WO2012148019A1 - 배터리의 용량 열화 상태 측정 장치 및 방법 - Google Patents

배터리의 용량 열화 상태 측정 장치 및 방법 Download PDF

Info

Publication number
WO2012148019A1
WO2012148019A1 PCT/KR2011/003131 KR2011003131W WO2012148019A1 WO 2012148019 A1 WO2012148019 A1 WO 2012148019A1 KR 2011003131 W KR2011003131 W KR 2011003131W WO 2012148019 A1 WO2012148019 A1 WO 2012148019A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacity
battery
deterioration
current
voltage
Prior art date
Application number
PCT/KR2011/003131
Other languages
English (en)
French (fr)
Inventor
김산선
임재환
한종훈
조성우
정현석
Original Assignee
Sk 이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sk 이노베이션 주식회사 filed Critical Sk 이노베이션 주식회사
Priority to US14/114,040 priority Critical patent/US20140052396A1/en
Priority to PCT/KR2011/003131 priority patent/WO2012148019A1/ko
Publication of WO2012148019A1 publication Critical patent/WO2012148019A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an apparatus and method for measuring a capacity deterioration state of a battery, and more particularly, to an apparatus and method for measuring a capacity deterioration for a battery in a hybrid vehicle, a plug-in hybrid vehicle, or an electric vehicle.
  • PHEVs plug-in hybrid electric vehicles
  • Electric Vehicles Electric Vehicles
  • the present invention has been proposed to solve the problems posed by the prior art, and an object of the present invention is to provide an apparatus and a method capable of measuring capacity degradation and output degradation of a battery regardless of the magnitude of current in a constant current pattern.
  • the present invention at least one battery used in a hybrid vehicle, a plug-in hybrid vehicle, or an electric vehicle, a sensing unit for sensing the current, voltage and temperature of the at least one battery, the current is charged If the current is in the section and the SOC (State Of Charge) is in a predetermined region, a data processor for measuring voltage and current data from the sensing unit, and at least two points are set in the voltage data and corresponding to at least two points.
  • An apparatus for measuring capacity degradation of a battery including a calculator configured to calculate voltage degradation by applying voltage data to at least one battery equivalent circuit model.
  • a memory unit for storing voltage, current, capacity deterioration, and moving average deterioration capacity may be further included.
  • the calculator may calculate the moving average deterioration capacity by adding the deterioration capacities stored for a predetermined period while the vehicle moves.
  • the present invention provides a method for determining whether a current flowing in at least one battery used in a hybrid vehicle, a plug-in hybrid vehicle, or an electric vehicle is a constant current on a charging section, and if the current is a constant current on a charging section, Checking whether the state of charge is in a predetermined region, measuring at least one battery current and voltage data when the SOC is in the predetermined region, and setting at least two points in the measured voltage data
  • a method of measuring a capacity degradation of a battery comprising: calculating capacity degradation by applying voltage data corresponding to at least two points to at least one battery equivalent circuit model.
  • the method may further include calculating a moving average deterioration capacity by adding the deterioration capacity stored for a predetermined period while the vehicle moves.
  • the deterioration capacity is, (a 1 is the slope between SOC and Electromotive Force, ⁇ t is the time interval between the two points, ⁇ V is the voltage difference), and the moving average deterioration capacity is Where the weight Is calculated using
  • MAQ n is a moving average value obtained by adding up deterioration capacity Q which is a value approximating a predetermined deterioration capacity.
  • a 1 varies depending on the characteristics and temperature of the battery, and it is assumed that there is no change even when the capacity decreases.
  • the equivalent circuit model is an electric circuit in which the battery is expressed by the total resistance (R * ), current (I), capacitor (C), terminal voltage (V), and electromotive force (Vo) parameters.
  • the method may further include calculating a battery state of health (SOH), and the battery life state may be Can be expressed as Where NC is the nominal capacity and nominal capacity, and MAQn is the moving average degradation capacity.
  • SOH battery state of health
  • Another effect of the present invention is that capacity deterioration can be measured in real time.
  • Another effect of the present invention is that it can be applied to a capacity reduction algorithm that can be used online, the form of calculating the capacity deterioration is very simple, and the number of required data is very small, so it is very simple to design compared to the prior art. It can be said.
  • FIG. 1 is a system configuration diagram for measuring the capacity of a battery according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a main controller unit (MCU) unit of FIG. 1.
  • MCU main controller unit
  • FIG. 3 is a schematic view showing a capacity measurement process of a battery according to the present invention.
  • FIG. 4 is a circuit diagram of an equivalent circuit model of FIG. 3.
  • FIG. 5 is a flowchart illustrating a process of measuring a capacity of a battery according to an embodiment of the present invention.
  • FIG. 6 is a graph showing a section in which a capacity measurement process of a battery is executed according to an embodiment of the present invention.
  • FIG. 7 is a graph showing a moving average degradation capacity calculated by summing degradation capacity measured using FIGS. 1 to 6 according to another embodiment of the present invention.
  • BMS unit 111 voltage sensing unit
  • vehicle controller 121 data processing unit
  • FIG. 1 is a system configuration diagram for measuring the capacity degradation of a battery according to the present invention.
  • the battery pack 100 the sensing units 111 to 113 for sensing the voltage, current, and temperature of the battery pack, and data received from the sensing units 111 to 113 to measure capacity deterioration.
  • a battery management system (BMS) unit 110 configured as a microcontroller unit (MCU) unit 120, a vehicle controller 140, and the like that receive the deterioration capacity measured from the BMS unit 110 are configured.
  • MCU microcontroller unit
  • vehicle controller 140 vehicle controller
  • the battery pack 100 includes batteries 101 to 10n in series or in parallel.
  • the battery pack 100 may be a hybrid battery such as a nickel metal battery or a lithium ion battery.
  • the battery pack 100 is configured as only one pack, but may be configured as a plurality of subpacks.
  • the BMS unit 110 includes the sensing units 111 to 113 and the MCU unit 120, and functions to measure capacity deterioration of the battery pack 100. That is, the sensing units 111 to 113 may include a voltage sensing unit 111, a current sensing unit 112, and a temperature sensing unit for sensing current, voltage, and temperature of the batteries 101 to 10n in the battery pack 100.
  • the unit 113 is comprised.
  • the temperature sensing unit 113 may sense the temperature of the battery pack 100 or the batteries 101 to 10n.
  • the current sensing unit 112 may be a Hall CT (Hall current transformer) that measures current using a Hall element and outputs an analog current signal corresponding to the measured current, but the present invention is not limited thereto. Other devices can be applied as long as they can sense current.
  • the microcontroller unit 120 receives the voltage, current, and temperature values of the batteries 101 to 10n sensed by the sensing units 111 to 113, and the state of charge of the corresponding batteries 101 to 10n. ), A SOH (State Of Health) value is estimated in real time, and the moving average deterioration capacity calculated by averaging the deterioration capacity of the batteries 101 to 10n and the deterioration capacity stored for a predetermined time while the vehicle moves. The configuration of the MCU for this calculation process is shown in FIG. This will be described later.
