WO2012149751A1 - 一种时钟等级分级方法及相关设备 - Google Patents

一种时钟等级分级方法及相关设备 Download PDF

Info

Publication number
WO2012149751A1
WO2012149751A1 PCT/CN2011/079861 CN2011079861W WO2012149751A1 WO 2012149751 A1 WO2012149751 A1 WO 2012149751A1 CN 2011079861 W CN2011079861 W CN 2011079861W WO 2012149751 A1 WO2012149751 A1 WO 2012149751A1
Authority
WO
WIPO (PCT)
Prior art keywords
time synchronization
synchronization device
clock
time
clockclass
Prior art date
Application number
PCT/CN2011/079861
Other languages
English (en)
French (fr)
Inventor
孙雅茹
程鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/079861 priority Critical patent/WO2012149751A1/zh
Priority to CN201180001783.XA priority patent/CN102388556B/zh
Publication of WO2012149751A1 publication Critical patent/WO2012149751A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0641Change of the master or reference, e.g. take-over or failure of the master
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays

Definitions

  • the present invention relates to the field of communications, and in particular, to a clock level grading method and related equipment. Background technique
  • Second level. 1 is a time synchronization scheme in a telecommunication application scenario. As shown in FIG. 1, after the time synchronization device 11, the bearer device 12, and the base station 13 enable PTP, the time of the primary reference time source 10 can pass through the time synchronization device 11 and the bearer. The device 12 transmits to the base station 13, so that it is not necessary to separately configure the primary reference time source at each base station, thereby reducing the network planning cost.
  • each clock device (including the time synchronization device, the bearer device, and the base station) defines its own clock attribute.
  • the network can be calculated based on the Best Master Clock (BMC).
  • BMC Best Master Clock
  • the clock class of the clock device is defined by the clock class clockclass parameter.
  • Table 1 shows the main clockclass parameter values and meanings defined by the 1588v2 protocol:
  • a clock device with a ClockClass parameter value of 7 does not meet the hold requirement and is degraded to an alternate A clock.
  • the clock quality change of the time synchronization device is reflected by the change of the ClockClass parameter value of the time synchronization device.
  • Table 2 is the current clock attribute of each clock device in Figure 1. (To facilitate the differentiation of the two time synchronization devices 11 in Figure 1, the time synchronization device 11 on the left side of Figure 1 will be described as BITS-A, which will be in Figure 1 The time synchronization device 11 on the right is described as BITS-B).
  • the number of the BITS-A is assumed to be smaller than the clockID of BITS-B, that is, a ⁇ b, and the time-scale type used by BITS-A and BITS-B is the PTP time stamp.
  • the time-scale type used by BITS-A and BITS-B is the PTP time stamp.
  • the value of the Clockclass parameter output by the BITS-A and the BITS-B to the bearer device 12 is 6, and the bearer device follows the BMC.
  • the algorithm calculates the clock source of the current network as BITS-A.
  • the bearer device calculates the clock source of the current network as BITS-A according to the BMC algorithm.
  • BITS-A to bearer device 12 The output of the Clockclass parameter is reduced to 7.
  • the value of the Clockclass parameter output from the BITS-B to the bearer device 12 is reduced to 7. Since the clockID value of the BITS-A is smaller than the clockID value of the BITS-B, the bearer device calculates the current BMC algorithm.
  • the clock source for the network is BITS-A.
  • the bearer device uses BITS-A as the clock source of the current network, and cannot track the BITS with higher clock precision.
  • the ClockClass grading method defined by the existing 1588v2 protocol has at least the following disadvantages: in the scenario where the priority of all time synchronization devices is the same, when the primary reference time source of all time synchronization devices is lost, Ensure that the downstream device of the time synchronization device can switch to the time synchronization device with higher clock precision.
  • the embodiment of the present invention provides a clock level grading method and related equipment, which are used to solve the problem that a downstream device of a time synchronization device cannot be switched to a time synchronization device with high clock precision in a part of the scene.
  • a clock level grading method including:
  • the time synchronization device determines whether the tracked primary reference time source is lost.
  • the time synchronization device stores a clock class clockclass B, and the clock class B is used to indicate the clock level when the time synchronization device loses the tracked primary reference time source and enters the hold mode.
  • B is determined by the local clock precision when entering the hold mode, and the higher the local clock accuracy is, the smaller B is;
  • the clockclass B is output to the downstream device of the time synchronization device.
  • a time synchronization device including:
  • a storage unit configured to store a clock class clockclass B, wherein the clock class B is used to indicate a clock level when the time synchronization device loses the tracking main reference time source and enters the hold mode, and the B is determined by the local clock precision when entering the hold mode. The higher the accuracy of the above local clock, the smaller B is;
  • a determining unit configured to determine whether the tracked primary reference time source is lost
  • An output unit configured to: when the determining unit determines that the tracked primary reference time source is lost, the time synchronization system includes:
  • the time synchronization device stores a clock class clockclass B, and the above clockclass B is used. And indicating a clock level when the time synchronization device loses the tracking main reference time source and enters the hold mode, wherein the B is determined by the local clock precision when entering the hold mode, and the higher the local clock accuracy is, the smaller B is;
  • the time synchronization device is configured to determine whether the tracked primary reference time source is lost. When it is determined that the tracked primary reference time source is lost, the clockclass B is output to the bearer device.
  • the time synchronization device when the time synchronization device loses the tracked primary reference time source, the time synchronization device outputs the clockclass B stored on the time synchronization device to the downstream device, and the time synchronization device enters and maintains.
  • the higher the accuracy of the local clock in the mode the smaller the value of the clockclass parameter output by the time synchronization device is, that is, the smaller the B is.
  • the downstream device can know the time of the main reference time source of the lost tracking according to the received clockclass parameter value. Synchronizing the current clock accuracy level of the device.
  • FIG. 1 is a schematic diagram of a network structure of a time synchronization scheme in a telecommunication application scenario
  • FIG. 2 is a schematic flowchart of an embodiment of a clock level grading method according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of another embodiment of a clock level grading method according to the present invention. Schematic diagram of the network structure under the example;
  • FIG. 5 is a schematic structural diagram of an embodiment of a time synchronization device according to the present invention.
  • FIG. 6 is a schematic structural diagram of an embodiment of a time synchronization system according to the present invention. detailed description
  • Embodiments of the present invention provide a clock level grading method and related equipment.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in conjunction with the accompanying drawings in the embodiments of the present invention.
  • the embodiments are merely a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the clock level grading method in the embodiment of the present invention includes:
  • the time synchronization device determines whether the tracked primary reference time source is lost.
