11 H, m), 2.68-2.33 (2 H, m), 2.24-1.83 (3 H, s), 1.21-1.05 ( 12 H, d); 13C NMR (75 MHz, CDC13): 5=171.5, 168.1, 146.1, 145.4, 135.2, 134.6, 135.2, 134.6, 128.9, 128.7, 128.5, 127.8, 127.3, 127.2, 124.3, 123.9, 123.7, 123.2, 122.8, 77.0, 28.4, 27.6, 23.9, 23.7, 22.9, 22.6, 17.6; Anal.Calc. C 71.84, H 6.25, N 6.21; Found C 72.10, H 6.52, N 5.92。 实施例 12
配体 Lll的合成
Figure imgf000020_0001
按实施例 11中配体 Llk的合成方法, 第二步用 2, 6-二溴苯胺替代 2, 6-二氯苯胺, 其 他的操作条件相同, 得到橙红色固体。 1H NMR (300 MHz, CDC13): 5=8.01-6.67 (11 H, m), 2.71-2.30 (2 H, m), 2.26-1.86 (3 H, s), 1.22-1.07 (12 H, d); 13C NMR (75 MHz, CDC13): 5=170.7, 168.4, 147.8, 146.2, 134.7, 131.7, 131.6, 129.1, 128.7, 127.7, 127.2, 125.2, 123.8, 122.8, 119.3, 113.1, 77.0, 28.4, 23.0, 22.7, 27.7, 17.8; MS(ESI)(m/z): 541(M+1)。 实施例 13
配体 Llm的合成
Figure imgf000020_0002
按照实施例 8的合成方法, 第二步用邻三氟甲基苯胺代替邻异丙基苯胺, 得到配体 Llm。 1H NMR (300 MHz, CDC13): 5=8.27-6.62 (12 H, m)。 实施例 14
配体 Lin的合成
Figure imgf000020_0003
按照实施例 8的合成方法, 第二步用邻叔丁基苯胺代替邻异丙基苯胺, 得到配体 Lln。 1H NMR (300 MHz, CDC13): δ= 8.26-6.50 (12 Η, m), 1.33-1.02 (9 Η, m); Anal.Calc. C 56.70, H 3.45, N 4.56; Found C 56.56, H 3.33, N 4.32。 实施例 15
配体 Llo的合成
Figure imgf000020_0004
按照实施例 1的合成方法,第二步用对三氟甲基苯胺代替苯胺,得到配体 Llo。 1H NMR (300 MHz, CDCI3): δ =7.94-6.61 (13 H, m), 3.00-2.52 (2 H, m), 1.26-0.91 (12 H, d); "C NMR (75 MHz, CDCI3): 161.3, 154.7, 146.9, 141.4, 135.5, 131.2, 129.4, 129.1, 129.0, 128.3, 128.0, 127.6, 126.7, 124.5, 123.8, 123.7, 123.6, 123.2, 118.5, 117.7, 77.0, 28.3, 23.5, 23.4, 23.1, 22.3; Anal. Calcd. C 76.84, H 5.62, N 5.78; Found C 76.63, H 5.62, N 5.73。 实施例 16
配体 Lip的合成
Figure imgf000021_0001
按照实施例 1的合成方法, 第二步用 3, 5-二三氟甲基苯胺代替苯胺, 得到配体 Llp。 1H NMR (300 MHz, CDCI3): δ =8.08-6.47 (12 Η, m), 2.98-2.48 (2 Η, m), 1.24-0.88 (12 Η, m); 13C NMR (75 MHz, CDCI3): 162.3, 161.1, 153.2, 152.8, 146.7, 146.3, 141.5, 140.8, 135,4, 134.3, 133.4, 133.0, 132.7, 131.9, 131.6, 130.8, 130.0, 129.5, 129.1, 128.9, 128.5, 128.1, 128.0, 127.7, 124.7, 124.6, 124.5, 123.9, 123.6, 123.5, 123.3, 123.2, 120.4, 119.2, 117.8, 116.3, 77.0, 28.4, 23.6, 23.5, 22.8, 22.6。 实施例 17
配体 Llq的合成
Figure imgf000021_0002
按照实施例 1的合成方法, 第二步用邻苯氧亚甲基苯胺代替苯胺, 得到配体 Llq。 1H NMR (300 MHz, CDC13): δ =7.93-6.44( 18 Η, m), 5.03( 2 Η, s), 2.82( 2 Η, m), 1.14-0.84( 12 Η: d); 13C NMR (75 MHz, CDC13): 161.5, 161.2, 158.3, 150.5, 146.9, 141.1, 135.4, 130.9, 129.5, 129.1, 128.9, 127.7, 125.2, 124.3, 124.0, 123.4, 123.3, 120.4, 117.6, 113.9, 77.0, 66.6, 50.7, 28.3, 23.2, 23.1。 实施例 18
配合物 la的合成
Figure imgf000021_0003
手套箱中取 NiBr2(DME) lmmol于 50mL Schlenk管中, 加入 1.05 mmol Lla, 用氮气抽 换气三次, 加入无水二氯甲烷 20mL, 搅拌过夜, 双头针转移至另一个 50mL Schlenk管中, 双排管上浓縮干, 加入二氯甲烷 2mL+正己烷 20mL的混合溶剂洗涤 2-3次, 双头针过滤, 滤渣油泵下干燥。 将 Schlenk管在手套箱中用正己烷洗涤后过滤, 滤渣为红色产物, 产率 70% o Anal. Calcd. For C30H28Br2N2Ni: C, 56.74; H, 4.44; N, 4.41. Found: C, 56.14; H, 4.65; N, 4.25。 实施例 19
配合物 lb的合成
Figure imgf000022_0001
以配体 Lib代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 85%。 Anal. Calcd. For C30H26Br2Cl2N2Ni: C, 51.19; H, 3.72; N, 3.98. Found: C, 51.25; H, 3.64; N 3.64。 实施例 20
配合物 lc的合成
Figure imgf000022_0002
以配体 Lie代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 90%。 Anal. Calcd. For C30H26Br4N2Ni: C, 45.45; H, 3.31 ; N, 3.53. Found: C, 45.82; H,3.30; N, 3.30。 实施例 21
配合物 Id的合成
Figure imgf000022_0003
以配体 Lid代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 72%。 Anal. Calcd. For C26H18Br2Cl2N2Ni: C, 48.20; H, 2.80; N, 4.32. Found: C, 47.58; H, 2.99; N, 4.02。 实施例 22 配合物 le的合成
Figure imgf000023_0001
以配体 Lie代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 30%。 Anal. Calcd. C 55.98, H 4.55, N 4.21. Found: C 56.24, H 4.71, N 3.94。 实施例 23
配合物 If的合成
Figure imgf000023_0002
以配体 Llf代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 60%。 Anal. Calcd. C 56.68, H 4.90, N 6.20. Found: C 56.93, H 5.13, N 5.91。 实施例 24
配合物 lg的合成
Figure imgf000023_0003
以配体 Llg代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 31°/^ Anal. Calcd. C 53.82, H 4.06, N 4.18. Found: C 54.41, H 4.07, N 3.92。 实施例 25
配合物 lh的合成
Figure imgf000023_0004
