WO2012144766A2 - 연소실 냉각장치 및 연소실 냉각 구조를 갖는 연소장치 - Google Patents

연소실 냉각장치 및 연소실 냉각 구조를 갖는 연소장치 Download PDF

Info

Publication number
WO2012144766A2
WO2012144766A2 PCT/KR2012/002787 KR2012002787W WO2012144766A2 WO 2012144766 A2 WO2012144766 A2 WO 2012144766A2 KR 2012002787 W KR2012002787 W KR 2012002787W WO 2012144766 A2 WO2012144766 A2 WO 2012144766A2
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
air
burner
wall
combustion
Prior art date
Application number
PCT/KR2012/002787
Other languages
English (en)
French (fr)
Other versions
WO2012144766A3 (ko
Inventor
민태식
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110035651A external-priority patent/KR20120118210A/ko
Priority claimed from KR1020110054978A external-priority patent/KR20120136019A/ko
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Publication of WO2012144766A2 publication Critical patent/WO2012144766A2/ko
Publication of WO2012144766A3 publication Critical patent/WO2012144766A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • F23D14/64Mixing devices; Mixing tubes with injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • F23M5/085Cooling thereof; Tube walls using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/02Baffles or deflectors for air or combustion products; Flame shields in air inlets

Definitions

  • the present invention relates to a combustion apparatus having a combustion chamber cooling apparatus and a combustion chamber cooling structure, and more particularly, to supply a part of air supplied from a blower to a cooling flow path formed between the outer wall and the inner wall of the combustion chamber and also to the inside of the inner wall of the combustion chamber.
  • the present invention relates to a combustion chamber cooling device and a combustion chamber cooling structure capable of cooling a combustion chamber without a heat insulating material and suppressing generation of condensate while reducing NOx generation by using a premixed burner.
  • a boiler is a heating device that heats water by using combustion heat generated during combustion of a fuel, and circulates the heated water along a pipe to be used for indoor heating or for hot water.
  • FIG. 1 is a schematic configuration diagram of a conventional general heating / hot water combined gas boiler.
  • the circulation pump 10 When the heating mode is activated, the circulation pump 10 is operated to transfer the heating water.
  • the transported water is heated by heat exchange in the combustion heat of the burner 12 and the main heat exchanger 11, and is transferred to each chamber in which heating is required via the three-way valve 15.
  • Heating return in which the temperature is lowered by heating in each chamber is reheated in the main heat exchanger (11) via the expansion tank (17).
  • the combustion chamber 13 is surrounded by the outer side of the burner 12, and hot combustion gas rises to the upper side main heat exchanger 11 side.
  • Reference numeral 14 denotes a blower
  • 16 denotes a hot water supply heat exchanger, respectively.
  • a burner 12 is provided in the combustion chamber 13 so that high temperature heat energy is generated by combustion of fuel.
  • FIG. 2 is a cross-sectional view showing a conventional dry type combustion chamber cooling apparatus.
  • the outer wall of the combustion chamber (2) is composed of a combustion chamber housing (21), the inner surface of the combustion chamber housing (21) Insulation material 25 is attached.
  • the heat of combustion is prevented from radiating heat to the outside through the combustion chamber housing 21.
  • the heat insulator 25 also serves to prevent the combustion chamber housing 21 from corroding due to high temperature combustion heat.
  • Such a combustion chamber cooling apparatus has a simple structure, but since the insulation must be used, the combustion chamber manufacturing cost increases and there is a problem that the combustion chamber cooling effect is not large even when the insulation is used.
  • FIG 3 is a cross-sectional view showing a conventional wet type combustion chamber cooling apparatus.
  • the heating water pipe 35 through which the heating water flows is wound around the side surface of the combustion chamber 3 in contact with the outer circumference of the combustion chamber housing 21. In the process of dissipating high temperature heat generated inside the combustion chamber 3 to the outside of the combustion chamber 3, some heat is absorbed by the heating water circulating in the heating water pipe 35.
  • the conventional wet combustion chamber cooling method has a higher thermal efficiency than dry, but the structure is complicated, there is a possibility that the condensed water is generated on the inner wall of the combustion chamber 3, there is a problem that the manufacturing cost increases when the copper pipe material.
  • a material for example, stainless steel
  • the present invention has been made in order to solve the above problems, it is an object of the present invention to provide a combustion chamber cooling apparatus that can easily prevent the overheating of the combustion chamber and improve the thermal efficiency of the boiler while simply configuring the combustion chamber cooling apparatus. .
  • Another object of the present invention is to provide a combustion apparatus having a combustion chamber cooling structure capable of cooling the combustion chamber without using a heat insulator and suppressing condensate generation while using a premix burner.
  • Another object of the present invention is to provide a combustion apparatus having a combustion chamber cooling structure that can reduce the load of a blower for supplying air.
  • the combustion chamber for cooling the combustion chamber by absorbing the heat of heat radiated from the combustion chamber having a burner for burning a mixture of combustion gas and air supplied from the blower.
  • the combustion chamber is composed of a combustion chamber outer wall and a combustion chamber inner wall which is spaced apart from the inner side of the combustion chamber outer wall and has a plurality of holes, and a space between the combustion chamber outer wall and the combustion chamber inner wall is provided in the blower. It is characterized by being in communication.
  • a part of the air supplied from the blower passes through an air distribution plate having a plurality of holes and is supplied to the burner, and the remaining part of the air supplied from the blower passes between the combustion chamber outer wall and the combustion chamber inner wall.
  • it may be configured to be supplied to the combustion chamber through a hole formed in the inner wall of the combustion chamber.
  • the air distribution plate is located in the lower portion of the burner, the lower end of the combustion chamber inner wall may be configured to be coupled around the edge of the air distribution plate.
  • a combustion apparatus having a combustion chamber cooling structure of the present invention includes a combustion apparatus including a blower for supplying air, a burner for burning a mixture of air and gas, and a heat exchanger in which heat is exchanged with internal water by the combustion heat of the burner.
  • the burner of claim 1 wherein the burner comprises a central portion located at the center of the burner and a peripheral portion surrounding the central portion;
  • the mixer is combusted in the center of the burner, it is characterized in that only the air is ejected from the periphery of the burner.
  • the combustion chamber formed between the burner and the heat exchanger is composed of a combustion chamber outer wall to form a cooling passage between the combustion chamber inner wall and the combustion chamber inner wall; A portion of the air blown out from the periphery of the burner is blown out into the cooling flow path, and the remaining air is blown out into the inner surface of the inner wall of the combustion chamber.
  • At least one air outlet is formed on the inner wall of the combustion chamber, and the air ejected into the cooling passage is introduced into the combustion chamber through the air outlet.
  • the burner is composed of a burner inner chamber and a burner outer chamber constituting the body of the burner and located on the inside and the outside, respectively;
  • An air connection flow path formed between the burner inner chamber and the burner outer chamber to form a flow path such that air supplied from the blower is ejected to the periphery of the burner;
  • One side of the burner inner chamber is characterized in that the fuel-air inlet through which the mixer is introduced, and the other side is provided with a burner salt ball for burning the introduced mixer.
  • an air inlet is formed outside the fuel-air inlet to form an inlet of the air connection flow path, and the fuel-air inlet and the air inlet have a concentric structure.
  • a flow path connecting portion for mixing the gas to the air supplied from the blower;
  • the flow passage connecting portion an inner tube connected to the fuel-air inlet, an outer tube installed in a concentric structure on the outside of the inner tube to form an air passage between the inner tube, and connected to the inner tube
  • a part of the air supplied from the blower passes between the combustion chamber outer wall and the combustion chamber inner wall to cool the combustion chamber and then supply it to the combustion chamber, thereby simplifying the structure of the combustion chamber cooling apparatus and reducing the production cost of the combustion chamber. There is an effect that can be reduced.
  • a part of the air supplied from the blower passes between the combustion chamber outer wall and the inner wall to cool the combustion chamber and then is supplied to the combustion chamber, and the air is also supplied to the inner wall of the combustion chamber.
  • Part of the ejection of the combustion chamber there is an effect that can implement the cooling structure without the need for insulation.
  • FIG. 1 is a schematic configuration diagram of a conventional common heating / hot water combined gas boiler
  • Figure 2 is a cross-sectional view showing a conventional dry type (dry type) combustion chamber cooling apparatus
  • FIG. 3 is a cross-sectional view showing a conventional wet type combustion chamber cooling apparatus
  • FIG. 4 is a cross-sectional view showing a combustion chamber cooling apparatus according to the present invention.
  • FIG. 5 is a cross-sectional view showing a combustion apparatus having a combustion chamber cooling structure according to the present invention.
  • circulation pump 11 main heat exchanger
  • combustion chamber housing 25 insulation
  • combustion chamber 210 combustion chamber outer wall
  • combustion chamber inner wall 221 hole
  • burner 240 gas inlet pipe for combustion
  • burner 710 internal burner chamber
  • combustion chamber 810 combustion chamber inner wall
  • heat exchanger 1000 exhaust hood
  • FIG. 4 is a cross-sectional view showing a combustion chamber cooling apparatus according to the present invention.
  • the gas boiler to which the combustion chamber cooling apparatus of the present invention is applied includes a blower 100 for sucking external air and supplying it to the burner 230, and the air and combustion gas inlet pipe 240 supplied from the blower 100.
  • Combustion chamber 200 having a burner 230 for burning a mixture of combustion gas supplied through the combustion chamber 200, and combustion heat generated in the combustion chamber 200 from the heating water inlet pipe 301 to the heating water discharge pipe 302.
  • Heat exchanger 300 for transmitting to the heating water flowing inside the heating pipe connected to the) and the flue 400 is discharged from the combustion product after the heat exchange.