  • the time synchronization device stores a clock class B.
  • the clock class B is used to indicate the clock level when the time synchronization device loses the tracked primary reference time source and enters the hold mode, where the value of B enters the hold mode by the time synchronization device.
  • the local clock accuracy is determined, and the higher the local clock accuracy is, the smaller B is.
  • the time synchronization device When the time synchronization device is unable to receive the signal of the primary reference time source, it can be determined that the currently tracked primary reference time source has been lost.
  • the time synchronization device and the downstream device are connected through the 1588 interface, and when the time synchronization device determines that the tracked primary reference time source is lost, the time synchronization device outputs the notification message carrying the clock class B to the downstream device (That is, the announcement of the announcement message, in which the 1588v2 ten-party discussion defines the format of the announcement message, as shown in Table 3:
  • the grandmasterClockQuality parameter in the table indicates the clock quality, as seen in Table 4, the grandmasterClockQuality parameter contains 4 bytes, by the clockclass parameter, The clockaccuracy parameter and the offsetscaledlogvariance parameter are composed.
  • the B is output as the value of the clockclass parameter in the advertisement.
  • the time synchronization device is interfaced through a one pulse per second (TOP, Time of Day) interface, and the time synchronization device passes the second pulse indication signal in the TOD information.
  • TOP Time of Day
  • the primary reference time source may be a Beidou satellite positioning system, or Global Positioning System (GPS), or other positioning systems, are not limited here.
  • GPS Global Positioning System
  • the time synchronization device when the time synchronization device loses the tracked primary reference time source, the time synchronization device outputs the clockclass B stored on the time synchronization device to the downstream device, and the time synchronization device enters and maintains.
  • the higher the accuracy of the local clock in the mode the smaller the value of the clockclass parameter output by the time synchronization device is, that is, the smaller the B is.
  • the downstream device can know the time of the main reference time source of the lost tracking according to the received clockclass parameter value. Synchronizing the current clock accuracy level of the device.
  • the time synchronization devices are sequentially divided into a first-level time synchronization device, a second-level time synchronization device, and a three-level time synchronization device according to the level of the level.
  • the first-level time synchronization device is a time synchronization device that satisfies the following specifications: At least one cuckoo clock and one satellite timing receiver can be traced to a higher-level time-keeping benchmark (such as a country) through a dedicated comparison method. Timing center ;);
  • the secondary time synchronization device is a time synchronization device that meets the following specifications: at least one cuckoo clock and one satellite timing receiver, which supports time-tracking to a first-level time synchronization device by ground means, and supports ground frequency signal punctuality function, And can reliably trace back to the country's frequency synchronization network;
  • the three-level time synchronization device is a time synchronization device that satisfies the following specifications: at least one high-stability crystal oscillator and one satellite timing receiver are supported, and the time is traced to the second-level time synchronization device or the first-level time synchronization device by ground means, and the support is provided. Ground frequency signal punctuality and reliable traceability to the local frequency synchronization network.
  • Table 4 For the three levels of time synchronization devices, the values and meanings of the main clockclass parameters are defined in Table 4 as follows: Table 4
  • the first-level time synchronization device maintenance requirement refers to the frequency synchronization signal punctuality maintained by the cesium atomic clock or traced to the national reference clock (PRC);
  • the secondary time synchronization device maintenance requirement refers to the maintenance by the cesium atomic clock;
  • the three-stage time synchronization device retention requirement refers to the use of a high-stability crystal oscillator.
  • A, B 1 3 ⁇ 4 B 2 and B 3 in the table are all natural numbers, and the following conditions are met:
  • the values of A, B 1 3 ⁇ 4 B 2 and B 3 can be 6, 7, 8, and 52, respectively.
  • the values of A, B 1 3 ⁇ 4 B 2 and B 3 can be 13, 14, 15, and 53, respectively.
  • A, B 1 3 ⁇ 4 B 2 and B 3 may also be other values satisfying A ⁇ B 2 ⁇ B 3 , which are not limited herein.
  • another embodiment of a clock level grading method of the present invention includes:
  • the time synchronization device determines whether the primary reference time source of the tracking is lost.
  • the time synchronization device stores a clock class B.
  • the clock class B is used to indicate the clock level when the time synchronization device loses the tracked primary reference time source and enters the hold mode, where the value of B enters the hold mode by the time synchronization device.
  • Local clock accuracy is determined if the above local time If the clock accuracy meets the requirement of the first-level time synchronization device, then B is equal to B 1 ; if the local clock accuracy meets the requirement of the secondary time synchronization device, B is equal to B 2 ; if the above local clock accuracy meets the requirements of the third-level time synchronization device , then B is equal to B 3 .
  • step 302 When the time synchronization device can normally receive the signal of the primary reference time source, it can be determined that the currently tracked primary reference time source is not lost, and step 302 is performed. When the time synchronization device is unable to receive the signal of the primary reference time source, it may be determined that the currently tracked primary reference time source has been lost, and step 303 is performed.
  • Output clockclass A to the downstream device The implementation of the clockclass A output to the downstream device may be as described in step 202 of Figure 2, and details are not described herein.
  • the time synchronization device when the time synchronization device loses the tracked primary reference time source, the time synchronization device outputs the clockclass B stored on the time synchronization device to the downstream device, and the time synchronization device enters and maintains.
  • the higher the accuracy of the local clock in the mode the smaller the value of the clockclass parameter output by the time synchronization device is, that is, the smaller the B is.
  • the downstream device can know the time of the main reference time source of the lost tracking according to the received clockclass parameter value. Synchronizing the current clock accuracy level of the device.
  • a clock level grading method is described in a specific application scenario example. As shown in FIG. 4, the time synchronization system architecture diagram in the application scenario includes a time synchronization device 43 and a time synchronization device 44.
  • the time synchronization device 43 is a primary time synchronization device, which is held by the cesium atomic clock when entering the hold mode, which tracks the primary reference time source 41, and the time synchronization device 44 is a secondary time synchronization device, and uses the cesium atomic clock when entering the hold mode. Keep, it tracks the main reference time
  • the bearer device 45 is a downstream device of the time synchronization device 43 and the time synchronization device 44.
  • the values outside the parentheses are the clockclass parameter values defined in the scenario where the PTP time stamp is used.
  • the value in the brackets is the value of the clockclass parameter defined in the scene using the ARB time stamp.
  • a and b are numbers of 8 bytes in size, and a>b.