以配体 Llh代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 75°/^ Anal. Calcd. C 41.07, H 2.34, N 3.42. Found: C 41.34, H 2.54, N 3.92。 实施例 26
配合物 li的合成
Figure imgf000024_0001
以配体 Lli代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 20%。 Anal. Calcd. C 52.65, H 3.87, N 3.84. Found: C 52.90, H 3.98, N 3.92 实施例 27
配合物 lj的合成
Figure imgf000024_0002
以配体 Llj代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 30%。 Anal. Calcd. C 46.93, H 3.45, N 3.42. Found: C 46.50, H 3.23, N 3.32。 实施例 28
配合物 lk的合成
Figure imgf000024_0003
以配体 Llk代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 15%。 Anal. Calcd. C 48.41, H 4.21, N 4.18. Found: C 48.20, H 4.00, N 4.02。 实施例 29
配合物 11的合成
Figure imgf000024_0004
以配体 Lll代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 10%。 Anal. Calcd. C 42.74, H 3.72, N 3.69. Found: C 42.50, H 3.56, N 3.52。 实施例 30
配合物 lm的合成
Figure imgf000025_0001
以配体 Llm代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 60%。 Anal. Calcd. C 36.97, H 1.43, N 3.32. Found: C 36.87, H 1.32, N 3.22。 实施例 31
配合物 In的合成
Figure imgf000025_0002
以配体 Lin代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 50%。 Anal. Calcd. C 41.82, H 2.54, N 3.36. Found: C 41.90, H 2.40, N 3.42。 实施例 32
配合物 lo的合成
Figure imgf000025_0003
以配体 Llo代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 35%。 Anal. Calcd: C, 52.96; H, 3.87; N, 3.98. Found: C, 53.15; H,3.93; N,4.12。 实施例 33
配合物 lp的合成
Figure imgf000025_0004
以配体 Lip代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 70%。 Anal. Calcd: C, 49.85; H, 3.40; N, 3.63. Found: C, 49.80; H, 3.38; N,3.57。 实施例 34
配合物 lq的合成
Figure imgf000026_0001
以配体 Lip代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 70%。 Anal. Calcd: C, 59.96; H, 4.62; N, 3.78. Found: C, 60.80; H, 4.96; N, 3.62。 实施例 35
配合物 lr的合成
Figure imgf000026_0002
用配合物 lq与甲基格氏试剂反应, 得到配合物 lr。 Anal. Calcd: C, 76.61; H, 6.59; N, 4.58. Found: C, 77.01; H, 6.89; N, 4.89。 实施例 36
配合物 It的合成
Figure imgf000026_0003
与实施例 18相类似, 用 (DME)NiCl2代替 (DME)NiBr2, 得到配合物 lt。 Anal. Calcd. C 65.97, H 5.17, N 5.13. Found: C 65.81, H 5.00, N 5.02。 实施例 37
配合物 lu的合成
Figure imgf000027_0001
与实施例 18相类似, 用用 (DME)NiI2代替 (DME)NiBr2, 得到配合物 lu。 Anal. Calcd. C 49.42, H 3.87, N 3.84. Found: C 49.85, H 4.12, N 4.00。 实施例 38
配合物 lv的合成
Figure imgf000027_0002
用配合物 la与苄基格氏试剂反应,得到配合物 lv。 Anal. Calcd. C 80.37, H 6.44, N 4.26. Found: C 80.90, H 6.85, N 4.40。 实施例 39
在 200mL的聚合瓶中, 用氮气抽换气三次, 再抽一次真空, 换乙烯, 在乙烯气氛下, 加入溶剂 DCE25mL, 加入助催化剂二乙基氯化铝的甲苯溶液 0.30 mL(0.9 mol/L), 在 60°C 下, l atm下, 加入配合物 la(5 μηιοΐ), 聚合 30 min, 反应结束, 切断乙烯, 将反应液浓縮, 过硅胶短柱, 用石油醚淋洗, 滤液浓縮得油状聚乙烯, 催化效率 3.0*106 g/mol.h.atm, 油 状聚乙烯 1000个亚甲基对应的甲基数为 250, 溴值为38 §/ 100 §, 产物的分子量为 2, 000 g/mol。 实施例 40
重复实施例 39, 不同点在于, 采用配合物 lb(2 μηιοΐ)替换配合物 la, 且加入助催化剂 乙基氯化铝的甲苯溶液 0.22 mL(0.9 mol/L)。
结果: 得油状聚乙烯 7.0 g, 催化效率 7.0*106g/mOl.h.atm。 聚乙烯溴值为 33 g/100 g, 物的分子量为 50, 000 g/molo 实施例 41
重复实施例 39, 不同点在于, 采用配合物 lc(2 mol)替换配合物 la。
结果: 得到油状聚乙烯 9 g, 催化效率 9.0*106g/mOl.h.atm。 产物溴值为 35 g/100 g, 聚 乙烯 MW,GPC 4570 克 /摩尔, MW,LLS 4.64万克 /摩尔。 值得注意的是, Mw, LLS: Mw, GPC 之比高达为 10:1, 这表明本发明高支化聚乙烯的结构是类球形的。 实施例 42 重复实施例 39, 不同点在于, 采用配合物 l d(5 μιηοΐ)替换配合物 la。
结果: 得到油状聚乙烯 2.5 g, 催化效率 1.0* 106 g/mol.h.atm。 聚乙烯 1000个亚甲基对 应的甲基数为 260。 实施例 43
重复实施例 39, 不同点在于, 采用配合物 le(5 μηιοΐ)替换配合物 la。
结果: 得到油状聚乙烯 5 g, 催化效率 2.0* 106 g/mol.h.atm。 聚乙烯 1000个亚甲基对应 的甲基数为 280。 实施例 44
重复实施例 39, 不同点在于, 采用配合物 lf(5 μηιοΐ)替换配合物 la。
结果: 得到油状聚乙烯 5 g, 催化效率 2.0* 106 g/mol.h.atm。 聚乙烯 1000个亚甲基对应 的甲基数为 270, 溴值为 40 g/ 100 g。 实施例 45
重复实施例 39, 不同点在于, 采用配合物 lg(5 μηιοΐ)替换配合物 la。
结果: 得到油状聚乙烯 5 g, 催化效率 2.0* 106 g/mol.h.atm。 聚乙烯 1000个亚甲基对应 的甲基数为 200。 实施例 46
重复实施例 39, 不同点在于, 采用配合物 lh(5 μηιοΐ)替换配合物 la。
结果: 得到油状聚乙烯 2.5 g, 催化效率 1.0* 106 g/mol.h.atm。 聚乙烯 1000个亚甲基对 应的甲基数为 280, 聚乙烯溴值为 60 g/ 100 g。 实施例 47
重复实施例 39, 不同点在于, 采用配合物 Η(1 μηιοΐ)替换配合物 la, 聚合时间为 5 min。 结果: 得到油状聚乙烯 4.2 g, 催化效率 5.0* 107 g/mol.h.atm。 聚乙烯 1000个亚甲基对 应的甲基数为 200, 产物的分子量为 110,000 g/mol。 实施例 48
重复实施例 39, 不同点在于, 采用配合物 lj(l μηιοΐ)替换配合物 la。
结果: 得到油状聚乙烯 10.0 g, 催化效率 4.0* 106 g/mol.h.atm。 聚乙烯 1000个亚甲基对 应的甲基数为 200。 溴值为 30 g/ 100 g, 产物的分子量为 120,000 g/mol。 实施例 49