  • the combustion chamber cooling apparatus of the present invention is a means for preventing the heat of combustion generated by the combustion of the burner 230 from being radiated to the outside of the combustion chamber 200.
  • a part of the air supplied from the blower 100 is
  • the combustion chamber cooling passages are formed to be supplied to the lower portion of the burner 230 and to supply the remaining air not supplied to the lower portion of the burner 230 to the combustion chamber 200 after cooling the combustion chamber 200. It is done.
  • the 'combustion chamber cooling passage' refers to a movement passage of air passing through the bottom surface and the side wall of the combustion chamber 200 sequentially from the outlet end of the blower 100, and the combustion chamber cooling passage is the combustion chamber 200. It is formed by the double wall structure of.
  • the combustion chamber 200 is surrounded by a combustion chamber outer wall 210 and a combustion chamber inner wall 220 which is spaced apart from the inner side of the combustion chamber outer wall 210, and a plurality of small holes 221 in the combustion chamber inner wall 220. It consists of a formed structure.
  • Combustion chamber outer wall 210 forms the outer side of the combustion chamber 200, the upper end of the combustion chamber outer wall 210 is connected to the lower end of the heat exchanger 300, the lower end of the combustion chamber outer wall 210, the outlet of the blower 100 It is connected to the stage.
  • the combustion chamber inner wall 220 is spaced inward from the combustion chamber outer wall 210 to form a combustion chamber cooling passage in a space between the combustion chamber outer wall 210, and an upper end of the combustion chamber inner wall 220 is disposed at a lower end of the heat exchanger 300.
  • the lower end of the combustion chamber inner wall 220 is located at a point spaced upward from the bottom surface of the combustion chamber outer wall 210.
  • An air distribution plate 250 is coupled to an inner side of a lower end of the combustion chamber inner wall 220, and a burner 230 is seated on the air distribution plate 250.
  • the air distribution plate 250 is formed with a plurality of holes 251 at regular intervals so that the air supplied from the blower 100 is uniformly supplied to the burner 230 through the hole 251.
  • the air supplied through the air distribution plate 250 is mixed in the burner 230 with the combustion gas supplied through the combustion gas inlet pipe 240, and is burned in the burner 230 by an ignition device (not shown). It is ignited and combustion is made in the combustion chamber 200.
  • the plurality of holes 251 formed in the air distribution plate 250 uniformly supply air to the burner 230, and directly supply only a part of the air supplied from the blower 100 to the lower part of the burner 230.
  • the remaining air which is supplied from the blower 100 and does not pass through the hole 251 of the air distribution plate 250 is guided to flow outside the lower part of the air distribution plate 250 so that the combustion chamber outer wall 210 and the combustion chamber It serves to form a flow path of air to supply to the space between the inner wall (220).
  • the combustion chamber cooling channel is formed horizontally between the first space A through which air is blown from the blower 100, the bottom surface of the combustion chamber outer wall 210, and the air distribution plate 250.
  • the second space (B) and the third space (C) which is in communication with the edge of the second space (B) and formed vertically between the combustion chamber outer wall (210) and the combustion chamber inner wall (220) are formed to communicate.
  • the air sucked into the blower 100 from the outside is sent to the first space (A), a part of the air moving in the vertical direction in the first space (A) is an air distribution plate ( The remaining air that is not passed through the hole 251 of the air distribution plate 250 is supplied to the burner 230 through the holes 251 formed in the plurality 250 and passes through the second space B.
  • the flow path is turned upward at the edge of the second space (B) to pass through the third space (C) to cool the combustion chamber outer wall 210 and the combustion chamber inner wall 220 after The combustion chamber 200 is supplied into the combustion chamber 200 through a plurality of holes 221 formed in the combustion chamber inner wall 220.
  • a portion of the air supplied from the blower 100 moves along the combustion chamber cooling flow path to absorb the heat of combustion emitted from the combustion chamber 200 to cool the combustion chamber 200. 200, it is possible to block the transmission of the combustion heat to the peripheral device.
  • the combustion chamber 200 is formed in a double wall structure of the combustion chamber outer wall 210 and the combustion chamber inner wall 220, and a simple design change to form a plurality of holes 221 in the combustion chamber inner wall 220. Since it is possible to configure the combustion chamber 200 through the cooling apparatus, as in the prior art, even if not equipped with a cooling device of a complicated structure such as a heat insulating material or a heating water pipe to prevent overheating of the combustion chamber using the combustion chamber itself. Not only can the 200 be cooled, but the heat of combustion emitted from the combustion chamber 200 can be used for preheating the air supply, thereby improving the thermal efficiency of the boiler.
  • FIG. 5 is a cross-sectional view showing a combustion apparatus having a combustion chamber cooling structure according to the present invention.
  • a blower 500 for supplying air a flow path connecting portion 600 to which a flow path through which gas is introduced and the air flow path are connected, and a burner 700 for burning the mixer of the gas and air.
  • a combustion chamber 800 in which combustion occurs by the flame formed in the burner 700 a heat exchanger 900 in which heat exchange between the combustion gas and water generated in the combustion chamber 800 is performed, and heat exchange in the heat exchanger 900.
  • An exhaust hood 1000 through which the combustion gas made is discharged.
  • the blower 500 is for supplying air to the burner 700 by sucking outside air, and is the same as the structure generally used in the related art.
  • the flow path connecting part 600 is connected to the outlet end of the blower 500.
  • the flow path connecting part 600 is for mixing gas with air supplied from the blower 500, and an inner tube 610 and a portion of the inner tube into which a part of the air supplied from the blower 500 flows.
  • An outer tube 620 installed in a concentric structure on the outside of the gas inlet pipe 630 connected to the inner tube 610 to introduce a gas into the inner space of the inner tube 610, the gas inlet pipe 630 ) Is provided in the interior of the nozzle 640 for injecting the gas inside the inner tube (610).
  • An air passage 650 through which the air supplied from the blower 500 passes is formed between the inner tube 610 and the outer tube 620. Therefore, a part of the air supplied from the blower 500 is introduced into the inner tube 610 and mixed with the gas and then supplied to the burner 700, and the remaining air is introduced into the air passage 650 and then the The mixer does not mix with the mixer supplied through the inner tube 610 and is independently supplied to the burner 700.
  • the burner 700 includes an inner burner chamber 710 in which air and gas are mixed in an inner mixing space 711 and an outer burner chamber 720 positioned outside the burner inner needle 710. .
  • the chambers 710 and 720 constitute a body of a burner, mix air and gas, and provide an air passage through which air moves.
  • One side of the burner inner chamber 710 is provided with a burner flame hole 730 for generating a flame, the other side is connected to the outlet end of the inner tube 610 is supplied through the inner tube 610 An incoming fuel-air inlet 740 is formed.
  • An air connection passage 750 is formed between the burner inner chamber 710 and the burner outer chamber 720.
  • the air connection passage 750 is a flow passage through which the air transferred through the air passage 650 and the air inlet 760 of the inlet end of the passage connecting portion 600 flows.
  • An air outlet 770 is formed at an outlet end side of the air connection passage 750 to discharge the air transferred through the air connection passage 750.
  • the air supplied from the blower 500 is partially supplied to the burner flame hole 730 serving as the center of the burner 700 and the air outlet 770 serving as the periphery of the burner 700.
  • the mixer is burned, and at the periphery of the burner 700, only the air is blown out.
  • the air supplied to the burner flame hole 730 is involved in combustion, but the air discharged from the air outlet 770 is supplied with air and gas so as not to be involved in combustion.
  • the burner 700 is burned in the mixer at a rate where complete combustion occurs in the burner flame hole 730, and the burner 700 is composed of a premixed burner.
  • the generation of nitrogen oxides (NOx) is reduced, and the air discharged from the air outlet 770 is mixed with the combustion gas, so that the combustion gas passing through the heat exchanger 900 has an excess air ratio, resulting in a dew point temperature.
  • the lowering can prevent the generation of condensate.
  • the combustion chamber 800 includes a combustion chamber outer wall 820 that forms a cooling passage 830 between the combustion chamber inner wall 810 and the combustion chamber inner wall 810. A part of the air ejected from the air outlet 770 of the burner 700 is transferred to the cooling passage 830, and the remaining air is ejected upward along the inner surface of the combustion chamber inner wall 810. Flows into).
  • the air outlet 840 is a gap formed between the edge of the burner flame hole 730 and the lower end of the combustion chamber inner wall 810, and the air introduced into the combustion chamber through the air outlet 840 is formed in the combustion chamber inner wall 810. Air flows upward along the inner surface. Therefore, the high temperature combustion heat by the combustion in the burner flame hole 730 is blocked from being transmitted to the combustion chamber inner wall 810.
  • a plurality of air outlets 811 are formed in the combustion chamber inner wall 810. Therefore, the air supplied through the cooling passage 830 is ejected into the combustion chamber internal space through the air outlet 811.
  • the temperature of the combustion chamber inner wall 810 is prevented from being transmitted to the combustion chamber outer wall 820 by the cooling passage 830, and is blown out through the air outlet 840, along the inner surface of the combustion chamber inner wall 810.
  • the air flowing upward is gradually raised in temperature, and the air blown out through the air outlet 811 of the inner wall 810 of the combustion chamber is mixed to prevent an increase in temperature.
  • the high temperature inside the combustion chamber is prevented from being transferred to the combustion chamber inner wall 810 by the air rising along the inner surface of the combustion chamber inner wall 810, and the temperature of the combustion chamber inner wall 810 is cooled by the cooling passage 830. Since the delivery to the combustion chamber outer wall 820 is blocked, there is no need to use insulation to cool the combustion chamber.
  • the combustion chamber cooling effect may be further improved.
  • An upper side of the combustion chamber 800 is provided with a heat exchanger 900 that performs heat exchange by hot combustion gas, and the combustion gas that has undergone heat exchange in the heat exchanger 900 is discharged to the outside through the exhaust hood 1000. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

