WO2012147564A1 - High-molecular-weight compound and electronic element comprising same - Google Patents

High-molecular-weight compound and electronic element comprising same Download PDF

Info

Publication number
WO2012147564A1
WO2012147564A1 PCT/JP2012/060355 JP2012060355W WO2012147564A1 WO 2012147564 A1 WO2012147564 A1 WO 2012147564A1 JP 2012060355 W JP2012060355 W JP 2012060355W WO 2012147564 A1 WO2012147564 A1 WO 2012147564A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituent
represented
atom
Prior art date
Application number
PCT/JP2012/060355
Other languages
French (fr)
Japanese (ja)
Inventor
二軍 周
敬介 但馬
橋本 和仁
吉村 研
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012147564A1 publication Critical patent/WO2012147564A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a polymer compound having a specific structure and an electronic device using the same.
  • the organic thin film solar cell which is one aspect of the photoelectric conversion element can omit the high-temperature and high-vacuum process used in the manufacturing process of the silicon-based solar cell, and can be manufactured at low cost only by the coating process.
  • a polymer compound used for an organic thin film solar cell a polymer compound composed of a repeating unit (A) and a repeating unit (B) has been proposed (Patent Document 1).
  • a photoelectric conversion element having an organic layer containing the polymer compound does not necessarily have a short-circuit current density.
  • An object of the present invention is to provide a polymer compound capable of increasing the short-circuit current density when used in an organic layer constituting an electronic element such as a photoelectric conversion element, and an electronic element using the same.
  • Ar 11 and Ar 12 each independently represent a trivalent group obtained by removing three hydrogen atoms from an aromatic ring, and the aromatic ring may have a substituent.
  • A represents a divalent group represented by formulas (1-1) to (1-12).
  • R 1 to R 15 each independently represents a hydrogen atom or a substituent
  • Ar 21 , Ar 22 and Ar 23 each independently represent an arylene group which may have a substituent or a heteroarylene group which may have a substituent.
  • Ar 31 represents an arylene group having a substituent or a heteroarylene group having a substituent.
  • the repeating unit represented by formula (3) is different from the repeating unit represented by formula (1) and the repeating unit represented by formula (2).
  • a plurality of repeating units represented by the formula (3) are included, they may be the same or different.
  • the arylene group which may have a substituent represented by Ar 23 or the heteroarylene group which may have a substituent is represented by formulas (2-1) to (2-8).
  • X 2a1 and X 2a2 each independently represent a sulfur atom, an oxygen atom or a selenium atom.
  • R 21 and R 22 represent the same meaning as described above.
  • R 40 to R 43 each independently represents a hydrogen atom or a substituent.
  • A represents the same meaning as described above.
  • X 1a1 and X 1a2 each independently represent a sulfur atom, an oxygen atom, a selenium atom, or —N (R) —.
  • R is a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, acyloxy group, amide Represents a group, an arylalkenyl group, an arylalkynyl group, a monovalent heterocyclic group or a cyano group.
  • Ar 3a represents an arylene group which may have a substituent or a heteroarylene group which may have a substituent.
  • n is an integer of 1 to 10.
  • X 3a When there are a plurality of X 3a , they may be the same or different.
  • Ar 3a s they may be the same or different.
  • [6] The polymer compound according to any one of [1] to [5] above, wherein the light absorption terminal wavelength is 700 nm or more.
  • [7] The polymer compound according to any one of [1] to [6], wherein the number average molecular weight in terms of polystyrene is 3000 or more.
  • a thin film comprising the polymer compound according to any one of [1] to [7] above.
  • a composition comprising the polymer compound according to any one of [1] to [7] above and an electron-accepting compound.
  • a thin film comprising the composition according to [9] or [10].
  • a solution comprising the polymer compound according to any one of [1] to [7] above or the composition according to [9] or [10] above and a solvent.
  • a first electrode and a second electrode are provided, and an active layer is provided between the first electrode and the second electrode, and the active layer according to the above [1] to [7]
  • the electronic device according to [13] which is a photoelectric conversion device.
  • a solar cell module comprising the photoelectric conversion element according to [14].
  • An image sensor comprising the photoelectric conversion element as described in [14] above.
  • a gate electrode, a source electrode, a drain electrode, and an active layer are provided, and the active compound includes the polymer compound according to any one of [1] to [7] or [9] ] Or the organic thin-film transistor containing the composition as described in [10].
  • the short circuit current density in an electronic device such as a photoelectric conversion device can be improved.
  • ADVANTAGE OF THE INVENTION According to this invention, a photoelectric conversion element with high photoelectric conversion efficiency can be provided by the improvement of a short circuit current density.
  • the polymer compound of the present invention has a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (3).
  • Ar 11 and Ar 12 each independently represent a trivalent group obtained by removing three hydrogen atoms from an aromatic ring, and the aromatic ring may have a substituent.
  • A represents a divalent group represented by any one of formulas (1-1) to (1-12).
  • R 1 to R 15 each independently represents a hydrogen atom or a substituent
  • Ar 21 , Ar 22 and Ar 23 each independently represent an arylene group which may have a substituent or a heteroarylene group which may have a substituent.
  • Ar 31 represents an arylene group having a substituent or a heteroarylene group having a substituent.
  • the repeating unit represented by formula (3) is different from the repeating unit represented by formula (1) and the repeating unit represented by formula (2).
  • a plurality of repeating units represented by the formula (3) are included, they may be the same or different.
  • a group may have a substituent means that part or all of the hydrogen atoms of the group may be substituted by the substituent.
  • the term “optionally substituted” may be rephrased as “optionally substituted”.
  • a divalent organic group which may have a substituent means a divalent organic group in which part or all of the hydrogen atoms in the divalent organic group may be substituted with a substituent. It refers to a group and may be rephrased as “an optionally substituted divalent organic group”.
  • the “hydrocarbon group optionally having a substituent” means a hydrocarbon group in which part or all of the hydrogen atoms in the hydrocarbon group may be substituted with a substituent. It may be paraphrased as “an optionally substituted hydrocarbon group”.
  • R 1 to R 15 each independently represents a hydrogen atom or a substituent.
  • substituent represented by R 1 to R 15 include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, and an arylalkylthio group.
  • examples thereof include an oxy group, a heterocyclic thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group, a substituted carboxyl group, a nitro group, and a cyano group.
  • R 1 to R 15 are groups containing carbon atoms, the number of carbon atoms is usually about 1 to 60.
  • the alkyl group may be linear or branched, and may be a cycloalkyl group.
  • the number of carbon atoms in the alkyl group is usually about 1-30, preferably 1-20.
  • Specific examples of the alkyl group include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1 -Methylbutyl group, hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, Chain alkyl groups such as nonyl, decyl, unde
  • the alkyloxy group may be linear or branched, and may be a cycloalkyloxy group.
  • the number of carbon atoms of the alkyloxy group is usually about 1 to 20, preferably 1 to 15.
  • the alkyloxy group may have a substituent.
  • the substituent include a halogen atom and an alkyl group (for example, 1 to 20 carbon atoms).
  • Specific examples of the alkyloxy group which may have a substituent include a methoxy group, an ethoxy group, a propoxy group, an iso-propoxy group, a butoxy group, an iso-butoxy group, a tert-butoxy group, a pentyloxy group, and a hexyl group.
  • the alkylthio group may be linear or branched, and may be a cycloalkylthio group.
  • the alkylthio group may have a substituent.
  • a halogen atom is mentioned as a substituent.
  • the number of carbon atoms of the alkylthio group which may have a substituent is usually about 1 to 20, preferably 1 to 15. Specific examples of the alkylthio group which may have a substituent include a methylthio group.
  • the aryl group usually has about 6 to 60 carbon atoms, preferably 6 to 20 carbon atoms, and may have a substituent.
  • substituent include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • Specific examples of the aryl group which may have a substituent include a phenyl group, a C1-C12 alkyloxyphenyl group, a C1-C12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, and a pentafluorophenyl group. Can be mentioned.
  • C1 to C12 represents the number of carbon atoms, and represents the number of carbon atoms of the group described immediately after the description. Therefore, “C1 to C12” included in the notation such as “C1 to C12 alkyloxyphenyl group” represents that the number of carbon atoms of “alkyl” is 1 to 12.
  • C1-C12 alkyl is preferably C1-C8 alkyl, more preferably C1-C6 alkyl.
  • Specific examples of C1-C12 alkyl, C1-C8 alkyl, and C1-C6 alkyl include those described and exemplified above for the alkyl group. The same applies to the following unless otherwise specified.
  • the aryloxy group usually has about 6 to 60 carbon atoms, preferably 6 to 20 carbon atoms, and the carbon atoms contained in the aromatic ring may have a substituent.
  • substituents include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • Specific examples of the aryloxy group which may have a substituent include phenoxy group, C1-C12 alkyloxyphenoxy group, C1-C12 alkylphenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, pentafluoro A phenyloxy group is mentioned.
  • the arylthio group usually has about 6 to 60 carbon atoms, preferably 6 to 20 carbon atoms, and the carbon atom contained in the aromatic ring may have a substituent.
  • substituent include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • Specific examples of the arylthio group which may have a substituent include a phenylthio group, a C1-C12 alkyloxyphenylthio group, a C1-C12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and pentafluorophenyl.
  • a thio group is mentioned.
  • the arylalkyl group usually has about 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms, and may have a substituent.
  • substituent include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • Specific examples of the arylalkyl group which may have a substituent include a phenyl-C1-C12 alkyl group, a C1-C12 alkyloxyphenyl-C1-C12 alkyl group, and a C1-C12 alkylphenyl-C1-C12 alkyl group. 1-naphthyl-C1-C12 alkyl group, 2-naphthyl-C1-C12 alkyl group.
  • the arylalkyloxy group usually has about 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms, and may have a substituent.
  • substituents include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • the arylalkylthio group usually has about 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms, and may have a substituent.
  • substituent include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • Specific examples of the arylalkylthio group which may have a substituent include phenyl-C1-C12 alkylthio group, C1-C12 alkyloxyphenyl-C1-C12 alkylthio group, C1-C12 alkylphenyl-C1-C12 alkylthio group. 1-naphthyl-C1-C12 alkylthio group, and 2-naphthyl-C1-C12 alkylthio group.
  • Acyl group means a group obtained by removing a hydroxyl group from a carboxyl group (—COOH) in a carboxylic acid.
  • the acyl group usually has about 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms.
  • acyl group examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, and an alkylcarbonyl group having 2 to 20 carbon atoms which may be substituted with a halogen atom such as a trifluoroacetyl group, And a phenylcarbonyl group which may be substituted with a halogen atom such as a benzoyl group and a pentafluorobenzoyl group.
  • Acyloxy group means a group obtained by removing a hydrogen atom from a carboxyl group (—COOH) in a carboxylic acid.
  • the acyloxy group usually has about 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms.
  • Specific examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
  • An amide group refers to a group obtained by removing a hydrogen atom bonded to a nitrogen atom from an amide.
  • the amide group usually has about 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms.
  • Specific examples of the amide group include formamide group, acetamide group, propioamide group, butyroamide group, benzamide group, trifluoroacetamide group, pentafluorobenzamide group, diformamide group, diacetamide group, dipropioamide group, dibutyroamide group, dibenzamide group. , Ditrifluoroacetamide group and dipentafluorobenzamide group.
  • the acid imide group refers to a group obtained by removing a hydrogen atom bonded to a nitrogen atom from an acid imide.
  • Specific examples of the acid imide group include a succinimide group and a phthalimide group.
  • the substituted amino group is one in which one or two hydrogen atoms of the amino group are substituted, and the substituent is, for example, an alkyl group and an optionally substituted aryl group.
  • the alkyl group and the optionally substituted aryl group are the same as the specific examples of the alkyl group represented by R 1 and the optionally substituted aryl group.
  • the substituted amino group generally has about 1 to 40 carbon atoms, preferably 1 to 20 carbon atoms.
  • substituent amino group examples include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, tert-Butylamino, pentylamino, hexylamino, cyclohexylamino, heptylamino, octylamino, 2-ethylhexylamino, nonylamino, decylamino, 3,7-dimethyloctylamino, laurylamino , Cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, pyrrolidyl group, piperidyl group, ditrifluoromethylamino
  • a substituted silyl group is one in which 1, 2 or 3 of the hydrogen atoms of the silyl group are substituted, and in general, all three hydrogen atoms of the silyl group are substituted.
  • the substituent include an alkyl group and an optionally substituted aryl group. Specific examples of the alkyl group and the optionally substituted aryl group are the same as the specific examples of the alkyl group represented by R 1 and the optionally substituted aryl group.
  • substituted silyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tri-iso-propylsilyl group, tert-butyldimethylsilyl group, triphenylsilyl group, tri-p-xylylsilyl group, and tribenzyl.
  • Examples include silyl group, diphenylmethylsilyl group, tert-butyldiphenylsilyl group, dimethylphenylsilyl group and the like.
  • the substituted silyloxy group is a group in which an oxygen atom is bonded to the above substituted silyl group.
  • Specific examples of the substituted silyloxy group include trimethylsilyloxy group, triethylsilyloxy group, tripropylsilyloxy group, tri-iso-propylsilyloxy group, tert-butyldimethylsilyloxy group, triphenylsilyloxy group, tri-p -Xylylsilyloxy group, tribenzylsilyloxy group, diphenylmethylsilyloxy group, tert-butyldiphenylsilyloxy group, dimethylphenylsilyloxy group and the like.
  • the substituted silylthio group is a group in which a sulfur atom is bonded to the above substituted silyl group.
  • Specific examples of the substituted silylthio group include trimethylsilylthio group, triethylsilylthio group, tripropylsilylthio group, tri-iso-propylsilylthio group, tert-butyldimethylsilylthio group, triphenylsilylthio group, tri-p -Xylylsilylthio group, tribenzylsilylthio group, diphenylmethylsilylthio group, tert-butyldiphenylsilylthio group, dimethylphenylsilylthio group and the like.
  • the substituted silylamino group is a group in which one or two hydrogen atoms of the amino group are substituted with a substituted silyl group, and the substituted silyl group is as described above.
  • Specific examples of the substituted silylamino group include trimethylsilylamino group, triethylsilylamino group, tripropylsilylamino group, tri-iso-propylsilylamino group, tert-butyldimethylsilylamino group, triphenylsilylamino group, tri-p -Xylylsilylamino group, tribenzylsilylamino group, diphenylmethylsilylamino group, tert-butyldiphenylsilylamino group, dimethylphenylsilylamino group, di (trimethylsilyl) amino group, di (triethylsilyl) amino group, di ( Tripropylsilyl) amino group, di (tri-is
  • the monovalent heterocyclic group examples include furan, thiophene, pyrrole, pyrroline, pyrrolidine, oxazole, isoxazole, thiazole, isothiazole, imidazole, imidazoline, imidazolidine, pyrazole, pyrazoline, prazolidine, furazane, triazole, thiadiazole Oxadiazole, tetrazole, pyran, pyridine, piperidine, thiopyran, pyridazine, pyrimidine, pyrazine, piperazine, morpholine, triazine, benzofuran, isobenzofuran, benzothiophene, indole, isoindole, indolizine, indoline, isoindoline, chromene, Chroman, isochroman, benzopyran, quinoline, isoquinoline, quinolidine, benzimidazole, be
  • heterocyclic oxy group examples include a group represented by the formula (11) in which an oxygen atom is bonded to the monovalent heterocyclic group.
  • heterocyclic thio group examples include a monovalent group represented by the formula (12) in which a sulfur atom is bonded to the monovalent heterocyclic group.
  • Ar 7 represents a monovalent heterocyclic group.
  • the heterocyclic oxy group usually has about 2 to 60 carbon atoms, preferably 2 to 30 carbon atoms.
  • the heterocyclic oxy group may have a substituent.
  • Specific examples of the heterocyclic oxy group which may have a substituent include thienyloxy group, C1-C12 alkylthienyloxy group, pyrrolyloxy group, furyloxy group, pyridyloxy group, C1-C12 alkylpyridyloxy group, Examples include imidazolyloxy group, pyrazolyloxy group, triazolyloxy group, oxazolyloxy group, thiazoleoxy group, and thiadiazoleoxy group.
  • the heterocyclic thio group generally has about 2 to 60 carbon atoms, preferably 2 to 30 carbon atoms.
  • the heterocyclic thio group may have a substituent.
  • Specific examples of the heterocyclic thio group which may have a substituent include thienyl mercapto group, C1-C12 alkyl thienyl mercapto group, pyrrolyl mercapto group, furyl mercapto group, pyridyl mercapto group, C1-C12 alkyl pyridyl mercapto group.
  • the arylalkenyl group usually has 8 to 20 carbon atoms, preferably 8 to 15 carbon atoms. Specific examples of the arylalkenyl group include a styryl group.
  • the arylalkynyl group usually has 8 to 20 carbon atoms, preferably 8 to 15 carbon atoms, and specific examples of the arylalkynyl group include a phenylacetylenyl group.
  • the substituted carboxyl group usually has 2 to 20 carbon atoms, and examples thereof include a group having a methyl ester structure, a group having an ethyl ester structure, and a group having a butyl ester structure.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Ar 11 and Ar 12 represent a group obtained by removing three hydrogen atoms from an aromatic ring.
  • the aromatic ring include a hydrocarbon ring having aromaticity and a heterocyclic ring having aromaticity.
  • the number of carbon atoms in the aromatic hydrocarbon ring is usually 6 to 60, preferably 6 to 20.
  • the hydrocarbon ring may have a substituent.
  • substituents examples include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, an arylalkylthio group, an acyl group, an acyloxy group, and an amide.
  • the definitions and specific examples of the substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, arylalkenyl group, arylalkynyl group and substituted carboxyl group are the same.
  • the number of carbon atoms in the hydrocarbon ring having aromaticity does not include the number of carbon atoms in the substituent.
  • groups obtained by removing three hydrogen atoms from an aromatic hydrocarbon ring include the following groups.
  • the number of carbon atoms in the aromatic heterocyclic ring is usually 2 to 60, preferably 4 to 20.
  • the heterocyclic ring may have a substituent, and examples of the substituent include the same groups as those described as the substituent that the hydrocarbon ring may have.
  • the number of carbon atoms of the heterocyclic ring is the number of ring carbon atoms constituting the heterocyclic ring, and does not include the number of carbon atoms of the substituent.
  • the heterocycle refers to a ring in which the elements constituting the ring include not only carbon atoms but also heteroatoms such as oxygen, sulfur, nitrogen, phosphorus and boron.
  • Examples of the group obtained by removing three hydrogen atoms from the aromatic heterocyclic ring include the following groups.
  • R ′ represents a hydrogen atom, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, An arylalkylthio group, a substituted amino group, an acyloxy group, an amide group, an arylalkenyl group, an arylalkynyl group, a monovalent heterocyclic group, or a cyano group is represented.
  • R ′ When a plurality of R ′ are contained, they may be the same or different.
  • R ′ is a group containing a carbon atom, the number of carbon atoms is usually about 1 to 60.
  • R ′ halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, acyloxy group, amide Group, arylalkenyl group, arylalkynyl group, and monovalent heterocyclic group and specific examples thereof are the halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group represented by R 1 described above.
  • R ′′ represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, a substituted silyl group, an acyl group, or a monovalent heterocyclic group.
  • R ′′ represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, a substituted silyl group, an acyl group, or a monovalent heterocyclic group.
  • R ′′ represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, a substituted silyl group, an acyl group, or a monovalent heterocyclic group.
  • R ′′ represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, a substituted silyl group, an acyl group, or a monovalent heterocyclic group.
  • R ′′ represents a hydrogen atom, an alkyl group, an aryl group,
  • alkyl group, aryl group, arylalkyl group, substituted silyl group, and monovalent heterocyclic group represented by R ′′ are the alkyl group, aryl group, and aryl represented by the aforementioned R 1.
  • the definition and specific examples of the alkyl group, substituted silyl group and monovalent heterocyclic group are the same.
  • Ar 11 and Ar 12 are preferably groups in which three hydrogen atoms have been removed from a heterocyclic ring having aromaticity.
  • the repeating unit represented by the formula (1) is preferably a repeating unit represented by the formula (1A) from the viewpoint of increasing the short circuit continuous density.
  • A represents the same meaning as described above.
  • X 1a1 and X 1a2 each independently represent a sulfur atom, an oxygen atom, a selenium atom, or —N (R) —.
  • R is a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, acyloxy group, amide Represents a group, an arylalkenyl group, an arylalkynyl group, a monovalent heterocyclic group or a cyano group.
  • R is a group containing a carbon atom, the number of carbon atoms is usually about 1 to 60.
  • Halogen atom represented by R alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, acyloxy group, amide group
  • the definitions and specific examples of the arylalkenyl group, arylalkynyl group and monovalent heterocyclic group are the halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group represented by the aforementioned R 1 .
  • arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, acyloxy group, amide group, arylalkenyl group, arylalkynyl group and monovalent heterocyclic group are the same.
  • Preferred examples of the repeating unit represented by the formula (1A) include repeating units represented by the formulas (301) to (325).
  • R represents the same meaning as described above (explained in formula (1A)).
  • the repeating units represented by Formula (301) to Formula (325) from the viewpoint of increasing the conversion efficiency of the photoelectric conversion element, Formula (301), Formula (306), Formula (311), Formula (316) are preferable.
  • Examples of the substituent that the arylene group and the heteroarylene group may have include the same substituents as those represented by R 1 described above.
  • Ar 21 , Ar 22 , and Ar 23 each independently represent an arylene group that may have a substituent or a heteroarylene group that may have a substituent.
  • the number of carbon atoms of the arylene group is usually about 6 to 60, preferably 6 to 20.
  • the number of carbon atoms here is a ring carbon atom constituting an aromatic ring, and does not include the number of carbon atoms contained in the substituent when it has a substituent.
  • the arylene group also includes a group containing a benzene ring, a group containing a condensed ring, a group in which two or more independent benzene rings or two or more condensed rings are directly bonded, or a group bonded via a group such as vinylene.
  • the number of carbon atoms of the heteroarylene group is usually about 2 to 60, preferably 6 to 20.
  • the number of carbon atoms here is a ring carbon atom constituting a heterocyclic ring, and does not include the number of carbon atoms contained in the substituent when it has a substituent.
  • the heteroarylene group is an aromatic compound having a cyclic structure, and the elements constituting the ring include not only carbon atoms but also heteroatoms such as oxygen, sulfur, nitrogen, phosphorus, boron, and arsenic in the ring.
  • Ar 23 is preferably a heteroarylene group which may have a substituent.
  • arylene group which may have a substituent examples include a phenylene group which may have a substituent (for example, Formulas 1 to 3 in the following figure), and a naphthalenediyl group which may have a substituent (see the following figure).
  • Formulas 4 to 13 an anthracenediyl group optionally having a substituent (formulas 14 to 19 in the following figure), biphenyl-diyl group optionally having a substituent (formulas 20 to 25 in the figure below), Examples thereof include a terphenyl-diyl group (formulas 26 to 28 in the following figure) which may have a substituent, and condensed ring compound groups (formulas 29 to 38 in the following figure) which may have a substituent.
  • the fused ring compound group includes a fluorene-diyl group (formulas 36 to 38 in the following figure).
  • Divalent heterocyclic group containing nitrogen as a hetero atom a pyridine-diyl group optionally having a substituent (formulas 39 to 44 in the following figure).
  • a diazaphenylene group which may have a substituent (formulas 45 to 48 in the following figure).
  • a quinolinediyl group which may have a substituent (formulas 49 to 63 in the following figure).
  • a quinoxalinediyl group which may have a substituent (formulas 64-68 in the following figure).
  • An acridinediyl group which may have a substituent (formulas 69 to 72 in the following figure).
  • a bipyridyldiyl group optionally having a substituent (formulas 73 to 75 in the following figure).
  • a phenanthrolinediyl group which may have a substituent (formulas 76 to 78 in the following figure).
  • Groups having a fluorene structure containing silicon, nitrogen, sulfur, selenium and the like as a hetero atom (formulas 79 to 93 in the following figure).
  • 5-membered heterocyclic groups containing silicon, nitrogen, sulfur, selenium, etc. as heteroatoms (formulae 94-98 in the figure below).
  • 5-membered condensed heterocyclic groups containing silicon, nitrogen, sulfur, selenium and the like as a hetero atom (formulas 99 to 110 in the following figure).
  • a 5-membered ring heterocyclic group containing silicon, nitrogen, sulfur, selenium, etc. as a heteroatom, and bonded to the ⁇ -position of the heteroatom to form a dimer or oligomer (formulas 111 to 112 in the figure below).
  • a 5-membered ring heterocyclic group containing silicon, nitrogen, sulfur, selenium, etc. as a heteroatom, and bonded to the phenyl group at the ⁇ -position of the heteroatom (Formula 113 to 119 in the following figure).
  • a group in which a benzene ring and a thiophene ring are condensed (FIGS. 120 to 122 below).
  • R represents the same meaning as described above (explained in the formula (1A)).
  • R 21 to R 38 each independently represents a hydrogen atom or a substituent.
  • substituent represented by R 21 to R 38 include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, and an arylalkylthio group.
  • R 21 to R 38 are groups containing carbon atoms, the number of carbon atoms is usually about 1 to 60.
  • An alkyl group represented by R 21 to R 38 an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group,
  • the definition and specific examples of the substituted amino group, substituted silyl group, halogen atom, acyl group, acyloxy group, amide group, monovalent heterocyclic group, and substituted carboxyl group are the alkyl group represented by the aforementioned R 1 , alkyloxy Group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, substituted amino group, substitute
  • R 21 , R 22 and R 35 are preferably an alkyl group, an alkyloxy group and an alkylthio group, more preferably an alkyl group and an alkyloxy group, and particularly preferably an alkyl group.
  • the alkyl group may be linear or branched, but is preferably branched from the viewpoint of enhancing the solubility of the polymer compound of the present invention.
  • R 23 , R 24 , R 27 , R 28 , R 31 , R 32 , R 33 , R 34 , R 37 and R 38 are preferably halogen atoms or hydrogen atoms, more preferably fluorine atoms or hydrogen atoms. And particularly preferably a hydrogen atom.
  • R 25 , R 26 , R 29 and R 30 are preferably a hydrogen atom, a halogen atom, an alkyl group, an aryl group or an arylalkyl group, and more preferably a hydrogen atom or an arylalkyl group.
  • R 36 is preferably a hydrogen atom, a halogen atom, an acyl group or an acyloxy group, more preferably an acyl group or an acyloxy group.
  • X 21 to X 29 each independently represents a sulfur atom, an oxygen atom or a selenium atom.
  • Ar 23 is preferably a group represented by Formula (2-1) to Formula (2-8).
  • X 21 to X 29 each independently represent a sulfur atom, an oxygen atom or a selenium atom, and preferably sulfur from the viewpoint of increasing the short circuit continuous density.
  • Ar 23 is more preferably a group represented by Formula (2-1), Formula (2-2), or Formula (2-3), and more preferably Formula (2-1), Formula (2- 2), particularly preferably a group represented by (2-1).
  • Ar 21 and Ar 22 are preferably groups represented by the formulas 39 to 122, and more preferably groups represented by the formulas 94 to 98 and the formulas 111 to 113. More preferred are groups represented by formulas 94 to 98, more preferred are groups represented by formulas 96 to 98, and particularly preferred are groups represented by formula 97.
  • the repeating unit represented by the formula (2) is preferably a repeating unit represented by the formula (2A) from the viewpoint of increasing the short circuit continuous density.
  • X 2a1 and X 2a2 each independently represent a sulfur atom, an oxygen atom or a selenium atom.
  • R 21 and R 22 represent the same meaning as described above.
  • R 40 to R 43 each independently represents a hydrogen atom or a substituent.
  • substituent represented by R 40 to R 43 include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, and an arylalkylthio group.
  • R 40 to R 43 are a group containing a carbon atom, the number of carbon atoms is usually about 1 to 60.
  • An alkyl group represented by R 40 to R 43 an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group,
  • the definition and specific examples of the substituted amino group, substituted silyl group, halogen atom, acyl group, acyloxy group, amide group, monovalent heterocyclic group, and substituted carboxyl group are the alkyl group represented by the aforementioned R 1 , alkyloxy Group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, substituted amino group, substitute
  • repeating unit represented by formula (2) examples include repeating units represented by formula (2-1-1) to formula (2-1-9).
  • R 21 and R 22 represent the same meaning as described above.
  • the formulas (2-1-1) to (2-1-9) are preferable. It is a repeating unit.
  • Ar 31 represents an arylene group having a substituent or a heteroarylene group having a substituent.
  • the repeating unit represented by formula (3) is different from the repeating unit represented by formula (1) and the repeating unit represented by formula (2).
  • the arylene group or heteroarylene group in Ar 31 is the same as the arylene group or heteroarylene group in Ar 21 described above, and specific examples include the arylene group and heteroarylene group listed as Formula 122 from Formula 1 above. It is done.
  • Examples of the substituent of the arylene group or heteroarylene group in Ar 31 include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an arylalkyloxy group, an arylalkylthio group, an acyl group, an acyloxy group, an amide group, and an acid.
  • a halogen atom an alkyl group, an alkyloxy group, an alkylthio group, an arylalkyloxy group, an arylalkylthio group, an acyl group, an acyloxy group, an amide group, and an acid.
  • X 3a represents a direct bond, —CR 3a1 ⁇ CR 3a2 —, —C ⁇ C— , —O—, —S—, an alkylene group or an arylene group.
  • R 3a , R 3a1 and R 3a2 represent a hydrogen atom, a halogen atom or an alkyl group.
  • Ar 3a represents an arylene group which may have a substituent or a heteroarylene group which may have a substituent.
  • n is an integer of 1 to 10.
  • the substituent that can be the substituent of the arylene group or heteroarylene group in Ar 31 includes a substituent represented by the formula (3A).
  • X 3a in formula (3A) represents a direct bond, —CR 3a1 ⁇ CR 3a2 —, —C ⁇ C— , —O—, —S—, an alkylene group, or an arylene group.
  • the number of carbon atoms in the alkylene group is usually about 1-20.
  • the alkylene group having 3 or more carbon atoms may be linear or branched, and may have a substituent.
  • alkylene group examples include a methylene group, an ethylene group, a propylene group, a butylene group, and an octylene group.
  • the number of carbon atoms in the arylene group is usually about 6 to 20.
  • the arylene group may have a substituent.
  • examples of the arylene group include a phenylene group, a biphenylene group, and a naphthylene group.
  • R 3a , R 3a1 and R 3a2 represent a hydrogen atom, a halogen atom or an alkyl group.
  • the halogen include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group may be linear or branched, and may be a cycloalkyl group.
  • the number of carbon atoms of the alkyl group in R 3a , R 3a1 and R 3a2 is usually 1-30 , preferably 1-20.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl.
  • hexyl group isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, nonyl group
  • chain alkyl groups such as decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl group and eicosyl group, and cycloalkyl groups such as cyclopentyl group, cyclohexyl group and adamantyl group.
  • R 3a is preferably a hydrogen atom, a halogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group, and particularly preferably an alkyl group.
  • R 3a1 and R 3a2 are preferably a hydrogen atom, a halogen atom, or an alkyl group, more preferably a hydrogen atom or a halogen atom, and particularly preferably a hydrogen atom.
  • Ar 3a is preferably Formula 1, Formula 20, Formula 36, Formula 37, Formula 79, Formula 80, Formula 82, Formula 83, Formula 94, Formula 95, Formula 96, Formula 97, Formula 111, Formula 112, Formula 113. More preferably a group represented by Formula 1, Formula 36, Formula 79, Formula 82, Formula 97, Formula 111, and even more preferably a group represented by Formula 1, Formula 97. And particularly preferred is a group represented by Formula 97.
  • Ar 31 preferably has a substituent represented by formula (3A).
  • substituent represented by the formula (3A) are preferably groups represented by the formulas (3A-1) to (3A-23).
  • R 3a is as described in the formula (3A).
  • Preferred as formula (3A) are groups represented by formula (3A-1) to formula (3A-5), and more preferred are groups represented by formula (3A-2) to formula (3A-4). And particularly preferably a group represented by the formula (3A-3).
  • repeating unit represented by the formula (3) are preferably repeating units represented by the formulas (3-1) to (3-5) from the viewpoint of increasing the short circuit continuous density. .
  • R 3a is as described in formula (3A).
  • the repeating units represented by the formulas (3-1) to (3-5) preferred are repeating units represented by the formulas (3-2) to (3-4), and particularly preferred are the formulas It is a repeating unit represented by (3-3).
  • the polymer compound in the present invention refers to a compound having a weight average molecular weight of 1000 or more.
  • a polymer compound having a weight average molecular weight of 3,000 to 10,000,000 is preferable. If the weight average molecular weight is lower than 3000, defects may occur in film formation during device fabrication, and if it exceeds 10000000, solubility in a solvent and applicability during device fabrication may be degraded.
  • the weight average molecular weight of the polymer compound is more preferably 8000 to 5000000, and particularly preferably 10,000 to 1000000.
  • the weight average molecular weight in the present invention refers to a weight average molecular weight in terms of polystyrene calculated using a standard sample of polystyrene using gel permeation chromatography (GPC).
  • the polymer compound of the present invention When the polymer compound of the present invention is used in an element, it is desirable that the solubility in a solvent is high because of the ease of element production.
  • the polymer compound of the present invention preferably has a solubility capable of producing a solution containing 0.01% by weight (wt)% or more of the polymer compound, and a solution containing 0.1% by weight or more is produced. It is more preferable that it has the solubility which can be made, and it is further more preferable that it has the solubility which can produce the solution containing 0.4 wt% or more.
  • the method for producing the polymer compound of the present invention is not particularly limited, but a method using a Suzuki coupling reaction or a Stille coupling reaction is preferable from the viewpoint of ease of synthesis of the polymer compound.
  • E 1 represents a repeating unit represented by the formula (1)
  • Q 100 and Q 200 each independently represent a dihydroxyboryl group (—B (OH) 2 ) or a boric acid ester residue.
  • E 2 represents a repeating unit represented by the formula (2).
  • T 1 and T 2 each independently represent a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, or an aryl alkyl sulfonate group.
  • T 3 -E 3 -T 4 (300)
  • E 2 represents a repeating unit represented by the formula (3)
  • T 3 and T 4 each independently represent a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, or an aryl alkyl sulfonate group.
  • the manufacturing method which has a process with which the compound represented by these is made to react in presence of a palladium catalyst and a base is mentioned.
  • the total number of moles of the compound represented by Formula (200) and the compound represented by Formula (300) used for the reaction is based on the number of moles of one or more compounds represented by Formula (100). An excess is preferred.
  • the total number of moles of the compound represented by the formula (200) and the compound represented by the formula (300) used in the reaction is 1 mole, the number of moles of the one or more compounds represented by the formula (100) is 0.00.
  • the amount is preferably 6 to 0.99 mol, and more preferably 0.7 to 0.95 mol.
  • the boric acid ester residue for example, the following formula: (In the formula, Me represents a methyl group, and Et represents an ethyl group.) The monovalent group etc. which are represented by these are illustrated. (In the above formula, “-” on the left side represents a connector.)
  • Examples of the halogen atom represented by T 1 and T 2 in Formula (200) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a bromine atom and an iodine atom are preferable, and a bromine atom is more preferable.
  • Examples of the alkyl sulfonate group represented by T 1 and T 2 in Formula (200) include a methane sulfonate group, an ethane sulfonate group, and a trifluoromethane sulfonate group.
  • Examples of the aryl sulfonate group include a benzene sulfonate group and a p-toluene sulfonate group.
  • a benzyl sulfonate group is illustrated as an arylalkyl sulfonate group.
  • Examples of the palladium catalyst used in the Suzuki coupling reaction include a Pd (0) catalyst, a Pd (II) catalyst, and the like.
  • palladium [tetrakis (triphenylphosphine)] palladium acetates, dichlorobis (Triphenylphosphine) palladium, palladium acetate, tris (dibenzylideneacetone) dipalladium, bis (dibenzylideneacetone) palladium, etc. are mentioned, but from the viewpoint of ease of reaction (polymerization) operation and reaction (polymerization) rate.
  • Dichlorobis (triphenylphosphine) palladium, palladium acetate, and tris (dibenzylideneacetone) dipalladium are preferred.
  • the addition amount of the palladium catalyst is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 mol to 0.5 mol with respect to 1 mol of the compound represented by the formula (100). The amount is preferably 0.0003 mol to 0.1 mol.
  • a phosphorus compound such as triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine is added as a ligand.
  • the addition amount of the ligand is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol, relative to 1 mol of the palladium catalyst. is there.
  • Examples of the base used for the Suzuki coupling reaction include inorganic bases, organic bases, inorganic salts and the like.
  • examples of the inorganic base include potassium carbonate, sodium carbonate, barium hydroxide and the like.
  • examples of the organic base include triethylamine and tributylamine.
  • examples of the inorganic salt include cesium fluoride.
  • the addition amount of the base is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol, relative to 1 mol of the compound represented by the formula (100). is there.
  • the Suzuki coupling reaction is performed in a reaction system in which the Pd (0) catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas.
  • an inert atmosphere such as argon gas or nitrogen gas.
  • it is performed in a system sufficiently deaerated with argon gas or nitrogen gas.
  • the inside of the polymerization vessel (reaction system) is sufficiently replaced with nitrogen gas and deaerated.
  • a compound represented by the formula (100), a compound represented by the formula (200), a compound represented by the formula (300), dichlorobis (triphenylphosphine) palladium (II) is charged into the polymerization container, Further, the polymerization vessel is sufficiently replaced with nitrogen gas and deaerated.
  • a solvent deaerated beforehand by bubbling with nitrogen gas for example, toluene
  • a base deaerated by bubbling with nitrogen gas in advance for example, an aqueous sodium carbonate solution
  • a base deaerated by bubbling with nitrogen gas in advance for example, an aqueous sodium carbonate solution
  • the formula (400) Q 300 -E 3 -Q 400 (400)
  • E 3 represents a repeating unit represented by the formula (1).
  • Q 300 and Q 400 each independently represent a substituted stannyl group.
  • a production method comprising a step of reacting one or more compounds represented by the formula (200) with the compound represented by the formula (200) and the compound represented by the formula (300) in the presence of a palladium catalyst. It is done.
  • Examples of the substituted stannyl group include a group represented by —SnR 100 3 .
  • R 100 represents a monovalent organic group.
  • Examples of the monovalent organic group include an alkyl group and an aryl group.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl.
  • aryl group examples include a phenyl group and a naphthyl group.
  • organotin residues -SnMe 3, -SnEt 3, -SnBu 3, an -SnPh 3, more preferably -SnMe 3, -SnEt 3, is -SnBu 3.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • Examples of the halogen atom represented by T 1 and T 2 in Formula (200) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. In view of ease of synthesis of the polymer compound, a bromine atom and an iodine atom are preferable.
  • examples of the catalyst include a method of reacting in an arbitrary solvent under a palladium catalyst.
  • Examples of the palladium catalyst used in the Stille coupling reaction include a Pd (0) catalyst and a Pd (II) catalyst.
  • Specific examples include palladium [tetrakis (triphenylphosphine)], palladium acetates, dichlorobis (triphenylphosphine) palladium, palladium acetate, tris (dibenzylideneacetone) dipalladium, and bis (dibenzylideneacetone) palladium.
  • Palladium [tetrakis (triphenylphosphine)] and tris (dibenzylideneacetone) dipalladium are preferable from the viewpoints of easy reaction (polymerization) operation and reaction (polymerization) rate.
  • the addition amount of the palladium catalyst used in the Stille coupling reaction is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 per 1 mol of the compound represented by the formula (400). Mol to 0.5 mol, preferably 0.0003 to 0.2 mol.
  • a ligand and a promoter can be used as necessary.
  • the ligand include phosphorus compounds such as triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine, tris (2-furyl) phosphine, triphenylarsine, and triphenoxyarsine.
  • Examples include arsenic compounds.
  • the cocatalyst include copper iodide, copper bromide, copper chloride, copper 2-thenoylate (I) and the like.
  • the amount of the ligand or cocatalyst added is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, relative to 1 mol of the palladium catalyst. More preferably, it is 1 mol to 10 mol.
  • the Stille coupling reaction is usually performed in a solvent.
  • the solvent include N, N-dimethylformamide, N, N-dimethylacetamide, toluene, dimethoxyethane, tetrahydrofuran and the like. From the viewpoint of solubility of the polymer compound used in the present invention, toluene and tetrahydrofuran are preferred.
  • reaction time may be the end point when the target degree of polymerization is reached, but is usually about 0.1 to 200 hours. About 1 to 30 hours is efficient and preferable.
  • the Stille coupling reaction is performed in a reaction system in which the Pd catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas.
  • an inert atmosphere such as argon gas or nitrogen gas.
  • it is performed in a system sufficiently deaerated with argon gas or nitrogen gas.
  • the inside of the polymerization vessel (reaction system) is sufficiently replaced with nitrogen gas and deaerated.
  • a compound represented by the formula (300), a compound represented by the formula (200), a compound represented by the formula (400), and a palladium catalyst are charged into this polymerization vessel, and the polymerization vessel is further filled with nitrogen gas. Replace well and degas.
  • the content of the repeating unit represented by the formula (1) in the polymer compound of the present invention is 10 to 10% from the viewpoint of increasing the photoelectric conversion efficiency with respect to the total of the repeating units of the polymer compound of the present invention. 80 mol% is preferred.
  • the content of the repeating unit represented by the formula (2) in the polymer compound of the present invention is preferably 10 to 80 mol% from the viewpoint of increasing the photoelectric conversion efficiency.
  • the content of the repeating unit represented by the formula (3) in the polymer compound of the present invention is preferably 5 to 50 mol% from the viewpoint of increasing the photoelectric conversion efficiency.
  • the polymer compound of the present invention preferably has a long light absorption terminal wavelength from the viewpoint of increasing the photoelectric conversion efficiency.
  • the light absorption terminal wavelength is preferably 700 nm or more, more preferably 800 nm or more, and particularly preferably 900 nm or more.
  • the light absorption terminal wavelength ( ⁇ th) is expressed as a wavelength value at the terminal on the long wavelength side of the light absorption wavelength.
  • the numerical value of the light absorption terminal wavelength in the present invention is specifically represented by a value obtained by the following method.
  • the light absorption terminal wavelength in this invention can be calculated
  • the intersection point closer to the longer wavelength than the absorption peak point is defined as the second point.
  • a straight line connecting the first point and the second point is taken as a first reference line.
  • the absorbance at the absorption peak point (maximum value) closest to the longest wavelength is 100%.
  • the wavelength at the intersection closer to the longer wavelength than the absorption peak point is used as a reference point.
  • a point on the absorption waveform at a wavelength 100 nm longer than the wavelength of the point is defined as a third point.
  • a point on the absorption waveform that is 150 nm longer than the wavelength of the reference point is defined as a fourth point.
  • a straight line connecting the third point and the fourth point is taken as a second reference line.
  • the polymer compound of the present invention can exhibit high electron and / or hole transport properties, when an organic thin film containing the compound is used in a device, electrons or holes injected from an electrode, or light absorption. The generated charge can be transported. Taking advantage of these characteristics, an organic thin film containing the compound can be suitably used for various devices such as a photoelectric conversion device, an organic thin film transistor, and an organic electroluminescence device. Hereinafter, these elements will be described individually.
  • composition of the present invention contains the polymer compound of the present invention and an electron-accepting compound.
  • the ratio of the electron-accepting compound is preferably 10 to 1000 parts by weight, more preferably 20 to 500 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention. .
  • the heteroaryl group represented by Ra usually has 3 to 60 carbon atoms, and examples thereof include a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
  • Examples of the group having an ester structure represented by Ra include a group represented by the formula (17). (Wherein u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, and R c represents an alkyl group, an aryl group, or a heteroaryl group.)
  • alkyl group, aryl group and heteroaryl group represented by R c are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R a .
  • C 70 fullerene derivative examples include the following.
  • Esters (C70PCBM, [6,6] -Phenyl C 71 butyric acid methyl ester), [6,6] Phenyl-C 85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C 85 butyric acid methyl ester), [ 6,6] thienyl -C 61 butyric acid methyl ester ([6,6] -Thienyl C 61 butyric acid methyl ester) and the like.
  • the first aspect of the thin film of the present invention is a thin film containing the polymer compound of the present invention.
  • the 2nd aspect of the thin film of this invention is a thin film containing the composition of this invention.
  • the thickness of the thin film is preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.
  • the photoelectric conversion element having the polymer compound of the present invention has one or more active layers containing the polymer compound of the present invention between a pair of electrodes, at least one of which is transparent or translucent.
  • a preferred form of the photoelectric conversion element having the polymer compound of the present invention is formed from a pair of electrodes, at least one of which is transparent or translucent, and an organic composition of a p-type organic semiconductor and an n-type organic semiconductor. Having an active layer.
  • the polymer compound of the present invention is preferably used as a p-type organic semiconductor.
  • the operation mechanism of the photoelectric conversion element of this embodiment will be described.
  • Light energy incident from a transparent or translucent electrode is an electron-accepting compound (n-type organic semiconductor) such as a fullerene derivative and / or an electron-donating compound (p-type organic semiconductor) such as a polymer compound of the present invention. Absorbed, producing excitons in which electrons and holes are combined.
  • the photoelectric conversion element produced using the polymer compound of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed.
  • Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode that is, the electrode far from the substrate
  • the first active layer containing the polymer compound of the present invention is interposed between a pair of electrodes, at least one of which is transparent or translucent, and the first A photoelectric conversion element including a second active layer containing an electron accepting compound such as a fullerene derivative adjacent to the active layer.
  • the transparent or translucent electrode material examples include a conductive metal oxide film and a translucent metal thin film.
  • transparent or translucent electrode materials include indium oxide, zinc oxide, tin oxide, and conductive materials made of indium / tin / oxide (ITO), indium / zinc / oxide, etc., which are composites thereof.
  • films include NESA, gold, platinum, silver, and copper. ITO, indium / zinc / oxide, and tin oxide are preferable.
  • the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • an organic transparent conductive film such as polyaniline and derivatives thereof, polythiophene and derivatives thereof may be used.
  • Two or more alloys of these metals are two or more alloys of these metals; one selected from the group consisting of one or more of these metals and gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin; Alloys with more than one metal; graphite and graphite intercalation compounds; polyaniline and derivatives thereof; and polythiophene and derivatives thereof.
  • Specific examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the electron-donating compound in addition to the polymer compound of the present invention, for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, Examples thereof include polysiloxane derivatives having an aromatic amine residue in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof.
  • Examples of the electron-accepting compound include the aforementioned compounds in addition to the polymer compound of the present invention.
  • the ratio of the fullerene derivative is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention. More preferably, it is 500 parts by weight.
  • the thickness of the active layer is usually preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, more preferably 20 nm to 200 nm.
  • a preferred method for producing a photoelectric conversion element is a method for producing an element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode, Applying a solution (ink) containing the polymer compound of the present invention and a solvent or a solution containing the composition of the present invention and a solvent on the first electrode by a coating method to form an active layer;
  • This is a method for manufacturing an element including a step of forming a second electrode on a layer.
  • the solvent used for film formation from a solution may be any solvent that dissolves the polymer compound of the present invention or the composition of the present invention.
  • the solvent include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane.
  • the surface tension of the solvent at 25 ° C. is preferably larger than 15 mN / m, more preferably larger than 15 mN / m and smaller than 100 mN / m, larger than 25 mN / m and larger than 60 mN / m. It is more preferable that the value is small.
  • a field effect organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, a gate electrode for controlling the amount of current passing through the current path, and an organic semiconductor layer and a gate electrode It is preferable to provide an insulating layer disposed between the two.
  • the source electrode and the drain electrode are preferably provided in contact with the organic semiconductor layer (active layer), and the gate electrode is preferably provided with an insulating layer in contact with the organic semiconductor layer interposed therebetween.
  • the organic semiconductor layer is constituted by an organic thin film containing the polymer compound of the present invention.
  • an organic EL element an element having an anode, a light emitting layer, and a cathode, and an anode, a light emitting layer, and an electron having an electron transport layer containing an electron transport material adjacent to the light emitting layer between the cathode and the light emitting layer.
  • an element having an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode an element having an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode.
  • the photoelectric conversion element using the polymer compound of the present invention is operated as an organic thin film solar cell by generating photovoltaic power between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. Can do. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • a photocurrent flows by irradiating light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes or in a state where no voltage is applied.
  • the above-mentioned organic thin film transistor can be used as a pixel driving element used for controlling the pixel of an electrophoretic display, a liquid crystal display, an organic electroluminescence display, etc., and controlling the uniformity of screen luminance and the screen rewriting speed. .
  • the organic thin film solar cell can basically have the same module structure as a conventional solar cell module.
  • the solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side.
  • a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known.
  • the organic thin-film solar cell manufactured using the polymer compound of the present invention can also be appropriately selected from these module structures depending on the purpose of use, place of use and environment.
  • the surface protection layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin. It is possible to eliminate the supporting substrate on one side.
  • the periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material.
  • a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
  • a solar cell using a flexible support such as a polymer film
  • cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material.
  • the battery body can be produced.
  • a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 may be used.
  • a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
  • the number average molecular weight and the weight average molecular weight were determined by gel permeation chromatography (GPC) (manufactured by Shimadzu Corporation, trade name: Prominence system) in terms of polystyrene. Chloroform was used as the mobile phase of GPC.
  • Compound 4 was synthesized according to the method described in Macromolecules, 2008, Vol. 41, 8302-8305.
  • Compound 5 was synthesized according to the method described in Macromolecules, 2010, Vol. 43, pp. 821-826.
  • 30.6 mg (0.047 mmol) of compound 3 175 mg (0.235 mmol) of compound 4, 107.4 mg (0.188 mmol) of compound 5, and 10 ml of toluene A uniform solution was obtained.
  • the obtained toluene solution was bubbled with nitrogen for 30 minutes.
  • polymer A The polystyrene equivalent weight average molecular weight of the polymer A measured by GPC was 41100, and the polystyrene equivalent number average molecular weight was 21,000.
  • the light absorption terminal wavelength of the polymer A was 1030 nm.
  • Example 2 (Production and evaluation of organic thin-film solar cells) A glass substrate on which an ITO film having a thickness of 100 nm was formed by a sputtering method was subjected to ultrasonic cleaning using a surfactant solution, water, acetone and 2-propanol in this order. Next, polymer A and phenyl C71-butyric acid methyl ester (C70PCBM) (phenyl C71-butyric acid methyl ester, manufactured by Solenne) were dissolved in a mixed solvent of chloroform and o-dichlorobenzene to produce ink 1. .
  • C70PCBM phenyl C71-butyric acid methyl ester, manufactured by Solenne
  • ink 1 the weight ratio of C70PCBM to the weight of polymer A was 2, and the volume ratio of chloroform to the volume of o-dichlorobenzene was 9.
  • the total weight of the polymer A and the C70PCBM was 1% by weight with respect to the weight of the ink 1.
  • the ink 1 was applied onto a substrate by spin coating to produce an organic film containing the polymer A.
  • the organic film functions as an active layer.
  • the thickness of the organic film was about 80 nm.
  • the thus prepared organic film had a light absorption terminal wavelength of 1030 nm.
  • calcium was vapor-deposited with a thickness of 10 nm on the organic film by a vacuum vapor deposition machine, and then aluminum was vapor-deposited with a thickness of 30 nm to produce an organic thin film solar cell.
  • the shape of the obtained organic thin film solar cell was a rectangle of 3 mm ⁇ 4 mm.
  • the resulting organic thin-film solar cell is irradiated with a certain amount of light through a 2 mm x 3 mm metal mask using a solar simulator (trade name PEC-L11, manufactured by Peccell Technologies, Inc., irradiance 100 mW / cm 2 ).
  • the current and voltage to be measured were measured to obtain photoelectric conversion efficiency, short-circuit current density, open-circuit voltage, and fill factor.
  • Jsc short circuit current density
  • Voc open end voltage
  • ff fill factor (curve factor)
  • photoelectric conversion efficiency
  • the obtained organic thin film solar cell was measured for Jsc, Voc, ff, and ⁇ in the same manner as in Example 2.
  • Jsc was 18.73 mA / cm 2
  • Voc was 0.42 V
  • ff was 0.58
  • was 4.56%.
  • the polymer A was dissolved in orthodichlorobenzene to prepare a solution having a concentration of the polymer A of 0.5% by weight, and the solution was filtered through a membrane filter to prepare a coating solution.
  • the coating solution was applied onto the silane-treated n-type silicon substrate by spin coating to form a coating film of polymer A having a thickness of about 60 nm. Thereafter, the coating film was heated in a nitrogen atmosphere at 170 ° C. for 30 minutes to form an organic semiconductor thin film of polymer A.
  • the organic semiconductor film functions as an active layer.
  • a metal mask is disposed on the organic semiconductor thin film, and molybdenum trioxide and gold are sequentially stacked on the organic semiconductor thin film by a vacuum deposition method, and a source electrode and a drain electrode having a stacked structure of molybdenum trioxide and gold are formed.
  • An organic transistor was manufactured by manufacturing.
  • the electrical characteristics of the organic transistor were measured using a semiconductor characteristic evaluation system (semiconductor parameter analyzer 4200-SCS, manufactured by KEITHLEY). When the negative gate voltage applied to the gate electrode is increased, the negative drain current is also increased. Therefore, it was confirmed that the organic transistor was a p-type organic transistor.
  • the saturation field effect mobility ⁇ (cm 2 V ⁇ 1 sec ⁇ 1 ) of the carrier in the organic transistor was calculated using the following formula (a) representing the drain current Id in the saturation region of the electrical characteristics of the organic transistor.
  • polymer B The polystyrene equivalent weight average molecular weight of the polymer B measured by GPC was 38600, and the polystyrene equivalent number average molecular weight was 18,900.
  • the light absorption terminal wavelength of the polymer B was 1010 nm.
  • Synthesis example 3 (Synthesis of polymer C) Compound 6 was synthesized according to the method described in JP-T-2009-506519. In a 200 mL flask in which the gas in the flask was replaced with argon, 561 mg (1.00 mmol) of Compound 6 and Compound 7 (4,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxabolan- 2-yl) -2,1,3-benzothiadiazole) (Aldrich) 388.1 mg (1.00 mmol), methyltrialkylammonium chloride (trade name Aliquat 336 (registered trademark), Aldrich) 202 mg was added, Dissolved in 20 ml of toluene.
  • the obtained toluene solution was bubbled with argon for 30 minutes. Thereafter, 2.25 mg of palladium acetate, 12.3 mg of tris (2-methoxyphenyl) phosphine, and 6.5 mL of a 16.7 wt% aqueous sodium carbonate solution were added to the reaction solution, followed by stirring at 100 ° C. for 5 hours. Thereafter, 50 mg of phenylboric acid was added to the reaction solution, and further reacted at 70 ° C. for 2 hours. Thereafter, 2 g of sodium diethyldithiocarbamate and 20 mL of water were added to the reaction solution, followed by stirring under reflux for 2 hours.
  • the organic layer was washed twice with 20 ml of water, then twice with 20 mL of a 3% by weight aqueous acetic acid solution, and further washed twice with 20 mL of water.
  • the obtained solution was poured into methanol to precipitate a polymer.
  • the polymer was filtered and dried, and the resulting polymer was dissolved in 30 mL of o-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer.
  • the polymer was filtered and dried to obtain 280 mg of a purified polymer.
  • this polymer is referred to as polymer C.
  • the weight average molecular weight was 30,000, and the number average molecular weight was 14,000.
  • Example 2 (Production and evaluation of organic thin-film solar cells)
  • the polymer C was used instead of the polymer A, and the photoelectric conversion efficiency, the short-circuit current density, the open-end voltage, and the fill factor were obtained.
  • Table 1 summarizes the photoelectric conversion efficiency, short-circuit current density, open-circuit voltage, and fill factor of each organic thin-film solar cell of Examples 2 and 3 and Comparative Examples 1 and 2.