重复实施例 39, 不同点在于, 采用配合物 lk(5 μηιοΐ)替换配合物 la。
结果: 油状聚乙烯催化效率 5.0* 106 g/moLh.atm。 聚乙烯 1000个亚甲基对应的甲基数 为 1 10 , 溴值为 25 g/ 100 go 实施例 50
重复实施例 39, 不同点在于, 采用配合物 11(5 μηιοΐ)替换配合物 la。
结果: 油状聚乙烯催化效率 6.0* 106 g/mol.h.atm。 聚乙烯 1000个亚甲基对应的甲基数 为 130。 实施例 51
重复实施例 39, 不同点在于, 采用配合物 lm(5 μηιοΐ)替换配合物 la。
结果: 油状聚乙烯催化效率 4.5.0* 106 g/mol.h.atm。聚乙烯 1000个亚甲基对应的甲基数 为 190, 溴值为 40 g/ 100 g。 实施例 52
重复实施例 39, 不同点在于, 采用配合物 1η(5 μηιοΐ)替换配合物 la。
结果: 油状聚乙烯催化效率 8.0* 106 g/mol.h.atm, 聚乙烯 1000个亚甲基对应的甲基数 为 165。 实施例 53
重复实施例 39, 不同点在于, 采用配合物 1ο(5 μηιοΐ)替换配合物 la。
结果: 油状聚乙烯催化效率 2.0* 106 g/mol.h.atm。 聚乙烯 1000个亚甲基对应的甲基数 为 280, 溴值为 55 g/ 100 g。 实施例 54
重复实施例 39, 不同点在于, 采用配合物 1ρ(5 μηιοΐ)替换配合物 la。
结果: 油状聚乙烯催化效率 2.0* 106 g/mol.h.atm, 聚乙烯 1000个亚甲基对应的甲基数 为 320。 实施例 55
重复实施例 39, 不同点在于, 采用配合物 lq(5 μηιοΐ)替换配合物 la。
结果: 油状聚乙烯催化效率 1.0* 106 g/mol.h.atm。 聚乙烯 1000个亚甲基对应的甲基数 为 300。 实施例 56(烷基镍催化剂)
重复实施例 39, 不同点在于, 采用配合物 lr(5 μηιοΐ)替换配合物 la, 加入助催化剂 MMAO 0.30 mL(1.9 mol/L)。
结果: 油状聚乙烯催化效率 8.0* 106 g/mol.h.atm, 聚乙烯 1000个亚甲基对应的甲基数 为 150。 实施例 57(溶剂: 甲苯)
重复实施例 39, 不同点在于, 采用配合物 lj(5 μηιοΐ)替换配合物 la, 溶剂换为甲苯。 结果: 油状聚合物催化效率 5* 106 g/mol.h.atm, 溴值为 40 g/100 g, 产物的分子量为 200,000 g/mol o 实施例 58(溶剂: 正己烷)
重复实施例 39, 不同点在于, 采用配合物 1_)'(5 μηι01)替换配合物 la, 溶剂换为正己烷。 结果: 油状聚合物催化效率 l * 106 g/mol.h.atm, 产物的分子量为 125,000 g/mol。 实施例 59(溶剂: 氯苯)
重复实施例 39, 不同点在于, 采用配合物 lj(5 μηιοΐ)替换配合物 la, 溶剂换为氯苯。 结果: 油状聚乙烯催化效率为 l * 106 g/mOl.h.atm, 溴值为 50 g/ 100 g。 实施例 60(溶剂二氯甲烷)
重复实施例 39, 不同点在于, 采用配合物 lj(5 μηιοΐ)替换配合物 la, 溶剂换为二氯甲 温度改为 20°C。
结果: 油状聚乙烯催化效率为 5* 106 g/mol.h.atm, 溴值为 30 g/ 100 g。 实施例 61 (助催化剂: MMAO)
重复实施例 39, 不同点在于, 采用配合物 lj(5 μηιοΐ)替换配合物 la, 加入助催化剂 MMAO 0.30 mL(1.9 mol/L)。
结果: 油状聚乙烯催化效率 6.0* 106 g/mol.h.atm。 溴值 35.6 g/100g, 1000个亚甲基对应 的甲基数为 200, 产物的分子量为 350,000 g/mol。 实施例 62(助催化剂: MAO)
重复实施例 39,不同点在于,采用配合物 lj(5 μηιοΐ)替换配合物 la,加入助催化剂 MAO 0.30 mL(1.5 mol/L
结果: 油状聚乙烯催化效率 7.0* 106 g/mol.h.atm。 溴值 37 g/100g, 1000个亚甲基对应 的甲基数为 180, 产物的分子量为 400,000 g/mol。 实施例 63(80°C)
重复实施例 39, 不同点在于, 聚合温度改为 80°C。
结果: 油状聚乙烯催化效率为 l * 106 g/mol.h.atm, 溴值为 50 g/ 100 g, 1000个亚甲基对 应的甲基数为 480, 产物的分子量为 l,000 g/mol。 实施例 64(20°C)
重复实施例 39, 不同点在于, 聚合温度改为 20°C。
结果: 油状聚乙烯催化效率为 7* 106 g/mol.h.atm, 溴值为 30.8 g/ 100 g, 1000个亚甲基 对应的甲基数为 120, 产物的分子量为 5, 000 g/mol o 实施例 65(压力 3 atm)
300 mL高压釜, 预先在 120°C下真空干燥过夜, 在 80°C下用氮气对高压釜抽换气 3次, 加入 DCE lOO mL, 加入助催化剂二乙基氯化铝 1.0 mL(0.9 mol/L), 搅拌 10 min后, 加入 配合物 la(5 mol),马上将乙烯压力增加到 3 atm,聚合 30 min,切断乙烯,将反应液浓縮, 过硅胶短柱, 用石油醚淋洗, 滤液浓縮得到油状聚乙烯, 催化效率为 6.0* 106 g/mOl.h.atm, 溴值 39.8g/100g, 产物的分子量为 10,000 g/moL 实施例 66(压力 5 atm)
重复实施例 65, 乙烯压力改为 5 atm, 溶剂改为甲苯, 聚合温度改为 100°C。
结果:油状聚乙烯催化效率为 3.0* 106 g/mol.h.atm, 1000个亚甲基对应的甲基数为 100, 产物的分子量为 20,000 g/moL 实施例 67(氯化镍)
重复实施例 39, 不同点在于, 将配合物 Lla改为配合物 lt, 加入助催化剂 MMAO 0.30 mL(1.9 mol/L) o
结果: 油状聚乙烯催化效率 1.0* 106 g/m0l.h.atm。 实施例 68(碘化镍)
重复实施例 39, 不同点在于, 将配合物 Lla改为配合物 lu, 加入助催化剂 MAO 0.30 mL(1.5 mol/L)。
结果: 油状聚乙烯催化效率 1.0* 106 g/m0l.h.atm。 实施例 69(苄基镍)
重复实施例 39, 不同点在于, 将配合物 Lla改为配合物 lv。
结果: 油状聚乙烯催化效率 5.0* 106 g/mol.h.atm, 1000个亚甲基对应的甲基数为 250。 实施例 70(高氯酸镍)
在 200 mL的聚合瓶中, 用氮气抽换气三次, 再抽一次真空, 换乙烯, 在乙烯气氛下, 加入溶剂 DCE 30 mL, 加入高氯酸镍 (;5 μηιο1), 加入 Lla .O μηιο1), 搅拌 2 h, 加入助催化 剂二乙基氯化铝 1.0 mL(0.9 mol/L), 在 60°C下, 1 atm下, 聚合 30 min, 反应结束, 切断乙 烯,将反应液浓縮,过硅胶短柱,用石油醚淋洗,滤液浓縮得油状聚乙烯,催化效率 1.5* 106
Figure imgf000031_0001
实施例 71(三氟甲磺酸镍)
重复实施例 70, 将高氯酸镍改为三氟甲磺酸镍。
结果: 油状聚乙烯催化效率为 1.5* 106 g/m0l.h.atm。 实施例 72((COD)Ni)
重复实施例 70, 将高氯酸镍改为 (COD)Ni。
结果: 油状聚乙烯催化效率为 1.0* 106 g/mol.h.atm o 实施例 73
配体 Llw的合成
Figure imgf000032_0001
按照实施例 1的合成方法, 第二步用邻硫苯基苯胺代替苯胺, 得到配体 Llw。 1H NMR (300 MHz, CDC13): δ =7.87-6.58 (18 H, m), 3.00-2.66 (2 Η, m), 1.20-0.92 (12 Η, d); Anal. Calcd. C 82.40, H 6.15, N 5.34; Found C 82.41, H 6.13, N 5.16。 实施例 74
配合物 lw的合成
Figure imgf000032_0002
按照实施例 18的方法, 用配体 Llw代替 Lla, 得到配合物 lw, 配合物结构如图 2所示 ; Anal. Calcd. For C36H32Br2N2NiS: C, 58.18; H, 4.34; N, 3.77. Found: C, 58.05; H, 4.49; N, 3.71 c 实施例 75
重复实施例 39, 用配合物 lw代替 la进行乙烯聚合实验, 得到油状的聚乙烯 2.5 g, 活 性为 1.0*106 g/mol.h.atm。
实施例 78-82为利用文献中的催化剂做的比较例, 在该催化剂作用下乙烯在与实施例 39、 63、 64、 57、 62相同的条件下只能得到固体的聚乙烯。 实施例 76
配体 Lis (对照配体)的合成
Figure imgf000032_0003
