WO2012144256A1 - Memsセンサ及びその製造方法 - Google Patents

Memsセンサ及びその製造方法 Download PDF

Info

Publication number
WO2012144256A1
WO2012144256A1 PCT/JP2012/053469 JP2012053469W WO2012144256A1 WO 2012144256 A1 WO2012144256 A1 WO 2012144256A1 JP 2012053469 W JP2012053469 W JP 2012053469W WO 2012144256 A1 WO2012144256 A1 WO 2012144256A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
outer peripheral
metal
insulating layer
Prior art date
Application number
PCT/JP2012/053469
Other languages
English (en)
French (fr)
Inventor
亨 宮武
高橋 亨
俊宏 小林
宜隆 宇都
尚信 大川
矢澤 久幸
菊入 勝也
健一郎 池田
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2012144256A1 publication Critical patent/WO2012144256A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0045Packages or encapsulation for reducing stress inside of the package structure
    • B81B7/0048Packages or encapsulation for reducing stress inside of the package structure between the MEMS die and the substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present invention relates to a MEMS sensor formed by finely processing a silicon layer, and more particularly to a MEMS sensor in which an operation region is enclosed and sealed by a metal joint.
  • a MEMS (Micro-Electro-Mechanical Systems) sensor described in Patent Document 1 below is an SOI substrate in which, for example, two silicon wafers are bonded together with an SiO 2 oxide insulating layer (insulator) interposed therebetween. It is formed by processing.
  • One silicon wafer of the SOI substrate serves as a first member (support substrate), and the other silicon wafer serves as a functional layer.
  • the functional layer is finely processed to form a movable part and a support part that supports the movable part, and further, a frame that surrounds an operation region having the movable part and the support part is formed by a part of the functional layer.
  • a second member (wiring substrate) formed of a silicon wafer is overlaid on the functional layer, the frame and the second member are joined, and the operation region is partitioned from the external region and sealed. ing.
  • an aluminum layer is formed on the surface of the insulating layer appearing on the front side of the second member, a germanium layer is formed on the surface of the frame, and the aluminum layer, the germanium layer, Are heated and pressurized and bonded by eutectic bonding or diffusion bonding to form a metal bond. If this metal coupling part is used, the operation region can be sealed by joining the second member and the frame body by a simple operation of heating and pressurization.
  • Patent Document 2 when a passivation layer, that is, a protective insulating layer is formed around the joint portion between the functional layer and the second member, the outer peripheral end portion of the joint interface in the metal joint portion Is retracted to the inner side, which is the operation region, from the outer peripheral side surface of the oxide insulating layer (a form of a comparative example described later), the metal layer constituting the metal bonding portion easily flows away to the outside and forms a protective insulating layer. For this reason, there is a problem that the gap is extremely narrow. Further, even in the configuration of Patent Document 3, the metal layer constituting the metal bonding portion is washed away by pressurization and heating, and the protruding metal layer is greatly raised. For this reason, the protective insulating layer cannot be properly coated on the outer peripheral surface of the metal bonding portion, and the protective insulating layer is interrupted. For this reason, corrosion of the metal bonding portion cannot be prevented appropriately.
  • a passivation layer that is, a protective insulating layer is formed around the joint portion between
  • an object of the present invention is to provide a MEMS sensor in which the uniformity of stress acting on the bonding interface of the metal bonding portion is improved and the sealing property is improved.
  • the present invention relates to a MEMS sensor having a first member, a second member, and a functional layer positioned between the first member and the second member.
  • the functional layer is formed with a movable part, a support part that supports the movable part, and a frame body that partitions an operation area where the movable part and the support part are located, and an external area,
  • the first member is joined via a first insulating layer that surrounds the entire periphery of the operating region, and the frame and the second member are the metal coupling portion that surrounds the entire periphery of the operating region.
  • a first metal layer is formed on a surface of the second member facing the frame body, and a second metal layer is formed on a surface of the frame body facing the second member.
  • the first metal layer and the second metal layer are heated and pressurized and joined together,
  • the outer peripheral side surface of the first insulating layer recedes inward from the outer peripheral side surface of the frame, which is the direction of the operation region,
  • the outer peripheral end portion of the bonding interface between the first metal layer and the second metal layer is located outside the outer peripheral side surface of the first insulating layer in a direction away from the operating region. It is a feature.
  • the manufacturing method of the MEMS sensor in the present invention is as follows.
  • the amount of receding T1 to the outer peripheral side surface of the metal layer is formed in the next step of leaving the first insulating layer between the support portion and the frame body and removing it between the movable portion, A step of making it smaller than a retraction amount T2 from the outer peripheral side surface of the frame to the outer peripheral side surface of the first insulating layer; Leaving the first insulating layer between the support part and the frame, and removing the first insulating layer from the movable part; On the surface of the second member facing the frame, a first metal layer having an outer peripheral side surface extending to the outer side of the outer peripheral side surface of the second metal layer is formed, and the first metal layer And the second metal layer are opposed to each other and bonded to each other by heating and pressurizing, and an outer peripheral end portion of the bonding interface between the first metal layer and the second metal layer is A step of positioning outside the outer peripheral side surface of the insulating layer of 1; It is characterized by having.
  • the outer peripheral end of the bonding interface is retreated inward from the outer peripheral side surface of the first insulating layer (comparative example).
  • the stress applied to the bonding interface between the first metal layer and the second metal layer can be made uniform. Therefore, it becomes possible to improve the sealing property in a metal coupling part.
  • the stress applied to the outer peripheral end portion of the joint interface can be weakened, and thus the height of the bulge caused by the first metal layer being crushed and protruding into the external region is kept low. I can do it. Therefore, in the form in which the outer peripheral surface of the metal bonding portion is covered with the protective insulating layer, the protective insulating layer is easily formed on the outer peripheral surface of the metal bonding portion without interruption. Since the protective insulating layer can be formed without interruption, it becomes easy to prevent corrosion of the metal bonding portion.
  • the outer peripheral end portion of the bonding interface between the first metal layer and the second metal layer is coincident with the outer peripheral side surface of the frame body in the height direction.
  • the outer peripheral side surface of the second metal layer is made to coincide with the cut surface so that the retraction amount T1 is zero. It is.
  • the protective insulating layer can be easily and appropriately formed with a uniform film thickness.
  • the inner peripheral end portion of the bonding interface between the first metal layer and the second metal layer is located in a direction away from the operation region than the inner peripheral side surface of the first insulating layer. It is preferable. As a result, the stress applied to the outer peripheral end portion of the bonding interface between the first metal layer and the second metal layer can be weakened more effectively, so that the first metal layer is crushed into the external region. The height of the bulge caused by the protrusion can be further reduced.
  • the second member, the functional layer, and the first member are stacked in this order from the bottom, and in the metal coupling portion, the first metal layer is located below the second metal layer. Located When heated and pressurized, the height of the first metal layer that protrudes to the external region from the bonding interface of the metal bonding portion is equal to or less than the surface of the frame body facing the second member. Can be configured in position.
  • the second member has an extending portion that extends outward from the outer peripheral side surface of the functional layer and the outer peripheral side surface of the first member
  • the second member includes a base material, a second insulating layer provided on the surface facing the functional layer of the base material, an internal wiring layer embedded in the second insulating layer, A counter electrode layer electrically connected to the internal wiring layer and provided on a surface of the second insulating layer at a position facing the movable portion; and electrically connected to the internal wiring layer and extending And a pad portion provided on the surface of the second insulating layer, and can be preferably applied to a MEMS sensor in which the pad portion is open in the height direction.
  • FIG. 1 is the schematic diagram which shows distribution of Mises stress in an Example
  • FIG.4 (b) is shown in the schematic diagram which shows distribution of Mises stress of a comparative example
  • (c) is the minimum in an Example.
  • FIG. 5A illustrates the embodiment of FIG. 5A
  • FIG. 5B illustrates the comparative example of FIG.
  • It is a partial expansion longitudinal cross-sectional view of the MEMS sensor in this embodiment.
  • It is a fragmentary longitudinal cross-sectional view of the MEMS sensor in another embodiment.
  • It is process drawing (partial longitudinal cross-sectional view) which shows the manufacturing process of the MEMS sensor of this embodiment.
  • a functional layer 10 is sandwiched between a support substrate (first member) 1 and a wiring substrate (second member) 2. Each part of the support substrate 1 and the functional layer 10 is joined via the first insulating layers 3a and 3b.
  • the support substrate 1, the functional layer 10, and the first insulating layers 3a and 3b are made of SOI (Silicon on Insulator) is formed by processing the substrate.
  • SOI substrate used here is obtained by integrally bonding two silicon wafers with an oxide insulating layer (insulator), which is a SiO 2 layer, interposed therebetween.
  • One silicon wafer of the SOI substrate is used as the support substrate 1 and the other silicon wafer is used as the functional layer 10.
  • the silicon wafer constituting the functional layer 10 is finely processed, and the movable portion 11 is positioned between the movable portion 11, the support portion 12 that supports the movable portion 11, and the movable portion 11 and the support portion 12.
  • An elastically deformable portion 13 that is movably supported up and down in the figure is formed.
  • a frame body 14 is formed that surrounds the entire periphery of the movable portion 11 and the support portion 12 in a part of the silicon wafer constituting the functional layer 10.
  • the oxide insulating layer which is the SiO 2 layer of the SOI substrate is partially removed, and the first insulating layers 3a and 3b are formed by the remaining oxide insulating layer. It is formed.
  • the support portion 12 of the functional layer 10 is fixed to the support substrate 1 by the first insulating layer 3b. There is no oxide insulating layer between the movable portion 11 and the elastically deformable portion 13 and the support substrate 1, and the movable portion 11 is shown in the vertical direction in the operation region 15 between the support substrate 1 and the wiring substrate 2. Can move freely.
  • the movable portion 11, the support portion 12, the elastic deformation portion 13, and the frame body 14 are processed by removing a part of the silicon wafer of the functional layer 10 by ion etching means such as deep RIE using high-density plasma. Is called.
  • the step of removing the part of the oxide insulating layer to form the first insulating layers 3a and 3b is performed by a selective isotropic etching process that can dissolve the SiO 2 layer without dissolving silicon.
  • the support substrate 1 formed of one silicon wafer of the SOI substrate has a thickness dimension of about 0.2 to 0.7 mm, and the movable portion 11, the support portion 12, and the elastic deformation portion formed of the other silicon wafer. 13 and the frame 14 have a thickness of about 10 to 30 ⁇ m.
  • the thickness of the first insulating layers 3a and 3b is about 1 to 3 ⁇ m.
  • the wiring board (second member) 2 includes a single-layer silicon wafer (base material) 21 having a thickness dimension of about 0.2 to 0.7 mm, and a second insulating layer formed on the surface of the silicon wafer 21. (Second insulating layer) 22.
  • the second insulating layer 22 is an inorganic insulating layer such as SiO 2 , Si 3 N 4 or Al 2 O 3 and is formed by a sputtering process or a CVD process. Although not shown, the second insulating layer 22 has a laminated structure of a plurality of insulating layers. At this time, the material of each insulating layer can be changed.
  • the frame body 14 formed of a silicon wafer of the functional layer 10 and the wiring board 2 are fixed via a metal coupling portion 30a for sealing.
  • the support part 12 and the wiring board 2 formed of a silicon wafer of the functional layer 10 are fixed via a conductive metal coupling part 30b.