본 발명은 연소실 냉각장치를 간단하게 구성하면서도 연소실의 과열을 효과적으로 방지함과 아울러 보일러의 열효율을 향상시킬 수 있는 연소실 냉각장치를 제공함에 그 목적이 있다. 이를 구현하기 위한 본 발명의 연소실 냉각장치는, 연소용 가스와 송풍기로부터 공급된 공기의 혼합물을 연소시키는 버너를 구비하는 연소실로부터 방열되는 연소열을 흡수하여 상기 연소실을 냉각하기 위한 연소실 냉각장치에 있어서, 상기 연소실은, 연소실 외벽과, 상기 연소실 외벽의 내측으로 근접하게 이격되어 위치하며 다수의 구멍이 형성된 연소실 내벽으로 이루어지고, 상기 연소실 외벽과 상기 연소실 내벽 사이의 공간은 상기 송풍기에 연통되어 있는 것을 특징으로 한다.

Description

연소실 냉각장치 및 연소실 냉각 구조를 갖는 연소장치
본 발명은 연소실 냉각장치 및 연소실 냉각구조를 갖는 연소장치에 관한 것으로서, 더욱 상세하게는 송풍기에서 공급되는 공기의 일부를 연소실 외벽과 내벽 사이에 형성된 냉각유로로 공급함과 아울러 연소실 내벽 내측으로도 공기의 일부를 분출되도록 함으로써 단열재 없이도 연소실을 냉각시킬 수 있고 예혼합 버너를 사용하여 NOx발생을 저감하면서도 응축수의 발생을 억제할 수 있는 연소실 냉각장치 및 연소실 냉각 구조를 갖는 연소장치에 관한 것이다.
일반적으로 보일러는 연료의 연소과정에서 발생하는 연소열을 이용하여 물을 가열시키고, 가열된 물을 배관을 따라 순환시킴으로써 실내 난방용으로 사용하거나 온수용으로 사용할 수 있도록 하는 난방장치이다.
도 1은 종래 일반적인 난방/온수 겸용 가스보일러의 개략적인 구성도이다.
난방모드가 작동되면 순환펌프(10)가 작동되어 난방수가 이송된다. 이송되는 난방수는 버너(12)의 연소열과 주열교환기(11)에서 열교환이 이루어져 가열되고 삼방밸브(15)를 거쳐 난방이 요구되는 각 실로 이송되어 난방이 이루어진다.
각 실에서 난방이 이루어져 온도가 떨어진 난방환수는 팽창탱크(17)를 거쳐 주열교환기(11)에서 재가열이 이루어진다. 상기 버너(12)의 외측으로는 연소실(13)이 둘러싸고 있어 고온의 연소가스가 상측의 주열교환기(11) 측으로 상승하도록 되어 있다. 미설명부호 14는 송풍기, 16은 급탕열교환기를 각각 나타낸다.
상기와 같이 가스보일러(1)를 실내 난방용이나 온수 공급용으로 사용하기 위해 상기 연소실(13)에서는 연료의 연소에 의해 고온의 열에너지가 발생되도록 버너(12)가 구비되어 있다.
이때 연소실(13) 내부에서 발생된 고온의 열에너지가 연소실(13) 외부로 전달되는 경우에는 연소실(13) 주변 장치에 열 손상을 일으키게 되므로 이를 방지하기 위하여 연소실(13)을 냉각시키는 장치가 필요하게 된다.
도 2는 종래 건식(Dry type) 연소실 냉각장치를 보여주는 단면도이다.
연소실(2)의 중앙에는 유입된 가스와 공기를 혼합하여 연소시키는 버너(12)가 위치하고 있고, 연소실(2)의 외벽은 연소실하우징(21)으로 이루어져 있으며, 상기 연소실하우징(21)의 내측면에는 단열재(25)가 부착되어 있다.
상기 단열재(25)에 의해 연소열이 연소실하우징(21)을 통해 외부로 방열되는 것이 방지된다. 또한 상기 단열재(25)는 고온의 연소열로 인하여 연소실하우징(21)이 부식되는 현상도 방지하는 역할을 한다.
이와 같은 연소실 냉각장치는 구조가 간단한 장점이 있으나, 단열재를 사용하여야 하므로 연소실 제작 비용이 상승하고, 단열재를 사용하더라도 연소실 냉각효과가 크지 않은 문제점이 있다.
도 3은 종래 습식(Wet type) 연소실 냉각장치를 보여주는 단면도이다.
연소실(3)의 측면 둘레에는 난방수가 흐르는 난방수배관(35)이 연소실하우징(21)의 외측 둘레에 접촉된 상태로 감겨져 있다. 연소실(3) 내부에서 발생된 고온의 열이 연소실(3) 외부로 방열되는 과정에서 일부의 열은 상기 난방수배관(35) 내부를 순환하는 난방수에 흡수된다.
이러한 습식 연소실 냉각방식은 난방수배관(35)을 순환하는 난방수가 열을 흡수하여 예열된 상태에서 열교환기(미도시)로 유입되므로 건식 연소실 냉각방식에 비하여 열교환기에서의 열효율을 향상시킬 수 있는 장점이 있다.
그러나 종래 습식 연소실 냉각방식은 건식에 비하여 열효율은 높지만, 구조가 복잡하고, 연소실(3) 내벽에 응축수가 발생할 가능성이 있으며, 동파이프 재질로 구성할 경우 제조비가 상승하는 문제점이 있다. 이러한 문제점을 해결하기 위해 응축수에 강한 재질(예를 들면 스테인레스)을 사용할 경우에는 제작이 어려운 문제점이 있다.
또한 예혼합 버너를 사용하는 경우에는 질소산화물(NOx)의 발생을 저감시킬 수 있지만 과잉공기량이 적음으로 인해 이슬점온도가 높게 형성되어 응축수가 발생할 수 있다. 이러한 응축수가 일반 온수기에서 발생하게 되면 부식 등의 문제점을 발생시킬 수 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 연소실 냉각장치를 간단하게 구성하면서도 연소실의 과열을 효과적으로 방지함과 아울러 보일러의 열효율을 향상시킬 수 있는 연소실 냉각장치를 제공함에 그 목적이 있다.
또한 본 발명은 단열재를 사용하지 않고도 연소실을 냉각시킬 수 있고, 예혼합 버너를 사용하면서도 응축수 발생을 억제할 수 있는 연소실 냉각 구조를 갖는 연소장치를 제공하고자 함에 그 목적이 있다.
본 발명의 다른 목적은, 공기를 공급하기 위한 송풍기의 부하를 경감시킬 수 있는 연소실 냉각 구조를 갖는 연소장치를 제공하고자 함에 있다.
상술한 바와 같은 목적을 구현하기 위한 본 발명의 연소실 냉각장치는, 연소용 가스와 송풍기로부터 공급된 공기의 혼합물을 연소시키는 버너를 구비하는 연소실로부터 방열되는 연소열을 흡수하여 상기 연소실을 냉각하기 위한 연소실 냉각장치에 있어서, 상기 연소실은, 연소실 외벽과, 상기 연소실 외벽의 내측으로 근접하게 이격되어 위치하며 다수의 구멍이 형성된 연소실 내벽으로 이루어지고, 상기 연소실 외벽과 상기 연소실 내벽 사이의 공간은 상기 송풍기에 연통되어 있는 것을 특징으로 한다.