  • the SOC, SOH value, deterioration capacity value, and the like are stored in the memory unit 130 and transmitted to the vehicle controller 140.
  • the memory unit 130 may be a memory provided in the MCU unit 120 and may be a separate memory. Therefore, non-volatile memory such as hard disk drive, flash memory, ferro-electric RAM (FRAM), phase-change RAM (PRAM), magnetic RAM (MRAM), and the like may be used.
  • non-volatile memory such as hard disk drive, flash memory, ferro-electric RAM (FRAM), phase-change RAM (PRAM), magnetic RAM (MRAM), and the like may be used.
  • the vehicle controller 140 performs a function for optimally controlling the performance of the main system required for driving the plug-in hybrid car or the electric vehicle. To this end, the SOC and SOH values of the battery are transmitted to the vehicle controller 140 by using a controller area network (CAN) communication method between the vehicle controller 140 and the MCU unit 120.
  • CAN controller area network
  • FIG. 2 is a block diagram of the MCU unit of FIG. 1.
  • the MCU unit 120 includes a data processing unit 121 for processing data transmitted from the sensing units 111 to 113, and receives voltage, current, and temperature values from the data processing unit 121, and estimates SOC and SOH values. And a calculation unit 122 for measuring the remaining capacity and the reduction in the lifetime of the memory, and a memory unit 130 for storing these values as data.
  • the calculation unit 122 receives the voltage, current, and temperature values sensed by the sensing units 111 to 113 through the data processing unit 121 to determine specific sections from these values to determine SOC and SOH values. This function estimates in real time and calculates the capacity and moving average deterioration capacity of the batteries 101 to 10n therefrom. Of course, these values are stored in real time in the memory unit 130 and transmitted to the vehicle controller 140.
  • FIG. 3 is a schematic diagram schematically showing a deterioration capacity measurement process of a battery according to the present invention.
  • Plug-in hybrid cars or electric cars basically charge the battery in the car through an electric plug when parked at night.
  • the SOC is charged from a low region to a very high region.
  • the deterioration capacity of the battery is calculated using this interval.
  • This deterioration capacity is calculated using a battery model, where an equivalent circuit model is used to simplify a complex battery model.
  • This equivalent circuit model is shown in FIG. 4. 4 is a circuit diagram of the equivalent circuit model of FIG. 3. As shown in the figure, the concept of a total resistance R * incorporating a complex RC circuit and an internal resistance R 0 is introduced, and this model is developed to measure the capacity drop.
  • the description of the parameters of this equivalent circuit model can be shown in Table 1 as follows.
  • 5 is a flowchart illustrating a process of measuring capacity degradation of a battery according to the present invention.
  • the third should be constant because there is little change in the overall resistance in the charging section. Finally, there should be little change in the electromotive force curve even if capacity degradation occurs.
  • FIG. 6 is a graph showing a section in which a capacity measurement process of a battery is executed according to an embodiment of the present invention. That is, the interval of L m and L m + 1 (510) is charged, and the front L m, L m and L m + 1, and between L m + 1 period is a data acquisition section 510 in the back.
  • the data collection section 510 has a constant current section consisting of n pieces of data.
  • this data collection section 510 the algorithm of the flowchart of FIG. 5 is activated to collect current and voltage data.
  • this collection of data occurs at some time interval.
  • the time interval means an interval of several hours to several days, and the time interval need not be constant.
  • the MCU unit 120 of FIG.
  • step S401 the algorithm of Fig. 5 is not activated.
  • the collection of the current and voltage data starts as soon as the SOC enters the predetermined area, and the measurement ends when the SOC is out of the predetermined SOC area (step S420).
  • the necessary data is the overall current data, which is necessary to confirm that the current flows constantly.
  • the voltage data corresponding thereto is also preserved.
  • Equation 1 Subtracting Equation 1 from Equation 2 is arranged as follows.
  • Equation 5 summarizing Equation 5 above is as follows.
  • the electromotive force V 0 is calculated as a function of the SOC.
  • the relationship between the electromotive force (replaced by the open circuit voltage OCV (Open Circuit Voltage) when the battery is unloaded) and the SOC can be linear as shown in the following table.
  • the a values have different values depending on the characteristics and temperature of the battery. Further, even if the capacity decrease occurs, the slope a 1 is assumed to be unchanged. In this case, too, if points 1 and 2 are set, they can be expressed as follows.
  • Equation 8 If the difference between Equation 8 and Equation 9 is obtained, it can be expressed as the following Equation.
  • the current integration can be expressed as the product of the current and the time.
  • Q is the current battery capacity
  • This formula can be used to measure the current battery capacity. That is, knowing the time interval between the current and the point, the voltage difference, and the slope between the SOC and the electromotive force can measure the deterioration of the battery capacity in real time.
  • this capacity value is stored in real time and it is also possible to calculate the moving average deterioration capacity by adding it up (step S450).
  • the capacity is calculated through the above-described FIGS. 1 to 6, and the capacity is stored in real time.
  • the final capacity is determined through the moving average value.
  • the moving average is the average of the previous n values for the measured capacity and the optimal value is measured.
  • the average is measured for the remaining values except the maximum and minimum values of the measured capacitance.
  • Equation 15 may determine the moving average deterioration capacity.
  • the method described above allows real-time measurement of life (capacity) status for vehicles such as plug-in hybrid cars or electric vehicles. Because plug-in hybrid cars or electric vehicles have a continuous charging section, capacity decay can be calculated during such charging.
  • SOH battery state of health
  • NC is the nominal capacity
  • MAQ n is the moving average degradation capacity
  • FIG. 7 A graph quantitatively illustrating the moving average degradation capacity is shown in FIG. 7 for easy understanding of the present invention.
  • FIG. 7 is a graph showing a moving average degradation capacity calculated by summing capacity measured using FIGS. 1 to 6 according to another embodiment of the present invention.
  • the capacity is measured over time and only the deterioration capacity within the box 600 is calculated for the moving average. That is, the capacity of the maximum and minimum values out of the box 600 is excluded.
  • the estimated value of Q in the hybrid vehicle or the electric vehicle according to FIGS. 1 to 7 may be expressed as shown in the following table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 배터리의 용량 열화 상태 측정 장치 및 방법을 제공한다. 이를 위해, 배터리의 용량 열화 측정 장치는, 플러그인 하이브리드 자동차 또는 전기 자동차에 사용되는 적어도 하나의 배터리와, 적어도 하나의 배터리의 전압, 전류 및 온도를 센싱하는 센싱부와, 전류가 충전 구간 상 정 전류이고, SOC(State Of Charge)가 소정의 영역에 있으면 센싱부로부터 전압, 전류 및 온도 데이터를 측정하는 데이터 처리부와, 전압 데이터에 적어도 2개의 포인트를 설정하고, 적어도 2개의 포인트에 해당하는 전압 데이터를 적어도 하나의 배터리 등가 회로 모델에 적용하여 열화 용량을 계산하는 계산부를 포함한다.