  • the first metal layer 31a is formed on the surface of the second insulating layer 22 constituting the wiring board 2 (the surface facing the frame body 14).
  • a second metal layer 32a is formed on the surface (the surface of the second insulating layer 22).
  • the first metal layer 31 b is formed on the surface of the second insulating layer 22, and the second metal layer 32 b is formed on the support portion 12 of the functional layer 10.
  • the first metal layers 31a and 31b and the second metal layers 32a and 32b are a combination of metal materials that are eutectic bonded or diffusion bonded in a heating and pressurizing process. Further, when the heat treatment is performed, the viscosity of the first metal layers 31a and 31b is lower than that of the second metal layers 32a and 32b.
  • the first metal layers 31a and 31b are aluminum or an alloy containing aluminum, for example, an aluminum-copper alloy
  • the second metal layers 32a and 32b are formed of germanium.
  • the first metal layers 31a and 31b are aluminum or an alloy containing aluminum, and the second metal layers 32a and 32b are zinc.
  • Other combinations of the first metal layer and the second metal layer are gold-silicon, gold-indium, gold-germanium, gold-tin, and the like. In the combination of the above metals, it becomes possible to perform bonding between metals at a relatively low temperature of 450 ° C. or lower, which is a temperature lower than the melting point of each metal.
  • the metal coupling part 30a for sealing is provided so as to surround the entire circumference of the operation region 15. After joining, the operation region 15 having the movable portion 11 and the support portion 12 and the external region 16 are blocked by the metal coupling portion 30a, and the operation region 15 is sealed. If the bonding step is performed in an inert gas atmosphere, the operation region 15 can be filled with an inert gas.
  • an internal wiring layer 35 is formed inside the second insulating layer 22, and the internal wiring layer 35 is electrically connected to the first metal layer 31b. Therefore, the support portion 12 and the movable portion 11 made of silicon are electrically connected to the internal wiring layer 35 through the metal coupling portion 30b.
  • a counter electrode layer 36 facing the movable portion 11 is provided on the surface of the second insulating layer 22, and the counter electrode layer 36 is routed inside the second insulating layer 22.
  • the internal wiring layer (not shown) is electrically connected.
  • the wiring board 2 has an extending portion 2 a that extends outward from the outer peripheral side surface 14 a of the frame body 14 and the outer peripheral side surface 1 a of the support substrate 1.
  • the pad part 20 electrically connected with the internal wiring layer 35 is formed in the surface of the 2nd insulating layer 22 of the extension part 2a. As shown in FIG. 1, the pad portion 20 is opened in the height direction.
  • This MEMS sensor can be used as an acceleration sensor.
  • acceleration in any of the upper and lower directions shown in the drawing acts on the MEMS sensor, the movable portion 11 moves in the direction opposite to the acceleration in the operation region 15 due to the reaction.
  • the distance between the movable part 11 and the counter electrode layer 36 changes. If this change in distance is detected as a change in capacitance, the direction and magnitude of acceleration can be detected.
  • the MEMS sensor can be used as a pressure sensor, a vibration gyro, or the like.
  • FIG. 1 shows the first metal layer 31a and the second metal layer 32a before eutectic bonding or diffusion bonding.
  • FIG. 2A shows a state after the first metal layer 31a and the second metal layer 32a are eutectic-bonded or diffusion-bonded to form the metal bonding portion 30a through the heating and pressurizing steps. Indicates the state.
  • FIG. 2A is a partially enlarged longitudinal sectional view of the MEMS sensor in the present embodiment.
  • a bonding plane 22a is formed on the surface (opposing surface) of the second insulating layer 22.
  • Step portions 22b and 22b are formed on both sides of the bonding plane 22a, and the surface (opposing surface) of the second insulating layer 22 is closer to the bonding plane on the operation region 15 side and the external region 16 side than the step portions 22b and 22b. It is recessed below 22a.
  • the first metal layer 31a is formed on the bonding plane 22a with a constant film thickness. The first metal layer 31a is formed from the bonding plane 22a to the surface of the operating region 15 and the surface of the external region 16 of the second insulating layer 22 through the step portion 22b.
  • a bonding plane 14c is formed on the surface (opposing surface) of the frame body 14, and the bonding plane is formed inside the bonding plane 14c (in the direction of the operation region 15) via a step 14b.
  • a receding plane 14d that recedes one step above 14c (the side away from the second insulating layer 22) is formed.
  • the second metal layer 32a is formed with a substantially constant film thickness from the joining plane 14c to the receding plane 14d inside the joining plane 14c.
  • the length dimension of the first metal layer 31a in the X1-X2 direction is longer than the length dimension of the second metal layer 32a in the X1-X2 direction.
  • the outer peripheral side surface 32c of the second metal layer 32a is coincident with the outer peripheral side surface 14a of the frame body 14 in the height direction. That is, the outer peripheral side surface 32 c of the second metal layer 32 a is formed at a position along the outer peripheral side surface 14 a of the frame body 14.
  • the first metal layer 31a extends to the outer region 16 outside the position facing the second metal layer 32a.
  • the outer peripheral end B of the bonding interface A when the first metal layer 31 a and the second metal layer 32 a are overlaid and heated and pressurized is the outer periphery of the frame body 14. It coincides with the side surface 14a in the height direction. That is, the outer peripheral end B of the bonding interface A is located on an extension line along the outer peripheral side surface 14 a of the frame body 14.
  • the amount of retraction from the outer peripheral side surface 14a of the frame 14 to the outer peripheral end B of the bonding interface A is T1
  • the retraction amount T1 is zero.
  • the outer peripheral side surface 3c of the first insulating layer 3a that joins the frame 14 and the support substrate 1 is inside the outer peripheral side surface 14a of the frame 14 (in the direction of the operation region 15). ; X1 side).
  • the retraction amount from the outer peripheral side surface 14a of the frame 14 to the outer peripheral side surface 3c of the first insulating layer 3 is T2, and the retraction amount T2 is larger than zero.
  • the relationship of the retraction amount T1 ⁇ the retraction amount T2 is established, and the outer peripheral side surface 14a of the frame body 14 and the outer end of the bonding interface A between the first metal layer 31a and the second metal layer 32a.
  • the part B is located outside the outer peripheral side surface 3c of the first insulating layer 3a (the direction away from the operation region 15; the direction approaching the external region 16; the X2 side).
  • the outer peripheral surface of the metal joint portion 30a is covered with a passivation layer, that is, a protective insulating layer 41.
  • the protective insulating layer 41 continuously covers the outer peripheral side surface 14a of the frame body 14, the surface of the second insulating layer 22, and the like with the outer peripheral surface of the metal coupling portion 30a.
  • the protective insulating layer 41 can be formed by, for example, a CVD method, and is made of Si 3 N 4 , SiO 2 , PSG, or the like.
  • FIG. 2B shows the structure of the MEMS sensor of the comparative example.
  • the outer peripheral end B of the bonding interface A between the first metal layer 31a and the second metal layer 32a is located on the inner side of the outer peripheral side surface 14a of the frame body 14 (direction of the operation region 15; X1 side) and retracts inward from the outer peripheral side surface 3c of the first insulating layer 3a. That is, the relationship of the reverse amount T1> the reverse amount T2 is established.
  • FIG. 3A is an overall schematic diagram (front view) of the MEMS sensor used in the simulation experiment.
  • FIG. 3B is a partially enlarged schematic view of the MEMS sensor in the present embodiment
  • FIG. 3C is a partially enlarged schematic view of the MEMS sensor in the comparative example.
  • the first insulating layer 3a made of SiO 2 is provided between the first member (support substrate) 1 made of silicon and the frame body 14 made of silicon. Intervenes.
  • the second member 2 includes a silicon base material 21 and a second insulating layer 22 formed on the surface thereof.
  • the second member 2 is simplified by not providing the internal wiring layer 35 and the counter electrode layer 36 unlike the wiring substrate 2 shown in FIG.
  • the second insulating layer 22 is made of Si 3 N 4 .
  • a first metal layer 31a made of aluminum is formed on the surface of the second insulating layer 22 (first metal layer 51a in the comparative example of FIG. 3C), and a first metal layer made of germanium is formed on the surface of the frame body 14.
  • the outer peripheral end B of the bonding interface A between the first metal layer 31a and the second metal layer 32a is used as the frame body 14 as in FIG.
  • the outer peripheral side surface 14a of the first insulating layer 3a is positioned on the outer side (X2 side) of the outer peripheral side surface 3c of the first insulating layer 3a.
  • the outer peripheral end B of the bonding interface A between the first metal layer 51a and the second metal layer 52a is It was made to recede further inside (X1 side) than the outer peripheral side surface 3c of one insulating layer 3a.
  • FIG. 4 (a) is a schematic diagram showing the distribution of Mises stress in the example
  • FIG. 4 (b) is a schematic diagram showing the distribution of Mises stress in the comparative example
  • 4 (a) and 4 (b) are copies of the measured Mises stress distribution map shown in different colors.
  • FIGS. 4 (a) and 4 (b) shows a higher stress than (2).
  • the high stress region (1) generated in the vicinity of the outer end B of the bonding interface A between the first metal layer 31a and the second metal layer 32a is shown in FIG. ) was found to be within a smaller range than the comparative example.
  • FIG. 4C is a schematic diagram showing the distribution of the minimum principal stress in the example
  • FIG. 4D is a schematic diagram showing the distribution of the minimum principal stress in the comparative example
  • FIGS. 4C and 4D are distribution diagrams of the measured minimum principal stresses shown in different colors.
  • FIGS. 4 (c) and 4 (d) shows a higher stress than (4)
  • (4) shows a higher stress than (5).
  • FIG. 4C the high stress region (3) generated in the vicinity of the outer end B of the bonding interface A between the first metal layer 31a and the second metal layer 32a is shown in FIG. ) was found to be within a smaller range than the comparative example, or it could be almost eliminated.
  • FIGS. 4A and 4C are more uniform in the distribution of stress in the X1-X2 direction than the comparative examples shown in FIGS. 4B and 4D.
  • FIG. 5A is an electron micrograph showing a cross section of the MEMS sensor in the example
  • FIG. 5B is an electron micrograph showing a cross section of the MEMS sensor in the comparative example. Note that the comparative example in FIG. 5B is a photograph after the protective insulating layer is formed, while the example in FIG. 5A is a photograph before the protective insulating layer is formed.
  • the height D of the first metal layer that protrudes to the outside region from the bonding interface between the first metal layer and the second metal layer is set to the surface of the frame. It turned out that it can be located below (surface facing a wiring board (2nd member)) C or less.
  • FIG. 6 (a) illustrates the embodiment of FIG. 5 (a).
  • the first metal layer 31a is heated, pressurized and crushed to be slightly raised in the external region 16, but the height D of the raised portion 31c is set to the joining plane 14c of the frame body 14c.
  • the bulge of the raised portion 31c can be kept low so that it can be kept below the height C of (the surface facing the wiring board 2). This is because, as shown in the simulation results of FIG. 4, the stress applied to the outer peripheral end B of the bonding interface A of the metal joint portion 30a can be reduced.
  • the height of the first metal layer that protrudes outside the bonding interface between the first metal layer and the second metal layer is the surface of the frame. (It becomes higher than the facing surface E facing the wiring board (second member).
  • Fig. 6 (b) illustrates a comparative example of Fig. 5 (b).
  • the metal layer 51a is heated and pressurized and crushed, the metal layer 51a is greatly bulged outward, and the height F of the raised portion 51c is the height E of the bonding plane 14c of the frame body 14 (the surface facing the wiring board 2). This is because the stress applied to the outer peripheral end B of the bonding interface A of the metal bonding part 50a is large as shown in the simulation result of FIG.
  • the outer peripheral end B of the bonding interface A between the first metal layer 31a and the second metal layer 32a is outside the outer peripheral side surface 3c of the first insulating layer 3a (operation).
  • the stress acting on the bonding interface A can be made more uniform than in the comparative example. Therefore, the sealing property by the metal coupling part 50a can be improved.
  • the stress applied to the outer peripheral end B of the bonding interface A can be weakened as compared with the comparative example. Therefore, the height of the raised portion 31c due to the first metal layer 31a being crushed and protruding into the external region 16 can be kept low.