  • the local clock precision of the time synchronization device 43 satisfies the first-level time synchronization device retention requirement, and the Clockclass parameter value m outputted to the carrier device 45 is equal to 7, and the time synchronization device 44 is held by the cesium atomic clock when entering the hold mode.
  • the local clock accuracy of the synchronization device 44 meets the requirement of the secondary time synchronization device.
  • the value of the Clockclass parameter output to the bearer device 45 is equal to 7.
  • the bearer device 45 can calculate the clock source of the current network as the time synchronization device 43 according to the BMC algorithm.
  • the bearer device 45 can learn that the current clock precision of the time synchronization device 43 with the value of the transmitted Clockclass parameter is 7 and the time of the first time synchronization device is maintained, and the value of the Clockclass parameter sent is 8 Synchronous device 44 current clock accuracy meets secondary time synchronization Preparation keeping requirements.
  • the time synchronization device when the time synchronization device loses the tracked primary reference time source, according to the clock precision of the time synchronization device entering the hold mode, the corresponding clockclass parameter value is output to the downstream device.
  • the downstream device can learn the current clock precision level of the time synchronization device of the lost reference primary reference time source according to the received clockclass parameter value.
  • the clock precision parameter of the time synchronization device is smaller, and the clockclass parameter value that is output to the downstream device after losing the tracked primary reference time source is smaller.
  • the downstream device can be switched to a time synchronization device with high clock precision after being calculated by the BMC algorithm, thereby solving the problem that the downstream device cannot be switched to the time synchronization device with high clock precision in this scenario.
  • a time synchronization device according to an embodiment of the present invention is described below. Referring to FIG. 5, the time synchronization device 500 of the embodiment of the present invention includes:
  • the storage unit 501 is configured to store a clock level clockclass B, where the clockclass B is used to indicate the clock level when the time synchronization device 500 loses the tracking main reference time source and enters the hold mode, and the B is the local clock precision when entering the hold mode. It is decided that the higher the accuracy of the above local clock, the smaller B is.
  • the determining unit 502 is configured to determine whether the tracked primary reference time source is lost.
  • the output unit 503 is configured to: when the determination result of the determining unit 502 is negative, to the time synchronization device
  • the downstream device outputs clockclass B in the storage unit 501.
  • the time synchronization device 500 and its downstream device are connected through the 1588 interface, and the output unit 503 outputs the clock class B to the downstream device through the advertisement message (ie, the announce message).
  • the time synchronization device 500 is connected through the 1PPS+TOD interface, and the output unit 503 outputs clockclass B to the downstream device through the second pulse indication signal in the TOD information, wherein the clockclass parameter value and the second pulse indication signal - Corresponding, that is, different clockclass parameter values are indicated by different second pulse indication signals.
  • the storage unit 501 is further configured to store clockclass A, where clockclass A is used to indicate that the time synchronization device 500 does not lose the tracked primary reference time source, where A ⁇ B; the output unit 503 is also used to determine When unit 502 determines that the tracked primary reference time source is not lost, it outputs clockclass A to its downstream device.
  • time synchronization device 500 of the embodiment may be used as the time synchronization device in the foregoing method embodiment, and may be used to implement all the technical solutions in the foregoing method embodiments, and the functions of the respective function modules may be implemented according to the foregoing method.
  • the method in the example is specifically implemented.
  • the time synchronization device when the time synchronization device loses the tracked primary reference time source, the time synchronization device outputs the clockclass B stored on the time synchronization device to the downstream device, and the time synchronization device enters and maintains.
  • the higher the accuracy of the local clock in the mode the smaller the value of the clockclass parameter output by the time synchronization device is, that is, the smaller the B is.
  • the downstream device can know the time of the main reference time source of the lost tracking according to the received clockclass parameter value. Synchronizing the current clock accuracy level of the device.
  • the time synchronization system 600 in the embodiment of the present invention includes: Time synchronization device 601 and bearer device 602;
  • the clock synchronization device 601 stores a clock level clockclass B, where clockclass B is used to indicate the clock level when the time synchronization device 601 loses the tracking main reference time source and enters the hold mode, and B is the local clock precision when entering the hold mode. It is decided that the higher the accuracy of the above local clock, the smaller B is.
  • the time synchronization device 601 is configured to determine whether the tracked primary reference time source is lost. When it is determined that the tracked primary reference time source is lost, the clockclass B is output to the bearer device 602.
  • the time synchronization device 601 further stores a clockclass A, wherein the clockclass A is used to indicate that the time synchronization device 601 does not lose the tracked primary reference time source, where A ⁇ B; the time synchronization device 601 is also used. When it is determined that the tracked primary reference time source is not lost, the above clockclass A is output to its downstream device.
  • the bearer device 602 when the bearer device 602 can track the time synchronization device 601, the clockclass parameter value output by the bearer device 602 is consistent with the clockclass parameter value of the received time synchronization device 601, and the bearer device 602 cannot track the time normally.
  • the bearer device 602 When the device 601 is synchronized, the bearer device 602 outputs a default clockclass parameter value.
  • time synchronization device 601 of this embodiment may be used as the time synchronization device in the foregoing method embodiment, and may be used to implement all the technical solutions in the foregoing method embodiments, and the functions of the respective functional modules may be implemented according to the foregoing method.
  • the method in the example is specifically implemented.
  • the time synchronization device in the time synchronization system 600 outputs the clockclass B saved on the time synchronization device to the downstream device when the tracked primary reference time source is lost, and the time synchronization device
  • the downstream device can learn the main reference time source of the lost tracking according to the received clockclass parameter value.
  • Time synchronization device current clock accuracy level when all the time synchronization devices tracked by the downstream device have the same priority, the higher the clock accuracy of the time synchronization device, the missing the tracked primary reference
  • the value of the clockclass parameter that is output to the downstream device after the time source is smaller. Therefore, the downstream device can be switched to the time synchronization device with high clock precision after being calculated by the BMC algorithm, thereby solving the above problem.
  • Downstream device switches to time synchronization with higher clock accuracy Problems on the device.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Electric Clocks (AREA)