Abstract

The purpose of the present invention is to provide a high-molecular-weight compound which enables the increase in a short-circuit current density when used in an organic layer contained in a photoelectric conversion element. A high-molecular-weight compound having a repeating unit represented by formula (1), a repeating unit represented by formula (2) and a repeating unit represented by formula (3).

Description

高分子化合物及びそれを用いた電子素子Polymer compound and electronic device using the same
 本発明は、特定の構造を有する高分子化合物及びそれを用いた電子素子に関する。 The present invention relates to a polymer compound having a specific structure and an electronic device using the same.
 近年、地球温暖化防止のため、大気中に放出されるCOの削減が求められている。そのため、例えば、pn接合型のシリコン系太陽電池などを用いるソーラーシステムの採用が提唱されている。しかし、シリコン系太陽電池の材料である単結晶、多結晶及びアモルファスシリコンは、その製造工程において高温、高真空条件が必要である。 In recent years, in order to prevent global warming, reduction of CO 2 released into the atmosphere has been demanded. Therefore, for example, the adoption of a solar system using a pn junction type silicon-based solar cell has been proposed. However, single crystal, polycrystalline and amorphous silicon, which are materials for silicon-based solar cells, require high temperature and high vacuum conditions in the manufacturing process.
 一方、光電変換素子の一態様である有機薄膜太陽電池は、シリコン系太陽電池の製造プロセスに用いられる高温、高真空プロセスが省略でき、塗布プロセスのみで安価に製造できる可能性があり、近年注目されている。有機薄膜太陽電池に用いる高分子化合物としては、繰り返し単位(A)及び繰り返し単位(B)からなる高分子化合物が提案されている(特許文献1)。 On the other hand, the organic thin film solar cell which is one aspect of the photoelectric conversion element can omit the high-temperature and high-vacuum process used in the manufacturing process of the silicon-based solar cell, and can be manufactured at low cost only by the coating process. Has been. As a polymer compound used for an organic thin film solar cell, a polymer compound composed of a repeating unit (A) and a repeating unit (B) has been proposed (Patent Document 1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
特表2009-506519号公報JP 2009-506519 A
 しかしながら、前記高分子化合物を含む有機層を有する光電変換素子は、短絡電流密度が必ずしも十分ではない。 However, a photoelectric conversion element having an organic layer containing the polymer compound does not necessarily have a short-circuit current density.
 本発明は、光電変換素子などの電子素子を構成する有機層に用いた場合に、短絡電流密度を大きくすることができる高分子化合物およびこれを用いた電子素子を提供することを課題とする。 An object of the present invention is to provide a polymer compound capable of increasing the short-circuit current density when used in an organic layer constituting an electronic element such as a photoelectric conversion element, and an electronic element using the same.
 本発明は、下記の高分子化合物、これを用いた材料および素子などを提供する。
[1]式(1)で表される繰り返し単位と式(2)で表される繰り返し単位と式(3)で表される繰り返し単位とを有する高分子化合物。
Figure JPOXMLDOC01-appb-C000010
[式中、Ar11及びAr12は、それぞれ独立に、芳香環から水素原子を3個取り除いた3価の基を表し、該芳香環は置換基を有していてもよい。式(1)で表される繰り返し単位が複数含まれる場合、それらは同一であっても、異なっていてもよい。Aは、式(1-1)~式(1-12)で表される2価の基を表す。
Figure JPOXMLDOC01-appb-C000011
(式中、R~R15は、それぞれ独立に、水素原子又は置換基を表す。)]
Figure JPOXMLDOC01-appb-C000012
[式中、Ar21、Ar22及びAr23は、それぞれ独立に、置換基を有していてもよいアリーレン基又は置換基を有していてもよいヘテロアリーレン基を表す。式(2)で表される繰り返し単位が複数含まれる場合、それらは同一であっても、異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000013
[式中、Ar31は、置換基を有するアリーレン基又は置換基を有するヘテロアリーレン基を表す。ただし、式(3)で表される繰り返し単位は、式(1)で表される繰り返し単位及び式(2)で表される繰り返し単位とは異なる。式(3)で表される繰り返し単位が複数含まれる場合、それらは同一であっても、異なっていてもよい。]
[2]Ar23で表される置換基を有していてもよいアリーレン基又は置換基を有していてもよいヘテロアリーレン基が、式(2-1)~式(2-8)で表される基である、上記[1]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000014
[式中、R21~R38は、それぞれ独立に、水素原子又は置換基を表す。X21~X29は、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。]
[3]式(2)で表される繰り返し単位が、式(2A)で表される繰り返し単位である、上記[1]又は[2]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000015
[式中、X2a1及びX2a2は、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。R21及びR22は、前述と同じ意味を表す。R40~R43は、それぞれ独立に、水素原子又は置換基を表す。]
[4]式(1)で表される繰り返し単位が、式(1A)で表される繰り返し単位である、上記[1]~[3]のいずれか一項に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000016
[式中、Aは、前述と同じ意味を表す。X1a1及びX1a2は、それぞれ独立に、硫黄原子、酸素原子、セレン原子又は-N(R)-を表す。Rは、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、置換アミノ基、アシルオキシ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基又はシアノ基を表す。]
[5] Ar31で表される置換基を有するアリーレン基又は置換基を有するヘテロアリーレン基が有する置換基が、式(3A)で表される1価の基である、上記[1]~[4]のいずれか一項に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000017
[式中、X3aは、直接結合、-CR3a1=CR3a2-、-C≡C-、-O-、-S-、アルキレン基又はアリーレン基を表す。R3a、R3a1及びR3a2は水素原子、ハロゲン原子またはアルキル基を表す。Ar3aは置換基を有していてもよいアリーレン基又は置換基を有していてもよいヘテロアリーレン基を表す。nは1~10の整数である。X3aが複数個ある場合、それらは同一でも相異なってもよい。Ar3aが複数個ある場合、それらは同一でも相異なってもよい。]
[6]光吸収末端波長が700nm以上である、上記[1]~[5]のいずれか一項に記載の高分子化合物。
[7]ポリスチレン換算の数平均分子量が3000以上である、上記[1]~[6]のいずれか一項に記載の高分子化合物。
[8]上記[1]~[7]のいずれか一項に記載の高分子化合物を含む薄膜。
[9]上記[1]~[7]のいずれか一項に記載の高分子化合物と電子受容性化合物とを含む組成物。
[10]電子受容性化合物が、フラーレン誘導体である、上記[9]に記載の組成物。
[11]上記[9]又は[10]に記載の組成物を含む薄膜。
[12]上記[1]~[7]のいずれか一項に記載の高分子化合物、又は、上記[9]若しくは[10]に記載の組成物と、溶媒とを含む溶液。
[13]第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を備え、該活性層に上記[1]~[7]のいずれか一項に記載の高分子化合物、又は、上記[9]若しくは[10]に記載の組成物を含有する電子素子。
[14]光電変換素子である、上記[13]に記載の電子素子。
[15]上記[14]に記載の光電変換素子を備える太陽電池モジュール。
[16]上記[14]記載の光電変換素子を備えるイメージセンサー。
[17]ゲート電極と、ソース電極と、ドレイン電極と、活性層とを備え、該活性層に上記[1]~[7]のいずれか一項に記載の高分子化合物、又は、上記[9]若しくは[10]に記載の組成物を含有する有機薄膜トランジスタ。
The present invention provides the following polymer compounds, materials and devices using the same.
[1] A polymer compound having a repeating unit represented by formula (1), a repeating unit represented by formula (2), and a repeating unit represented by formula (3).
Figure JPOXMLDOC01-appb-C000010
[Wherein, Ar 11 and Ar 12 each independently represent a trivalent group obtained by removing three hydrogen atoms from an aromatic ring, and the aromatic ring may have a substituent. When a plurality of repeating units represented by the formula (1) are included, they may be the same or different. A represents a divalent group represented by formulas (1-1) to (1-12).
Figure JPOXMLDOC01-appb-C000011
(Wherein R 1 to R 15 each independently represents a hydrogen atom or a substituent)]
Figure JPOXMLDOC01-appb-C000012
[Wherein, Ar 21 , Ar 22 and Ar 23 each independently represent an arylene group which may have a substituent or a heteroarylene group which may have a substituent. When a plurality of repeating units represented by the formula (2) are included, they may be the same or different. ]
Figure JPOXMLDOC01-appb-C000013
[Wherein Ar 31 represents an arylene group having a substituent or a heteroarylene group having a substituent. However, the repeating unit represented by formula (3) is different from the repeating unit represented by formula (1) and the repeating unit represented by formula (2). When a plurality of repeating units represented by the formula (3) are included, they may be the same or different. ]
[2] The arylene group which may have a substituent represented by Ar 23 or the heteroarylene group which may have a substituent is represented by formulas (2-1) to (2-8). The polymer compound according to [1], which is a group to be formed.
Figure JPOXMLDOC01-appb-C000014
[Wherein R 21 to R 38 each independently represents a hydrogen atom or a substituent. X 21 to X 29 each independently represents a sulfur atom, an oxygen atom or a selenium atom. ]
[3] The polymer compound according to [1] or [2], wherein the repeating unit represented by the formula (2) is a repeating unit represented by the formula (2A).
Figure JPOXMLDOC01-appb-C000015
[ Wherein , X 2a1 and X 2a2 each independently represent a sulfur atom, an oxygen atom or a selenium atom. R 21 and R 22 represent the same meaning as described above. R 40 to R 43 each independently represents a hydrogen atom or a substituent. ]
[4] The polymer compound according to any one of [1] to [3] above, wherein the repeating unit represented by the formula (1) is a repeating unit represented by the formula (1A).
Figure JPOXMLDOC01-appb-C000016
[Wherein, A represents the same meaning as described above. X 1a1 and X 1a2 each independently represent a sulfur atom, an oxygen atom, a selenium atom, or —N (R) —. R is a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, acyloxy group, amide Represents a group, an arylalkenyl group, an arylalkynyl group, a monovalent heterocyclic group or a cyano group. ]
[5] The above-described [1] to [1], wherein the substituent of the arylene group having a substituent represented by Ar 31 or the heteroarylene group having a substituent is a monovalent group represented by the formula (3A). 4]. The polymer compound according to any one of [4].
Figure JPOXMLDOC01-appb-C000017
[ Wherein X 3a represents a direct bond, —CR 3a1 ═CR 3a2 —, —C≡C— , —O—, —S—, an alkylene group or an arylene group. R 3a , R 3a1 and R 3a2 represent a hydrogen atom, a halogen atom or an alkyl group. Ar 3a represents an arylene group which may have a substituent or a heteroarylene group which may have a substituent. n is an integer of 1 to 10. When there are a plurality of X 3a , they may be the same or different. When there are a plurality of Ar 3a s , they may be the same or different. ]
[6] The polymer compound according to any one of [1] to [5] above, wherein the light absorption terminal wavelength is 700 nm or more.
[7] The polymer compound according to any one of [1] to [6], wherein the number average molecular weight in terms of polystyrene is 3000 or more.
[8] A thin film comprising the polymer compound according to any one of [1] to [7] above.
[9] A composition comprising the polymer compound according to any one of [1] to [7] above and an electron-accepting compound.
[10] The composition according to [9] above, wherein the electron-accepting compound is a fullerene derivative.
[11] A thin film comprising the composition according to [9] or [10].
[12] A solution comprising the polymer compound according to any one of [1] to [7] above or the composition according to [9] or [10] above and a solvent.
[13] A first electrode and a second electrode are provided, and an active layer is provided between the first electrode and the second electrode, and the active layer according to the above [1] to [7] The electronic device containing the high molecular compound as described in any one, or the composition as described in said [9] or [10].
[14] The electronic device according to [13], which is a photoelectric conversion device.
[15] A solar cell module comprising the photoelectric conversion element according to [14].
[16] An image sensor comprising the photoelectric conversion element as described in [14] above.
[17] A gate electrode, a source electrode, a drain electrode, and an active layer are provided, and the active compound includes the polymer compound according to any one of [1] to [7] or [9] ] Or the organic thin-film transistor containing the composition as described in [10].
 本発明の高分子化合物によれば、光電変換素子などの電子素子における短絡電流密度を向上させることができる。本発明によれば、短絡電流密度の向上により、光電変換効率の高い光電変換素子を提供し得る。 According to the polymer compound of the present invention, the short circuit current density in an electronic device such as a photoelectric conversion device can be improved. ADVANTAGE OF THE INVENTION According to this invention, a photoelectric conversion element with high photoelectric conversion efficiency can be provided by the improvement of a short circuit current density.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明の高分子化合物は、式(1)で表される繰り返し単位と式(2)で表される繰り返し単位と式(3)で表される繰り返し単位とを有することを特徴とする。
Figure JPOXMLDOC01-appb-C000018
[式中、Ar11及びAr12は、それぞれ独立に、芳香環から水素原子を3個取り除いた3価の基を表し、該芳香環は置換基を有していてもよい。式(1)で表される繰り返し単位が複数含まれる場合、それらは同一であっても、異なっていてもよい。Aは、式(1-1)~式(1-12)のいずれかで表される2価の基を表す。
Figure JPOXMLDOC01-appb-C000019
(式中、R~R15は、それぞれ独立に、水素原子又は置換基を表す。)]
Figure JPOXMLDOC01-appb-C000020
[式中、Ar21、Ar22及びAr23は、それぞれ独立に、置換基を有していてもよいアリーレン基又は置換基を有していてもよいヘテロアリーレン基を表す。式(2)で表される繰り返し単位が複数含まれる場合、それらは同一であっても、異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000021
[式中、Ar31は、置換基を有するアリーレン基又は置換基を有するヘテロアリーレン基を表す。ただし、式(3)で表される繰り返し単位は、式(1)で表される繰り返し単位及び式(2)で表される繰り返し単位とは異なる。式(3)で表される繰り返し単位が複数含まれる場合、それらは同一であっても、異なっていてもよい。]
The polymer compound of the present invention has a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (3).
Figure JPOXMLDOC01-appb-C000018
[Wherein, Ar 11 and Ar 12 each independently represent a trivalent group obtained by removing three hydrogen atoms from an aromatic ring, and the aromatic ring may have a substituent. When a plurality of repeating units represented by the formula (1) are included, they may be the same or different. A represents a divalent group represented by any one of formulas (1-1) to (1-12).
Figure JPOXMLDOC01-appb-C000019
(Wherein R 1 to R 15 each independently represents a hydrogen atom or a substituent)]
Figure JPOXMLDOC01-appb-C000020
[Wherein, Ar 21 , Ar 22 and Ar 23 each independently represent an arylene group which may have a substituent or a heteroarylene group which may have a substituent. When a plurality of repeating units represented by the formula (2) are included, they may be the same or different. ]
Figure JPOXMLDOC01-appb-C000021
[Wherein Ar 31 represents an arylene group having a substituent or a heteroarylene group having a substituent. However, the repeating unit represented by formula (3) is different from the repeating unit represented by formula (1) and the repeating unit represented by formula (2). When a plurality of repeating units represented by the formula (3) are included, they may be the same or different. ]
 なお、本明細書において、ある基が「置換基を有していてもよい」との用語は、ある基が有する水素原子の一部又は全部が、置換基によって置換されてもよいことを意味する。
「置換基を有していてもよい」の用語は、「置換されていてもよい」と言い換えてもよい。例えば、「置換基を有していてもよい2価の有機基」とは、2価の有機基中の水素原子の一部または全部が、置換基で置換されていてもよい2価の有機基のことをいい、「置換されていてもよい2価の有機基」と言い換えてもよい。また、例えば、「置換基を有していてもよい炭化水素基」とは、炭化水素基中の水素原子の一部または全部が、置換基で置換されていてもよい炭化水素基のことをいい、「置換されていてもよい炭化水素基」と言い換えてもよい。
In the present specification, the term “a group may have a substituent” means that part or all of the hydrogen atoms of the group may be substituted by the substituent. To do.
The term “optionally substituted” may be rephrased as “optionally substituted”. For example, “a divalent organic group which may have a substituent” means a divalent organic group in which part or all of the hydrogen atoms in the divalent organic group may be substituted with a substituent. It refers to a group and may be rephrased as “an optionally substituted divalent organic group”. Further, for example, the “hydrocarbon group optionally having a substituent” means a hydrocarbon group in which part or all of the hydrogen atoms in the hydrocarbon group may be substituted with a substituent. It may be paraphrased as “an optionally substituted hydrocarbon group”.
 式(1-1)~式(1-12)中、R~R15は、それぞれ独立に、水素原子又は置換基を表す。R~R15で表される置換基としては、例えば、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基、置換カルボキシル基、ニトロ基又はシアノ基が挙げられる。R~R15が炭素原子を含む基である場合、炭素原子数は通常1~60程度である。 In formulas (1-1) to (1-12), R 1 to R 15 each independently represents a hydrogen atom or a substituent. Examples of the substituent represented by R 1 to R 15 include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, and an arylalkylthio group. Group, acyl group, acyloxy group, amide group, acid imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic ring Examples thereof include an oxy group, a heterocyclic thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group, a substituted carboxyl group, a nitro group, and a cyano group. When R 1 to R 15 are groups containing carbon atoms, the number of carbon atoms is usually about 1 to 60.
 ここで、アルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基であってもよい。アルキル基の炭素原子数は、通常1~30程度であり、好ましくは1~20である。アルキル基の具体例としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル墓、ペンチル基、イソペンチル基、2-メチルブチル基、1-メチルブチル基、ヘキシル基、イソヘキシル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、3,7-ジメチルオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基、1-(2’-エチルヘキシル)-3-エチルヘプチル基が挙げられる。 Here, the alkyl group may be linear or branched, and may be a cycloalkyl group. The number of carbon atoms in the alkyl group is usually about 1-30, preferably 1-20. Specific examples of the alkyl group include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1 -Methylbutyl group, hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, Chain alkyl groups such as nonyl, decyl, undecyl, dodecyl, tetradecyl, hexadecyl tomb, octadecyl, eicosyl, cycloalkyl such as cyclopentyl, cyclohexyl, adamantyl, 1- (2'- An ethylhexyl) -3-ethylheptyl group.
 アルキルオキシ基は、直鎖状でも分岐状でもよく、シクロアルキルオキシ基であってもよい。アルキルオキシ基の炭素原子数は、通常1~20程度、好ましくは1~15である。アルキルオキシ基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子及びアルキル基(例えば、炭素原子数1~20)が挙げられる。置換基を有していてもよいアルキルオキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、iso-プロポキシ基、ブトキシ基、iso-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、メトキシメチルオキシ基、2-メトキシエチルオキシ基が挙げられる。 The alkyloxy group may be linear or branched, and may be a cycloalkyloxy group. The number of carbon atoms of the alkyloxy group is usually about 1 to 20, preferably 1 to 15. The alkyloxy group may have a substituent. Examples of the substituent include a halogen atom and an alkyl group (for example, 1 to 20 carbon atoms). Specific examples of the alkyloxy group which may have a substituent include a methoxy group, an ethoxy group, a propoxy group, an iso-propoxy group, a butoxy group, an iso-butoxy group, a tert-butoxy group, a pentyloxy group, and a hexyl group. Oxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, trifluoromethoxy group, pentafluoroethoxy group, Examples include perfluorobutoxy group, perfluorohexyloxy group, perfluorooctyloxy group, methoxymethyloxy group, and 2-methoxyethyloxy group.
 アルキルチオ基は、直鎖状でも分岐状でもよく、シクロアルキルチオ基であってもよい。アルキルチオ基は、置換基を有していてもよい。置換基としては、ハロゲン原子が挙げられる。置換基を有していてもよいアルキルチオ基の炭素原子数は、通常1~20程度、好ましくは1~15であり、置換基を有していてもよいアルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、iso-プロピルチオ基、ブチルチオ基、iso-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、ラウリルチオ基、トリフルオロメチルチオ基が挙げられる。 The alkylthio group may be linear or branched, and may be a cycloalkylthio group. The alkylthio group may have a substituent. A halogen atom is mentioned as a substituent. The number of carbon atoms of the alkylthio group which may have a substituent is usually about 1 to 20, preferably 1 to 15. Specific examples of the alkylthio group which may have a substituent include a methylthio group. , Ethylthio group, propylthio group, iso-propylthio group, butylthio group, iso-butylthio group, tert-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group, 2-ethylhexylthio group, nonylthio group, Examples include decylthio group, 3,7-dimethyloctylthio group, laurylthio group, and trifluoromethylthio group.
 アリール基は、その炭素原子数が通常6~60程度、好ましくは6~20であり、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、炭素原子数1~20のアルキル基及び炭素原子数1~20のアルコキシ基が挙げられる。置換基を有していてもよいアリール基の具体例としては、フェニル基、C1~C12アルキルオキシフェニル基、C1~C12アルキルフェニル基、1-ナフチル基、2-ナフチル基、ペンタフルオロフェニル基が挙げられる。 The aryl group usually has about 6 to 60 carbon atoms, preferably 6 to 20 carbon atoms, and may have a substituent. Examples of the substituent include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms. Specific examples of the aryl group which may have a substituent include a phenyl group, a C1-C12 alkyloxyphenyl group, a C1-C12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, and a pentafluorophenyl group. Can be mentioned.
 なお、本明細書において「C1~C12」などの表記は炭素原子数を表し、その記載の直後に記載された基の炭素原子数を表す。したがって、「C1~C12アルキルオキシフェニル基」などの表記中に含まれる「C1~C12」は、「アルキル」の炭素原子数が1~12であることを表す。C1~C12アルキルは、好ましくはC1~C8アルキルであり、より好ましくはC1~C6アルキルである。C1~C12アルキル、C1~C8アルキル及びC1~C6アルキルの具体例としては、上記アルキル基で説明し例示したものが挙げられる。以下も、特に断りない限り、同様である。 In the present specification, the notation such as “C1 to C12” represents the number of carbon atoms, and represents the number of carbon atoms of the group described immediately after the description. Therefore, “C1 to C12” included in the notation such as “C1 to C12 alkyloxyphenyl group” represents that the number of carbon atoms of “alkyl” is 1 to 12. C1-C12 alkyl is preferably C1-C8 alkyl, more preferably C1-C6 alkyl. Specific examples of C1-C12 alkyl, C1-C8 alkyl, and C1-C6 alkyl include those described and exemplified above for the alkyl group. The same applies to the following unless otherwise specified.
 アリールオキシ基は、その炭素原子数が通常6~60程度、好ましくは6~20であり、芳香環に含まれる炭素原子が置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、炭素原子数1~20のアルキル基及び炭素原子数1~20のアルコキシ基が挙げられる。置換基を有していてもよいアリールオキシ基の具体例としては、フェノキシ基、C1~C12アルキルオキシフェノキシ基、C1~C12アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基が挙げられる。 The aryloxy group usually has about 6 to 60 carbon atoms, preferably 6 to 20 carbon atoms, and the carbon atoms contained in the aromatic ring may have a substituent. Examples of the substituent include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms. Specific examples of the aryloxy group which may have a substituent include phenoxy group, C1-C12 alkyloxyphenoxy group, C1-C12 alkylphenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, pentafluoro A phenyloxy group is mentioned.
 アリールチオ基は、その炭素原子数が通常6~60程度、好ましくは6~20であり、芳香環に含まれる炭素原子が置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、炭素原子数1~20のアルキル基及び炭素原子数1~20のアルコキシ基が挙げられる。置換基を有していてもよいアリールチオ基の具体例としては、フェニルチオ基、C1~C12アルキルオキシフェニルチオ基、C1~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、ペンタフルオロフェニルチオ基が挙げられる。 The arylthio group usually has about 6 to 60 carbon atoms, preferably 6 to 20 carbon atoms, and the carbon atom contained in the aromatic ring may have a substituent. Examples of the substituent include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms. Specific examples of the arylthio group which may have a substituent include a phenylthio group, a C1-C12 alkyloxyphenylthio group, a C1-C12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and pentafluorophenyl. A thio group is mentioned.
 アリールアルキル基は、その炭素原子数が通常7~60程度、好ましくは7~30であり、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、炭素原子数1~20のアルキル基及び炭素原子数1~20のアルコキシ基が挙げられる。置換基を有していてもよいアリールアルキル基の具体例としては、フェニル-C1~C12アルキル基、C1~C12アルキルオキシフェニル-C1~C12アルキル基、C1~C12アルキルフェニル-C1~C12アルキル基、1-ナフチル-C1~C12アルキル基、2-ナフチル-C1~C12アルキル基が挙げられる。 The arylalkyl group usually has about 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms, and may have a substituent. Examples of the substituent include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms. Specific examples of the arylalkyl group which may have a substituent include a phenyl-C1-C12 alkyl group, a C1-C12 alkyloxyphenyl-C1-C12 alkyl group, and a C1-C12 alkylphenyl-C1-C12 alkyl group. 1-naphthyl-C1-C12 alkyl group, 2-naphthyl-C1-C12 alkyl group.
 アリールアルキルオキシ基は、その炭素原子数が通常7~60程度、好ましくは7~30であり、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、炭素原子数1~20のアルキル基及び炭素原子数1~20のアルコキシ基が挙げられる。置換基を有していてもよいアリールアルキルオキシ基の具体例としては、フェニル-C1~C12アルキルオキシ基、C1~C12アルキルオキシフェニル-C1~C12アルキルオキシ基、C1~C12アルキルフェニル-C1~C12アルキルオキシ基、1-ナフチル-C1~C12アルキルオキシ基、2-ナフチル-C1~C12アルキルオキシ基が挙げられる。 The arylalkyloxy group usually has about 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms, and may have a substituent. Examples of the substituent include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms. Specific examples of the arylalkyloxy group which may have a substituent include phenyl-C1-C12 alkyloxy group, C1-C12 alkyloxyphenyl-C1-C12 alkyloxy group, C1-C12 alkylphenyl-C1- Examples thereof include a C12 alkyloxy group, a 1-naphthyl-C1 to C12 alkyloxy group, and a 2-naphthyl-C1 to C12 alkyloxy group.
 アリールアルキルチオ基は、その炭素原子数が通常7~60程度、好ましくは7~30であり、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、炭素原子数1~20のアルキル基及び炭素原子数1~20のアルコキシ基が挙げられる。置換基を有していてもよいアリールアルキルチオ基の具体例としては、フェニル-C1~C12アルキルチオ基、C1~C12アルキルオキシフェニル-C1~C12アルキルチオ基、C1~C12アルキルフェニル-C1~C12アルキルチオ基、1-ナフチル-C1~C12アルキルチオ基、2-ナフチル-C1~C12アルキルチオ基が挙げられる。 The arylalkylthio group usually has about 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms, and may have a substituent. Examples of the substituent include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms. Specific examples of the arylalkylthio group which may have a substituent include phenyl-C1-C12 alkylthio group, C1-C12 alkyloxyphenyl-C1-C12 alkylthio group, C1-C12 alkylphenyl-C1-C12 alkylthio group. 1-naphthyl-C1-C12 alkylthio group, and 2-naphthyl-C1-C12 alkylthio group.
 アシル基とは、カルボン酸中のカルボキシル基(-COOH)から水酸基を除いた基を意味する。アシル基は、その炭素原子数が通常2~20程度、好ましくは2~15である。アシル基の具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、及びトリフルオロアセチル基等のハロゲン原子で置換されていてもよい炭素原子数2~20のアルキルカルボニル基、並びに、ベンゾイル基及びペンタフルオロベンゾイル基等のハロゲン原子で置換されていてもよいフェニルカルボニル基が挙げられる。 Acyl group means a group obtained by removing a hydroxyl group from a carboxyl group (—COOH) in a carboxylic acid. The acyl group usually has about 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms. Specific examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, and an alkylcarbonyl group having 2 to 20 carbon atoms which may be substituted with a halogen atom such as a trifluoroacetyl group, And a phenylcarbonyl group which may be substituted with a halogen atom such as a benzoyl group and a pentafluorobenzoyl group.
 アシルオキシ基とは、カルボン酸中のカルボキシル基(-COOH)から水素原子を除いた基を意味する。アシルオキシ基は、その炭素原子数が通常2~20程度、好ましくは2~15である。アシルオキシ基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基及びペンタフルオロベンゾイルオキシ基が挙げられる。 Acyloxy group means a group obtained by removing a hydrogen atom from a carboxyl group (—COOH) in a carboxylic acid. The acyloxy group usually has about 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms. Specific examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
 アミド基とは、アミドから窒素原子に結合した水素原子を除いて得られる基をいう。アミド基は、その炭素原子数が通常1~20程度、好ましくは1~15である。アミド基の具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基が挙げられる。 An amide group refers to a group obtained by removing a hydrogen atom bonded to a nitrogen atom from an amide. The amide group usually has about 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms. Specific examples of the amide group include formamide group, acetamide group, propioamide group, butyroamide group, benzamide group, trifluoroacetamide group, pentafluorobenzamide group, diformamide group, diacetamide group, dipropioamide group, dibutyroamide group, dibenzamide group. , Ditrifluoroacetamide group and dipentafluorobenzamide group.
 酸イミド基とは、酸イミドから窒素原子に結合した水素原子を除いて得られる基をいう。酸イミド基の具体例としては、スクシンイミド基、フタル酸イミド基などが挙げられる。 The acid imide group refers to a group obtained by removing a hydrogen atom bonded to a nitrogen atom from an acid imide. Specific examples of the acid imide group include a succinimide group and a phthalimide group.
 置換アミノ基とは、アミノ基の水素原子の1又は2個が置換されたものであり、置換基は、例えば、アルキル基及び置換されていてもよいアリール基である。アルキル基及び置換されていてもよいアリール基の具体例は、Rで表されるアルキル基及び置換されていてもよいアリール基の具体例と同じである。置換アミノ基は、その炭素原子数が通常1~40程度、好ましくは1~20である。置換基アミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C1~C12アルキルオキシフェニルアミノ基、ジ(C1~C12アルキルオキシフェニル)アミノ基、ジ(C1~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基、フェニル-C1~C12アルキルアミノ基、C1~C12アルキルオキシフェニル-C1~C12アルキルアミノ基、C1~C12アルキルフェニル-C1~C12アルキルアミノ基、ジ(C1~C12アルキルオキシフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、1-ナフチル-C1~C12アルキルアミノ基、2-ナフチル-C1~C12アルキルアミノ基などが挙げられる。 The substituted amino group is one in which one or two hydrogen atoms of the amino group are substituted, and the substituent is, for example, an alkyl group and an optionally substituted aryl group. Specific examples of the alkyl group and the optionally substituted aryl group are the same as the specific examples of the alkyl group represented by R 1 and the optionally substituted aryl group. The substituted amino group generally has about 1 to 40 carbon atoms, preferably 1 to 20 carbon atoms. Specific examples of the substituent amino group include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, tert-Butylamino, pentylamino, hexylamino, cyclohexylamino, heptylamino, octylamino, 2-ethylhexylamino, nonylamino, decylamino, 3,7-dimethyloctylamino, laurylamino , Cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, pyrrolidyl group, piperidyl group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, C1-C12 al Ruoxyphenylamino group, di (C1-C12 alkyloxyphenyl) amino group, di (C1-C12 alkylphenyl) amino group, 1-naphthylamino group, 2-naphthylamino group, pentafluorophenylamino group, pyridylamino group, Pyridazinylamino group, pyrimidylamino group, pyrazylamino group, triazylamino group, phenyl-C1-C12 alkylamino group, C1-C12 alkyloxyphenyl-C1-C12 alkylamino group, C1-C12 alkylphenyl-C1-C12 Alkylamino group, di (C1-C12 alkyloxyphenyl-C1-C12 alkyl) amino group, di (C1-C12 alkylphenyl-C1-C12 alkyl) amino group, 1-naphthyl-C1-C12 alkylamino group, 2- Naphthyl-C1-C Such as 2 alkylamino group.