  • the height of the raised portion 51c of the first metal layer 51a is increased, and a narrow space G is formed outside the bonding interface A and between the first metal layer 51a and the second metal layer 52a. I can do it. Therefore, in the configuration in which the outer peripheral surface of the metal bonding portion is covered with the protective insulating layer 41, it is difficult to appropriately fill the narrow space G with the protective insulating layer 41.
  • the height of the raised portion 31c of the first metal layer 31a can be suppressed lower than that of the comparative example, and the formation of the narrow space G as shown in the comparative example can be suppressed.
  • the protective insulating layer 41 can be formed on the outer peripheral surface of the metal coupling portion 30a without interruption. Thereby, compared with the comparative example, corrosion of the metal joint portion 30a can be prevented appropriately and easily.
  • the inner peripheral side surface 3d of the first insulating layer 3a and the inner peripheral end portion H of the bonding interface A of the metal coupling portion 30a are both the inner peripheral side surface 14e of the frame body 14. It retreats in the direction outside (the direction away from the operation region 15; X2 side). At this time, the inner peripheral end H of the bonding interface A of the metal bonding portion 30a is further receded in the direction away from the operation region 15 (X2 side) than the inner peripheral side surface 3d of the first insulating layer 3a. Is preferred.
  • the amount of the first metal layer 31a made of aluminum or aluminum alloy can be suppressed from protruding from the outer peripheral end B of the bonding interface A to the outer region 16 (see FIG. 2A). That is, contrary to FIG. 7, when the inner end H of the bonding interface A of the metal coupling portion 30 a is positioned closer to the operation region 15 side (X1 side) than the inner peripheral side surface 3 d of the first insulating layer 3 a, Since the stress applied to the inner end H of the bonding interface A is weakened, the stress applied to the outer peripheral end B of the bonding interface A becomes stronger than when the state shown in FIG. Therefore, as shown in FIG.
  • the inner end H of the bonding interface A of the metal coupling portion 30a is set back in the direction away from the operation region 15 (X2 side) from the inner peripheral side surface 3d of the first insulating layer 3a.
  • the stress applied to the inner end portion H of the bonding interface A can be increased, and the stress applied to the outer peripheral end portion B of the bonding interface A can be weakened, and the outer region 16 protrudes beyond the outer peripheral end portion B of the bonding interface A.
  • the rise of the first metal layer 31a can be kept low.
  • FIG. 8 is a partially enlarged longitudinal sectional view of a MEMS sensor according to another embodiment.
  • the outer peripheral end B of the bonding interface A between the first metal layer 31a and the second metal layer 32a is located on the inner side of the outer peripheral side surface 14a of the frame body 14 (operation region). 15 direction; X1 side).
  • the outer peripheral end B of the bonding interface A is located outside the outer peripheral side surface 3c of the first insulating layer 3a (in the direction away from the operation region 15; X2 side). is doing.
  • the first metal layer 31a and the second metal layer are bonded at the time of joining between the first metal layer 31a and the second metal layer 32a by heating and pressing.
  • the stress applied to the bonding interface A with 32a can be made uniform.
  • the stress applied to the outer peripheral end B of the bonding interface A can be weakened, and thus the height of the bulge caused by the first metal layer 31a being crushed and protruding to the external region 16 can be reduced. It is possible to suppress.
  • the outer peripheral end B of the bonding interface A recedes inward (in the direction of the operation region 15; X1 direction) from the outer peripheral side surface 14 a of the frame body 14, and thus the first metal layer
  • the frontage 44 sandwiched between 31a and the second metal layer 32a becomes narrower.
  • the outer peripheral end portion B of the bonding interface A is matched with the outer peripheral side surface 14a of the frame body 14 in the height direction, so that the protective insulating layer 41 is connected to the metal bonding portion.
  • the opening 45 at the time of film formation on the outer peripheral surface of 30a can be widened, and the covering failure of the protective insulating layer 41 can be hardly caused.
  • “the outer peripheral end portion B of the bonding interface A coincides with the outer peripheral side surface 14a of the frame body 14 in the height direction” allows a deviation within a manufacturing error.
  • FIG. 9 is a process diagram showing a method of manufacturing a MEMS sensor according to this embodiment. Each drawing shows a partial longitudinal sectional view of the MEMS sensor in each manufacturing process.
  • an SOI substrate 46 is prepared in which a support substrate 1 made of silicon, a first insulating layer 3 made of SiO 2 , and a functional layer 10 made of silicon are sequentially laminated.
  • the SOI substrate 46 has a wafer shape, and a large number of MEMS sensors can be manufactured from the SOI substrate 46. In FIG. 9, only the manufacturing part of one MEMS sensor is shown.
  • a resist layer (not shown) is formed on the surface 10a of the functional layer 10 where it becomes the joining planes 12c and 14c, and the surface 10a of the functional layer 10 not covered with the resist layer is etched.
  • a recess 10b is formed.
  • the location of the joining plane 12 c is the surface of the support portion 12, and the location of the joining plane 14 c is the surface of the frame body 14.
  • second metal layers 32a and 32b are formed on the bonding planes 12c and 14c.
  • a material having a higher viscosity at the time of heating than the first metal layers 31a and 31b on the wiring board 2 side is used.
  • germanium can be used for the second metal layers 32a and 32b.
  • a resist layer 47 is formed on the surface 10a of the functional layer 10 left as the frame body 14, the support portion 12, the elastic deformation portion 13, and the movable portion 11.
  • the functional layer 10 not covered with the resist layer 47 is removed by etching.
  • the functional layer 10 not covered with the resist layer 47 is removed by ion etching means such as Fukahori RIE using high-density plasma, and the frame body 14, the support portion 12, the elastic deformation portion 13, and the movable portion 11 are removed. Separate from each other.
  • the frame 14 can be divided into an operation region 15 and an external region 16, and the support portion 12, the elastic deformation portion 13, and the movable portion 11 are formed in the operation region 15.
  • the second metal layer 32a and the functional layer 10 that are not covered with the resist layer 47a are etched, the second metal is formed on the cut surface along the outer peripheral side surface 14a of the frame body 14.
  • the outer peripheral side surface 32c of the layer 32a can be located (refer FIG.9 (b)).
  • a selective isotropic etching process that can dissolve the oxide insulating layer (SiO 2 layer) without dissolving silicon is performed.
  • the etching solution permeates into the groove where the respective portions of the functional layer 10 are separated.
  • a large number of fine holes penetrating in the thickness direction are formed in the movable portion 11, and the etching solution penetrates into each fine hole.
  • the first insulating layers 3 a and 3 b can be left only between the support portion 12 and the support substrate 1 and between the frame body 14 and the support substrate 1.
  • the outer peripheral side surface 3c and the inner peripheral side surface 3d of the first insulating layer 3a are both directed inward from the outer peripheral side surface 14a and the inner peripheral side surface 14e of the frame body 14. It is retreating. As described above, the outer peripheral side surface 3c and the inner peripheral side surface 3d of the first insulating layer 3a recede toward the inward direction of the frame body 14 because the outer peripheral side surface 3c and the inner peripheral surface of the first insulating layer 3a are retracted by isotropic etching. This is because the peripheral side surface 3d is also shaved toward the surface direction.
  • the amount of receding from the inner peripheral side surface 3d of the frame body 14 in the first insulating layer 3a is estimated in advance, and in the next step, the bonding interface A between the first metal layer 31a and the second metal layer 32a.
  • the inner peripheral side surface of the resist layer 47a in FIG. 9B is such that the position that becomes the inner peripheral end portion H recedes in a direction farther from the operation region 15 than the inner peripheral side surface 3d of the first insulating layer 3a.
  • the position of 47c and the etching conditions are regulated.
  • the position used as the outer peripheral edge part B of the joining interface A of the 1st metal layer 31a and the 2nd metal layer 32a is set rather than the outer peripheral side surface 3c of the 1st insulating layer 3 at the next process.
  • the outer peripheral side surface 14a of the frame body 14 and the outer peripheral side surface 32c of the second metal layer 32a are high.
  • the position that becomes the outer peripheral end B can be easily and appropriately positioned outside the outer peripheral side surface 3c of the first insulating layer 3a that recedes from the outer peripheral side surface 14a of the frame body 14. It becomes possible.
  • the second metal layers 32a and 32b formed on the surface 14 are arranged opposite to each other and bonded together by heating and pressing.
  • the bonding plane 22a formed on the surface of the second insulating layer 22 extends outward from the outer peripheral side surface 32c of the second metal layer 32a, and is on the bonding plane 22a.
  • the first metal layer 31a formed on the outside extends outside the outer peripheral side surface 32c of the second metal layer 32a. Accordingly, in the step of FIG. 9D, the outer peripheral end B of the bonding interface A between the first metal layer 31a and the second metal layer 32a is outside the outer peripheral side surface 3c of the first insulating layer 3a ( It can be appropriately and easily located on the side away from the operation area 15.
  • the inner peripheral end H of the bonding interface A can be positioned on the side farther from the operation region 15 than the inner peripheral side surface 3d of the first insulating layer 3a.
  • the support substrate 1 is cut along the dotted line I to expose the pad portion 20 formed on the wiring substrate 2 to the outside.
  • the protective insulating layer 41 is continuously formed on the outer peripheral surface of the metal bonding portion 30a and the peripheral portion thereof (such as the outer peripheral side surface 14a of the frame body 14).
  • the protective insulating layer 41 can be formed by sputtering or CVD. As shown in the embodiment of FIG. 8, in order to properly form the protective insulating layer 41 in the internal space from the narrow opening 44 sandwiched between the first metal layer 31 a and the second metal layer 32 a, CVD is performed. It is desirable to adopt the law.
  • the outer peripheral side surface B of the bonding interface A between the first metal layer 31a and the second metal layer 32a is changed to the outer peripheral side surface 3c of the first insulating layer 3a.
  • the stress applied to the outer peripheral side surface B of the bonding interface A can be weaker than that in the comparative example (FIG. 6B).
  • the first metal layer 31a is crushed and protrudes into the external region 16. According to the present embodiment, as shown in FIGS. 5A and 6A, the height D of the raised portion 31c of the first metal layer 31a can be suppressed. Can be made lower than the surface of the frame body 14 (joining plane 14c).
  • the protective insulating layer 41 can be formed on the outer peripheral surface of the metal coupling portion 30a without interruption. Since the protective insulating layer 41 can be formed without interruption, corrosion of the metal bonding portion 30a can be appropriately prevented.
  • the portion where the second metal layer 32a is protected by the resist layer 47 and the protrusion of the resist layer 47 under the outer peripheral side surface 47b of the resist layer 47a Since the second metal layer 32a and the functional layer 10 that are not covered with the resist layer 47a are etched, the second metal layer 32a and the functional layer 10 that are not covered with the resist layer 47a are etched to form a second surface on the cut surface of the outer peripheral side surface 14c.
  • the outer peripheral side surface 32c of the metal layer 32a can be positioned.
  • the bonding plane 22a of the second insulating layer 22 that becomes the formation surface of the first metal layer 31a on the wiring board 2 side is extended outward from the outer peripheral side surface 32c of the second metal layer 32a, and the bonding is performed.
  • a second metal layer 32a is formed on the plane 22a.
  • the protective insulating layer 41 may not be formed.
  • the metal used for the metal bonding portion 30a is excellent in corrosion resistance or is used in an environment where the deterioration of the metal bonding portion 30a is not promoted, the metal bonding portion 30a can be formed without forming the protective insulating layer 41. Only sealing with suffices.
  • a Bonding interface B Outer peripheral edge 1 Support substrate (first member) 2 Wiring board (second member) 3a, 3b First insulating layer 3c (first insulating layer) outer peripheral side surface 3d (first insulating layer) inner peripheral side surface 10 functional layer 11 movable portion 12 support portion 13 elastic deformation portion 14 frame 14a (frame) Body peripheral surface 14c, 22a Bonding plane 15 Operating region 20 Pad portion 22 Second insulating layer 30a, 30b Metal coupling portion 31a, 31b First metal layer 31c Swelling portion 32a, 32b Second metal layer 35 Internal wiring Layers 31c and 33 Extruding portion 41 Protective insulating layer 47 Resist layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