Abstract

本发明实施例公开了一种时钟等级分级方法及相关设备,其中,一种时钟等级分级方法包括:时间同步设备判断跟踪的主参考时间源是否丢失;所述时间同步设备上保存有时钟等级clockclass B,所述clockclass B用于指示所述时间同步设备失去跟踪的主参考时间源后进入保持模式时的时钟等级,其中,所述B由所述进入保持模式时的本地时钟精度决定,所述本地时钟精度越高,B越小;当判断出所跟踪的主参考时间源丢失时,向所述时间同步设备的下游设备输出所述clockclass B。本发明提供的技术方案可用于解决部分场景中时间同步设备的下游设备无法切换到时钟精度较高的时间同步设备上的问题。

Description

一种时钟等级分级方法^ 目关设备 技术领域
本发明涉及通信领域, 尤其涉及一种时钟等级分级方法及相关设备。 背景技术
美国电气和电子工程师协会(IEEE, Institute of Electrical and Electronics Engineers ) 1588v2精密时钟同步协议(PTP, Precision Time Protocol )可以把 测量与控制***中分散、独立运行的时钟同步起来,同步精度可达到亚微秒级。 图 1为在电信应用场景中的时间同步方案, 如图 1所示, 时间同步设备 11、 承载设备 12以及基站 13启用 PTP后, 主参考时间源 10的时间即可通过时间 同步设备 11和承载设备 12传输给基站 13 , 这样就不需要在每个基站单独配 置主参考时间源, 从而可降低网络的规划成本。
在 PTP协议中, 每个时钟设备 (包括时间同步设备、 承载设备和基站) 都定义有自身的时钟属性, 根据这些时钟属性, 基于最佳主时钟算法(BMC, Best Master Clock ) 即可算出网络中时钟设备的主从关系, 从时钟设备通过调 整本地时间从而实现主从时间同步。 在时钟属性中, 由时钟等级 clockclass参 数来定义时钟设备的时钟质量级别, 如表 1 为 1588v2 协议定义的主要的 clockclass参数值及含义:
表 1
ClockClass 说明
6 ( 13 ) 指示同步于主参考时钟源的时钟设备
7 ( 14 ) ClockClass 参数值为 6的时钟设备失去时间源,进入保持模 式并满足保持要求的时钟级别
52 ( 53 ) ClockClass参数值为 7的时钟设备不满足保持要求时降级为 备选的 A时钟
187 ( 193 ) ClockClass参数值为 7的时钟设备不满足保持要求时降级为 备选的 B时钟 其中, 括号外的值为使用 PTP时标的场景下定义的 clockclass参数值, 括 号中的值为使用独立( ARB, arbitrary )时标的场景下定义的 clockclass参数值。
在实际的 1588v2应用中, 通过时间同步设备的 ClockClass参数值的变化 来反映时间同步设备的时钟质量变化。假设表 2为图 1中各时钟设备当前的时 钟属性(为便于区分图 1中的两个时间同步设备 11 , 下面将处于图 1左边的 时间同步设备 11描述为 BITS-A, 将处于图 1右边的时间同步设备 11描述为 BITS-B )。
表 2
Figure imgf000004_0001
其中, 表中的时钟标记 ( clockID, clockldentity )
的数字, 假设 BITS-A的 clockID小于 BITS-B的 clockID, 即 a<b, BITS-A和 BITS-B使用的时标类型为 PTP时标。 基于现有的 1588v2协议, 当 BITS-A和 BITS-B均能正常跟踪主参考时间源 10时, BITS-A和 BITS-B向承载设备 12 输出的 Clockclass参数值均为 6, 承载设备按照 BMC算法, 计算出当前网络 的时钟源为 BITS-A。
若此时 BITS-B跟踪的主参考时间源 10丟失,假设 BITS-B进入保持模式 且满足保持要求, 此时, BITS-A向承载设备 12输出的 Clockclass参数值仍为 6, BITS-B向承载设备 12输出的 Clockclass参数值降为 7,承载设备按照 BMC 算法, 计算出当前网络的时钟源为 BITS-A。
若此时 BITS- A和 BITS-B跟踪的主参考时间源源同时丟失, 4叚设 BITS- A 和 BITS-B都进入保持模式且满足保持要求满足保持要求, 则, BITS-A向承 载设备 12输出的 Clockclass参数值降为 7, BITS-B 向承载设备 12输出的 Clockclass参数值降为 7, 由于 BITS-A的 clockID值比 BITS-B的 clockID值 小, 承载设备按照 BMC算法, 计算出当前网络的时钟源为 BITS-A。 可见, 在上述应用场景中, 如果 BITS-B的时钟精度高于 BITS-A的时钟 精度, 则承载设备任将 BITS-A作为当前网络的时钟源, 而无法跟踪到时钟精 度较高的 BITS-B, 可见, 现有 1588v2协议定义的 ClockClass等级分级方法至 少存在如下弊端, 即在所有时间同步设备的优先级 Priority都相同的场景下, 当所有时间同步设备的主参考时间源源都丟失时,无法保证时间同步设备的下 游设备能够切换到时钟精度较高的时间同步设备上。 发明内容
本发明实施例提供了一种时钟等级分级方法及相关设备,用于解决部分场 景中时间同步设备的下游设备无法切换到时钟精度较高的时间同步设备上的 问题。
下面为本发明实施例提供的技术方案:
一种时钟等级分级方法, 包括:
时间同步设备判断跟踪的主参考时间源是否丟失;上述时间同步设备上保 存有时钟等级 clockclass B, 上述 clockclass B用于指示上述时间同步设备失去 跟踪的主参考时间源后进入保持模式时的时钟等级, 其中, 上述 B 由上述进 入保持模式时的本地时钟精度决定, 上述本地时钟精度越高, B越小;
当判断出所跟踪的主参考时间源丟失时,向上述时间同步设备的下游设备 输出上述 clockclass B。
一种时间同步设备, 包括:
存储单元, 用于存储时钟等级 clockclass B, 上述 clockclass B用于指示上 述时间同步设备失去跟踪的主参考时间源后进入保持模式时的时钟等级,上述 B由上述进入保持模式时的本地时钟精度决定, 上述本地时钟精度越高, B越 小;
判断单元, 用于判断跟踪的主参考时间源是否丟失;
输出单元, 用于当上述判断单元判断出上述跟踪的主参考时间源丟失时, 一种时间同步***, 包括:
时间同步设备和承载设备;
上述时间同步设备上保存有时钟等级 clockclass B, 上述 clockclass B用于 指示上述时间同步设备失去跟踪的主参考时间源后进入保持模式时的时钟等 级, 其中, 上述 B 由上述进入保持模式时的本地时钟精度决定, 上述本地时 钟精度越高, B越小;
上述时间同步设备用于判断跟踪的主参考时间源是否丟失;当判断出所跟 踪的主参考时间源丟失时, 向上述承载设备输出上述 clockclass B。
由上可见, 本发明实施例提供的技术方案中, 时间同步设备在丟失所跟踪 的主参考时间源时, 向其下游设备输出保存在该时间同步设备上的 clockclass B , 并且时间同步设备进入保持模式时的的本地时钟精度越高, 该时间同步设 备输出的 clockclass 参数值越小, 即 B越小, 一方面, 下游设备可依据接收到 的 clockclass参数值获知丟失跟踪的主参考时间源的时间同步设备当前的时钟 精度级别, 另一方面, 当上述下游设备所跟踪的所有时间同步设备的优先级都 相等时, 由于时间同步设备的时钟精度越高, 其在丟失所跟踪的主参考时间源 后输出给其下游设备的 clockclass参数值越小, 因此, 保证了上述下游设备在 通过 BMC算法进行计算后可切换到时钟精度较高的时间同步设备, 从而解决 了此场景下无法保证上述下游设备切换到时钟精度较高的时间同步设备上的 问题。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为电信应用场景中的时间同步方案的网络结构示意图;
图 2为本发明提供的一种时钟等级分级方法一个实施例流程示意图; 图 3为本发明提供的一种时钟等级分级方法另一个实施例流程示意图; 图 4为本发明提供的一个应用场景实施例下的网络结构示意图;
图 5为本发明提供的一种时间同步设备一个实施例结构示意图;
图 6为本发明提供的一种时间同步***一个实施例结构示意图。 具体实施方式
本发明实施例提供了一种时钟等级分级方法及相关设备。 为使得本发明的发明目的、 特征、 优点能够更加的明显和易懂, 下面将结 合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而非全部实施例。 基 于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
下面对本发明实施例提供的一种时钟等级分级方法进行描述,请参阅图 2, 本发明实施例中的时钟等级分级方法包括:
201、 时间同步设备判断跟踪的主参考时间源是否丟失;