Description

배터리의 용량 열화 상태 측정 장치 및 방법
본 발명은 배터리의 용량 열화 상태 측정 장치 및 방법에 대한 것으로, 더 상세하게는 하이브리드 자동차, 플러그인 하이브리드 자동차, 또는 전기 자동차에서의 배터리에 대한 용량 열화를 측정하는 장치 및 방법에 관한 것이다.
최근 운송 수단에 있어서 환경에 대한 고려가 중요해 짐에 따라 플러그인 하이브리드 자동차(PHEV: Plug-in Hybrid Electric Vehicle) 및 전기 자동차(Electric Vehicle) 등이 각광을 받고 있다. 특히 PHEV나 EV에 대해서는 배터리에 대한 기술 개발이 매우 중요하게 여겨지고 있다. 여타 다른 친환경차에 비해 배터리의 용량 및 출력이 더욱 커야 하기 때문이다.
그런데 이러한 배터리는 일반적으로 수명이 존재하게 되며, 사용에 의해 자연스레 내부 저항이 증가하여 출력이 줄어들게 된다. 그리고, 사용 가능한 용량도 줄어들게 된다. 이러한 성능 저하가 발생하게 될 경우, 플러그인 하이브리드 자동차의 연비 및 성능에 있어 저하를 가져올 수 있기 때문에 이러한 배터리의 성능 측정이 중요하게 여겨진다.
이러한 배터리의 용량 저하 및 출력 저하에 관한 특허가 이미 출원되어 있다. 예를 들면, 미국특허번호 제 US 2004/0220758호와 제 US 2006/0113959호를 들 수 있다.
그러나, 이들 특허는 충전과 같은 특정한 전류 패턴(예를 들면 특정한 정 전류(Constant Current) 패턴)에서만 측정이 가능하기 때문에 실제 활용을 하는 데 있어 상당히 불리하다 할 수 있다. 따라서, 전류 크기에 상관없이 용량 저하 및 출력 저하를 측정할 수 있는 기술을 요구되고 있는 실정이다.
본 발명은 종래 기술에서 제기된 문제점을 해소하고자 제안된 것으로, 정 전류 패턴에서 전류의 크기와 상관없이 배터리의 용량 저하 및 출력 저하를 측정할 수 있는 장치 및 방법을 제공하는 데에 목적이 있다.
또한, 본 발명은 용량 열화를 실시간으로 측정할 수 있는 장치 및 방법을 제공하는 데에 다른 목적이 있다.
또한, 본 발명은 용량 열화를 간단하게 측정할 수 있는 장치 및 방법을 제공하는 데에 또 다른 목적이 있다.
위 목적을 달성하기 위해, 본 발명은, 하이브리드 자동차, 플러그인 하이브리드 자동차, 또는 전기 자동차에 사용되는 적어도 하나의 배터리와, 적어도 하나의 배터리의 전류, 전압 및 온도를 센싱하는 센싱부와, 전류가 충전 구간 상 정 전류이고, SOC(State Of Charge)가 소정의 영역에 있으면 센싱부로부터 전압 및 전류 데이터를 측정하는 데이터 처리부와, 전압 데이터에 적어도 2개의 포인트를 설정하고, 적어도 2개의 포인트에 해당하는 전압 데이터를 적어도 하나의 배터리 등가 회로 모델에 적용하여 열화 용량을 계산하는 계산부를 포함하는 배터리의 용량 열화 측정 장치를 제공한다.
또한, 전압, 전류, 용량 열화 및 이동 평균 열화 용량을 저장하는 메모리부가 더 포함될 수 있다.
다른 실시예로서, 계산부는 자동차가 이동하면서 소정 기간 동안 저장되는 열화 용량을 합하여 이동 평균 열화 용량을 계산할 수 있다.
본 발명은 또한 다른 실시예로서, 하이브리드 자동차, 플러그인 하이브리드 자동차, 또는 전기 자동차에 사용되는 적어도 하나의 배터리에 흐르는 전류가 충전 구간 상의 정 전류 인지 여부를 확인하는 단계와, 충전 구간 상의 정 전류이면 SOC(State Of Charge)가 소정의 영역에 있는지를 확인하는 단계와, SOC가 소정의 영역 내이면 적어도 하나의 배터리 전류 및 전압 데이터를 측정하는 단계와, 측정된 전압 데이터에 적어도 2개의 포인트를 설정하는 단계와, 적어도 2개의 포인트에 해당하는 전압 데이터를 적어도 하나의 배터리 등가 회로 모델에 적용하여 용량 열화를 계산하는 단계를 포함하는 배터리의 용량 열화 측정 방법을 제공한다.
다른 실시예로서, 상기 자동차가 이동하면서 소정 기간 동안 저장되는 상기 열화 용량을 합하여 이동 평균 열화 용량을 계산하는 단계를 더 포함할 수 있다.
이때, 열화 용량은,
Figure PCTKR2011003131-appb-I000001
(a1은 SOC와 기전력(Electromotive Force) 사이의 기울기이고, Δt는 상기 2개의 포인트 간 시간 간격이며, ΔV는 전압차이임)를 이용하여 계산하고, 이동 평균 열화 용량은,
Figure PCTKR2011003131-appb-I000002
(여기서, 가중치
Figure PCTKR2011003131-appb-I000003
임 )을 이용하여 계산된다.
여기서, MAQn은 소정의 열화 용량에 근사한 값인 열화 용량 Q를 합산한 이동 평균값이 된다.
여기서, a1은 배터리의 특성 및 온도에 따라 값이 달라지며, 용량의 저하가 발생하더라도 변화가 없다고 가정한다.
여기서, 등가 회로 모델은 상기 배터리를 전체 저항(R*), 전류(I), 커패시터(C), 단자전압(V: Terminal voltage) 및 기전력(Vo) 파라미터로 표현한 전기 회로가 된다.
또한, 또 다른 실시예로서 배터리 수명 상태(SOH: State of Health)를 계산하는 단계를 더 포함할 수 있으며, 배터리 수명 상태는
Figure PCTKR2011003131-appb-I000004
로 표현할 수 있다. 여기서 NC는 Nominal Capacity로 공칭용량, MAQn은 이동 평균 열화 용량을 가리킨다.
본 발명에 의하면, 정 전류 패턴에서 전류 크기에 상관없이 배터리의 용량 저하 및 출력 저하를 측정하는 것이 가능하다.
또한, 본 발명의 다른 효과로서는 용량 열화를 실시간으로 측정할 수 있다는 점을 들 수 있다.
본 발명의 또 다른 효과로서는 온라인 상에서 사용이 가능한 용량 저하 알고리즘으로 적용할 수 있고, 용량 열화를 산출하는 식의 형태가 매우 간단하며, 필요한 데이터의 수도 매우 적기 때문에 종래 기술에 비해 매우 간단하게 설계할 수 있다는 점을 들 수 있다.