【課題】金属結合部の接合界面に作用する応力の均一性を向上させるMEMSセンサを提供することを目的としている。 【解決手段】機能層(10)には、動作領域(15)と外部領域(16)とを区画する枠体(14)とが形成される。前記枠体と支持基板(1)間は第1の絶縁層(3a)を介して接合される。枠体と配線基板(2)間は、金属結合部(30a)を介して接合されている。金属結合部では、配線基板の表面に第1の金属層(31a)が形成され、枠体の表面に第2の金属層(32a)が形成され、第1の金属層と第2の金属層とが加熱され加圧されて互いに接合されている。第1の絶縁層の外周側面(3c)は、枠体の外周側面(14a)よりも前記動作領域の方向に後退している。第1の金属層と前記第2の金属層との接合界面(A)の外周端部(B)は、前記第1の絶縁層の外周側面よりも前記動作領域から離れる方向である外側に位置している。

Description

MEMSセンサ及びその製造方法
 本発明は、シリコン(Silicon)層を微細加工して形成されたMEMSセンサに係り、特に、動作領域が金属結合部で囲まれて封止されているMEMSセンサに関する。
 以下の特許文献1に記載されているMEMS(Micro-Electro-Mechanical Systems)センサは、例えば、2つのシリコンウェハが、SiO2層の酸化絶縁層(Insulator)を挟んで一体に接合されたSOI基板を加工して形成されている。
 SOI基板の一方のシリコンウェハが第1の部材(支持基板)となり、他方のシリコンウェハが機能層となる。機能層が微細加工されて、可動部とこの可動部を支持する支持部とが形成され、さらに機能層の一部によって可動部と支持部とを有する動作領域を囲む枠体が形成されている。また、シリコンウェハで形成された第2の部材(配線基板)が、機能層に重ねられ、前記枠体と第2の部材とが接合されて、前記動作領域が外部領域から区画されて密閉されている。
 以下の特許文献1に記載された発明は、第2の部材の表側に現れている絶縁層の表面にアルミニウム層が形成され、枠体の表面にゲルマニウム層が形成され、アルミニウム層とゲルマニウム層とが加熱され加圧されて共晶接合または拡散接合により結合されて金属結合部が形成されている。この金属結合部を用いると、加熱および加圧という簡単な作業で、第2の部材と枠体とを接合して動作領域を密閉できる。
WO2010/032821号 特開平6-289049号公報 特開2010-243420号公報
 しかしながら、従来では、金属結合部の接合界面に作用する応力の均一性が悪く、接合強度が低下しあるいは接合強度のばらつきが問題となった。
 また、特許文献2に記載されているように、機能層と第2の部材の接合部の周囲にパッシベーション層すなわち保護絶縁層を形成する構成としたとき、金属結合部における接合界面の外周端部が酸化絶縁層の外周側面よりも動作領域である内側に後退していると(後述する比較例の形態)、金属結合部を構成する金属層が外側に流失しやすく、保護絶縁層を形成するための隙間が極端に狭くなるといった問題があった。また特許文献3の構成でも金属結合部を構成する金属層が加圧、加熱により外側に流失し、はみ出した金属層が大きく盛り上がってしまう。そのため、金属結合部の外周表面に保護絶縁層を適切に被覆できず、保護絶縁層が途切れてしまう等、金属結合部の腐食を適切に防止できないといった問題が生じた。
 そこで本発明は上記従来の課題を解決するものであり、特に金属結合部の接合界面に作用する応力の均一性を向上させ、封止性を向上させたMEMSセンサを提供することを目的としている。
 本発明は、第1の部材と、第2の部材と、前記第1の部材と前記第2の部材との間に位置する機能層とを有するMEMSセンサにおいて、
 前記機能層には、可動部と、前記可動部を支持する支持部と、前記可動部および前記支持部が位置する動作領域と外部領域とを区画する枠体とが形成され、前記枠体と前記第1の部材とが、前記動作領域の全周を囲む第1の絶縁層を介して接合され、前記枠体と前記第2の部材とが、前記動作領域の全周を囲む金属結合部を介して接合されており、
 前記金属結合部では、前記第2の部材の前記枠体との対向面に第1の金属層が形成され、前記枠体の前記第2の部材との対向面に第2の金属層が形成され、前記第1の金属層と前記第2の金属層とが加熱され加圧されて互いに接合されており、
 前記第1の絶縁層の外周側面は、前記枠体の外周側面よりも前記動作領域の方向である内側に後退しており、
 前記第1の金属層と前記第2の金属層との接合界面の外周端部は、前記第1の絶縁層の外周側面よりも前記動作領域から離れる方向である外側に位置していることを特徴とするものである。
 また本発明におけるMEMSセンサの製造方法は、
 第1の部材と第1の絶縁層を介して接合してなる機能層の、動作領域と外部領域とを区画する枠体の表面に第2の金属層を形成する工程、
 前記機能層の不要な部分を除去して、前記機能層を、可動部、前記可動部を支持する支持部、及び前記枠体に区画し、このとき、前記枠体の外周側面から前記第2の金属層の外周側面までの後退量T1を、前記第1の絶縁層を前記支持部及び前記枠体との間に残し前記可動部との間にて除去する次工程にて形成される、前記枠体の外周側面から前記第1の絶縁層の外周側面までの後退量T2よりも小さくする工程、
 前記第1の絶縁層を、前記支持部及び前記枠体との間に残し、前記可動部との間にて除去する工程、
 第2の部材の前記枠体と対向する表面に、外周側面が、前記第2の金属層の外周側面よりも外側にまで延出する第1の金属層を形成し、前記第1の金属層と、前記第2の金属層とを対向配置して、加熱及び加圧により互いに接合して、前記第1の金属層と前記第2の金属層との接合界面の外周端部を、前記第1の絶縁層の外周側面よりも外側に位置させる工程、
 を有することを特徴とするものである。
 これにより、第1の金属層と第2の金属層間を加熱・加圧したとき、接合界面の外周端部が、第1の絶縁層の外周側面よりも内側に後退した形態(比較例)に比べて、第1の金属層と第2の金属層との間の接合界面に加わる応力を均一にできる。よって金属結合部での封止性を向上させることが可能になる。
 また本発明では、比較例に比べて、前記接合界面の外周端部に加わる応力を弱めることができ、よって第1の金属層が潰れて外部領域にはみ出したことによる盛り上がりの高さを低く抑えることが出来る。したがって前記金属結合部の外周表面を保護絶縁層により覆う形態では、前記保護絶縁層を金属結合部の外周表面に途切れることなく形成しやすくなる。保護絶縁層を途切れることなく形成できることで、金属結合部の腐食を防止しやすくなる。
 本発明では、前記第1の金属層と前記第2の金属層との接合界面の外周端部は、前記枠体の外周側面と高さ方向に一致していることが好適である。上記の製造方法においては、前記枠体の外周側面に沿って切断したとき、その切断面上に前記第2の金属層の外周側面を一致させて、前記後退量T1を0にすることが好適である。これにより、接合界面の外周端部を枠体の外周側面よりも内側に後退させた形態に比べて、保護絶縁層を金属結合部の外周表面に成膜するときの間口を広くできるため、保護絶縁層を均一な膜厚で簡単且つ適切に成膜することができる。
 また本発明では、前記第1の金属層と前記第2の金属層との接合界面の内周端部は、前記第1の絶縁層の内周側面よりも、前記動作領域から離れる方向に位置していることが好ましい。これにより、より効果的に、第1の金属層と第2の金属層との間の接合界面の外周端部に加わる応力を弱めることができ、よって第1の金属層が潰れて外部領域にはみ出したことによる盛り上がりの高さをより低く抑えることが出来る。
 また本発明では、下から前記第2の部材、前記機能層及び前記第1の部材の順に積層され、前記金属結合部では、前記第1の金属層が前記第2の金属層の下側に位置しており、
 加熱され加圧されたときに、前記金属結合部の接合界面よりも前記外部領域へはみ出した前記第1の金属層の高さが、前記枠体の前記第2の部材との対向面以下に位置している構成にできる。
 また本発明では、前記第2の部材は、前記機能層の外周側面及び前記第1の部材の外周側面よりも外側に延出した延出部を有し、
 前記第2の部材は、基材と、前記基材の前記機能層との対向面側に設けられた第2の絶縁層と、前記第2の絶縁層内に埋設された内部配線層と、前記内部配線層と電気的に接続され、前記可動部と対向した位置にて前記第2の絶縁層の表面に設けられる対向電極層と、前記内部配線層と電気的に接続され、前記延出部にて前記第2の絶縁層の表面に設けられるパッド部と、を有して構成され、前記パッド部が高さ方向にて開放されているMEMSセンサに好ましく適用できる。
本発明の本実施形態のMEMSセンサの全体構造を示す縦断面図である。 (a)は、本実施形態におけるMEMSセンサの部分拡大縦断面図であり、(b)は、比較例におけるMEMSセンサの部分拡大縦断面図である。 (a)は、応力分布のシミュレーション実験に使用したMEMSセンサの模式図(正面図)であり、(b)は本実施例のMEMSセンサの部分拡大模式図、(c)は比較例のMEMSセンサの部分拡大模式図である。 (a)は実施例におけるミーゼス応力の分布を示す模式図であり、図4(b)は比較例のミーゼス応力の分布を示す模式図で示したものであり、(c)は実施例における最小主応力の分布を示す模式図であり、(d)は比較例の最小主応力の分布を示す模式図で示したものである。 (a)は、実施例におけるMEMSセンサの断面を示す電子顕微鏡写真であり、(b)は、比較例におけるMEMSセンサの断面を示す電子顕微鏡写真である。 (a)は図5(a)の実施例を図示したものであり、(b)は図5(b)の比較例を図示したものである。 本実施形態におけるMEMSセンサの部分拡大縦断面図である。 別の実施形態におけるMEMSセンサの部分縦断面図である。 本実施形態のMEMSセンサの製造工程を示す工程図(部分縦断面図)である。