上述时间同步设备上保存有 clockclass B, clockclass B用于指示上述时间 同步设备失去跟踪的主参考时间源后进入保持模式时的时钟等级, 其中, B的 取值由上述时间同步设备进入保持模式时的本地时钟精度决定, 并且, 上述本 地时钟精度越高, B越小。
202、 当判断出所跟踪的主参考时间源丟失时, 向该时间同步设备的下游 设备输出 clockclass B;
当时间同步设备无法接收到主参考时间源的信号时,可判定当前所跟踪的 主参考时间源已丟失。
在本发明的一种实施方式中, 时间同步设备与其下游设备通过 1588接口 对接, 时间同步设备在判断出所跟踪的主参考时间源丟失时, 向其下游设备输 出携带 clockclass B的通告 4艮文(即 announce 艮文), 其中, 1588v2十办议对通 告报文的格式进行了定义, 如表 3所示:
表 3
Bits
Octets Offset
7 6 5 4 3 2 1 0 header 34 0 originTimestamp 10 34 currentUtcOffset 2 44
Reserved 1 46 grandmasterPriority 1 1 47 grandmasterClockQuality 4 48 grandmasterPriority2 1 52 grandmasterldentity 8 53 stepsRemoved 2 61 timeSource 1 63 其中, 表中的 grandmasterClockQuality参数指示时钟质量, 由表 4可见, grandmasterClockQuality参数包含 4个字节, 由 clockclass参数, clockaccuracy (时钟精确度)参数和 offsetscaledlogvariance (偏移量估计)参数组成, 在本 发明实施例中, 将上述 B作为通告 ·^艮文中 clockclass参数的值输出。
在本发明的另一种实施方式中,时间同步设备通过秒脉冲( 1PPS, one pulse per second ) +时间信息( TOD , Time of day )接口对接,时间同步设备通过 TOD 信息中的秒脉冲指示信号向其下游设备输出 clockclass Β, 其中, clockclass参 数值与秒脉冲指示信号——对应, 即不同的 clockclass参数值由不同的秒脉冲 指示信号指示。
在本发明实施中, 上述主参考时间源可以是北斗卫星定位***, 也可以是 全球定位***(GPS, Global Positioning System ), 或者是其它定位***, 此处 不作限定。
由上可见, 本发明实施例提供的技术方案中, 时间同步设备在丟失所跟踪 的主参考时间源时, 向其下游设备输出保存在该时间同步设备上的 clockclass B , 并且时间同步设备进入保持模式时的的本地时钟精度越高, 该时间同步设 备输出的 clockclass 参数值越小, 即 B越小, 一方面, 下游设备可依据接收到 的 clockclass参数值获知丟失跟踪的主参考时间源的时间同步设备当前的时钟 精度级别, 另一方面, 当上述下游设备所跟踪的所有时间同步设备的优先级都 相等时, 由于时间同步设备的时钟精度越高, 其在丟失所跟踪的主参考时间源 后输出给其下游设备的 clockclass参数值越小, 因此, 保证了上述下游设备在 通过 BMC算法进行计算后可切换到时钟精度较高的时间同步设备, 从而解决 了此场景下无法保证上述下游设备切换到时钟精度较高的时间同步设备上的 问题。 下面对本发明实施例提供的一种时钟等级分级方法进一步进行描述。
在本发明实施例中,根据时间同步设备本身的硬件结构和特性,将时间同 步设备按照级别高低依次划分为一级时间同步设备、二级时间同步设备和三级 时间同步设备。
其中, 一级时间同步设备为满足如下规范的时间同步设备: 至少包含一个 铯钟和一个卫星授时接收机, 可通过专用的比对手段, 溯源到本国更高等级的 时间守时基准(如国家授时中心;);
其中,二级时间同步设备为满足如下规范的时间同步设备: 至少包含一个 铷钟和一个卫星授时接收机,支持通过地面手段将时间溯源至一级时间同步设 备, 支持地面频率信号守时功能, 并能可靠地溯源到本国的频率同步网;
其中, 三级时间同步设备为满足如下规范的时间同步设备: 至少包含一个 高稳晶振和一个卫星授时接收机,支持通过地面手段将时间溯源至二级时间同 步设备或一级时间同步设备, 支持地面频率信号守时功能, 并能可靠地溯源到 本国的频率同步网。
针对三种级别的时间同步设备, 本发明实施例对主要的 clockclass参数值 及含义进行如表 4的定义: 表 4
Figure imgf000010_0001
其中, 一级时间同步设备保持要求是指利用铯原子钟保持,或者溯源至全 国基准时钟( PRC , Primary Reference Clock )的频率同步信号守时; 二级时间 同步设备保持要求是指利用铷原子钟保持;三级时间同步设备保持要求是指利 用高稳晶振保持。
其中, 表中的 A、 B1 ¾ B2和 B3均为自然数, 且满足以下条件:
A< Bi< B2< B3
在本发明的一种实施方式中, 当时间同步设备使用的时标类型为 PTP时 标时, 可令 A、 B1 ¾ B2和 B3的取值分别为 6、 7、 8和 52。
在本发明的另一种实施方式中, 当时间同步设备使用的时标类型为 ARB 时标时, 可令 A、 B1 ¾ B2和 B3的取值分别为 13、 14、 15和 53。
当然, A、 B1 ¾ B2和 B3也可以是满足 A< B2< B3的其它取值, 此处 不作限定。
参阅图 3 , 本发明一种时钟等级分级方法的另一个实施例包括:
301、 时间同步设备判断跟踪的主参考时间源是否丟失;
上述时间同步设备上保存有 clockclass B, clockclass B用于指示上述时间 同步设备失去跟踪的主参考时间源后进入保持模式时的时钟等级, 其中, B的 取值由上述时间同步设备进入保持模式时的本地时钟精度决定,若上述本地时 钟精度满足一级时间同步设备保持要求, 则 B等于 B1 ; 若上述本地时钟精度 满足二级时间同步设备保持要求, 则 B等于 B2; 若上述本地时钟精度满足三 级时间同步设备保持要求, 则 B等于 B3
当时间同步设备能正常接收主参考时间源的信号,可判定当前所跟踪的主 参考时间源未丟失, 执行步骤 302。 当时间同步设备无法接收到主参考时间源 的信号时, 可判定当前所跟踪的主参考时间源已丟失, 执行步骤 303。
302、 向下游设备输出 clockclass A; 其中, 向下游设备输出 clockclass A的实现方式可如图 2步骤 202中的描 述, 此处不再赘述。
303、 向下游设备输出 clockclass B;
其中, 向下游设备输出 clockclass B的实现方式可参照图 2步骤 202中的 描述, 此处不再赘述。
由上可见, 本发明实施例提供的技术方案中, 时间同步设备在丟失所跟踪 的主参考时间源时, 向其下游设备输出保存在该时间同步设备上的 clockclass B , 并且时间同步设备进入保持模式时的的本地时钟精度越高, 该时间同步设 备输出的 clockclass 参数值越小, 即 B越小, 一方面, 下游设备可依据接收到 的 clockclass参数值获知丟失跟踪的主参考时间源的时间同步设备当前的时钟 精度级别, 另一方面, 当上述下游设备所跟踪的所有时间同步设备的优先级都 相等时, 由于时间同步设备的时钟精度越高, 其在丟失所跟踪的主参考时间源 后输出给其下游设备的 clockclass参数值越小, 因此, 保证了上述下游设备在 通过 BMC算法进行计算后可切换到时钟精度较高的时间同步设备, 从而解决 了此场景下无法保证上述下游设备切换到时钟精度较高的时间同步设备上的 问题。 下面以一具体应用场景例 ,对本发明实施例的一种时钟等级分级方法进行 描述,如图 4所示为本应用场景下的时间同步***架构图, 包括时间同步设备 43和时间同步设备 44, 其中, 时间同步设备 43为一级时间同步设备, 在进入 保持模式时利用铯原子钟保持, 其跟踪主参考时间源 41 , 时间同步设备 44为 二级时间同步设备,在进入保持模式时利用铷原子钟保持, 其跟踪主参考时间 承载设备 45为时间同步设备 43和时间同步设备 44的下游设备。
在本应用场景中, 主要的 clockclass参数值及含义的定义如表 5: 表 5
Figure imgf000012_0001
其中, 括号外的值为使用 PTP时标的场景下定义的 clockclass参数值, 括 号中的值为使用 ARB时标的场景下定义的 clockclass参数值。
在本应用场景中, 假设时间同步设备 43和时间同步设备 44均使用 PTP 时标, 且时钟属性如表 6所示:
表 6
Figure imgf000012_0002