100 mL蛋形瓶中, 加入苊醌 1.822 g(10 mmol), 2, 6-二异丙基苯胺 4.0 mL(21 mmol), 加入无水乙酸 2滴, 回流搅拌, TLC跟踪反应结束后, 无水甲醇重结晶, 得到橙红色产物 双亚胺。 1H NMR (300 MHz, CDC13): δ =7.89 (2 H, d), 7.36 (2 H, t), 7.26 (6 H, s), 6.64 (2 H, d), 3.03 (4 H, m), 1.24 (12 H, d), 0.98 (12 H, d)。 实施例 77
配合物 Is的合成
Figure imgf000033_0001
以配体 Lis代替 Lla, 其他操作条件与实施例 18相同, 得到红棕色配合物, 产率 80 %。
Anal. Calcd. For C36H40Br2N2Ni: C, 60.12; H, 5.61; N, 3.89. Found: C, 60.65; H, 5.87; N, 4.24。 实施例 78 (与实施例 39对比)
在 200mL的聚合瓶中, 用氮气抽换气三次, 再抽一次真空, 换乙烯, 在乙烯气氛下, 加入溶剂 DCE25mL, 加入助催化剂二乙基氯化铝 0.30 mL(0.9 mol/L), 在 60°C下, 1 atm 下, 加入配合物 ls(5 μηιοΐ), 聚合 30 min, 反应结束, 切断乙烯, 将反应液倒入酸化乙醇 中, 固体聚乙烯析出, 过滤, 固体真空干燥, 得到 2.0g, 催化效率 0.8*106g/mOl.h.atm。 实施例 79(与实施例 63对比)
在 200mL的聚合瓶中, 用氮气抽换气三次, 再抽一次真空, 换乙烯, 在乙烯气氛下, 加入溶剂 DCE25mL, 加入助催化剂二乙基氯化铝 0.30 mL(0.9 mol/L), 在 80°C下, 1 atm 下, 加入配合物 ls(5 μηιοΐ), 聚合 30 min, 反应结束, 切断乙烯, 将反应液倒入酸化乙醇 中, 固体聚乙烯析出, 过滤, 固体真空干燥, 得到 1.5g, 催化效率 0.6*106g/mOl.h.atm。 实施例 80(与实施例 64对比)
在 200mL的聚合瓶中, 用氮气抽换气三次, 再抽一次真空, 换乙烯, 在乙烯气氛下, 加入溶剂甲苯 25mL, 加入助催化剂二乙基氯化铝 0.30mL(0.9mol/L), 在 20°C下, 1 atm 下, 加入配合物 ls(5 μηιοΐ), 聚合 30 min, 反应结束, 切断乙烯, 将反应液倒入酸化乙醇 中, 固体聚乙烯析出, 过滤, 固体真空干燥, 得到 7.5 g, 催化效率 3.0*106g/mOl.h.atm。 实施例 81(与实施例 57对比)
在 200mL的聚合瓶中, 用氮气抽换气三次, 再抽一次真空, 换乙烯, 在乙烯气氛下, 加入溶剂甲苯 25mL, 加入助催化剂二乙基氯化铝 0.30mLC0.9mol/L), 在 60°C下, 1 atm 下, 加入配合物 ls(5 μηιοΐ), 聚合 30 min, 反应结束, 切断乙烯, 将反应液倒入酸化乙醇 中, 固体聚乙烯析出, 过滤, 固体真空干燥, 得到 1.0 g, 催化效率 0.4*106 g/mol.h.atm, 滤液浓縮没有油状聚乙烯。 实施例 82(与实施例 62对比)
在 200mL的聚合瓶中, 用氮气抽换气三次, 再抽一次真空, 换乙烯, 在乙烯气氛下, 加入溶剂 DCE 25 mL, 加入助催化剂 MAO 0.30 mL(1.5 mol/L), 在 60°C下, 1 atm下, 加入 配合物 ls (5 μηιοΐ), 聚合 30 min, 反应结束, 切断乙烯, 将反应液倒入酸化乙醇中, 固体 聚乙烯析出, 过滤, 固体真空干燥, 得到 2.0 g, 催化效率0.8*106 g/mOl.h.atm, 滤液浓縮 没有油状聚乙烯。 实施例 83
配体 Llx的合成
Figure imgf000034_0001
与实施例 1类似, 第一步用 2, 6-二苯基苯胺代替 2, 6-二异丙基苯胺, 第二步不变, 得到配体 Llx。 Anal. Calcd. C 89.23, H 4.99, N 5.78; Found C 82.50, H 6.24, N 5.30。 实施例 84
配合物 lx的合成
Figure imgf000034_0002
与实施例 18类似, 用配体 Llx代替 Lla, 得到配合物 lx。 Anal. Calcd. C 61.50, H 3.44, N
3.98; Found C 61.75, H 3.78, N 4.20。 实施例 85
重复实施例 39, 用配合物 lx代替 la, 得到油状的聚乙烯 7.6 g, 活性为 3.1 *10' g/mol.h.atm, 1000个亚甲基对应的甲基数为 160。 实施例 86
配体 ly的合成
Figure imgf000034_0003
按照实施例 1的方法,第二步用对硝基苯胺代替苯胺得到配体 Lly。 1H NMR (300 MHz, CDC13): δ=8.33-6.48( 13 Η, m), 2.91-2.43( 2 Η, m), 1.15-0.81( 12 Η, m); 13C NMR (75 MHz, CDCI3): δ=161.0, 157.7, 146.9, 144.4, 141.4, 135.3, 134.0, 131.1, 129.9, 129.1, 128.8, 127.6, 125.5, 124.7, 124.5, 123.9, 123.8, 123.6, 123.4, 123.3, 123.2, 121.8, 120.6, 118.8, 117.8, 77.0 28.3, 23.5, 23.4, 23.3, 22.4。 实施例 87
配合物 ly的合成
Figure imgf000035_0001
按照实施例 18的方法,用配体 Lly代替 Lla,得到配合物 ly。 Anal.Calc. C 52.98, H 4.00 N 6.18; Found C 53.33, H 4.34, N 6.04。 实施例 88
与实施例 39的反应条件类似, 用配合物 ly代替 la, 丙烯代替乙烯, 得到油状的聚丙烯 8.0 g, 活性为 3.2* 106 g/mol.h.atm, 聚乙烯 1000个亚甲基对应的甲基数为 260, 分子量为 1500。 实施例 89
配体 lz的合成
Figure imgf000035_0002
按照实施例 1的方法,第二步用邻硫甲基亚甲基苯胺代替苯胺,得到配体 Llz。 1H NMR (300 MHz, CDC13): δ =8.19-6.59 (13 H, m), 3.75 (2 Η, s), 3.04 (2 Η, m), 1.89 (3 Η, s), 1.24-0.97 (12 Η, m); Anal. Calcd. C 80.63, H 6.77, N 5.88; Found C 80.55, H 6.72, N 5.75。 实施例 90
配合物 lz的合成
Figure imgf000035_0003
按照实施例 18的方法,用配体 Liz代替 Lla,得到配合物 lz。 Anal.Calc. C 55.29, H 4.64 N 4.03; Found C 54.99, H 4.55, N 3.94。 实施例 91
按照实施例 39的方法, 用配合物 lz代替 la, 2-丁烯 (顺、 反式异构体混合物) 代替乙 , 得到油状高支化聚丁烯 2.5 g, 活性为 1.0* 106 g/mol.h.atm。
结果总结在表 1中。
表 1
Figure imgf000036_0001
* 化合物 19为对照化合物。 氢化制备油状高支化垸烃(油状垸烃混合物)
实施例 92
50mL蛋形瓶中, 加入实施例 47中得到的高支化油状聚乙烯 2.5 g, 加入 Pd/C 50 mg, 正己烷 10 mL, 抽换气三次后, 在常压氢气氛围下, 室温反应过夜, 取样核磁氢谱发现 原料已经氢化完全, 停止氢化, 通过硅胶短柱过滤, 滤液浓縮得到油状高支化烷烃, 溴值 为 0.31 g/100 g。 1000个亚甲基中对应的甲基数为 230, 粘度指数 VI为 261, 100°C的运动粘 度为 7.9 cSt。聚合物核磁碳谱如图 1所示。产物分子量约为 110,000 g/mol。产物倾点为-15°C, 闪点为 194°C, 蒸发损耗为 3.8(%WA\ 。 实施例 93(无溶剂)
50mL蛋形瓶中, 加入实施例 47中得到的高支化油状聚乙烯 2.5 g, 加入 Pd/C 50 mg, 抽换气三次后,在常压氢气氛围下,室温反应过夜,取样核磁氢谱发现原料已经氢化完全, 停止氢化, 通过硅胶短柱过滤, 滤液浓縮得到油状高支化烷烃, 溴值为 0.33 g/100 go 1000 个亚甲基中对应的甲基数为 260。 实施例 94
重复实施例 92, 将 Pd/C 换为 Pd(OH)2。 结果: 油状聚乙烯溴值为 0.39 g/100 g。 实施例 95
重复实施例 92, 将氢化底物改为实施例 48中得到的油状聚乙烯。
结果: 油状高支化烷烃溴值为 0.38 g/100 g,油状聚乙烯中 1000个亚甲基对应的甲基数 为 240, 粘度指数 VI为 300。 实施例 96
重复实施例 92, 将氢化底物改为实施例 41得到的油状聚乙烯。
结果: 油状高支化烷烃溴值为 0.36 g/100 g。 实施例 97
