WO2012147556A1 - 亜リン酸デヒドロゲナーゼタンパク質の製造方法およびその利用 - Google Patents

亜リン酸デヒドロゲナーゼタンパク質の製造方法およびその利用 Download PDF

Info

Publication number
WO2012147556A1
WO2012147556A1 PCT/JP2012/060293 JP2012060293W WO2012147556A1 WO 2012147556 A1 WO2012147556 A1 WO 2012147556A1 JP 2012060293 W JP2012060293 W JP 2012060293W WO 2012147556 A1 WO2012147556 A1 WO 2012147556A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
phosphite dehydrogenase
producing
host
seq
Prior art date
Application number
PCT/JP2012/060293
Other languages
English (en)
French (fr)
Inventor
章夫 黒田
隆一 廣田
Original Assignee
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学 filed Critical 国立大学法人広島大学
Priority to JP2013512018A priority Critical patent/JP5892621B2/ja
Priority to US14/113,346 priority patent/US9273290B2/en
Publication of WO2012147556A1 publication Critical patent/WO2012147556A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/182Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y120/00Oxidoreductases acting on phosphorus or arsenic in donors (1.20)
    • C12Y120/01Oxidoreductases acting on phosphorus or arsenic in donors (1.20) with NAD+ or NADP+ as acceptor (1.20.1)
    • C12Y120/01001Phosphonate dehydrogenase (1.20.1.1)