이 경우 상기 송풍기에서 공급되는 공기중의 일부는 다수의 구멍이 형성된 공기분배판을 통과하여 상기 버너로 공급되고, 상기 송풍기에서 공급되는 공기중의 나머지 일부는 상기 연소실 외벽과 상기 연소실 내벽 사이를 통과한 후에 상기 연소실 내벽에 형성된 구멍을 통하여 상기 연소실로 공급되는 것으로 구성될 수 있다.
또한 상기 공기분배판은 상기 버너의 하부에 위치하고, 상기 연소실 내벽의 하단부는 상기 공기분배판의 가장자리 둘레에 결합된 것으로 구성될 수 있다.
본 발명의 연소실 냉각 구조를 갖는 연소장치는, 공기를 공급하는 송풍기와, 상기 공기와 가스의 혼합기를 연소시키는 버너와, 상기 버너의 연소열에 의해 내부의 물과 열교환이 이루어지는 열교환기를 구비한 연소장치에 있어서, 상기 버너는, 버너의 중심에 위치한 중심부와, 상기 중심부를 둘러싸는 주변부로 구성되고; 상기 버너의 중심부에서는 상기 혼합기가 연소되고, 상기 버너의 주변부에서는 공기만 분출되도록 이루어진 것을 특징으로 한다.
이 경우 상기 버너의 중심부에 공급되는 공기만 연소에 관여하고, 상기 버너의 주변부에 공급되는 공기는 연소에 관여하지 않는 것을 특징으로 한다.
또한 상기 버너와 열교환기 사이에 형성된 연소실은 연소실 내벽과 상기 연소실 내벽과의 사이에 냉각유로를 형성하도록 연소실 외벽으로 이루어지고; 상기 버너의 주변부에서 분출된 공기의 일부는 상기 냉각유로로 분출되고, 나머지 공기는 상기 연소실 내벽의 내측면으로 분출되는 것을 특징으로 한다.
또한 상기 연소실 내벽에는 적어도 하나의 공기분출구가 형성되고, 상기 냉각유로로 분출된 공기는 상기 공기분출구를 통해 연소실 내부로 유입되는 것을 특징으로 한다.
또한 상기 버너는, 버너의 몸체를 구성하며 내측과 외측에 각각 위치하는 버너내부챔버와 버너외부챔버로 이루어지고; 상기 버너내부챔버와 버너외부챔버 사이에 형성된 공간으로서 상기 송풍기에서 공급된 공기가 상기 버너의 주변부로 분출되도록 유로를 형성하는 공기연결유로가 형성되고; 상기 버너내부챔버의 일측에는 상기 혼합기가 유입되는 연료-공기 유입구가, 타측에는 상기 유입된 혼합기를 연소시키는 버너염공부가 각각 구비된 것을 특징으로 한다.
또한 상기 연료-공기 유입구의 외측으로 상기 공기연결유로의 입구를 형성하는 공기유입구가 형성되고, 상기 연료-공기 유입구와 공기유입구는 동심 구조를 갖는 것을 특징으로 한다.
또한 상기 송풍기와 버너 사이에는 상기 송풍기에서 공급되는 공기에 가스를 혼합시키기 위한 유로연결부가 형성되고; 상기 유로연결부는, 상기 연료-공기 유입구에 연결되는 내부관과, 상기 내부관의 외측에 동심 구조로 설치되어 상기 내부관과의 사이에 공기통로를 형성하는 외부관과, 상기 내부관에 연결되어 가스가 유입되는 가스유입관과, 상기 가스유입관의 내부에 설치된 노즐로 구성되며; 상기 송풍기에서 공급되는 공기 중 일부는 상기 내부관으로 유입되고, 나머지 공기는 상기 공기통로로 유입되는 것을 특징으로 한다.
본 발명에 따른 연소실 냉각장치에 의하면, 송풍기에서 공급되는 공기의 일부가 연소실 외벽과 연소실 내벽 사이를 통과하면서 연소실을 냉각시킨 후에 연소실로 공급되도록 함으로써 연소실 냉각장치의 구조를 간소화하고 연소실의 제작 비용을 줄일 수 있는 효과가 있다.
또한 송풍기에서 공급되는 공기의 일부가 연소실 외벽과 연소실 내벽 사이를 통과하는 과정에서 연소열을 흡수하여 예열된 상태에서 연소실로 공급되므로 보일러의 열효율을 향상시킬 수 있는 효과가 있다.
본 발명에 따른 연소실 냉각 구조를 갖는 연소장치에 의하면, 송풍기에서 공급되는 공기의 일부가 연소실 외벽과 내벽 사이를 통과하면서 연소실을 냉각시킨 후 연소실로 공급되도록 함과 아울러 연소실 내벽 내측면으로도 상기 공기의 일부가 분출되도록 함으로써 단열재가 필요없는 연소실 냉각 구조를 구현할 수 있는 효과가 있다.
또한 예혼합 버너를 사용함으로써 NOx의 발생을 줄이면서도 배기가스에 과잉공기를 공급함으로써 이슬점 온도를 낮춰 응축수가 발생하는 것을 방지할 수 있는 효과가 있다.
또한 송풍기에서 공급되는 공기를 버너와 연소실로 분리하여 이송되도록 함으로써 송풍기에 작용하는 부하를 경감시킬 수 있는 효과가 있다.
도 1은 종래 일반적인 난방/온수 겸용 가스보일러의 개략적인 구성도,
도 2는 종래 건식(Dry type) 연소실 냉각장치를 보여주는 단면도,
도 3은 종래 습식(Wet type) 연소실 냉각장치를 보여주는 단면도,
도 4는 본 발명에 따른 연소실 냉각장치를 보여주는 단면도,
도 5는 본 발명에 따른 연소실 냉각 구조를 갖는 연소장치를 보여주는 단면도.
** 부호의 설명 **
1 : 가스보일러 2,3 : 연소실
10 : 순환펌프 11 : 주열교환기
12 : 버너 13 : 연소실
14 : 송풍기 15 : 삼방밸브
16 : 급탕열교환기 17 : 팽창탱크
21 : 연소실하우징 25 : 단열재
35 : 난방수배관 100 : 송풍기
200 : 연소실 210 : 연소실 외벽
220 : 연소실 내벽 221 : 구멍
230 : 버너 240 : 연소용 가스유입관
250 : 공기분배판 251 : 구멍
300 : 열교환기 301 : 난방수 유입관
302 : 난방수 배출관 400 : 연도
A : 제1공간 B : 제2공간
C : 제3공간 500 : 송풍기
600 : 유로연결부 610 : 내부관
620 : 외부관 630 : 가스유입관
640 : 노즐 650 : 공기통로
700 : 버너 710 : 버너내부챔버
720 : 버너외부챔버 730 : 버너염공부
740 : 연료-공기 유입구 750 : 공기연결유로
760 : 공기유입구 770 : 공기배출구
800 : 연소실 810 : 연소실 내벽
811 : 공기분출구 820 : 연소실 외벽
830 : 냉각유로 840 : 공기분출구
900 : 열교환기 1000 : 배기후드
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
도 4는 본 발명에 따른 연소실 냉각장치를 보여주는 단면도이다.