按照实施例 39, 将乙烯改为丙烯时, 得到油状聚丙烯。 重复实施例 92, 将氢化底物改 为油状聚丙烯。结果:油状高支化烷烃溴值为 0.10 g/100 g,产物倾点为 -40°C,闪点为 190°C。 实施例 98
按照实施例 39, 将乙烯改为丁烯时, 得到油状聚丁烯。用高支化油状聚丁烯与上述实 施例 92相同的条件下氢化, 得到油状高支化烷烃, 溴值为 0.49 g/ 100 g。 实施例 99
按照实施例 39的方法, 用配合物 li代替 la催化 1-丁烯聚合得到油状聚丁烯 3.2 g。
用该油状聚丁烯与上述实施例 92相同的条件下氢化, 得到油状高支化烷烃, 溴值为
0.43 g/100 g。 此油状烷烃倾点为 -15°C, 闪点为 200°C, 粘度指数 VI为 195。 实施例 100
按照实施例 39的方法, 用配合物 la催化乙烯与 1-己烯 (10%) 的共聚合得到油状聚合 物 5.8 g。用该油状聚合物与上述实施例 92相同的条件下氢化, 得到油状高支化烷烃, 溴值 为 0.31 g/100 g。 此油状烷烃倾点为 -17°C, 闪点为 193 °C, 粘度指数 VI为 186。 实施例 101
重复实施例 47,在烯烃聚合催化剂与乙烯接触时, 同时通入氢气,待氢化完全,过滤, 滤液减压浓縮, 得到高支化的油状烷烃, 溴值为 0.48 g/ 100 g, 1000个亚甲基对应的甲基 数为 320, 粘度指数为 189, 倾点为 -26°C, 闪点为 190°C。 实施例 102
重复实施例 47, 烯烃聚合催化剂与乙烯接触 30 min后, 不进行处理, 加入 Pd/C 50 mg, 再通入氢气, 待氢化完全, 过滤, 将滤液减压浓縮, 得到高支化油状烷烃, 油状高支化烷 烃中 1000个亚甲基对应的甲基数为 260。 实施例 103
在实施例 47中, 烯烃聚合催化剂与乙烯接触 30 min后, 不进行处理, 直接将气氛置换 为氢气, 在氢气氛围下反应直至氢化完全, 过滤, 滤液减压浓縮, 得到高支化油状烷烃, 溴值为 0.34 g/ 100 go 实施例 104
300mL的高压釜, 在 120°C油浴中真空干燥过夜, 用氮气抽换气三次, 在 60°C的油浴 上, 加入 DCE 50 mL, MMAO l .O mL, 在 0.5 atm的氢气氛围下, 加入催化剂 lb 5 μηιοΐ, 通入乙烯, 聚合反应 30 min, 降低温度, 打开高压釜, 过滤, 滤液减压浓縮得到油状的聚 乙烯 3.0g, 产物溴值为 0.48 g/ 100 g, 1000个亚甲基对应的甲基数约为 230, 产品倾点为 -23。C。 实施例 105
300mL的高压釜, 在 120°C油浴中真空干燥过夜, 用氮气抽换气三次, 在 80°C的油浴 上, 加入 DCE 50 mL, MMAO l .O mL, 在 0.5 atm的氢气氛围下, 加入催化剂 lb 5 μηιοΐ, 通入乙烯, 聚合反应 30 min, 降低温度, 打开高压釜, 过滤, 滤液减压浓縮得到油状的聚 乙烯 1.5g, 产物溴值为 0.28 g/ 100 g, 1000个亚甲基对应的甲基数为 300。 实施例 106
300mL的高压釜, 在 120°C油浴中真空干燥过夜, 用氮气抽换气三次, 在 80°C的油浴 上,加入 DCE 50 mL,二乙基氯化铝 1.0 mL,在 0.5 atm的氢气氛围下,加入催化剂 lb 5 μηιοΐ, 通入乙烯, 聚合反应 30 min, 降低温度, 打开高压釜, 过滤, 滤液减压浓縮得到油状的聚 乙烯 1.3g,产物溴值为 0.37 g/ 100 g, 1000个亚甲基对应的甲基数为 450,产品倾点为 -32°C。 实施例 107
300mL的高压釜, 在 120°C油浴中真空干燥过夜, 用氮气抽换气三次, 在 45°C的油浴 上, 加入油状聚乙烯 (Mv: 1500 g/mol) 50 mL, MMAO l.O mL, 在 0.5 atm的氢气氛围下, 加入催化剂 Lie 5 μηιοΐ, 通入乙烯, 聚合反应 30 min, 降低温度, 打开高压釜, 过滤, 滤 液减压浓縮得到油状的聚乙烯 4.5g,产物溴值为 0.39 g/ 100 g, 1000个亚甲基对应的甲基数 为 320。 实施例 108
重复实施例 92, 将氢化底物改为实施例 63得到的油状聚乙烯。
结果: 油状高支化烷烃溴值为 0.25 g/ 100 g, 1000个亚甲基中对应的甲基数为 490。 实施例 109
重复实施例 92, 将氢化底物改为实施例 49得到的油状聚乙烯。
结果: 油状高支化烷烃溴值为 0.14 g/ 100 g, 1000个亚甲基对应的甲基数为 110。 实施例 110
按照实施例 39的方法, 用配合物 la催化乙烯与 5-烯 -1-己醇的共聚合得到油状聚合物
9.0 g。
用该油状聚合物与上述实施例 92相同的条件氢化, 得到含有醇羟基的油状高支化烷 烃, 溴值为 0.30 g/100 g, 此油状烷烃倾点为 -30°C, 闪点为 193°C, 粘度指数 VI为 180。 实施例 111
按照实施例 39的方法, 用配合物 la催化乙烯和 9-癸烯 -1-醇的共聚合得到油状聚合物 12.1 g o
用该油状聚合物与上述实施例 92相同的条件氢化, 得到含有醇羟基的油状高支化烷 烃, 此油状烷烃倾点为 -19°C。 实施例 112
按照实施例 39的方法,用配合物 la催化乙烯和 9-烯癸酸甲酯的共聚合得到油状聚合物 用该油状聚合物与上述实施例 92相同的条件氢化, 得到含有酯基的油状高支化烷烃, 此油状烷烃倾点为 -29°C, 粘度指数为 190, 闪点为 198°C。
实施例 92-112中未给出具体甲基数的油状烷烃聚合物, 经测定, 每 1000个亚甲基对 应的甲基数为 160至 350个。 实施例 113
参照 ASTM D97石油基油品的倾点标准方法测定产品倾点。
参照 ASTM D 1500标准方法测定色度。
参照 ASTM D 4052标准方法测定 15.6°C的密度。
参照 ASTM D 445标准方法测定的 100°C、 40°C的运动粘度。
参照 ASTM D 92的标准方法测定溴度。 参照 ASTM D 1 159的标准方法测定闪点。
参照 ASTM D 664的标准方法测定酸度。
其中, 在测试倾点和闪点时, 由于倾点和闪点测量时需要较多样品, 采用各实施例相 同的聚合条件放大聚合规模, 得到测试样品。
结果如表 2所示。 结果表明, 本发明的油状高支化烷烃在倾点、 闪点、 色度、 蒸发损 耗上与市售的 PAO或 III类基础油相当,但粘度指数高于现有产品, 能够在更大的温度范围 内保持粘度, 更适合用作润滑油的基础油。
表 2 性能测试结果
Figure imgf000040_0001
润滑油的配制
实施例 114
按照实施例 92, 放大聚合得到油品作为基础油, 并以其质量为基准, 加入 0.2wt%— 0.5wt%甲基丙烯酸脂共聚物或者聚丙烯酸酯, 混合均匀得到润滑油, 该润滑油 的倾点为 -32°C到 -40°C。 实施例 115 按照实施例 92,放大聚合得到油品作为基础油,加入丙烯酸高碳醇脂和丙烯腈共聚物 (500 mg/ L油品), 混合均匀得到润滑油, 该润滑油的倾点可以降低到 -20°C - 30°C 实施例 116
按照实施例 97,放大聚合得到油品作为基础油, 并以其质量为基准, 加入 0.02wt%2 6- 二叔丁基 α-二甲氨基对甲酚作为抗氧化剂添加剂, 加入 0.5wt% 2wt%十七烯基咪唑啉的 十二烯基丁二酸盐或者 0.5wt% 4wt%二壬基萘磺酸钡, 加入胺与环氧化物的縮合物, 混 合均匀得到抗氧化防锈的润滑油。 实施例 117
按照实施例 97,放大聚合得到油品作为基础油,并以其质量为基准,添加 lwt%—5wt% 多烯基的丁二酰亚胺或者单烯基丁二酰亚胺或者双烯基丁二酰亚胺作为分散剂, 0.8wt%— 1.3wt%高碱值合成磺酸钙或者 2wt%_3wt%烷基水杨酸钙等作为清洁剂, 0.1wt%—0.5wt%甲基硅脂聚合物作为抗泡沫剂, 0.4wt%—0.6wt°/^ 与环氧化物的縮合物 作为抗乳化剂, 混合均匀得到润滑油。 实施例 118
按照实施例 90, 放大聚合得到油品作为基础油, 并以其质量为基准, 添加 0. Iwt%—1.0wt%烷基萘 混合均匀得到润滑油。 实施例 119
按照实施例 97, 放大聚合得到油品作为基础油, 并以其质量为基准, 添加 0.3Wt°/ 酸酯作为摩擦改进剂, 混合均匀得到润滑油。 实施例 120
按照实施例 97, 放大聚合得到油品作为基础油, 并以其质量为基准, 添加 0.2wto/ /。二烷基二硫代磷酸锌盐作为抗氧抗腐蚀剂, 混合均匀得到润滑油。 实施例 121
按照实施例 97, 放大聚合得到油品作为基础油, 并以其质量为基准, 添加
2wt%_10wt%油酸乙二醇酯作为油性剂, 混合均匀得到润滑油产品。 在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用 作为参考那样。此外应理解, 在阅读了本发明的上述讲授内容之后, 本领域技术人员可以 对本发明作各种改动或修改, 这些等价形式同样落于本申请所附权利要求书所限定的范 围。