Definitions

  • the present invention relates to a method for producing a phosphite dehydrogenase protein and use thereof. More specifically, the present invention relates to a method for producing a phosphite dehydrogenase protein, a method for producing NADH, and a method for producing NADPH.
  • the phosphite dehydrogenase protein is a protein possessed by a part of bacteria, and is an enzyme that oxidizes phosphorous acid in an NAD + dependent or NADP + dependent manner to produce NADH or NADPH.
  • the reaction formula in the case of oxidizing phosphorous acid depending on NAD + or NADP + is described below.
  • phosphite dehydrogenase has the advantages that both the substrate and the product are low in reactivity and the substrate is inexpensive, so if it can be used industrially, It has the potential to be widely used instead. Specifically, in the case of phosphite dehydrogenase, since both phosphorous acid and phosphoric acid have a buffering action, it is possible to stabilize the reaction system.
  • Non-Patent Document 3 discloses a technique for increasing the amount of mutant phosphite dehydrogenase protein contained in a soluble fraction by forcibly expressing a phosphite dehydrogenase protein into which a mutation has been introduced in E. coli. It is disclosed. From the data described in Non-Patent Document 3, the reason why the amount of mutant phosphite dehydrogenase protein contained in the soluble fraction has increased is because the solubility of the protein has increased, It cannot be determined whether the expression level of the protein has increased.
  • Non-patent documents 4 and 5 disclose mutant phosphite dehydrogenase proteins with high thermal stability.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a method for producing a phosphite dehydrogenase protein having both improved solubility and thermal stability properties and use thereof There is to do.
  • the present inventors have completed the present invention by isolating phosphite dehydrogenase having improved both stability and solubility properties from the natural world by an original screening method.
  • the protein of the present invention is a protein described in the following (a) or (b).
  • (A) A protein consisting of the amino acid sequence of SEQ ID NO: 1.
  • (B) a protein consisting of amino acids in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 1 and having phosphite dehydrogenase activity;
  • the present invention produces an effect that a large amount of a phosphite dehydrogenase protein having high solubility in an aqueous solution can be obtained.
  • the present invention has an effect that a large amount of phosphite dehydrogenase protein having high heat resistance can be obtained.
  • the present invention has an effect that a large amount of phosphite dehydrogenase protein whose activity is not inhibited by various inhibitors can be obtained.
  • the present invention has an effect that a large amount of phosphite dehydrogenase protein having higher reaction efficiency than that of conventional phosphite dehydrogenase protein can be obtained.
  • 2 is a photograph of SDS-PAGE showing the location of a phosphite dehydrogenase protein when the phosphite dehydrogenase protein of the present invention is forcibly expressed in E. coli. It is a graph which shows the heat resistance of the phosphite dehydrogenase protein of this invention. It is a graph which shows the effect of various inhibitors on the activity of the phosphite dehydronase protein of this invention.
  • the protein of the present embodiment is a protein described in the following (a) or (b).
  • amino acids in which one or several amino acids have been deleted, substituted, or added will be described later.
  • the protein of this embodiment has a homology of 85.0% or more, more preferably 90.0% or more, more preferably 95.0% or more, more preferably 98.0% or more with the amino acid sequence of SEQ ID NO: 1. It may be a protein having an amino acid sequence having sex and having phosphite dehydrogenase activity.
  • the protein of the present embodiment is a protein having extremely excellent properties such as high solubility in an aqueous solution and high heat resistance.
  • the gene of the present embodiment is a gene encoding the protein described in (a) or (b) above.
  • the gene of the present embodiment only needs to encode the above protein, and may be a gene formed by any combination of codons.
  • the gene of the present embodiment may be a gene comprising the following DNA (c) or (d).
  • the method for producing a phosphite dehydrogenase protein of the present embodiment comprises the steps of expressing the following protein (a) or (b) in a host and solubilizing the protein expressed in the host in a solution: And a manufacturing method.
  • B a protein consisting of amino acids in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 1 and having phosphite dehydrogenase activity;
  • the above-mentioned protein consisting of the amino acid sequence of SEQ ID NO: 1 is a phosphite dehydrogenase protein obtained by screening by the present inventor (see Examples).
  • the protein expressed in the host may be a protein consisting of amino acids in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 1 and having phosphite dehydrogenase activity.
  • the site where one or several amino acids are deleted, substituted or added is not particularly limited, and the protein after one, several amino acids are deleted, substituted or added has phosphite dehydrogenase activity. As long as it has, it may be any site in the protein.
  • the number of amino acids intended by “one or several amino acids” is not particularly limited, but is preferably within 10 amino acids, more preferably within 8 amino acids, and within 6 amino acids. Most preferably.
  • the protein expressed in the host is 85.0% or more, more preferably 90.0% or more, more preferably 95.0% or more, more preferably 98.0% or more of the amino acid sequence of SEQ ID NO: 1. It may be a protein having an amino acid sequence having homology and having phosphite dehydrogenase activity.
  • the homology of amino acid sequences can be determined by a known method. Specifically, GENETYX-WIN (manufactured by GENETICS Co., Ltd.) is used in accordance with the GENETYX-WIN manual, and the amino acid sequence shown in SEQ ID NO: 1 and the amino acid sequence to be compared are matched by homology search Homology can be calculated as a percentage of the amino acid sequence to be.
  • GENETYX-WIN manufactured by GENETICS Co., Ltd.
  • the protein expressed in the host may be a fusion protein of the above-described protein and another protein or tag.
  • the other protein and tag are not particularly limited, and a desired protein (for example, GST protein) or a tag (for example, His tag, HA tag, Flag tag, etc.) can be used.
  • the method for producing a phosphite dehydrogenase protein includes a step of expressing the above-described protein in a host.
  • the host is not particularly limited, and a desired host can be used as appropriate.
  • bacteria such as Escherichia coli (for example, Escherichia coli), yeast (for example, budding yeast Saccharomyces cerevisiae, fission yeast Schizosaccharomyces pombe, etc.), insect cells, nematodes (for example, Caenorhabditis elegans, for example, X. Etc.) oocytes, mammalian cells (for example, CHO cells, COS cells, and Bowes melanoma cells), various human cultured cells, and the like, but are not limited thereto.
  • the step of expression is not particularly limited as long as the protein of (a) or (b) can be expressed in the host.
  • the step of expressing can include a step of introducing a vector containing a DNA comprising a base sequence encoding the protein of (a) or (b) into a host.
  • the specific base sequence of the DNA is not particularly limited, and various codon sequences can be used for each amino acid in the protein.
  • the DNA can be, for example, the following DNA (c) or (d). In other words, (C) DNA consisting of the base sequence of SEQ ID NO: 2.
  • the above-mentioned DNA consisting of the base sequence of SEQ ID NO: 2 is a phosphite dehydrogenase gene obtained by screening by the present inventor and encoding a protein consisting of the above-mentioned amino acid of SEQ ID NO: 1. .
  • the DNA contained in the vector may be a DNA that hybridizes with a base sequence complementary to the DNA consisting of the base sequence of SEQ ID NO: 2 under stringent conditions and encodes a phosphite dehydrogenase protein. .
  • stringent conditions refers to hybridization solutions (50% formamide, 5 ⁇ SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7). .6) Incubate overnight at 42 ° C. in 5 ⁇ Denhart solution, 10% dextran sulfate, and 20 ⁇ g / ml denatured sheared salmon sperm DNA, then in 0.1 ⁇ SSC at about 65 ° C.
  • the washing conditions at high stringency can be changed as appropriate. For example, when using mammalian-derived DNA, 0.1% SDS containing 0.1% SDS is used.
  • washing at 65 ° C. in 5 ⁇ SSC (preferably 15 minutes ⁇ 2 times) is preferred.
  • washing at 68 ° C. in 0.1 ⁇ SSC containing 0.1% SDS (preferably 15 minutes ⁇ 2 times) is preferable, and when using RNA, 0.1% Washing at 68 ° C. in 0.1 ⁇ SSC containing SDS (preferably twice for 15 minutes) is preferable, and when using oligonucleotide, in 0.1 ⁇ SSC containing 0.1% SDS Washing at the hybridization temperature (preferably 15 minutes ⁇ 2 times) is preferred.
  • the above hybridization was performed by Sambrook et al., Molecular Cloning, A Laboratory Manual, 2d Ed. , Cold Spring Harbor Laboratory (1989).
  • the vector containing a DNA consisting of a base sequence encoding the protein (a) or (b) is not particularly limited and can be appropriately selected depending on the host.
  • the vector can contain an expression control region (for example, a promoter, a terminator, and / or an origin of replication) depending on the host to be introduced.
  • the promoter include viral promoters (for example, SV40 early promoter, SV40 late promoter, etc.) and the like.
  • the promoter may be an expression-inducible promoter capable of inducing expression by IPTG or the like.
  • the vector preferably contains at least one selectable marker.
  • selectable markers include ampicillin, dihydrofolate reductase, neomycin resistance gene and the like.
  • the method for introducing the vector into the host is not particularly limited, and a known method can be used as appropriate.
  • conventionally known methods such as an electroporation method, a calcium phosphate method, a liposome method, and a DEAE dextran method can be suitably used.
  • a method of introducing a recombinant DNA in the presence of calcium ions or a method using an electroporation method can be applied.
  • the step of solubilizing the protein expressed in the host can include a step of crushing the host expressing the protein in a solution.
  • the step of solubilizing the protein expressed in the host may include a step of centrifuging the crushed material in addition to the step of crushing the host expressing the protein in a solution.
  • the solution for disrupting the host is not particularly limited.
  • a surfactant for example, Tween-20 (registered trademark), Triton-X100 (registered trademark), SDS, or the like
  • NaCl NaCl
  • It can be a solution containing.
  • the concentration of the surfactant in the solution is not particularly limited. For example, it is preferably 0 (w / v) or more than 0 (w / v) and 1.0% (w / v) or less. w / v) or more than 0 (w / v) and more preferably 0.5% (w / v) or less, more preferably 0 (w / v) or more than 0 (w / v) 0.3 % (W / v) or less, more preferably 0 (w / v) or more than 0 (w / v) and 0.1% (w / v) or less, more preferably 0 (w / V) or more than 0 (w / v) and most preferably 0.01% (w / v) or less.
  • the lower limit value of the numerical range described above may be 0.01% (w / v) or 0.001% (w / v).
  • the protein expressed in the host is originally highly soluble in the solution. Therefore, even a surfactant with a low concentration can be sufficiently solubilized in a solution.
  • Surfactant may inhibit various chemical reactions. For example, when a surfactant is present, a chemical reaction may be inhibited when NADH or NADPH is produced using a phosphite dehydrogenase protein.
  • the concentration of the surfactant for solubilizing the phosphite dehydrogenase protein may be low, so that it is mixed in the produced phosphite dehydrogenase protein.
  • the amount of the surfactant can be kept low. As a result, when producing NADH or NADPH using the produced phosphite dehydrogenase protein, a large amount of NADH or NADPH can be produced efficiently.
  • the concentration of NaCl in the solution is not particularly limited. For example, it is preferably 0 mM or more than 0 mM and 150 mM or less, more preferably 0 mM or more than 0 mM and 100 mM or less, and more preferably 0 mM or more than 0 mM and 50 mM. More preferably, it is 0 mM or more than 0 mM and 40 mM or less, more preferably 0 mM or more than 0 mM and 20 mM or less, more preferably 0 mM or more than 0 mM and 10 mM or less. More preferably, it is most preferably 0 mM.
  • the lower limit value of the numerical range described above may be 0.01 mM or 0.001 mM.
  • the protein expressed in the host is originally highly soluble in the solution. Therefore, even a low concentration of NaCl can be sufficiently solubilized in the solution.
  • NaCl has an effect of inhibiting the activity of phosphite dehydrogenase protein. Therefore, it can be said that it is preferable to solubilize the phosphite dehydrogenase protein in a solution in which the concentration of NaCl is reduced as much as possible. Since conventional phosphite dehydrogenase has low solubility, a high concentration of NaCl was used in addition to the surfactant to solubilize the protein.
  • the concentration of NaCl for solubilizing the phosphite dehydrogenase protein may be low, so that it is mixed in the produced phosphite dehydrogenase protein.
  • the amount of NaCl can be kept low.
  • the pH of the above solution can be adjusted with a known buffer.
  • the buffer is not particularly limited, and any buffer having a sufficient buffer capacity in a pH range of 6.0 to 8.5 can be used. Buffers in this pH range include phosphate, tris, bis-trispropane, N-tris (hydroxymethyl) methyl-2-aminoethanesulfonic acid (TES), 2-morpholinoethanesulfonic acid monohydrate (MES), piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES), 2- [4- (2-hydroxyethyl) -1 -Piperazinyl] ethanesulfonic acid (2- [4- (2- (2-Hydroxyethyl) -1-piperazinyl] ethanesulfonic acid) (HEPES), and 3- [N-tris (hydroxymethyl) methylamino] -2-hydroxypropanesulfonic acid (TAPSO).
  • the method for producing a phosphite dehydrogenase protein according to this embodiment can include a step of heating a host expressing the protein or a crushed material of the host expressing the protein.
  • the phosphite dehydrogenase protein of this embodiment has high heat resistance. Therefore, by the heating step, it is possible to lose the activity of other unnecessary enzymes without losing the activity of phosphite dehydrogenase. That is, it is possible to prevent unwanted enzyme activity from being mixed into the phosphite dehydrogenase obtained by the production method of the present embodiment.
  • the specific method for performing the said heating process is not specifically limited, For example, it is possible to heat the culture solution containing the host which is expressing protein, and culture
  • heating step it is preferable to heat a host expressing the protein or a crushed product of the host expressing the protein to 35 ° C. to 55 ° C., and to 40 ° C. to 52.5 ° C. Heating is more preferable, heating is preferably performed at 40 ° C to 50 ° C, and most preferably heating is performed at 40 ° C to 45 ° C.
  • the heating time is not particularly limited, for example, it is preferably 0 minutes to 60 minutes, and more preferably 15 minutes to 30 minutes.
  • the expressed phosphite dehydrogenase protein and a protease inhibitor are preferably allowed to coexist. According to the said structure, even if a protease exists, it can prevent that a phosphite dehydrogenase protein is decomposed
  • the protease inhibitor is not particularly limited, and a known protease inhibitor can be appropriately used.
  • the protease inhibitor include low molecular weight inhibitors (eg, diisopropylfluorophosphate, phenylmethanesulfonyl fluoride, p-mercuribenzoic acid, iodoacetic acid, diazoacetyl-DL-norleucine methyl ester, phosphoramide, etc.), peptides Examples include, but are not limited to, sex inhibitors (eg, leupeptin, antipain, chymostatin, pepstatin, etc.) and proteinaceous inhibitors (eg, ⁇ 2 macroglobulin, calpastatin, etc.).
  • the method for producing NADH of this embodiment is a reaction between HPO 3 2- , NAD + and H 2 O using the phosphite dehydrogenase protein produced by the method for producing phosphite dehydrogenase protein of the present invention as an enzyme. It is a method to make it.
  • reaction formula 1 see (Reaction formula 1) in the [Background Art] column.
  • the NADPH production method of the present embodiment is a reaction of HPO 3 2- , NADP + and H 2 O using the phosphite dehydrogenase protein produced by the production method of phosphite dehydrogenase protein of the present invention as an enzyme. It is a method to make it.
  • reaction formula 2 see (Reaction formula 2) in the [Background Art] column.