其中, a和 b为 8个字节大小的数字, 且 a>b。 在时间同步设备 43能正常 跟踪主参考时间源 41 , 时间同步设备 44能正常跟踪主参考时间源 42时, 时 间同步设备 43向承载设备 45输出的 Clockclass参数值 m等于 6, 时间同步设 备 44向承载设备 45输出的 Clockclass参数值 n等于 6,承载设备 45按照 BMC 算法, 可计算出当前网络的时钟源为时间同步设备 44, 当时间同步设备 43和 时间同步设备 44都丟失所跟踪的主参考时间源时,时间同步设备 43进入保持 模式时利用铯原子钟保持, 此时时间同步设备 43的本地时钟精度满足一级时 间同步设备保持要求, 其向承载设备 45输出的 Clockclass参数值 m等于 7, 而时间同步设备 44进入保持模式时利用铷原子钟保持, 此时时间同步设备 44 的本地时钟精度满足二级时间同步设备保持要求, 其向承载设备 45 输出的 Clockclass参数值 n等于 7 , 承载设备 45按照 BMC算法, 可计算出当前网络 的时钟源为时间同步设备 43 , 并且, 承载设备 45根据接收到的 Clockclass参 数值, 可获知发送的 Clockclass参数值为 7的时间同步设备 43当前的时钟精 度满足一级时间同步设备保持要求,发送的 Clockclass参数值为 8的时间同步 设备 44当前的时钟精度满足二级时间同步设备保持要求。
由上可见, 本发明实施例提供的技术方案中, 时间同步设备在丟失所跟踪 的主参考时间源时,根据该时间同步设备进入保持模式的时钟精度, 向下游设 备输出相应的 clockclass 参数值, 且进入保持模式的时钟精度越高, B越小, 一方面, 下游设备可依据接收到的 clockclass参数值获知丟失跟踪的主参考时 间源的时间同步设备当前的时钟精度级别, 另一方面, 当上述下游设备所跟踪 的所有时间同步设备的优先级都相等时, 由于时间同步设备的时钟精度越高, 其在丟失所跟踪的主参考时间源后输出给其下游设备的 clockclass 参数值越 小, 因此, 保证了上述下游设备在通过 BMC算法进行计算后可切换到时钟精 度较高的时间同步设备,从而解决了此场景下无法保证上述下游设备切换到时 钟精度较高的时间同步设备上的问题。 下面对本发明实施例的一种时间同步设备进行描述, 请参阅图 5 , 本发明 实施例的时间同步设备 500包括:
存储单元 501 , 用于存储时钟等级 clockclass B, 其中, clockclass B用于 指示时间同步设备 500 失去跟踪的主参考时间源后进入保持模式时的时钟等 级, B由上述进入保持模式时的本地时钟精度决定, 上述本地时钟精度越高, B越小。
判断单元 502, 用于判断跟踪的主参考时间源是否丟失。
输出单元 503 , 用于当判断单元 502的判断结果为否时, 向时间同步设备 的下游设备输出存储单元 501中的 clockclass B。
在本发明的一种实施方式中, 时间同步设备 500与其下游设备通过 1588 接口对接, 输出单元 503通过通告报文(即 announce报文 ) 向其下游设备输 出 clockclass B。
本发明的另一种实施方式中, 时间同步设备 500通过 1PPS+ TOD接口对 接, 输出单元 503 通过 TOD 信息中的秒脉冲指示信号向其下游设备输出 clockclass B , 其中, clockclass参数值与秒脉冲指示信号——对应, 即不同的 clockclass参数值由不同的秒脉冲指示信号指示。
进一步的, 存储单元 501还用于存储 clockclass A , 其中, clockclass A用 于指示时间同步设备 500 没有失去跟踪的主参考时间源时的时钟等级, 其中 A<B;输出单元 503还用于当判断单元 502判断出所跟踪的主参考时间源没有 丟失时, 向其下游设备输出 clockclass A。
需要说明的是,本实施例的时间同步设备 500可以如上述方法实施例中的 时间同步设备, 可以用于实现上述方法实施例中的全部技术方案, 其各个功能 模块的功能可以根据上述方法实施例中的方法具体实现,其具体实现过程可参 照上述实施例中的相关描述, 此处不再赘述。
由上可见, 本发明实施例提供的技术方案中, 时间同步设备在丟失所跟踪 的主参考时间源时, 向其下游设备输出保存在该时间同步设备上的 clockclass B , 并且时间同步设备进入保持模式时的的本地时钟精度越高, 该时间同步设 备输出的 clockclass 参数值越小, 即 B越小, 一方面, 下游设备可依据接收到 的 clockclass参数值获知丟失跟踪的主参考时间源的时间同步设备当前的时钟 精度级别, 另一方面, 当上述下游设备所跟踪的所有时间同步设备的优先级都 相等时, 由于时间同步设备的时钟精度越高, 其在丟失所跟踪的主参考时间源 后输出给其下游设备的 clockclass参数值越小, 因此, 保证了上述下游设备在 通过 BMC算法进行计算后可切换到时钟精度较高的时间同步设备, 从而解决 了此场景下无法保证上述下游设备切换到时钟精度较高的时间同步设备上的 问题。 下面对本发明实施中的一种时间同步***进行描述, 请参阅图 6, 本发明 实施例中的时间同步*** 600包括: 时间同步设备 601和承载设备 602;
时间同步设备 601上保存有时钟等级 clockclass B , 其中, clockclass B用 于指示时间同步设备 601 失去跟踪的主参考时间源后进入保持模式时的时钟 等级, B 由上述进入保持模式时的本地时钟精度决定, 上述本地时钟精度越 高, B越小。
时间同步设备 601用于判断跟踪的主参考时间源是否丟失;当判断出所跟 踪的主参考时间源丟失时, 向承载设备 602输出上述 clockclass B。
进一步的, 时间同步设备 601上还保存有 clockclass A,其中, clockclass A 用于指示时间同步设备 601没有失去跟踪的主参考时间源时的时钟等级,其中 A<B; 时间同步设备 601还用于当判断出所跟踪的主参考时间源没有丟失时, 向其下游设备输出上述 clockclass A。
在本发明实施例中, 当承载设备 602能正常跟踪时间同步设备 601时,承 载设备 602输出的 clockclass参数值与接收到的时间同步设备 601的 clockclass 参数值一致, 当承载设备 602不能正常跟踪时间同步设备 601 时, 承载设备 602输出默认的 clockclass参数值。
需要说明的是,本实施例的时间同步设备 601可以如上述方法实施例中的 时间同步设备, 可以用于实现上述方法实施例中的全部技术方案, 其各个功能 模块的功能可以根据上述方法实施例中的方法具体实现,其具体实现过程可参 照上述实施例中的相关描述, 此处不再赘述。
由上可见,本发明实施例提供的时间同步*** 600中的时间同步设备在丟 失所跟踪的主参考时间源时, 向其下游设备输出保存在该时间同步设备上的 clockclass B, 并且时间同步设备进入保持模式时的的本地时钟精度越高,该时 间同步设备输出的 clockclass 参数值越小, 即 B越小, 一方面, 下游设备可依 据接收到的 clockclass参数值获知丟失跟踪的主参考时间源的时间同步设备当 前的时钟精度级别, 另一方面, 当上述下游设备所跟踪的所有时间同步设备的 优先级都相等时, 由于时间同步设备的时钟精度越高, 其在丟失所跟踪的主参 考时间源后输出给其下游设备的 clockclass参数值越小, 因此, 保证了上述下 游设备在通过 BMC算法进行计算后可切换到时钟精度较高的时间同步设备, 从而解决了此场景下无法保证上述下游设备切换到时钟精度较高的时间同步 设备上的问题。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描述 的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的***, 装置和方 法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性 的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另 外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个***,或 一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直 接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中 , 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能单元的 形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发 明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全 部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储 介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前述 的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可以 存储程序代码的介质。
以上对本发明所提供的一种时钟等级分级方法及相关设备进行了详细介 绍, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具体实施方式 及应用范围上均会有改变之处, 综上, 本说明书内容不应理解为对本发明的限 制。