Claims

权 利 要 求
1. 一种下式 I所示的化合
Figure imgf000042_0001
式中,
Z和 Y分别为氢、 d-C4烷基或 d-C4卤代烷基、 未取代或取代的苯基, 或者 Z和 Y 与相邻的碳原子一起构成未取代或取代的选自下组的基团: 苊基、 菲基和 ^ 8环烷基, 其中, 所述的取代的苯基、 苊基、 菲基或环烷基具有 1-5 个选自下组的取代基: 卤素、 C C4烷基和 C C4卤代烷基;
R R2、 R3和 R4分别为 H、 卤素、 C C8烷基、 d-C8卤代烷基、 未取代或取代的 苯基、 -0-Ra、 -CH2-0-Ra、 -SRb或 -CH2-S-Rb, 其中 ^和 Rb分别为 d-C8烷基、 未取代或 取代的苯基, 并且 R R2、 R3和 R4满足条件: R^R3和 /或 R2≠R4; 所述的取代的苯基具 有 1-5个选自下组的取代基: 卤素、 d-C4烷基和 d-C4卤代烷基;
R5、 R6和 R7分别为卤素、硝基、氢、 d-C8烷基、 d-C8卤代烷基、 -0-Ra、 -CH2-0-Ra、 或 -N(Re)2, 其中 ^为 d-C8烷基、未取代或取代的苯基, 而 ^为 d-C4烷基或卤代烷基; 所述的取代的苯基具有 1-5个选自下组的取代基: 卤素、 d-C4烷基和 d-C4卤代烷基。
2. 如权利要求 1所述的化合物, 其特征在于, R R2、 R3和 R4中 1-3个取代基为 C C8烷基、 d-C8卤代烷基或未取代或取代的苯基,并且 1-3个取代基为 H或卤素。
3. 如权利要求 1所述的化合物, 其特征在于, Z和 Y与相邻的碳原子一起构成未取 代或取代的苊基。
4. 一种配合物, 其特征在于, 所述的配合物是权利要求 1所述的化合物与选自下组 的二价金属盐形成的配合物: 镍、 钯或其组合。
5. 如权利要求 4所述的配 具有下式 II所示结构:
Figure imgf000042_0002
II
式中,
Z、 Y、 R R2、 R3、 R4、 R5、 R6和 R7的定义如权利要求 1中所述;
X为卤素、 d-C4烷基、 C2-C6烯基、 烯丙基或苄基。
6. 一种制备权利要求 4所述的配合物的方法, 其特征在于, 包括步骤:
在惰性溶剂中,将权利要求 1所述的化合物与作为金属前体的二价金属盐进行反应, 从而形成权利要求 4所述的配合物, 其中所述的金属前体为二价镍化合物、 二价钯化合 物。
7. 如权利要求 6所述的方法, 其特征在于, 所述的金属前体包括: NiCl:
Nil2、 (DME)NiBr2、 PdCl2、 PdBr2、 Pd(OTf)2、 Pd(OAc)2、 或其组合。
8. 一种制备式 I化合物的方法, 其特征在于, 包括步骤:
(a) 由式 A的二酮 B的胺化合物反应, 形成式 C化合物;
Figure imgf000043_0001
(b) 将式
Figure imgf000043_0002
式中, Z、 Y、 R R2、 R3、 R4、 R5、 R6和 R7的定义如权利要求 1中所述。
9. 一种油状烯烃聚合物的制备方法, 其特征在于, 包括步骤:
(a) 在权利要求 4所述的配合物作为烯烃聚合催化剂存在下, 对烯烃进行催化聚合, 形成油状聚烯烃。
10. 如权利要求 9所述的方法, 其特征在于, 还包括步骤:
(b) 对步骤 (a)获得的油状聚烯烃进行加氢反应, 从而获得加氢的油状烷烃混合物。
11.一种油状烯烃聚合物, 其特征在于, 所述的油状烯烃聚合物具有以下特性: 1000 个亚甲基对应的甲基数为 100-500个以及分子量 300-500,000 g/mol。
12. 一种油状烷烃混合物,其特征在于,所述的油状烷烃混合物具有以下特性: 1000 个亚甲基对应的甲基数为 100-500个且溴值小于 0.5 g/100 g。
13. 如权利要求 12所述的油状烷烃混合物的用途, 其特征在于, 它被用作润滑油的 基础油、 润滑油的添加剂、 增塑剂或树脂的加工助剂。
14. 一种润滑油, 其特征在于, 所述的润滑油含有权利要求 12所述的油状烷烃混合 物。
15. 如权利要求 4所述的配合物的用途, 其特征在于, 它被用作烯烃聚合的催化 剂。
16. 一种油状烷烃混合物, 其特征在于, 所述油状烷烃混合物具有以下特征: (a) 粘度指数为 100至 300;
(b) 倾点为 -50 °C至 -10°C ;
(c) 分子量为 300至 500, 000 g/ mol; 和
(d) 每 1000个亚甲基对应的甲基数为 100至 500个。
17. 如权利要求 16所述的油状烷烃混合物, 其特征在于, 所述油状烷烃混合物还 具有以下特征: (e) 支化度 BI≥0.20; 和 /或
(f) 溴值 < 0.5g/100g。
18. 如权利要求 16所述的油状烷烃混合物, 其特征在于, 所述油状烷烃混合物的 粘度指数为 150-300, 更佳地 180-300, 最佳地 200-290。
19. 如权利要求 16所述的油状烷烃混合物,其特征在于,所述支化度 BI为 0.20〜
0.50, 较佳地 0.22〜0.45, 更佳地 0.24〜0.40。
20. 如权利要求 16所述的油状烷烃混合物的制备方法, 其特征在于, 包括由油状 烯烃聚合物进行加氢反应得到所述烷烃混合物的步骤, 所述油状烯烃聚合物具有以下 特征: 1000个亚甲基对应的甲基数为 100-500个以及分子量 300-500,000 g/moL
21. 如权利要求 16所述的油状烷烃混合物的用途, 其特征在于, 所述用途选自下 组: (a) 用于制备润滑油; (b) 用作润滑油的添加剂或基础油; (c) 用作树脂的加工助 剂; 或 (d) 用作增塑剂。
22. 一种润滑油, 包含基础油和添加剂, 其特征在于, 所述基础油为权利要求 16 所述的油状烷烃混合物。
23. 如权利要求 22所述的润滑油, 其特征在于, 所述添加剂选自下组: 粘度指数 改进剂、 倾点下降剂、 抗氧化剂、 清净分散剂、 摩擦缓和剂、 油性剂、 极压剂、 抗泡 沫剂、 金属钝化剂、 乳化剂、 防腐蚀剂、 防锈剂、 破乳化剂、 抗氧抗腐剂、 或其组合。
24. 一种润滑油的制备方法, 其特征在于, 包括将权利要求 16所述的油状烷烃混 合物与添加剂混合均匀得到所述润滑油的步骤。
25. 如权利要求 24所述的方法, 其特征在于, 所述添加剂选自下组: 粘度指数改 进剂、 倾点下降剂、 抗氧化剂、 清净分散剂、 摩擦缓和剂、 油性剂、 极压剂、 抗泡沫 剂、 金属钝化剂、 乳化剂、 防腐蚀剂、 防锈剂、 破乳化剂、 抗氧抗腐剂、 或其组合。
PCT/CN2012/074545 2011-05-16 2012-04-23 一类由烯烃制备高支化烷烃的催化体系 WO2012155764A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12785810.8A EP2711356B1 (en) 2011-05-16 2012-04-23 Catalytic system for preparation of high branched alkane from olefins
ES12785810T ES2797651T3 (es) 2011-05-16 2012-04-23 Sistema catalítico para la preparación de alcano altamente ramificado a partir de olefinas
JP2014510649A JP6175052B2 (ja) 2011-05-16 2012-04-23 オレフィンから高分岐アルカンを製造する触媒系
US14/118,172 US9315755B2 (en) 2011-05-16 2012-04-23 Catalytic system for preparation of high branched alkane from olefins
US15/078,830 US10294440B2 (en) 2011-05-16 2016-03-23 Catalytic system for preparation of high branched alkane from olefins