 図1に示すMEMSセンサは、支持基板(第1の部材)1と配線基板(第2の部材)2の間に、機能層10が挟まれている。支持基板1と機能層10の各部は、第1の絶縁層3a,3bを介して接合されている。支持基板1と機能層10および第1の絶縁層3a,3bは、SOI(Silicon
on Insulator)基板を加工して形成されている。ここで使用するSOI基板は、2つのシリコンウェハが、SiO2層である酸化絶縁層(Insulator)を挟んで一体に接合されたものである。SOI基板の一方のシリコンウェハが、支持基板1として使用され、他方のシリコンウェハが機能層10として使用される。
 機能層10を構成するシリコンウェハが微細加工され、可動部11とこの可動部11を支持する支持部12と、可動部11と支持部12との間に位置して可動部11を図1の図示上下に移動自在に支持する弾性変形部13とが形成されている。さらに、機能層10を構成するシリコンウェハの一部で、前記可動部11および支持部12の周囲全周を囲む枠体14が形成されている。
 機能層10を構成するシリコンウェハの微細加工の後に、前記SOI基板のSiO2層である酸化絶縁層が部分的に除去され、残った酸化絶縁層によって、前記第1の絶縁層3a,3bが形成される。
 第1の絶縁層3bによって機能層10の支持部12が支持基板1に固定されている。可動部11ならびに弾性変形部13と支持基板1との間には酸化絶縁層が存在しておらず、支持基板1と配線基板2との間の動作領域15において、可動部11が図示上下方向へ移動自在である。
 可動部11と支持部12と弾性変形部13および枠体14の加工は、高密度プラズマを使用した深堀RIEなどのイオンエッチング手段で、機能層10のシリコンウェハの一部を除去することで行われる。酸化絶縁層の一部を除去して第1の絶縁層3a,3bを形成する工程は、シリコンを溶解せずにSiO2層を溶解できる選択性の等方性エッチング処理により行われる。
 SOI基板の一方のシリコンウェハで形成される支持基板1は、厚さ寸法が0.2~0.7mm程度であり、他方のシリコンウェハで形成される可動部11と支持部12と弾性変形部13ならびに枠体14は、厚さ寸法が10~30μm程度である。第1の絶縁層3a,3bの厚さは1~3μm程度である。
 配線基板(第2の部材)2は、厚さ寸法が0.2~0.7mm程度の単層のシリコンウェハ(基材)21と、シリコンウェハ21の表面に形成された第2の絶縁層(第2の絶縁層)22とで構成されている。第2の絶縁層22は、SiO2、Si34またはAl23などの無機絶縁層であり、スパッタ工程またはCVD工程で形成される。図示しないが第2の絶縁層22は複数の絶縁層の積層構造とされており、このとき各絶縁層の材質を変えることができる。
 機能層10のシリコンウェハで形成された枠体14と配線基板2は、封止用の金属結合部30aを介して固定されている。機能層10のシリコンウェハで形成された支持部12と配線基板2は、導通用の金属結合部30bを介して固定されている。
 封止用の金属結合部30aでは、配線基板2を構成している第2の絶縁層22の表面(枠体14との対向面)に第1の金属層31aが形成され、枠体14の表面(第2の絶縁層22の表面)に第2の金属層32aが形成されている。導通用の金属結合部30bにおいても、第2の絶縁層22の表面に第1の金属層31bが形成され、機能層10の支持部12に第2の金属層32bが形成されている。
 第1の金属層31a,31bと第2の金属層32a,32bは、加熱および加圧工程で、共晶接合または拡散接合される金属材料の組み合わせである。また、加熱処理されたときに、第1の金属層31a,31bが第2の金属層32a,32bよりも粘度が低くなる。例えば、第1の金属層31a,31bがアルミニウムあるいはアルミニウムを含む合金であり例えばアルミニウム-銅合金で形成され、第2の金属層32a,32bがゲルマニウムで形成されている。
 共晶接合または拡散接合が可能な他の金属材料の組み合わせは、第1の金属層31a,31bがアルミニウムまたはアルミニウムを含む合金であり、第2の金属層32a,32bが亜鉛である。その他、第1の金属層-第2の金属層の組み合わせは、金-シリコン、金-インジウム、金-ゲルマニウム、金-錫などである。上記金属の組み合わせでは、それぞれの金属の融点以下の温度である450℃以下の比較的低い温度で金属間の接合を行うことが可能になる。
 封止用の金属結合部30aは、動作領域15の全周を囲んで設けられる。接合後は、可動部11と支持部12を有する動作領域15と外部領域16とが、金属結合部30aで遮断されて動作領域15が密封される。前記接合工程を不活性ガスの雰囲気下で行えば、動作領域15に不活性ガスを充填することもできる。
 導通用の金属結合部30bでは、第2の絶縁層22の内部に内部配線層35が形成され、内部配線層35が第1の金属層31bに導通している。したがって、シリコンで形成されている支持部12と可動部11は、金属結合部30bを介して内部配線層35と導通している。
 図1に示すように、第2の絶縁層22の表面には、可動部11に対向する対向電極層36が設けられ、この対向電極層36は、第2の絶縁層22の内部に引回された図示しない内部配線層と導通している。
 また配線基板2は、枠体14の外周側面14a及び支持基板1の外周側面1aよりも外側に延出する延出部2aを有する。そして延出部2aの第2の絶縁層22の表面に、内部配線層35と電気的に接続されるパッド部20が形成されている。図1に示すようにパッド部20は高さ方向に向けて開放されている。
 このMEMSセンサは、加速度センサとして使用することができる。MEMSセンサに対して図示上下のいずれかの向きの加速度が作用すると、その反作用により、動作領域15内で可動部11が加速度と逆の向きに移動する。その結果、可動部11と対向電極層36との距離が変化する。この距離の変化を静電容量の変化として検出すると、加速度の向きと大きさを検出することができる。その他、MEMSセンサは、圧力センサ、振動型ジャイロなどとして使用することができる。
 図1に示す第1の金属層31aと第2の金属層32aは、加熱および加圧工程に移行する前の状態を示している。すなわち図1は、共晶接合または拡散接合される前の第1の金属層31aと第2の金属層32aを示している。一方、図2(a)は、加熱および加圧工程を経て、第1の金属層31aと第2の金属層32aとが共晶接合または拡散接合されて金属結合部30aが形成された後の状態を示している。図2(a)は本実施形態におけるMEMSセンサの部分拡大縦断面図である。
 図2(a)に示すように、第2の絶縁層22の表面(対向面)に接合平面22aが形成されている。接合平面22aの両側に段差部22b,22bが形成され、段差部22b,22bよりも動作領域15側と外部領域16側とで、第2の絶縁層22の表面(対向面)が、接合平面22aよりも低く窪んでいる。加熱および加圧工程の前の段階では、接合平面22aに第1の金属層31aが一定の膜厚で成膜されている。第1の金属層31aは接合平面22aから段差部22bを介した第2の絶縁層22の動作領域15の表面及び外部領域16の表面にかけて形成されている。
 図2(a)に示すように、枠体14の表面(対向面)に接合平面14cが形成され、接合平面14cの内側(動作領域15の方向)には、段差部14bを介して接合平面14cよりも一段上側(第2の絶縁層22から離れる側)に後退した後退平面14dが形成されている。加熱および加圧工程の前の段階では、第2の金属層32aが、接合平面14cから接合平面14cより内側の後退平面14dにわたってほぼ一定の膜厚で成膜されている。
 図2(a)に示すように、第1の金属層31aのX1-X2方向における長さ寸法は、第2の金属層32aのX1-X2方向における長さ寸法よりも長くなっている。その結果、機能層10と配線基板2とを重ねるときに、機能層10と配線基板2とが平面方向に位置ずれしても、第2の金属層32aの全域を、第1の金属層31a内で対向させやすい。
 図2(a)に示すように、第2の金属層32aの外周側面32cは、枠体14の外周側面14aと高さ方向にて一致している。すなわち第2の金属層32aの外周側面32cは、枠体14の外周側面14aに沿った位置に形成されている。一方、第1の金属層31aは、第2の金属層32aとの対向位置よりも外側の外部領域16にまで延出している。
 よって図2(a)に示すように第1の金属層31aと第2の金属層32aとを重ね合わせて加熱し加圧したときの接合界面Aの外周端部Bは、枠体14の外周側面14aと高さ方向にて一致する。すなわち、接合界面Aの外周端部Bは、枠体14の外周側面14aに沿った延長線上に位置している。ここで、枠体14の外周側面14aから接合界面Aの外周端部Bまでの後退量をT1とすると、後退量T1はゼロである。
 図2(a)に示すように、枠体14と支持基板1間を接合する第1の絶縁層3aの外周側面3cは、枠体14の外周側面14aよりも内側(動作領域15の方向に;X1側に)に後退している。枠体14の外周側面14aから第1の絶縁層3の外周側面3cまでの後退量はT2であり、後退量T2はゼロよりも大きい。
 したがって、本実施形態では、後退量T1<後退量T2の関係が成り立っており、枠体14の外周側面14a及び第1の金属層31aと第2の金属層32aとの接合界面Aの外部端部Bは、第1の絶縁層3aの外周側面3cより外側(動作領域15から離れる方向;外部領域16に近づく方向;X2側)に位置している。