  • the temperature at which the above reaction is performed is not particularly limited, but is preferably 35 ° C. to 55 ° C., more preferably 40 ° C. to 52.5 ° C., and further preferably 40 ° C. to 50 ° C. Preferably, it is 40 ° C to 45 ° C.
  • the optimum temperature of the phosphite dehydrogenase protein produced by the method for producing a phosphite dehydrogenase protein of the present invention is much higher than that of a conventional phosphite dehydrogenase. Therefore, according to the above configuration, a large amount of NADH or NADPH can be efficiently manufactured.
  • reaction temperature is high, even if an unnecessary enzyme is mixed in the reaction system, only the activity of the mixed unnecessary enzyme can be lost.
  • the temperature when adjusting the reaction system to the above temperature, the temperature may be adjusted by applying temperature to the reaction system from the outside, but the temperature is adjusted by the reaction heat generated as the chemical reaction proceeds. May be. That is, if the phosphite dehydrogenase protein produced by the method for producing a phosphite dehydrogenase protein of the present invention is used, there is an advantage that it is not necessary to cool the reaction system.
  • the above reaction can also be carried out in the presence of arsenite, nitrate, sulfate or NaCl.
  • the activity of conventional phosphite dehydrogenases is greatly reduced by the presence of arsenite, nitrate, sulfate or NaCl.
  • the activity of the phosphite dehydrogenase protein produced by the method for producing a phosphite dehydrogenase protein of the present invention is not significantly reduced even in the presence of arsenite, nitrate, sulfate or NaCl. . Therefore, the NADH or NADPH production method of the present embodiment can efficiently produce NADH or NADPH even if arsenite, nitrate, sulfate, or NaCl is present.
  • the concentration of arsenite, nitrate, sulfate or NaCl in the reaction system is not particularly limited. For example, it is preferably 100 mM or less, more preferably 70 mM or less, further preferably 50 mM or less, although it is most preferable that it is 40 mM or less, it is not limited to these.
  • the lower limit is not particularly limited, but may be 0.1 mM, 0.01 mM, or 0 mM.
  • kit for producing NADH or NADPH The kit of this embodiment is a kit for producing NADH or NADPH.
  • the kit of this embodiment may include a protein produced by the method for producing a phosphite dehydrogenase protein of the present invention. Moreover, the kit of this embodiment may include a vector for expressing the phosphite dehydrogenase protein of the present invention in a desired host. Since the details of these configurations have already been described, the description thereof is omitted here.
  • the gene of the present invention is a gene encoding the protein of the present invention.
  • the gene of the present invention may be a gene comprising the following DNA (c) or (d).
  • the method for producing a phosphite dehydrogenase protein of the present invention can have a step of expressing the protein of the present invention in a host and a step of solubilizing the protein expressed in the host in a solution.
  • the step of expressing may include a step of introducing a vector containing the gene of the present invention into a host.
  • the solubilizing step may be performed by setting the host expressing the protein to 0 (w / v) or more than 0 (w / v) to 0.1%
  • the step of crushing in a solution containing (w / v) or less surfactant and at least one of 0 (w / v) or NaCl of greater than 0 (w / v) and not more than 50 mM may be included.
  • the surfactant may be Tween-20 or Triton-X100.
  • the method for producing a phosphite dehydrogenase protein of the present invention can include a step of heating a host expressing the protein or a crushed material of the host expressing the protein.
  • the host expressing the protein or a crushed product of the host expressing the protein is heated to 40 ° C. to 50 ° C. It may be a process to do.
  • the above reaction can be performed at 40 ° C. to 50 ° C.
  • the above reaction may be performed in the presence of arsenite, nitrate, sulfate or NaCl.
  • MOPS agar medium 0.5 mM phosphate, 22.2 mM glucose, 40 mM potassium morpholine sulfate [pH 7.2], 50 mM NaCl, 9 mM containing 0.5 mM phosphorous acid.
  • MOPS agar medium containing 2 mM phosphoric acid and MOPS agar medium not containing phosphorous acid and phosphoric acid were inoculated and cultured at 45 ° C. for 1 to 3 days. Thereafter, a plurality of microbial colonies that appeared on the MOPS agar medium containing 0.5 mM phosphorous acid were isolated.
  • microorganisms forming each colony were cultured using a MOPS liquid medium containing 0.5 mM phosphorous acid, and each microorganism was examined to determine whether it had phosphite dehydrogenase activity.
  • Each microorganism cryopreserved in a glycerol solution was inoculated into 4 mL of 2 ⁇ YT liquid medium and cultured at 45 ° C. overnight. 1 mL of the culture solution was put into a 1.5 mL capacity tube, and the tube was centrifuged at 12000 rpm for 5 minutes, and then the supernatant was discarded to obtain a cell pellet.
  • the cell pellet was suspended in 1 mL of MOPS (0) solution (MOPS medium not containing phosphorus component), and the suspension was centrifuged at 12000 rpm for 5 minutes. Thereafter, the supernatant was discarded to obtain a cell pellet. After the washing operation was performed once again, the obtained cell pellet was suspended in 1 mL of MOPS (0) solution, and then 100 ⁇ L of the suspension was added to 10 mL of MOPS-phosphorous acid (0.5 mM). Inoculated into a liquid medium and cultured at 45 ° C.
  • MOPS (0) solution MOPS medium not containing phosphorus component
  • the whole culture is transferred to a 50 mL tube, and the tube is centrifuged at 6000 rpm for 10 minutes. I went to. After centrifugation, the supernatant was discarded to obtain a cell pellet.
  • ultrasonic disruption Digital sonifier, BRANSON
  • BRANSON Digital sonifier
  • OptimaTM TLX Ultracentrifuge, BECKMAN COULTER Ultracentrifugation was performed at 270,000 ⁇ g, 4 ° C. for 45 minutes.
  • the supernatant after ultracentrifugation was collected, and the supernatant was used as a crude extract for measuring phosphite dehydrogenase activity.
  • microorganisms that can grow under conditions of 45 ° C. and have the ability to produce NADH in a phosphorous acid-dependent manner were screened.
  • the number of microorganisms screened was 5 strains.
  • strains were classified based on the base sequence of 16S rRNA (16S ribosomal RNA), and the base sequence of the phosphite dehydrogenase gene of each strain was determined. A specific method will be described in detail below.
  • chromosomal DNA was extracted from the strain 4506 obtained by the above screening, and 16s rRNA was used using the chromosomal DNA. The gene was amplified.
  • the 16S rRNA gene was amplified by PCR.
  • primers 1 and 2 described later were used as primers, and PCR reaction was performed using KOD-plus manufactured by Toyobo.
  • KOD-plus manufactured by Toyobo.
  • As specific PCR reaction conditions after incubation at 72 ° C. for 5 minutes, 95 ° C. for 1 minute denaturation step, 55 ° C. for 1 minute annealing step, and 72 ° C. for 1.5 minute extension step 3 A reaction cycle consisting of two steps was performed 30 times.
  • Primer 1 5′-AGAGTTTGATCCTGGCTCAG-3 ′ (SEQ ID NO: 5)
  • Primer 2 5′-GTCCCGCAACGAGCGCAAC-3 ′ (SEQ ID NO: 6)
  • the base sequence of 16S rRNA amplified as described above was determined using DYEnamic ET Terminator (Applied Biosystems). The specific method followed the protocol attached to DYEnamic ET Terminator.
  • the 4506 strains described above were classified by analyzing the base sequence of 16S rRNA determined as described above using Clustal W2, which is a phylogenetic tree creation tool. In addition, the specific method of the said analysis followed the protocol attached to Clustal W2.
  • Fig. 1 shows the phylogenetic tree of 4506 strains screened. From this result, it was clarified that the strain 4506 is a bacterium belonging to the genus Ralstonia. Based on this, the strain was designated as Ralstonia sp. Named strain 4506.
  • “Ralstonia sp. 4506” in FIG. 1 is the screened 4506 strain.
  • “Ralstonia sp. 5_7_47FAA”, “Ralstonia metallidurans CH34”, “Alcaligenes faecalis WM2072” and “Pseudomonas stutzeri WM88” are well-known strains, and hydrous dephosphoric acid and dehydrogenase are also known. There was or was predicted the presence of a phosphite dehydrogenase gene and a phosphite dehydrogenase protein.
  • “Ralstonia sp. 5_7_47FAA” was closely related to the 4506 strain in taxonomy, and the presence of its phosphite dehydrogenase gene was predicted. However, it has not been demonstrated whether or not the protein encoded by the phosphite dehydrogenase gene actually has phosphite dehydrogenase activity, and the base sequence on the 3 ′ end side of the phosphite dehydrogenase gene (in other words, For example, the amino acid sequence on the C-terminal side of the phosphite dehydrogenase protein) was unknown (see, for example, “http://www.ncbi.nlm.nih.gov/nuccore/308920199”).
  • the internal region of the gene was obtained by PCR using primers designed based on the highly conserved region of the well-known phosphite dehydrogenase gene. And obtaining the full-length sequence of the phosphite dehydrogenase gene by obtaining the 5 ′ and 3 ′ regions of the gene by inverse PCR.
  • the method will be described in more detail.
  • degenerate primers (PTXD1 and PTXD2) were prepared based on two highly conserved amino acid sequences in known ptxD (positions 76-82 and 261-267 of Pstutzeri WM88). The base sequences of these degenerate primers are shown below.
  • PTXD1 5′-AARGGNTAYGAYAAYTTYGAY-3 ′ (SEQ ID NO: 7)
  • PTXD2 5′-RTCYTCCATYTCRTANACRTC-3 ′ (SEQ ID NO: 8) PCR was performed using the degenerate primer and the chromosome of strain 4506 as a template. As a result, an amplified DNA fragment of about 600 bp was obtained.
  • the amplified DNA fragment was cloned into pGEM T-easy vector (Promega), and the base sequence of the amplified DNA fragment was determined. From the determined base sequence, it was confirmed that the amplified DNA fragment was the internal sequence of ptxD.
  • primers for inverse PCR were prepared.
  • the base sequences of these primers are shown below.
  • PTXD3 5′-TCGTGGATGAGAATGCGGTGATAGC-3 ′ (SEQ ID NO: 9)
  • PTXD4 5′-ATAGTCAGTTCAGCGGTCGGGATCG-3 ′ (SEQ ID NO: 10)
  • 0.5 ⁇ g chromosome of 4506 strain was digested with 0.5 ⁇ L of restriction enzyme Pst I for 12 hours, then self-circularized with T4 DNA ligase, and further purified, An amount of 20% based on the total volume of the inverse PCR reaction solution was used.
  • a DNA fragment of about 2.5 kb was obtained by inverse PCR using PTXD3 and PTXD4.
  • primers for obtaining the full-length sequence of ptxD were prepared. The base sequences of these primers are shown below.
  • PTXD5 5′-CGGGATCCGATGAAGCCCAAAGTCGTCCTC-3 ′
  • PTXD6 5′-CGGAATTCGCCGCCTTTACTCCCGGATAC-3 ′
  • PCR was performed using the chromosome of the strain 4506 as a template to amplify a DNA fragment of about 1 kb.
  • the base sequence of the amplified DNA fragment was determined by the same method as described above.
  • the base sequence of the phosphite dehydrogenase gene is shown in SEQ ID NO: 2.
  • the amino acid sequence of the phosphite dehydrogenase protein encoded by the phosphite dehydrogenase gene is shown in SEQ ID NO: 1.
  • the base sequence described in “http://www.ncbi.nlm.nih.gov/nuccore/308920199” described above completely matched the partial sequence of the base sequence shown in SEQ ID NO: 1.
  • each of the above expression vectors was transformed into competent cell Rosetta2 (DE3) (Novagen).
  • the transformant is inoculated into 200 mL of LB medium (containing 10 g of polypeptone, 5 g of yeast extract, and 5 g of NaCl per liter of medium) at 37 ° C. until OD 600 reaches 0.5. Cultured. Thereafter, IPTG (isopropyl thiogalactoside) was added to the culture to a concentration of 1 mM, and the culture was further continued at 28 ° C. for 3 hours.
  • LB medium containing 10 g of polypeptone, 5 g of yeast extract, and 5 g of NaCl per liter of medium
  • IPTG isopropyl thiogalactoside
  • the culture was subjected to a centrifugation treatment at 6,000 rpm for 15 minutes, and the bacteria as a precipitate were collected.
  • the bacteria were suspended in a disruption buffer (50 mM Tris-HCl (pH: 7.4), 50 mM NaCl), and then the suspension was subjected to ultrasonic treatment to disrupt the bacteria. Thereafter, Tween 20 (registered trademark) was added to the microbial disruption solution to a final concentration of 0.1%, and the mixture was allowed to stand on ice for 15 minutes.
  • the crushing buffer containing the crushed bacteria is indicated as “T”.
  • the crushing buffer containing the crushed bacteria was centrifuged at 15,000 rpm, 4 ° C., 15 minutes. After centrifugation, the supernatant was separated into a precipitate. In FIG. 2, the supernatant is indicated as “S”, and the precipitate is indicated as “I”.
  • the supernatant is applied to a HisTrap column (manufactured by GE Healthcare), and a fusion protein in which a His tag is linked to the C-terminus of the phosphite dehydrogenase protein shown in SEQ ID NO: 1 according to the protocol attached to the column. Purified.
  • disruption buffer (T), supernatant (S) and precipitate (I) containing disrupted bacteria are separated by SDS-PAGE, and then the acrylamide gel is subjected to CBB stain one (manufactured by Nacalai). Staining was performed to determine the amount of phosphite dehydrogenase protein.
  • Each of purified PtxD 4506 and PtxD Pst was added to 50 mM MOPS buffer (pH 7.4) to a final concentration of 0.2 mg / mL to prepare an enzyme solution.
  • 100 ⁇ L of the enzyme solution was put into a 1.5 mL capacity tube, and 100 ⁇ L of mineral oil was added to the enzyme solution to prevent evaporation. The tube was maintained at a temperature of 10 ° C. to 60 ° C. for 12 hours.
  • PtxD Pst has the highest specific activity at about 35 ° C., and the specific activity rapidly decreases at temperatures lower than 35 ° C. and at temperatures higher than 35 ° C. It became clear to do. That is, it was revealed that PtxD Pst has a low optimum temperature (about 35 ° C.) and a very narrow temperature range suitable for the reaction.
  • PtxD 4506 has the highest specific activity at about 50 ° C., and can maintain high specific activity in a wide temperature range even at temperatures lower than 50 ° C. or higher than 50 ° C. It was revealed. Specifically, PtxD 4506 has a high average specific activity at 35 ° C. to 55 ° C., a higher average specific activity at 40 ° C. to 52.5 ° C., and an average specific activity at 40 ° C. to 50 ° C. It became clear that the value was even higher. This indicates that the fusion protein PtxD 4506 can stably produce a large amount of substance even in a substance production process (for example, NADH or NADPH production process) that tends to be high temperature. This also indicates that the activity of the phosphite dehydrogenase is not lost even when the phosphite dehydrogenase is heated in the production process of the phosphite dehydrogenase protein.
  • a substance production process for example, NADH or
  • reaction rates of PtxD 4506 and PtxD Pst were calculated based on (Reaction Formula 1) described in the [Background Art] column.
  • reaction system shown in (Reaction Scheme 1) 7.5 ⁇ g of fusion protein was used, and the NADH production rate was measured while changing the substrate (NAD + ) concentration from 0.5 microM to 200 microM. did.
  • the reaction temperature of the fusion protein PtxD 4506 was 40 ° C.
  • the reaction temperature of the fusion protein PtxD Pst was 28 ° C.
  • the Km of PtxD 4506 was about 1/3 of the Km of PtxD Pst . Moreover, Vmax of PtxD 4506 was about 1.4 times PtxD Pst . The Kcat of PtxD 4506 was 237.4 (min ⁇ 1 ), and the Kcat of PtxD Pst was 169.6 (min ⁇ 1 ).
  • the reaction solution was reacted for 60 minutes.
  • about PtxD 4506 it reacted at 45 degreeC and about PtxD Pst, it reacted at 30 degreeC.
  • OD 340 was measured.
  • the relative value of OD 340 of each sample was calculated by setting the value of OD 340 of a liquid not containing protein (negative control) as 100.
  • each experiment was performed 4 times or more, and the average value of the relative values in the 4 or 5 experiments was also calculated.
  • FIG. 4 shows a graph of the numerical data in Table 2.
  • PtxD 4506 the activity of PtxD 4506 was found to remain high even in the presence of arsenite, nitrate, sulfate or NaCl. This means that if phosphite dehydrogenase needs to be used in the presence of arsenite, nitrate, sulfate or NaCl (especially in the presence of arsenite, nitrate or sulfate), PtxD 4506 Is advantageous. Examples of cases where it is necessary to use phosphite dehydrogenase include, but are not limited to, NADH production, NADPH production, and phosphorous acid quantification.
  • the present invention can be used in the field of manufacturing NADH or NADPH.
  • the present invention can also be used in the field of quantifying phosphorous acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 可溶性および熱安定性の両方の性質が同時に向上している亜リン酸デヒドロゲナーゼタンパク質、当該タンパク質をコードする遺伝子、当該タンパク質の製造方法およびその利用を提供するために、特定のアミノ酸配列を有する亜リン酸デヒドロゲナーゼタンパク質および当該タンパク質をコードする遺伝子を用いる。