Claims

权 利 要 求
1、 一种时钟等级分级方法, 其特征在于, 包括:
时间同步设备判断跟踪的主参考时间源是否丟失;所述时间同步设备上保 存有时钟等级 cl0Ckclass B, 所述 clockclass B用于指示所述时间同步设备失去 跟踪的主参考时间源后进入保持模式时的时钟等级, 其中, 所述 B 由所述进 入保持模式时的本地时钟精度决定, 所述本地时钟精度越高, B越小;
当判断出所跟踪的主参考时间源丟失时,向所述时间同步设备的下游设备 输出所述 clockclass B。
2、 根据权利要求 1所述的方法, 其特征在于, 所述时间同步设备上还保 存有 clockclass A, 所述 clockclass A用于指示所述时间同步设备没有失去跟踪 的主参考时间源时的时钟等级, 其中所述 A<B , 所述判断跟踪的主参考时间 源是否丟失之后包括:
当判断出所跟踪的主参考时间源没有丟失时,向所述时间同步设备的下游 设备输出所述 clockclass A。
3、 根据权利要求 2所述的方法, 其特征在于, 所述时间同步设备使用的 时标类型为精确时钟协议 PTP时标, 所述 A等于 6;
如果所述本地时钟精度满足一级时间同步设备保持要求, 所述 B等于 7; 如果所述本地时钟精度满足二级时间同步设备保持要求, 所述 B等于 8; 如果所述本地时钟精度满足三级时间同步设备保持要求,所述 B等于 52。
4、 根据权利要求 2所述的方法, 其特征在于, 所述时间同步设备使用的 时标类型为独立 ARB时标, 所述 A等于 13;
如果所述本地时钟精度满足一级时间同步设备保持要求,所述 B等于 14; 如果所述本地时钟精度满足二级时间同步设备保持要求,所述 B等于 15; 如果所述本地时钟精度满足三级时间同步设备保持要求,所述 B等于 53。
5、 根据权利要求 1至 4中任一项的所述的方法, 其特征在于, 所述时间 同步设备通过时间信息 TOD 的秒脉冲指示信号向所述下游设备输出所述 clockclass B。
6、 一种时间同步设备, 其特征在于, 包括:
存储单元, 用于存储时钟等级 clockclass B, 所述 clockclass B用于指示所 述时间同步设备失去跟踪的主参考时间源后进入保持模式时的时钟等级,所述 B由所述进入保持模式时的本地时钟精度决定, 所述本地时钟精度越高, B越 小;
判断单元, 用于判断跟踪的主参考时间源是否丟失;
输出单元, 用于当所述判断单元判断出所述跟踪的主参考时间源丟失时,
7、 根据权利要求 6所述的时间同步设备, 其特征在于,
所述存储单元还用于存储 clockclass A, 所述 clockclass A用于指示所述时 间同步设备没有失去跟踪的主参考时间源时的时钟等级, 其中所述 A<B;
8、 根据权利要求 7所述的时间同步设备, 其特征在于, 所述时间同步设 备使用的时标类型为精确时钟协议 PTP时标, 所述 A等于 6;
如果所述本地时钟精度满足一级时间同步设备保持要求, 所述 B等于 7; 如果所述本地时钟精度满足二级时间同步设备保持要求, 所述 B等于 8; 如果所述本地时钟精度满足三级时间同步设备保持要求,所述 B等于 52。
9、 根据权利要求 7所述的时间同步设备, 其特征在于, 所述时间同步设 备使用的时标类型为独立 ARB时标, 所述 A等于 13;
如果所述本地时钟精度满足一级时间同步设备保持要求,所述 B等于 14; 如果所述本地时钟精度满足二级时间同步设备保持要求,所述 B等于 15; 如果所述本地时钟精度满足三级时间同步设备保持要求,所述 B等于 53。
10、 根据权利要求 6至 9任一项所述的时间同步设备, 其特征在于, 所述输出单元通过时间信息 TOD的秒脉冲指示信号向所述下游设备输出 所述 clockclass β。
11、 一种时间同步***, 其特征在于, 包括:
时间同步设备和承载设备;
所述时间同步设备上保存有时钟等级 clockclass B, 所述 clockclass B用于 指示所述时间同步设备失去跟踪的主参考时间源后进入保持模式时的时钟等 级, 其中, 所述 B 由所述进入保持模式时的本地时钟精度决定, 所述本地时 钟精度越高, B越小;
所述时间同步设备用于判断跟踪的主参考时间源是否丟失;当判断出所跟 踪的主参考时间源丟失时, 向所述承载设备输出所述 clockclass B。
12、 根据权利要求 11所述的***, 其特征在于,
所述时间同步设备上还保存有 clockclass A, 所述 clockclass A用于指示所 述时间同步设备没有失去跟踪的主参考时间源时的时钟等级, 其中所述 A<B; 所述时间同步设备还用于当判断出所跟踪的主参考时间源没有丟失时,向 所述承载设备输出所述 clockclass A。
PCT/CN2011/079861 2011-09-20 2011-09-20 一种时钟等级分级方法及相关设备 WO2012149751A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/079861 WO2012149751A1 (zh) 2011-09-20 2011-09-20 一种时钟等级分级方法及相关设备
CN201180001783.XA CN102388556B (zh) 2011-09-20 2011-09-20 一种时钟等级分级方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079861 WO2012149751A1 (zh) 2011-09-20 2011-09-20 一种时钟等级分级方法及相关设备