 そして、金属結合部30aの外周表面がパッシベーション層すなわち保護絶縁層41により覆われている。保護絶縁層41は枠体14の外周側面14aや第2の絶縁層22の表面等も金属結合部30aの外周表面と連続して覆っている。保護絶縁層41は、例えばCVD法により成膜可能なものであり、Si34、SiO2、PSG等である。
 図2(b)は、比較例のMEMSセンサの構造を示す。
 図2(b)では、第1の金属層31aと第2の金属層32aとの接合界面Aの外周端部Bが、枠体14の外周側面14aよりも内側に(動作領域15の方向;X1側)に後退するとともに、第1の絶縁層3aの外周側面3cよりも内側に後退している。すなわち、後退量T1>後退量T2の関係が成り立っている。
 図3(a)は、シミュレーション実験に使用したMEMSセンサの全体模式図(正面図)である。図3(b)が本実施例におけるMEMSセンサの部分拡大模式図であり、図3(c)が比較例におけるMEMSセンサの部分拡大模式図である。
 図3(a)(b)(c)に示すように、シリコンからなる第1の部材(支持基板)1と、シリコンからなる枠体14との間にSiO2からなる第1の絶縁層3aが介在する。第2の部材2は、シリコンの基材21と、その表面に形成された第2の絶縁層22とを備える。第2の部材2には、図1に示した配線基板2のような内部配線層35や対向電極層36は設けず、簡素化した。第2の絶縁層22は、Si34により形成されている。また、第2の絶縁層22の表面にアルミニウムからなる第1の金属層31a(図3(c)の比較例では第1の金属層51aとした)、枠体14の表面にゲルマニウムからなる第2の金属層32a(図3(c)の比較例では第2の金属層52aとした)を備え、実験では第1の金属層31aと第2の金属層32aとの間に1MPaの圧力を加えた。
 ここで実験で使用した各材質のヤング率及びポアソン比は以下の通りである。
Figure JPOXMLDOC01-appb-T000001
 実験に使用した図3(b)の実施例では、図2(a)と同様に、第1の金属層31aと第2の金属層32aとの接合界面Aの外周端部Bを枠体14の外周側面14aと高さ方向にて一致させ、第1の絶縁層3aの外周側面3cよりも外側(X2側)に位置させた。
 また実験に使用した図3(c)の比較例では、図2(b)と同様に、第1の金属層51aと第2の金属層52aとの接合界面Aの外周端部Bを、第1の絶縁層3aの外周側面3cよりも更に、内側(X1側)に後退させた。
 そして実験では、実施例と比較例において、ミーゼス応力(絶対値)と最小主応力(圧縮方向)の分布を測定した。
 図4(a)が実施例におけるミーゼス応力の分布を示す模式図であり、図4(b)が比較例のミーゼス応力の分布を示す模式図で示したものである。図4(a)(b)は、色分けして示される実測のミーゼス応力の分布図を写し取ったものである。
 図4(a)(b)に示す(1)は(2)よりも高い応力を示す。図4(a)に示す実施例では、第1の金属層31aと第2の金属層32aとの接合界面Aの外部端部B付近にて生じる高応力領域(1)を、図4(b)の比較例よりも小さい範囲内に収めることができるとわかった。
 また図4(c)が実施例における最小主応力の分布を示す模式図であり、図4(d)が比較例の最小主応力の分布を示す模式図で示したものである。図4(c)(d)は、色分けして示される実測の最小主応力の分布図を写し取ったものである。
 図4(c)(d)に示す(3)は(4)よりも高い応力を示し、(4)は(5)よりも高い応力を示す。図4(c)に示す実施例では、第1の金属層31aと第2の金属層32aとの接合界面Aの外部端部B付近にて生じる高応力領域(3)を、図4(d)の比較例よりも小さい範囲内に収めることができ、あるいはほとんど無くすことができるとわかった。
 また図4(a)(c)に示す実施例のほうが、図4(b)(d)に示す比較例よりもX1-X2方向に向う応力の分布を均一化しやすいことがわかった。
 図5(a)は、実施例におけるMEMSセンサの断面を示す電子顕微鏡写真であり、図5(b)は、比較例におけるMEMSセンサの断面を示す電子顕微鏡写真である。なお図5(b)の比較例は、保護絶縁層を形成した後の写真であるが、図5(a)の実施例は保護絶縁層を形成する前の写真である。
 図5(a)に示すように実施例では、第1の金属層と第2の金属層との接合界面よりも外部領域にはみ出した第1の金属層の高さDを、枠体の表面(配線基板(第2の部材)との対向面)C以下に位置させることができるとわかった。図6(a)は図5(a)の実施例を図示したものである。このように実施例では、第1の金属層31aが加熱、加圧されて潰されることで外部領域16にて若干、盛り上がるものの、その盛り上がり部31cの高さDを枠体14の接合平面14c(配線基板2との対向面)の高さC以下に抑えることができるように、盛り上がり部31cの***を低く抑えることができる。これは、図4のシミュレーション結果に示したように、金属結合部30aの接合界面Aの外周端部Bに加わる応力を小さくできるためである。
 一方、図5(b)に示すように比較例では、第1の金属層と第2の金属層との接合界面よりも外側にはみ出した第1の金属層の高さが、枠体の表面(配線基板(第2の部材)との対向面Eよりも高くなった。図6(b)は図5(b)の比較例を図示したものである。このように比較例では、第1の金属層51aが加熱、加圧されて潰されたことで外側に大きく盛り上がり、その盛り上がり部51cの高さFが枠体14の接合平面14c(配線基板2との対向面)の高さEよりも高くなってしまった。これは、図4のシミュレーション結果に示したように、金属結合部50aの接合界面Aの外周端部Bに加わる応力が大きいためである。
 本実施形態では比較例と異なって、第1の金属層31aと第2の金属層32aとの接合界面Aの外周端部Bを、第1の絶縁層3aの外周側面3cよりも外側(動作領域15から離れる方向)に位置させたことで、接合界面Aに作用する応力を比較例よりも均一にできる。よって金属結合部50aによる封止性を向上させることができる。
 また本実施形態では、比較例に比べて、接合界面Aの外周端部Bに加わる応力を弱めることができる。よって、第1の金属層31aが潰れて外部領域16にはみ出したことによる盛り上がり部31cの高さを低く抑えることが出来る。比較例では第1の金属層51aの盛り上がり部51cの高さが高くなってしまい、接合界面Aの外側であって、第1の金属層51aと第2の金属層52a間に狭小空間Gが出来てしまう。よって保護絶縁層41により金属結合部の外周表面を覆う構成では、この狭小空間Gを前記保護絶縁層41により適切に埋めることが難しい。これに対して本実施形態では、第1の金属層31aの盛り上がり部31cの高さを比較例よりも低く抑えることが出来、比較例に示すような狭小空間Gの形成を抑制することができるから、保護絶縁層41を金属結合部30aの外周表面に途切れることなく形成できる。これにより、比較例に比べて金属結合部30aの腐食を適切且つ簡単に防止することができる。
 図7に示すように、本実施形態では、第1の絶縁層3aの内周側面3d及び金属結合部30aの接合界面Aの内周端部Hは、いずれも枠体14の内周側面14eよりも外側の方向(動作領域15から離れる方向;X2側)に後退している。このとき、金属結合部30aの接合界面Aの内周端部Hは、第1の絶縁層3aの内周側面3dよりも、さらに動作領域15から離れる方向(X2側)に後退していることが好適である。これにより、アルミニウムあるいはアルミニウム合金からなる第1の金属層31aが、接合界面Aの外周端部Bよりも外部領域16にはみ出す量を抑えることができる(図2(a)参照)。すなわち、図7とは逆に、金属結合部30aの接合界面Aの内側端部Hを、第1の絶縁層3aの内周側面3dよりも動作領域15側(X1側)に位置させると、接合界面Aの内側端部Hに加わる応力が弱まるため、接合界面Aの外周端部Bに加わる応力が図7の状態としたときよりも強まってしまう。よって、図7のように、金属結合部30aの接合界面Aの内側端部Hを、第1の絶縁層3aの内周側面3dよりも、動作領域15から離れる方向(X2側)に後退させることで、接合界面Aの内側端部Hに加わる応力を強めて、接合界面Aの外周端部Bに加わる応力を弱めることができ、接合界面Aの外周端部Bよりも外部領域16にはみ出す第1の金属層31aの盛り上がりを低く抑えることができるのである。
 図8は別の実施形態におけるMEMSセンサの部分拡大縦断面図である。図8では、図2(a)と異なって、第1の金属層31aと第2の金属層32aとの接合界面Aの外周端部Bが枠体14の外周側面14aよりも内側(動作領域15の方向;X1側)に後退している。ただし、図8においても図2(a)と同様に接合界面Aの外周端部Bは、第1の絶縁層3aの外周側面3cよりも外側(動作領域15から離れる方向;X2側)に位置している。すなわち、枠体14の外周側面14aから接合界面Aの外周端部Bまでの後退量T1<枠体14の外周側面14aから第1の絶縁層3の外周側面3cまでの後退量T2となっている。
 図8の構成によっても図2(a)と同様に、第1の金属層31aと第2の金属層32a間の加熱・加圧による接合時、第1の金属層31aと第2の金属層32aとの接合界面Aに加わる応力を均一にできる。そして比較例の構成に比べて、接合界面Aの外周端部Bに加わる応力を弱めることができ、よって第1の金属層31aが潰れて外部領域16へはみ出したことによる盛り上がりの高さを低く抑えることが可能である。
 ただし、図8の構成では、接合界面Aの外周端部Bが、枠体14の外周側面14aよりも内側(動作領域15の方向;X1方向)に後退しているため、第1の金属層31aと第2の金属層32aとの間に挟まれた間口44が狭くなる。