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110126431.9A CN102786435B (zh) 2011-05-16 2011-05-16 一类由烯烃制备高支化烷烃的催化体系
CN201110126431.9 2011-05-16
CN201210098399.2 2012-04-05
CN201210098399.2A CN103360517B (zh) 2012-04-05 2012-04-05 高支化油状烷烃聚合物及其制法和应用

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/118,172 A-371-Of-International US9315755B2 (en) 2011-05-16 2012-04-23 Catalytic system for preparation of high branched alkane from olefins
US15/078,830 Continuation US10294440B2 (en) 2011-05-16 2016-03-23 Catalytic system for preparation of high branched alkane from olefins

Publications (1)

Publication Number Publication Date
WO2012155764A1 true WO2012155764A1 (zh) 2012-11-22

Family

ID=47176296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074545 WO2012155764A1 (zh) 2011-05-16 2012-04-23 一类由烯烃制备高支化烷烃的催化体系

Country Status (5)

Country Link
US (2) US9315755B2 (zh)
EP (1) EP2711356B1 (zh)
JP (2) JP6175052B2 (zh)
ES (1) ES2797651T3 (zh)
WO (1) WO2012155764A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397263A (zh) * 2015-07-31 2017-02-15 中国石油化工股份有限公司 配体化合物、其制备及含所述配体化合物的配合物
CN112725054A (zh) * 2019-10-28 2021-04-30 南京中科康润新材料科技有限公司 一种低碳烯烃经聚合直接合成高性能高粘度基础油的工艺方法
US11242421B2 (en) 2018-02-06 2022-02-08 Northwestern University Highly branched, low molecular weight polyolefins and methods for their production
CN114316093A (zh) * 2022-01-04 2022-04-12 吉林大学 一种苊醌双亚胺基稀土金属催化剂的制备方法及应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2797651T3 (es) * 2011-05-16 2020-12-03 Shanghai Chemrun Co Ltd Sistema catalítico para la preparación de alcano altamente ramificado a partir de olefinas
CN105503763B (zh) * 2014-10-17 2020-11-03 上海中科康润新材料科技有限公司 聚烯烃油催化剂及其应用
CN106397264B (zh) * 2015-07-31 2018-07-20 中国石油化工股份有限公司 一种二亚胺配体化合物、配合物及应用
CN106397262B (zh) * 2015-07-31 2018-06-12 中国石油化工股份有限公司 二亚胺配体、其制备方法及应用
CN106397261B (zh) * 2015-07-31 2018-07-20 中国石油化工股份有限公司 一种二亚胺配体化合物、配合物及应用
US9951158B2 (en) 2016-08-12 2018-04-24 Chevron Phillips Chemical Company Lp Process for reducing the light oligomer content of polypropylene oils
US20180105478A1 (en) * 2016-10-19 2018-04-19 Chevron Phillips Chemical Company Lp Process for Reducing the Light Oligomer Content of Polypropylene Oils
CN108864344B (zh) * 2017-05-12 2020-12-18 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组合物及烯烃聚合的方法
WO2020118134A2 (en) * 2018-12-07 2020-06-11 Exxonmobil Research And Engineering Company Processes for polymerizing internal olefins and compositions thereof
US11713364B2 (en) 2019-04-01 2023-08-01 Exxon Mobil Technology and Engineering Company Processes for polymerizing alpha-olefins, internal olefins and compositions thereof
CN112725017B (zh) * 2019-10-28 2023-10-20 南京中科康润新材料科技有限公司 一种低碳烯烃经聚合直接合成高性能高粘度基础油的工艺方法
CN112725029B (zh) * 2019-10-28 2023-07-28 南京中科康润新材料科技有限公司 一种低碳烯烃经聚合直接合成高性能低粘度基础油的工艺方法
CN112725018B (zh) * 2019-10-28 2023-10-20 南京中科康润新材料科技有限公司 一种低碳烯烃经聚合直接合成高性能中等粘度基础油的工艺方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999047627A1 (en) * 1998-03-20 1999-09-23 Mobil Business Resources Corporation Synthesis of branched polyethylene fluids for use in lubricant compositions
EP1284271A1 (de) * 2001-08-16 2003-02-19 Bayer Ag Katalysatoren für die Olefinpolymerisation
CN1884312A (zh) * 2006-06-06 2006-12-27 中山大学 乙烯原位聚合的苊二亚胺镍/Fe3O4负载磁性纳米催化剂及其制备方法
CN101531725A (zh) * 2009-04-08 2009-09-16 中山大学 α-二亚胺镍配合物烯烃聚合催化剂及其制备方法与制备支化聚乙烯的方法
CN102050840A (zh) * 2010-12-04 2011-05-11 西北师范大学 含萘环的α-二亚胺镍(Ⅱ)配合物及其制备和应用
CN102093425A (zh) * 2010-12-04 2011-06-15 西北师范大学 含有tert-butyl的α-二亚胺镍(Ⅱ)配合物及其制备
CN102180910A (zh) * 2011-03-11 2011-09-14 中国科学院化学研究所 不对称α二亚胺镍配合物催化剂及其制备方法与应用
CN102250152A (zh) * 2011-05-26 2011-11-23 中山大学 胺基亚胺镍乙烯聚合催化剂的制备方法和应用