Description

亜リン酸デヒドロゲナーゼタンパク質の製造方法およびその利用
 本発明は、亜リン酸デヒドロゲナーゼタンパク質の製造方法およびその利用に関する。更に具体的には、本発明は、亜リン酸デヒドロゲナーゼタンパク質の製造方法、NADHの製造方法、およびNADPHの製造方法に関する。
 亜リン酸デヒドロゲナーゼタンパク質(PtxD)は、バクテリアの一部が有するタンパク質であり、NAD依存的またはNADP依存的に亜リン酸を酸化して、NADHまたはNADPHを生成する酵素である。以下に、NAD依存的またはNADP依存的に亜リン酸を酸化する場合の反応式を記載する。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 上記化学反応は、生体反応を利用した物質生産において非常に重要な補因子として機能するNADHまたはNADPHを効率よく生産することができるために注目されているが、これらの化学反応を工業的に利用するには至っていない。つまり、現状では、亜リン酸を用いてNADHまたはNADPHを工業的に大量に製造できる状況には至っていない(例えば、非特許文献1および2参照)。従来から、NADHおよびNADPHの生産には、ギ酸デヒドロゲナーゼ、グルコースデヒドロゲナーゼおよびアルコールデヒドロゲナーゼなども用いられてきた。しかしながら、これらの酵素は、反応性に富んだ基質を用いるので、その結果、反応系が不安定になるという問題点を有している。また、これらの酵素は、反応性に富んだ生成物が生じるので、その結果、反応系が不安定になるという問題点を有している。なお、反応系を不安定にする主な原因は、pHの変動である。一方、亜リン酸デヒドロゲナーゼは、基質および生成物が共に反応性が低いとともに、基質が安価であるという利点を有しているため、工業的に利用することが可能になれば、上述した酵素に代わって広く利用され得る可能性を有している。具体的に、亜リン酸デヒドロゲナーゼの場合には、亜リン酸およびリン酸の両方に緩衝作用があるために、反応系を安定化させることが可能である。
 NADHおよびNADPHを工業的に大量に製造するためには、大量の亜リン酸デヒドロゲナーゼタンパク質が必要である。それ故に、従来から、大腸菌などの宿主内で異種生物由来の野生型亜リン酸デヒドロゲナーゼタンパク質を強制発現させた後に当該タンパク質を精製することによって大量の亜リン酸デヒドロゲナーゼタンパク質を得ようとする試みがなされている。
 しかしながら、当該技術では、野生型の亜リン酸デヒドロゲナーゼタンパク質を大腸菌などで強制発現させたときに、亜リン酸デヒドロゲナーゼタンパク質の多くが水溶液に対して不溶性になり、回収不可能になる。それ故に、強制発現した場合にも水溶液に対して高い溶解性を示す亜リン酸デヒドロゲナーゼタンパク質が求められている。
 また、NADHおよびNADPHを工業的に大量に製造する場合には反応系の温度が上昇するので、熱安定性が高い亜リン酸デヒドロゲナーゼタンパク質を用いる必要がある。しかしながら、従来の野生型の亜リン酸デヒドロゲナーゼタンパク質は熱安定性が低い(具体的には、40℃で多くの酵素が失活する)。それ故に、高温条件下であっても高い活性を維持することが可能な亜リン酸デヒドロゲナーゼタンパク質が求められている。
 このような状況下において、上述した性質が改善された亜リン酸デヒドロゲナーゼの変異体をスクリーニングする試みがなされている。
 例えば、非特許文献3には、変異が導入された亜リン酸デヒドロゲナーゼタンパク質を大腸菌内で強制発現することによって、可溶性画分に含まれる変異型の亜リン酸デヒドロゲナーゼタンパク質の量を増加させる技術が開示されている。なお、非特許文献3に記載されているデータからは、可溶性画分に含まれる変異型の亜リン酸デヒドロゲナーゼタンパク質の量が増加した理由が、当該タンパク質の溶解性が上昇したことによるのか、当該タンパク質の発現量が上昇したことによるのかは判断できない。また、非特許文献4および5には、熱安定性が高い変異型の亜リン酸デヒドロゲナーゼタンパク質が開示されている。
Angew. Chem. Int. Ed. 2002, 41, No.17, 3257-3259 The Journal of Biological Chemistry, Vol.276, No.20, Issue of May 18, 2001, 17429-17436 Combinatorial Chemistry and High Throughput Screening, 2006, 9, 237-245 Biotechnology and Bioengineering, Vol.99, No.2, February 1, 2008, 268-274 Applied and Environmental Microbiology, Oct. 2005, 5728-5734
 しかしながら、従来の変異型の亜リン酸デヒドロゲナーゼタンパク質では、可溶性および熱安定性の両方の性質を同時に向上させることができなかった。
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、可溶性および熱安定性の両方の性質が同時に向上している亜リン酸デヒドロゲナーゼタンパク質の製造方法およびその利用を提供することにある。
 タンパク質内のアミノ酸の変異がタンパク質の立体構造へ及ぼす影響は予測し難い。例えば、熱安定性に寄与する変異および可溶性に寄与する変異を1つのタンパク質内へ同時に導入した時に、熱安定性に寄与する変異によって可溶性に寄与する変異の効果が打ち消されたり、可溶性に寄与する変異によって熱安定性に寄与する変異の効果が打ち消されたり、各々の変異が互いの効果を打ち消しあったりする場合が多々ある。つまり、熱安定性に寄与する変異および可溶性に寄与する変異の両方を同時に1つのタンパク質内へ導入したとしても、熱安定性および可溶性の両方の性質が向上したタンパク質が得られるわけではない。
 そこで、本発明者らは、独自のスクリーニング方法によって、安定性および可溶性の両方の性質が向上した亜リン酸デヒドロゲナーゼを自然界から単離することによって、本発明を完成させるに至った。
 本発明のタンパク質は、上記課題を解決するために、以下の(a)または(b)に記載のタンパク質である。つまり、
(a)配列番号1のアミノ酸配列からなるタンパク質。
(b)配列番号1のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸からなり、かつ、亜リン酸デヒドロゲナーゼ活性を有するタンパク質。
 上記構成によれば、熱安定性および可溶性の両方の性質が向上したタンパク質を容易に利用することができる。
 本発明は、水溶液に対する可溶性が高い亜リン酸デヒドロゲナーゼタンパク質を大量に入手することができるという効果を奏する。
 本発明は、耐熱性の高い亜リン酸デヒドロゲナーゼタンパク質を大量に入手することができるという効果を奏する。
 本発明は、各種阻害物質によって活性を阻害されることがない亜リン酸デヒドロゲナーゼタンパク質を大量に入手することができるという効果を奏する。
 本発明は、従来の亜リン酸デヒドロゲナーゼタンパク質よりも反応効率が高い亜リン酸デヒドロゲナーゼタンパク質を大量に入手することができるという効果を奏する。
本発明の実施例にてスクリーニングされた菌の系統樹である。 本発明の亜リン酸デヒドロナーゼタンパク質を大腸菌内で強制発現させた場合の、亜リン酸デヒドロナーゼタンパク質の所在を示すSDS-PAGEの写真である。 本発明の亜リン酸デヒドロナーゼタンパク質の耐熱性を示すグラフである。 本発明の亜リン酸デヒドロナーゼタンパク質の活性に及ぼす各種阻害剤の効果を示すグラフである。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。なお、本明細書において「A~B」との記載は、「A以上B以下」を意図する。
 〔1.タンパク質および遺伝子〕
 本実施の形態のタンパク質(亜リン酸デヒドロゲナーゼタンパク質)は、以下の(a)または(b)に記載のタンパク質である。つまり、
(a)配列番号1のアミノ酸配列からなるタンパク質、
(b)配列番号1のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸からなり、かつ、亜リン酸デヒドロゲナーゼ活性を有するタンパク質。
 「1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸」の詳細については、後述する。
 本実施の形態のタンパク質は、配列番号1のアミノ酸配列と、85.0%以上、より好ましくは90.0%以上、より好ましくは95.0%以上、より好ましくは98.0%以上の相同性を有するアミノ酸配列からなり、かつ、亜リン酸デヒドロゲナーゼ活性を有するタンパク質であってもよい。
 本実施の形態のタンパク質は、水溶液に対する可溶性が高いとともに、耐熱性が高いという極めて優れた性質を有するタンパク質である。
 本実施の形態の遺伝子は、上記(a)または(b)に記載のタンパク質をコードする遺伝子である。本実施の形態の遺伝子は上記タンパク質をコードしていればよく、如何なるコドンの組み合わせによって形成された遺伝子であってもよい。
 更に具体的には、本実施の形態の遺伝子は、以下の(c)または(d)のDNAからなる遺伝子であり得る。つまり、
(c)配列番号2の塩基配列からなるDNA、
(d)配列番号2の塩基配列からなるDNAと相補的な塩基配列とストリンジェントな条件下でハイブリダイズし、かつ、亜リン酸デヒドロゲナーゼタンパク質をコードするDNA。
 「ストリンジェントな条件」の詳細については、後述する。
 〔2.亜リン酸デヒドロゲナーゼタンパク質の製造方法〕
 本実施形態の亜リン酸デヒドロゲナーゼタンパク質の製造方法は、以下の(a)または(b)のタンパク質を宿主内で発現させる工程と、上記宿主内で発現させたタンパク質を溶液中に可溶化させる工程と、を有する製造方法である。つまり、
(a)配列番号1のアミノ酸配列からなるタンパク質。
(b)配列番号1のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸からなり、かつ、亜リン酸デヒドロゲナーゼ活性を有するタンパク質。
 まず、(a)または(b)のタンパク質を宿主内で発現させる工程について説明する。
 上述した配列番号1のアミノ酸配列からなるタンパク質とは、本発明者がスクリーニングして入手した亜リン酸デヒドロゲナーゼタンパク質である(実施例参照)。
 宿主内で発現されるタンパク質は、配列番号1のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸からなり、かつ、亜リン酸デヒドロゲナーゼ活性を有するタンパク質であってもよい。このとき、1若しくは数個のアミノ酸が欠失、置換若しくは付加される部位は特に限定されず、1若しくは数個のアミノ酸が欠失、置換若しくは付加された後のタンパク質が亜リン酸デヒドロゲナーゼ活性を有していれば、タンパク質中のどの部位であってもよい。ここで「1若しくは数個のアミノ酸」が意図するアミノ酸の数は特に限定されないが、10個以内のアミノ酸であることが好ましく、8個以内のアミノ酸であることが更に好ましく、6個以内のアミノ酸であることが最も好ましい。
 宿主内で発現されるタンパク質は、配列番号1のアミノ酸配列と、85.0%以上、より好ましくは90.0%以上、より好ましくは95.0%以上、より好ましくは98.0%以上の相同性を有するアミノ酸配列からなり、かつ、亜リン酸デヒドロゲナーゼ活性を有するタンパク質であってもよい。
 なお、アミノ酸配列の相同性は、公知の方法で求めることができる。具体的には、GENETYX-WIN(株式会社ゼネティックス社製)を、GENETYX-WINのマニュアルに従って使用し、配列番号1に示すアミノ酸配列と比較対象のアミノ酸配列とのホモロジーサーチ(homology search)により、一致するアミノ酸配列の割合(%)として相同性を計算することができる。
 宿主内で発現されるタンパク質は、上述したタンパク質と、他のタンパク質またはタグとの融合タンパク質であってもよい。上記他のタンパク質およびタグとしては特に限定されず、所望のタンパク質(例えば、GSTタンパク質など)またはタグ(例えば、Hisタグ、HAタグ、Flagタグなど)を用いることが可能である。
 上述したように、本実施形態の亜リン酸デヒドロゲナーゼタンパク質の製造方法は、上述したタンパク質を宿主内で発現させる工程を有している。
 上記宿主としては特に限定されず、適宜、所望の宿主を用いることが可能である。例えば、大腸菌(例えば、Escherichia coliなど)等の細菌、酵母(例えば、出芽酵母Saccharomyces cerevisiae、***酵母Schizosaccharomyces pombeなど)、昆虫細胞、線虫(例えば、Caenorhabditis elegansなど)、アフリカツメガエル(例えば、Xenopus laevisなど)の卵母細胞、哺乳類細胞(例えば、CHO細胞、COS細胞、およびBowes黒色腫細胞)や各種ヒト培養細胞などを用いることが可能であるが、これらに限定されない。
 上記発現させる工程は、(a)または(b)のタンパク質を宿主内で発現させ得る工程であればよく、その具体的な構成は特に限定されない。例えば、上記発現させる工程は、(a)または(b)のタンパク質をコードする塩基配列からなるDNAを含むベクターを宿主へ導入する工程を包含し得る。当該DNAの具体的な塩基配列は特に限定されず、タンパク質中の各アミノ酸に対して、様々なコドン配列を用いることが可能である。当該DNAは、例えば、以下の(c)または(d)のDNAであり得る。つまり、
(c)配列番号2の塩基配列からなるDNA。
(d)配列番号2の塩基配列からなるDNAと相補的な塩基配列とストリンジェントな条件下でハイブリダイズし、かつ、亜リン酸デヒドロゲナーゼタンパク質をコードするDNA。
 上述した配列番号2の塩基配列からなるDNAとは、本発明者がスクリーニングして入手した亜リン酸デヒドロゲナーゼ遺伝子であって、上述した配列番号1のアミノ酸からなるタンパク質をコードしているDNAである。
 上記ベクターに含まれるDNAは、配列番号2の塩基配列からなるDNAと相補的な塩基配列とストリンジェントな条件下でハイブリダイズし、かつ、亜リン酸デヒドロゲナーゼタンパク質をコードするDNAであってもよい。
 本明細書中で使用される場合、用語「ストリンジェントな条件」は、ハイブリダイゼーション溶液(50%ホルムアミド、5×SSC(150mMのNaCl、15mMのクエン酸三ナトリウム)、50mMのリン酸ナトリウム(pH7.6)、5×デンハート液、10%硫酸デキストラン、および20μg/mlの変性剪断サケ***DNAを含む)中にて42℃で一晩インキュベーションした後、約65℃にて0.1×SSC中でフィルタを洗浄することが意図されるが、ハイブリダイゼーションさせるポリヌクレオチドによって、高ストリンジェンシーでの洗浄条件は適宜変更され、例えば、哺乳類由来DNAを用いる場合は、0.1% SDSを含む0.5×SSC中にて65℃での洗浄(好ましくは15分間×2回)が好ましく、E.coli由来DNAを用いる場合は、0.1% SDSを含む0.1×SSC中にて68℃での洗浄(好ましくは15分間×2回)が好ましく、RNAを用いる場合は、0.1% SDSを含む0.1×SSC中にて68℃での洗浄(好ましくは15分間×2回)が好ましく、オリゴヌクレオチドを用いる場合は、0.1% SDSを含む0.1×SSC中にてハイブリダイゼーション温度での洗浄(好ましくは15分間×2回)が好ましい。また、上記ハイブリダイゼーションは、Sambrookら、Molecular Cloning,A Laboratory Manual,2d Ed.,Cold Spring Harbor Laboratory(1989)に記載されている周知の方法で行うことができる。
 (a)または(b)のタンパク質をコードする塩基配列からなるDNAを含むベクターとしては特に限定されず、宿主に応じて適宜選択することができる。上記ベクターは、導入されるべき宿主に依存して、発現制御領域(例えば、プロモーター、ターミネーター、および/または複製起点等)を含有することが可能である。プロモーターとしては、ウイルス性プロモーター(例えば、SV40初期プロモーター、SV40後期プロモーター等)などが挙げられる。また、上記プロモーターとしては、IPTGなどによって発現を誘導することが可能な発現誘導性プロモーターであってもよい。
 上記ベクターは、少なくとも1つの選択マーカーを含むことが好ましい。このようなマーカーとしては、アンピシリン、ジヒドロ葉酸レダクターゼ、ネオマイシン耐性遺伝子などが挙げられる。上記選択マーカーを用いれば、ベクターが宿主に導入されたか否か、さらには、所望のタンパク質が宿主中で確実に発現しているか否かを確認することができる。
 上記ベクターを宿主へ導入する方法は特に限定されず、適宜、周知の方法を用いることが可能である。例えば、電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法等の従来公知の方法を好適に用いることができる。更に具体的には、エシェリヒア属に属する宿主微生物にベクターを導入する場合は、カルシウムイオンの存在下で組換えDNAを導入する方法や、エレクトロポレーション法を用いる方法が適用され得る。
 次いで、宿主内で発現させたタンパク質を可溶化させる工程について説明する。
 上記宿主内で発現させたタンパク質を可溶化させる工程は、タンパク質を発現している宿主を溶液中で破砕する工程を包含し得る。上記宿主内で発現させたタンパク質を可溶化させる工程は、タンパク質を発現している宿主を溶液中で破砕する工程に加えて、更に、破砕物を遠心分離する工程を包含していてもよい。上記構成によれば、溶液中にタンパク質を大量に可溶化させることができるので、当該溶液から、所望のタンパク質を大量かつ高純度にて精製することができる。