본 발명의 연소실 냉각장치가 적용되는 가스보일러는, 외부의 공기를 흡입하여 버너(230)로 공급하는 송풍기(100)와, 상기 송풍기(100)로부터 공급되는 공기와 연소용 가스유입관(240)을 통해 공급되는 연소용 가스의 혼합물을 연소시키는 버너(230)가 내부에 구비되는 연소실(200)과, 상기 연소실(200)에서 발생된 연소열을 난방수 유입관(301)으로부터 난방수 배출관(302)으로 연결되는 난방배관 내부를 흐르는 난방수에 전달하는 열교환기(300)와, 열교환을 마친 연소생성물이 배출되는 연도(400)를 포함한다.
본 발명의 연소실 냉각장치는, 상기 버너(230)의 연소에 의해 발생하는 연소열이 연소실(200)의 외부로 방열되는 것을 방지하기 위한 수단으로, 상기 송풍기(100)에서 공급되는 공기중의 일부는 버너(230)의 하부로 공급되도록 하고, 상기 버너(230)의 하부로 공급되지 않은 나머지 공기는 연소실(200)을 냉각시킨 후에 연소실(200) 내로 공급되도록 하는 '연소실 냉각 유로'가 형성된 것을 특징으로 한다.
여기서, 상기 '연소실 냉각 유로'란 상기 송풍기(100)의 출구단으로부터 상기 연소실(200)의 바닥면과 측벽을 순차로 경유하는 공기의 이동 통로를 의미하며, 상기 연소실 냉각 유로는 연소실(200)의 이중벽 구조에 의해 형성된다.
연소실(200)은 연소실 외벽(210)과, 상기 연소실 외벽(210)의 내측으로 근접하게 이격되어 위치하는 연소실 내벽(220)으로 둘러싸여 있으며, 상기 연소실 내벽(220)에는 다수의 작은 구멍(221)이 형성된 구조로 이루어져 있다.
연소실 외벽(210)은 연소실(200)의 바깥측면을 이루는 것으로, 연소실 외벽(210)의 상단부는 열교환기(300)의 하단부에 연결되고, 연소실 외벽(210)의 하단부는 송풍기(100)의 출구단에 연결되어 있다.
연소실 내벽(220)은 연소실 외벽(210)으로부터 내측으로 이격되어 연소실 외벽(210)과의 사이 공간에 연소실 냉각 유로를 형성하게 되며, 연소실 내벽(220)의 상단부는 열교환기(300)의 하단부에 연결되고, 연소실 내벽(220)의 하단부는 연소실 외벽(210)의 바닥면으로부터 상측으로 이격된 지점에 위치한다.
연소실 내벽(220)의 하단부의 내측에는 공기분배판(250)이 결합되고, 상기 공기분배판(250) 상에는 버너(230)가 안착된다.
상기 공기분배판(250)에는 다수의 구멍(251)이 일정 간격으로 형성되어 있어 송풍기(100)로부터 공급되는 공기는 상기 구멍(251)을 통과하여 버너(230)에 균일하게 공급된다. 공기분배판(250)을 통과하여 공급된 공기는 연소용 가스유입관(240)을 통해 공급된 연소용 가스와 버너(230) 내부에서 혼합되고, 도시하지 않은 점화장치에 의해 버너(230)에서 발화되어 연소실(200) 내부에서 연소가 이루어지게 된다.
상기 공기분배판(250)에 형성된 다수의 구멍(251)은 버너(230)에 공기를 균일하게 공급하는 역할과 함께 송풍기(100)에서 공급된 공기의 일부만을 버너(230)의 하부에 직접 공급되도록 하고, 송풍기(100)로부터 공급되어 상기 공기분배판(250)의 구멍(251)을 통과하지 않은 나머지 공기는 공기분배판(250)의 하부 외측으로 흐르도록 유도하여 연소실 외벽(210)과 연소실 내벽(220) 사이의 공간으로 공급하도록 공기의 유로를 형성하는 역할을 한다.
이하, 본 발명에 따른 연소실 냉각장치의 작용을 설명한다.
상기와 같은 구성에 의해, 연소실 냉각 유로는 송풍기(100)로부터 공기가 송출되는 제1공간(A)과, 연소실 외벽(210)의 바닥면과 공기분배판(250) 사이에 수평으로 형성되는 제2공간(B)과, 상기 제2공간(B)의 가장자리부와 연통되며 연소실 외벽(210)과 연소실 내벽(220) 사이에 수직으로 형성되는 제3공간(C)이 소통되도록 형성된다.
송풍기(100)가 작동되면, 외부로부터 송풍기(100)로 흡입된 공기는 상기 제1공간(A)으로 송출되고, 제1공간(A)에서 수직 방향으로 이동하는 공기의 일부는 공기분배판(250)에 다수로 형성된 구멍(251)을 통과하여 버너(230)로 공급되고, 공기분배판(250)의 구멍(251)을 통과하지 않은 나머지 공기는 제2공간(B)을 통과하면서 연소실(200)의 바닥면을 냉각하게 되며, 제2공간(B)의 가장자리부에서 유로가 상향으로 전환되어 제3공간(C)을 통과하면서 연소실 외벽(210)과 연소실 내벽(220)을 냉각시킨 후 연소실 내벽(220)에 다수로 형성된 구멍(221)을 통해 연소실(200) 내부로 공급된다.
이와 같이 본 발명에 따른 연소실 냉각장치에 의하면, 송풍기(100)에서 공급된 공기의 일부가 상기 연소실 냉각 유로를 따라 이동하면서 연소실(200)로부터 방출되는 연소열을 흡수하여 연소실(200)을 냉각시킴으로써 연소실(200) 주변 장치에 연소열이 전달되는 것을 차단할 수 있게 된다.
또한 본 발명에 따른 연소실 냉각장치는 연소실(200)을 연소실 외벽(210)과 연소실 내벽(220)의 이중벽 구조로 형성하고, 연소실 내벽(220)에 다수의 구멍(221)을 형성하는 간단한 설계 변경을 통해 연소실(200) 냉각장치를 구성할 수 있게 되므로, 종래기술에서와 같이 연소실의 과열 방지를 위해 단열재나 난방수배관과 같은 복잡한 구조의 냉각장치를 구비하지 않더라도 보일러의 자체 구조를 이용하여 연소실(200)을 냉각시킬 수 있을 뿐만 아니라 연소실(200)에서 방출되는 연소열을 급기 예열에 활용함으로써 보일러의 열효율을 향상시킬 수 있게 된다.
도 5는 본 발명에 따른 연소실 냉각 구조를 갖는 연소장치를 보여주는 단면도이다. 본 발명의 연소장치는, 공기를 공급하는 송풍기(500), 가스가 유입되는 유로와 상기 공기를 이송하는 유로가 연결되는 유로연결부(600), 상기 가스와 공기의 혼합기를 연소시키기 위한 버너(700), 상기 버너(700)에서 형성된 화염에 의해 연소가 이루어지는 연소실(800), 상기 연소실(800)에서 발생한 연소가스와 물과의 열교환이 이루어지는 열교환기(900), 상기 열교환기(900)에서 열교환이 이루어진 연소가스가 배출되는 배기후드(1000)로 이루어진다.