Publications (1)

Publication Number Publication Date
WO2012149751A1 true WO2012149751A1 (zh) 2012-11-08

Family

ID=45826501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079861 WO2012149751A1 (zh) 2011-09-20 2011-09-20 一种时钟等级分级方法及相关设备

Country Status (2)

Country Link
CN (1) CN102388556B (zh)
WO (1) WO2012149751A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686982B (zh) * 2012-09-17 2017-03-29 ***通信集团公司 一种基于时钟信息的时间同步方法以及节点设备
CN102904662B (zh) * 2012-09-29 2015-06-24 北京东土科技股份有限公司 一种基于ptp协议的跨域时钟同步方法及***
CN104079365A (zh) * 2014-07-21 2014-10-01 昆明联诚科技股份有限公司 一种用于铁路时钟同步网的控制***和方法
CN112152745B (zh) * 2019-08-07 2021-09-28 中兴通讯股份有限公司 时间同步方法、时间同步发送端、接收端及***
WO2021223102A1 (en) * 2020-05-06 2021-11-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and time synchronization (ts) node for enabling extended holdover time
CN112394634A (zh) * 2021-01-21 2021-02-23 国汽智控(北京)科技有限公司 车载计算平台的授时方法、装置、设备及存储介质
EP4289100A1 (en) * 2021-02-05 2023-12-13 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for clock distribution in network
CN114465690A (zh) * 2021-12-30 2022-05-10 华为技术有限公司 一种精度信息的发送方法、装置和***

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465707A (zh) * 2008-12-15 2009-06-24 中兴通讯股份有限公司 一种在同步网中保护时间传递的方法及其***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207606A (zh) * 2006-12-18 2008-06-25 华为技术有限公司 主时钟选举的方法和装置
CN101299749B (zh) * 2007-04-30 2011-12-07 华为技术有限公司 网络间的时钟传递方法和时钟传递装置
CN101399655B (zh) * 2007-09-27 2011-04-20 华为技术有限公司 穿通时钟设备同步端口的确定方法及装置
CN102036361B (zh) * 2009-09-25 2013-08-28 华为技术有限公司 时钟源选择的处理方法、装置和***
JP5560706B2 (ja) * 2009-12-28 2014-07-30 富士通株式会社 ノード装置
CN101867469B (zh) * 2010-06-10 2014-09-24 北京东土科技股份有限公司 一种精密同步时钟的实现方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465707A (zh) * 2008-12-15 2009-06-24 中兴通讯股份有限公司 一种在同步网中保护时间传递的方法及其***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems.", TECHNICAL COMMITTEE ON SENSOR TECHNOLOGY (TC-9)., 24 July 2008 (2008-07-24) *

Also Published As

Publication number Publication date
CN102388556B (zh) 2014-02-26
CN102388556A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2012149751A1 (zh) 一种时钟等级分级方法及相关设备
US8576883B2 (en) Measurement and adjustment of real-time values according to residence time in networking equipment without access to real time
US10432336B2 (en) System and method of synchronizing a distributed clock in a packet-compatible network
US9548831B2 (en) Synchronizing system, synchronizing method, first synchronizing device, second synchronizing device, and computer program
EP2928109B1 (en) Synchronization apparatus, synchronization system, wireless communication apparatus and synchronization method
CN101882990B (zh) 基于ptp及链路质量选取主时钟的方法、从时钟及***
WO2018006686A1 (zh) 一种通信网络设备间时间同步的优化方法、装置及设备
WO2018221238A1 (ja) 無線機器および無線機器の処理方法
CN103999387B (zh) 同步间隔确定
CN102983927B (zh) 一种基于ieee 1588协议的主从时钟对时的时间补偿方法
US9860003B2 (en) Method for providing time holdover in packet-based timing deployments
CN103916950A (zh) 时间同步方法及***
CN103378993A (zh) 基于ptp的从时钟监测方法
CN108259109B (zh) Ptp域中的网络设备及tod同步方法
WO2015122175A1 (ja) 時刻同期装置、時刻同期システム及び時刻同期方法
CN110113127B (zh) 一种基于1588协议传递时间的方法及其***
CN107786293A (zh) 时间同步方法、主时钟设备、从时钟设备及时间同步***
CN103580846A (zh) 一种跨非1588网络传输精密时钟报文的方法及***
US20220007321A1 (en) Network Entities and Methods for a Wireless Network System for Determining Time Information
CN104243079A (zh) 一种实时以太网的微秒级时钟同步方法
CN107395307B (zh) 一种时钟同步方法和设备
CN109921871A (zh) 一种时间同步方法、装置及网络***
CN101420281B (zh) 用于在网络要素之间传送日内时间值的方法和装置
CN103441832A (zh) 基于ptp的时钟同步方法、***和设备
WO2020154199A1 (en) Systems and methods for testing time distribution

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001783.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864640

Country of ref document: EP

Kind code of ref document: A1