 置換シリル基とは、シリル基の水素原子の1、2又は3個が置換されたもの、一般に、シリル基の3個の水素原子すべてが置換されたものである。置換基としては、例えば、アルキル基及び置換されていてもよいアリール基である。アルキル基及び置換されていてもよいアリール基の具体例は、Rで表されるアルキル基及び置換されていてもよいアリール基の具体例と同じである。置換シリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリ-iso-プロピルシリル基、tert-ブチルジメチルシリル基、トリフェニルシリル基、トリ-p-キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert-ブチルジフェニルシリル基、ジメチルフェニルシリル基などが挙げられる。 A substituted silyl group is one in which 1, 2 or 3 of the hydrogen atoms of the silyl group are substituted, and in general, all three hydrogen atoms of the silyl group are substituted. Examples of the substituent include an alkyl group and an optionally substituted aryl group. Specific examples of the alkyl group and the optionally substituted aryl group are the same as the specific examples of the alkyl group represented by R 1 and the optionally substituted aryl group. Specific examples of the substituted silyl group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tri-iso-propylsilyl group, tert-butyldimethylsilyl group, triphenylsilyl group, tri-p-xylylsilyl group, and tribenzyl. Examples include silyl group, diphenylmethylsilyl group, tert-butyldiphenylsilyl group, dimethylphenylsilyl group and the like.
 置換シリルオキシ基とは、上記の置換シリル基に酸素原子が結合した基である。置換シリルオキシ基の具体例としては、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリプロピルシリルオキシ基、トリ-iso-プロピルシリルオキシ基、tert-ブチルジメチルシリルオキシ基、トリフェニルシリルオキシ基、トリ-p-キシリルシリルオキシ基、トリベンジルシリルオキシ基、ジフェニルメチルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基、ジメチルフェニルシリルオキシ基などが挙げられる。 The substituted silyloxy group is a group in which an oxygen atom is bonded to the above substituted silyl group. Specific examples of the substituted silyloxy group include trimethylsilyloxy group, triethylsilyloxy group, tripropylsilyloxy group, tri-iso-propylsilyloxy group, tert-butyldimethylsilyloxy group, triphenylsilyloxy group, tri-p -Xylylsilyloxy group, tribenzylsilyloxy group, diphenylmethylsilyloxy group, tert-butyldiphenylsilyloxy group, dimethylphenylsilyloxy group and the like.
 置換シリルチオ基とは、上記の置換シリル基に硫黄原子が結合した基である。置換シリルチオ基の具体例としては、トリメチルシリルチオ基、トリエチルシリルチオ基、トリプロピルシリルチオ基、トリ-iso-プロピルシリルチオ基、tert-ブチルジメチルシリルチオ基、トリフェニルシリルチオ基、トリ-p-キシリルシリルチオ基、トリベンジルシリルチオ基、ジフェニルメチルシリルチオ基、tert-ブチルジフェニルシリルチオ基、ジメチルフェニルシリルチオ基などが挙げられる。 The substituted silylthio group is a group in which a sulfur atom is bonded to the above substituted silyl group. Specific examples of the substituted silylthio group include trimethylsilylthio group, triethylsilylthio group, tripropylsilylthio group, tri-iso-propylsilylthio group, tert-butyldimethylsilylthio group, triphenylsilylthio group, tri-p -Xylylsilylthio group, tribenzylsilylthio group, diphenylmethylsilylthio group, tert-butyldiphenylsilylthio group, dimethylphenylsilylthio group and the like.
 置換シリルアミノ基とは、アミノ基の水素原子の1又は2個が置換シリル基で置換された基であり、置換シリル基は上記の通りである。置換シリルアミノ基の具体例としては、トリメチルシリルアミノ基、トリエチルシリルアミノ基、トリプロピルシリルアミノ基、トリ-iso-プロピルシリルアミノ基、tert-ブチルジメチルシリルアミノ基、トリフェニルシリルアミノ基、トリ-p-キシリルシリルアミノ基、トリベンジルシリルアミノ基、ジフェニルメチルシリルアミノ基、tert-ブチルジフェニルシリルアミノ基、ジメチルフェニルシリルアミノ基、ジ(トリメチルシリル)アミノ基、ジ(トリエチルシリル)アミノ基、ジ(トリプロピルシリル)アミノ基、ジ(トリ-iso-プロピルシリル)アミノ基、ジ(tert-ブチルジメチルシリル)アミノ基、ジ(トリフェニルシリル)アミノ基、ジ(トリ-p-キシリルシリル)アミノ基、ジ(トリベンジルシリル)アミノ基、ジ(ジフェニルメチルシリル)アミノ基、ジ(tert-ブチルジフェニルシリル)アミノ基、ジ(ジメチルフェニルシリル)アミノ基が挙げられる。 The substituted silylamino group is a group in which one or two hydrogen atoms of the amino group are substituted with a substituted silyl group, and the substituted silyl group is as described above. Specific examples of the substituted silylamino group include trimethylsilylamino group, triethylsilylamino group, tripropylsilylamino group, tri-iso-propylsilylamino group, tert-butyldimethylsilylamino group, triphenylsilylamino group, tri-p -Xylylsilylamino group, tribenzylsilylamino group, diphenylmethylsilylamino group, tert-butyldiphenylsilylamino group, dimethylphenylsilylamino group, di (trimethylsilyl) amino group, di (triethylsilyl) amino group, di ( Tripropylsilyl) amino group, di (tri-iso-propylsilyl) amino group, di (tert-butyldimethylsilyl) amino group, di (triphenylsilyl) amino group, di (tri-p-xylylsilyl) amino group, Di (Trivenge Silyl) amino group, di (diphenylmethyl silyl) amino, di (tert- butyldiphenylsilyl) amino group, di (dimethylphenylsilyl) and amino group.
 1価の複素環基の具体例としては、フラン、チオフェン、ピロール、ピロリン、ピロリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、イミダゾリン、イミダゾリジン、ピラゾール、ピラゾリン、プラゾリジン、フラザン、トリアゾール、チアジアゾール、オキサジアゾール、テトラゾール、ピラン、ピリジン、ピペリジン、チオピラン、ピリダジン、ピリミジン、ピラジン、ピペラジン、モルホリン、トリアジン、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、インドール、イソインドール、インドリジン、インドリン、イソインドリン、クロメン、クロマン、イソクロマン、ベンゾピラン、キノリン、イソキノリン、キノリジン、ベンゾイミダゾール、ベンゾチアゾール、インダゾール、ナフチリジン、キノキサリン、キナゾリン、キナゾリジン、シンノリン、フタラジン、プリン、プテリジン、カルバゾール、キサンテン、フェナントリジン、アクリジン、β-カルボリン、ペリミジン、フェナントロリン、チアントレン、フェノキサチイン、フェノキサジン、フェノチアジン、フェナジン等の複素環式化合物から水素原子を1個除いた基が挙げられる。1価の複素環基は置換基を有していてもよい。1価の複素環基としては、1価の芳香族複素環基が好ましい。 Specific examples of the monovalent heterocyclic group include furan, thiophene, pyrrole, pyrroline, pyrrolidine, oxazole, isoxazole, thiazole, isothiazole, imidazole, imidazoline, imidazolidine, pyrazole, pyrazoline, prazolidine, furazane, triazole, thiadiazole Oxadiazole, tetrazole, pyran, pyridine, piperidine, thiopyran, pyridazine, pyrimidine, pyrazine, piperazine, morpholine, triazine, benzofuran, isobenzofuran, benzothiophene, indole, isoindole, indolizine, indoline, isoindoline, chromene, Chroman, isochroman, benzopyran, quinoline, isoquinoline, quinolidine, benzimidazole, benzothiazole, indazole Heterocycles such as naphthyridine, quinoxaline, quinazoline, quinazoline, cinnoline, phthalazine, purine, pteridine, carbazole, xanthene, phenanthridine, acridine, β-carboline, perimidine, phenanthroline, thianthrene, phenoxathiin, phenoxazine, phenothiazine, phenazine And a group obtained by removing one hydrogen atom from the formula compound. The monovalent heterocyclic group may have a substituent. As the monovalent heterocyclic group, a monovalent aromatic heterocyclic group is preferable.
 複素環オキシ基としては、前記1価の複素環基に酸素原子が結合した式(11)で表される基が挙げられる。複素環チオ基としては、前記1価の複素環基に硫黄原子が結合した式(12)で表される1価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000022
[式(11)及び式(12)中、Arは1価の複素環基を表す。]
Examples of the heterocyclic oxy group include a group represented by the formula (11) in which an oxygen atom is bonded to the monovalent heterocyclic group. Examples of the heterocyclic thio group include a monovalent group represented by the formula (12) in which a sulfur atom is bonded to the monovalent heterocyclic group.
Figure JPOXMLDOC01-appb-C000022
[In formula (11) and formula (12), Ar 7 represents a monovalent heterocyclic group. ]
 複素環オキシ基は、その炭素原子数が通常2~60程度、好ましくは2~30である。複素環オキシ基は置換基を有していてもよい。置換基を有していてもよい複素環オキシ基の具体例としては、チエニルオキシ基、C1~C12アルキルチエニルオキシ基、ピロリルオキシ基、フリルオキシ基、ピリジルオキシ基、C1~C12アルキルピリジルオキシ基、イミダゾリルオキシ基、ピラゾリルオキシ基、トリアゾリルオキシ基、オキサゾリルオキシ基、チアゾールオキシ基、チアジアゾールオキシ基が挙げられる。 The heterocyclic oxy group usually has about 2 to 60 carbon atoms, preferably 2 to 30 carbon atoms. The heterocyclic oxy group may have a substituent. Specific examples of the heterocyclic oxy group which may have a substituent include thienyloxy group, C1-C12 alkylthienyloxy group, pyrrolyloxy group, furyloxy group, pyridyloxy group, C1-C12 alkylpyridyloxy group, Examples include imidazolyloxy group, pyrazolyloxy group, triazolyloxy group, oxazolyloxy group, thiazoleoxy group, and thiadiazoleoxy group.
 複素環チオ基は、その炭素原子数が通常2~60程度、好ましくは2~30である。複素環チオ基は置換基を有していてもよい。置換基を有していてもよい複素環チオ基の具体例としては、チエニルメルカプト基、C1~C12アルキルチエニルメルカプト基、ピロリルメルカプト基、フリルメルカプト基、ピリジルメルカプト基、C1~C12アルキルピリジルメルカプト基、イミダゾリルメルカプト基、ピラゾリルメルカプト基、トリアゾリルメルカプト基、オキサゾリルメルカプト基、チアゾールメルカプト基、チアジアゾールメルカプト基が挙げられる。 The heterocyclic thio group generally has about 2 to 60 carbon atoms, preferably 2 to 30 carbon atoms. The heterocyclic thio group may have a substituent. Specific examples of the heterocyclic thio group which may have a substituent include thienyl mercapto group, C1-C12 alkyl thienyl mercapto group, pyrrolyl mercapto group, furyl mercapto group, pyridyl mercapto group, C1-C12 alkyl pyridyl mercapto group. Group, imidazolyl mercapto group, pyrazolyl mercapto group, triazolyl mercapto group, oxazolyl mercapto group, thiazole mercapto group and thiadiazole mercapto group.
 アリールアルケニル基は、通常、その炭素原子数8~20、好ましくは8~15であり、アリールアルケニル基の具体例としては、スチリル基が挙げられる。 The arylalkenyl group usually has 8 to 20 carbon atoms, preferably 8 to 15 carbon atoms. Specific examples of the arylalkenyl group include a styryl group.
 アリールアルキニル基は、通常、その炭素原子数8~20であり、好ましくは8~15であり、アリールアルキニル基の具体例としては、フェニルアセチレニル基が挙げられる。 The arylalkynyl group usually has 8 to 20 carbon atoms, preferably 8 to 15 carbon atoms, and specific examples of the arylalkynyl group include a phenylacetylenyl group.
 置換カルボキシル基は、通常、その炭素原子数2~20であり、メチルエステル構造を有する基、エチルエステル構造を有する基、ブチルエステル構造を有する基などが挙げられる。 The substituted carboxyl group usually has 2 to 20 carbon atoms, and examples thereof include a group having a methyl ester structure, a group having an ethyl ester structure, and a group having a butyl ester structure.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 式(1-1)~式(1-12)で表される2価の基の中でも、短絡電流密度を高める観点からは、好ましくは式(1-4)、式(1-5)、式(1-6)、式(1-7)、式(1-8)で表される2価の基である。 Among the divalent groups represented by the formulas (1-1) to (1-12), from the viewpoint of increasing the short-circuit current density, the formulas (1-4), (1-5), and It is a divalent group represented by (1-6), formula (1-7), or formula (1-8).
 式(1)中、Ar11及びAr12は、芳香環から水素原子を3個取り除いた基を表す。芳香環としては、芳香族性を有する炭化水素環、芳香族性を有する複素環が挙げられる。
 芳香族性を有する炭化水素環の炭素原子数は、通常、6~60であり、好ましくは6~20である。該炭化水素環は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、アリールアルケニル基、アリールアルキニル基、カルボキシル基、置換カルボキシル基、ニトロ基、シアノ基が挙げられる。ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、アリールアルケニル基、アリールアルキニル基、置換カルボキシル基の定義及び具体例は、前述のRで表されるハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、アリールアルケニル基、アリールアルキニル基、置換カルボキシル基の定義及び具体例と同じである。芳香族性を有する炭化水素環の炭素原子数には、置換基の炭素原子数は含まれない。
In formula (1), Ar 11 and Ar 12 represent a group obtained by removing three hydrogen atoms from an aromatic ring. Examples of the aromatic ring include a hydrocarbon ring having aromaticity and a heterocyclic ring having aromaticity.
The number of carbon atoms in the aromatic hydrocarbon ring is usually 6 to 60, preferably 6 to 20. The hydrocarbon ring may have a substituent. Examples of the substituent include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, an arylalkylthio group, an acyl group, an acyloxy group, and an amide. Group, acid imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, arylalkenyl group, arylalkynyl group, carboxyl group, Examples thereof include a substituted carboxyl group, a nitro group, and a cyano group. Halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide group, acid imide group, substitution Definitions and specific examples of amino groups, substituted silyl groups, substituted silyloxy groups, substituted silylthio groups, substituted silylamino groups, monovalent heterocyclic groups, arylalkenyl groups, arylalkynyl groups, and substituted carboxyl groups are represented by the aforementioned R 1 . Halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide group, acid imide group , Substituted amino groups, The definitions and specific examples of the substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, arylalkenyl group, arylalkynyl group and substituted carboxyl group are the same. The number of carbon atoms in the hydrocarbon ring having aromaticity does not include the number of carbon atoms in the substituent.
 芳香族性を有する炭化水素環から水素原子を3個取り除いた基の具体例としては、下記の基が挙げられる。 Specific examples of groups obtained by removing three hydrogen atoms from an aromatic hydrocarbon ring include the following groups.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 芳香族性を有する複素環の炭素原子数は、通常、2~60であり、好ましくは4~20である。該複素環は置換基を有していてもよく、該置換基としては前記炭化水素環が有していてもよい置換基として説明したものと同じ基が挙げられる。該複素環の炭素原子数には、複素環を構成する環炭素原子(ring carbon atom)の数であり、置換基の炭素原子数は含まれない。ここに、複素環とは、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素などのヘテロ原子を環内に含む環をいう。 The number of carbon atoms in the aromatic heterocyclic ring is usually 2 to 60, preferably 4 to 20. The heterocyclic ring may have a substituent, and examples of the substituent include the same groups as those described as the substituent that the hydrocarbon ring may have. The number of carbon atoms of the heterocyclic ring is the number of ring carbon atoms constituting the heterocyclic ring, and does not include the number of carbon atoms of the substituent. Here, the heterocycle refers to a ring in which the elements constituting the ring include not only carbon atoms but also heteroatoms such as oxygen, sulfur, nitrogen, phosphorus and boron.
 芳香族性を有する複素環から水素原子を3個取り除いた基としては、例えば、以下の基が挙げられる。 Examples of the group obtained by removing three hydrogen atoms from the aromatic heterocyclic ring include the following groups.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 式(201)~式(284)中、R’は、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、置換アミノ基、アシルオキシ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基又はシアノ基を表す。R’が複数含まれる場合、それらは同一であっても異なっていてもよい。R’が炭素原子を含む基である場合、炭素原子数は通常1~60程度である。 In the formulas (201) to (284), R ′ represents a hydrogen atom, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, An arylalkylthio group, a substituted amino group, an acyloxy group, an amide group, an arylalkenyl group, an arylalkynyl group, a monovalent heterocyclic group, or a cyano group is represented. When a plurality of R ′ are contained, they may be the same or different. When R ′ is a group containing a carbon atom, the number of carbon atoms is usually about 1 to 60.
 R’で表されるハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、置換アミノ基、アシルオキシ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基の定義及び具体例は、前述のRで表されるハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、置換アミノ基、アシルオキシ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基の定義及び具体例と同じである。 R ′ halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, acyloxy group, amide Group, arylalkenyl group, arylalkynyl group, and monovalent heterocyclic group and specific examples thereof are the halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group represented by R 1 described above. , Arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, acyloxy group, amide group, arylalkenyl group, arylalkynyl group, and the same definitions and specific examples as the monovalent heterocyclic group .
 R’’は、水素原子、アルキル基、アリール基、アリールアルキル基、置換シリル基、アシル基又は1価の複素環基を表す。R’’が複数含まれる場合、それらは同一であっても異なっていてもよい。R’’が炭素原子を含む基である場合、炭素原子数は通常1~60程度である。 R ″ represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, a substituted silyl group, an acyl group, or a monovalent heterocyclic group. When a plurality of R ″ are included, they may be the same or different. When R is a group containing a carbon atom, the number of carbon atoms is usually about 1 to 60.
 R’’で表される、アルキル基、アリール基、アリールアルキル基、置換シリル基、1価の複素環基の定義及び具体例は、前述のRで表されるアルキル基、アリール基、アリールアルキル基、置換シリル基、1価の複素環基の定義及び具体例と同じである。 The definition and specific examples of the alkyl group, aryl group, arylalkyl group, substituted silyl group, and monovalent heterocyclic group represented by R ″ are the alkyl group, aryl group, and aryl represented by the aforementioned R 1. The definition and specific examples of the alkyl group, substituted silyl group and monovalent heterocyclic group are the same.
 短絡連流密度を高める観点からは、Ar11及びAr12として好ましくは、芳香族性を有する複素環から水素原子を3個取り除いた基である。 From the viewpoint of increasing the short circuit continuous density, Ar 11 and Ar 12 are preferably groups in which three hydrogen atoms have been removed from a heterocyclic ring having aromaticity.
 式(1)で表される繰り返し単位としては、短絡連流密度を高める観点からは、式(1A)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000036
The repeating unit represented by the formula (1) is preferably a repeating unit represented by the formula (1A) from the viewpoint of increasing the short circuit continuous density.
Figure JPOXMLDOC01-appb-C000036
 式(1A)中、Aは、前述と同じ意味を表す。X1a1及びX1a2は、それぞれ独立に、硫黄原子、酸素原子、セレン原子又は-N(R)-を表す。 In formula (1A), A represents the same meaning as described above. X 1a1 and X 1a2 each independently represent a sulfur atom, an oxygen atom, a selenium atom, or —N (R) —.
 Rは、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、置換アミノ基、アシルオキシ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基又はシアノ基を表す。式(1A)中にRが複数含まれる場合、それらは同一であっても相異なっていてもよい。Rが炭素原子を含む基である場合、炭素原子数は通常1~60程度である。 R is a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, acyloxy group, amide Represents a group, an arylalkenyl group, an arylalkynyl group, a monovalent heterocyclic group or a cyano group. When a plurality of R are contained in the formula (1A), they may be the same or different. When R is a group containing a carbon atom, the number of carbon atoms is usually about 1 to 60.
 Rで表されるハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、置換アミノ基、アシルオキシ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基の定義及び具体例は、前述のRで表されるハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、置換アミノ基、アシルオキシ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基の定義及び具体例と同じである。 Halogen atom represented by R, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, acyloxy group, amide group The definitions and specific examples of the arylalkenyl group, arylalkynyl group and monovalent heterocyclic group are the halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group represented by the aforementioned R 1 , The definitions and specific examples of arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, acyloxy group, amide group, arylalkenyl group, arylalkynyl group and monovalent heterocyclic group are the same.
 式(1A)で表される繰り返し単位として好ましくは、式(301)~式(325)で表される繰り返し単位が挙げられる。 Preferred examples of the repeating unit represented by the formula (1A) include repeating units represented by the formulas (301) to (325).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 式(301)~(325)中、Rは、前述(式(1A)において説明)と同じ意味を表す。式(301)~式(325)で表される繰り返し単位の中でも、光電変換素子の変換効率を高める観点からは、好ましくは式(301)、式(306)、式(311)、式(316)、式(321)で表される繰り返し単位であり、さらに好ましくは、式(311)、式(316)、式(321)で表される繰り返し単位であり、特に好ましくは、式(316)で表される繰り返し単位である。 In formulas (301) to (325), R represents the same meaning as described above (explained in formula (1A)). Among the repeating units represented by Formula (301) to Formula (325), from the viewpoint of increasing the conversion efficiency of the photoelectric conversion element, Formula (301), Formula (306), Formula (311), Formula (316) are preferable. ), A repeating unit represented by the formula (321), more preferably a repeating unit represented by the formula (311), the formula (316), and the formula (321), and particularly preferably the formula (316). It is a repeating unit represented by
 アリーレン基及びヘテロアリーレン基が有していてもよい置換基としては、前述のRで表される置換基と同じものが挙げられる。式(2)中、Ar21、Ar22、及びAr23は、それぞれ独立に、置換基を有していてもよいアリーレン基又は置換基を有していてもよいヘテロアリーレン基を表す。 Examples of the substituent that the arylene group and the heteroarylene group may have include the same substituents as those represented by R 1 described above. In formula (2), Ar 21 , Ar 22 , and Ar 23 each independently represent an arylene group that may have a substituent or a heteroarylene group that may have a substituent.
 Ar21~Ar23で表される置換基を有していてもよいアリーレン基において、アリーレン基の炭素原子数は、通常、6~60程度であり、好ましくは6~20である。ここでいう炭素原子数は、芳香環を構成する環炭素原子であり、置換基を有する場合の置換基に含まれる炭素原子数を含まない。ここにアリーレン基としては、ベンゼン環を含む基、縮合環を含む基、独立したベンゼン環又は縮合環2個以上が直接結合した基又はビニレン等の基を介して結合した基も含まれる。 In the arylene group which may have a substituent represented by Ar 21 to Ar 23 , the number of carbon atoms of the arylene group is usually about 6 to 60, preferably 6 to 20. The number of carbon atoms here is a ring carbon atom constituting an aromatic ring, and does not include the number of carbon atoms contained in the substituent when it has a substituent. Here, the arylene group also includes a group containing a benzene ring, a group containing a condensed ring, a group in which two or more independent benzene rings or two or more condensed rings are directly bonded, or a group bonded via a group such as vinylene.
 Ar21~Ar23で表される置換基を有していてもよいヘテロアリーレン基において、ヘテロアリーレン基の炭素原子数は、通常、2~60程度、好ましくは6~20である。ここでいう炭素原子数は、複素環を構成する環炭素原子であり、置換基を有する場合の置換基に含まれる炭素原子数を含まない。ここにヘテロアリーレン基とは、環式構造をもつ芳香族化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素、ヒ素などのヘテロ原子を環内に含む芳香族化合物から水素原子を2個取り除いた基をいう。Ar23として好ましくは、置換基を有していてもよいヘテロアリーレン基である。 In the heteroarylene group optionally having a substituent represented by Ar 21 to Ar 23 , the number of carbon atoms of the heteroarylene group is usually about 2 to 60, preferably 6 to 20. The number of carbon atoms here is a ring carbon atom constituting a heterocyclic ring, and does not include the number of carbon atoms contained in the substituent when it has a substituent. Here, the heteroarylene group is an aromatic compound having a cyclic structure, and the elements constituting the ring include not only carbon atoms but also heteroatoms such as oxygen, sulfur, nitrogen, phosphorus, boron, and arsenic in the ring. A group obtained by removing two hydrogen atoms from an aromatic compound. Ar 23 is preferably a heteroarylene group which may have a substituent.
 置換基を有していてもよいアリーレン基としては、置換基を有していてもよいフェニレン基(例えば、下図の式1~3)、置換基を有していてもよいナフタレンジイル基(下図の式4~13)、置換基を有していてもよいアントラセンジイル基(下図の式14~19)、置換基を有していてもよいビフェニル-ジイル基(下図の式20~25)、置換基を有していてもよいターフェニル-ジイル基(下図の式26~28)、置換基を有していてもよい縮合環化合物基(下図の式29~38)などが例示される。縮合環化合物基には、フルオレン-ジイル基(下図の式36~38)が含まれる。 Examples of the arylene group which may have a substituent include a phenylene group which may have a substituent (for example, Formulas 1 to 3 in the following figure), and a naphthalenediyl group which may have a substituent (see the following figure). Formulas 4 to 13), an anthracenediyl group optionally having a substituent (formulas 14 to 19 in the following figure), biphenyl-diyl group optionally having a substituent (formulas 20 to 25 in the figure below), Examples thereof include a terphenyl-diyl group (formulas 26 to 28 in the following figure) which may have a substituent, and condensed ring compound groups (formulas 29 to 38 in the following figure) which may have a substituent. The fused ring compound group includes a fluorene-diyl group (formulas 36 to 38 in the following figure).
 置換基を有していてもよいヘテロアリーレン基としては、例えば以下の基が挙げられる。
 ヘテロ原子として、窒素を含む2価の複素環基:置換基を有していてもよいピリジン-ジイル基(下図の式39~44)。
 置換基を有していてもよいジアザフェニレン基(下図の式45~48)。
 置換基を有していてもよいキノリンジイル基(下図の式49~63)。
 置換基を有していてもよいキノキサリンジイル基(下図の式64~68)。
 置換基を有していてもよいアクリジンジイル基(下図の式69~72)。
 置換基を有していてもよいビピリジルジイル基(下図の式73~75)。
 置換基を有していてもよいフェナントロリンジイル基(下図の式76~78)。
 ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含みフルオレン構造を有する基(下図の式79~93)。
 ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基(下図の式94~98)。
 ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環縮合複素基(下図の式99~110)。
 ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基でそのヘテロ原子のα位で結合し2量体やオリゴマーになっている基(下図の式111~112)。
 ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基でそのヘテロ原子のα位でフェニル基に結合している基(下図の式113~119)。
 ベンゼン環とチオフェン環が縮合した基(下記の図120~122)。
Examples of the heteroarylene group which may have a substituent include the following groups.
Divalent heterocyclic group containing nitrogen as a hetero atom: a pyridine-diyl group optionally having a substituent (formulas 39 to 44 in the following figure).
A diazaphenylene group which may have a substituent (formulas 45 to 48 in the following figure).
A quinolinediyl group which may have a substituent (formulas 49 to 63 in the following figure).
A quinoxalinediyl group which may have a substituent (formulas 64-68 in the following figure).
An acridinediyl group which may have a substituent (formulas 69 to 72 in the following figure).
A bipyridyldiyl group optionally having a substituent (formulas 73 to 75 in the following figure).
A phenanthrolinediyl group which may have a substituent (formulas 76 to 78 in the following figure).
Groups having a fluorene structure containing silicon, nitrogen, sulfur, selenium and the like as a hetero atom (formulas 79 to 93 in the following figure).
5-membered heterocyclic groups containing silicon, nitrogen, sulfur, selenium, etc. as heteroatoms (formulae 94-98 in the figure below).
5-membered condensed heterocyclic groups containing silicon, nitrogen, sulfur, selenium and the like as a hetero atom (formulas 99 to 110 in the following figure).
A 5-membered ring heterocyclic group containing silicon, nitrogen, sulfur, selenium, etc. as a heteroatom, and bonded to the α-position of the heteroatom to form a dimer or oligomer (formulas 111 to 112 in the figure below).
A 5-membered ring heterocyclic group containing silicon, nitrogen, sulfur, selenium, etc. as a heteroatom, and bonded to the phenyl group at the α-position of the heteroatom (Formula 113 to 119 in the following figure).
A group in which a benzene ring and a thiophene ring are condensed (FIGS. 120 to 122 below).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 式1~式122中、Rは前述(式(1A)において説明)と同じ意味を表す。 In the formulas 1 to 122, R represents the same meaning as described above (explained in the formula (1A)).
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 式(2-1)~式(2-8)中、R21~R38は、それぞれ独立に、水素原子、又は置換基を表す。R21~R38で表される置換基としては、例えば、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、アシル基、アシルオキシ基、アミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、ニトロ基、シアノ基が挙げられる。R21~R38が炭素原子を含む基である場合、炭素原子数は通常1~60程度である。 In formulas (2-1) to (2-8), R 21 to R 38 each independently represents a hydrogen atom or a substituent. Examples of the substituent represented by R 21 to R 38 include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, and an arylalkylthio group. Group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group, silyl group, substituted silyl group, acyl group, acyloxy group, amide group, monovalent heterocyclic group, carboxyl group, substituted carboxyl group, nitro group, A cyano group is mentioned. When R 21 to R 38 are groups containing carbon atoms, the number of carbon atoms is usually about 1 to 60.
 R21~R38で表されるアルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換アミノ基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、1価の複素環基、置換カルボキシル基の定義及び具体例は、前述のRで表されるアルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換アミノ基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、1価の複素環基、置換カルボキシル基の定義及び具体例と同じである。これらの置換基に水素原子が含まれる場合は、該水素原子はフッ素原子で置換されていてもよい。 An alkyl group represented by R 21 to R 38 , an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, The definition and specific examples of the substituted amino group, substituted silyl group, halogen atom, acyl group, acyloxy group, amide group, monovalent heterocyclic group, and substituted carboxyl group are the alkyl group represented by the aforementioned R 1 , alkyloxy Group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, substituted amino group, substituted silyl group, halogen atom, acyl group, Acyloxy group, amide group The definition and specific examples of the monovalent heterocyclic group and substituted carboxyl group are the same. When these substituents contain a hydrogen atom, the hydrogen atom may be substituted with a fluorine atom.
 R21、R22、及びR35として好ましくは、アルキル基、アルキルオキシ基、アルキルチオ基であり、さらに好ましくはアルキル基、アルキルオキシ基であり、特に好ましくはアルキル基である。アルキル基は直鎖状であっても分岐状であってもよいが、本発明の高分子化合物の溶解性を高める観点からは分岐状であることが好ましい。 R 21 , R 22 and R 35 are preferably an alkyl group, an alkyloxy group and an alkylthio group, more preferably an alkyl group and an alkyloxy group, and particularly preferably an alkyl group. The alkyl group may be linear or branched, but is preferably branched from the viewpoint of enhancing the solubility of the polymer compound of the present invention.
 R23、R24、R27、R28、R31、R32、R33、R34、R37及びR38は、好ましくはハロゲン原子、水素原子であり、さらに好ましくは、フッ素原子、水素原子であり、特に好ましくは、水素原子である。 R 23 , R 24 , R 27 , R 28 , R 31 , R 32 , R 33 , R 34 , R 37 and R 38 are preferably halogen atoms or hydrogen atoms, more preferably fluorine atoms or hydrogen atoms. And particularly preferably a hydrogen atom.
 R25、R26、R29及びR30として好ましくは、水素原子、ハロゲン原子、アルキル基、アリール基、アリールアルキル基であり、さらに好ましくは、水素原子、アリールアルキル基である。 R 25 , R 26 , R 29 and R 30 are preferably a hydrogen atom, a halogen atom, an alkyl group, an aryl group or an arylalkyl group, and more preferably a hydrogen atom or an arylalkyl group.
 R36として好ましくは、水素原子、ハロゲン原子、アシル基、アシルオキシ基であり、さらに好ましくはアシル基、アシルオキシ基である。 R 36 is preferably a hydrogen atom, a halogen atom, an acyl group or an acyloxy group, more preferably an acyl group or an acyloxy group.
 式(2-1)~式(2-8)中、X21~X29は、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。 In formulas (2-1) to (2-8), X 21 to X 29 each independently represents a sulfur atom, an oxygen atom or a selenium atom.
 式(2)中、Ar23としては、式(2-1)~式(2-8)で表される基が好ましい。式(2-1)~式(2-8)中、X21~X29は、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表し、短絡連流密度を高める観点からは、好ましくは硫黄原子、酸素原子であり、さらに好ましくは硫黄原子である。 In Formula (2), Ar 23 is preferably a group represented by Formula (2-1) to Formula (2-8). In formulas (2-1) to (2-8), X 21 to X 29 each independently represent a sulfur atom, an oxygen atom or a selenium atom, and preferably sulfur from the viewpoint of increasing the short circuit continuous density. An atom and an oxygen atom, more preferably a sulfur atom.
 Ar23としてより好ましくは、式(2-1)、式(2-2)、式(2-3)で表される基であり、さらに好ましくは、式(2-1)、式(2-2)で表される基であり、特に好ましくは(2-1)で表される基である。 Ar 23 is more preferably a group represented by Formula (2-1), Formula (2-2), or Formula (2-3), and more preferably Formula (2-1), Formula (2- 2), particularly preferably a group represented by (2-1).
 式(2)中、Ar21及びAr22としては、好ましくは、式39~式122で表される基であり、より好ましくは、式94~式98、式111~式113で表される基であり、さらに好ましくは、式94~式98で表される基であり、より好ましくは、式96~98で表される基であり、特に好ましくは式97で表される基である。 In the formula (2), Ar 21 and Ar 22 are preferably groups represented by the formulas 39 to 122, and more preferably groups represented by the formulas 94 to 98 and the formulas 111 to 113. More preferred are groups represented by formulas 94 to 98, more preferred are groups represented by formulas 96 to 98, and particularly preferred are groups represented by formula 97.
 式(2)で表される繰り返し単位としては、短絡連流密度を高める観点からは、好ましくは式(2A)で表される繰り返し単位である。 The repeating unit represented by the formula (2) is preferably a repeating unit represented by the formula (2A) from the viewpoint of increasing the short circuit continuous density.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 式(2A)中、X2a1及びX2a2は、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。R21及びR22は、前述と同じ意味を表す。 In formula (2A), X 2a1 and X 2a2 each independently represent a sulfur atom, an oxygen atom or a selenium atom. R 21 and R 22 represent the same meaning as described above.
 R40~R43は、それぞれ独立に、水素原子又は置換基を表す。R40~R43で表される置換基としては、例えば、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、アシル基、アシルオキシ基、アミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、ニトロ基、シアノ基があげられる。R40~R43が炭素原子を含む基である場合、炭素原子数は通常1~60程度である。 R 40 to R 43 each independently represents a hydrogen atom or a substituent. Examples of the substituent represented by R 40 to R 43 include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, and an arylalkylthio group. Group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group, silyl group, substituted silyl group, acyl group, acyloxy group, amide group, monovalent heterocyclic group, carboxyl group, substituted carboxyl group, nitro group, And a cyano group. When R 40 to R 43 are a group containing a carbon atom, the number of carbon atoms is usually about 1 to 60.
 R40~R43で表されるアルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換アミノ基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、1価の複素環基、置換カルボキシル基の定義及び具体例は、前述のRで表されるアルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換アミノ基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、1価の複素環基、置換カルボキシル基の定義及び具体例と同じである。これらの置換基に水素原子が含まれる場合は、該水素原子はフッ素原子で置換されていてもよい。R40~R43として好ましくは水素原子、ハロゲン原子であり、特に好ましくは水素原子である。 An alkyl group represented by R 40 to R 43 , an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, The definition and specific examples of the substituted amino group, substituted silyl group, halogen atom, acyl group, acyloxy group, amide group, monovalent heterocyclic group, and substituted carboxyl group are the alkyl group represented by the aforementioned R 1 , alkyloxy Group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, substituted amino group, substituted silyl group, halogen atom, acyl group, Acyloxy group, amide group The definition and specific examples of the monovalent heterocyclic group and substituted carboxyl group are the same. When these substituents contain a hydrogen atom, the hydrogen atom may be substituted with a fluorine atom. R 40 to R 43 are preferably a hydrogen atom or a halogen atom, and particularly preferably a hydrogen atom.
 式(2)で表される繰り返し単位としては、式(2-1-1)~式(2-1-9)で表される繰り返し単位が例示される。 Examples of the repeating unit represented by formula (2) include repeating units represented by formula (2-1-1) to formula (2-1-9).
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 式(2-1-1)~式(2-1-9)中、R21及びR22は、前述と同じ意味を表す。式(2-1-1)~式(2-1-9)で表される繰り返し単位の中でも、好ましくは、式(2-1-1)~式(2-1-3)で表される繰り返し単位である。 In formulas (2-1-1) to (2-1-9), R 21 and R 22 represent the same meaning as described above. Among the repeating units represented by the formulas (2-1-1) to (2-1-9), the formulas (2-1-1) to (2-1-3) are preferable. It is a repeating unit.
 式(3)中、Ar31は、置換基を有するアリーレン基又は置換基を有するヘテロアリーレン基を表す。ただし、式(3)で表される繰り返し単位は、式(1)で表される繰り返し単位及び式(2)で表される繰り返し単位とは異なる。 In formula (3), Ar 31 represents an arylene group having a substituent or a heteroarylene group having a substituent. However, the repeating unit represented by formula (3) is different from the repeating unit represented by formula (1) and the repeating unit represented by formula (2).
 Ar31におけるアリーレン基又はヘテロアリーレン基は、前述のAr21におけるアリーレン基又はヘテロアリーレン基と同じであり、具体例は、前述の式1から式122として挙げられたアリーレン基およびヘテロアリーレン基が挙げられる。 The arylene group or heteroarylene group in Ar 31 is the same as the arylene group or heteroarylene group in Ar 21 described above, and specific examples include the arylene group and heteroarylene group listed as Formula 122 from Formula 1 above. It is done.
 Ar31におけるアリーレン基又はヘテロアリーレン基が有する置換基としては、例えば、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、カルボキシル基、置換カルボキシル基、ニトロ基、シアノ基又は式(3A)で表される1価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000061
[式中、X3aは、直接結合、-CR3a1=CR3a2-、-C≡C-、-O-、-S-、アルキレン基又はアリーレン基を表す。R3a、R3a1及びR3a2は水素原子、ハロゲン原子またはアルキル基を表す。Ar3aは、置換基を有していてもよいアリーレン基又は置換基を有していてもよいヘテロアリーレン基を表す。nは1~10の整数である。X3aが複数個ある場合、それらは同一でも相異なってもよい。Ar3aが複数個ある場合、それらは同一でも相異なってもよい。]
Examples of the substituent of the arylene group or heteroarylene group in Ar 31 include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an arylalkyloxy group, an arylalkylthio group, an acyl group, an acyloxy group, an amide group, and an acid. Represented by an imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, carboxyl group, substituted carboxyl group, nitro group, cyano group, or formula (3A) A monovalent group is mentioned.
Figure JPOXMLDOC01-appb-C000061
[ Wherein X 3a represents a direct bond, —CR 3a1 ═CR 3a2 —, —C≡C— , —O—, —S—, an alkylene group or an arylene group. R 3a , R 3a1 and R 3a2 represent a hydrogen atom, a halogen atom or an alkyl group. Ar 3a represents an arylene group which may have a substituent or a heteroarylene group which may have a substituent. n is an integer of 1 to 10. When there are a plurality of X 3a , they may be the same or different. When there are a plurality of Ar 3a s , they may be the same or different. ]
 Ar31におけるアリーレン基又はヘテロアリーレン基が有する置換基となり得る、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、カルボキシル基、置換カルボキシル基の定義及び具体例は、前述のRで表される、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、カルボキシル基、置換カルボキシル基の定義及び具体例と同じである。 A halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an arylalkyloxy group, an arylalkylthio group, an acyl group, an acyloxy group, an amide group, an acid imide group, which can be a substituent of the arylene group or heteroarylene group in Ar 31 , Imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, carboxyl group, substituted carboxyl group and specific examples thereof are the halogens represented by R 1 described above. Atom, alkyl group, alkyloxy group, alkylthio group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide group, acid imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy Group, substituted silylthio group, substituted Riruamino group, a carboxyl group, the same as the definitions and specific examples of the substituted carboxyl group.
 さらに、Ar31におけるアリーレン基又はヘテロアリーレン基が有する置換基となり得る置換基としては、上記のとおり、式(3A)で表される置換基も含まれる。式(3A)におけるX3aは、直接結合、-CR3a1=CR3a2-、-C≡C-、-O-、-S-、アルキレン基、アリーレン基を表す。アルキレン基の炭素原子数は、通常、1~20程度である。炭素原子数3以上のアルキレン基は、直鎖状でも分岐状でもよく、置換基を有していてもよい。アルキレン基の例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、オクチレン基等が挙げられる。アリーレン基の炭素原子数は、通常、6~20程度である。アリーレン基は置換基を有していてもよい。アリーレン基の例としてはフェニレン基、ビフェニレン基、ナフチレン基が挙げられる。 Furthermore, as described above, the substituent that can be the substituent of the arylene group or heteroarylene group in Ar 31 includes a substituent represented by the formula (3A). X 3a in formula (3A) represents a direct bond, —CR 3a1 ═CR 3a2 —, —C≡C— , —O—, —S—, an alkylene group, or an arylene group. The number of carbon atoms in the alkylene group is usually about 1-20. The alkylene group having 3 or more carbon atoms may be linear or branched, and may have a substituent. Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, and an octylene group. The number of carbon atoms in the arylene group is usually about 6 to 20. The arylene group may have a substituent. Examples of the arylene group include a phenylene group, a biphenylene group, and a naphthylene group.
 R3a、R3a1及びR3a2は、水素原子、ハロゲン原子又はアルキル基を表す。ハロゲンとしてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。アルキル基としては直鎖状でも分岐状でもよく、シクロアルキル基であってもよい。R3a、R3a1及びR3a2におけるアルキル基の炭素原子数は、通常1~30であり、好ましくは1~20である。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル墓、ペンチル基、イソペンチル基、2-メチルブチル基、1-メチルブチル基、ヘキシル基、イソヘキシル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、3,7-ジメチルオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基が挙げられる。 R 3a , R 3a1 and R 3a2 represent a hydrogen atom, a halogen atom or an alkyl group. Examples of the halogen include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. The alkyl group may be linear or branched, and may be a cycloalkyl group. The number of carbon atoms of the alkyl group in R 3a , R 3a1 and R 3a2 is usually 1-30 , preferably 1-20. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl. Group, hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, nonyl group And chain alkyl groups such as decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl group and eicosyl group, and cycloalkyl groups such as cyclopentyl group, cyclohexyl group and adamantyl group.
 R3aとして好ましくは水素原子、ハロゲン原子、アルキル基であり、さらに好ましくは水素原子、アルキル基であり、特に好ましくはアルキル基である。R3a1、R3a2として好ましくは水素原子、ハロゲン原子、アルキル基であり、さらに好ましくは水素原子、ハロゲン原子であり、特に好ましくは水素原子である。 R 3a is preferably a hydrogen atom, a halogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group, and particularly preferably an alkyl group. R 3a1 and R 3a2 are preferably a hydrogen atom, a halogen atom, or an alkyl group, more preferably a hydrogen atom or a halogen atom, and particularly preferably a hydrogen atom.
 X3aとして好ましくは直接結合、-CR3a1=CR3a2-、-C≡C-であり、さらに好ましくは-CR3a1=CR3a2-であり、特に好ましくは-CH=CH-である。 X 3a is preferably a direct bond, —CR 3a1 = CR 3a2 —, —C≡C—, more preferably —CR 3a1 = CR 3a2 —, and particularly preferably —CH═CH—.
 式(3A)中、Ar3aで表される置換基を有していてもよいアリーレン基、置換基を有していてもよいヘテロアリーレン基の定義及び具体例は、式(2)中のAr21で表される置換基を有していてもよいアリーレン基、置換基を有していてもよいヘテロアリーレン基の定義及び具体例と同じである。Ar3aとして好ましくは、式1、式20、式36、式37、式79、式80、式82、式83、式94、式95、式96、式97、式111、式112、式113で表される基であり、より好ましくは式1、式36、式79、式82、式97、式111で表される基であり、さらに好ましくは式1、式97で表される基であり、特に好ましくは式97で表される基である。 In formula (3A), the definition and specific examples of the arylene group which may have a substituent represented by Ar 3a and the heteroarylene group which may have a substituent are represented by Ar in formula (2) The definition and specific examples of the arylene group which may have a substituent represented by 21 and the heteroarylene group which may have a substituent are the same. Ar 3a is preferably Formula 1, Formula 20, Formula 36, Formula 37, Formula 79, Formula 80, Formula 82, Formula 83, Formula 94, Formula 95, Formula 96, Formula 97, Formula 111, Formula 112, Formula 113. More preferably a group represented by Formula 1, Formula 36, Formula 79, Formula 82, Formula 97, Formula 111, and even more preferably a group represented by Formula 1, Formula 97. And particularly preferred is a group represented by Formula 97.
 式(3)中、Ar31が有する置換基として好ましくは、式(3A)で表される置換基である。式(3A)で表される置換基の具体例として好ましくは、式(3A-1)~式(3A-23)で表される基が挙げられる。 In formula (3), Ar 31 preferably has a substituent represented by formula (3A). Specific examples of the substituent represented by the formula (3A) are preferably groups represented by the formulas (3A-1) to (3A-23).
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 式(3A-1)~式(3A-23)中、R3aは、式(3A)において説明したとおりである。式(3A)として好ましくは、式(3A-1)~式(3A-5)で表される基であり、さらに好ましくは式(3A-2)~式(3A-4)で表される基であり、特に好ましくは式(3A-3)で表される基である。 In the formulas (3A-1) to (3A-23), R 3a is as described in the formula (3A). Preferred as formula (3A) are groups represented by formula (3A-1) to formula (3A-5), and more preferred are groups represented by formula (3A-2) to formula (3A-4). And particularly preferably a group represented by the formula (3A-3).
 式(3)で表される繰り返し単位の具体例としては、短絡連流密度を高める観点からは、好ましくは式(3-1)~式(3-5)で表される繰り返し単位が挙げられる。 Specific examples of the repeating unit represented by the formula (3) are preferably repeating units represented by the formulas (3-1) to (3-5) from the viewpoint of increasing the short circuit continuous density. .
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 式(3-1)~式(3-5)中、R3aは、式(3A)にて説明したとおりである。式(3-1)~式(3-5)で表される繰り返し単位の中でも、好ましくは式(3-2)~式(3-4)で表される繰り返し単位であり、特に好ましくは式(3-3)で表される繰り返し単位である。 In formulas (3-1) to (3-5), R 3a is as described in formula (3A). Among the repeating units represented by the formulas (3-1) to (3-5), preferred are repeating units represented by the formulas (3-2) to (3-4), and particularly preferred are the formulas It is a repeating unit represented by (3-3).
 本発明における高分子化合物とは、重量平均分子量が1000以上の化合物を指す。重量平均分子量が3000~10000000の高分子化合物が好ましい。重量平均分子量が3000より低いと素子作製時の膜形成に欠陥が生じることがあり、10000000より大きいと溶媒への溶解性や素子作製時の塗布性が低下することがある。高分子化合物の重量平均分子量は、さらに好ましくは8000~5000000であり、特に好ましくは10000~1000000である。 The polymer compound in the present invention refers to a compound having a weight average molecular weight of 1000 or more. A polymer compound having a weight average molecular weight of 3,000 to 10,000,000 is preferable. If the weight average molecular weight is lower than 3000, defects may occur in film formation during device fabrication, and if it exceeds 10000000, solubility in a solvent and applicability during device fabrication may be degraded. The weight average molecular weight of the polymer compound is more preferably 8000 to 5000000, and particularly preferably 10,000 to 1000000.
 本発明における重量平均分子量とは、ゲルパーミエーションクロマトグラフィ(GPC)を用い、ポリスチレンの標準試料を用いて算出したポリスチレン換算の重量平均分子量のことを指す。 The weight average molecular weight in the present invention refers to a weight average molecular weight in terms of polystyrene calculated using a standard sample of polystyrene using gel permeation chromatography (GPC).
 本発明の高分子化合物は、素子に用いられる場合、素子作製の容易性から、溶媒への溶解度が高いことが望ましい。具体的には、本発明の高分子化合物が、該高分子化合物を0.01重量(wt)%以上含む溶液を作製し得る溶解性を有することが好ましく、0.1wt%以上含む溶液を作製し得る溶解性を有することがより好ましく、0.4wt%以上含む溶液を作製し得る溶解性を有することがさらに好ましい。 When the polymer compound of the present invention is used in an element, it is desirable that the solubility in a solvent is high because of the ease of element production. Specifically, the polymer compound of the present invention preferably has a solubility capable of producing a solution containing 0.01% by weight (wt)% or more of the polymer compound, and a solution containing 0.1% by weight or more is produced. It is more preferable that it has the solubility which can be made, and it is further more preferable that it has the solubility which can produce the solution containing 0.4 wt% or more.
 本発明の高分子化合物の製造方法としては、特に制限されるものではないが、高分子化合物の合成の容易さからは、Suzukiカップリング反応やStilleカップリング反応を用いる方法が好ましい。 The method for producing the polymer compound of the present invention is not particularly limited, but a method using a Suzuki coupling reaction or a Stille coupling reaction is preferable from the viewpoint of ease of synthesis of the polymer compound.
 Suzukiカップリング反応を用いる方法としては、例えば、式(100):
   Q100-E-Q200   (100)
[式中、Eは、式(1)で表される繰り返し単位を表す。Q100及びQ200は、それぞれ独立に、ジヒドロキシボリル基(-B(OH))又はホウ酸エステル残基を表す。]
で表される1種類以上の化合物と、式(200):
   T-E-T   (200)
[式中、Eは、式(2)で表される繰り返し単位を表す。T及びTは、それぞれ独立に、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基又はアリールアルキルスルホネート基を表す。]
で表される化合物と、
   T-E-T   (300)
[式中、Eは、式(3)で表される繰り返し単位を表す。T及びTは、それぞれ独立に、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基又はアリールアルキルスルホネート基を表す。]
で表される化合物を、パラジウム触媒及び塩基の存在下で反応させる工程を有する製造方法が挙げられる。
As a method using the Suzuki coupling reaction, for example, the formula (100):
Q 100 -E 1 -Q 200 (100)
Wherein, E 1 represents a repeating unit represented by the formula (1). Q 100 and Q 200 each independently represent a dihydroxyboryl group (—B (OH) 2 ) or a boric acid ester residue. ]
One or more compounds represented by formula (200):
T 1 -E 2 -T 2 (200)
Wherein, E 2 represents a repeating unit represented by the formula (2). T 1 and T 2 each independently represent a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, or an aryl alkyl sulfonate group. ]
A compound represented by
T 3 -E 3 -T 4 (300)
Wherein, E 2 represents a repeating unit represented by the formula (3). T 3 and T 4 each independently represent a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, or an aryl alkyl sulfonate group. ]
The manufacturing method which has a process with which the compound represented by these is made to react in presence of a palladium catalyst and a base is mentioned.
 この場合、反応に用いる式(200)で表わされる化合物と式(300)で表される化合物のモル数の合計が、式(100)で表わされる1種類以上の化合物のモル数に対して、過剰であることが好ましい。反応に用いる式(200)で表わされる化合物と式(300)で表される化合物のモル数の合計を1モルとすると、式(100)で表わされる1種類以上の化合物のモル数が0.6~0.99モルであることが好ましく、0.7~0.95モルであることがさらに好ましい。 In this case, the total number of moles of the compound represented by Formula (200) and the compound represented by Formula (300) used for the reaction is based on the number of moles of one or more compounds represented by Formula (100). An excess is preferred. When the total number of moles of the compound represented by the formula (200) and the compound represented by the formula (300) used in the reaction is 1 mole, the number of moles of the one or more compounds represented by the formula (100) is 0.00. The amount is preferably 6 to 0.99 mol, and more preferably 0.7 to 0.95 mol.
 ホウ酸エステル残基としては、例えば、下記式:
Figure JPOXMLDOC01-appb-C000069
(式中、Meはメチル基を表し、Etはエチル基を表す。)
で表される1価の基等が例示される。(上記式中、左側の「-」は結合子を示す。)
As the boric acid ester residue, for example, the following formula:
Figure JPOXMLDOC01-appb-C000069
(In the formula, Me represents a methyl group, and Et represents an ethyl group.)
The monovalent group etc. which are represented by these are illustrated. (In the above formula, “-” on the left side represents a connector.)
 式(200)における、T及びTで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。高分子化合物の合成の容易さからは、臭素原子、ヨウ素原子であることが好ましく、臭素原子であることがさらに好ましい。 Examples of the halogen atom represented by T 1 and T 2 in Formula (200) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. In view of ease of synthesis of the polymer compound, a bromine atom and an iodine atom are preferable, and a bromine atom is more preferable.
 式(200)における、T及びTで表されるアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基が例示される。アリールスルホネート基としては、ベンゼンスルホネート基、p-トルエンスルホネート基が例示される。アリールアルキルスルホネート基としては、ベンジルスルホネート基が例示される。 Examples of the alkyl sulfonate group represented by T 1 and T 2 in Formula (200) include a methane sulfonate group, an ethane sulfonate group, and a trifluoromethane sulfonate group. Examples of the aryl sulfonate group include a benzene sulfonate group and a p-toluene sulfonate group. A benzyl sulfonate group is illustrated as an arylalkyl sulfonate group.
 具体的には、Suzukiカップリング反応を行う方法としては、任意の溶媒中において、触媒としてパラジウム触媒を用い、塩基の存在下で反応させる方法等が挙げられる。 Specifically, the method for carrying out the Suzuki coupling reaction includes a method in which a palladium catalyst is used as a catalyst in an arbitrary solvent and the reaction is carried out in the presence of a base.
 Suzukiカップリング反応に使用するパラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒等が挙げられ、具体的には、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウム等が挙げられるが、反応(重合)操作の容易さ、反応(重合)速度の観点からは、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウムが好ましい。 Examples of the palladium catalyst used in the Suzuki coupling reaction include a Pd (0) catalyst, a Pd (II) catalyst, and the like. Specifically, palladium [tetrakis (triphenylphosphine)], palladium acetates, dichlorobis (Triphenylphosphine) palladium, palladium acetate, tris (dibenzylideneacetone) dipalladium, bis (dibenzylideneacetone) palladium, etc. are mentioned, but from the viewpoint of ease of reaction (polymerization) operation and reaction (polymerization) rate. , Dichlorobis (triphenylphosphine) palladium, palladium acetate, and tris (dibenzylideneacetone) dipalladium are preferred.
 パラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(100)で表される化合物1モルに対して、通常、0.0001モル~0.5モル、好ましくは0.0003モル~0.1モルである。 The addition amount of the palladium catalyst is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 mol to 0.5 mol with respect to 1 mol of the compound represented by the formula (100). The amount is preferably 0.0003 mol to 0.1 mol.
 Suzukiカップリング反応に使用するパラジウム触媒としてパラジウムアセテート類を用いる場合は、例えば、トリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(o-メトキシフェニル)ホスフィン等のリン化合物を配位子として添加し得る。この場合、配位子の添加量は、パラジウム触媒1モルに対して、通常、0.5モル~100モルであり、好ましくは0.9モル~20モル、さらに好ましくは1モル~10モルである。 When palladium acetates are used as the palladium catalyst used in the Suzuki coupling reaction, for example, a phosphorus compound such as triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine is added as a ligand. Can do. In this case, the addition amount of the ligand is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol, relative to 1 mol of the palladium catalyst. is there.
 Suzukiカップリング反応に使用する塩基としては、無機塩基、有機塩基、無機塩等が挙げられる。無機塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、水酸化バリウム等が挙げられる。有機塩基としては、例えば、トリエチルアミン、トリブチルアミン等が挙げられる。無機塩としては、例えば、フッ化セシウム等が挙げられる。
 塩基の添加量は、式(100)で表される化合物1モルに対して、通常、0.5モル~100モル、好ましくは0.9モル~20モル、さらに好ましくは1モル~10モルである。
Examples of the base used for the Suzuki coupling reaction include inorganic bases, organic bases, inorganic salts and the like. Examples of the inorganic base include potassium carbonate, sodium carbonate, barium hydroxide and the like. Examples of the organic base include triethylamine and tributylamine. Examples of the inorganic salt include cesium fluoride.
The addition amount of the base is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol, relative to 1 mol of the compound represented by the formula (100). is there.
 Suzukiカップリング反応は、通常、溶媒中で行われる。溶媒としては、N,N-ジメチルホルムアミド、トルエン、ジメトキシエタン、テトラヒドロフラン等が例示される。本発明に用いられる高分子化合物の溶解性の観点からは、トルエン、テトラヒドロフランが好ましい。また、塩基は、水溶液として加え、2相系で反応させてもよい。塩基として無機塩を用いる場合は、無機塩の溶解性の観点から、通常、水溶液として加えて反応させる。 The Suzuki coupling reaction is usually performed in a solvent. Examples of the solvent include N, N-dimethylformamide, toluene, dimethoxyethane, tetrahydrofuran and the like. From the viewpoint of solubility of the polymer compound used in the present invention, toluene and tetrahydrofuran are preferred. Further, the base may be added as an aqueous solution and reacted in a two-phase system. When an inorganic salt is used as the base, it is usually added as an aqueous solution and reacted from the viewpoint of solubility of the inorganic salt.
 なお、塩基を水溶液として加え、2相系で反応させる場合は、必要に応じて、第4級アンモニウム塩などの相間移動触媒を加えてもよい。 In addition, when adding a base as aqueous solution and making it react by a two-phase system, you may add phase transfer catalysts, such as a quaternary ammonium salt, as needed.
 Suzukiカップリング反応を行う温度は、前記溶媒にもよるが、通常、50~160℃程度であり、高分子化合物の高分子量化の観点から、60~120℃が好ましい。また、溶媒の沸点近くまで昇温し、還流させてもよい。反応時間は、目的の重合度に達したときを終点としてもよいが、通常、0.1時間~200時間程度である。1時間~30時間程度が効率的で好ましい。 The temperature at which the Suzuki coupling reaction is carried out depends on the solvent, but is usually about 50 to 160 ° C., and preferably 60 to 120 ° C. from the viewpoint of increasing the molecular weight of the polymer compound. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed. The reaction time may end when the target degree of polymerization is reached, but is usually about 0.1 to 200 hours. About 1 to 30 hours is efficient and preferable.
 Suzukiカップリング反応は、アルゴンガス、窒素ガス等の不活性雰囲気下、Pd(0)触媒が失活しない反応系で行う。例えば、アルゴンガスや窒素ガス等で、十分脱気された系で行う。具体的には、重合容器(反応系)内を窒素ガスで十分置換し、脱気する。次いで、この重合容器に、式(100)で表される化合物、式(200)で表される化合物、式(300)で表される化合物、ジクロロビス(トリフェニルホスフィン)パラジウム(II)を仕込み、さらに、重合容器を窒素ガスで十分置換し、脱気する。次いで、この重合容器に、あらかじめ窒素ガスでバブリングすることにより脱気した溶媒、例えば、トルエンを加える。次いで、この溶液に、あらかじめ窒素ガスでバブリングすることにより脱気した塩基、例えば、炭酸ナトリウム水溶液を滴下した後、加熱、昇温し、例えば、還流温度で8時間、不活性雰囲気を保持しながら重合する。 The Suzuki coupling reaction is performed in a reaction system in which the Pd (0) catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas. For example, it is performed in a system sufficiently deaerated with argon gas or nitrogen gas. Specifically, the inside of the polymerization vessel (reaction system) is sufficiently replaced with nitrogen gas and deaerated. Next, a compound represented by the formula (100), a compound represented by the formula (200), a compound represented by the formula (300), dichlorobis (triphenylphosphine) palladium (II) is charged into the polymerization container, Further, the polymerization vessel is sufficiently replaced with nitrogen gas and deaerated. Next, a solvent deaerated beforehand by bubbling with nitrogen gas, for example, toluene, is added to the polymerization vessel. Next, a base deaerated by bubbling with nitrogen gas in advance, for example, an aqueous sodium carbonate solution, is dropped into this solution, and then heated and heated, for example, while maintaining an inert atmosphere at the reflux temperature for 8 hours. Polymerize.
 Stilleカップリング反応を用いる方法としては、例えば、式(400):
   Q300-E-Q400   (400)
[式中、Eは、式(1)で表される繰り返し単位を表す。Q300及びQ400は、それぞれ独立に、置換スタンニル基を表す。]
で表される1種類以上の化合物と、前記式(200)で表される化合物および前記式(300)で表される化合物とを、パラジウム触媒の存在下で反応させる工程を有する製造方法が挙げられる。
As a method using the Stille coupling reaction, for example, the formula (400):
Q 300 -E 3 -Q 400 (400)
Wherein, E 3 represents a repeating unit represented by the formula (1). Q 300 and Q 400 each independently represent a substituted stannyl group. ]
A production method comprising a step of reacting one or more compounds represented by the formula (200) with the compound represented by the formula (200) and the compound represented by the formula (300) in the presence of a palladium catalyst. It is done.
 置換スタンニル基としては、例えば、-SnR100 で表される基等が挙げられる。ここでR100は1価の有機基を表す。1価の有機基としては、アルキル基、アリール基などが挙げられる。 Examples of the substituted stannyl group include a group represented by —SnR 100 3 . Here, R 100 represents a monovalent organic group. Examples of the monovalent organic group include an alkyl group and an aryl group.
 アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル墓、ペンチル基、イソペンチル基、2-メチルブチル基、1-メチルブチル基、ヘキシル基、イソヘキシル基、3-メチルペンチル基、2一メチルペンチル基、1-メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基が挙げられる。アリール基の具体例としては、フェニル基、ナフチル基などが挙げられる。有機スズ残基の具体例として好ましくは、-SnMe、-SnEt、-SnBu、-SnPhであり、さらに好ましくは-SnMe、-SnEt、-SnBuである。上記好ましい例において、Meはメチル基を、Etはエチル基を、Buはブチル基を、Phはフェニル基を表す。 Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl. Group, hexyl group, isohexyl group, 3-methylpentyl group, 21-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group And chain alkyl groups such as a group, tetradecyl group, hexadecyl grave, octadecyl group, and eicosyl group, and cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, and an adamantyl group. Specific examples of the aryl group include a phenyl group and a naphthyl group. Preferably Specific examples of organotin residues, -SnMe 3, -SnEt 3, -SnBu 3, an -SnPh 3, more preferably -SnMe 3, -SnEt 3, is -SnBu 3. In the above preferred examples, Me represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, and Ph represents a phenyl group.
 式(200)における、T及びTで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。高分子化合物の合成の容易さからは、臭素原子、ヨウ素原子であることが好ましい。 Examples of the halogen atom represented by T 1 and T 2 in Formula (200) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. In view of ease of synthesis of the polymer compound, a bromine atom and an iodine atom are preferable.
 式(200)における、T及びTで表されるアルキルスルホネート基の具体例としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基が例示される。アリールスルホネート基としては、ベンゼンスルホネート基、p-トルエンスルホネート基が例示される。アリールスルホネート基としては、ベンジルスルホネート基が例示される。 Specific examples of the alkyl sulfonate group represented by T 1 and T 2 in Formula (200) include a methane sulfonate group, an ethane sulfonate group, and a trifluoromethane sulfonate group. Examples of the aryl sulfonate group include a benzene sulfonate group and a p-toluene sulfonate group. A benzyl sulfonate group is illustrated as an aryl sulfonate group.