 これに対して図2(a)の構成のように、接合界面Aの外周端部Bを、枠体14の外周側面14aと高さ方向で一致させることで、保護絶縁層41を金属結合部30aの外周表面に成膜する際の間口45を広くでき、保護絶縁層41の被覆不良を生じにくくできる。なお本実施形態において、「接合界面Aの外周端部Bが、枠体14の外周側面14aと高さ方向で一致する」とは、製造誤差内のずれを許容するものである。
 図2(a)の形態のほうが、図8の形態よりも保護絶縁層41の膜厚を均一化し、また、ガスの循環効率も上がるため、成膜レートを高めることができる。これにより、温度印加依存の不良(対向電極層36のヒロック生成による電気的ショートモード)の低減を期待できる。
 図9は本実施形態におけるMEMSセンサの製造方法を示す工程図である。各図は各製造工程におけるMEMSセンサの部分縦断面図を示す。
 図9(a)に示す工程では、シリコンからなる支持基板1、SiO2からなる第1の絶縁層3及びシリコンからなる機能層10が順に積層されたSOI基板46を用意する。SOI基板46はウェハ状であり、このSOI基板46から多数のMEMSセンサを製造することが可能である。なお図9では一つのMEMSセンサの製造部分のみを図示している。
 図9(a)に示すように機能層10の表面10aの接合平面12c,14cとなる箇所に図示しないレジスト層を形成し、レジスト層に覆われていない機能層10の表面10aをエッチングして凹部10bを形成する。接合平面12cの箇所は支持部12の表面であり、接合平面14cの箇所は枠体14の表面である。
 続いて、各接合平面12c,14cに第2の金属層32a,32bを成膜する。第2の金属層32a,32bには配線基板2側の第1の金属層31a,31bよりも加熱時の粘度が高い材料を使用する。例えば第2の金属層32a,32bにはゲルマニウムを用いることができる。
 次に図9(a)に示す工程では、枠体14、支持部12、弾性変形部13及び可動部11として残される機能層10の表面10aにレジスト層47を形成する。
 そして図9(b)に示すように、前記レジスト層47に覆われていない機能層10をエッチングにより除去する。例えば、高密度プラズマを使用した深堀RIEなどのイオンエッチング手段によりレジスト層47に覆われていない機能層10を除去し、枠体14と、支持部12、弾性変形部13及び可動部11とを互いに分離させる。枠体14により動作領域15と外部領域16とに区画でき、動作領域15内に、支持部12、弾性変形部13及び可動部11を形成する。
 図9(a)の工程では、枠体14の領域を区画するレジスト層47aの外周側面47b下で、第2の金属層32aがレジスト層47で保護される部分と、レジスト層47からはみ出して削られる部分とに跨っているため、レジスト層47aに覆われていない第2の金属層32a及び機能層10をエッチングすると、枠体14の外周側面14aに沿う切断面上に、第2の金属層32aの外周側面32cを位置させることができる(図9(b)参照)。
 この実施形態では、枠体14の外周側面14aから第2の金属層32aの外周側面32cまでの後退量をT1としたとき、枠体14の外周側面14aと第2の金属層32aの外周側面32cとが高さ方向に一致しているので、後退量T1はゼロである。
 次に図9(c)の工程では、シリコンを溶解せずに酸化絶縁層(SiO2層)を溶解できる選択性の等方性エッチング処理を行う。このときエッチング液は、機能層10の前記各部を分離した溝内に浸透する。更に可動部11には厚さ方向に貫通する多数の微細孔を形成し、エッチング液は各微細孔内にも浸透する。これにより、支持部12と支持基板1との間、及び枠体14と支持基板1との間にのみ第1の絶縁層3a,3bを残すことができる。
 図9(c)に示すように、第1の絶縁層3aの外周側面3c及び内周側面3dは、いずれも枠体14の外周側面14a及び内周側面14eから枠体14の内方向に向けて後退している。このように第1の絶縁層3aの外周側面3c及び内周側面3dが枠体14の内方向に向けて後退するのは、等方性エッチングにより第1の絶縁層3aの外周側面3c及び内周側面3dも面方向に向けて削られるためである。
 このとき、第1の絶縁層3aにおける枠体14の内周側面3dからの後退量を予め見込んで、次工程で、第1の金属層31aと第2の金属層32aとの接合界面Aの内周端部Hとなる位置が、第1の絶縁層3aの内周側面3dよりも動作領域15から離れた方向に後退するように、図9(b)でのレジスト層47aの内周側面47cの位置や、エッチング条件を規制する。
 また本実施形態では、次工程で、第1の金属層31aと第2の金属層32aとの接合界面Aの外周端部Bとなる位置を、第1の絶縁層3の外周側面3cよりも外側(動作領域15から離れた側)に位置させなければならないが、図9(b)で説明したように、枠体14の外周側面14aと第2の金属層32aの外周側面32cとを高さ方向に一致させたことで、外周端部Bとなる位置を、枠体14の外周側面14aから後退する第1の絶縁層3aの外周側面3cよりも外側に簡単且つ適切に位置させることが可能になる。
 ここで、枠体14の外周側面14aから第1の絶縁層3の外周側面3cまでの後退量をT2としたとき、図9(b)に示した後退量T1との関係は、後退量T1<後退量T2となる。
 そして図9(d)の工程では、配線基板(第2の部材)2を構成する第2の絶縁層22の表面に形成された第1の金属層31a,31bと、支持部12及び枠体14の表面に形成された第2の金属層32a,32bとを対向配置して、加熱及び加圧により互いに接合する。
 図9(d)に示すように、第2の絶縁層22の表面に形成された接合平面22aは、第2の金属層32aの外周側面32cよりも外側に延出しており、接合平面22a上に形成された第1の金属層31aは第2の金属層32aの外周側面32cよりも外側に延出している。よって図9(d)の工程にて、第1の金属層31aと第2の金属層32aとの接合界面Aの外周端部Bを、第1の絶縁層3aの外周側面3cよりも外側(動作領域15から離れる側)に適切且つ簡単に位置させることができる。
 また図9(d)に示すように、接合界面Aの内周端部Hを第1の絶縁層3aの内周側面3dよりも動作領域15から離れる側に位置させることができる。
 続いて図9(d)に示すように支持基板1を点線Iに沿って切断し、配線基板2に形成されたパッド部20を外部に露出する。そして保護絶縁層41を金属結合部30aの外周表面及びその周辺部(枠体14の外周側面14a等)に連続して成膜する。保護絶縁層41を金属結合部30aの周辺部(枠体14の外周側面14a等)に形成することは必須ではないが、保護絶縁層41を広い範囲に成膜したほうが、金属結合部30aに対する保護効果を高めることができる。保護絶縁層41をスパッタ法やCVD法等で成膜できる。なお図8の実施形態に示すように、第1の金属層31aと第2の金属層32aに挟まれた狭い間口44から内部空間内に、適切に保護絶縁層41を成膜するにはCVD法を採用することが望ましい。
 図9に示した本実施形態のMEMSセンサの製造方法によれば、第1の金属層31aと第2の金属層32aの接合界面Aの外周側面Bを第1の絶縁層3aの外周側面3cよりも外側(動作領域15から離れる方向)に簡単且つ適切に位置させることができ、これにより、金属結合部30aを加熱し加圧したときに、接合界面Aに加わる応力の均一性を向上させることができる。よって金属結合部30aによる封止性を向上させることができる。また本実施形態では、接合界面Aの外周側面Bに加わる応力を比較例(図6(b)よりも弱めることが出来る。よって、第1の金属層31aが潰れて外部領域16にはみ出したことによる盛り上がりの高さを低く抑えることが出来る。本実施形態によれば、図5(a)、図6(a)で示したように、第1の金属層31aの盛り上がり部31cの高さDを枠体14の表面(接合平面14c)よりも低く出来る。
 以上により保護絶縁層41を金属結合部30aの外周表面に途切れることなく形成できる。保護絶縁層41を途切れることなく形成できることで、金属結合部30aの腐食を適切に防止できる。
 本実施形態では図9(a)(b)に示したように、レジスト層47aの外周側面47b下で、第2の金属層32aがレジスト層47で保護される部分と、レジスト層47からはみ出して削られる部分とに跨っているため、レジスト層47aに覆われていない第2の金属層32a及び機能層10をエッチングすることで、枠体14の外周側面14cの切断面上に第2の金属層32aの外周側面32cを位置させることができる。また、配線基板2側の第1の金属層31aの形成面となる第2の絶縁層22の接合平面22aを第2の金属層32aの外周側面32cよりも外側に延出させて、前記接合平面22a上に第2の金属層32aを成膜する。このようにして形成した第1の金属層31aと第2の金属層32aとを、図5(d)のように、対向配置して、加熱及び加圧したとき、確実に、接合界面Aの外周端部Bを第1の絶縁層3aの外周側面3cよりも外側に位置させることができる。
 本実施形態において保護絶縁層41を形成しなくてもよい。例えば金属結合部30aに使用される金属が耐食性に優れたものであったり、あるいは金属結合部30aの劣化を促進させない使用環境であれば、保護絶縁層41を形成しなくても金属結合部30aによる封止のみで足りる。
A 接合界面
B 外周端部
1 支持基板(第1の部材)
2 配線基板(第2の部材)
3a,3b 第1の絶縁層
3c (第1の絶縁層の)外周側面
3d (第1の絶縁層の)内周側面
10 機能層
11 可動部
12 支持部
13 弾性変形部
14 枠体
14a (枠体の)外周側面
14c、22a 接合平面
15 動作領域
20 パッド部
22 第2の絶縁層
30a,30b 金属結合部
31a,31b 第1の金属層
31c 盛り上がり部
32a,32b 第2の金属層
35 内部配線層
31c,33 はみ出し部
41 保護絶縁層
47 レジスト層