상기 송풍기(500)는 외부의 공기를 흡입하여 상기 버너(700)측으로 공기를 공급하기 위한 것으로, 종래 일반적으로 사용되는 구조와 동일하다.
상기 송풍기(500)의 출구단에는 상기 유로연결부(600)가 연결되어 있다. 상기 유로연결부(600)는 상기 송풍기(500)에서 공급되는 공기에 가스를 혼합시키기 위한 것으로, 상기 송풍기(500)에서 공급되는 공기의 일부가 유입되는 내부관(610), 상기 내부관(610)의 외측에 동심 구조로 설치되는 외부관(620), 상기 내부관(610)에 연결되어 가스를 상기 내부관(610)의 내측 공간으로 유입시키는 가스유입관(630), 상기 가스유입관(630)의 내부에 구비되어 가스를 내부관(610)의 내측을 분사하기 위한 노즐(640)로 이루어진다.
상기 내부관(610)과 외부관(620) 사이에는 상기 송풍기(500)에서 공급된 공기가 통과하는 공기통로(650)가 형성되어 있다. 따라서 송풍기(500)에서 공급된 공기의 일부는 상기 내부관(610) 내부로 유입되어 상기 가스와 혼합된 후 버너(700)로 공급되고, 나머지 공기는 상기 공기통로(650)로 유입된 후 상기 내부관(610)을 통해 공급되는 혼합기와는 섞이지 않고 독립적으로 상기 버너(700)로 공급된다.
상기 버너(700)는, 내부의 혼합공간(711)에서 공기와 가스의 혼합이 이루어지는 버너내부챔버(710)와 상기 버너내부침버(710)의 외측에 위치하는 버너외부챔버(720)로 이루어진다. 상기 챔버(710,720)는 버너의 몸체를 구성하고, 공기와 가스의 혼합이 이루어지며, 공기가 이동하는 공기유로를 제공하게 된다.
상기 버너내부챔버(710)의 일측에는 화염을 발생시키는 버너염공부(730)가 구비되고, 타측에는 상기 내부관(610)의 출구단과 연결되어 상기 내부관(610)을 통해 공급되어 온 혼합기가 유입되는 연료-공기 유입구(740)가 형성되어 있다.
상기 버너내부챔버(710)와 버너외부챔버(720) 사이에는 공기연결유로(750)가 형성되어 있다. 상기 공기연결유로(750)는 상기 유로연결부(600)의 공기통로(650) 및 입구단의 공기유입구(760)를 통해 이송되어 온 공기가 흐르는 유로가 된다.
상기 공기연결유로(750)의 출구단 쪽에는 상기 공기연결유로(750)를 통해 이송되어 온 공기를 배출하는 공기배출구(770)가 형성되어 있다.
이와 같이 상기 송풍기(500)에서 공급된 공기는, 버너(700)의 중심부가 되는 버너염공부(730)와, 버너(700)의 주변부가 되는 공기배출구(770)로 각각 일부씩 공급되어, 상기 버너(700)의 중심부에서는 혼합기의 연소가 이루어지고, 상기 버너(700)의 주변부에서는 공기의 분출만 이루어지도록 되어 있다.
이 경우 상기 버너염공부(730)로 공급되는 공기는 연소에 관여하지만, 상기 공기배출구(770)에서 배출되는 공기는 연소에 관여하지 않도록 공기 및 가스의 공급이 이루어진다.
따라서 상기 버너(700)는 버너염공부(730)에서 완전연소가 이루어지는 비율로 혼합기의 연소가 이루어져 상기 버너(700)는 예혼합버너로 구성된다. 이로 인해 질소산화물(NOx)의 발생을 저감시키는 한편, 상기 공기배출구(770)에서 배출된 공기가 연소가스에 혼합되므로, 열교환기(900)를 통과하는 연소가스는 과잉공기 비율이 높아져 이슬점온도가 낮아지므로 응축수의 발생을 방지할 수 있다.
상기 연소실(800)은, 연소실 내벽(810)과, 상기 연소실 내벽(810)과의 사이에 냉각유로(830)를 형성하는 연소실 외벽(820)으로 이루어진다. 상기 버너(700)의 공기배출구(770)에서 분출된 공기의 일부는 상기 냉각유로(830)로 이송되고, 나머지 공기는 상기 연소실 내벽(810)의 내측면을 따라 상측으로 분출되도록 공기분출구(840)로 유입된다.
상기 공기분출구(840)는 버너염공부(730)의 가장자리와 연소실 내벽(810)의 하단부 사이에 형성된 틈으로서, 상기 공기분출구(840)를 통해 연소실 내부로 유입된 공기는 연소실 내벽(810)의 내측면을 따라 상측으로 공기의 흐름이 형성된다. 따라서 버너염공부(730)에서의 연소에 의한 고온의 연소열이 연소실 내벽(810)으로 전달되는 것이 차단된다.
상기 연소실 내벽(810)에는 다수의 공기분출구(811)가 형성되어 있다. 따라서 상기 냉각유로(830)를 통해 공급된 공기는 상기 공기분출구(811)를 통해 연소실 내부 공간으로 분출된다.
따라서 상기 냉각유로(830)에 의해 연소실 내벽(810)의 온도가 연소실 외벽(820)으로 전달되는 것이 차단되는 한편, 상기 공기분출구(840)를 통해 분출되어 연소실 내벽(810)의 내측면을 따라 상측으로 흐르는 공기는 점차 온도가 올라가게 되는데, 상기 연소실 내벽(810)의 공기분출구(811)를 통해 분출된 공기가 혼합됨으로써 온도의 상승을 방지하게 된다.
이러한 구조에 의하면 연소실 내부의 고온은 연소실 내벽(810) 내측면을 따라 상승하는 공기에 의해 연소실 내벽(810)으로 전달되는 것이 차단되고, 연소실 내벽(810)의 온도는 냉각유로(830)에 의해 연소실 외벽(820)으로 전달되는 것이 차단되므로, 연소실을 냉각시키기 위해 단열재를 사용할 필요가 없다.
또한 연소실 내벽(810)의 내측면을 따라 상측으로 흐르는 공기에 연소실 내벽(810)의 공기분출구(811)에서 분출된 공기가 혼합됨으로써 연소실 냉각 효과를 더욱 향상시킬 수 있다.
또한 송풍기(500)에서 공급되는 공기는 상기 유로연결부(600)의 내부관(610)과 공기통로(650)로 분산되어 이동하므로, 송풍기(500)에 작용하는 부하를 경감시킬 수 있다.
상기 연소실(800)의 상측에는 고온의 연소가스에 의한 열교환이 이루어지는 열교환기(900)가 구비되고, 상기 열교환기(900)에서 열교환이 이루어진 연소가스는 배기후드(1000)를 통해 외부로 배출된다.