 具体的には、触媒として、例えば、パラジウム触媒下で任意の溶媒中で反応する方法が挙げられる。 Specifically, examples of the catalyst include a method of reacting in an arbitrary solvent under a palladium catalyst.
 Stilleカップリング反応に使用するパラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒が挙げられる。具体的には、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウムが挙げられ、反応(重合)操作の容易さ、反応(重合)速度の観点からは、パラジウム[テトラキス(トリフェニルホスフィン)]、トリス(ジベンジリデンアセトン)ジパラジウムが好ましい。 Examples of the palladium catalyst used in the Stille coupling reaction include a Pd (0) catalyst and a Pd (II) catalyst. Specific examples include palladium [tetrakis (triphenylphosphine)], palladium acetates, dichlorobis (triphenylphosphine) palladium, palladium acetate, tris (dibenzylideneacetone) dipalladium, and bis (dibenzylideneacetone) palladium. Palladium [tetrakis (triphenylphosphine)] and tris (dibenzylideneacetone) dipalladium are preferable from the viewpoints of easy reaction (polymerization) operation and reaction (polymerization) rate.
 Stilleカップリング反応に使用するパラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(400)で表される化合物1モルに対して、通常、0.0001モル~0.5モル、好ましくは0.0003モル~0.2モルである。 The addition amount of the palladium catalyst used in the Stille coupling reaction is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 per 1 mol of the compound represented by the formula (400). Mol to 0.5 mol, preferably 0.0003 to 0.2 mol.
 Stilleカップリング反応において、必要に応じて配位子や助触媒を用い得る。配位子としては、例えば、トリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(o-メトキシフェニル)ホスフィン、トリス(2-フリル)ホスフィン等のリン化合物やトリフェニルアルシン、トリフェノキシアルシン等の砒素化合物が挙げられる。助触媒としては、例えば、ヨウ化銅、臭化銅、塩化銅、2-テノイル酸銅(I)などが挙げられる。 In the Stille coupling reaction, a ligand and a promoter can be used as necessary. Examples of the ligand include phosphorus compounds such as triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine, tris (2-furyl) phosphine, triphenylarsine, and triphenoxyarsine. Examples include arsenic compounds. Examples of the cocatalyst include copper iodide, copper bromide, copper chloride, copper 2-thenoylate (I) and the like.
 配位子又は助触媒を用いる場合、配位子又は助触媒の添加量は、パラジウム触媒1モルに対して、通常、0.5モル~100モルであり、好ましくは0.9モル~20モル、さらに好ましくは1モル~10モルである。 When a ligand or cocatalyst is used, the amount of the ligand or cocatalyst added is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, relative to 1 mol of the palladium catalyst. More preferably, it is 1 mol to 10 mol.
 Stilleカップリング反応は、通常、溶媒中で行われる。溶媒としては、例えば、N,N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、トルエン、ジメトキシエタン、テトラヒドロフラン等が挙げられる。本発明に用いられる高分子化合物の溶解性の観点からは、トルエン、テトラヒドロフランが好ましい。 The Stille coupling reaction is usually performed in a solvent. Examples of the solvent include N, N-dimethylformamide, N, N-dimethylacetamide, toluene, dimethoxyethane, tetrahydrofuran and the like. From the viewpoint of solubility of the polymer compound used in the present invention, toluene and tetrahydrofuran are preferred.
 Stilleカップリング反応を行う温度は、前記溶媒にもよるが、通常、50~160℃程度であり、高分子化合物の高分子量化の観点から、60~120℃が好ましい。また、溶媒の沸点近くまで昇温し、還流させてもよい。 The temperature at which the Stille coupling reaction is performed depends on the solvent, but is usually about 50 to 160 ° C., and preferably 60 to 120 ° C. from the viewpoint of increasing the molecular weight of the polymer compound. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed.
 前記反応を行う時間(反応時間)は、目的の重合度に達したときを終点としてもよいが、通常、0.1時間~200時間程度である。1時間~30時間程度が効率的で好ましい。 The time for carrying out the reaction (reaction time) may be the end point when the target degree of polymerization is reached, but is usually about 0.1 to 200 hours. About 1 to 30 hours is efficient and preferable.
 Stilleカップリング反応は、アルゴンガス、窒素ガス等の不活性雰囲気下、Pd触媒が失活しない反応系で行う。例えば、アルゴンガスや窒素ガス等で、十分脱気された系で行う。具体的には、重合容器(反応系)内を窒素ガスで十分置換し、脱気する。次いで、この重合容器に、式(300)で表される化合物、式(200)で表される化合物、式(400)で表される化合物、パラジウム触媒を仕込み、さらに、重合容器を窒素ガスで十分置換し、脱気する。次いで、この重合容器に、あらかじめ窒素ガスでバブリングすることにより脱気した溶媒、例えば、トルエンを加えた後、必要に応じて配位子や助触媒を加え、その後、加熱、昇温し、例えば、還流温度で8時間、不活性雰囲気を保持しながら重合する。 The Stille coupling reaction is performed in a reaction system in which the Pd catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas. For example, it is performed in a system sufficiently deaerated with argon gas or nitrogen gas. Specifically, the inside of the polymerization vessel (reaction system) is sufficiently replaced with nitrogen gas and deaerated. Next, a compound represented by the formula (300), a compound represented by the formula (200), a compound represented by the formula (400), and a palladium catalyst are charged into this polymerization vessel, and the polymerization vessel is further filled with nitrogen gas. Replace well and degas. Next, after adding a solvent degassed by bubbling with nitrogen gas in advance to this polymerization vessel, for example, toluene, a ligand and a co-catalyst are added as necessary, and then heated, heated, Polymerization is carried out while maintaining an inert atmosphere at the reflux temperature for 8 hours.
 高分子化合物のポリスチレン換算の数平均分子量は、好ましくは1×10~1×10である。ポリスチレン換算の数平均分子量が1×10以上である場合には、強靭な薄膜が得られやすくなる。一方、10以下である場合には、溶解性が高く、薄膜の作製が容易である。強靭な薄膜を得る観点からは、ポリスチレン換算の数平均分子量が3×10以上であることが好ましい。 The number average molecular weight in terms of polystyrene of the polymer compound is preferably 1 × 10 3 to 1 × 10 8 . When the number average molecular weight in terms of polystyrene is 1 × 10 3 or more, a tough thin film is easily obtained. On the other hand, when it is 10 8 or less, the solubility is high and the production of the thin film is easy. From the viewpoint of obtaining a tough thin film, the number average molecular weight in terms of polystyrene is preferably 3 × 10 3 or more.
 本発明の高分子化合物の末端基は、重合活性基がそのまま残っていると、素子の作製に用いたときに得られる素子の特性や寿命が低下する可能性があるので、安定な基で保護されていてもよい。本発明の高分子化合物の末端基は、主鎖の共役構造と連続した共役結合を有しているものが好ましく、また、例えば、ビニレン基を介してアリール基又は複素環基と結合している構造であってもよい。 The terminal group of the polymer compound of the present invention is protected with a stable group because if the polymerization active group remains as it is, there is a possibility that the characteristics and life of the element obtained when used for the preparation of the element may be reduced. May be. The terminal group of the polymer compound of the present invention preferably has a conjugated bond continuous with the conjugated structure of the main chain, and is bonded to, for example, an aryl group or a heterocyclic group via a vinylene group. It may be a structure.
 本発明の高分子化合物中の式(1)で表される繰り返し単位の含有量は、本発明の高分子化合物が有する繰り返し単位の合計に対して、光電変換効率を高める観点からは、10~80モル%が好ましい。本発明の高分子化合物中の式(2)で表される繰り返し単位の含有量は、光電変換効率を高める観点からは、10~80モル%が好ましい。本発明の高分子化合物中の式(3)で表される繰り返し単位の含有量は、光電変換効率を高める観点からは、5~50モル%が好ましい。 The content of the repeating unit represented by the formula (1) in the polymer compound of the present invention is 10 to 10% from the viewpoint of increasing the photoelectric conversion efficiency with respect to the total of the repeating units of the polymer compound of the present invention. 80 mol% is preferred. The content of the repeating unit represented by the formula (2) in the polymer compound of the present invention is preferably 10 to 80 mol% from the viewpoint of increasing the photoelectric conversion efficiency. The content of the repeating unit represented by the formula (3) in the polymer compound of the present invention is preferably 5 to 50 mol% from the viewpoint of increasing the photoelectric conversion efficiency.
 本発明の高分子化合物は、光吸収末端波長が長波長であることが光電変換効率を高める観点から好ましい。光吸収末端波長が700nm以上であることが好ましく、800nm以上であることがより好ましく、900nm以上であることが特に好ましい。 The polymer compound of the present invention preferably has a long light absorption terminal wavelength from the viewpoint of increasing the photoelectric conversion efficiency. The light absorption terminal wavelength is preferably 700 nm or more, more preferably 800 nm or more, and particularly preferably 900 nm or more.
 光吸収末端波長(λth)は、光吸収波長の長波長側の末端の波長値として表される。本発明のおける光吸収末端波長の数値は、具体的には以下の方法で求められた値によって表されている。 The light absorption terminal wavelength (λth) is expressed as a wavelength value at the terminal on the long wavelength side of the light absorption wavelength. The numerical value of the light absorption terminal wavelength in the present invention is specifically represented by a value obtained by the following method.
 光吸収波長の測定には、紫外、可視、近赤外の波長領域で動作する分光光度計(例えば、日本分光製、紫外可視近赤外分光光度計JASCO-V670)を用いる。JASCO-V670を用いる場合、測定可能な波長範囲が200~1500nmであるため、該波長範囲で測定を行う。まず、測定に用いる基板の吸収スペクトルを測定する。基板としては、例えば、石英基板、ガラス基板等を用いる。次いで、その基板の上に第1の化合物を含む溶液若しくは第1の化合物を含む溶融体から第1の化合物を含む薄膜を形成する。溶液からの製膜では、製膜後乾燥を行う。その後、薄膜と基板との積層体の吸収スペクトルを得る。
 薄膜と基板との積層体の吸収スペクトルと基板の吸収スペクトルとの差を、薄膜の吸収スペクトルとして得る。
For the measurement of the light absorption wavelength, a spectrophotometer (for example, JASCO-V670, made by JASCO Corporation) operating in the wavelength region of ultraviolet, visible, and near infrared is used. When JASCO-V670 is used, the measurable wavelength range is 200 to 1500 nm. Therefore, measurement is performed in this wavelength range. First, the absorption spectrum of the substrate used for measurement is measured. For example, a quartz substrate, a glass substrate, or the like is used as the substrate. Next, a thin film containing the first compound is formed on the substrate from a solution containing the first compound or a melt containing the first compound. In film formation from a solution, drying is performed after film formation. Thereafter, an absorption spectrum of the laminate of the thin film and the substrate is obtained.
The difference between the absorption spectrum of the laminate of the thin film and the substrate and the absorption spectrum of the substrate is obtained as the absorption spectrum of the thin film.
 該薄膜の吸収スペクトルは、縦軸が第1の化合物の吸光度を、横軸が波長を示す。最も大きい吸収ピークの吸光度が0.5~2程度になるよう、薄膜の膜厚を調整することが望ましい。 In the absorption spectrum of the thin film, the vertical axis represents the absorbance of the first compound, and the horizontal axis represents the wavelength. It is desirable to adjust the thickness of the thin film so that the absorbance at the largest absorption peak is about 0.5 to 2.
 本発明における光吸収末端波長は、下記に示す第1基準線と第2基準線の交点から求めることができる。
<第1基準線>
 吸収波形(吸収スペクトル)全体の中で、一番長波長寄りの吸収ピーク点(極大値)の吸光度を100%とする。
 前記吸収ピーク点の50%の吸光度を示す横軸(波長軸)に平行な直線と該吸収波形とが交わる2つの交点のうち、前記吸収ピーク点よりも長波長寄りにある交点を第1の点とする。
 前記吸収ピーク点の25%の吸光度を示す波長軸に平行な直線と該吸収波形とが交わる2つの交点のうち、前記吸収ピーク点よりも長波長寄りにある交点を第2の点とする。
 第1の点と第2の点とを結ぶ直線を、第1基準線とする。
<第2基準線>
 吸収波形全体の中で、一番長波長寄りの吸収ピーク点(極大値)の吸光度を100%とする。
 前記吸収ピーク点の10%の吸光度を示す波長軸に平行な直線と該吸収波形とが交わる2つの交点のうち、前記吸収ピーク点よりも長波長寄りにある交点の波長を基準点として、基準点の波長より100nm長波長にある吸収波形上の点を第3の点とする。また、基準点の波長より150nm長波長にある吸収波形上の点を第4の点とする。第3の点と第4の点を結ぶ直線を第2基準線とする。
<光吸収末端波長の値>
 第1基準線と第2基準線との交点における波長の値を、光吸収末端波長の値とする。
The light absorption terminal wavelength in this invention can be calculated | required from the intersection of the 1st reference line and the 2nd reference line which are shown below.
<First reference line>
In the entire absorption waveform (absorption spectrum), the absorbance at the absorption peak point (maximum value) closest to the longest wavelength is 100%.
Of the two intersections where the straight line parallel to the horizontal axis (wavelength axis) indicating the absorbance of 50% of the absorption peak point and the absorption waveform intersect, the intersection point closer to the longer wavelength than the absorption peak point is the first point. Let it be a point.
Of the two intersections where the line parallel to the wavelength axis showing the absorbance of 25% of the absorption peak point and the absorption waveform intersect, the intersection point closer to the longer wavelength than the absorption peak point is defined as the second point.
A straight line connecting the first point and the second point is taken as a first reference line.
<Second reference line>
In the entire absorption waveform, the absorbance at the absorption peak point (maximum value) closest to the longest wavelength is 100%.
Of the two intersections where the line parallel to the wavelength axis showing the absorbance of 10% of the absorption peak point and the absorption waveform intersect, the wavelength at the intersection closer to the longer wavelength than the absorption peak point is used as a reference point. A point on the absorption waveform at a wavelength 100 nm longer than the wavelength of the point is defined as a third point. A point on the absorption waveform that is 150 nm longer than the wavelength of the reference point is defined as a fourth point. A straight line connecting the third point and the fourth point is taken as a second reference line.
<Value of light absorption terminal wavelength>
The value of the wavelength at the intersection of the first reference line and the second reference line is taken as the value of the light absorption terminal wavelength.
 本発明の高分子化合物は、高い電子及び/又はホール輸送性を発揮し得ることから、該化合物を含む有機薄膜を素子に用いた場合、電極から注入された電子やホール、或いは、光吸収によって発生した電荷を輸送することができる。これらの特性を活かして該化合物を含む有機薄膜を光電変換素子、有機薄膜トランジスタ、有機エレクトロルミネッセンス素子等の種々の素子に好適に用いることができる。以下、これらの素子について個々に説明する。 Since the polymer compound of the present invention can exhibit high electron and / or hole transport properties, when an organic thin film containing the compound is used in a device, electrons or holes injected from an electrode, or light absorption. The generated charge can be transported. Taking advantage of these characteristics, an organic thin film containing the compound can be suitably used for various devices such as a photoelectric conversion device, an organic thin film transistor, and an organic electroluminescence device. Hereinafter, these elements will be described individually.
<組成物>
 本発明の組成物は、本発明の高分子化合物と電子受容性化合物とを含む。本発明の組成物において、電子受容性化合物の割合が、本発明の高分子化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。
<Composition>
The composition of the present invention contains the polymer compound of the present invention and an electron-accepting compound. In the composition of the present invention, the ratio of the electron-accepting compound is preferably 10 to 1000 parts by weight, more preferably 20 to 500 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention. .
 電子受容性化合物としては、本発明の高分子化合物のほか、例えば、炭素材料、酸化チタン等の金属酸化物、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(バソクプロイン)等のフェナントロリン誘導体、フラーレン、フラーレン誘導体が挙げられ、好ましくは、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、特に好ましくはフラーレン、フラーレン誘導体である。 As the electron-accepting compound, in addition to the polymer compound of the present invention, for example, carbon materials, metal oxides such as titanium oxide, oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof Derivatives, anthraquinones and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof Derivatives, polyfluorenes and derivatives thereof, phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (basocproline), fullerenes, fullerene derivatives, Mashiku are titanium oxide, carbon nanotubes, fullerene, a fullerene derivative, particularly preferably a fullerene, a fullerene derivative.
 フラーレン、フラーレン誘導体としては、例えば、炭素原子数がC60、C70、C76、C78、C84のフラーレン及びその誘導体が挙げられる。フラーレン誘導体は、フラーレンの少なくとも一部が修飾された化合物を表す。 Fullerene, the fullerene derivative, for example, the number of carbon atom is a fullerene and derivatives thereof C 60, C 70, C 76 , C 78, C 84. The fullerene derivative represents a compound in which at least a part of fullerene is modified.
 フラーレン誘導体としては、例えば、式(13)で表される化合物、式(14)で表される化合物、式(15)で表される化合物、式(16)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000070
(式(13)~(16)中、Rは、アルキル基、アリール基、ヘテロアリール基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rはアルキル基又はアリール基を表す。複数個あるRは、同一であっても相異なってもよい。)
Examples of the fullerene derivative include a compound represented by the formula (13), a compound represented by the formula (14), a compound represented by the formula (15), and a compound represented by the formula (16).
Figure JPOXMLDOC01-appb-C000070
(In the formulas (13) to (16), R a is an alkyl group, an aryl group, a heteroaryl group or a group having an ester structure. A plurality of R a may be the same or different. R b represents an alkyl group or an aryl group, and a plurality of R b may be the same or different.)
 R及びRで表されるアルキル基、アリール基の定義、具体例は、Rで表されるアルキル基、アリール基の定義、具体例と同じである。 The definitions and specific examples of the alkyl group and aryl group represented by R a and R b are the same as the definitions and specific examples of the alkyl group and aryl group represented by R 1 .
 Rで表されるヘテロアリール基は、通常、炭素原子数が3~60であり、チエニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基等が挙げられる。 The heteroaryl group represented by Ra usually has 3 to 60 carbon atoms, and examples thereof include a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
 Rで表されるエステル構造を有する基は、例えば、式(17)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000071
(式中、u1は、1~6の整数を表す、u2は、0~6の整数を表す、Rは、アルキル基、アリール基又はヘテロアリール基を表す。)
Examples of the group having an ester structure represented by Ra include a group represented by the formula (17).
Figure JPOXMLDOC01-appb-C000071
(Wherein u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, and R c represents an alkyl group, an aryl group, or a heteroaryl group.)
 Rで表されるアルキル基、アリール基、ヘテロアリール基の定義、具体例は、Rで表されるアルキル基、アリール基、ヘテロアリール基の定義、具体例と同じである。 The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R c are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R a .
 C60フラーレンの誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-C000072
Specific examples of the C 60 fullerene derivative include the following.
Figure JPOXMLDOC01-appb-C000072
 C70フラーレンの誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-C000073
Specific examples of the C 70 fullerene derivative include the following.
Figure JPOXMLDOC01-appb-C000073
 また、フラーレン誘導体の例としては、[6,6]フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チエニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)が挙げられる。 Examples of fullerene derivatives include [6,6] phenyl-C 61 butyric acid methyl ester (C60PCBM, [6,6] -phenyl C 61 butyric acid methyl ester), [6,6] phenyl-C 71 methyl butyrate. Esters (C70PCBM, [6,6] -Phenyl C 71 butyric acid methyl ester), [6,6] Phenyl-C 85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C 85 butyric acid methyl ester), [ 6,6] thienyl -C 61 butyric acid methyl ester ([6,6] -Thienyl C 61 butyric acid methyl ester) and the like.
<薄膜>
 本発明の薄膜の第1の態様は、本発明の高分子化合物を含む薄膜である。本発明の薄膜の第2の態様は、本発明の組成物を含む薄膜である。薄膜の厚さは、1nm~100μmが好ましく、より好ましくは2nm~1000nmであり、さらに好ましくは5nm~500nmであり、特に好ましくは20nm~200nmである。
<Thin film>
The first aspect of the thin film of the present invention is a thin film containing the polymer compound of the present invention. The 2nd aspect of the thin film of this invention is a thin film containing the composition of this invention. The thickness of the thin film is preferably 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.
<電子素子>
 本発明の電子素子は、第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有し、該活性層に本発明の高分子化合物、又は、本発明の組成物を含有する。電子素子としては、例えば、光電変換素子、有機薄膜トランジスタ、有機エレクトロルミネッセンス素子が挙げられる。
<Electronic element>
The electronic device of the present invention has a first electrode and a second electrode, and has an active layer between the first electrode and the second electrode. Contains a molecular compound or the composition of the present invention. Examples of the electronic element include a photoelectric conversion element, an organic thin film transistor, and an organic electroluminescence element.
<光電変換素子> 
 本発明の高分子化合物を有する光電変換素子は、少なくとも一方が透明又は半透明である一対の電極間に、本発明の高分子化合物を含む1層以上の活性層を有する。
<Photoelectric conversion element>
The photoelectric conversion element having the polymer compound of the present invention has one or more active layers containing the polymer compound of the present invention between a pair of electrodes, at least one of which is transparent or translucent.
 本発明の高分子化合物を有する光電変換素子の好ましい形態としては、少なくとも一方が透明又は半透明である一対の電極と、p型の有機半導体とn型の有機半導体との有機組成物から形成される活性層を有する。本発明の高分子化合物は、p型の有機半導体として用いることが好ましい。この形態の光電変換素子の動作機構を説明する。透明又は半透明の電極から入射した光エネルギーがフラーレン誘導体等の電子受容性化合物(n型の有機半導体)及び/又は本発明の高分子化合物等の電子供与性化合物(p型の有機半導体)で吸収され、電子とホールが結合した励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物が隣接しているヘテロ接合界面に達すると、界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子とホールが分離し、独立に動くことができる電荷(電子とホール)が発生する。発生した電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。 A preferred form of the photoelectric conversion element having the polymer compound of the present invention is formed from a pair of electrodes, at least one of which is transparent or translucent, and an organic composition of a p-type organic semiconductor and an n-type organic semiconductor. Having an active layer. The polymer compound of the present invention is preferably used as a p-type organic semiconductor. The operation mechanism of the photoelectric conversion element of this embodiment will be described. Light energy incident from a transparent or translucent electrode is an electron-accepting compound (n-type organic semiconductor) such as a fullerene derivative and / or an electron-donating compound (p-type organic semiconductor) such as a polymer compound of the present invention. Absorbed, producing excitons in which electrons and holes are combined. When the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are adjacent to each other, electrons and holes are separated due to the difference in HOMO energy and LUMO energy at the interface, Electric charges (electrons and holes) that can move independently are generated. The generated charges can be taken out as electric energy (current) by moving to the electrodes.
 本発明の高分子化合物を用いて製造される光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。 The photoelectric conversion element produced using the polymer compound of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.
 本発明の高分子化合物を有する光電変換素子の他の態様は、少なくとも一方が透明又は半透明である一対の電極間に、本発明の高分子化合物を含む第1の活性層と、該第1の活性層に隣接して、フラーレン誘導体等の電子受容性化合物を含む第2の活性層を含む光電変換素子である。 In another aspect of the photoelectric conversion element having the polymer compound of the present invention, the first active layer containing the polymer compound of the present invention is interposed between a pair of electrodes, at least one of which is transparent or translucent, and the first A photoelectric conversion element including a second active layer containing an electron accepting compound such as a fullerene derivative adjacent to the active layer.
 透明又は半透明の電極材料としては、例えば、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。透明又は半透明の電極材料の具体例としては、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜、NESAや、金、白金、銀、銅等が挙げられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。
 電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
Examples of the transparent or translucent electrode material include a conductive metal oxide film and a translucent metal thin film. Specific examples of transparent or translucent electrode materials include indium oxide, zinc oxide, tin oxide, and conductive materials made of indium / tin / oxide (ITO), indium / zinc / oxide, etc., which are composites thereof. Examples of such films include NESA, gold, platinum, silver, and copper. ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
As the electrode material, an organic transparent conductive film such as polyaniline and derivatives thereof, polythiophene and derivatives thereof may be used.
 一方の電極は透明でなくてもよく、該電極の電極材料としては、例えば、金属、導電性高分子等を用い得る。電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属;これら金属のうち2つ以上の合金;これらの金属うちの1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金;グラファイト及びグラファイト層間化合物;ポリアニリン及びその誘導体;並びに、ポリチオフェン及びその誘導体が挙げられる。合金の具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。 One electrode may not be transparent, and as an electrode material of the electrode, for example, a metal, a conductive polymer, or the like can be used. Specific examples of the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. Two or more alloys of these metals; one selected from the group consisting of one or more of these metals and gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin; Alloys with more than one metal; graphite and graphite intercalation compounds; polyaniline and derivatives thereof; and polythiophene and derivatives thereof. Specific examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy. .
 光電変換効率を向上させるための手段として活性層以外の付加的な中間層を使用してもよい。中間層として用いられる材料としては、例えば、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化チタン等の酸化物、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)などが挙げられる。 An additional intermediate layer other than the active layer may be used as a means for improving the photoelectric conversion efficiency. Examples of the material used for the intermediate layer include alkali metals such as lithium fluoride, halides of alkaline earth metals, oxides such as titanium oxide, and PEDOT (poly-3,4-ethylenedioxythiophene). It is done.
 <活性層>
 活性層は、本発明の高分子化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。活性層のホール輸送性を高めるため、電子供与性化合物及び/又は電子受容性化合物として、本発明の高分子化合物以外の化合物を活性層中に混合して用い得る。なお、電子供与性化合物、電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。
<Active layer>
The active layer may contain the polymer compound of the present invention alone or in combination of two or more. In order to improve the hole transport property of the active layer, compounds other than the polymer compound of the present invention can be mixed and used as the electron donating compound and / or the electron accepting compound in the active layer. The electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
 電子供与性化合物としては、本発明の高分子化合物のほか、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。 As the electron-donating compound, in addition to the polymer compound of the present invention, for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, Examples thereof include polysiloxane derivatives having an aromatic amine residue in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof.
 電子受容性化合物としては、本発明の高分子化合物のほか、前述の化合物が挙げられる。 Examples of the electron-accepting compound include the aforementioned compounds in addition to the polymer compound of the present invention.
 活性層中に本発明の高分子化合物とフラーレン誘導体とを含む場合、フラーレン誘導体の割合が、本発明の高分子化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。 When the active layer contains the polymer compound of the present invention and the fullerene derivative, the ratio of the fullerene derivative is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention. More preferably, it is 500 parts by weight.
 活性層の厚さは、通常、1nm~100μmが好ましく、より好ましくは2nm~1000nmであり、さらに好ましくは5nm~500nmであり、より好ましくは20nm~200nmである。 The thickness of the active layer is usually preferably 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, more preferably 20 nm to 200 nm.
 前記活性層の製造方法は、如何なる方法で製造してもよく、例えば、高分子化合物を含む溶液からの成膜や、真空蒸着法による成膜方法が挙げられる。 The method for producing the active layer may be produced by any method, and examples thereof include film formation from a solution containing a polymer compound and film formation by vacuum deposition.
<光電変換素子の製造方法>
 光電変換素子の好ましい製造方法は、第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有する素子の製造方法であって、該第1の電極上に本発明の高分子化合物と溶媒とを含む溶液(インク)又は本発明の組成物と溶媒とを含む溶液を塗布法により塗布して活性層を形成する工程、該活性層上に第2の電極を形成する工程を有する素子の製造方法である。
<Method for producing photoelectric conversion element>
A preferred method for producing a photoelectric conversion element is a method for producing an element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode, Applying a solution (ink) containing the polymer compound of the present invention and a solvent or a solution containing the composition of the present invention and a solvent on the first electrode by a coating method to form an active layer; This is a method for manufacturing an element including a step of forming a second electrode on a layer.
 溶液からの成膜に用いる溶媒は、本発明の高分子化合物又は本発明の組成物を溶解させるものであればよい。該溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン等の不飽和炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル系溶媒が挙げられる。本発明の高分子化合物は、通常、前記溶媒に0.1重量%以上溶解させることができる。 The solvent used for film formation from a solution may be any solvent that dissolves the polymer compound of the present invention or the composition of the present invention. Examples of the solvent include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane. , Halogenated saturated hydrocarbon solvents such as chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, Examples include ether solvents such as tetrahydrofuran and tetrahydropyran. The polymer compound of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