Claims (9)

  1.  第1の部材と、第2の部材と、前記第1の部材と前記第2の部材との間に位置する機能層とを有するMEMSセンサにおいて、
     前記機能層には、可動部と、前記可動部を支持する支持部と、前記可動部および前記支持部が位置する動作領域と外部領域とを区画する枠体とが形成され、前記枠体と前記第1の部材とが、前記動作領域の全周を囲む第1の絶縁層を介して接合され、前記枠体と前記第2の部材とが、前記動作領域の全周を囲む金属結合部を介して接合されており、
     前記金属結合部では、前記第2の部材の前記枠体との対向面に第1の金属層が形成され、前記枠体の前記第2の部材との対向面に第2の金属層が形成され、前記第1の金属層と前記第2の金属層とが加熱され加圧されて互いに接合されており、
     前記第1の絶縁層の外周側面は、前記枠体の外周側面よりも前記動作領域の方向である内側に後退しており、
     前記第1の金属層と前記第2の金属層との接合界面の外周端部は、前記第1の絶縁層の外周側面よりも前記動作領域から離れる方向である外側に位置していることを特徴とするMEMSセンサ。
  2.  前記第1の金属層と前記第2の金属層との接合界面の外周端部は、前記枠体の外周側面と高さ方向にて一致している請求項1記載のMEMSセンサ。
  3.  前記第1の金属層と前記第2の金属層との接合界面の内周端部は、前記第1の絶縁層の内周側面よりも、前記動作領域から離れる方向に位置している請求項1又は2に記載のMEMSセンサ。
  4.  下から前記第2の部材、前記機能層及び前記第1の部材の順に積層され、前記金属結合部では、前記第1の金属層が前記第2の金属層の下側に位置しており、
     加熱され加圧されたときに、前記金属結合部の接合界面よりも前記外部領域へはみ出した前記第1の金属層の高さが、前記枠体の前記第2の部材との対向面以下に位置している請求項1ないし3のいずれか1項に記載のMEMSセンサ。
  5.  前記金属結合部の外周表面が保護絶縁層により覆われている請求項1ないし4のいずれか1項に記載のMEMSセンサ。
  6.  前記第2の部材は、前記機能層の外周側面及び前記第1の部材の外周側面よりも前記外部領域に延出した延出部を有し、
     前記第2の部材は、基材と、前記基材の前記機能層との対向面側に設けられた第2の絶縁層と、前記第2の絶縁層内に埋設された内部配線層と、前記内部配線層と電気的に接続され、前記可動部と対向した位置にて前記第2の絶縁層の表面に設けられた対向電極層と、前記内部配線層と電気的に接続され、前記延出部にて前記第2の絶縁層の表面に設けられたパッド部と、を有して構成され、前記パッド部が高さ方向にて開放されている請求項1ないし5のいずれか1項に記載のMEMSセンサ。
  7.  第1の部材と第1の絶縁層を介して接合してなる機能層の、動作領域と外部領域とを区画する枠体の表面に第2の金属層を形成する工程、
     前記機能層の不要な部分を除去して、前記機能層を、可動部、前記可動部を支持する支持部、及び前記枠体に区画し、このとき、前記枠体の外周側面から前記第2の金属層の外周側面までの後退量T1を、前記第1の絶縁層を前記支持部及び前記枠体との間に残し前記可動部との間にて除去する次工程にて形成される、前記枠体の外周側面から前記第1の絶縁層の外周側面までの後退量T2よりも小さくする工程、
     前記第1の絶縁層を、前記支持部及び前記枠体との間に残し、前記可動部との間にて除去する工程、
     第2の部材の前記枠体と対向する表面に、外周側面が、前記第2の金属層の外周側面よりも外側にまで延出する第1の金属層を形成し、前記第1の金属層と、前記第2の金属層とを対向配置して、加熱及び加圧により互いに接合して、前記第1の金属層と前記第2の金属層との接合界面の外周端部を、前記第1の絶縁層の外周側面よりも外側に位置させる工程、
     を有することを特徴とするMEMSセンサの製造方法。
  8.  前記枠体の外周側面に沿って切断したとき、その切断面上に前記第2の金属層の外周側面を一致させて、前記後退量T1を0にする請求項7記載のMEMSセンサの製造方法。
  9.  前記第1の金属層と前記第2の金属層からなる金属結合部の外周表面を保護絶縁層により覆う工程を有する請求項7又は8に記載のMEMSセンサの製造方法。
PCT/JP2012/053469 2011-04-22 2012-02-15 Memsセンサ及びその製造方法 WO2012144256A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011096496 2011-04-22
JP2011-096496 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012144256A1 true WO2012144256A1 (ja) 2012-10-26

Family

ID=47041379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053469 WO2012144256A1 (ja) 2011-04-22 2012-02-15 Memsセンサ及びその製造方法

Country Status (2)

Country Link
JP (1) JP5912798B2 (ja)
WO (1) WO2012144256A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071911A (ja) * 2008-09-22 2010-04-02 Alps Electric Co Ltd Memsセンサ
JP2010238921A (ja) * 2009-03-31 2010-10-21 Alps Electric Co Ltd Memsセンサ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153799A (ja) * 2004-12-01 2006-06-15 Denso Corp 角速度センサ装置およびその製造方法
JP2008244244A (ja) * 2007-03-28 2008-10-09 Sony Corp 電気機械装置および電気・電子機器
JP4863935B2 (ja) * 2007-06-20 2012-01-25 パナソニック株式会社 電子部品パッケージおよびその製造方法
WO2010032821A1 (ja) * 2008-09-22 2010-03-25 アルプス電気株式会社 Memsセンサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071911A (ja) * 2008-09-22 2010-04-02 Alps Electric Co Ltd Memsセンサ
JP2010238921A (ja) * 2009-03-31 2010-10-21 Alps Electric Co Ltd Memsセンサ

Also Published As

Publication number Publication date
JP5912798B2 (ja) 2016-04-27
JP2012232405A (ja) 2012-11-29

Similar Documents

Publication Publication Date Title
JP4793496B2 (ja) 半導体装置およびその製造方法
US8421169B2 (en) Gap control for die or layer bonding using intermediate layers
US7331228B2 (en) Acceleration sensor
US8581354B2 (en) Semiconductor device carrying micro electro mechanical system
TWI670225B (zh) 微機械構件及其製造方法
US8252695B2 (en) Method for manufacturing a micro-electromechanical structure
JP5574593B2 (ja) マイクロマシニング構成素子及びマイクロマシニング構成素子を製作するための方法
JP2010069599A (ja) Memsセンサ
JP5627669B2 (ja) Memsセンサ
CN104051385A (zh) 堆叠式半导体结构及其形成方法
JP5446107B2 (ja) 素子ウェハおよび素子ウェハの製造方法
WO2012144256A1 (ja) Memsセンサ及びその製造方法
JP5727798B2 (ja) Memsセンサ
JP5314979B2 (ja) Memsセンサ
US20150166328A1 (en) Wafer level package of mems sensor and method for manufacturing the same
US20120104520A1 (en) Mems sensor
JP5130151B2 (ja) 静電容量型半導体物理量センサの製造方法及び静電容量型半導体物理量センサ
US9650240B2 (en) Component including two semiconductor elements, which are bonded to one another via a structured bonding layer, and method for manufacturing a component of this type
JP2013052449A (ja) Memsセンサ
JP5392296B2 (ja) 半導体装置およびその製造方法
JP7079075B2 (ja) パッケージ
JP2011095010A (ja) 静電容量型センサ
JP2012236271A (ja) Memsセンサ及びその製造方法
US20240128136A1 (en) Wafer level package and method of manufacturing the same
JP5143857B2 (ja) 加速度センサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP