WO2012153814A1 - 耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼 - Google Patents

耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼 Download PDF

Info

Publication number
WO2012153814A1
WO2012153814A1 PCT/JP2012/062039 JP2012062039W WO2012153814A1 WO 2012153814 A1 WO2012153814 A1 WO 2012153814A1 JP 2012062039 W JP2012062039 W JP 2012062039W WO 2012153814 A1 WO2012153814 A1 WO 2012153814A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
austenitic stainless
steel
heat
Prior art date
Application number
PCT/JP2012/062039
Other languages
English (en)
French (fr)
Inventor
剛夫 宮村
難波 茂信
和基 古屋
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP12782655.0A priority Critical patent/EP2708611B1/en
Priority to KR1020137029415A priority patent/KR20130137705A/ko
Priority to ES12782655.0T priority patent/ES2590465T3/es
Priority to US14/115,570 priority patent/US20140154128A1/en
Priority to CN201280022304.7A priority patent/CN103517998B/zh
Publication of WO2012153814A1 publication Critical patent/WO2012153814A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the present invention relates to a heat-resistant austenitic stainless steel suitably used as a heat transfer tube material such as a boiler, and more particularly to a heat-resistant austenitic stainless steel excellent in cyclic oxidation resistance.
  • 25Cr-20Ni austenitic stainless steel (SUS310S) is known as a heat resistant material having excellent oxidation resistance in a broad sense including characteristics other than cyclic oxidation resistance.
  • This stainless steel contains a large amount of expensive Ni. There is a problem that the cost is high. For this reason, it is important to use 18Cr-8Ni austenitic stainless steel (SUS304), which has a low Ni content and good high-temperature strength and corrosion resistance, as basic components for boiler heat transfer tube materials. It becomes.
  • Patent Documents 1 and 2 have been proposed as technologies related to austenitic stainless steel using a Ti compound as a precipitation strengthening mechanism. ing.
  • Patent Document 1 discloses that the oxidation resistance is improved by adding Al that contributes to the improvement of corrosion resistance and promoting the formation of a Cr 2 O 3 layer by surface polishing.
  • the total amount of Al and Si is increased to 4% or more, and in addition, REM such as Ce, Y, La, etc. or Ca is added to be resistant to oxidation. Has been shown to be improved.
  • the action of delaying the growth rate of the oxide formed on the steel pipe surface can be expected by the addition of Al and Si and the formation of the Cr 2 O 3 layer, the formation of the oxide itself is not completely prevented. Also, it cannot be expected to exhibit good cyclic oxidation resistance. Furthermore, the steel material to which Al is added has a problem that surface flaws are likely to occur during pipe making.
  • Patent Document 2 discloses that Ce, La, and Hf are added in order to improve the oxidation resistance. However, similar to the above technique, it is expected that the cyclic oxidation resistance is low, and the repetition resistance is also reduced. It was not made in recognition of the improvement in oxidation characteristics.
  • Patent Document 3 As a technique for improving the resistance to repeated oxidation, a technique such as Patent Document 3 has also been proposed. However, since this technique contains a large amount of Al and Si, there is a problem in that it causes embrittlement after a surface flaw on the steel pipe or a long-time heat treatment. Further, in this technique, it has been shown that adding REM such as La and Ce including Y exhibits an effect of improving the adhesion of the scale, but it does not have sufficient characteristics and is resistant to resistance. It was not made in recognition of the improvement of repeated oxidation characteristics.
  • REM such as La and Ce including Y
  • Patent Document 4 As a technique for improving the oxidation resistance of austenitic stainless steel for boilers, a technique such as Patent Document 4 has also been proposed.
  • This technology is a component system of “Take SUS304J1HTB” that uses Nb and N for precipitation strengthening and solid solution strengthening.
  • Ti is added in an amount of about 0.002 to 0.05% for the purpose of forming oxide inclusions, but a steel material using precipitation of Ti compounds such as fire SUS321J2HTB as a strengthening mechanism.
  • this technique is not made by recognizing an improvement in the resistance to repeated oxidation, and is expected to have a low resistance to repeated oxidation.
  • oxidation resistance is improved by adding REM and particle spray peening.
  • the peening process has another problem that the cost is increased due to an increase in the manufacturing process, and is not made in recognition of the improvement of the resistance to repeated oxidation, and is expected to have a low resistance to repeated oxidation.
  • the present invention has been made under such circumstances, and the object thereof is to have a chemical composition equivalent to that of 18Cr-8Ni austenitic stainless steel in which the contents of Ni and Cr are added, as well as the addition of Al and Si, and the surface.
  • An object of the present invention is to provide a heat-resistant austenitic stainless steel having excellent resistance to repeated oxidation, which is less dependent on treatment and has less oxide peeling in a repeated oxidation environment and is less likely to cause thinning.
  • the heat-resistant austenitic stainless steel of the present invention that has solved the above problems is C: 0.05-0.2% (meaning mass%, hereinafter the same for chemical composition), Si: 0.1-1%, Mn: 0.1 to 2.5%, Cu: 1 to 4%, Ni: 7 to 12%, Cr: 16 to 20%, Nb: 0.1 to 0.6%, Zr: 0.05 to 0 .4%, Ce: 0.005 to 0.1%, Ti: 0.1 to 0.6%, B: 0.0005 to 0.005%, N: 0.001 to 0.15%, S: It contains 0.005% or less (excluding 0%) and P: 0.05% or less (not including 0%), respectively, and the balance is made of iron and inevitable impurities.
  • the heat-resistant austenitic stainless steel of the present invention further contains Mo: 3% or less (not including 0%) and / or W: 5% or less (not including 0%) as necessary. Yes, the inclusion of these components further improves the high temperature strength.
  • the heat-resistant austenitic stainless steel of the present invention further contains Ca: 0.005% or less (not including 0%) and / or Mg: 0.005% or less (not including 0%) as necessary.
  • Ca 0.005% or less (not including 0%)
  • Mg 0.005% or less
  • the chemical component composition as described above By adjusting the chemical component composition as described above, a heat-resistant austenitic stainless steel with improved resistance to repeated oxidation can be obtained. Further, the crystal grain size of the metal structure is 6 or more and less than 12 in terms of ASTM grain size number. As a result, higher resistance to repeated oxidation can be obtained and the characteristics can be exhibited stably.
  • the heat-resistant austenitic stainless steel of the present invention is less susceptible to the progress of oxidation due to scale peeling and the accompanying thinning of the steel material even in a repetitive oxidation environment, so that it can be used as a heat transfer tube for coal-fired power generation. It is possible to improve the power generation efficiency by increasing the temperature of the tube, extending the life of the heat transfer tube compared to existing materials, and reducing the maintenance cost. Moreover, since there is little peeling of a scale, when it uses as a heat exchanger tube, scattering of the scale inside can be suppressed and damage to a turbine can also be reduced.
  • the present inventors have studied from various angles in order to realize an austenitic stainless steel having improved resistance to repeated oxidation while maintaining necessary high-temperature strength. As a result, if a predetermined amount of Zr and Ce is contained in a stainless steel having a chemical composition equal to that of 18Cr-8Ni austenitic stainless steel, the remarkably excellent resistance to repeated oxidation. The present invention was completed by discovering that the characteristics can be exhibited.
  • the heat resistant austenitic stainless steel of the present invention is characterized in that the contents of Ni and Cr contain a predetermined amount of Zr and Ce with respect to the chemical composition equivalent to that of 18Cr-8Ni austenitic stainless steel.
  • the reasons for setting the ranges of the contents of Zr and Ce are as follows.
  • Zr and Ce express the effect of suppressing the exfoliation of the oxide by these synergistic effects.
  • it is necessary to contain Zr at 0.05% or more.
  • the upper limit must be 0.4% or less.
  • Ce in order to exhibit the effect, it is necessary to contain 0.005% or more.
  • the Ce content exceeds 0.1% and becomes excessive, an economic cost increase is caused.
  • the preferable lower limit of the Zr content is 0.10% or more (more preferably 0.15% or more), and the preferable upper limit is 0.3% or less (more preferably 0.25% or less).
  • the preferable minimum of Ce content is 0.01% or more (more preferably 0.015% or more), and a preferable upper limit is 0.05% or less (more preferably 0.03% or less).
  • pure Ce may be added as a raw material of Ce, but it is also possible to add the necessary pure Ce using a separately prepared Ce-containing mother alloy or Ce-containing misch metal. There is no problem even if La, Nd, Pr, etc. contained are contained in steel as impurities at a lower concentration than Ce, respectively, and melting work is performed by using a mother alloy or misch metal compared to pure Ce that is easily oxidized It is possible to simplify the handling of time.
  • Patent Documents 1, 3, and 5 among the prior arts disclose that the adhesion of oxides is improved by adding REM containing Y, La, and Ce. , REM is assumed to be added alone, and no synergistic effect by adding Ce together with Zr is disclosed.
  • Patent Document 2 discloses that Zr and Ce can be used in combination, but in this technique, none of them is an essential component, and it is added as necessary including non-addition.
  • Zr is contained in an amount less than the range specified in the present invention in view of strengthening grain boundaries and improving creep ductility.
  • the heat-resistant austenitic stainless steel of the present invention has a chemical composition equivalent to that of 18Cr-8Ni austenitic stainless steel in the contents of Ni and Cr, but the chemical composition of each element other than Zr and Ce ( C, Si, Mn, Cu, Ni, Cr, Nb, Ti, B, N, S, and P) need to be appropriately adjusted.
  • the effects of these components and the reasons for setting the range are as follows.
  • C is an element that has the effect of forming carbides in a high-temperature use environment and improving the high-temperature strength and creep strength necessary as a heat transfer tube.
  • C is 0.05. % Or more must be contained.
  • the preferable lower limit of the C content is 0.07% or more (more preferably 0.09% or more), and the preferable upper limit is 0.18% or less (more preferably 0.15% or less).
  • Si 0.1 to 1%
  • Si is an element having a deoxidizing action in molten steel. Even if it is contained in a very small amount, it effectively works to improve oxidation resistance. In order to exert these effects, the Si content needs to be 0.1% or more. However, if the Si content is excessive and exceeds 1%, the formation of the ⁇ phase is caused and the steel material becomes brittle ( ⁇ brittle).
  • the preferable lower limit of the Si content is 0.2% or more (more preferably 0.3% or more), and the preferable upper limit is 0.9% or less (more preferably 0.8% or less).
  • Mn 0.1 to 2.5%
  • Mn is an element having a deoxidizing action in molten steel, and also has an action of stabilizing austenite.
  • the Mn content needs to be 0.1% or more. However, if the Mn content is excessive and exceeds 2.5%, hot workability is impaired.
  • the preferable lower limit of the Mn content is 0.2% or more (more preferably 0.3% or more), and the preferable upper limit is 2.0% or less (more preferably 1.8% or less).
  • Cu 1 to 4%
  • Cu is an element that forms consistent precipitates in the steel (precipitates whose atomic arrangement is continuous with the base metal) and significantly improves the high-temperature creep strength, and is one of the main strengthening mechanisms in stainless steel. It is. In order to exert this effect, the Cu content needs to be 1% or more. However, even if the Cu content is excessive and exceeds 4%, the effect is saturated.
  • the preferable lower limit of the Cu content is 2.0% or more (more preferably 2.5% or more), and the preferable upper limit is 3.7% or less (more preferably 3.5% or less).
  • Ni has an effect of stabilizing austenite, and it is necessary to contain 7% or more in order to maintain the austenite phase. However, if the Ni content becomes excessive and exceeds 12%, the cost will increase.
  • the preferable lower limit of the Ni content is 7.5% or more (more preferably 8.0% or more), and the preferable upper limit is 11.5% or less (more preferably 11.0% or less).
  • Cr 16-20%
  • Cr is an essential element in order to develop corrosion resistance as stainless steel. In order to exert such effects, it is necessary to contain 16% or more of Cr. However, if the Cr content becomes excessive and exceeds 20%, the ferrite phase that causes a decrease in high-temperature strength increases.
  • the preferable lower limit of the Cr content is 16.5% or more (more preferably 17.0% or more), and the preferable upper limit is 19.5% or less (more preferably 19.0% or less).
  • Nb is an element effective for improving the high-temperature strength by precipitating carbonitride (carbide, nitride, or carbonitride), and this precipitate suppresses the coarsening of crystal grains and diffuses Cr. By promoting the above, a secondary effect of improving corrosion resistance is exhibited.
  • Nb needs to be contained by 0.1% or more. However, if the Nb content exceeds 0.6% and becomes excessive, the precipitates become coarse and the toughness is reduced.
  • a preferable lower limit of the Nb content is 0.12% or more (more preferably 0.15% or more), and a preferable upper limit is 0.5% or less (more preferably 0.3% or less).
  • Ti 0.1 to 0.6%
  • Ti exhibits the same effect as Nb, but by adding it in combination with Nb and Zr, the precipitates are further stabilized and effective in maintaining high-temperature strength for a long period of time.
  • the Ti content needs to be 0.1% or more.
  • the preferable lower limit of the Ti content is 0.12% or more (more preferably 0.15% or more), and the preferable upper limit is 0.5% or less (more preferably 0.3% or less).
  • B has the effect of promoting the formation of M 23 C 6 type carbide (M is a carbide forming element), which is one of the main strengthening mechanisms, by forming a solid solution in steel.
  • M is a carbide forming element
  • the B content needs to be 0.0005% or more.
  • a preferable lower limit of the B content is 0.001% or more (more preferably 0.0012% or more), and a preferable upper limit is 0.004% or less (more preferably 0.003% or less).
  • N has the effect of improving high temperature strength by solid solution strengthening by dissolving in steel, and is effective in improving high temperature strength by forming nitrides with Cr and Nb under a long-term high temperature load. It is an element. In order to exhibit these effects effectively, the N content needs to be 0.001% or more. However, if the N content becomes excessive and exceeds 0.15%, the formation of coarse Ti nitrides and Nb nitrides is caused, and the toughness is deteriorated.
  • the preferable lower limit of the N content is 0.002% or more (more preferably 0.003% or more), and the preferable upper limit is 0.10% or less (more preferably 0.08% or less, still more preferably 0.02%). The following).
  • S 0.005% or less (excluding 0%)
  • S is an unavoidable impurity, but when its content increases, hot workability deteriorates, so it is necessary to make it 0.005% or less. Further, S impairs the action of adding Ce by fixing Ce as a sulfide, so S is preferably suppressed to 0.002% or less (more preferably 0.001% or less).
  • P 0.05% or less (excluding 0%)
  • P is an inevitable impurity, but if its content increases, weldability is impaired, so it is necessary to make it 0.05% or less. Preferably it is good to suppress to 0.04% or less (more preferably 0.03% or less).
  • the contained elements specified in the present invention are as described above, and the balance is iron and inevitable impurities, and in addition to La, Nd, Pr, etc. contained at a lower concentration than Ce when adding Ce raw material with misch metal Furthermore, mixing of elements brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. can be allowed. However, low melting point impurities such as Sn, Pb, Sb, As, and Zn derived from scrap raw materials reduce the strength of grain boundaries during hot working or when used in a high temperature environment. In order to improve the resistance to embrittlement cracking after use, it is desirable to keep the concentration low. Moreover, the steel material of this invention may contain Mo, W, Ca, Mg, etc. as needed, and the characteristic of steel materials is further improved according to the kind of element contained.
  • Mo and W have the effect of improving the high temperature strength by solid solution strengthening, and the high temperature strength can be further increased by inclusion if necessary.
  • Mo content is excessive, hot workability is hindered. More preferably, it is 2.5% or less (more preferably 2.0% or less).
  • W content is excessive, a coarse intermetallic compound is formed and the high temperature ductility is lowered. More preferably, it is 4.5% or less (more preferably 4.0% or less).
  • the preferable minimum for exhibiting the above effects effectively is 0.1% or more (more preferably 0.5% or more) in Mo, and 0.1% or more (more preferably 1) in W. 0.0% or more).
  • the contents may be set according to the required amount of reinforcement and the allowable cost.
  • Ca and Mg function as desulfurization / deoxidation elements, formation of Ce sulfide and Ce oxide can be suppressed, and Ce yield can be improved, and reduction in toughness due to inclusion formation can be suppressed.
  • a preferable lower limit for effectively exhibiting such an effect is 0.0002% or more, and more preferably 0.0005% or more.
  • the upper limit value is set to 0.005% or less because there are restrictions on work such as bumping of molten steel during melting work. More preferably, both are 0.002% or less.
  • the heat-resistant austenitic stainless steel of the present invention can improve the resistance to repeated oxidation by containing a predetermined amount of Zr and Ce. However, in order to further improve the characteristics, the crystal grain size of the metal structure is controlled. It is effective. From such a viewpoint, it is preferable that the crystal grain size of the metal structure of the heat-resistant austenitic stainless steel is a microstructure having an ASTM (American Society for Testing and Materials) grain size number of 6 or more and less than 12.
  • the grain size number (crystal grain size number) is determined by ASTM, and means a grain size number calculated by a counting method (Planimetric method).
  • the crystal grain size of the metal structure is less than 6 in terms of ASTM grain size number, the effect of improving the repeated oxidation resistance by containing Zr and Ce can be obtained, but the improvement effect cannot be sufficiently enhanced.
  • the particle size number is more preferably 7 or more, and still more preferably 9 or more.
  • the upper limit of the crystal grain size is preferably less than 12. In consideration of production cost and productivity, it is more preferably 10 or less.
  • the crystal grain size range as described above can be obtained by adjusting the amount of components contributing to pinning of grain boundaries and the conditions of hot and cold working and heat treatment such as drawing and extrusion during the pipe making process. . Although each optimum condition varies depending on these three factors, in order to make the crystal grain size fine, it is necessary to add a large amount of precipitated elements, to increase the degree of processing, and to lower the heat treatment temperature.
  • Cold / hot working is aimed at adjusting the thickness and adjusting the grain structure by heat treatment after processing by introducing strain, and is usually carried out at a cross-section reduction rate of 30% or more.
  • the heat treatment is intended to remove strain, and is generally performed in a temperature range of 1000 ° C. or higher and lower than 1300 ° C.
  • the prescribed particle size range can be obtained by setting the heat treatment temperature to 1250 ° C. or less, preferably 1225 ° C. or less, particularly preferably 1150 ° C. or less. It is not limited to this condition depending on the balance between processing and heat treatment.
  • Example 1 Various steel materials having the chemical composition shown in Table 1 below were melted, and a 20 kg ingot melted in a vacuum melting furnace (VIF) was hot forged into a dimension of width: 120 mm ⁇ thickness: 20 mm, at 1250 ° C. After heat treatment, it was processed to a thickness of 13 mm by cold rolling. Thereafter, heat treatment was again performed at 1150 ° C. for 5 minutes, and this was used as a base material. A 20 mm ⁇ 30 mm ⁇ 2 mm steel material was cut out from the base material by machining, and a test piece was prepared by smoothing and mirror-finishing the surface of the steel material by polishing using emery paper and buffing using diamond abrasive grains.
  • VIF vacuum melting furnace
  • test No. Nos. 1 to 10 are steel materials (invention steels) satisfying the requirements specified in the present invention.
  • Nos. 11 to 16 are steel materials (comparative steels) that do not satisfy the requirements defined in the present invention.
  • Reference numerals 14, 15, and 16 are “fire SUS304J1HTB equivalent steel”, “SUS304L equivalent steel”, and “SUS310S equivalent steel”, which are existing steels, respectively.
  • Test No. 7 and 8 are steel materials to which Ce is added by misch metal, and include La, Pr, Nd and the like as impurities.
  • Test No. 9 and 10 are steel materials to which Mg and Ca are added, respectively.
  • fire SUS304J1HTB equivalent steel belongs to 18Cr-8Ni austenitic stainless steel and is a steel type that has been used as a boiler heat transfer tube (for example, “Materia” Vol. 46, No. 2). No. 2007, P99-101).
  • SUS310S equivalent steel belongs to 25Cr-20Ni austenitic stainless steel and is more expensive because it contains more Ni than 18Cr-8Ni austenitic stainless steel, but essentially in terms of chemical composition. It is a steel type that has better corrosion resistance than 18Cr-8Ni austenitic stainless steel.
  • the production and peeling of the scale does not occur because the steel of the present invention has a smoother scale surface.
  • the steel according to the present invention exhibits the same properties as the existing steel SUS310S equivalent to 25Cr-20Ni (test No. 16), which has a high Ni content and is excellent in corrosion resistance, and is an 18Cr-8Ni austenitic stainless steel. It can be seen that, despite the low cost, the repeated oxidation resistance can be improved to the same level as the 25Cr-20Ni austenitic stainless steel.
  • Example 2 Test No. shown in Tables 1 and 2 Inventive steels 1 to 6 and test no.
  • the heat treatment temperature was changed in the temperature range of 1125 to 1275 ° C. after cold working with a cross-section reduction rate of 35%, and samples with crystal grain numbers of 4.5 to 10.0 were prepared for each steel material.
  • the repeated oxidation test is a temperature cycle of 25 minutes for heating in the furnace and 5 minutes for cooling to the atmosphere. The sample is taken in and out of the atmospheric furnace at 1100 ° C., and the specimen mass after 40 cycles is compared with the specimen mass in the initial state The mass loss (thickness loss: mg ⁇ cm ⁇ 2 ) was determined.
  • the amount of thinning was significantly improved in some steels with added Zr and Ce, and the amount of thinning after 20 cycles was an error depending on the particle size. Repeated. For the calculation of the crystal grain size, three visual fields were observed per steel type.
  • the addition of Zr and Ce itself improves the resistance to repeated oxidation, and the chemical composition is within the range specified in the present invention. It can be seen that the finer the grain size, the better the characteristics.
  • the heat-resistant austenitic stainless steel of the present invention is suitably used as a heat transfer tube material such as a boiler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 本発明の耐熱オーステナイト系ステンレス鋼は、C:0.05~0.2%、Si:0.1~1%、Mn:0.1~2.5%、Cu:1~4%、Ni:7~12%、Cr:16~20%、Nb:0.1~0.6%、Zr:0.05~0.4%、Ce:0.005~0.1%、Ti:0.1~0.6%、B:0.0005~0.005%、N:0.001~0.15%、S:0.005%以下(0%を含まない)およびP:0.05%以下(0%を含まない)を夫々含有し、残部が鉄および不可避不純物からなる。

Description

耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼
 本発明は、ボイラー等の伝熱管材料として好適に用いられる耐熱オーステナイト系ステンレス鋼に関するものであり、殊に耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼に関するものである。
 近年、温暖化ガスである二酸化炭素の排出を抑制するために、石炭による火力発電の高効率化が進められている。この発電効率を向上させるためには、ボイラーの蒸気温度と圧力の上昇が有効であり、こうしたボイラーの伝熱管材料としては、高温強度、耐酸化性に優れたものが適用されている。また、このような特性に優れた材料として、一般的にオーステナイト系ステンレス鋼が用いられる。
 伝熱管材料に要求される耐酸化性としては、耐繰返し酸化特性がある。ボイラーは起動と停止を繰り返すため、鋼管(伝熱管)表面に形成された酸化物は高温環境と低温環境を交互に受ける繰返し酸化環境下に置かれることになる。このような環境下では、材料基材との熱膨張差に起因して酸化物が剥離してしまい、スケール剥離による更なる酸化の進行と鋼管の肉厚減少(減肉)による強度不足が生じるという問題がある。このような環境下でも、上記のような現象が生じにくいような特性(本発明では、これを「耐繰返し酸化特性」と呼んでいる)が要求される。
 耐繰返し酸化特性以外の特性を含む広義の意味での耐酸化性に優れる耐熱材料としては、25Cr-20Niオーステナイト系ステンレス鋼(SUS310S)が知られているが、このステンレス鋼は高価なNiを多量に含むことからコストが高いという問題がある。こうしたことから、ボイラーの伝熱管材料としては、Ni含有量を低く抑え、且つ高温強度や耐食性が良好である18Cr-8Niオーステナイト系ステンレス鋼(SUS304)を基本的な成分とすることが重要な要件となる。
 18Cr-8Niオーステナイト系ステンレス鋼に近い成分としては、Tiを添加しているSUS321の成分系が知られており、またSUS321の成分系に準ずる火力発電用規格を有するボイラー用ステンレス鋼としては、火SUS321J2HTBが知られている。広義な意味での耐酸化性の向上技術としては、(1)ショットピーニング加工や機械研磨などの表面処理、(2)耐食性を向上させる成分であるAl、Siや、Ce、Laを含むREM(希土類元素)の添加、(3)結晶粒微細化等があり、Ti化合物を析出強化機構として用いているオーステナイト系ステンレス鋼に関連するものとして、例えば特許文献1、2のような技術が提案されている。
 これらの技術のうち特許文献1は、耐食性向上に寄与するAlを添加すると共に、表面研磨でCr層の形成を促進させることによって、耐酸化性を向上させることを開示している。また、表面研磨処理と同じ効果を得る代替手段として、AlとSiの合計量を4%以上に増加させ、加えてCe、Y、La等のREM或はCaを添加することによっても耐酸化性が向上できることが示されている。
 しかしながら、Al、Siの添加やCr層の形成によって、鋼管表面に形成される酸化物の成長速度を遅らせる作用が期待できるものの、酸化物の形成自体を完全に防止できるものではなく、また良好な耐繰返し酸化特性の発揮は期待できない。更に、Alを添加する鋼材では、製管時に表面傷が生じやすいという問題もある。
 特許文献2では、耐酸化特性を向上させるために、Ce、La、Hfを添加することが開示されているものの、上記技術と同様に、耐繰返し酸化特性が低いことが予想され、また耐繰返し酸化特性の改善を認識してなされたものでもない。
 耐繰返し酸化特性を向上させるための技術として、特許文献3のような技術も提案されている。しかしながら、この技術では、AlおよびSiを多く含むため、鋼管の表面傷や長時間熱処理後に脆化を招くという問題がある。またこの技術では、Yを含めてLaやCe等のREMを添加することがスケールの密着性を向上させる作用を発揮することが示されているが、十分な特性を有するものでなく、また耐繰返し酸化特性の改善を認識してなされたものでもない。
  一方、ボイラー用オーステナイト系ステンレス鋼の耐酸化性を向上させる技術として、特許文献4のような技術も提案されている。この技術は、NbとNを析出強化や固溶強化のために用いている「火SUS304J1HTB」の成分系である。この技術でも酸化物系介在物の形成を目的として、0.002~0.05%の程度のTiを添加しているが、火SUS321J2HTBのようなTi化合物の析出を強化機構として用いている鋼材では、Tiを0.1~0.25%程度添加しなければ高温強度を確保できないことが予想される。またこの技術は、耐繰返し酸化特性の改善を認識してなされたものではなく、耐繰返し酸化特性が低いことが予想される。
 特許文献5の技術では、REMの添加と粒子吹き付けピーニング加工によって、耐酸化性を向上させるものである。しかしながら、ピーニング加工は製造プロセスの増加によるコスト高を招くという別の問題があり、また耐繰返し酸化特性の改善を認識してなされたものではなく、耐繰返し酸化特性が低いことが予想される。
日本国特開2004-43903号公報 日本国特開平9-165655号公報 日本国特開平8-337850号公報 日本国特開2003-268503号公報 日本国特開平6-322489号公報
 本発明はこうした状況の下でなされたものであって、その目的は、NiとCrの含有量が18Cr-8Niオーステナイト系ステンレス鋼と同等の化学成分組成を有すると共に、AlやSiの添加や表面処理に依存することなく、繰返し酸化環境における酸化物の剥離が少なく、減肉が生じにくい耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼を提供することにある。
 上記課題を解決した本発明の耐熱オーステナイト系ステンレス鋼は、C:0.05~0.2%(質量%の意味。以下、化学成分組成について同じ。)、Si:0.1~1%、Mn:0.1~2.5%、Cu:1~4%、Ni:7~12%、Cr:16~20%、Nb:0.1~0.6%、Zr:0.05~0.4%、Ce:0.005~0.1%、Ti:0.1~0.6%、B:0.0005~0.005%、N:0.001~0.15%、S:0.005%以下(0%を含まない)およびP:0.05%以下(0%を含まない)を夫々含有し、残部が鉄および不可避不純物からなることを特徴とする。
 本発明の耐熱オーステナイト系ステンレス鋼は、必要に応じて、更にMo:3%以下(0%を含まない)および/またはW:5%以下(0%を含まない)を含有することも有用であり、これらの成分を含有させることによって、高温強度が更に改善される。
 本発明の耐熱オーステナイト系ステンレス鋼は、必要に応じて、更にCa:0.005%以下(0%を含まない)および/またはMg:0.005%以下(0%を含まない)を含有することによって、Ceの歩留を向上できると共に靭性を向上することができる。
 上記のように化学成分組成を調整することによって、耐繰返し酸化特性を向上させた耐熱オーステナイト系ステンレス鋼が得られるのであるが、更に金属組織の結晶粒度をASTM粒度番号で6以上、12未満とすることによって、より高い耐繰返し酸化特性を得ることができると共に、安定してその特性を発揮できるものとなる。
 本発明の耐熱オーステナイト系ステンレス鋼は、繰返し酸化環境においても、スケールの剥離による酸化の進行、およびそれに付随する鋼材の減肉が生じ難いため、石炭火力発電の伝熱管として使用することによって蒸気温度の高温化による発電効率の向上が可能となり、既存材料に比べて伝熱管を長寿命化させてメンテナンスコストを低減することができる。また、スケールの剥離が少ないため、伝熱管として用いたときにその内部のスケール飛散が抑制でき、タービンの損傷を低減することも可能となる。
 本発明者らは、必要な高温強度を維持しつつ、耐繰返し酸化特性を向上したオーステナイト系ステンレス鋼を実現すべく、様々な角度から検討した。その結果、NiとCrの含有量が18Cr-8Niオーステナイト系ステンレス鋼と同等の化学成分組成を有するステンレス鋼に対し、所定量のZrとCeを含有させてやれば、格段に優れた耐繰返し酸化特性を発揮し得ることを見出し、本発明を完成した。
 本発明の耐熱オーステナイト系ステンレス鋼は、NiとCrの含有量が18Cr-8Niオーステナイト系ステンレス鋼と同等の化学成分組成に対して、所定量のZrとCeを含有することを特徴とするものであるが、これらZrとCeの含有量の範囲設定理由は、次の通りである。
 ZrおよびCeは、これらの相乗効果によって、酸化物の剥離を抑制する効果を発現する。こうした効果を発揮させるためには、Zrについては0.05%以上含有させる必要がある。しかしながら、Zr含有量が過剰になると、粗大な介在物を形成して鋼材(若しくは鋼管)の表面性状や靭性を悪化させるため、その上限は0.4%以下とする必要がある。またCeについては、その効果を発揮させるためには、0.005%以上含有させる必要がある。しかしながら、Ce含有量が0.1%を超えて過剰になると、経済的なコスト増を招くことになる。
 ZrおよびCeの添加は、鋼材のコスト高を招くため、含有させることによる作用とコスト高の兼合いで、適切な含有量を設定すればよい。こうした観点から、Zr含有量の好ましい下限は0.10%以上(より好ましくは0.15%以上)であり、好ましい上限は0.3%以下(より好ましくは0.25%以下)である。またCe含有量の好ましい下限は0.01%以上(より好ましくは0.015%以上)であり、好ましい上限は0.05%以下(より好ましくは0.03%以下)である。
 また、Ceの原料は純Ceを添加してもよいが、別途作製したCeを含む母合金やCeを含むミッシュメタルを用いて必要なCe純分を添加することも可能であり、ミッシュメタルに含まれるLa、Nd、Pr等が、夫々Ceよりも低濃度で不純物として鋼材に含まれたとしても問題はなく、酸化し易い純Ceに比べて、母合金やミッシュメタルを用いることで溶解作業時の取り扱いを簡略化することが可能である。
 尚、従来技術のうち特許文献1、3、5には、Y、La、Ceを含むREMを添加することによって、酸化物の密着性が向上することが開示されているが、これらの開示は、REMはいずれも単独添加を想定したものであって、Zrと共にCeを添加することによる相乗効果については何ら開示されていないものである。
 また上記特許文献2には、ZrとCeを併用して含み得ることも開示されているが、この技術ではいずれも必須の成分ではなく、非添加も含めて必要に応じて添加されるものであり、特にZrは粒界強化やクリープ延性の向上を期待して本発明で規定する範囲よりも少なく含有するものである。
 本発明の耐熱オーステナイト系ステンレス鋼は、NiとCrの含有量が18Cr-8Niオーステナイト系ステンレス鋼と同等の化学成分組成を有するものであるが、上記ZrとCe以外の各元素の化学成分組成(C、Si、Mn、Cu、Ni、Cr、Nb、Ti、B、N、S、P)も適切に調整する必要がある。これらの成分による作用および範囲設定理由は下記の通りである。
[C:0.05~0.2%]
 Cは、高温の使用環境において炭化物を形成し、伝熱管として必要な高温強度、クリープ強度を向上させる作用を有する元素であり、強化機構となる炭化物の析出量を確保するためには0.05%以上含有させる必要がある。しかしながら、C含有量が過剰になって0.2%を超えると、固溶限を超えて粗大な炭化物となり、更なる強化が得られない。C含有量の好ましい下限は0.07%以上(より好ましくは0.09%以上)であり、好ましい上限は0.18%以下(より好ましくは0.15%以下)である。
[Si:0.1~1%]
 Siは、溶鋼中で脱酸作用を有する元素である。また微量の含有であっても、耐酸化性の向上に有効に作用する。これらの効果を発揮させるためには、Si含有量は0.1%以上とする必要がある。しかしながら、Si含有量が過剰になって1%を超えると、σ相の形成を招き、鋼材の脆化(σ脆化)をもたらすことになる。Si含有量の好ましい下限は0.2%以上(より好ましくは0.3%以上)であり、好ましい上限は0.9%以下(より好ましくは0.8%以下)である。
[Mn:0.1~2.5%]
 MnはSiと同様に、溶鋼中で脱酸作用を有する元素であり、またオーステナイトを安定化させる作用がある。これらの効果を発揮させるためには、Mn含有量は0.1%以上とする必要がある。しかしながら、Mn含有量が過剰になって2.5%を超えると、熱間加工性を阻害することになる。Mn含有量の好ましい下限は0.2%以上(より好ましくは0.3%以上)であり、好ましい上限は2.0%以下(より好ましくは1.8%以下)である。
[Cu:1~4%]
 Cuは、鋼中に整合析出物(母材と原子配列が連続的であるような析出物)を形成し、高温クリープ強度を著しく向上させる元素であり、ステンレス鋼における主要な強化機構の一つである。この効果を発揮させるためには、Cu含有量は1%以上とする必要がある。しかしながら、Cu含有量が過剰になって4%を超えてもその効果は飽和する。Cu含有量の好ましい下限は2.0%以上(より好ましくは2.5%以上)であり、好ましい上限は3.7%以下(より好ましくは3.5%以下)である。
[Ni:7~12%]
 Niは、オーステナイトを安定化させる作用があり、オーステナイト相を維持するためには7%以上含有させる必要がある。しかしながら、Ni含有量が過剰になって12%を超えると、コストの増加をもたらすことになる。Ni含有量の好ましい下限は7.5%以上(より好ましくは8.0%以上)であり、好ましい上限は11.5%以下(より好ましくは11.0%以下)である。
[Cr:16~20%]
 Crは、ステンレス鋼としての耐食性を発現するために必須の元素である。こうした効果を発揮させるためには、Crは16%以上含有させる必要がある。しかしながら、Cr含有量が過剰になって20%を超えると、高温強度の低下を招くフェライト相が増加する。Cr含有量の好ましい下限は16.5%以上(より好ましくは17.0%以上)であり、好ましい上限は19.5%以下(より好ましくは19.0%以下)である。
[Nb:0.1~0.6%]
 Nbは、炭窒化物(炭化物、窒化物または炭窒化物)を析出させることで、高温強度の改善に有効な元素であり、またこの析出物が結晶粒の粗大化を抑制し、Crの拡散を促進することで、副次的に耐食性向上の作用を発揮する。必要な析出量を確保するためには、Nbは0.1%以上含有させる必要がある。しかしながら、Nb含有量が0.6%を超えて過剰になると、析出物が粗大化し靭性の低下を招くことになる。Nb含有量の好ましい下限は0.12%以上(より好ましくは0.15%以上)であり、好ましい上限は0.5%以下(より好ましくは0.3%以下)である。
[Ti:0.1~0.6%]
 TiもNbと同様な作用を発揮するものの、NbおよびZrと複合添加することで、析出物が更に安定化して長期間の高温強度の維持にも有効である。こうした効果を有効に発揮させるためには、Ti含有量は0.1%以上とする必要がある。しかしながら、Ti含有量が過剰になると、Nbの場合と同様に析出物が粗大化し靭性の低下を招くことになるので、0.6%以下とする必要がある。Ti含有量の好ましい下限は0.12%以上(より好ましくは0.15%以上)であり、好ましい上限は0.5%以下(より好ましくは0.3%以下)である。
[B:0.0005~0.005%]
 Bは、鋼中に固溶することで、主要な強化機構の一つであるM23型炭化物(Mは炭化物形成元素)の形成を促進させる作用がある。こうした効果を有効に発揮させるためには、B含有量は0.0005%以上とする必要がある。しかしながら、B含有量が過剰になると熱間加工性や溶接性の低下を招くため、0.005%以下とする必要がある。B含有量の好ましい下限は0.001%以上(より好ましくは0.0012%以上)であり、好ましい上限は0.004%以下(より好ましくは0.003%以下)である。
[N:0.001~0.15%]
 Nは、鋼中に固溶することで固溶強化によって高温強度を向上させる作用があり、また長期間の高温荷重下において、CrやNbと窒化物を形成して高温強度の向上に有効な元素である。これらの効果を有効に発揮させるためには、N含有量は0.001%以上とする必要がある。しかしながら、N含有量が過剰になって0.15%を超えると、粗大なTi窒化物やNb窒化物の形成を招いて靭性を悪化させる。N含有量の好ましい下限は0.002%以上(より好ましくは0.003%以上)であり、好ましい上限は0.10%以下(より好ましくは0.08%以下、更に好ましくは0.02%以下)である。
[S:0.005%以下(0%を含まない)]
 Sは、不可避不純物であるが、その含有量が増加すると熱間加工性を劣化させるため、0.005%以下とする必要がある。また、SはCeを硫化物として固定することでCeを添加することによる作用を損なうので、好ましくは0.002%以下(より好ましくは0.001%以下)に抑制するのが良い。
[P:0.05%以下(0%を含まない)]
 Pは、不可避不純物であるが、その含有量が増加すると溶接性を損なうため、0.05%以下とする必要がある。好ましくは0.04%以下(より好ましくは0.03%以下)に抑制するのが良い。
 本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避不純物であり、Ce原料をミッシュメタルで添加する際にCeよりも低濃度で含まれるLa,Nd,Pr等に加え、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。但し、スクラップ原料に由来するSn、Pb、Sb、As、Znなどの低融点不純物金属は、熱間加工時や高温環境での使用時に粒界の強度を低下させるため、熱間加工性や長期使用後の耐脆化割れを改善するためには低濃度に抑えることが望ましい。また、本発明の鋼材は、必要に応じてMoやW、Ca、Mg等を含有していても良く、含有される元素の種類に応じて鋼材の特性が更に改善される。
[Mo:3%以下(0%を含まない)および/またはW:5%以下(0%を含まない)]
 MoおよびWは、固溶強化によって高温強度を向上させる効果があり、必要によって含有させることで高温強度を更に上昇させることができる。しかしながら、Mo含有量が過剰になると熱間加工性を阻害するので、3%以下とすることが好ましい。より好ましくは、2.5%以下(更に好ましくは2.0%以下)である。また、W含有量が過剰になると粗大な金属間化合物を形成して高温延性の低下を招くため、5%以下とすることが好ましい。より好ましくは4.5%以下(更に好ましくは4.0%以下)である。尚、上記のような効果を有効に発揮させるための好ましい下限は、Moで0.1%以上(より好ましくは0.5%以上)であり、Wで0.1%以上(より好ましくは1.0%以上)である。但し、これらの元素は含有させることによって、上記のような作用を発揮するが、それと同時にコスト増を招くため、必要な強化量と許容されるコストに応じて含有量を設定すれば良い。
[Ca:0.005%以下(0を含まない)および/またはMg:0.005%以下(0を含まない)]
 CaおよびMgは、脱硫・脱酸元素として働くため、Ce硫化物やCe酸化物の形成を抑制してCeの歩留り向上や、介在物形成による靭性低下の抑制が可能となる。こうした効果を有効に発揮させるための好ましい下限はいずれも0.0002%以上であり、より好ましくは0.0005%以上である。しかしながら、これらの含有量が過剰になると、溶解作業中に溶鋼の突沸が生じるなどの作業上の制約を受けるため、上限値をいずれも0.005%以下とした。より好ましくはいずれも0.002%以下である。
 本発明の耐熱オーステナイト系ステンレス鋼は、所定量のZrとCeを含有することによって、耐繰返し酸化特性を改善できるのであるが、更に特性を向上させるためには、金属組織の結晶粒度を制御することが有効である。こうした観点から、耐熱オーステナイト系ステンレス鋼の金属組織の結晶粒度を、ASTM(American Society for Testing and Materials)粒度番号で6以上、12未満の微細組織とすることが好ましい。上記粒度番号(結晶粒度番号)は、ASTMで定められたものであり、計数方法(Planimetric method)によって算出された粒度番号を意味する。
 金属組織の結晶粒度がASTM粒度番号で6未満であると、ZrとCeを含有することによる耐繰返し酸化特性の向上効果自体は得られるものの、その改善効果を十分に高めることができなくなる。この粒度番号はより好ましくは7以上であり、更に好ましくは9以上である。一方、熱間・冷間加工と熱処理による製管プロセスでは、極端に微細な結晶粒組織は実質的に作製不可能であるため、結晶粒度の上限は12未満とすることが好ましい。製造コストや生産性を考慮すると、10以下であることがより好ましい。
 上記のような結晶粒度範囲は、結晶粒界のピンニングに寄与する成分の添加量と、製管プロセス中の抽伸や押出しなどの熱間・冷間加工と熱処理の条件を調整することで得られる。これら3つの要因によって各々の最適条件は変化するが、結晶粒度を微細にするためには析出する元素の添加量が多く、加工度を高く、熱処理温度を低くする必要がある。冷間・熱間加工は肉厚調整と、歪を導入して加工後の熱処理で結晶粒組織を整えることが目的であり、通常は30%以上の断面減少率で実施される。また、熱処理は歪を除去することが目的であり、概ね1000℃以上、1300℃未満の温度範囲において実施される。例えば、断面減少率が35%程度の場合、熱処理温度を1250℃以下、好ましくは1225℃以下、特に好ましくは1150℃以下とすることで、規定の粒度範囲を得ることができるが、析出成分・加工・熱処理のバランスによってはこの条件に限定されるものではない。
 上記のような耐熱オーステナイト系ステンレス鋼を用いてボイラー用伝熱管を構成することによって、繰返し酸化環境下で優れた特性を発揮するものとなる。
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
[実施例1]
 下記表1に示す化学成分組成からなる各種鋼材を溶解し、真空溶解炉(VIF)にて溶製した20kgインゴットを幅:120mm×厚さ:20mmの寸法に熱間鍛造加工し、1250℃で熱処理を施した後、冷間圧延によって厚さ:13mmまで加工した。その後、1150℃で5分の熱処理を再度実施して、これを母材とした。この母材から20mm×30mm×2mmの鋼材を機械加工によって切出し、エメリー紙を用いた研磨とダイヤモンド砥粒を用いたバフ研磨で、鋼材の表面を平滑・鏡面化して試験片を作製した。
 尚、下記表1に示した鋼材のうち、試験No.1~10は本発明で規定する要件を満足する鋼材(本発明鋼)、試験No.11~16は本発明で規定する要件を外れる鋼材(比較鋼)であり、このうち試験No.14、15、16は、夫々既存鋼である「火SUS304J1HTB相当鋼」、「SUS304L相当鋼」、「SUS310S相当鋼」である。また、試験No.7、8はCeをミッシュメタルで添加した鋼材であり、不純物としてLa、Pr、Nd等が含まれている。試験No.9、10はそれぞれMgとCaを添加した鋼材である。
 上記「火SUS304J1HTB相当鋼」(試験No.14)は、18Cr-8Niオーステナイト系ステンレス鋼に属し、ボイラー伝熱管として使用実績のある鋼種である(例えば、「まてりあ」第46巻、第2号、2007、P99-101)。また、SUS310S相当鋼(試験No.16)は、25Cr-20Niオーステナイト系ステンレス鋼に属し、18Cr-8Niオーステナイト系ステンレス鋼よりもNiを多く含むため高価であるが、化学成分の点で本質的に18Cr-8Niオーステナイト系ステンレス鋼よりも耐食性に優れた鋼種である。
Figure JPOXMLDOC01-appb-T000001
 上記で得られた各種試験片を用い、減肉量を評価するために繰返し酸化試験を実施した。この繰返し酸化試験では、炉内加熱25分、大気放冷5分のサイクルでサンプルを1100℃の大気炉から出し入れし、20サイクルまで加熱と冷却を繰り返した。繰返し酸化試験後に、試験片の重量変化を電子天秤にて測定し、鋼材の減肉量(mg・cm-2)を算出した。また繰返し酸化試験後の試験片の表面粗さを、目視によって観察した。
 上記の測定結果(減肉量、表面粗さ)を、下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この結果から、次のように考察できる。本発明で規定する化学成分組成を満足する鋼(本発明鋼:試験No.1~10)は、既存鋼(試験No.14、15)や、本発明で規定する化学成分組成から外れた比較鋼(試験No.11~13)に比べて減肉量が小さくなっており、ZrとCeの複合添加によってスケール剥離が生じにくく、減肉量が抑制できることが分かる。
 また、本発明鋼の方がスケール表面の粗さが平滑であることからも、スケールの生成・剥離が生じていないことが分かる。更に、本発明鋼はNi含有量が多く耐食性に優れるとされている25Cr-20Niの既存鋼SUS310S相当鋼(試験No.16)と同等の特性を発揮しており、18Cr-8Niオーステナイト系ステンレス鋼で安価にも関わらず、耐繰返し酸化特性を25Cr-20Niオーステナイト系ステンレス鋼と同等まで向上できていることが分かる。
[実施例2]
 表1、2に示した試験No.1~6の発明鋼と、試験No.14の比較鋼について、断面減少率35%の冷間加工後に熱処理温度を1125~1275℃の温度範囲で変化させ、各々の鋼材で結晶粒度番号が4.5~10.0の試料を作製した。繰返し酸化試験は炉内加熱25分、大気放冷5分の温度サイクルで、サンプルを1100℃の大気炉から出し入れし、40サイクル後の試験片質量を初期状態の試験片質量と比較することで質量減少量(減肉量:mg・cm-2)を求めた。
 サイクル数については、ZrとCeを添加した鋼の一部で減肉量が大幅に改善され、20サイクル後の減肉量が、粒度によっては誤差程度であったため、40サイクルまで加熱と冷却を繰返した。結晶粒度の算出には1鋼種当り3視野の観察を行った。
 上記の測定結果(減肉量)を、結晶粒度と共に下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 この結果から、次のように考察できる。結晶粒度番号が6以上のサンプルが、化学成分組成に加えて結晶粒径まで本願発明の規定を満足する発明例、6未満のサンプルが化学成分組成は満足するものの結晶粒径は満足しない発明例である(粒度番号に下線を示してある)。試験No.14の比較鋼の結果に表れているように、本願発明の化学成分組成を外れる鋼材では、結晶粒度が変化しても減肉量がほぼ変化しないものの、試験No.1~6の発明鋼では結晶粒度番号が大きいものほど減肉量が低減される傾向があることが分かる。また、結晶粒度の異なる発明鋼のいずれもが試験No.14の既存鋼より減肉量を軽減できていることから、ZrとCeの添加自体によって、耐繰返し酸化特性が向上すること、および化学成分組成が本発明で規定する範囲内であっても、結晶粒度が微細なほど更に特性が良くなることが分かる。
 本発明鋼であるNo.1~6の各々の粒度依存性を見ると、各鋼種でZrとCeの含有量に起因した絶対値としての特性差はあるものの、いずれの鋼種においても結晶粒度番号が6未満に比べて6以上の場合に高い耐繰返し酸化特性となり、特に7以上、更に9以上の粒度において顕著な改善効果が得られることが分かる。即ち、本発明の組成範囲を満たす鋼材とすることで、耐繰返し酸化特性を改善できるが、結晶粒度を調整することによってその効果を更に高め、優れた耐繰返し酸化特性を安定して得られることが分かる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年5月11日出願の日本特許出願(特願2011-106588)、2011年9月16日出願の日本特許出願(特願2011-203604)、2012年3月5日出願の日本特許出願(特願2012-048357)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の耐熱オーステナイト系ステンレス鋼は、ボイラー等の伝熱管材料として好適に用いられる。

Claims (3)

  1.  C:0.05~0.2%(質量%の意味。以下、化学成分組成について同じ。)、Si:0.1~1%、Mn:0.1~2.5%、Cu:1~4%、Ni:7~12%、Cr:16~20%、Nb:0.1~0.6%、Zr:0.05~0.4%、Ce:0.005~0.1%、Ti:0.1~0.6%、B:0.0005~0.005%、N:0.001~0.15%、S:0.005%以下(0%を含まない)およびP:0.05%以下(0%を含まない)を夫々含有し、残部が鉄および不可避不純物からなることを特徴とする耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼。
  2.  更に、下記元素の少なくとも1つを含有する請求項1に記載の耐熱オーステナイト系ステンレス鋼。
     Mo:3%以下(0%を含まない)
     W :5%以下(0%を含まない)
     Ca:0.005%以下(0%を含まない)
     Mg:0.005%以下(0%を含まない)
  3.  金属組織の結晶粒度がASTM粒度番号で6以上、12未満である請求項1または2記載の耐熱オーステナイト系ステンレス鋼。
     
     
PCT/JP2012/062039 2011-05-11 2012-05-10 耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼 WO2012153814A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12782655.0A EP2708611B1 (en) 2011-05-11 2012-05-10 Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance
KR1020137029415A KR20130137705A (ko) 2011-05-11 2012-05-10 내반복 산화 특성이 우수한 내열 오스테나이트계 스테인리스강
ES12782655.0T ES2590465T3 (es) 2011-05-11 2012-05-10 Acero inoxidable austenítico resistente al calor que tiene una excelente resistencia a la oxidación cíclica
US14/115,570 US20140154128A1 (en) 2011-05-11 2012-05-10 Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance
CN201280022304.7A CN103517998B (zh) 2011-05-11 2012-05-10 抗循环氧化性能优异的耐热奥氏体系不锈钢

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-106588 2011-05-11
JP2011106588 2011-05-11
JP2011-203604 2011-09-16
JP2011203604 2011-09-16
JP2012048357A JP5143960B1 (ja) 2011-05-11 2012-03-05 高温強度と耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼
JP2012-048357 2012-03-05

Publications (1)

Publication Number Publication Date
WO2012153814A1 true WO2012153814A1 (ja) 2012-11-15

Family

ID=47139289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062039 WO2012153814A1 (ja) 2011-05-11 2012-05-10 耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼

Country Status (7)

Country Link
US (1) US20140154128A1 (ja)
EP (1) EP2708611B1 (ja)
JP (1) JP5143960B1 (ja)
KR (1) KR20130137705A (ja)
CN (1) CN103517998B (ja)
ES (1) ES2590465T3 (ja)
WO (1) WO2012153814A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296186B2 (ja) * 2011-12-27 2013-09-25 株式会社神戸製鋼所 耐スケール剥離性に優れた耐熱オーステナイト系ステンレス鋼およびステンレス鋼管
ES2734051T3 (es) 2015-06-05 2019-12-04 Nippon Steel Corp Acero inoxidable austenítico
CN106256920B (zh) * 2015-06-17 2019-10-29 宝钢德盛不锈钢有限公司 一种具有良好抗氧化性能的含钛奥氏体不锈钢及其制造方法
EP3318651B1 (en) * 2015-07-01 2019-11-13 Nippon Steel Corporation Austenitic heat-resistant alloy and welded joint
JP6623719B2 (ja) * 2015-11-25 2019-12-25 日本製鉄株式会社 オーステナイト系ステンレス鋼
BR112018069311A8 (pt) * 2016-04-07 2021-10-13 Nippon Steel & Sumitomo Metal Corp Material de aço inoxidável austenítico
KR101877786B1 (ko) * 2016-12-21 2018-07-16 한국기계연구원 내산화성이 우수한 오스테나이트계 스테인리스강 및 그 제조 방법
KR20180111417A (ko) 2017-03-31 2018-10-11 엘지전자 주식회사 연성 스테인리스 강관
CN109706386A (zh) * 2018-11-06 2019-05-03 东北大学 一种低压缩比q550d工程机械用钢板及其生产方法
CN109856005A (zh) * 2018-12-25 2019-06-07 力信(江苏)能源科技有限责任公司 一种电池浆料固含量测试装置及测试方法
CN113388790B (zh) * 2021-06-08 2022-11-25 常州腾飞特材科技有限公司 一种06Cr19Ni10N奥氏体不锈钢管及其生产工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322489A (ja) 1993-05-14 1994-11-22 Sumitomo Metal Ind Ltd 耐水蒸気酸化性に優れたボイラ用鋼管
JPH08337850A (ja) 1995-06-12 1996-12-24 Nkk Corp 溶接構造高温機器用オーステナイト系ステンレス鋼
JPH09165655A (ja) 1995-12-14 1997-06-24 Nkk Corp 高温機器用オーステナイトステンレス鋼およびその製造方法
JPH09324246A (ja) * 1996-04-04 1997-12-16 Nkk Corp 耐高温腐食性に優れた熱交換器用オーステナイト系ステンレス鋼
JP2003268503A (ja) 2002-03-08 2003-09-25 Sumitomo Metal Ind Ltd 耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管およびその製造方法
JP2004043903A (ja) 2002-07-12 2004-02-12 Nisshin Steel Co Ltd 耐赤スケール性に優れたオーステナイト系ステンレス鋼材
WO2006106944A1 (ja) * 2005-04-04 2006-10-12 Sumitomo Metal Industries, Ltd. オーステナイト系ステンレス鋼

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2553330A (en) * 1950-11-07 1951-05-15 Carpenter Steel Co Hot workable alloy
WO2005038066A1 (ja) * 2003-10-20 2005-04-28 Kubota Corporation 時効延性及びクリープ破断強度に優れた水素製造反応管用耐熱鋳鋼
JP4946242B2 (ja) * 2006-07-27 2012-06-06 住友金属工業株式会社 オーステナイト系ステンレス鋼溶接継手及びオーステナイト系ステンレス鋼溶接材料
JP5296186B2 (ja) * 2011-12-27 2013-09-25 株式会社神戸製鋼所 耐スケール剥離性に優れた耐熱オーステナイト系ステンレス鋼およびステンレス鋼管
JP6289941B2 (ja) * 2014-03-05 2018-03-07 株式会社神戸製鋼所 オーステナイト系耐熱鋼

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322489A (ja) 1993-05-14 1994-11-22 Sumitomo Metal Ind Ltd 耐水蒸気酸化性に優れたボイラ用鋼管
JPH08337850A (ja) 1995-06-12 1996-12-24 Nkk Corp 溶接構造高温機器用オーステナイト系ステンレス鋼
JPH09165655A (ja) 1995-12-14 1997-06-24 Nkk Corp 高温機器用オーステナイトステンレス鋼およびその製造方法
JPH09324246A (ja) * 1996-04-04 1997-12-16 Nkk Corp 耐高温腐食性に優れた熱交換器用オーステナイト系ステンレス鋼
JP2003268503A (ja) 2002-03-08 2003-09-25 Sumitomo Metal Ind Ltd 耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管およびその製造方法
JP2004043903A (ja) 2002-07-12 2004-02-12 Nisshin Steel Co Ltd 耐赤スケール性に優れたオーステナイト系ステンレス鋼材
WO2006106944A1 (ja) * 2005-04-04 2006-10-12 Sumitomo Metal Industries, Ltd. オーステナイト系ステンレス鋼

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATERIA, vol. 46, no. 2, 2007, pages 99 - 101
See also references of EP2708611A4

Also Published As

Publication number Publication date
ES2590465T3 (es) 2016-11-22
CN103517998B (zh) 2016-08-17
JP2013076156A (ja) 2013-04-25
KR20130137705A (ko) 2013-12-17
CN103517998A (zh) 2014-01-15
EP2708611A1 (en) 2014-03-19
EP2708611A4 (en) 2015-04-08
JP5143960B1 (ja) 2013-02-13
EP2708611B1 (en) 2016-08-24
US20140154128A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5143960B1 (ja) 高温強度と耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼
KR101600735B1 (ko) 내스케일 박리성이 우수한 내열 오스테나이트계 스테인리스강 및 스테인리스강관
US10233523B2 (en) Carburization resistant metal material
JP6369632B2 (ja) 高Cr系オーステナイトステンレス鋼
WO2006109664A1 (ja) フェライト系耐熱鋼
KR102154217B1 (ko) 용접 구조 부재
EP1975267A1 (en) Metallic material having excellent metal dusting resistance
JP5838933B2 (ja) オーステナイト系耐熱鋼
JP5846076B2 (ja) オーステナイト系耐熱合金
JPWO2018003823A1 (ja) オーステナイト系ステンレス鋼
WO2014069467A1 (ja) オーステナイト系ステンレス鋼
JP2011105973A (ja) 耐アルカリ性に優れた二相ステンレス鋼
JPWO2012121232A1 (ja) 二相ステンレス鋼
JP6442852B2 (ja) 二相ステンレス鋼溶接継手
JP4577256B2 (ja) オーステナイト系ステンレス鋼
JP2019026940A (ja) 二相ステンレス鋼溶接継手
JP2017020054A (ja) ステンレス鋼およびステンレス鋼管
JP4490081B2 (ja) 高温耐食性高クロム鉄合金
JP2020079437A (ja) オーステナイト系ステンレス鋼
JP2021070857A (ja) 高温クリープ強度と優れた加工性を有するフェライト系ステンレス鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782655

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012782655

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012782655

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137029415

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14115570

Country of ref document: US