도 1은 본 발명의 일실시예에 따른 배터리의 용량 측정을 위한 시스템 구성도이다.
도 2는 도 1의 MCU(Main Controller Unit)부에 대한 블럭도이다.
도 3은 본 발명에 따른 배터리의 용량 측정 과정을 개략적으로 보여주는 개략도이다.
도 4는 도 3의 등가 회로 모델의 회로도이다.
도 5는 본 발명의 일실시예에 따른 배터리의 용량 측정 과정을 보여주는 순서도이다.
도 6은 본 발명의 일실시예에 따른 배터리의 용량 측정 과정이 실행되는 구간을 보여주는 그래프이다.
도 7은 본 발명의 다른 일실시예에 따라 도 1 내지 도 6을 이용하여 측정된 열화 용량을 합산하여 계산된 이동 평균 열화 용량을 보여주는 그래프이다.
<도면의 주요 부호 설명>
101 ~ 10n: 배터리 100: 배터리 팩
110: BMS부 111: 전압 센싱부
112: 전류 센싱부 113: 온도 센싱부
120: MCU부 130: 메모리부
140: 차량 제어기 121: 데이터 처리부
122: 계산부
이하 첨부된 도면을 참조하여 본 발명의 일 실시예를 상세하게 기술한다.
도 1은 본 발명에 따른 배터리의 용량 열화 측정을 위한 시스템 구성도이다. 이 시스템 구성도에는 크게 배터리 팩(100), 이 배터리 팩의 전압, 전류 및 온도를 센싱하는 센싱부(111 내지 113)와, 이 센싱부(111 내지 113)로부터 데이터를 수신하여 용량 열화를 측정하는 MCU(Micro Controller unit)부(120)로 구성된 BMS(Battery Management System)부(110), BMS부(110)로부터 측정된 열화 용량을 수신하는 차량 제어기(140) 등이 구성된다. 이들 구성요소의 기능 및 역할을 설명하면 다음과 같다.
배터리 팩(100)은 배터리(101 내지 10n)가 직렬 또는 병렬로 구성되며, 이 배터리는 니켈 메탈 배터리, 리튬 이온 배터리 등의 하이브리드 배터리가 될 수 있다. 물론, 본 발명의 일실시예에서는 이해의 편의를 위해 배터리 팩(100)이 하나의 팩으로만 구성된 것을 도시하였으나, 여러 개의 서브 팩으로 구성하는 것도 가능하다.
BMS부(110)는 센싱부(111 내지 113)와 MCU부(120)로 구성되며, 배터리 팩(100)의 용량 열화를 측정하는 기능을 한다. 즉, 센싱부(111 내지 113)는 배터리 팩(100) 내에 있는 배터리(101 내지 10n)의 전류, 전압 및 온도를 센싱하기 위한 전압 센싱부(111), 전류 센싱부(112), 및 온도 센싱부(113)로 구성된다.
물론, 온도 센싱부(113)는 배터리 팩(100) 또는 배터리(101 내지 10n)의 온도를 센싱할 수도 있다. 여기서, 전류 센싱부(112)는 홀(Hall) 소자를 이용하여 전류를 측정하고 측정된 전류에 대응되는 아날로그 전류 신호로 출력하는 홀 CT(Hall current transformer)일 수 있으나, 본 발명은 이에 한정되지는 않으며, 전류를 센싱할 수 있는 것이라면 다른 소자도 적용 가능하다.
MCU(Micro Controller unit)부(120)는 센싱부(111 내지 113)로부터 센싱된 각 배터리(101 내지 10n)의 전압, 전류 및 온도값을 받아 해당 배터리(101 내지 10n)의 SOC(State Of Charge), SOH(State Of Health) 값을 실시간 추정하고, 이로부터 배터리(101 내지 10n)의 열화 용량 및 차량이 이동하면서 일정한 시간 동안 저장된 열화 용량을 평균하여 산출된 이동 평균 열화 용량을 계산한다. 이러한 계산과정을 위한 MCU의 구성이 도 2에 도시된다. 이에 대하여는 바로 후술하기로 한다. 이러한 SOC, SOH값, 열화 용량값 등이 메모리부(130)에 저장되며, 차량 제어기(140)에 전송된다.
메모리부(130)는 MCU부(120) 내에 구비되는 메모리일 수 있고, 별도의 메모리가 될 수 있다. 따라서 하드 디스크 드라이브, 플래시 메모리, FRAM (Ferro-electric RAM), PRAM (Phase-change RAM), MRAM(Magnetic RAM) 등과 같은 비휘발성 메모리가 사용될 수 있다.
차량 제어기(140)는 플러그인 하이브리드 차 또는 전기 자동차의 주행에 필요한 주요 시스템의 성능을 최적의 상태로 제어하기 위한 기능을 수행한다. 이를 위해, 차량 제어기(140)와 MCU부(120) 사이에는 CAN(Controller Area Network) 통신 방식을 이용되어 배터리의 SOC, SOH값이 차량 제어기(140)에 전송된다.
도 2는 도 1의 MCU부에 대한 블럭도이다. MCU부(120)에는 센싱부(111 내지 113)로부터 전송된 데이터를 처리하는 데이터 처리부(121), 이 데이터 처리부(121)로부터 전압, 전류 및 온도값을 전송 받아 SOC, SOH값을 추정하여 배터리의 잔존용량 및 수명 저하를 측정하는 계산부(122), 이들 값을 데이터로 저장하는 메모리부(130) 등이 구성된다.
계산부(122)는 센싱부(111 내지 113)가 배터리(111 내지 113)를 센싱한 전압, 전류 및 온도값을 데이터 처리부(121)를 통하여 전송받아 이들 값으로부터 특정 구간을 정하여 SOC, SOH값을 실시간 추정하고, 이로부터 배터리(101 내지 10n)의 용량 및 이동 평균 열화 용량을 계산하는 기능을 한다. 물론, 이들 값들은 메모리부(130)에 실시간 저장되고, 차량 제어기(140)에 전송된다.
그러면, 배터리(101 내지 10n)의 배터리의 열화 용량 측정 과정을 설명하기로 한다. 우선, 본 발명에 대한 이해의 편의를 위해 배터리의 열화 용량 측정 과정이 도 3에 개략적으로 도시된다. 도 3은 본 발명에 따른 배터리의 열화 용량 측정 과정을 개략적으로 보여주는 개략도이다.