 宿主を破砕するための溶液としては特に限定されないが、例えば、界面活性剤(例えば、Tween-20(登録商標)、Triton-X100(登録商標)またはSDSなど)、NaCl、または、これらの両方を含む溶液であり得る。
 上記溶液における界面活性剤の濃度は特に限定されないが、例えば、0(w/v)または0(w/v)よりも多く1.0%(w/v)以下であることが好ましく、0(w/v)または0(w/v)よりも多く0.5%(w/v)以下であることが更に好ましく、0(w/v)または0(w/v)よりも多く0.3%(w/v)以下であることが更に好ましく、0(w/v)または0(w/v)よりも多く0.1%(w/v)以下であることが更に好ましく、0(w/v)または0(w/v)よりも多く0.01%(w/v)以下であることが最も好ましい。なお、上述した数値範囲の下限値は、0.01%(w/v)または0.001%(w/v)であってもよい。本実施形態において、宿主内で発現されるタンパク質は、元々、溶液に対する可溶性が高い。それ故に、低濃度の界面活性剤であっても、十分に溶液中に可溶化させることが可能である。
 界面活性剤は、様々な化学反応を阻害する恐れがある。例えば、界面活性剤が存在すると、亜リン酸デヒドロゲナーゼタンパク質を用いてNADHまたはNADPHなどを製造するときに、化学反応が阻害される恐れがある。本実施形態における亜リン酸デヒドロゲナーゼタンパク質の製造方法であれば、亜リン酸デヒドロゲナーゼタンパク質を可溶化させるための界面活性剤の濃度は低くて良いので、製造された亜リン酸デヒドロゲナーゼタンパク質中に混入する界面活性剤の量を低く抑えることができる。その結果、製造された亜リン酸デヒドロゲナーゼタンパク質を用いて、NADHまたはNADPHなどを製造するときに、効率よく大量のNADHまたはNADPHを製造することができる。
 上記溶液におけるNaClの濃度は特に限定されないが、例えば、0mMまたは0mMよりも多く150mM以下であることが好ましく、0mMまたは0mMよりも多く100mM以下であることが更に好ましく、0mMまたは0mMよりも多く50mM以下であることが更に好ましく、0mMまたは0mMよりも多く40mM以下であることが更に好ましく、0mMまたは0mMよりも多く20mM以下であることが更に好ましく、0mMまたは0mMよりも多く10mM以下であることが更に好ましく、0mMであることが最も好ましい。なお、上述した数値範囲の下限値は、0.01mMまたは0.001mMであってもよい。本実施形態において、宿主内で発現されるタンパク質は、元々、溶液に対する可溶性が高い。それ故に、低濃度のNaClであっても、十分に溶液中に可溶化させることが可能である。
 後述する実施例でも示すように、NaClは、亜リン酸デヒドロゲナーゼタンパク質の活性を阻害する効果を有している。それ故に、可能な限りNaClの濃度を低下させた溶液中に亜リン酸デヒドロゲナーゼタンパク質を可溶化させることが好ましいといえる。なお、従来の亜リン酸デヒドロゲナーゼは可溶性が低いので、タンパク質を可溶化させるために界面活性剤に加えて高濃度のNaClを用いていた。一方、本実施形態における亜リン酸デヒドロゲナーゼタンパク質の製造方法であれば、亜リン酸デヒドロゲナーゼタンパク質を可溶化させるためのNaClの濃度は低くて良いので、製造された亜リン酸デヒドロゲナーゼタンパク質中に混入するNaClの量を低く抑えることができる。その結果、製造された亜リン酸デヒドロゲナーゼタンパク質を用いて、NADHまたはNADPHなどを製造するときに、効率よく大量のNADHまたはNADPHを製造することができる。
 上記溶液は、公知の緩衝剤によって、そのpHが調節され得る。上記緩衝剤としては特に限定されないが、6.0~8.5のpH範囲において充分な緩衝能力を有する任意の緩衝剤を使用することができる。このpH範囲の緩衝剤としては、リン酸塩、トリス、ビス-トリスプロパン、N-トリス(ヒドロキシメチル)メチル-2-アミノエタンスルホン酸(TES)、2-モルフォリノエタンスルホン酸1水和物(MES)、ピペラジン-1,4-ビス(2-エタンスルホン酸)(piperazine-1,4-bis (2-ethanesulfonic acid))(PIPES)、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸(2-[4-(2-Hydroxyethyl)-1-piperazinyl] ethanesulfonic acid)(HEPES)、および3-[N-トリス(ヒドロキシメチル)メチルアミノ]-2-ヒドロキシプロパンスルホン酸(TAPSO)などが挙げられる。溶液中の緩衝剤の濃度は特に限定されないが、例えば、20~200mMであり得る。
 本実施形態の亜リン酸デヒドロゲナーゼタンパク質の製造方法は、上記タンパク質を発現している宿主、または、上記タンパク質を発現している宿主の破砕物を加熱する工程を包含することが可能である。後述する実施例に示すように、本実施形態の亜リン酸デヒドロゲナーゼタンパク質は耐熱性が高い。それ故に、上記加熱する工程によって、亜リン酸デヒドロゲナーゼの活性を失うこと無く、他の不要な酵素の活性を失わせることが可能である。つまり、本実施形態の製造方法によって得られる亜リン酸デヒドロゲナーゼに不要な酵素の活性が混入することを防止することができる。
 上記加熱する工程を行うための具体的な方法は特に限定されないが、例えば、タンパク質を発現している宿主を含む培養液を加熱することが可能であり、タンパク質を発現している宿主を培養液から分離した後で当該宿主を加熱することも可能であり、タンパク質を発現している宿主を培養液から分離した後で当該宿主を破砕し、当該破砕物を加熱することも可能である。
 上記加熱する工程は、上記タンパク質を発現している宿主、または、上記タンパク質を発現している宿主の破砕物を、35℃~55℃に加熱することが好ましく、40℃~52.5℃に加熱することが更に好ましく、40℃~50℃に加熱することが更に好ましく、40℃~45℃に加熱することが最も好ましい。
 加熱する時間は特に限定されないが、例えば、0分間~60分間であることが好ましく、15分間~30分間であることが更に好ましい。
 上記加熱する工程では、発現している亜リン酸デヒドロゲナーゼタンパク質とプロテアーゼ阻害剤とを共存させることが好ましい。上記構成によれば、たとえプロテアーゼが存在したとしても、当該プロテアーゼによって亜リン酸デヒドロゲナーゼタンパク質が分解されることを防止することができる。
 上記プロテアーゼ阻害剤としては特に限定されず、適宜、公知のプロテアーゼ阻害剤を用いることが可能である。上記プロテアーゼ阻害剤としては、例えば、低分子量インヒビター(例えば、ジイソプロピルフルオロリン酸、フェニルメタンスルホニルフルオリド、p-メルクリ安息香酸、ヨード酢酸、ジアゾアセチル-DL-ノルロイシンメチルエステル、ホスホラミドなど)、ペプチド性インヒビター(例えば、ロイペプチン、アンチパイン、キモスタチン、ペプスタチンなど)、タンパク質性インヒビター(例えば、α2マクログロブリン、カルパスタチンなど)を挙げることができるが、これらに限定されない。
 〔3.NADHまたはNADPHの製造方法〕
 本実施形態のNADHの製造方法は、本発明の亜リン酸デヒドロゲナーゼタンパク質の製造方法によって製造される亜リン酸デヒドロゲナーゼタンパク質を酵素として用いて、HPO 2-とNADとHOとを反応させる方法である。なお、具体的な反応式については、〔背景技術〕の欄の(反応式1)を参照のこと。
 本実施形態のNADPHの製造方法は、本発明の亜リン酸デヒドロゲナーゼタンパク質の製造方法によって製造される亜リン酸デヒドロゲナーゼタンパク質を酵素として用いて、HPO 2-とNADPとHOとを反応させる方法である。なお、具体的な反応式については、〔背景技術〕の欄の(反応式2)を参照のこと。
 上記反応を行う時の温度は特に限定されないが、例えば、35℃~55℃であることが好ましく、40℃~52.5℃であることが更に好ましく、40℃~50℃であることが更に好ましく、40℃~45℃であることが最も好ましい。後述する実施例に示すように、本発明の亜リン酸デヒドロゲナーゼタンパク質の製造方法によって製造される亜リン酸デヒドロゲナーゼタンパク質は、従来の亜リン酸デヒドロゲナーゼと比較して、至適温度が非常に高い。それ故に、上記構成によれば、効率よく大量のNADHまたはNADPHを製造することができる。また、上記構成によれば、反応温度が高いので、反応系に不要な酵素が混入していたとしても、混入した不要な酵素の活性のみを失わせることができる。
 なお、反応系を上記温度へ調節する場合には、反応系に対して外部から温度を加えることによって温度を調節してもよいが、化学反応が進むにつれて発生する反応熱などによって温度を調節してもよい。つまり、本発明の亜リン酸デヒドロゲナーゼタンパク質の製造方法によって製造される亜リン酸デヒドロゲナーゼタンパク質を用いれば、反応系を冷却する必要がないという利点もある。
 上記反応は、亜ヒ酸塩、硝酸塩、硫酸塩またはNaClの存在下で行われることも可能である。後述する実施例に示すように、従来の亜リン酸デヒドロゲナーゼは、亜ヒ酸塩、硝酸塩、硫酸塩またはNaClの存在によって、大幅に活性が低下する。一方、本発明の亜リン酸デヒドロゲナーゼタンパク質の製造方法によって製造される亜リン酸デヒドロゲナーゼタンパク質は、亜ヒ酸塩、硝酸塩、硫酸塩またはNaClが存在しても、大幅に活性が低下することはない。それ故に、本実施形態のNADHまたはNADPHの製造方法であれば、たとえ亜ヒ酸塩、硝酸塩、硫酸塩またはNaClが存在したとしても、効率よくNADHまたはNADPHを製造することができる。
 反応系における亜ヒ酸塩、硝酸塩、硫酸塩またはNaClの濃度は特に限定されないが、例えば、100mM以下であることが好ましく、70mM以下であることが更に好ましく、50mM以下であることが更に好ましく、40mM以下であることが最も好ましいが、これらに限定されない。なお、その下限値は特に限定されないが、0.1mM、0.01mMまたは0mMであり得る。
 〔4.NADHまたはNADPHを製造するためのキット〕
 本実施形態のキットは、NADHまたはNADPHを製造するためのキットである。
 本実施形態のキットは、本発明の亜リン酸デヒドロゲナーゼタンパク質の製造方法によって製造されるタンパク質を備えるものであり得る。また、本実施形態のキットは、本発明の亜リン酸デヒドロゲナーゼタンパク質を所望の宿主内で発現させるためのベクターを備えるものであってもよい。これらの構成の詳細については既に説明したので、ここではその説明を省略する。
 本発明の遺伝子は、本発明のタンパク質をコードする遺伝子である。
 本発明の遺伝子は、以下の(c)または(d)のDNAからなる遺伝子であってもよい。つまり、
(c)配列番号2の塩基配列からなるDNA、
(d)配列番号2の塩基配列からなるDNAと相補的な塩基配列とストリンジェントな条件下でハイブリダイズし、かつ、亜リン酸デヒドロゲナーゼタンパク質をコードするDNA。
 本発明の亜リン酸デヒドロゲナーゼタンパク質の製造方法は、本発明のタンパク質を宿主内で発現させる工程と、上記宿主内で発現させたタンパク質を溶液中に可溶化させる工程と、を有し得る。
 本発明の亜リン酸デヒドロゲナーゼタンパク質の製造方法では、上記発現させる工程は、本発明の遺伝子を含むベクターを宿主へ導入する工程を包含し得る。
 本発明の亜リン酸デヒドロゲナーゼタンパク質の製造方法では、上記可溶化させる工程は、上記タンパク質を発現している宿主を、0(w/v)または0(w/v)よりも多く0.1%(w/v)以下の界面活性剤、および、0(w/v)または0(w/v)よりも多く50mM以下のNaClの少なくとも一方を含有する溶液中で破砕する工程を包含し得る。
 本発明の亜リン酸デヒドロゲナーゼタンパク質の製造方法では、上記界面活性剤は、Tween-20またはTriton-X100であってもよい。
 本発明の亜リン酸デヒドロゲナーゼタンパク質の製造方法は、上記タンパク質を発現している宿主、または、上記タンパク質を発現している宿主の破砕物を加熱する工程を包含し得る。
 本発明の亜リン酸デヒドロゲナーゼタンパク質の製造方法では、上記加熱する工程は、上記タンパク質を発現している宿主、または、上記タンパク質を発現している宿主の破砕物を、40℃~50℃へ加熱する工程であってもよい。
 本発明のNADHまたはNADPHの製造方法では、本発明のタンパク質、または、本発明の製造方法によって製造される亜リン酸デヒドロゲナーゼタンパク質を酵素として用いて、HPO 2-と、NADまたはNADPと、HOとを反応させる。
 本発明のNADHまたはNADPHの製造方法では、上記反応は、40℃~50℃にて行われ得る。
 本発明のNADHまたはNADPHの製造方法では、上記反応は、亜ヒ酸塩、硝酸塩、硫酸塩またはNaClの存在下で行われ得る。
 〔1.耐熱性を指標とした亜リン酸デヒドロゲナーゼのスクリーニング〕
 45℃の環境下においても生育し得、かつ、亜リン酸依存的なNADH生産能を有する微生物をスクリーニングした。以下に、スクリーニングの詳細について説明する。
 採取した土壌を無菌水へ溶解した後、0.4mLの溶解物を、0.5mMの亜リン酸を含有するMOPS液体培地(0.5mM phosphite、22.2mM glucose、40mM potassium morpholinopropane sulfonate[pH7.2]、50mM NaCl、9.52mM NHCl、4mM Tricine、2mM KHPO、0.52mM MgCl、0.28mM KSO、0.01mM FeSO、0.0005mM CaCl、20μM thiamine)3.6mLに対して加え、45℃にて7日間の集積培養を行った。
 7日間の集積培養の後、当該培養物を、0.5mMの亜リン酸を含むMOPS寒天培地(0.5mM phosphite、22.2mM glucose、40mM potassium morpholinopropane sulfonate[pH7.2]、50mM NaCl、9.52mM NHCl、4mM Tricine、2mM KHPO、0.52mM MgCl、0.28mM KSO、0.01mM FeSO、0.0005mM CaCl、20μM thiamine、1.5% Agar)、2mMのリン酸を含むMOPS寒天培地、および、亜リン酸およびリン酸を含まないMOPS寒天培地に植菌し、45℃にて1~3日間の培養を行った。その後、0.5mMの亜リン酸を含むMOPS寒天培地上に出現した微生物のコロニーを、複数個、単離した。
 各コロニーを形成する微生物を、0.5mMの亜リン酸を含有するMOPS液体培地を用いて培養し、各微生物について、亜リン酸デヒドロゲナーゼ活性を有するか否か検討した。
 以下に、亜リン酸デヒドロゲナーゼ活性の測定方法について説明する。
 グリセロール溶液中にて凍結保存している各微生物を、4mLの2×YT液体培地に植菌し、45℃にて一晩培養した。1mLの培養液を1.5mL容量のチューブ内へ入れ、当該チューブを12000rpmにて5分間遠心分離した後、上清を捨てて菌体のペレットを得た。
 培地由来のリン酸を除くために、上記菌体のペレットを1mLのMOPS(0)溶液(リン成分を含まないMOPS培地)中に懸濁し、当該懸濁液を12000rpmにて5分間遠心分離した後、上清を捨てて菌体のペレットを得た。当該洗浄操作をもう一度行った後、得られた菌体のペレットを1mLのMOPS(0)溶液中に懸濁した後、100μLの当該懸濁液を10mLのMOPS-亜リン酸(0.5mM)液体培地に植菌して、45℃にて培養した。
 24~72時間の培養を行って、OD600の値が1.5~2.0に達した時に、全培養液を50mLの容量のチューブに移し、当該チューブを6000rpm、10分間の遠心分離処理にかけた。遠心分離処理の後、上清を捨てて菌体のペレットを得た。
 上記菌体のペレットを10mLのMOPS(0)溶液中に懸濁した後で、出力20%にて、10分間の超音波破砕(Digital sonifier, BRANSON)を行った。超音波破砕処理を施したMOPS(0)溶液を超遠心分離用チューブ(Centrifuge Tubes, BECKMAN, 349622)に分注し、当該チューブを、超遠心分離機(OptimaTM TLX Ultracentrifuge, BECKMAN COULTER)にて、270,000×g、4℃、45分間の超遠心分離にかけた。
 超遠心分離後の上清を回収して、当該上清を、亜リン酸デヒドロゲナーゼ活性測定用の粗抽出液とした。当該粗抽出液(タンパク質量:10μg)、NAD(1mM)、亜リン酸(1mM)およびMOPS-KOHbuffer(20mM、pH7.4)を含む、全量1000μLの反応液を調製し、当該反応液の温度を45℃に上昇させて反応を開始させた。所定の時間の間(0~180分)、所定の時間間隔にて100μLずつのサンプルを採取し、各サンプルの吸光度(340nm)を測定した。亜リン酸デヒドロゲナーゼ活性は、1mgのタンパク質が単位時間あたりに生成するNADH量として評価した。
 以上のようにして、45℃の条件下においても生育し得、かつ、亜リン酸依存的にNADH生産能を有する微生物をスクリーニングした。なお、スクリーニングされた微生物の数は、5菌株であった。
 〔2.スクリーニングした微生物の分類、および、亜リン酸デヒドロゲナーゼ遺伝子の取得〕
 上述した5菌株の粗抽出液中の亜リン酸デヒドロゲナーゼ活性はほぼ同程度であるとともに、当該5菌株は形態学的および生理学的に似ていた。それ故に、上記5菌株は、全て近縁種の菌であると考えられた。そこで、そこで、5菌株中で最も増殖に優れた菌株(4506株)を以降の解析に用いた。