 溶液を用いて成膜する場合、例えば、スリットコート法、ナイフコート法、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェットコート法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スリットコート法、キャピラリーコート法、グラビアコート法、マイクログラビアコート法、バーコート法、ナイフコート法、ノズルコート法、インクジェットコート法、スピンコート法が好ましい。 When forming a film using a solution, for example, a slit coating method, a knife coating method, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating. Coating method such as spray coating method, screen coating method, gravure printing method, flexographic printing method, offset printing method, ink jet coating method, dispenser printing method, nozzle coating method, capillary coating method, slit coating method, etc. The capillary coating method, the gravure coating method, the micro gravure coating method, the bar coating method, the knife coating method, the nozzle coating method, the ink jet coating method, and the spin coating method are preferable.
 成膜性の観点からは、25℃における溶媒の表面張力が15mN/mより大きいことが好ましく、15mN/mより大きく100mN/mよりも小さいことがより好ましく、25mN/mより大きく60mN/mよりも小さいことがさらに好ましい。 From the viewpoint of film formability, the surface tension of the solvent at 25 ° C. is preferably larger than 15 mN / m, more preferably larger than 15 mN / m and smaller than 100 mN / m, larger than 25 mN / m and larger than 60 mN / m. It is more preferable that the value is small.
 <有機薄膜トランジスタ>
 本発明の高分子化合物は、有機薄膜トランジスタにも用いることができる。有機薄膜トランジスタとしては、ソース電極及びドレイン電極と、これらの電極間の電流経路となる有機半導体層(活性層)と、この電流経路を通る電流量を制御するゲート電極とを備えた構成を有するものが挙げられ、有機半導体層が上述した有機薄膜によって構成されるものである。このような有機薄膜トランジスタとしては、電界効果型、静電誘導型等が挙げられる。
<Organic thin film transistor>
The polymer compound of the present invention can also be used for organic thin film transistors. The organic thin film transistor has a configuration including a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between these electrodes, and a gate electrode for controlling the amount of current passing through the current path. The organic semiconductor layer is constituted by the organic thin film described above. Examples of such an organic thin film transistor include a field effect type and an electrostatic induction type.
 電界効果型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層(活性層)、この電流経路を通る電流量を制御するゲート電極、並びに、有機半導体層とゲート電極との間に配置される絶縁層を備えることが好ましい。特に、ソース電極及びドレイン電極が、有機半導体層(活性層)に接して設けられており、さらに有機半導体層に接した絶縁層を挟んでゲート電極が設けられていることが好ましい。電界効果型有機薄膜トランジスタにおいては、有機半導体層が、本発明の高分子化合物を含む有機薄膜によって構成される。 A field effect organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, a gate electrode for controlling the amount of current passing through the current path, and an organic semiconductor layer and a gate electrode It is preferable to provide an insulating layer disposed between the two. In particular, the source electrode and the drain electrode are preferably provided in contact with the organic semiconductor layer (active layer), and the gate electrode is preferably provided with an insulating layer in contact with the organic semiconductor layer interposed therebetween. In the field effect organic thin film transistor, the organic semiconductor layer is constituted by an organic thin film containing the polymer compound of the present invention.
 静電誘導型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層(活性層)、並びに電流経路を通る電流量を制御するゲート電極を有し、このゲート電極が有機半導体層中に設けられていることが好ましい。特に、ソース電極、ドレイン電極及び有機半導体層中に設けられたゲート電極が、有機半導体層に接して設けられていることが好ましい。ここで、ゲート電極の構造としては、ソース電極からドレイン電極へ流れる電流経路が形成され、且つゲート電極に印加した電圧で電流経路を流れる電流量が制御できる構造であればよく、例えば、くし形電極が挙げられる。静電誘導型有機薄膜トランジスタにおいても、有機半導体層が、本発明の高分子化合物を含む有機薄膜によって構成される。 The static induction organic thin film transistor has a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, and a gate electrode that controls the amount of current passing through the current path. It is preferable to be provided in the organic semiconductor layer. In particular, the source electrode, the drain electrode, and the gate electrode provided in the organic semiconductor layer are preferably provided in contact with the organic semiconductor layer. Here, the structure of the gate electrode may be a structure in which a current path flowing from the source electrode to the drain electrode is formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. An electrode is mentioned. Also in the static induction organic thin film transistor, the organic semiconductor layer is constituted by an organic thin film containing the polymer compound of the present invention.
<有機エレクトロルミネッセンス素子>
 本発明の高分子化合物は、有機エレクトロルミネッセンス素子(有機EL素子)に用いることもできる。有機EL素子は、少なくとも一方が透明又は半透明である一対の電極間に発光層を有する。有機EL素子は、発光層の他にも、正孔輸送層、電子輸送層を含んでいてもよい。該発光層、正孔輸送層、電子輸送層のいずれかの層中に本発明の高分子化合物が含まれる。発光層中には、本発明の高分子化合物の他にも、電荷輸送材料(電子輸送材料と正孔輸送材料の総称を意味する)を含んでいてもよい。有機EL素子としては、陽極と発光層と陰極とを有する素子、さらに陰極と発光層の間に、該発光層に隣接して電子輸送材料を含有する電子輸送層を有する陽極と発光層と電子輸送層と陰極とを有する素子、さらに陽極と発光層の間に、該発光層に隣接して正孔輸送材料を含む正孔輸送層を有する陽極と正孔輸送層と発光層と陰極とを有する素子、陽極と正孔輸送層と発光層と電子輸送層と陰極とを有する素子等が挙げられる。
<Organic electroluminescence device>
The polymer compound of the present invention can also be used for an organic electroluminescence device (organic EL device). An organic EL element has a light emitting layer between a pair of electrodes, at least one of which is transparent or translucent. The organic EL element may include a hole transport layer and an electron transport layer in addition to the light emitting layer. The polymer compound of the present invention is contained in any one of the light emitting layer, the hole transport layer, and the electron transport layer. In addition to the polymer compound of the present invention, the light emitting layer may contain a charge transport material (which means a generic term for an electron transport material and a hole transport material). As an organic EL element, an element having an anode, a light emitting layer, and a cathode, and an anode, a light emitting layer, and an electron having an electron transport layer containing an electron transport material adjacent to the light emitting layer between the cathode and the light emitting layer. An element having a transport layer and a cathode, and an anode, a hole transport layer, a light emitting layer, and a cathode having a hole transport layer containing a hole transport material adjacent to the light emitting layer between the anode and the light emitting layer. And an element having an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode.
 <素子の用途>
 本発明の高分子化合物を用いた光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
<Application of device>
The photoelectric conversion element using the polymer compound of the present invention is operated as an organic thin film solar cell by generating photovoltaic power between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. Can do. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
 また、本発明の高分子化合物を用いた光電変換素子は、電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
 上述の有機薄膜トランジスタは、例えば電気泳動ディスプレイ、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ等の画素の制御や、画面輝度の均一性や画面書き換え速度を制御のために用いられる画素駆動素子等として用いることができる。
In addition, in the photoelectric conversion element using the polymer compound of the present invention, a photocurrent flows by irradiating light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes or in a state where no voltage is applied. Can be operated as an organic light sensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
The above-mentioned organic thin film transistor can be used as a pixel driving element used for controlling the pixel of an electrophoretic display, a liquid crystal display, an organic electroluminescence display, etc., and controlling the uniformity of screen luminance and the screen rewriting speed. .
 <太陽電池モジュール>
 有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の高分子化合物を用いて製造される有機薄膜太陽電池も使用目的や使用場所及び環境により、適宜これらのモジュール構造を選択できる。
<Solar cell module>
The organic thin film solar cell can basically have the same module structure as a conventional solar cell module. The solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side. Specifically, a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known. The organic thin-film solar cell manufactured using the polymer compound of the present invention can also be appropriately selected from these module structures depending on the purpose of use, place of use and environment.
 代表的なスーパーストレートタイプあるいはサブストレートタイプのモジュールは、片側又は両側が透明で反射防止処理を施された支持基板の間に一定間隔にセルが配置され、隣り合うセル同士が金属リード又はフレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力を外部に取り出される構造となっている。基板とセルの間には、セルの保護や集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルム又は充填樹脂の形で用いてもよい。また、外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成し、又は上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板をなくすことが可能である。支持基板の周囲は、内部の密封及びモジュールの剛性を確保するため金属製のフレームでサンドイッチ状に固定し、支持基板とフレームの間は封止材料で密封シールする。また、セルそのものや支持基板、充填材料及び封止材料に可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。 In a typical super straight type or substrate type module, cells are arranged at regular intervals between support substrates that are transparent on one or both sides and subjected to antireflection treatment, and adjacent cells are connected by metal leads or flexible wiring. The current collector electrode is connected to the outer edge portion, and the generated power is taken out to the outside. Various types of plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency. In addition, when used in a place where it is not necessary to cover the surface with a hard material such as a place where there is little impact from the outside, the surface protection layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin. It is possible to eliminate the supporting substrate on one side. The periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material. In addition, if a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
 ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより電池本体を作製できる。また、Solar Energy Materials and Solar Cells, 48,p383-391記載の「SCAF」とよばれるモジュール構造とすることもできる。更に、フレキシブル支持体を用いた太陽電池は曲面ガラス等に接着固定して使用することもできる。 In the case of a solar cell using a flexible support such as a polymer film, cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material. Thus, the battery body can be produced. Also, a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 may be used. Furthermore, a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, examples will be shown to describe the present invention in more detail, but the present invention is not limited to these examples.
(NMR測定)
 NMR測定は、化合物を重クロロホルムに溶解させ、NMR装置(JEOL社製、Alpha FT-NMR)を用いて行った。
(NMR measurement)
The NMR measurement was performed by dissolving the compound in deuterated chloroform and using an NMR apparatus (manufactured by JEOL, Alpha FT-NMR).
(数平均分子量及び重量平均分子量の測定)
 数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)(島津製作所製、商品名:Prominence system)によりポリスチレン換算の数平均分子量及び重量平均分子量を求めた。GPCの移動相はクロロホルムを用いた。
(Measurement of number average molecular weight and weight average molecular weight)
The number average molecular weight and the weight average molecular weight were determined by gel permeation chromatography (GPC) (manufactured by Shimadzu Corporation, trade name: Prominence system) in terms of polystyrene. Chloroform was used as the mobile phase of GPC.
合成例1
(化合物3の合成)
Figure JPOXMLDOC01-appb-C000074
Synthesis example 1
(Synthesis of Compound 3)
Figure JPOXMLDOC01-appb-C000074
 上記の合成反応を以下の手順に従って行い、化合物3を合成した。ジャーナル オブ ザ アメリカン ケミカル ソサイアティ(Journal of the American Chemical Society)、1997年、第119巻、10774~10784頁に記載された方法に従って、化合物1を合成した。ジャーナル オブ ポリマー サイエンス パート エー:ポリマー ケミストリー(Journal of Polymer Science Part A: Polymer Chemistry)、2006年、第44巻、第16号、4916~4922頁に記載された方法に従って化合物2を合成した。100mLフラスコに、化合物1を2.06g(5.00mmol)、化合物2を2.16g(5.50mmol)、N,N-ジメチルホルムアミド(以下、DMFと呼称することもある)を50mL入れて均一溶液とした。フラスコを0℃に保ったまま、0.54gのナトリウムメトキシド(10mmol)を20mLのDMFに溶解させた溶液を10分かけて滴下した。滴下後、反応液を室温で2時間攪拌し、次いで、メタノールに注いだ。次いで、メタノールに不溶な固体をろ過して回収した。得られた固体を、展開溶媒としてクロロホルムとヘキサンの混合溶媒を用いたシリカゲルカラムクロマトグラフィーで精製して、化合物3を2.6g得た。混合溶媒中、クロロホルムの体積に対するヘキサンの体積比は5であった。 The above synthesis reaction was performed according to the following procedure to synthesize Compound 3. Compound 1 was synthesized according to the method described in Journal of the American Chemical Society, 1997, Vol. 119, pp. 10774-10784. Compound 2 was synthesized according to the method described in Journal of Polymer Science Part A: Polymer Chemistry (Journal of Polymer Science A: Polymer Chemistry), 2006, Vol. 44, No. 16, 4916-4922. A 100 mL flask was charged with 2.06 g (5.00 mmol) of compound 1, 2.16 g (5.50 mmol) of compound 2, and 50 mL of N, N-dimethylformamide (hereinafter sometimes referred to as DMF). It was set as the solution. While maintaining the flask at 0 ° C., a solution prepared by dissolving 0.54 g of sodium methoxide (10 mmol) in 20 mL of DMF was added dropwise over 10 minutes. After the addition, the reaction solution was stirred at room temperature for 2 hours and then poured into methanol. Subsequently, the solid insoluble in methanol was collected by filtration. The obtained solid was purified by silica gel column chromatography using a mixed solvent of chloroform and hexane as a developing solvent to obtain 2.6 g of Compound 3. In the mixed solvent, the volume ratio of hexane to the volume of chloroform was 5.
実施例1
(重合体Aの合成)
Figure JPOXMLDOC01-appb-C000075
Example 1
(Synthesis of polymer A)
Figure JPOXMLDOC01-appb-C000075
 マクロモレキュールズ(Macromolecules)、2008年、第41巻、8302~8305頁に記載された方法に従って化合物4を合成した。また、マクロモレキュールズ(Macromolecules)、2010年、第43巻、821~826頁に記載された方法に従って化合物5を合成した。フラスコ内の気体を窒素で置換した50mLフラスコに、化合物3を30.6mg(0.047mmol)、化合物4を175mg(0.235mmol)、化合物5を107.4mg(0.188mmol)、トルエンを10ml入れて均一溶液とした。得られたトルエン溶液を、窒素で30分バブリングした。その後、トルエン溶液に、テトラキストリフェニルホスフィンパラジウム(Pd(PPh)を14mg(0.012mmol)加え、90℃で48時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノールに注いだ。得られたポリマー200mgをクロロホルム100mLに溶解させ、クロロホルム溶液をアルミナ/セライト/シリカゲルカラムに通した。得られた溶液をエバポレーターで濃縮し、メタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された重合体170mgを得た。以下、この重合体を重合体Aと呼称する。GPCで測定した重合体Aのポリスチレン換算の重量平均分子量は41100であり、ポリスチレン換算の数平均分子量は21000であった。重合体Aの光吸収末端波長は1030nmであった。 Compound 4 was synthesized according to the method described in Macromolecules, 2008, Vol. 41, 8302-8305. Compound 5 was synthesized according to the method described in Macromolecules, 2010, Vol. 43, pp. 821-826. In a 50 mL flask in which the gas in the flask was replaced with nitrogen, 30.6 mg (0.047 mmol) of compound 3, 175 mg (0.235 mmol) of compound 4, 107.4 mg (0.188 mmol) of compound 5, and 10 ml of toluene A uniform solution was obtained. The obtained toluene solution was bubbled with nitrogen for 30 minutes. Thereafter, 14 mg (0.012 mmol) of tetrakistriphenylphosphine palladium (Pd (PPh 3 ) 4 ) was added to the toluene solution, and the mixture was stirred at 90 ° C. for 48 hours. Thereafter, the flask was cooled to 25 ° C., and the reaction solution was poured into methanol. 200 mg of the obtained polymer was dissolved in 100 mL of chloroform, and the chloroform solution was passed through an alumina / celite / silica gel column. The obtained solution was concentrated with an evaporator and poured into methanol to precipitate a polymer. The polymer was filtered and dried to obtain 170 mg of a purified polymer. Hereinafter, this polymer is referred to as polymer A. The polystyrene equivalent weight average molecular weight of the polymer A measured by GPC was 41100, and the polystyrene equivalent number average molecular weight was 21,000. The light absorption terminal wavelength of the polymer A was 1030 nm.
実施例2
(有機薄膜太陽電池の作製、評価)
 スパッタ法により100nmの厚みでITO膜を付けたガラス基板を、界面活性剤溶液、水、アセトン及び2-プロパノールをこの順に用いて超音波洗浄を行った。次に、重合体A及びフェニルC71-酪酸メチルエステル(C70PCBM)(phenyl C71-butyric acid methyl ester、Solenne社製)をクロロホルムとo-ジクロロベンゼンとの混合溶媒に溶解させて、インク1を製造した。インク1中、重合体Aの重量に対するC70PCBMの重量比は2であり、o-ジクロロベンゼンの体積に対するクロロホルムの体積比は9であった。また、インク1の重量に対し、重合体Aの重量とC70PCBMの重量との合計は、1重量%であった。該インク1を用い、スピンコートにより基板上に塗布して、重合体Aを含む有機膜を作製した。該有機膜は活性層として機能する。有機膜の膜厚は、約80nmであった。このようにして作製した有機膜の光吸収末端波長は1030nmであった。その後、有機膜上に真空蒸着機によりカルシウムを厚さ10nmで蒸着し、次いでアルミニウムを厚さ30nmで蒸着し、有機薄膜太陽電池を作製した。
Example 2
(Production and evaluation of organic thin-film solar cells)
A glass substrate on which an ITO film having a thickness of 100 nm was formed by a sputtering method was subjected to ultrasonic cleaning using a surfactant solution, water, acetone and 2-propanol in this order. Next, polymer A and phenyl C71-butyric acid methyl ester (C70PCBM) (phenyl C71-butyric acid methyl ester, manufactured by Solenne) were dissolved in a mixed solvent of chloroform and o-dichlorobenzene to produce ink 1. . In ink 1, the weight ratio of C70PCBM to the weight of polymer A was 2, and the volume ratio of chloroform to the volume of o-dichlorobenzene was 9. The total weight of the polymer A and the C70PCBM was 1% by weight with respect to the weight of the ink 1. The ink 1 was applied onto a substrate by spin coating to produce an organic film containing the polymer A. The organic film functions as an active layer. The thickness of the organic film was about 80 nm. The thus prepared organic film had a light absorption terminal wavelength of 1030 nm. Then, calcium was vapor-deposited with a thickness of 10 nm on the organic film by a vacuum vapor deposition machine, and then aluminum was vapor-deposited with a thickness of 30 nm to produce an organic thin film solar cell.
 得られた有機薄膜太陽電池の形状は、3mm×4mmの長方形であった。得られた有機薄膜太陽電池に、2mm×3mmの金属マスクを通して、ソーラシミュレーター(ペクセルテクノロジーズ社製、商品名PEC-L11、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定して光電変換効率、短絡電流密度、開放電圧、フィルファクターを求めた。Jsc(短絡電流密度)は23.75mA/cmであり、Voc(開放端電圧)は0.42Vであり、ff(フィルファクター(曲線因子))は0.48であり、光電変換効率(η)は4.77%であった。 The shape of the obtained organic thin film solar cell was a rectangle of 3 mm × 4 mm. The resulting organic thin-film solar cell is irradiated with a certain amount of light through a 2 mm x 3 mm metal mask using a solar simulator (trade name PEC-L11, manufactured by Peccell Technologies, Inc., irradiance 100 mW / cm 2 ). The current and voltage to be measured were measured to obtain photoelectric conversion efficiency, short-circuit current density, open-circuit voltage, and fill factor. Jsc (short circuit current density) is 23.75 mA / cm 2 , Voc (open end voltage) is 0.42 V, ff (fill factor (curve factor)) is 0.48, and photoelectric conversion efficiency (η ) Was 4.77%.
実施例3
(有機薄膜太陽電池の作製、評価)
 実施例2と同様に有機膜を作製し、該有機膜上に真空蒸着機によりフッ化リチウムを厚さ1nmで蒸着し、次いでアルミニウムを厚さ30nmで蒸着して有機薄膜太陽電池を製造した。
Example 3
(Production and evaluation of organic thin-film solar cells)
An organic film was produced in the same manner as in Example 2, and lithium fluoride was deposited on the organic film with a thickness of 1 nm by a vacuum deposition machine, and then aluminum was deposited with a thickness of 30 nm to produce an organic thin film solar cell.
 得られた有機薄膜太陽電池を実施例2と同様にJsc、Voc、ff、ηを測定したところ、Jscは18.73mA/cmであり、Vocは0.42Vであり、ffは0.58であり、ηは4.56%であった。 The obtained organic thin film solar cell was measured for Jsc, Voc, ff, and η in the same manner as in Example 2. As a result, Jsc was 18.73 mA / cm 2 , Voc was 0.42 V, and ff was 0.58. And η was 4.56%.
実施例4
(有機トランジスタの作製)[重合体A]
 厚さ300nmのシリコンの熱酸化膜と、アンチモンが高濃度にドーピングされたn-型シリコンとを有するシリコン基板をアセトン中で10分間超音波洗浄した後、オゾンUVを20分間照射した。その後、トルエン10mL中にオクタデシルトリクロロシランをシリンジで5滴加えたトルエン溶液をシリコン基板上にスピンコートすることにより熱酸化膜の表面をシラン処理した。シリコンの熱酸化膜がゲート絶縁層として作用し、アンチモンを高濃度でドーピングしたシリコンはゲート電極として作用する。
Example 4
(Preparation of organic transistor) [Polymer A]
A silicon substrate having a 300 nm thick thermal oxide film of silicon and n-type silicon doped with antimony at a high concentration was ultrasonically cleaned in acetone for 10 minutes, and then irradiated with ozone UV for 20 minutes. Then, the surface of the thermal oxide film was silane-treated by spin-coating a toluene solution in which 5 drops of octadecyltrichlorosilane was added to 10 mL of toluene with a syringe on a silicon substrate. A silicon thermal oxide film acts as a gate insulating layer, and silicon doped with antimony at a high concentration acts as a gate electrode.
 次に、重合体Aをオルトジクロロベンゼンに溶解し、重合体Aの濃度が0.5重量%の溶液を調製し、該溶液をメンブランフィルターでろ過して塗布液を作製した。該塗布液を、上記シラン処理したn-型シリコン基板上にスピンコート法により塗布し、厚みが約60nmである重合体Aの塗布膜を形成した。その後、該塗布膜を窒素雰囲気中で170℃にて30分加熱することにより、重合体Aの有機半導体薄膜を形成した。該有機半導体膜は活性層として機能する。 Next, the polymer A was dissolved in orthodichlorobenzene to prepare a solution having a concentration of the polymer A of 0.5% by weight, and the solution was filtered through a membrane filter to prepare a coating solution. The coating solution was applied onto the silane-treated n-type silicon substrate by spin coating to form a coating film of polymer A having a thickness of about 60 nm. Thereafter, the coating film was heated in a nitrogen atmosphere at 170 ° C. for 30 minutes to form an organic semiconductor thin film of polymer A. The organic semiconductor film functions as an active layer.
 次に、有機半導体薄膜上にメタルマスクを配置し、真空蒸着法により、有機半導体薄膜上に三酸化モリブデン及び金を順に積層し、三酸化モリブデンと金の積層構造を有するソース電極及びドレイン電極を作製することにより、有機トランジスタを製造した。 Next, a metal mask is disposed on the organic semiconductor thin film, and molybdenum trioxide and gold are sequentially stacked on the organic semiconductor thin film by a vacuum deposition method, and a source electrode and a drain electrode having a stacked structure of molybdenum trioxide and gold are formed. An organic transistor was manufactured by manufacturing.
 有機トランジスタの電気特性を、半導体特性評価システム(半導体パラメータアナライザー4200-SCS、KEITHLEY社製)を用いて測定した。ゲート電極に印加する負のゲート電圧を増加させると、負のドレイン電流も増加することから、有機トランジスタは、p型の有機トランジスタであることを確認することができた。有機トランジスタにおけるキャリアの飽和電界効果移動度μ(cm-1sec-1)は、有機トランジスタの電気特性の飽和領域におけるドレイン電流Idを表す下記式(a)を用いて算出した。
 Id=(W/2L)μCi(Vg-Vt) ・・・(a)
(式(a)中、Lは有機トランジスタのチャネル長、Wは有機トランジスタのチャネル幅、Ciはゲート絶縁膜の単位面積当たりの容量、Vgはゲート電圧、Vtはゲート電圧のしきい値電圧を表す。)
 その結果、キャリアの電界効果移動度(キャリア移動度)は0.0076(cm-1sec-1)であった。
The electrical characteristics of the organic transistor were measured using a semiconductor characteristic evaluation system (semiconductor parameter analyzer 4200-SCS, manufactured by KEITHLEY). When the negative gate voltage applied to the gate electrode is increased, the negative drain current is also increased. Therefore, it was confirmed that the organic transistor was a p-type organic transistor. The saturation field effect mobility μ (cm 2 V −1 sec −1 ) of the carrier in the organic transistor was calculated using the following formula (a) representing the drain current Id in the saturation region of the electrical characteristics of the organic transistor.
Id = (W / 2L) μCi (Vg−Vt) 2 (a)
(In formula (a), L is the channel length of the organic transistor, W is the channel width of the organic transistor, Ci is the capacitance per unit area of the gate insulating film, Vg is the gate voltage, and Vt is the threshold voltage of the gate voltage. To express.)
As a result, the field effect mobility (carrier mobility) of the carrier was 0.0076 (cm 2 V −1 sec −1 ).
合成例2
(重合体Bの合成)
Figure JPOXMLDOC01-appb-C000076
Synthesis example 2
(Synthesis of polymer B)
Figure JPOXMLDOC01-appb-C000076
 フラスコ内の気体を窒素で置換した50mLフラスコに、化合物4を262.5mg(0.353mmol)、化合物5を201.4mg(0.353mmol)、トルエンを15ml入れて均一溶液とした。得られたトルエン溶液を、窒素で30分バブリングした。その後、トルエン溶液に、テトラキストリフェニルホスフィンパラジウム(Pd(PPh)を20mg加え、110℃で48時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール200mLに注いだ。得られたポリマーをクロロホルム150mLに溶解させ、クロロホルム溶液をアルミナ/セライト/シリカゲルカラムに通した。得られた溶液をエバポレーターで濃縮し、メタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された重合体250mgを得た。以下、この重合体を重合体Bと呼称する。GPCで測定した重合体Bのポリスチレン換算の重量平均分子量は38600であり、ポリスチレン換算の数平均分子量は18900であった。重合体Bの光吸収末端波長は1010nmであった。 A 50 mL flask in which the gas in the flask was replaced with nitrogen was charged with 262.5 mg (0.353 mmol) of Compound 4, 201.4 mg (0.353 mmol) of Compound 5, and 15 ml of toluene to obtain a uniform solution. The obtained toluene solution was bubbled with nitrogen for 30 minutes. Thereafter, 20 mg of tetrakistriphenylphosphine palladium (Pd (PPh 3 ) 4 ) was added to the toluene solution, and the mixture was stirred at 110 ° C. for 48 hours. Thereafter, the flask was cooled to 25 ° C., and the reaction solution was poured into 200 mL of methanol. The obtained polymer was dissolved in 150 mL of chloroform, and the chloroform solution was passed through an alumina / celite / silica gel column. The obtained solution was concentrated with an evaporator and poured into methanol to precipitate a polymer. The polymer was filtered and dried to obtain 250 mg of a purified polymer. Hereinafter, this polymer is referred to as polymer B. The polystyrene equivalent weight average molecular weight of the polymer B measured by GPC was 38600, and the polystyrene equivalent number average molecular weight was 18,900. The light absorption terminal wavelength of the polymer B was 1010 nm.
比較例1
 実施例2において重合体Aの代わりに重合体Bを用いた以外は同様にして有機薄膜太陽電池を製造し、光電変換効率、短絡電流密度、開放電圧、フィルファクターを求めた。Jsc(短絡電流密度)は15.28mA/cmであり、Voc(開放端電圧)は0.40Vであり、ff(フィルファクター(曲線因子))は0.45であり、光電変換効率(η)は2.79%であった。
Comparative Example 1
An organic thin film solar cell was produced in the same manner except that the polymer B was used instead of the polymer A in Example 2, and the photoelectric conversion efficiency, the short-circuit current density, the open-circuit voltage, and the fill factor were determined. Jsc (short circuit current density) is 15.28 mA / cm 2 , Voc (open circuit voltage) is 0.40 V, ff (fill factor) is 0.45, and photoelectric conversion efficiency (η ) Was 2.79%.
合成例3
(重合体Cの合成)
Figure JPOXMLDOC01-appb-C000077
 特表2009-506519号公報に記載の方法に従って、化合物6を合成した。フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物6を561mg(1.00mmol)、化合物7(4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,1,3-benzothiadiazole)(Aldrich社製)を388.1mg(1.00mmol)、メチルトリアルキルアンモニウムクロリド(商品名Aliquat336(登録商標)、アルドリッチ社製)を202mg加え、トルエン20mlに溶解させた。得られたトルエン溶液をアルゴンで30分バブリングした。その後、反応液に酢酸パラジウムを2.25mg、トリス(2-メトキシフェニル)ホスフィンを12.3mg、16.7重量%の炭酸ナトリウム水溶液を6.5mL加え、100℃で5時間攪拌を行った。その後、反応液にフェニルホウ酸50mgを加え、さらに70℃で2時間反応させた。その後、反応液にジエチルジチオカルバミン酸ナトリウム2gと水20mLを加え、2時間還流下で攪拌を行った。水層を除去後、有機層を水20mlで2回洗浄し、次いで、3重量%の酢酸水溶液20mLで2回洗浄し、さらに水20mLで2回洗浄した。得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーを濾過後、乾燥させ、得られたポリマーをo-ジクロロベンゼン30mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーを濾過後、乾燥させ、精製された重合体280mgを得た。以下、この重合体を重合体Cと呼称する。GPCで測定した重合体Cのポリスチレン換算の分子量は、重量平均分子量が30000であり、数平均分子量が14000であった。
Synthesis example 3
(Synthesis of polymer C)
Figure JPOXMLDOC01-appb-C000077
Compound 6 was synthesized according to the method described in JP-T-2009-506519. In a 200 mL flask in which the gas in the flask was replaced with argon, 561 mg (1.00 mmol) of Compound 6 and Compound 7 (4,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxabolan- 2-yl) -2,1,3-benzothiadiazole) (Aldrich) 388.1 mg (1.00 mmol), methyltrialkylammonium chloride (trade name Aliquat 336 (registered trademark), Aldrich) 202 mg was added, Dissolved in 20 ml of toluene. The obtained toluene solution was bubbled with argon for 30 minutes. Thereafter, 2.25 mg of palladium acetate, 12.3 mg of tris (2-methoxyphenyl) phosphine, and 6.5 mL of a 16.7 wt% aqueous sodium carbonate solution were added to the reaction solution, followed by stirring at 100 ° C. for 5 hours. Thereafter, 50 mg of phenylboric acid was added to the reaction solution, and further reacted at 70 ° C. for 2 hours. Thereafter, 2 g of sodium diethyldithiocarbamate and 20 mL of water were added to the reaction solution, followed by stirring under reflux for 2 hours. After removing the aqueous layer, the organic layer was washed twice with 20 ml of water, then twice with 20 mL of a 3% by weight aqueous acetic acid solution, and further washed twice with 20 mL of water. The obtained solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the resulting polymer was dissolved in 30 mL of o-dichlorobenzene and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried to obtain 280 mg of a purified polymer. Hereinafter, this polymer is referred to as polymer C. Regarding the molecular weight in terms of polystyrene of the polymer C measured by GPC, the weight average molecular weight was 30,000, and the number average molecular weight was 14,000.
比較例2
(有機薄膜太陽電池の作製、評価)
 実施例2において、重合体Aの代わりに重合体Cを用いた以外は同様にして有機薄膜太陽電池を作製し、光電変換効率、短絡電流密度、開放端電圧及び曲線因子を求めた。
Comparative Example 2
(Production and evaluation of organic thin-film solar cells)
In Example 2, an organic thin film solar cell was prepared in the same manner except that the polymer C was used instead of the polymer A, and the photoelectric conversion efficiency, the short-circuit current density, the open-end voltage, and the fill factor were obtained.
 実施例2、3および比較例1、2の各有機薄膜太陽電池の光電変換効率、短絡電流密度、開放端電圧及び曲線因子を、表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000078
Table 1 summarizes the photoelectric conversion efficiency, short-circuit current density, open-circuit voltage, and fill factor of each organic thin-film solar cell of Examples 2 and 3 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000078

Claims (17)

  1.  式(1)で表される繰り返し単位と式(2)で表される繰り返し単位と式(3)で表される繰り返し単位とを有する高分子化合物。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Ar11及びAr12は、それぞれ独立に、芳香環から水素原子を3個取り除いた3価の基を表し、該芳香環は置換基を有していてもよい。式(1)で表される繰り返し単位が複数含まれる場合、それらは同一であっても、異なっていてもよい。Aは、式(1-1)~式(1-12)のいずれかで表される2価の基を表す。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~R15は、それぞれ独立に、水素原子又は置換基を表す。)〕
    Figure JPOXMLDOC01-appb-C000003
    〔式中、Ar21、Ar22及びAr23は、それぞれ独立に、置換基を有していてもよいアリーレン基又は置換基を有していてもよいヘテロアリーレン基を表す。式(2)で表される繰り返し単位が複数含まれる場合、それらは同一であっても、異なっていてもよい。〕
    Figure JPOXMLDOC01-appb-C000004
    〔式中、Ar31は、置換基を有するアリーレン基又は置換基を有するヘテロアリーレン基を表す。ただし、式(3)で表される繰り返し単位は、式(1)で表される繰り返し単位及び式(2)で表される繰り返し単位とは異なる。式(3)で表される繰り返し単位が複数含まれる場合、それらは同一であっても、異なっていてもよい。〕
    The high molecular compound which has a repeating unit represented by Formula (1), a repeating unit represented by Formula (2), and a repeating unit represented by Formula (3).
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, Ar 11 and Ar 12 each independently represent a trivalent group obtained by removing three hydrogen atoms from an aromatic ring, and the aromatic ring may have a substituent. When a plurality of repeating units represented by the formula (1) are included, they may be the same or different. A represents a divalent group represented by any one of formulas (1-1) to (1-12).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 1 to R 15 each independently represents a hydrogen atom or a substituent)
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, Ar 21 , Ar 22 and Ar 23 each independently represent an arylene group which may have a substituent or a heteroarylene group which may have a substituent. When a plurality of repeating units represented by the formula (2) are included, they may be the same or different. ]
    Figure JPOXMLDOC01-appb-C000004
    [Wherein Ar 31 represents an arylene group having a substituent or a heteroarylene group having a substituent. However, the repeating unit represented by formula (3) is different from the repeating unit represented by formula (1) and the repeating unit represented by formula (2). When a plurality of repeating units represented by the formula (3) are included, they may be the same or different. ]
  2.  Ar23で表される置換基を有していてもよいアリーレン基又は置換基を有していてもよいヘテロアリーレン基が、式(2-1)~式(2-8)のいずれかで表される基である請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000005
    〔式中、R21~R38は、それぞれ独立に、水素原子又は置換基を表す。X21~X29は、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。〕
    The arylene group which may have a substituent represented by Ar 23 or the heteroarylene group which may have a substituent is represented by any one of formulas (2-1) to (2-8). The polymer compound according to claim 1, which is a group to be formed.
    Figure JPOXMLDOC01-appb-C000005
    [Wherein R 21 to R 38 each independently represents a hydrogen atom or a substituent. X 21 to X 29 each independently represents a sulfur atom, an oxygen atom or a selenium atom. ]
  3.  式(2)で表される繰り返し単位が、式(2A)で表される繰り返し単位である請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000006
    〔式中、X2a1及びX2a2は、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。R21及びR22は、前述と同じ意味を表す。R40~R43は、それぞれ独立に、水素原子又は置換基を表す。〕
    The polymer compound according to claim 1, wherein the repeating unit represented by the formula (2) is a repeating unit represented by the formula (2A).
    Figure JPOXMLDOC01-appb-C000006
    [ Wherein , X 2a1 and X 2a2 each independently represent a sulfur atom, an oxygen atom or a selenium atom. R 21 and R 22 represent the same meaning as described above. R 40 to R 43 each independently represents a hydrogen atom or a substituent. ]
  4.  式(1)で表される繰り返し単位が、式(1A)で表される繰り返し単位である請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000007
    〔式中、Aは、前述と同じ意味を表す。X1a1及びX1a2は、それぞれ独立に、硫黄原子、酸素原子、セレン原子又は-N(R)-を表す。Rは、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、置換アミノ基、アシルオキシ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基又はシアノ基を表す。〕
    The polymer compound according to claim 1, wherein the repeating unit represented by the formula (1) is a repeating unit represented by the formula (1A).
    Figure JPOXMLDOC01-appb-C000007
    [Wherein, A represents the same meaning as described above. X 1a1 and X 1a2 each independently represent a sulfur atom, an oxygen atom, a selenium atom, or —N (R) —. R is a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, acyloxy group, amide Represents a group, an arylalkenyl group, an arylalkynyl group, a monovalent heterocyclic group or a cyano group. ]
  5.  Ar31で表される置換基を有するアリーレン基又は置換基を有するヘテロアリーレン基が有する置換基が、式(3A)で表される1価の基である請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000008
    〔式中、X3aは、直接結合、-CR3a1=CR3a2-、-C≡C-、-O-、-S-、アルキレン基又はアリーレン基を表す。R3a、R3a1及びR3a2は水素原子、ハロゲン原子またはアルキル基を表す。Ar3aは置換基を有していてもよいアリーレン基又は置換基を有していてもよいヘテロアリーレン基を表す。nは1~10の整数である。X3aが複数個ある場合、それらは同一でも相異なってもよい。Ar3aが複数個ある場合、それらは同一でも相異なってもよい。〕
    The polymer compound according to claim 1, wherein the substituent of the arylene group having a substituent represented by Ar 31 or the heteroarylene group having a substituent is a monovalent group represented by the formula (3A).
    Figure JPOXMLDOC01-appb-C000008
    [ Wherein X 3a represents a direct bond, —CR 3a1 ═CR 3a2 —, —C≡C— , —O—, —S—, an alkylene group or an arylene group. R 3a , R 3a1 and R 3a2 represent a hydrogen atom, a halogen atom or an alkyl group. Ar 3a represents an arylene group which may have a substituent or a heteroarylene group which may have a substituent. n is an integer of 1 to 10. When there are a plurality of X 3a , they may be the same or different. When there are a plurality of Ar 3a s , they may be the same or different. ]
  6.  光吸収末端波長が700nm以上である請求項1に記載の高分子化合物。 The polymer compound according to claim 1, wherein the light absorption terminal wavelength is 700 nm or more.
  7.  ポリスチレン換算の数平均分子量が3000以上である請求項1に記載の高分子化合物。 The polymer compound according to claim 1, wherein the polystyrene-equivalent number average molecular weight is 3000 or more.
  8.  請求項1に記載の高分子化合物を含む薄膜。 A thin film comprising the polymer compound according to claim 1.
  9.  請求項1に記載の高分子化合物と電子受容性化合物とを含む組成物。 A composition comprising the polymer compound according to claim 1 and an electron-accepting compound.
  10.  電子受容性化合物が、フラーレン誘導体である請求項9に記載の組成物。 The composition according to claim 9, wherein the electron-accepting compound is a fullerene derivative.
  11.  請求項9に記載の組成物を含む薄膜。 A thin film comprising the composition according to claim 9.
  12.  請求項1に記載の高分子化合物、又は、請求項9に記載の組成物と、溶媒とを含む溶液。 A solution comprising the polymer compound according to claim 1 or the composition according to claim 9 and a solvent.
  13.  第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を備え、該活性層に請求項1に記載の高分子化合物、又は、請求項9に記載の組成物を含有する電子素子。 It has a 1st electrode and a 2nd electrode, an active layer is provided between the 1st electrode and the 2nd electrode, The polymer compound according to claim 1 in the active layer, or An electronic device comprising the composition according to claim 9.
  14.  光電変換素子である請求項13記載の電子素子。 The electronic device according to claim 13, which is a photoelectric conversion device.
  15.  請求項14記載の光電変換素子を備える太陽電池モジュール。 A solar cell module comprising the photoelectric conversion element according to claim 14.
  16.  請求項14記載の光電変換素子を備えるイメージセンサー。 An image sensor comprising the photoelectric conversion element according to claim 14.
  17.  ゲート電極と、ソース電極と、ドレイン電極と、活性層とを備え、該活性層に請求項1に記載の高分子化合物、又は、請求項9に記載の組成物を含有する有機薄膜トランジスタ。 An organic thin film transistor comprising a gate electrode, a source electrode, a drain electrode, and an active layer, wherein the active layer contains the polymer compound according to claim 1 or the composition according to claim 9.
PCT/JP2012/060355 2011-04-25 2012-04-17 High-molecular-weight compound and electronic element comprising same WO2012147564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-097388 2011-04-25
JP2011097388 2011-04-25

Publications (1)

Publication Number Publication Date
WO2012147564A1 true WO2012147564A1 (en) 2012-11-01

Family

ID=47072086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060355 WO2012147564A1 (en) 2011-04-25 2012-04-17 High-molecular-weight compound and electronic element comprising same

Country Status (3)

Country Link
JP (1) JP2012236985A (en)
TW (1) TW201247737A (en)
WO (1) WO2012147564A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076213A1 (en) * 2014-11-13 2016-05-19 住友化学株式会社 Ink composition and photoelectric conversion element produced using same
CN107431134A (en) * 2015-03-18 2017-12-01 住友化学株式会社 Photo-electric conversion element with reflecting plate
CN107431125A (en) * 2015-03-16 2017-12-01 富士胶片株式会社 Organic semiconductor device and its manufacture method, compound, organic semiconductor composition and organic semiconductor film and its manufacture method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI508993B (en) * 2013-10-30 2015-11-21 Univ Nat Taiwan Donor-acceptor alternating conjugated polymer and solar cell device manufactured by using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053252A (en) * 2006-08-22 2008-03-06 Matsushita Electric Ind Co Ltd Organic photoelectric conversion element array, and image sensor employing it
JP2010144162A (en) * 2008-12-22 2010-07-01 Ind Technol Res Inst Soluble polythiophene derivative

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053252A (en) * 2006-08-22 2008-03-06 Matsushita Electric Ind Co Ltd Organic photoelectric conversion element array, and image sensor employing it
JP2010144162A (en) * 2008-12-22 2010-07-01 Ind Technol Res Inst Soluble polythiophene derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUANG-CHIEH ET AL.: "Tunable Novel Cyclopentadithiophene-Based Copolymers Containing Various Numbers of Bithiazole and Thienyl Units for Organic Photovoltaic Cell Applications", MACROMOLECULES, vol. 42, 2009, pages 3681 - 3693 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076213A1 (en) * 2014-11-13 2016-05-19 住友化学株式会社 Ink composition and photoelectric conversion element produced using same
JPWO2016076213A1 (en) * 2014-11-13 2017-06-29 住友化学株式会社 Ink composition and photoelectric conversion element manufactured using the same
CN107431125A (en) * 2015-03-16 2017-12-01 富士胶片株式会社 Organic semiconductor device and its manufacture method, compound, organic semiconductor composition and organic semiconductor film and its manufacture method
CN107431134A (en) * 2015-03-18 2017-12-01 住友化学株式会社 Photo-electric conversion element with reflecting plate

Also Published As

Publication number Publication date
TW201247737A (en) 2012-12-01
JP2012236985A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5999095B2 (en) Polymer compound and electronic device
JP5720178B2 (en) High molecular compound
JP5720179B2 (en) High molecular compound
JP5742422B2 (en) Polymer compounds, compounds and uses thereof
JP5720180B2 (en) Photoelectric conversion element
WO2011052702A1 (en) Polymeric compound and electronic element
JP5740836B2 (en) Photoelectric conversion element
JP5742494B2 (en) Polymer compound and electronic device using the same
WO2011052725A1 (en) Polymeric compound
WO2013183549A1 (en) Composition and electronic element using same
WO2012147564A1 (en) High-molecular-weight compound and electronic element comprising same
JP2015180621A (en) compound
WO2011052726A1 (en) Composition and electronic element
JP5807497B2 (en) Polymer compound and electronic device using the same
JP2013095813A (en) Polymer compound and photoelectric conversion element using the same
JP2013220994A (en) Compound and electronic element using the same
WO2012173030A1 (en) Photoelectric conversion element
JP5887814B2 (en) Polymer compound and electronic device using the same
JP2011165789A (en) Photoelectric conversion element
JP6373567B2 (en) Compound and electronic device using the same
JP2014189721A (en) Polymer compound
JP2013159724A (en) Polymer compound and electronic element using the polymer compound
WO2011052727A1 (en) Compound and element using same
JP2015095577A (en) Buffer layer containing dye and photoelectric conversion element using the same
JP2015095576A (en) Buffer layer containing phosphine oxide compounds and photoelectric conversion element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777305

Country of ref document: EP

Kind code of ref document: A1