플러그인 하이브리드 자동차나 전기 자동차는 기본적으로 야간 주차 시 전기 플러그를 통하여 자동차 내의 배터리를 충전하게 된다. 이 경우 SOC가 낮은 영역에서 매우 높은 영역까지 충전을 하게 되는데, 이 구간을 이용하여 배터리의 열화 용량을 계산하게 된다.
이러한 열화 용량은 배터리 모델을 통해 용량을 계산하게 되는데, 여기서 배터리 모델은 복잡한 배터리 모델을 간략하게 만든 등가 회로 모델이 이용된다. 이러한 등가 회로 모델이 도 4에 도시된다. 즉, 도 4는 도 3의 등가 회로 모델의 회로도이다. 도면에 도시된 바와 같이, 복잡한 RC 회로와 내부 저항 R0가 합쳐진 전체 저항 R*의 개념이 도입되며, 이 모델을 전개하여 용량 저하를 측정하게 된다. 이 등가 회로 모델의 파라미터에 대한 설명을 다음과 같이 표 1로 나타낼 수 있다.
표 1
I 전류(-: 충전, +:방전)
V 단자 전압(Terminal voltage)
Vo 개방 회로 전압
R 전체 저항
도 3을 설명하면, SOC가 소정의 영역에 들게 되면 배터리에 대한 데이터 수집이 이루어진다. 이때 전류 I는 정 전류이므로 상수가 되고 전압 V는 실시간 변하게 되므로, V를 2 포인트 또는 2 포인트 이상, 예를 들어 V1과 V2로 잡아 구간을 설정하게 된다(300). 이 2개의 포인트를 등가 회로 모델에 적용하면(310), 열화 용량 Q가 산출된다. 또한, 차량이 이동하는 동안 저장된 열화 용량 Q를 합산하면 이동 평균 열화 용량이 산출된다(320). 이를 바탕으로 배터리의 상태가 용량 저하 상태에 있는지를 판단할 수 있다(330).
그러면, 도 5 및 도 6을 참조하여, 배터리의 용량 열화 측정 과정을 상세히 기술하기로 한다. 도 5는 본 발명에 따른 배터리의 용량 열화 측정 과정을 보여주는 순서도이다.
도 5를 참조하여 배터리의 용량 열화 측정 과정을 설명하기에 앞서, 우선 다음과 같은 가정이 선행되어야 한다.
즉, 첫 번째 가정으로는 충전 시 정 전류 형태로 전류를 흘려 충전을 해야 하므로, 전류의 변화가 없어야 한다. 두 번째는 중간 영역의 SOC에서는 SOC와 기전력 간의 관계가 선형이어야 한다.
또한, 세 번째는 충전 구간 내에서의 전체 저항의 변화가 거의 없어서 상수로 둘 수 있어야 한다. 마지막으로는, 용량 저하가 발생하더라도 기전력 곡선의 변화는 거의 없어야 한다.
도 5의 순서도의 알고리즘은 플러그인 하이브리드 자동차나 전기 자동차가 충전을 할 경우 작동되도록 되어 있다. 이를 도시한 도면이 도 6에 도시된다. 도 6은 본 발명의 일실시예에 따른 배터리의 용량 측정 과정이 실행되는 구간을 보여주는 그래프이다. 즉, Lm과 Lm+1(510)이 충전하는 구간이고, Lm 앞쪽, Lm과 Lm+1 사이, 및 Lm+1 뒤에 있는 구간이 데이터 수집 구간(510)이 된다. 이 데이터 수집 구간(510)은 n개 데이터로 구성된 정전류 구간이 있다.
따라서, 이 데이터 수집 구간(510)에서 도 5의 순서도의 알고리즘이 활성화되어 전류 및 전압 데이터의 수집이 이루어진다. 물론, 이러한 데이터의 수집은 어느 정도의 시간 간격을 두고 이루어진다. 여기서 시간 간격이라 함은 몇 시간 내지 며칠 간격을 의미하며, 시간 간격은 일정할 필요가 없다.
즉, MCU부(도의 120)는 플러그인 하이브리드 자동차나 전기 자동차 등의 차량이 정 전류 충전 구간에 있는 지를 확인한다(단계 S400). 만일 정 전류 충전 구간에 있으면, SOC가 일정 영역에 들어 있는 지를 확인하게 된다(단계 S410).
그렇지 않고, 정 전류 충전 구간에 있지 않거나 또는 SOC가 일정 영역 내에 있지 않으면, 도 5의 알고리즘은 활성화되지 않는다(단계 S401).
전류, 전압 데이터의 수집은 SOC가 일정 영역 내에 들어온 순간 시작을 하며, 정해진 SOC 영역 밖으로 나간 경우 측정이 종료된다(단계 S420). 이때, 필요한 데이터는 전체적인 전류 데이터인데, 이는 전류가 일정하게 흐르는 것을 확인하기 위해 필요하다. 그리고 전류가 일정하게 흐르는 것이 확인된 경우, 이에 대응하는 전압 데이터 역시 보존된다.
전류, 전압 데이터가 수집되면, 등가 회로 모델을 통한 용량 추정을 수행한다. 즉, 기본적인 등가 회로 모델을 활용한다. 그러나 여기서 활용하는 등가 회로 모델은 도 4에 도시된 바와 같이 분극 현상을 설명할 수 있는 RC 회로와 내부 저항 R0가 합쳐진 전체 저항 R*의 개념을 도입하게 된다.
이 모델에 해당되는 수식은 다음과 같다. 등가 회로 모델을 모델링 하는 경우 다음과 같은 형태로 식이 구성됨을 알 수 있다.
수학식 1
Figure PCTKR2011003131-appb-M000001
여기서, 2개의 포인트인 포인트 1과 포인트 2를 설정하면 다음과 같다(단계 S430).
수학식 2
Figure PCTKR2011003131-appb-M000002
수학식 3
Figure PCTKR2011003131-appb-M000003
수학식 2에서 수학식 1를 빼면 다음 식과 같이 정리된다.
수학식 4
Figure PCTKR2011003131-appb-M000004
수학식 5
Figure PCTKR2011003131-appb-M000005
여기서, 정 전류 형태로 충전이 이루어지고 있다는 가정 하에 전류는 같다고 볼 수 있다. 또한, 내부 저항은 충전 시 일정하다고 가정하면 R* 역시 일정하다고 볼 수 있다.
그러므로, 위 수학식 5를 정리하면 다음과 같다.
수학식 6
Figure PCTKR2011003131-appb-M000006
여기서 기전력 V0는 SOC의 함수로 계산된다. 이때, 중간 영역의 SOC에서는 기전력(배터리 무 부하 안정상태 때의 개방회로전압 OCV(Open Circuit Voltage)로 대체함.) 과 SOC 간의 관계를 다음 표와 같이 선형으로 둘 수 있다.
표 2
Figure PCTKR2011003131-appb-T000001
즉, 이를 정리하면 다음 수학식과 같이 표현 가능하다.
수학식 7
Figure PCTKR2011003131-appb-M000007
여기서 a 값들은 각각 배터리의 특성 및 온도에 따라 다른 값을 갖게 된다. 또한, 용량 저하가 발생한다고 하더라도 기울기인 a1은 변화가 없다고 가정한다. 이 경우에도 역시 포인트 1과 포인트 2를 설정하면 다음과 같이 표현할 수 있다.
수학식 8
Figure PCTKR2011003131-appb-M000008
수학식 9
Figure PCTKR2011003131-appb-M000009
위의 수학식 8과 수학식 9의 차를 구하면 다음 수학식과 같이 표현할 수 있다.
수학식 10
Figure PCTKR2011003131-appb-M000010
수학식 6과 수학식 10을 정리하면 다음 수학식과 같은 관계식을 구할 수 있다.
수학식 11
Figure PCTKR2011003131-appb-M000011
그런데, 도 5의 순서도의 알고리즘이 활성화되는 시기는 정 전류로 충전을 하는 경우이다. 그러므로 짧은 시간이며 전류가 일정하기 때문에 SOC의 계산은 전류 적산(Ah counting)을 통해 가능하게 되며, 이를 수학식으로 표현하면 다음과 같다.
수학식 12
Figure PCTKR2011003131-appb-M000012
여기서 100은 SOC 단위 100퍼센트를 의미하고, 3600은 1시간을 초로 환산한 것이다.
전류가 정 전류 형태이기 때문에 전류 적산을 전류와 시간의 곱으로 표현 가능하므로, 위 수학식을 정리하면, 다음 수학식과 같이 표현된다.
수학식 13
Figure PCTKR2011003131-appb-M000013
여기서 Q는 현재의 배터리 용량이라 할 수 있다.
위 수학식 11과 수학식 13을 정리하면 다음 수학식과 같다(단계 S440).
수학식 14
Figure PCTKR2011003131-appb-M000014
이 식을 통해 현재의 배터리의 용량을 측정할 수 있다. 즉, 전류와 포인트 간의 시간 간격, 전압의 차이, 그리고 SOC와 기전력 사이의 기울기를 알 경우 실시간으로 배터리의 용량 열화를 측정할 수 있다.
배터리 용량이 계산되면, 이 용량값이 실시간으로 저장되며 이를 합산하여 이동 평균 열화 용량을 계산하는 것도 가능하다(단계 S450). 부연 설명하면, 앞서 기술된 도 1 내지 도 6을 통하여 용량이 산출되고, 이 용량이 실시간으로 저장된다.
그런데 배터리의 용량 저하는 긴 시간에 걸쳐 일어나기 때문에 하루 단위의 시간에 있어서는 그 변화가 크지 않다고 할 수 있다. 그렇기 때문에 노이즈 등의 발생을 막기 위해 이동 평균 값을 통하여 최종 용량을 결정하도록 한다.
따라서 이동 평균은 측정된 용량에 대해 이전 n개 값에 대해 평균을 내어 그 최적 값을 측정하는 것이다. 여기서는 노이즈의 발생을 최대한 억제하기 위해 측정된 용량의 최대값과 최소값을 제외한 나머지 값에 대해 평균을 측정하게 된다.
평균을 측정함에 있어 현재 측정에 가까운 값에 대해 더 큰 가중치를 두도록 한다. 이에 대한 수학식은 다음과 같다.
수학식 15
Figure PCTKR2011003131-appb-M000015
여기서
Figure PCTKR2011003131-appb-I000005
이고, MAQ는 이동 평균을 통한 Q의 값이다. 위 수학식 15를 통해 이동 평균 열화 용량을 정할 수 있다.
위에서 기술한 방식을 통해 플러그인 하이브리드 자동차나 전기 자동차 등의 차량에 대해 수명(용량) 상태를 실시간으로 측정할 수 있다. 왜냐하면, 플러그인 하이브리드 자동차나 전기 자동차의 경우 지속적인 충전 구간이 존재하기 때문에 이러한 충전 시에 용량 저하를 계산할 수 있게 된다.
여기서, 배터리 수명 상태(SOH: State of Health)는 다음 식과 같이 정의된다.
수학식 16
Figure PCTKR2011003131-appb-M000016
여기서, NC는 Nominal Capacity로 공칭용량, MAQn은 이동 평균 열화 용량을 가리킨다.
본 발명의 용이한 이해를 위해 이동 평균 열화 용량을 계량적으로 도시한 그래프가 도 7에 도시된다.
즉, 도 7은 본 발명의 다른 일실시예에 따라 도 1 내지 도 6을 이용하여 측정된 용량을 합산하여 계산된 이동 평균 열화 용량을 보여주는 그래프이다. 도 7을 설명하면, 경과 시간에 따라 용량이 측정되고 이동 평균을 위해 박스(600) 내에 있는 열화 용량만이 계산된다. 즉, 박스(600)를 벗어난 최대, 최소값의 용량은 제외된다.
도 1 내지 도 7에 따른 하이브리드 자동차 또는 전기 자동차에서의 Q의 추정 값은 다음 표와 같이 표현될 수 있다.
표 3
Figure PCTKR2011003131-appb-T000002
즉 표 3에 도시된 바와 같이 용량은 시간이 흐름에 따라 감소하고 있다.
위 도 1 내지 도 7에 기술된 용량 저하 알고리즘을 이용할 경우, 온라인 상에서 사용이 가능한 용량 저하 알고리즘으로 적용할 수 있을 것이다. 특히 기존 모델에 비해 매우 간단하다는 것이 큰 장점으로 작용한다. 기존 용량 저하를 측정하기 위한 알고리즘의 경우 그 형태가 상당히 복잡하여 배터리 매니지먼트 시스템 상에 탑재하기 어려운 경우가 많았다. 그러나 이 경우에는 식의 형태가 매우 간단하며 필요한 데이터의 수도 매우 적기 때문에 상당히 편리하게 이용될 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 바람직한 일실시예를 설명하였으나, 본 발명의 권리범위는 이러한 실시예에 한정되지 않으며, 수많은 변형예가 가능함을 당업자라면 이해할 것이다. 따라서, 본 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정해져야 할 것이다.

Claims (10)

  1. 하이브리드 자동차, 플러그인 하이브리드 자동차, 또는 전기 자동차에 사용되는 적어도 하나의 배터리와,
    상기 적어도 하나의 배터리의 전류, 전압 및 온도를 센싱하는 센싱부와,
    상기 전류가 충전 구간 상 정전류이고, SOC(State Of Charge)가 소정의 영역에 있으면 상기 센싱부로부터 상기 전압 및 전류 데이터를 측정하는 데이터 처리부와,
    상기 전압 데이터에 적어도 2개의 포인트를 설정하고, 상기 적어도 2개의 포인트에 해당하는 전압 데이터를 상기 적어도 하나의 배터리 등가 회로 모델에 적용하여 열화 용량을 계산하는 계산부
    를 포함하는 배터리의 용량 열화 상태 측정 장치.
  2. 제 1 항에 있어서,
    상기 계산부는 상기 자동차가 이동하면서 소정 기간 동안 저장되는 상기 열화 용량을 합하여 이동 평균 열화 용량을 계산하는 배터리의 용량 열화 상태 측정 장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 전압, 전류, 열화 용량 및 이동 평균 열화 용량을 저장하는 메모리부를 더 포함하는 배터리의 용량 열화 상태 측정 장치.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 열화 용량은,
    Figure PCTKR2011003131-appb-I000006
    (a1은 SOC와 기전력 사이의 기울기이고, Δt는 상기 2개의 포인트 간 시간 간격이며, ΔV는 전압차이임)를 이용하여 계산하고,
    상기 이동 평균 열화 용량은,
    Figure PCTKR2011003131-appb-I000007
    (여기서, 가중치
    Figure PCTKR2011003131-appb-I000008
    임 )을 이용하여 계산하되, MAQn은 소정의 열화 용량에 근사한 값인 상기 열화 용량 Q를 합산 평균값인 배터리의 용량 열화 상태 측정 장치.
  5. 제 4 항에 있어서,
    상기 a1은 배터리의 특성 및 온도에 따라 값이 달라지며, 상기 용량 열화의 저하가 발생하더라도 변화가 없으며,
    상기 등가 회로 모델은 상기 배터리를 전체 저항(R*), 전류(I), 단자전압(V: Terminal voltage) 및 기전력(Vo) 등 파라미터로 표현한 전기회로인 배터리의 용량 열화 상태 측정 장치.
  6. 플러그인 하이브리드 자동차, 또는 전기 자동차에 사용되는 적어도 하나의 배터리에 흐르는 전류가 충전 구간 상의 정 전류 인지 여부를 확인하는 단계와,
    충전 구간 상의 정 전류이면 SOC(State Of Charge)가 소정의 영역에 있는지를 확인하는 단계와,
    상기 SOC가 상기 소정의 영역 내이면 상기 적어도 하나의 배터리의 전류, 전압 및 온도 데이터를 측정하는 단계와,
    측정된 전압 데이터에 적어도 2개의 포인트를 설정하는 단계와,
    상기 적어도 2개의 포인트에 해당하는 전압 데이터를 상기 적어도 하나의 배터리 등가 회로 모델에 적용하여 열화 용량을 계산하는 단계
    를 포함하는 배터리의 용량 열화 상태 측정 방법.
  7. 제 6 항에 있어서,
    상기 자동차가 이동하면서 소정 기간 동안 저장되는 상기 열화 용량을 합하여 이동 평균 열화 용량을 계산하는 단계를 더 포함하는 배터리의 용량 열화 상태 측정 방법.
  8. 제 6 항 또는 제 7 항에 있어서,
    상기 열화 용량은,
    Figure PCTKR2011003131-appb-I000009
    (a1은 SOC와 기전력 사이의 기울기이고, Δt는 상기 2개의 포인트 간 시간 간격이며, ΔV는 전압차이임)를 이용하여 계산하고,
    상기 이동 평균 열화 용량은,
    Figure PCTKR2011003131-appb-I000010
    (여기서, 가중치
    Figure PCTKR2011003131-appb-I000011
    임 )을 이용하여 계산하고, MAQn은 소정의 열화 용량에 근사한 값인 상기 열화 용량 Q를 합산한 평균값인 배터리의 용량 열화 상태 측정 방법.
  9. 제 8 항에 있어서,
    상기 a1은 배터리의 특성 및 온도에 따라 값이 달라지며, 배터리 SOC(State of Charge)가 소정 영역에 있을 시 상기 용량의 저하가 발생하더라도 변화가 없으며,
    상기 등가 회로 모델은 상기 배터리를 전체 저항(R*), 전류(I), 단자전압(V: Terminal voltage) 및 기전력(Vo) 등 파라미터로 표현한 전기회로인 배터리의 용량 열화 상태 측정 방법.
  10. 제 8 항에 있어서,
    배터리 수명 상태(SOH: State of Health)를 계산하는 단계를 더 포함하되,
    상기 배터리 수명 상태는 다음 식
    Figure PCTKR2011003131-appb-I000012
    (NC는 Nominal Capacity로 공칭용량, MAQn은 이동 평균 열화 용량을 가리킴)을 이용하여 계산되는, 배터리의 용량 열화 상태 측정 방법.
PCT/KR2011/003131 2011-04-28 2011-04-28 배터리의 용량 열화 상태 측정 장치 및 방법 WO2012148019A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/114,040 US20140052396A1 (en) 2011-04-28 2011-04-28 Device and Method for Measuring the Capacity Degradation of a Battery
PCT/KR2011/003131 WO2012148019A1 (ko) 2011-04-28 2011-04-28 배터리의 용량 열화 상태 측정 장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/003131 WO2012148019A1 (ko) 2011-04-28 2011-04-28 배터리의 용량 열화 상태 측정 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2012148019A1 true WO2012148019A1 (ko) 2012-11-01

Family

ID=47072522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003131 WO2012148019A1 (ko) 2011-04-28 2011-04-28 배터리의 용량 열화 상태 측정 장치 및 방법

Country Status (2)

Country Link
US (1) US20140052396A1 (ko)
WO (1) WO2012148019A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009093A1 (fr) * 2013-07-29 2015-01-30 Renault Sa Estimation de l'etat de vieillissement d'une batterie electrique
CN105277885A (zh) * 2014-07-17 2016-01-27 宁波金和锂电材料有限公司 一种缩短锂离子电池循环寿命评测时间的方法
CN110249233A (zh) * 2017-02-09 2019-09-17 Abb瑞士股份有限公司 用于电池的健康状态估计