 まず、4506株を、16S rRNA(16S ribosomal RNA)の塩基配列に基づいて分類するとともに、各菌株の亜リン酸デヒドロゲナーゼ遺伝子の塩基配列を決定した。具体的な方法について、以下に詳細に説明する。
 文献(J.R.Marchesi,et al.,Applied and Environmental Microbiology,64,p.795-799(1998))に従って、上記スクリーニングによって得られた4506株から染色体DNAを抽出し、当該染色体DNAを用いて16s rRNA遺伝子を増幅した。
 まず、16S rRNA遺伝子をPCRによって増幅した。当該PCRには、プライマーとして、後述するプライマー1およびプライマー2を用い、東洋紡社製のKOD-plusを用いてPCR反応を行った。具体的なPCR反応条件としては、72℃にて5分間保温した後で、95℃の1分間の変性工程、55℃の1分間のアニーリング工程および72℃の1.5分間の伸長工程の3つの工程からなる反応サイクルを30サイクル行った。
・プライマー1:5’-AGAGTTTGATCCTGGCTCAG-3’(配列番号5)
・プライマー2:5’-GTCCCGCAACGAGCGCAAC -3’(配列番号6)
 以上のようにして増幅した16S rRNAの塩基配列を、DYEnamic ET Terminator(アプライドバイオシステムズ社製)を用いて決定した。具体的な方法は、DYEnamic ET Terminatorに添付のプロトコールに従った。
 以上のようにして決定した16S rRNAの塩基配列を系統樹作成ツールであるClustal W2によって解析することにより、上述した4506株を分類した。なお、当該解析の具体的な方法は、Clustal W2に添付のプロトコールに従った。
 図1に、スクリーニングされた4506株の系統樹を示す。この結果より、4506株はRalstonia属のバクテリアであることが明らかとなった。このことから当該菌株をRalstonia sp. strain 4506と名付けた。
 図1中の「Ralstonia sp. 4506」が、スクリーニングされた4506株である。また、「Ralstonia sp. 5_7_47FAA」、「Ralstonia metallidurans CH34」、「Alcaligenes faecalis WN2072」および「Pseudomonas stutzeri WM88」は、周知の菌株であるとともに、その亜リン酸デヒドロゲナーゼ遺伝子および亜リン酸デヒドロゲナーゼタンパク質も周知であるか、または、亜リン酸デヒドロゲナーゼ遺伝子および亜リン酸デヒドロゲナーゼタンパク質の存在が予測されていた。
 「Ralstonia sp. 5_7_47FAA」は、分類学上、4506株と近縁であるとともに、その亜リン酸デヒドロゲナーゼ遺伝子の存在が予測されていた。但し、当該亜リン酸デヒドロゲナーゼ遺伝子がコードするタンパク質が実際に亜リン酸デヒドロゲナーゼ活性を有しているか否かは実証されていないとともに、亜リン酸デヒドロゲナーゼ遺伝子の3’末端側の塩基配列(換言すれば、亜リン酸デヒドロゲナーゼタンパク質のC末端側のアミノ酸配列)は、未知であった(例えば、「http://www.ncbi.nlm.nih.gov/nuccore/308920199」参照)。勿論、「5747FAA」の推定上の亜リン酸デヒドロゲナーゼ遺伝子がコードする亜リン酸デヒドロゲナーゼタンパク質の各種性質(例えば、可溶性および熱安定性など)については、全く解析されていなかった。
 スクリーニングにおいて4506株は45℃で生育したため、本菌が有する亜リン酸デヒドロゲナーゼは耐熱性を有することが予想されたため、当該菌株から亜リン酸デヒドロゲナーゼ遺伝子のスクリーニングを試みた。
 4506株の亜リン酸デヒドロゲナーゼ遺伝子(ptxD)は、既知のものとは異なると考えられたため、周知の亜リン酸デヒドロゲナーゼ遺伝子の高度保存領域に基づいて設計したプライマーを用いたPCRによって遺伝子の内部領域を取得するとともに、インバースPCRによって遺伝子の5’領域および3’領域を取得することによって、亜リン酸デヒドロゲナーゼ遺伝子の全長配列の取得を取得した。以下に、当該方法について、更に詳細に説明する。
 まず、周知のptxDにおいて高度に保存された2箇所のアミノ酸配列(P stutzeri WM88の76-82番目、261-267番目)に基づいて、縮重プライマー(PTXD1およびPTXD2)を作製した。以下に、これらの縮重プライマーの塩基配列を示す。
・PTXD1:5’-AARGGNTAYGAYAAYTTYGAY-3’(配列番号7)
・PTXD2:5’-RTCYTCCATYTCRTANACRTC-3’(配列番号8)
上記縮重プライマーを用いて、4506株の染色体を鋳型としてPCRを行った。その結果、約600bpの増幅されたDNA断片を取得した。
 増幅されたDNA断片をpGEM T-easy vector(Promega社)へクローニングして、増幅されたDNA断片の塩基配列を決定した。決定された塩基配列から、増幅されたDNA断片が、ptxDの内部配列であることが確認された。
 決定された塩基配列に基づいてインバースPCR用のプライマー(PTXD3およびPTXD4)を作製した。以下に、これらのプライマーの塩基配列を示す。
・PTXD3:5’-TCGTGGATGAGAATGCGGTGATAGC-3’(配列番号9)
・PTXD4:5’-ATAGTCAGTTCAGCGGTCGGGATCG-3’(配列番号10)
インバースPCRのテンプレートとしては、4506株の0.5μgの染色体を0.5μLの制限酵素Pst Iを用いて12時間消化した後に、T4 DNA ligaseを用いて自己環状化させて更に精製したものを、インバースPCRの反応溶液の全体積に対して20%量用いた。PTXD3とPTXD4とを用いたインバースPCRによって、約2.5kbのDNA断片を得た。
 上記DNA断片をpGEM T―easy vectorへクローニングした後、当該DNA断片の両末端側の塩基配列を決定し、ptxDの5’領域および3’領域を決定した。これらの配列に基づいて、ptxDの全長配列を取得するためのプライマー(PTXD5およびPTXD6)を作製した。以下に、これらのプライマーの塩基配列を示す。
・PTXD5:5’-CGGGATCCGATGAAGCCCAAAGTCGTCCTC-3’(配列番号11)
・PTXD6:5’-CGGAATTCGCCGCCTTTACTCCCGGATAC -3’(配列番号12)
PTXD5およびPTXD6を用いて、4506株の染色体を鋳型としてPCRを行い、約1kbのDNA断片を増幅した。増幅されたDNA断片の塩基配列を、上記と同様の方法にて決定した。
 上記亜リン酸デヒドロゲナーゼ遺伝子の塩基配列を配列番号2に示す。また、当該亜リン酸デヒドロゲナーゼ遺伝子がコードする亜リン酸デヒドロゲナーゼタンパク質のアミノ酸配列を配列番号1に示す。なお、上述した「http://www.ncbi.nlm.nih.gov/nuccore/308920199」に記載されている塩基配列は、配列番号1に示す塩基配列の部分配列と完全に一致していた。
 〔3.大腸菌を用いた亜リン酸デヒドロゲナーゼタンパク質の発現〕
 周知の方法によって、プラスミドであるpET21b(Novagen社製)へ、上述した配列番号2に示す塩基配列、または、P stutzeri WM88の亜リン酸デヒドロゲナーゼ遺伝子(配列番号4)を挿入した(配列番号4の塩基配列によってコードされているタンパク質のアミノ酸配列を配列番号3に示す)。これによって、配列番号1に示す亜リン酸デヒドロゲナーゼタンパク質のC末端にHisタグが連結している融合タンパク質(図2の「PtxD4506」参照)、または、P stutzeri WM88の亜リン酸デヒドロゲナーゼタンパク質のC末端にHisタグが連結している融合タンパク質(図2の「PtxDPst」参照)の発現ベクターを作成した。
 周知の方法によって、上記発現ベクターの各々を用いて、コンピテントセルであるRosetta2(DE3)(Novagen社製)を形質転換した。
 上記形質転換体を、200mLのLB培地(培地1Lあたり、10gのpolypeptone、5gのyeast extract、および、5gのNaClを含む)へ植菌し、OD600が0.5になるまで37℃にて培養した。その後、当該培養物に対して濃度が1mMになるようにIPTG(isopropyl thiogalactoside)を加え、28℃にて更に3時間の培養を行った。
 上記培養物を、6,000rpm、15分間の遠心分離処理にかけ、沈殿物である菌を回収した。当該菌を破砕用バッファー(50mM Tris-HCl(pH:7.4)、50mM NaCl)へ懸濁した後、当該懸濁物に対して超音波処理を施すことによって、菌を破砕した。この後、菌の破砕液に対して最終濃度が0.1%になるようにTween20(登録商標)を加えて、氷上で15分間静置した。なお、図2において、当該破砕された菌を含む破砕用バッファーを「T」として示す。
 破砕された菌を含む破砕用バッファーに対して、15,000rpm、4℃、15分間の条件にて遠心分離処理を施した。遠心分離処理の後、上清と沈殿物とに分けた。なお、図2において、当該上清を「S」として示し、当該沈殿物を「I」として示す。
 上記上清をHisTrapカラム(GEヘルスケア社製)へ供し、当該カラムに添付されたプロトコールにしたがって、配列番号1に示す亜リン酸デヒドロゲナーゼタンパク質のC末端にHisタグが連結している融合タンパク質を精製した。
 上述した、破砕された菌を含む破砕用バッファー(T)、上清(S)および沈殿物(I)をSDS-PAGEにて分離した後、アクリルアミドゲルをCBBステインワン(ナカライ社製)にて染色して、亜リン酸デヒドロゲナーゼタンパク質の量を測定した。
 その結果を図2に示す。
 P stutzeri WM88の亜リン酸デヒドロゲナーゼタンパク質のC末端にHisタグが連結している融合タンパク質の場合には、融合タンパク質の約18.4%が上清(S)中に存在し、融合タンパク質の約81.6%が沈殿物(I)中に存在していた。一方、配列番号1に示す亜リン酸デヒドロゲナーゼタンパク質のC末端にHisタグが連結している融合タンパク質の場合には、融合タンパク質の約91.4%が上清(S)中に存在し、融合タンパク質の約8.6%が沈殿物(I)中に存在していた。以上の結果から、配列番号1に示す亜リン酸デヒドロゲナーゼタンパク質のC末端にHisタグが連結している融合タンパク質は、劇的に可溶性が上昇していることが明らかになった。
 〔4.亜リン酸デヒドロゲナーゼタンパク質の耐熱性〕
 〔3.大腸菌を用いた亜リン酸デヒドロゲナーゼタンパク質の発現〕にてHisTrapカラムを用いて精製したPtxD4506およびPtxDPstについて、耐熱性を検討した。以下に、耐熱性の測定方法について説明する。
 精製したPtxD4506およびPtxDPstの各々を、最終濃度が0.2mg/mLになるように50mM MOPSバッファー(pH7.4)へ加え、酵素溶液を調製した。100μLの上記酵素溶液を1.5mLの容量のチューブへ入れ、蒸発を防ぐために、当該酵素溶液に対して100μLのmineral oilを添加した。当該チューブを、10℃~60℃の温度で12時間維持した。経時的に10μL(2μg)の酵素溶液をサンプリングして、当該酵素溶液に対して、1mMのNADおよび1mMの亜リン酸を含む20mMのMOPS―KOH buffer(pH7.4)490μLを加えて、合計500μLの反応系で、亜リン酸デヒドロゲナーゼ活性の測定を行った。
 図3に測定結果を示す。
 図3に示すように、PtxDPstは、約35℃にて比活性が最も高く、35℃よりも低い温度であっても、35℃よりも高い温度であっても、急激に比活性が低下することが明らかになった。つまり、PtxDPstは、最適温度が低い(約35℃)とともに、反応に適した温度の範囲が非常に狭いことが明らかになった。
 一方、PtxD4506は、約50℃にて比活性が最も高く、50℃よりも低い温度であっても、50℃よりも高い温度であっても、広い温度範囲において高い比活性を維持できることが明らかになった。具体的には、PtxD4506は、35℃~55℃における比活性の平均値が高く、40℃~52.5℃における比活性の平均値が更に高く、40℃~50℃における比活性の平均値が更に高いことが明らかになった。このことは、高温になりやすい物質生産工程(例えば、NADHまたはNADPH生産工程)においても、融合タンパク質PtxD4506が、安定して大量の物質を生産し得ることを示している。また、このことは、亜リン酸デヒドロゲナーゼタンパク質の製造工程において、亜リン酸デヒドロゲナーゼを加熱したとしても、その活性が失われないことを示している。
 〔5.亜リン酸デヒドロゲナーゼタンパク質の反応速度論的解析〕
 〔3.大腸菌を用いた亜リン酸デヒドロゲナーゼタンパク質の発現〕にてHisTrapカラムを用いて精製したPtxD4506およびPtxDPstについて、反応速度を比較した。以下に、反応速度の測定方法について説明する。
 〔背景技術〕の欄に記載した(反応式1)に基づいて、PtxD4506およびPtxDPstの反応速度を算出した。
 具体的には、(反応式1)に示す反応系において、7.5μgの融合タンパク質を用い、基質(NAD)の濃度を0.5microMから200microMへと変化させながら、NADHの生産速度を測定した。なお、融合タンパク質PtxD4506の反応温度は、40℃であり、融合タンパク質PtxDPstの反応温度は、28℃であった。
 測定された基質(NAD)の濃度およびNADHの生産速度に基づいて、周知の酵素反応速度論的手法(例えば、「蛋白質・酵素の基礎実験法(改訂第2版)、発行所:株式会社 南江堂」参照)に基づいて、Km(μM)、Vmax(μmol/min/m)、Kcat(min-1)、Kcat/Kmの値を算出した。なお、上述した各種パラメータは、3回行った実験の各々について算出するとともに、3回行った実験の平均値として算出した。また、Kcatは、「Kcat=Vmax(μmol/min/mg)×(MW/10)」の式にて算出した。
 実験結果を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1から明らかなように、PtxD4506のKmは、PtxDPstのKmの約1/3であった。また、PtxD4506のVmaxは、PtxDPstの約1.4倍であった。また、PtxD4506のKcatは、237.4(min-1)であり、PtxDPstのKcatは、169.6(min-1)であった。
 以上の実験データから、PtxD4506のKcat/Kmは、PtxDPstのKcat/Kmの約4.4倍であることが明らかになった。つまり、PtxD4506は、PtxDPstよりも高い反応効率を有することが明らかになった。
 〔6.阻害剤存在下における亜リン酸デヒドロゲナーゼタンパク質の活性〕
 〔3.大腸菌を用いた亜リン酸デヒドロゲナーゼタンパク質の発現〕にてHisTrapカラムを用いて精製したPtxD4506およびPtxDPstについて、様々な阻害剤が存在する環境下においても触媒活性を示し得るか否かを検討した。実験方法は、文献「Costas et al., Journal of Biological Chemistry, 2001, 276, 17429-17436」に記載の方法に従った。以下に、簡単に実験方法を説明する。
 100μLの100mM MOPS-KOH(pH7.25)、50μLの10mM NAD、5μLの5mM 亜リン酸塩、50μLの40mM 各種阻害剤(亜ヒ酸塩(Arsenite)、硝酸塩(Nitrate)、硫酸塩(Sulfate)またはNaCl)、294μLのHO、および、1μLの0.5mg/mL タンパク質含有液(PtxD4506含有液、PtxDPst含有液、または、タンパク質を含有しない液体(ネガティブコントロール))を混合して反応液を生成した。
 上記反応液を、60分間反応させた。なお、PtxD4506については、45℃にて反応を行い、PtxDPstについては、30℃にて反応を行った。その後、OD340を測定した。タンパク質を含有しない液体(ネガティブコントロール)のOD340の値を100として、各サンプルのOD340の相対値を算出した。なお、各実験を4回以上行い、当該4回または5回の実験における相対値の平均値も算出した。
 実験結果を、下記表2に示し、表2の数値データをグラフ化した図面を図4に示す。
Figure JPOXMLDOC01-appb-T000004
 表2および図4から明らかなように、PtxDPstの活性は、亜ヒ酸塩、硝酸塩、硫酸塩またはNaClの存在下で阻害されることが明らかになった。
 一方、PtxD4506の活性は、亜ヒ酸塩、硝酸塩、硫酸塩またはNaClの存在下であっても、高く維持されることが明らかになった。このことは、亜ヒ酸塩、硝酸塩、硫酸塩またはNaClの存在下(特に、亜ヒ酸塩、硝酸塩または硫酸塩の存在下)において亜リン酸デヒドロゲナーゼを用いる必要がある場合には、PtxD4506を用いることが有利であることを示している。なお、亜リン酸デヒドロゲナーゼを用いる必要がある場合の一例としては、NADHを生産する場合、NADPHを生産する場合、亜リン酸を定量する場合などを挙げることができるが、これらに限定されない。
 本発明は、以上説示した各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。
 本発明は、NADHまたはNADPHを製造する分野に利用することができる。また、本発明は、亜リン酸を定量する分野に用いることができる。