Claims (10)

  1. 연소용 가스와 송풍기로부터 공급된 공기의 혼합물을 연소시키는 버너를 구비하는 연소실로부터 방열되는 연소열을 흡수하여 상기 연소실을 냉각하기 위한 연소실 냉각장치에 있어서,
    상기 연소실은, 연소실 외벽과, 상기 연소실 외벽의 내측으로 근접하게 이격되어 위치하며 다수의 구멍이 형성된 연소실 내벽으로 이루어지고,
    상기 연소실 외벽과 상기 연소실 내벽 사이의 공간은 상기 송풍기에 연통되어 있는 것을 특징으로 하는 연소실 냉각장치.
  2. 제1항에 있어서,
    상기 송풍기에서 공급되는 공기중의 일부는 다수의 구멍이 형성된 공기분배판을 통과하여 상기 버너로 공급되고,
    상기 송풍기에서 공급되는 공기중의 나머지 일부는 상기 연소실 외벽과 상기 연소실 내벽 사이를 통과한 후에 상기 연소실 내벽에 형성된 구멍을 통하여 상기 연소실로 공급되는 것을 특징으로 하는 연소실 냉각장치.
  3. 제2항에 있어서,
    상기 공기분배판은 상기 버너의 하부에 위치하고,
    상기 연소실 내벽의 하단부는 상기 공기분배판의 가장자리 둘레에 결합된 것을 특징으로 하는 연소실 냉각장치.
  4. 공기를 공급하는 송풍기와, 상기 공기와 가스의 혼합기를 연소시키는 버너와, 상기 버너의 연소열에 의해 내부의 물과 열교환이 이루어지는 열교환기를 구비한 연소장치에 있어서,
    상기 버너는, 버너의 중심에 위치한 중심부와, 상기 중심부를 둘러싸는 주변부로 구성되고;
    상기 버너의 중심부에서는 상기 혼합기가 연소되고, 상기 버너의 주변부에서는 공기만 분출되도록 이루어진 것을 특징으로 하는 연소실 냉각 구조를 갖는 연소장치.
  5. 제4항에 있어서,
    상기 버너의 중심부에 공급되는 공기만 연소에 관여하고, 상기 버너의 주변부에 공급되는 공기는 연소에 관여하지 않는 것을 특징으로 하는 연소실 냉각 구조를 갖는 연소장치.
  6. 제4항에 있어서,
    상기 버너와 열교환기 사이에 형성된 연소실은 연소실 내벽과 상기 연소실 내벽과의 사이에 냉각유로를 형성하도록 연소실 외벽으로 이루어지고; 상기 버너의 주변부에서 분출된 공기의 일부는 상기 냉각유로로 분출되고, 나머지 공기는 상기 연소실 내벽의 내측면으로 분출되는 것을 특징으로 하는 연소실 냉각 구조를 갖는 연소장치.
  7. 제6항에 있어서,
    상기 연소실 내벽에는 적어도 하나의 공기분출구가 형성되고, 상기 냉각유로로 분출된 공기는 상기 공기분출구를 통해 연소실 내부로 유입되는 것을 특징으로 하는 연소실 냉각 구조를 갖는 연소장치.
  8. 제4항 내지 제7항 중 어느 한 항에 있어서,
    상기 버너는, 버너의 몸체를 구성하며 내측과 외측에 각각 위치하는 버너내부챔버와 버너외부챔버로 이루어지고;
    상기 버너내부챔버와 버너외부챔버 사이에 형성된 공간으로서 상기 송풍기에서 공급된 공기가 상기 버너의 주변부로 분출되도록 유로를 형성하는 공기연결유로가 형성되고;
    상기 버너내부챔버의 일측에는 상기 혼합기가 유입되는 연료-공기 유입구가, 타측에는 상기 유입된 혼합기를 연소시키는 버너염공부가 각각 구비된 것을 특징으로 하는 연소실 냉각 구조를 갖는 연소장치.
  9. 제8항에 있어서,
    상기 연료-공기 유입구의 외측으로 상기 공기연결유로의 입구를 형성하는 공기유입구가 형성되고, 상기 연료-공기 유입구와 공기유입구는 동심 구조를 갖는 것을 특징으로 하는 연소실 냉각 구조를 갖는 연소장치.
  10. 제9항에 있어서,
    상기 송풍기와 버너 사이에는 상기 송풍기에서 공급되는 공기에 가스를 혼합시키기 위한 유로연결부가 형성되고;
    상기 유로연결부는, 상기 연료-공기 유입구에 연결되는 내부관과, 상기 내부관의 외측에 동심 구조로 설치되어 상기 내부관과의 사이에 공기통로를 형성하는 외부관과, 상기 내부관에 연결되어 가스가 유입되는 가스유입관과, 상기 가스유입관의 내부에 설치된 노즐로 구성되며;
    상기 송풍기에서 공급되는 공기 중 일부는 상기 내부관으로 유입되고, 나머지 공기는 상기 공기통로로 유입되는 것을 특징으로 하는 연소실 냉각 구조를 갖는 연소장치.
PCT/KR2012/002787 2011-04-18 2012-04-13 연소실 냉각장치 및 연소실 냉각 구조를 갖는 연소장치 WO2012144766A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020110035651A KR20120118210A (ko) 2011-04-18 2011-04-18 연소실 냉각장치
KR10-2011-0035651 2011-04-18
KR10-2011-0054978 2011-06-08
KR1020110054978A KR20120136019A (ko) 2011-06-08 2011-06-08 연소실 냉각 구조를 갖는 연소장치