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9817376B1 (en) 2012-05-19 2017-11-14 Growing Energy Labs, Inc. Adaptive energy storage operating system for multiple economic services
US20190317463A1 (en) 2012-05-19 2019-10-17 Growing Energy Labs, Inc. Adaptive energy storage operating system for multiple economic services
US20140244193A1 (en) * 2013-02-24 2014-08-28 Fairchild Semiconductor Corporation Battery state of charge tracking, equivalent circuit selection and benchmarking
KR20170098790A (ko) * 2014-07-31 2017-08-30 그로잉 에너지 랩스, 인크. 적응형 자동화 제어 소프트웨어에 의한 에너지 저장 수명 성능 예측 및 최적화
US20160099593A1 (en) * 2014-10-03 2016-04-07 Infineon Technologies Austria Ag Battery charge state evaluation coincident with constant current charging
KR20180101823A (ko) * 2017-03-06 2018-09-14 주식회사 엘지화학 배터리 셀 전압 데이터 처리 장치 및 방법
CN109100653B (zh) * 2018-06-05 2022-04-29 中国电力科学研究院有限公司 一种用于确定梯次利用动力电池容量衰退原因的方法及***
CN110893794B (zh) * 2018-08-24 2023-01-24 上海汽车集团股份有限公司 一种车用电池衰减系数确定方法及装置
RU2697404C1 (ru) * 2018-12-04 2019-08-14 Виталий Викторович Нечаев Способ диагностирования аккумуляторной батареи
FR3124314A1 (fr) * 2021-06-22 2022-12-23 Psa Automobiles Sa Systeme de batterie et procede de controle d’un systeme de batterie
CN114889491A (zh) * 2022-05-05 2022-08-12 中国第一汽车股份有限公司 混合电池的控制方法、装置、存储介质及电子装置
WO2024121659A1 (en) * 2022-12-08 2024-06-13 Medtronic, Inc. Rechargeable battery capacity update
CN117970153A (zh) * 2024-01-04 2024-05-03 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 动力电池健康度的评估方法、装置、计算机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621250B1 (en) * 1999-09-09 2003-09-16 Toyota Jidosha Kabushiki Kaisha Battery capacity measuring and remaining capacity calculating system
US20050024020A1 (en) * 2003-07-29 2005-02-03 Masaki Hogari Secondary cell residual capacity calculation method and battery pack
US20070096743A1 (en) * 2003-06-23 2007-05-03 Yazaki Corporation Method and apparatus for judging deterioration of battery
US20090171598A1 (en) * 2006-02-27 2009-07-02 Ryoichi Nakashima Battery Pack, Electronic Appliance, And Method of Detecting Remaining Amount of Battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2348586A1 (en) * 2001-05-25 2002-11-25 Corporation Avestor Inc. Power management system
US6892148B2 (en) * 2002-12-29 2005-05-10 Texas Instruments Incorporated Circuit and method for measurement of battery capacity fade
US8467984B2 (en) * 2009-09-30 2013-06-18 Battelle Energy Alliance, Llc Systems, methods and computer readable media for estimating capacity loss in rechargeable electrochemical cells
US8332342B1 (en) * 2009-11-19 2012-12-11 The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) Model-based prognostics for batteries which estimates useful life and uses a probability density function
US9197089B2 (en) * 2011-11-14 2015-11-24 Auburn University Rapid battery charging method and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621250B1 (en) * 1999-09-09 2003-09-16 Toyota Jidosha Kabushiki Kaisha Battery capacity measuring and remaining capacity calculating system
US20070096743A1 (en) * 2003-06-23 2007-05-03 Yazaki Corporation Method and apparatus for judging deterioration of battery
US20050024020A1 (en) * 2003-07-29 2005-02-03 Masaki Hogari Secondary cell residual capacity calculation method and battery pack
US20090171598A1 (en) * 2006-02-27 2009-07-02 Ryoichi Nakashima Battery Pack, Electronic Appliance, And Method of Detecting Remaining Amount of Battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009093A1 (fr) * 2013-07-29 2015-01-30 Renault Sa Estimation de l'etat de vieillissement d'une batterie electrique
WO2015015083A1 (fr) * 2013-07-29 2015-02-05 Renault S.A.S Estimation de l'etat de vieillissement d'une batterie électrique
KR20160039663A (ko) * 2013-07-29 2016-04-11 르노 에스.아.에스. 전기 배터리의 열화 상태 추정
CN105556325A (zh) * 2013-07-29 2016-05-04 雷诺两合公司 估算电力电池的劣化状态
US10180464B2 (en) 2013-07-29 2019-01-15 Renault S.A.S. Estimation of the state of deterioration of an electric battery
KR102009734B1 (ko) 2013-07-29 2019-08-12 르노 에스.아.에스. 전기 배터리의 열화 상태 추정
CN105277885A (zh) * 2014-07-17 2016-01-27 宁波金和锂电材料有限公司 一种缩短锂离子电池循环寿命评测时间的方法
CN110249233A (zh) * 2017-02-09 2019-09-17 Abb瑞士股份有限公司 用于电池的健康状态估计
US11101669B2 (en) 2017-02-09 2021-08-24 Abb Schweiz Ag State of health estimation for batteries
CN110249233B (zh) * 2017-02-09 2021-10-08 Abb瑞士股份有限公司 用于电池的健康状态估计

Also Published As

Publication number Publication date
US20140052396A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
WO2012148019A1 (ko) 배터리의 용량 열화 상태 측정 장치 및 방법
JP3867581B2 (ja) 組電池システム
WO2012060597A2 (ko) 배터리의 교환 시기 통보 장치 및 방법
WO2018124511A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 장치 및 방법
US9496727B2 (en) Characterizing a rechargeable battery through discontinuous charging
WO2012148070A1 (ko) 배터리 용량 퇴화 추정 장치 및 방법
WO2018190508A1 (ko) 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
Stuart et al. A modular battery management system for HEVs
WO2013051828A2 (ko) 배터리 관리 시스템 및 배터리 관리 방법
KR20110111018A (ko) 배터리의 용량 열화 상태 측정 장치 및 방법
WO2014030839A1 (ko) 릴레이 제어 시스템 및 그 제어 방법
WO2019088492A1 (ko) 배터리 등가 회로 모델의 파라미터 추정 방법, 장치 및 기록매체
US20100017155A1 (en) Battery management system
JP2001021628A (ja) 温度センサを用いた充電可能容量算出機能付きバッテリ容量測定装置
WO2022055080A1 (ko) 배터리의 충전상태를 추정하는 방법
EP2473371A2 (en) Safety and performance optimized controls for large scale electric vehicle battery systems
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
Hauser et al. High-voltage battery management systems (BMS) for electric vehicles
WO2018074807A1 (ko) 듀티 제어를 통한 효과적인 배터리 셀 밸런싱 방법 및 시스템
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2018124514A1 (ko) 배터리 관리 장치 및 이를 이용한 리튬인산철 셀의 과전압 보호 방법
WO2021020852A1 (ko) 배터리 관리 장치 및 배터리 관리 방법
WO2016122238A1 (ko) 배터리의 상태 추정 장치 및 방법
US20170057372A1 (en) Electric or hybrid vehicle battery pack voltage measurement
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14114040

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864394

Country of ref document: EP

Kind code of ref document: A1