Claims (12)

  1.  以下の(a)または(b)に記載のタンパク質。
    (a)配列番号1のアミノ酸配列からなるタンパク質。
    (b)配列番号1のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸からなり、かつ、亜リン酸デヒドロゲナーゼ活性を有するタンパク質。
  2.  請求項1に記載のタンパク質をコードする遺伝子。
  3.  以下の(c)または(d)のDNAからなる、請求項2に記載の遺伝子。
    (c)配列番号2の塩基配列からなるDNA。
    (d)配列番号2の塩基配列からなるDNAと相補的な塩基配列とストリンジェントな条件下でハイブリダイズし、かつ、亜リン酸デヒドロゲナーゼタンパク質をコードするDNA。
  4.  請求項1に記載のタンパク質を宿主内で発現させる工程と、上記宿主内で発現させたタンパク質を溶液中に可溶化させる工程と、を有する亜リン酸デヒドロゲナーゼタンパク質の製造方法。
  5.  上記発現させる工程は、請求項2または3に記載の遺伝子を含むベクターを宿主へ導入する工程を包含する請求項4に記載の亜リン酸デヒドロゲナーゼタンパク質の製造方法。
  6.  上記可溶化させる工程は、上記タンパク質を発現している宿主を、0(w/v)または0(w/v)よりも多く0.1%(w/v)以下の界面活性剤、および、0(w/v)または0(w/v)よりも多く50mM以下のNaClの少なくとも一方を含有する溶液中で破砕する工程を包含することを特徴とする請求項4または5に記載の亜リン酸デヒドロゲナーゼタンパク質の製造方法。
  7.  上記界面活性剤は、Tween-20またはTriton-X100であることを特徴とする請求項6に記載の亜リン酸デヒドロゲナーゼタンパク質の製造方法。
  8.  上記タンパク質を発現している宿主、または、上記タンパク質を発現している宿主の破砕物を加熱する工程を包含することを特徴とする請求項4~7の何れか1項に記載の亜リン酸デヒドロゲナーゼタンパク質の製造方法。
  9.  上記加熱する工程は、上記タンパク質を発現している宿主、または、上記タンパク質を発現している宿主の破砕物を、40℃~50℃へ加熱する工程であることを特徴とする請求項8に記載の亜リン酸デヒドロゲナーゼタンパク質の製造方法。
  10.  請求項1に記載のタンパク質、または、請求項4~9の何れか1項に記載の方法によって製造される亜リン酸デヒドロゲナーゼタンパク質を酵素として用いて、HPO 2-と、NADまたはNADPと、HOとを反応させることを特徴とするNADHまたはNADPHの製造方法。
  11.  上記反応は、40℃~50℃にて行われることを特徴とする請求項10に記載のNADHまたはNADPHの製造方法。
  12.  上記反応は、亜ヒ酸塩、硝酸塩、硫酸塩またはNaClの存在下で行われることを特徴とする請求項10または11に記載のNADHまたはNADPHの製造方法。
PCT/JP2012/060293 2011-04-26 2012-04-16 亜リン酸デヒドロゲナーゼタンパク質の製造方法およびその利用 WO2012147556A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013512018A JP5892621B2 (ja) 2011-04-26 2012-04-16 亜リン酸デヒドロゲナーゼタンパク質の製造方法およびその利用
US14/113,346 US9273290B2 (en) 2011-04-26 2012-04-16 Method for producing phosphite dehydrogenase protein and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011098670 2011-04-26
JP2011-098670 2011-04-26