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1056408A (en) 1974-07-17 1979-06-12 Marcel Prillieux Hydrogenated olefine oligomers
US4284835A (en) * 1979-07-05 1981-08-18 Shell Oil Company Hydrogenation process
JPH06821B2 (ja) 1985-11-21 1994-01-05 三井石油化学工業株式会社 液状エチレン系ランダム共重合体およびその用途
AU729324B2 (en) * 1995-01-24 2001-02-01 E.I. Du Pont De Nemours And Company Alpha-olefins and olefin polymers and processes therefor
WO1998003521A1 (en) 1996-07-23 1998-01-29 Symyx Technologies Combinatorial synthesis and analysis of organometallic compounds and catalysts
US6303717B1 (en) 1997-02-05 2001-10-16 The Penn State Research Foundation University Park Pa Metal catalyzed synthesis of hyperbranched ethylene and/or α-olefin polymers
WO1998040374A2 (en) 1997-03-10 1998-09-17 Eastman Chemical Company Olefin polymerization catalysts containing group 8-10 transition metals, bidentate ligands, processes employing such catalysts and polymers obtained therefrom
US6103658A (en) 1997-03-10 2000-08-15 Eastman Chemical Company Olefin polymerization catalysts containing group 8-10 transition metals, processes employing such catalysts and polymers obtained therefrom
US6660677B1 (en) 1997-03-10 2003-12-09 Eastman Chemical Company Supported group 8-10 transition metal olefin polymerization catalysts
US6124513A (en) 1997-06-20 2000-09-26 Pennzoil-Quaker State Company Ethylene-alpha-olefin polymers, processes and uses
WO1999005189A1 (en) 1997-07-23 1999-02-04 E.I. Du Pont De Nemours And Company Polymerization of olefins
US6090989A (en) 1997-10-20 2000-07-18 Mobil Oil Corporation Isoparaffinic lube basestock compositions
JP2002509955A (ja) 1998-03-27 2002-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 置換シクロペンテンのポリマー
US6403738B1 (en) 1998-07-29 2002-06-11 E. I. Du Pont De Nemours And Company Polymerization of olefins
US20020065192A1 (en) 2000-02-18 2002-05-30 Mackenzie Peter Borden Productivity catalysts and microstructure control
AU2003259148A1 (en) * 2002-07-17 2004-02-02 Exxonmobil Chemical Patents Inc. Late transition metal catalysts for olefin polymerization and oligomerization
TWI261225B (en) * 2003-04-10 2006-09-01 Via Optical Solution Inc Method and related apparatus for evaluating beta-parameter according to results of read data sliced with different slicing levels while performing optimal power control of optical disk drive
US20050077208A1 (en) * 2003-10-14 2005-04-14 Miller Stephen J. Lubricant base oils with optimized branching
CN1246348C (zh) 2004-03-12 2006-03-22 中山大学 合成支化聚乙烯的钛-取代苊二亚胺镍复合催化剂及其制备方法
CN1942433A (zh) 2004-04-27 2007-04-04 北卡罗来纳查佩尔山大学 通过液相色谱法分离不对称二亚胺
AU2006211534B2 (en) * 2005-02-02 2009-07-30 Exxonmobil Chemical Patents Inc. Modified polyethylene compositions
CA2615982C (en) 2005-07-19 2012-02-21 Exxonmobil Chemical Patents Inc. Polyalpha-olefin compositions and processes to produce the same
JP5137314B2 (ja) 2006-03-31 2013-02-06 Jx日鉱日石エネルギー株式会社 潤滑油基油
JP2009227996A (ja) 2008-02-29 2009-10-08 Tokyo Institute Of Technology ジエン重合体およびその製造方法
JP5551861B2 (ja) 2008-10-07 2014-07-16 Jx日鉱日石エネルギー株式会社 内燃機関用潤滑油組成物
DE102009017827A1 (de) 2009-04-20 2010-10-21 Sasol Germany Gmbh Verfahren zur Herstellung von verzweigten Kohlenwasserstoffen aus Fettalkoholen und Verwendung derartig hergestellter Kohlenwasserstoffe
ES2797651T3 (es) * 2011-05-16 2020-12-03 Shanghai Chemrun Co Ltd Sistema catalítico para la preparación de alcano altamente ramificado a partir de olefinas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999047627A1 (en) * 1998-03-20 1999-09-23 Mobil Business Resources Corporation Synthesis of branched polyethylene fluids for use in lubricant compositions
EP1284271A1 (de) * 2001-08-16 2003-02-19 Bayer Ag Katalysatoren für die Olefinpolymerisation
CN1884312A (zh) * 2006-06-06 2006-12-27 中山大学 乙烯原位聚合的苊二亚胺镍/Fe3O4负载磁性纳米催化剂及其制备方法
CN101531725A (zh) * 2009-04-08 2009-09-16 中山大学 α-二亚胺镍配合物烯烃聚合催化剂及其制备方法与制备支化聚乙烯的方法
CN102050840A (zh) * 2010-12-04 2011-05-11 西北师范大学 含萘环的α-二亚胺镍(Ⅱ)配合物及其制备和应用
CN102093425A (zh) * 2010-12-04 2011-06-15 西北师范大学 含有tert-butyl的α-二亚胺镍(Ⅱ)配合物及其制备
CN102180910A (zh) * 2011-03-11 2011-09-14 中国科学院化学研究所 不对称α二亚胺镍配合物催化剂及其制备方法与应用
CN102250152A (zh) * 2011-05-26 2011-11-23 中山大学 胺基亚胺镍乙烯聚合催化剂的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2711356A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397263A (zh) * 2015-07-31 2017-02-15 中国石油化工股份有限公司 配体化合物、其制备及含所述配体化合物的配合物
CN106397263B (zh) * 2015-07-31 2018-07-20 中国石油化工股份有限公司 配体化合物、其制备及含所述配体化合物的配合物
US11242421B2 (en) 2018-02-06 2022-02-08 Northwestern University Highly branched, low molecular weight polyolefins and methods for their production
CN112725054A (zh) * 2019-10-28 2021-04-30 南京中科康润新材料科技有限公司 一种低碳烯烃经聚合直接合成高性能高粘度基础油的工艺方法
CN112725054B (zh) * 2019-10-28 2023-10-20 南京中科康润新材料科技有限公司 一种低碳烯烃经聚合直接合成高性能高粘度基础油的工艺方法
CN114316093A (zh) * 2022-01-04 2022-04-12 吉林大学 一种苊醌双亚胺基稀土金属催化剂的制备方法及应用
CN114316093B (zh) * 2022-01-04 2023-04-28 吉林大学 一种苊醌双亚胺基稀土金属催化剂的制备方法及应用

Also Published As

Publication number Publication date
US9315755B2 (en) 2016-04-19
US10294440B2 (en) 2019-05-21
JP6215391B2 (ja) 2017-10-18
US20140088319A1 (en) 2014-03-27
ES2797651T3 (es) 2020-12-03
EP2711356A4 (en) 2015-10-21
JP6175052B2 (ja) 2017-08-02
JP2014520078A (ja) 2014-08-21
JP2016196465A (ja) 2016-11-24
US20170051222A1 (en) 2017-02-23
EP2711356A1 (en) 2014-03-26
EP2711356B1 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
WO2012155764A1 (zh) 一类由烯烃制备高支化烷烃的催化体系
JP7441199B2 (ja) 新規なポリオレフィン触媒およびその使用
JP2014520078A5 (zh)
CN102786435B (zh) 一类由烯烃制备高支化烷烃的催化体系
CN103360517B (zh) 高支化油状烷烃聚合物及其制法和应用
US10968290B2 (en) Metallocene-catalyzed polyalpha-olefins
US20180282359A1 (en) Metallocene Compounds
WO2018182982A2 (en) Metallocene-catalyzed polyalpha-olefins
WO2018182984A1 (en) Metallocene compounds
KR20170129693A (ko) 올리고머의 제조방법 및 촉매
US20130018214A1 (en) Catalyst composition for oligomerization of ethylene and processes of oligomerization
EP3601381A2 (en) Metallocene-catalyzed polyalpha-olefins
US10400047B2 (en) Olefin polymerization catalyst and method for producing olefin oligomer
WO2016200000A1 (ko) 리간드 화합물, 유기 크롬 화합물, 올레핀 올리고머화용 촉매 시스템, 및 이를 이용한 올레핀의 올리고머화 방법
CN110563771A (zh) 一种金属配合物、中间体、其制备方法及应用
CA3058136C (en) Metallocene compounds
KR102448156B1 (ko) 올리고머의 제조 방법 및 촉매
CN114163475A (zh) 含吡咯基刚性结构多位点配体的催化剂体系、制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785810

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014510649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14118172

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012785810

Country of ref document: EP