Publications (2)

Publication Number Publication Date
WO2012144766A2 true WO2012144766A2 (ko) 2012-10-26
WO2012144766A3 WO2012144766A3 (ko) 2013-01-03

Family

ID=47042023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002787 WO2012144766A2 (ko) 2011-04-18 2012-04-13 연소실 냉각장치 및 연소실 냉각 구조를 갖는 연소장치

Country Status (1)

Country Link
WO (1) WO2012144766A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011824A (ja) * 2014-06-04 2016-01-21 リンナイ株式会社 燃焼装置
CN110296536A (zh) * 2019-07-04 2019-10-01 广东省众骋热能科技有限公司 一种具有多级降温结构的燃烧换热装置
EP4050282A4 (en) * 2019-10-31 2022-12-21 Wuhu Midea Kitchen and Bath Appliances Mfg. Co., Ltd. GAS DEVICE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139145U (ja) * 1984-02-22 1985-09-14 株式会社ハ−マン 燃焼装置
JPS6123046U (ja) * 1984-07-17 1986-02-10 パロマ工業株式会社 湯沸器の燃焼室の構造
JPH025235Y2 (ko) * 1985-11-01 1990-02-08
JPH0252910A (ja) * 1988-08-17 1990-02-22 Matsushita Electric Ind Co Ltd 給湯機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011824A (ja) * 2014-06-04 2016-01-21 リンナイ株式会社 燃焼装置
CN110296536A (zh) * 2019-07-04 2019-10-01 广东省众骋热能科技有限公司 一种具有多级降温结构的燃烧换热装置
EP4050282A4 (en) * 2019-10-31 2022-12-21 Wuhu Midea Kitchen and Bath Appliances Mfg. Co., Ltd. GAS DEVICE

Also Published As

Publication number Publication date
WO2012144766A3 (ko) 2013-01-03

Similar Documents

Publication Publication Date Title
WO2015142003A1 (ko) 콘덴싱 가스보일러의 열교환기
WO2014115981A1 (ko) 연소장치
WO2014112740A1 (ko) 급기 예열기를 구비한 연소장치
WO2017111430A1 (ko) 버너장치
WO2017099381A1 (ko) 콘덴싱 방식의 연소기기
WO2017039174A1 (ko) 열교환기
WO2013085156A1 (ko) 연소장치
WO2013025022A2 (ko) 열교환기의 분리가 가능한 연소장치
WO2015141994A1 (ko) 열교환기
WO2012144766A2 (ko) 연소실 냉각장치 및 연소실 냉각 구조를 갖는 연소장치
WO2015141993A1 (ko) 열교환기 및 열교환기를 구성하는 단위플레이트의 제조방법
WO2020140383A1 (zh) 一种两级燃烧式火排燃烧器
WO2019154045A1 (zh) 燃烧室结构和燃气热水器
WO2017014499A1 (ko) 열교환기
WO2014196676A1 (ko) 조리기기용 열교환기
KR20120136019A (ko) 연소실 냉각 구조를 갖는 연소장치
WO2023224402A1 (ko) 쿨링 기능을 갖는 카본블랙 반응로
WO2011071247A2 (ko) 연소실이 구비된 열교환기 및 이를 포함하는 연소기기
WO2012070746A1 (ko) 급기공기를 이용한 연소실 냉각구조
WO2014112725A1 (ko) 코안다 효과를 이용한 고온 fgr 초저 nox 연소장치
WO2017010677A1 (ko) 온풍 및 온수 공급이 가능한 세척장치
WO2021112570A1 (ko) 가스퍼니스
WO2020140381A1 (zh) 一种多引射管式火片
CN215808461U (zh) 燃烧装置、燃烧组件、燃烧器及热水器
WO2021006678A1 (ko) 열증폭 열발생장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773644

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12773644

Country of ref document: EP

Kind code of ref document: A2