Publications (1)

Publication Number Publication Date
WO2012147556A1 true WO2012147556A1 (ja) 2012-11-01

Family

ID=47072078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060293 WO2012147556A1 (ja) 2011-04-26 2012-04-16 亜リン酸デヒドロゲナーゼタンパク質の製造方法およびその利用

Country Status (3)

Country Link
US (1) US9273290B2 (ja)
JP (1) JP5892621B2 (ja)
WO (1) WO2012147556A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024998A1 (ja) 2012-08-09 2014-02-13 国立大学法人広島大学 亜リン酸デヒドロゲナーゼ遺伝子をマーカーとした微生物の選択的培養方法
WO2015031441A2 (en) 2013-08-27 2015-03-05 Novogy, Inc. Microorganisms engineered to use unconventional sources of phosphorus or sulfur
JP2015128397A (ja) * 2014-01-08 2015-07-16 国立大学法人広島大学 亜リン酸デヒドロゲナーゼ遺伝子、および、当該遺伝子を用いた出芽酵母の選択的培養方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6993660B2 (ja) 2016-08-31 2022-02-15 国立大学法人広島大学 形質転換体、形質転換体の製造方法、および、当該形質転換体を用いた還元型リン化合物の有無の検出方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003213209A1 (en) * 2002-02-22 2003-09-09 The Board Of Trustees Of The University Of Illinois Nad phosphite oxidoreductase a novel catalyst from bacteria for regeneration of nad(p)h
CA2529063A1 (en) * 2003-06-11 2004-12-16 Biotechnology Research And Development Corporation Phosphite dehydrogenase mutants for nicotinamide cofactor regeneration
US20080148432A1 (en) * 2005-12-21 2008-06-19 Mark Scott Abad Transgenic plants with enhanced agronomic traits
WO2006074194A2 (en) * 2005-01-05 2006-07-13 Biotechnology Research And Development Corporation Engineered phosphite dehydrogenase mutants for nicotinamide cofactor regeneration
WO2008131215A2 (en) * 2007-04-19 2008-10-30 Biotechnology Research And Development Corporation Engineered phosphite dehydrogenase mutants

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
AKIO KURODA ET AL.: "Biotechnology for utilizing reduced phosphorus compounds", ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, vol. 63, 25 August 2011 (2011-08-25), JAPAN, pages 93 *
DATABASE GENBANK 18 October 2010 (2010-10-18), "Definition: phosphonate dehydrogenase (NAD-dependent phosphitedehydrogenase) [Ralstonia sp. 5_7_47FAA]", retrieved from http://www.ncbi.nlm.nih. gov/protein/efp65990 accession no. FP65990 *
DATABASE GENBANK 19 April 2011 (2011-04-19), "Definition:Alicycliphilus denitrificans K601, complete genome", retrieved from http://www.ncbi.nlm.nih.gov/nuccore/ 329308025?sat=14&satkey=10503485 accession no. P002657 *
GARCIA COSTAS AM ET AL.: "Purification and Characterization of a Novel Phosphorus-oxidizing Enzyme from Pseudomonas stutzeri WM88", J. BIOL. CHEM., vol. 276, 2001, pages 17429 - 17436, XP002979983, DOI: doi:10.1074/jbc.M011764200 *
HIROTA R ET AL.: "Isolation and characterization of a soluble and thermostable phosphite dehydrogenase from Ralstonia sp. Strain 4506", J. BIOSCI. BIOENG., vol. 113, no. 4, April 2012 (2012-04-01), pages 445 - 450, XP055181193, DOI: doi:10.1016/j.jbiosc.2011.11.027 *
JOHANNES TW ET AL.: "Directed Evolution of a Thermostable Phosphite Dehydrogenase for NAD(P)H Regeneration", APPL. ENVIRON. MICROBIOL., vol. 71, no. 10, 2005, pages 5728 - 5734 *
JOHANNES TW ET AL.: "Efficient Regeneration of NADPH Using an Engineered Phosphite Dehydrogenase", BIOTECHNOL. BIOENG., vol. 96, no. 1, 2007, pages 18 - 26 *
MCLACHLAN MJ ET AL.: "Further improvement of phosphite dehydrogenase thermostability by saturation mutagenesis", BIOTECHNOLOGY AND BIOENGINEERING, vol. 99, no. ISSUE2, 2008, pages 268 - 274 *
RYUICHI HIROTA ET AL.: "Construction and characterization of an NADH regeneration system using phosphite dehydrogenase", ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, vol. 63, 25 August 2011 (2011-08-25), JAPAN, pages 194 *
TATSUYA FUJIBUCHI ET AL.: "Identification and characterization of phosphite dehydrogenase", ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, vol. 63, 25 August 2011 (2011-08-25), JAPAN, pages 193 *
VRTIS JM ET AL.: "Phosphite Dehydrogenase: A Versatile Cofactor-Regeneration Enzyme", ANGEW. CHEM. INT. ED., vol. 41, no. 17, 2002, pages 3257 - 3259, XP002311088, DOI: doi:10.1002/1521-3773(20020902)41:17<3257::AID-ANIE3257>3.0.CO;2-N *
WOODYER R ET AL.: "Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration", FEBS J., vol. 272, no. 15, 2005, pages 3816 - 3827, XP055033097, DOI: doi:10.1111/j.1742-4658.2005.04788.x *
WOODYER R ET AL.: "Optimizing a biocatalyst for improved NAD(P)H regeneration: directed evolution of phosphite dehydrogenase", COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, vol. 9, no. 4, 2006, pages 237 - 245 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024998A1 (ja) 2012-08-09 2014-02-13 国立大学法人広島大学 亜リン酸デヒドロゲナーゼ遺伝子をマーカーとした微生物の選択的培養方法
JP2017195907A (ja) * 2012-08-09 2017-11-02 国立大学法人広島大学 亜リン酸デヒドロゲナーゼ遺伝子をマーカーとした微生物の選択的培養方法
EP3395940A1 (en) 2012-08-09 2018-10-31 Hiroshima University Method for selectively culturing microorganism using phosphite dehydrogenase gene as marker
WO2015031441A2 (en) 2013-08-27 2015-03-05 Novogy, Inc. Microorganisms engineered to use unconventional sources of phosphorus or sulfur
CN105658801A (zh) * 2013-08-27 2016-06-08 诺沃吉公司 经工程改造以利用非常规的磷或硫源的微生物
EP3039149A4 (en) * 2013-08-27 2017-05-10 Novogy Inc. Microorganisms engineered to use unconventional sources of phosphorus or sulfur
AU2014311318B2 (en) * 2013-08-27 2017-11-02 Ginkgo Bioworks, Inc. Microorganisms engineered to use unconventional sources of phosphorus or sulfur
US10174296B2 (en) 2013-08-27 2019-01-08 Novogy, Inc. Microorganisms engineered to use unconventional sources of phosphorous or sulfur
US11535829B2 (en) 2013-08-27 2022-12-27 Ginkgo Bioworks, Inc. Microorganisms engineered to use unconventional sources of phosphorous or sulfur
JP2015128397A (ja) * 2014-01-08 2015-07-16 国立大学法人広島大学 亜リン酸デヒドロゲナーゼ遺伝子、および、当該遺伝子を用いた出芽酵母の選択的培養方法

Also Published As

Publication number Publication date
JPWO2012147556A1 (ja) 2014-07-28
US20140051134A1 (en) 2014-02-20
US9273290B2 (en) 2016-03-01
JP5892621B2 (ja) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5892621B2 (ja) 亜リン酸デヒドロゲナーゼタンパク質の製造方法およびその利用
JP5641738B2 (ja) 新規なグルコースデヒドロゲナーゼ
US9896705B2 (en) L-arabinose isomerase variants with improved conversion activity and method for production of D-tagatose using them
Duffaud et al. Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent flange formation
JP3910142B2 (ja) 耐熱性リボヌクレアーゼh
JP2007189905A (ja) 好アルカリ性サイクロデキストラン合成酵素遺伝子を含有するdna、組み換え体dna、および好アルカリ性サイクロデキストラン合成酵素の製造法
WO2018114576A1 (en) Glutathione reductase
Yoon et al. Cloning, Expression, and Characterization of UDP-glucose Pyrophosphorylase from Sphingomonas chungbukensis DJ77
JP4816103B2 (ja) グリセロールキナーゼ改変体
JP2005500852A (ja) ビタミンb12を製造する方法
Ozer Uyar et al. Cloning and expression of trehalose‐6‐phosphate synthase 1 from Rhizopus oryzae
JP3463951B2 (ja) 耐熱性ピログルタミルペプチダーゼ及びその遺伝子
JP4415247B2 (ja) 新規なグリセロールキナーゼ、該遺伝子及び該遺伝子を用いたグリセロールキナーゼの製造法
JP2005296010A (ja) 2−イソプロピルリンゴ酸シンターゼ活性を有する新規耐熱性タンパク質
JP2003144144A (ja) 菌体または菌体処理物を含有する液体の保存方法
KR100707989B1 (ko) 남세균 시네코시스티스 속의 이소코리스메이트 합성효소 유전자를 이용하여 코리스메이트로부터 이소코리스메이트를 생합성하는 방법
JP6171406B2 (ja) Dna修飾酵素およびその遺伝子
JP4280827B2 (ja) アセチルグルタミン酸キナーゼ活性を有する新規耐熱性タンパク質
JP2006288400A (ja) 耐熱性リボヌクレアーゼh
KR101296882B1 (ko) 써모코커스 와이오타푸엔시스 균주 유래의 dna 중합효소 변이체들 및 이의 이용
JP2014168404A (ja) 耐熱性1,3−βガラクトシル−N−アセチルヘキソサミンホスホリラーゼ
JP2008092814A (ja) メバロン酸リン酸化酵素活性を有する新規耐熱性タンパク質
JP2005296008A (ja) 水銀レダクターゼ活性を有する新規耐熱性タンパク質
JP2006238830A (ja) 新規乳酸脱水素酵素遺伝子及び乳酸の製造法
JP2007129908A (ja) システインプロテアーゼ及びその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12775990

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14113346

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013512018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12775990

Country of ref document: EP

Kind code of ref document: A1