WO2012142745A1 - 用于控制柴油发动机的尿素喷射***的设备和方法 - Google Patents

用于控制柴油发动机的尿素喷射***的设备和方法 Download PDF

Info

Publication number
WO2012142745A1
WO2012142745A1 PCT/CN2011/073004 CN2011073004W WO2012142745A1 WO 2012142745 A1 WO2012142745 A1 WO 2012142745A1 CN 2011073004 W CN2011073004 W CN 2011073004W WO 2012142745 A1 WO2012142745 A1 WO 2012142745A1
Authority
WO
WIPO (PCT)
Prior art keywords
urea
control
pressure
pump
injection system
Prior art date
Application number
PCT/CN2011/073004
Other languages
English (en)
French (fr)
Inventor
胡广地
孙少军
佟德辉
郭圣刚
孙永亮
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to US14/112,918 priority Critical patent/US9689292B2/en
Priority to PCT/CN2011/073004 priority patent/WO2012142745A1/zh
Publication of WO2012142745A1 publication Critical patent/WO2012142745A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1808Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1812Flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • This invention relates generally to the technical field of diesel engines, and more particularly to an apparatus and method for controlling a urea injection system for a diesel engine. Background technique
  • diesel engines Since its inception, diesel engines have been widely used in various power plants, ships and vehicles due to their excellent power, economy and durability. Compared with gasoline engines, diesel engines have many advantages: reduced exhaust emissions, more advantageous acceleration at lower speeds, lower average fuel consumption, and more driving pleasure. However, particulate and NOx emissions are the two most important contaminants in exhaust emissions compared to gasoline engines of the same power. .
  • the technology to reduce vehicle exhaust emissions to reach emission standards is usually to use exhaust aftertreatment to reduce pollutant emissions, while urea selective catalytic reduction
  • the control of the urea pressure uses a PID type control strategy, which requires a large amount of calibration work.
  • PID type control strategy based on the existing PID control strategy, under certain operating conditions of the engine, there is a large deviation between the actual value of urea pressure and its target value, which leads to the actual injection amount of urea in the urea injection system.
  • the present invention discloses an apparatus and method for controlling a urea injection system for a diesel engine to overcome or at least partially eliminate at least some of the deficiencies found in the prior art.
  • an apparatus for controlling a urea injection system of a diesel engine may include a condition parameter obtaining device configured to acquire a working condition parameter related to the urea injection system; a control amount determining device coupled to the working condition parameter obtaining device, configured to be configured according to the working condition a parameter, a target value of the urea pressure in the urea buffer chamber, and a control model designed based on a physical model characterizing the urea injection system to determine a control amount for controlling the urea injection system, the control amount being a urea pump a rotational speed of the drive motor; and a drive signal determining device coupled to the control amount determining device and configured to determine a drive signal for driving the urea pump drive motor based on the determined control amount.
  • the apparatus may further include: an observation value determining device coupled to the operating condition parameter obtaining device and the control amount determining device, configured to be configured according to the operating condition parameter and An observer model designed based on the physical model determines an observed value of urea pressure in the urea pump chamber for the control amount determining device to determine the control amount.
  • the observer model increases an adjustment item by selecting an urea pressure expression in the urea pump chamber and a urea pressure expression in the urea buffer chamber in the physical model, and selecting The adjustment factor that makes both of the adjusted expressions stable and convergent is designed.
  • the observation value determining means may be further configured to: determine an observation value of the urea pressure in the urea buffer chamber according to the operating condition parameter and the observer model, for providing The control amount determining means determines the control amount.
  • the operating condition parameters may include: a urea pump plunger stroke, a urea pump chamber urea pressure, a urea buffer chamber urea pressure, a urea pump urea inflow flow, a urea pump urea outflow flow Urea ejector urea effluent stream Amount and urea buffer chamber urea reflux flow.
  • the physical model can be characterized by: urea pump urea inflow flow expression; urea pump urea outflow flow expression; urea pump cavity urea pressure expression; urea buffer Intracavity urea pressure expression; urea buffer chamber urea reflux flow expression; and urea injector urea effluent flow expression.
  • control model may include a feedforward controller, and the control amount may include a feedforward control component.
  • the feedforward control component C0 FF may be expressed as:
  • ⁇ 2 , ⁇ 3 and ⁇ 4 are control coefficients, and are determined based on the obtained operating condition parameter and a constant parameter related to the physical model; r is a curve of a connection mechanism between the driving motor and the urea pump plunger Turn radius; Q in is the urea pump urea inflow rate; Q r is the urea pump urea outflow flow; Q in j is the urea injector urea discharge flow rate; and Q s is the urea buffer chamber urea reflux flow rate.
  • control model may include a feedback controller, and the control amount may include a feedback control component.
  • the feedback control component C0 FB may
  • e is an error between the actual value of the urea pressure in the urea buffer chamber and its target value
  • ⁇ 4 is a control coefficient, and is determined based on the obtained operating condition parameter and a constant parameter related to the physical model
  • r is the crank radius of the connection mechanism between the drive motor and the urea pump plunger
  • k p , ki and 13 ⁇ 4 are control coefficients for proportional control, integral control and differential control, respectively, and k p , ki and k d are Selected to stabilize the urea injection system.
  • a method for controlling a diesel engine The method of the urea injection system.
  • the method may include: obtaining a operating condition parameter associated with the urea injection system; a control model designed based on the operating condition parameter, a target value of urea pressure in the urea buffer chamber, and a physical model characterizing the urea injection system Determining a control amount for controlling the urea injection system, the control amount being a rotation speed of the urea pump driving motor; and determining a driving signal for driving the urea pump driving motor according to the determined control amount .
  • the control of the urea injection system is based on a physical model characterizing the urea injection system of the diesel engine. Since the physical model of the urea injection system of the diesel engine is suitable for the working process of the system under any working condition, the technical scheme based on the physical model of the invention can achieve a more accurate urea injection pressure and achieve a rapid system response, and thus can be reduced. The deviation between the actual value of the small urea pressure and its target pressure, and in a preferred embodiment, can be minimized.
  • the control model based on the physical model of the urea injection system can be quantified, thus greatly reducing the calibration workload for the control model and improving the efficiency and functionality of the engine urea injection system.
  • Fig. 1 schematically shows a schematic structural view of a urea injection system of a diesel engine.
  • Fig. 2 schematically shows a block diagram of an apparatus for controlling a urea injection system of a diesel engine in accordance with one embodiment of the present invention.
  • Fig. 3 schematically shows a schematic block diagram of closed loop feedback control of a urea injection system of a diesel engine according to the present invention.
  • FIG. 4 is a flow chart that schematically illustrates a method for controlling a urea injection system of a diesel engine in accordance with an embodiment of the present invention.
  • condition parameter means any value that indicates the physical quantity of the engine's (target or actual) physical state or operating condition.
  • “parameters” are used interchangeably with the physical quantities they represent. For example, “parameters indicating urea flow” and “urea flow” have equivalent meanings herein.
  • > indicates the cadaver's derivative of time, that is, the rate of change over time; and the observed value of the physical corpse.
  • the term “acquisition” as used includes various means currently known or developed in the future, such as collection, measurement, reading, estimation, estimation, observation, etc.; the term “measurement” is used to include Various means currently known or developed in the future, such as direct measurement, reading, calculation, estimation, and the like.
  • a schematic structural view of a urea injection system of a diesel engine will be described first with reference to Fig. 1. It should be understood that only the portion of the urea injection system of a diesel engine that is relevant to the present invention is shown in Fig. 1, and in fact the read urea injection system may also include any number of other components.
  • the urea injection system includes: a urea tank 101, a urea pump inlet valve 102, a urea pump 103, a urea pump outlet valve 104, a drive motor 106, a urea buffer chamber 107, a urea injector 108, and a urea injector drive.
  • Solenoid valve 109 and urea control unit (DCU) 1 10.
  • a urea solution is contained in the urea tank 101, which is under atmospheric pressure.
  • the urea tank 101 communicates with the pump chamber of the urea pump 103 through the inlet pipe 123.
  • a urea pump inlet valve 102 is provided at the inlet of the interface with the urea pump.
  • the urea pump 103 includes a urea pump plunger 105 that is driven by a drive motor 106 via a urea pump mechanism link 12 (i.e., a connection mechanism between the urea pump plunger 105 and the drive motor 106).
  • a urea pump mechanism link 12 i.e., a connection mechanism between the urea pump plunger 105 and the drive motor 106.
  • the urea pump outlet valve 104 provides a unidirectional passage of urea from the urea pump 103 to the urea buffer chamber 107.
  • the urea buffer chamber 107 is used to store a high pressure urea solution.
  • the pressure of the high pressure urea solution should be maintained at 9 atmospheres. However, it should be noted that this pressure may vary slightly for different urea injection systems.
  • the urea buffer chamber can be in communication with the urea pump injector 108.
  • the urea pump injector 108 is a key component in the urea injection system.
  • the injector drive solenoid valve 109 driven by a drive signal 134 provided by the urea control unit 110, opens or closes the solenoid valve, thereby causing the urea solution to be ejected through the urea injector 108 into the SCR conduit.
  • a measuring element e.g., a temperature sensor, or a level sensor
  • a measuring element is also installed in the urea pump buffer chamber to transmit the pressure signal 133 in the measured urea buffer chamber to the urea control unit 110.
  • the urea control unit 1 10 will provide the urea pump drive motor 106 and the urea injector drive solenoid valve 109 based on these operating conditions of the urea system and predetermined control strategies. Drive the signal to achieve the target urea injection pressure.
  • the urea solution in the urea pump buffer chamber 107 will flow back to the urea tank 101 through the return pipe 121, thereby slowing down the urea tank 101 and the urea.
  • a cycle is formed between the cavities 107.
  • the urea injection system 100 includes a large number of components, and its operating conditions are very complicated. Therefore, it is desired to precisely control the urea pump buffer chamber 107 by controlling the urea pump drive motor 106. Urea pressure is very difficult.
  • the inventors have devised a technical solution for controlling a urea injection system in order to obtain a desired urea pressure.
  • the inventors applied the physical model knowledge of the urea injection system to the system control, and based on the application of model knowledge of the relevant parameters of the urea pump, the urea buffer chamber, and the urea injector, to achieve effective control that could not be achieved in the prior art.
  • the technical solutions provided by the present invention will be described in detail with reference to the specific embodiments, so that the present invention can be easily understood and implemented by those skilled in the art.
  • FIG. Figure 2 is a schematic block diagram showing an example of an apparatus for controlling a urea injection system in accordance with one embodiment of the present invention.
  • the device 200 can be embodied as, for example, the electronic control unit 1 18 shown in Fig. 1.
  • the present invention is not limited thereto, but can also be implemented as a separate control device.
  • the control device 200 may include a condition parameter obtaining means 201, a control amount determining means 202, a signal generating means 203, and preferably further includes an observation value determining means 204.
  • the condition parameter obtaining means 201 is coupled to the control amount determining means 202 and configured to acquire operating condition parameters associated with the i-urea injection system for supply to the control amount determining means 202.
  • the control amount determining device 202 is coupled to the signal generating device 203 and configured to be based on a operating condition parameter from the operating condition parameter obtaining device 201, a target value of urea pressure in the urea buffer chamber, and a physical model based on the urea injection system.
  • the designed control model determines the amount of control.
  • the physical model of the urea injection system can be characterized by: urea pump urea inflow flow expression; urea pump urea outflow flow expression; urea pump cavity urea pressure expression; urea buffer Intracavity urea pressure expression; urea injector urea discharge flow expression; and urea buffer chamber urea reflux flow expression.
  • the pump for example, can get the following expression about the urea inflow:
  • a in equivalent cross-sectional area of the urea pump inlet valve opening
  • Urea density (constant)
  • Urea tank urea pressure, which is atmospheric pressure, ie P m P. (atmospheric pressure)
  • the following expression about the urea outflow can be obtained.
  • a r equivalent cross-sectional area of the urea pump outlet valve opening
  • p urea density (constant)
  • A is the urea pump plunger stroke and A p is the equivalent cross-sectional area of the urea pump plunger.
  • Q r Urea pump urea outflow flow
  • Q in Urea pump urea inflow flow is the reciprocating linear velocity of the urea pump plunger.
  • "9 tor cos( ).
  • is the rotational speed of the urea pump driving motor
  • r is the crank radius of the rotating shaft of the driving motor and the urea pump plunger.
  • the following expression for the urea pressure in the urea buffer chamber can be determined:
  • The modulus of elasticity of the urea solution. Since urea pressure is usually small, it can be considered a constant.
  • V r urea buffer chamber volume (constant)
  • Q r urea pump urea outflow
  • a ini equivalent cross-sectional area of the urea injector opening (constant)
  • a s equivalent cross-sectional area of the urea buffer cavity return hole (constant)
  • control model design Based on the physical model of the urea injection system given above, a control model for the system can be designed, and a control model design based on the system physical model will be described below with reference to the embodiments.
  • control model design based on the system physical model
  • control model design is to achieve closed-loop control of the urea pressure in the urea buffer chamber under various operating conditions of the engine, so that the actual measured value of the urea pressure is close to its target value.
  • an exemplary embodiment of designing a control model based on a physical model of a urea injection system is presented.
  • the urea pressure target value in the urea buffer lumen can be expressed by ⁇ , rfei , which represents the actual measured value of the urea pressure.
  • the error between the actual measured value of urea pressure P r and the target value, ⁇
  • e P r - P r , des (Equation 7)
  • Equation 8 Recalculating the time of both ends of Equation 7
  • Time is calculated by both ends of the urea injection effluent flow expression (ie, Equation 5) of the previous urea injector
  • Equation 16 Equation 16
  • urea solution elastic modulus ⁇ urea pump outlet valve flow coefficient C r , urea pump outlet valve equivalent cross-sectional area A r , urea buffer chamber volume 1 ⁇ 4, urea density ⁇ , urea injector flow coefficient C inj , equivalent cross-sectional area A inj of urea ejector, equivalent cross-sectional area A s of urea buffer lumen return hole, flow coefficient of urea buffer lumen return hole ( ⁇ , etc.
  • the coefficients ⁇ , ⁇ 2 , ⁇ 3 and ⁇ 4 are polynomial of urea pressure ⁇ ⁇ in the urea pump chamber and urea pressure P r in the buffer pump chamber, which can be based on the operating parameters and the constant parameters associated with the physical model.
  • can be determined by urea pump chamber urea pressure ⁇ ⁇ , buffer pump chamber urea pressure I urea pump plunger stroke h (for determining V p ) and constant parameters of the relevant physical model, these constants include urea solution elastic modulus ⁇ , urea pump outlet valve flow coefficient c r, equivalent urea pump outlet valve cross section a r, urea, urea buffer chamber volume V p density, etc.
  • ⁇ 2 may be a urea pump chamber Urea and pressure ⁇ ⁇ urea buffer pump chamber pressure P r, urea pump piston stroke h (for determining V p) and a constant related to physical parameters to determine the model, these factors include the constant elastic modulus beta] solution, urea pump outlet Valve flow coefficient C r , equivalent cross section A r of urea pump outlet valve, urea buffer chamber volume V r , urea density, urea injector volume coefficient C inj , urea injector equivalent cross sectional area A inj , urea buffer Equivalent cross-sectional area of the lumen return hole
  • the flow coefficient of the urea buffer lumen return hole ⁇ is determined.
  • ⁇ 3 can be determined by the urea pump pressure ⁇ ⁇ in the urea pump chamber and the urea pressure P r in the buffer pump chamber and the constant parameters of the relevant physical model. These constants include the prime solution elastic modulus ⁇ and the urea pump outlet valve flow coefficient C.
  • ⁇ 4 can be determined by the urea pump chamber urea pressure P p , the buffer pump chamber urea pressure P r , the urea pump plunger stroke h (for determining V p ) and the constant parameters of the relevant physical model.
  • these constants include the urea solution elastic modulus ⁇ , the urea pump outlet valve flow coefficient C r , the equivalent cross-sectional area of the urea pump outlet valve A r , the urea buffer chamber volume 1 ⁇ 4, the urea density p, and the urea pump plunger Equivalent cross-sectional area A p .
  • the following control model can be designed: ⁇ [ rjQ in ⁇ r 2 Qr Q inJ ⁇ Q s )]— ⁇ ( + ⁇ )
  • the other part is the feedback control:
  • ⁇ 4 is a control coefficient, similarly determined based on the obtained operating condition parameter and a constant parameter related to the physical model; r is The radius of the crank of the connecting mechanism between the driving motor and the urea pump plunger; and k p , and k d are control coefficients for proportional control, integral control, and differential control, respectively.
  • the appropriate k p , !3 ⁇ 4 and 13 ⁇ 4 gain values can be chosen to ensure that the urea injection system is stable, in other words to ensure that the characteristic root position of the following formula is the left half plane of the s-plane:
  • control model may include only feedforward control items, feedback control items, or a combination of both.
  • feedback control is not limited to PID control, and PI control can be used in practical applications. Therefore, the invention is not limited to the exemplary embodiments presented herein.
  • the operating condition parameters that need to be measured may include a urea pump plunger stroke h, a urea pump pressure in the plunger pump chamber, a P p and a urea buffer pressure in the urea buffer chamber P r , a urea pump The chamber inflow flow Q in , the urea pump chamber outflow flow, the urea injector urea discharge flow Q inj and the urea buffer chamber urea reflux flow Q s .
  • These parameters are parameters required to determine the amount of control based on the control model.
  • the invention is not limited thereto, but more parameters or other alternative parameters can also be measured to calculate or determine these operating condition parameters from these parameters.
  • the camshaft rotation angle ⁇ can be obtained, and the urea pump plunger stroke is calculated based on the physical relationship of the camshaft rotation angle to the urea pump plunger stroke.
  • control model given above is merely an exemplary embodiment.
  • Various variants of the control model are possible.
  • one or more of the parameters or aspects of the above expressions may be disregarded in the physical model, and/or new parameters or aspects associated with the urea injection system of the engine may be increased.
  • those skilled in the art can design and implement any suitable control model in conjunction with their specific needs and conditions.
  • control model is preferably determined based on the physical model in advance, so that the value of the control amount can be directly determined based on various operating condition parameters and system target values during engine operation, thereby accelerating the response speed of the system and improving control. effectiveness.
  • a measuring device such as a sensor according to the prior art, for example, the urea pressure P r in the urea buffer chamber.
  • some operating parameters such as the urea pump plunger stroke h( ) that can be calculated from other parameters measured (eg, camshaft rotation angle) and based on the physical relationship between them.
  • some parameters are not available or difficult to obtain by measurement according to the prior art, or the cost is high. For such parameters, it can be estimated by the state of other related parameters, or obtained by other empirical methods.
  • a urea urea pump chamber pressure P p is a urea urea pump chamber pressure P p.
  • the observation value determining device is further included
  • the observation determining device 204 used to determine an observation of a parameter such as urea pressure in a urea pump chamber.
  • the observation determining device 204 is coupled to the operating condition parameter obtaining device 201 and the control amount determining device 202, and configured to configure an observer model based on the operating condition parameter and based on the physical model. And determining an observation value of the urea pressure P p in the urea pump chamber for the control amount determining device to determine the control amount.
  • a state observer model design will be given for illustrative purposes, however, it should be noted that various means can be used to design the observer as known to those skilled in the art.
  • the observer will use the aforementioned urea pump chamber urea pressure expression 3 and the urea buffer chamber urea pressure expression 4.
  • the state of the urea pressure P p in the urea pump chamber is 3 ⁇ 4
  • the measured value of the urea pressure in the urea buffer chamber is ⁇
  • the state of the urea pressure in the urea buffer chamber is observed.
  • the adjustment factors Lp and Lr associated with the adjustment terms in Equations 23 and 24 can be selected to be appropriate values for both the above expressions 23 and 24 to be stabilized and converged. This can be determined based on actual application requirements.
  • Equation 23 and Equation 24 have solutions. Therefore, this means can work parameters (including e.g. urea pump chamber volume V p (or urea pump plunger stroke h) based on urea pump urea incoming flow Q in, the linear velocity of movement of the pump plunger urea (or urea electrically driven pump The value obtained by the rotation speed ⁇ )) and the measured value of the urea pressure P r in the urea spray buffer chamber, or preferably a value of 3 ⁇ 4 and both.
  • V p or urea pump plunger stroke h
  • the observation determining device 204 can determine the urea pump chamber urea pressure observation 3 ⁇ 4 based on the physical model and the operating parameter for determining the control to be described below. the amount.
  • the observation determining device 204 can determine the urea pump chamber urea pressure observation 3 ⁇ 4 based on the physical model and the operating parameter for determining the control to be described below. the amount.
  • further An observation of the urea pressure within the urea buffer chamber is determined for use in determining the amount of control to be determined hereinafter.
  • the measurement of the urea pressure in the urea buffer chamber can also be used in determining the amount of control.
  • observations using urea pressure in the urea buffer chamber are preferred because the observations actually correspond to the filtered values of the measured values &, so the use of this observation can increase the accuracy of the control model. .
  • FIG. 3 a schematic block diagram of a nonlinear closed loop feedback control model for a urea injection system of a diesel engine in accordance with a preferred embodiment of the present invention is shown in FIG.
  • the urea injection system is equipped with an observer and a controller including a feedforward control portion and a feedback control (such as a PID) portion.
  • the error between the actually measured urea pump chamber urea pressure and the target rail pressure value is provided to the feedback control portion as described above, based on the acquired operating condition parameters, such as the urea chamber plunger pump stroke h, observed by the observer
  • the pressure observation value and the urea pressure error in the urea buffer chamber provide a feedback control component co FB through the feedback control portion.
  • the urea pressure state observer observes the plunger pump based on the control amount ⁇ , the actual measured value of the rail pressure Pr, and the acquired operating condition parameters including, for example, the urea chamber plunger stroke h and the urea pump chamber urea inflow flow ⁇ in .
  • the feedforward control section is based on the observed observations and the measured operating conditions parameters (ie urea pump plunger stroke h and urea pump chamber urea inflow flow Q in , urea pump chamber urea outflow flow Q r , urea injector urea)
  • the discharge flow rate Q inj and the urea buffer chamber urea reflux flow rate Q s provide a feedforward control component co FF .
  • the two components co FB and CD ff together form a control quantity ⁇ , ie the rotational speed of the urea pump drive motor.
  • the working condition parameters required for realizing the control may include: a urea pump plunger stroke h, a urea pump pressure P p in the plunger pump chamber, a urea pressure P r in the urea buffer chamber, a urea pump urea inflow flow rate Q in , Urea pump urea outflow flow Q,., urea injector urea discharge flow Q inj and urea buffer chamber urea reflux flow Q s .
  • the linear velocity of the urea pump chamber plunger used in observing Pr and Pp may be a value determined by the relationship between the current control amount ⁇ and ⁇ 9.
  • the observation value determining means 204 can determine the urea pressure and the urea buffer chamber in the urea pump chamber based on the observer model of the aforementioned design based on the operating condition parameter measured or calculated by the operating condition parameter obtaining means 201.
  • the observed value of the internal urea pressure can be utilized.
  • the control amount determining means 202 can utilize the operating condition parameters (including the urea pressure values observed by the observer), the control model determined based on the physical model, and the target value of the urea pressure in the urea pump chamber. To determine the control amount ⁇ .
  • the drive signal generating means 203 can further generate a drive signal for driving the urea pump drive motor based on the magnitude of the control amount.
  • the control device provided is controlled based on the physical model of the urea injection system of the diesel engine. Since the physical model of the urea injection system of the diesel engine is suitable for the working process of the system under any working conditions, the technical solution based on the physical model of the invention can achieve precise injection pressure and rapid system response, thereby reducing the injection of urea. The deviation between the actual pressure and the target pressure, and in a preferred embodiment, can be minimized.
  • the control model designed based on the physical model of the urea injection system can be quantified, thus greatly reducing the calibration workload for the control model and improving the efficiency and functionality of the engine urea injection system.
  • the present invention also provides a method for controlling a urea injection system of a diesel engine.
  • a method for controlling a urea injection system of a diesel engine is also provided.
  • Fig. 4 is a flow chart schematically showing a method for controlling a urea injection system of a diesel engine according to an embodiment of the present invention.
  • operating condition parameters associated with the urea injection system are obtained.
  • the operating condition parameters may include: urea pump plunger stroke, urea pump chamber urea pressure, urea buffer chamber urea pressure, urea pump urea inflow flow, urea pump urea outflow flow, urea injector urea The discharge flow rate and the urea buffer chamber urea reflux flow rate.
  • the urea pump can be determined at step 402 based on the operating condition parameters and an observer model designed based on the physical model.
  • the observed value of the urea pressure in the chamber is used to determine the amount of control to be described below.
  • the observer model increases an adjustment item by respectively expressing a urea pressure expression in the urea pump chamber and a urea pressure expression in the urea buffer chamber in the physical model, and selecting an adjustment The latter two expressions are designed with stable and convergent adjustment factors. More preferably, an observation of the urea pressure in the urea buffer chamber may be determined based on the operating condition parameter and the observer model for determining the amount of control.
  • step 403 determining, according to the operating condition parameter, a target value of urea pressure in the urea buffer chamber, and a control model designed based on a physical model characterizing the urea injection system, determining to control the urea injection
  • the amount of control of the system which is the rotational speed of the urea pump drive motor.
  • the physical model of the halogen injection system can be characterized by: urea pump urea inflow flow expression; urea pump urea outflow flow expression; urea pump cavity urea pressure expression; Urea pressure expression in the urea buffer chamber; urea ejector discharge flow expression; and urea buffer chamber urea reflux flow expression.
  • control model designed based on the physics model may include a feedforward controller, the control amount including a feedforward control component.
  • ⁇ , ⁇ 2 , ⁇ 3 and ⁇ 4 are control coefficients, and are determined based on the obtained operating condition parameters and the constant parameters related to the physical model; r is a connection mechanism between the driving motor and the urea pump plunger The radius of the crank is; Q in is the urea pump inflow flow; Q r is the urea pump urea outflow; Q inj is the urea injector urea discharge flow; and Q s is the urea buffer urea reflux flow.
  • control model includes a feedback controller, such as a PID feedback feed controller, the control amount including a feedback control component.
  • e is an error between the actual value of the urea pressure in the urea buffer chamber and its target value
  • ⁇ 4 is a control coefficient, and is determined based on the obtained operating condition parameter and a constant parameter related to the physical model
  • the crank radius of the connection mechanism between the drive motor and the urea pump plunger and k p , ki and k d are control coefficients for proportional control, integral control and differential control, respectively, and k p , ki and k d are Selected to stabilize the urea injection system.
  • a drive signal for driving the urea pump drive motor may be determined based on the determined control amount.
  • each step in the foreseeable method is substantially corresponding to the operation of the various components of the aforementioned control device.
  • the embodiments of the present invention may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware portion can be implemented using dedicated logic; the software portion can be stored in memory and executed by an appropriate instruction execution system, such as a microprocessor or dedicated design hardware.
  • processor control code such as a carrier medium such as a magnetic disk, CD or DVD-ROM, such as a read only memory.
  • Such code is provided on a programmable memory (firmware) or on a data carrier such as an optical or electronic signal carrier.
  • the apparatus of the present invention and its modules can be implemented by hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, and the like. It can also be implemented by software executed by various types of processors, or by a combination of the above-described hardware circuits and software such as firmware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

用于控制柴油发动机的尿素喷射***的设备和方法
技术领域
本发明一般性地涉及柴油发动机的技术领域, 更特别地涉及用 于控制柴油发动机的尿素喷射***的设备和方法。 背景技术
柴油发动机自问世以来, 凭借其良好的动力性、 经济性和耐久 性等优点, 在各种动力装置、 船舶和车辆上得到了广泛的应用。 与 汽油机相比, 柴油发动机有很多优势: 废气排放降低, 在车速较低 时具有更有优势的加速性能, 平均燃油消耗低, 并且能提供更多的 驾驶乐趣。 然而, 与同等功率的汽油机相比, 微粒和氮氧化物排放 是尾气排放中的两种最主要的污染物。 。
目前, 降低汽车尾气排放以到达排放标准的技术通常是采用排 气后处理的方式来降低污染物的排放量, 而尿素选择性催化还原法
( SCR ) 是最具现实意义的方法, 它能有效地降低发动机尾气中的 氮氧化物。
在现有柴油发动机的 SCR尿素计量喷射*** (在下文中, 筒称 为尿素喷射***) 中, 对尿素压力的控制采用的是 PID类型的控制 策略, 这需要进行大量的标定工作。 此外, 基于现有的 PID控制策 略, 在发动机的某些工况条件下, 尿素压力的实际值同其目标值之 间会产生较大的偏差, 这导致了尿素喷射***中尿素实际喷射量与 尿素目标喷射量之间出现较大的误差, 从而直接影响了发动机后处 理 SCR***中氮氧化物的转化率
正是基于这个原因, 开发先进的尿素喷射***的尿素压力控制 策略对提高发动机性能和减少标定工作而言是至关重要的。 为此, 本领域存在对尿素喷射***的控制技术进行改进的需要 发明内容
有鉴于此, 本发明公开了一种用于控制柴油发动机的尿素喷射 ***的设备和方法, 以克服或者至少部分消除现有技术中存在的至 少一些缺陷。
根据本发明的一个方面, 提供了一种用于控制柴油发动机的尿 素喷射***的设备。 该设备可以包括工况参数获取装置, 配置用于 获取与所述尿素喷射***相关的工况参数; 控制量确定装置, 其与 所述工况参数获取装置耦合, 配置用于依据所述工况参数、 尿素緩 冲腔内尿素压力的目标值和基于表征所述尿素喷射***的物理模型 而设计的控制模型, 来确定用于控制所述尿素喷射***的控制量, 所述控制量为尿素泵驱动电动机的转速; 以及驱动信号确定装置, 其与所述控制量确定装置耦合, 配置用于根据确定的所述控制量, 来确定用于驱动所述尿素泵驱动电机的驱动信号。
在根据本发明的一个优选实施方式中, 该设备可以进一步包括: 观测值确定装置, 其与所述工况参数获取装置和所述控制量确定装 置耦合, 配置用于依据所述工况参数以及基于所述物理模型而设计 的观测器模型, 来确定尿素泵腔内尿素压力的观测值, 以供所述控 制量确定装置来确定所述控制量。
在根据本发明的又一优选实施方式中, 所述观测器模型通过为 所述物理模型中的尿素泵腔内尿素压力表达式和尿素緩冲腔内尿素 压力表达式分别增加调整项, 并选择使得调整后的所述两个表达式 均稳定和收敛的调整因子来设计。
在根据本发明的再一优选实施方式中, 观测值确定装置可以进 一步配置用于: 依据所述工况参数以及所述观测器模型, 来确定尿 素緩冲腔内尿素压力的观测值, 以供所述控制量确定装置来确定所 述控制量。
在根据本发明的另一优选实施方式中, 工况参数可以包括: 尿 素泵柱塞冲程、 尿素泵腔内尿素压力、 尿素緩冲腔内尿素压力、 尿 素泵尿素流入流量、 尿素泵尿素流出流量、 尿素喷射器尿素喷出流 量和尿素緩冲腔尿素回流流量。
在根据本发明的又一优选实施方式中, 物理模型可以通过以下 各项来表征: 尿素泵尿素流入流量表达式; 尿素泵尿素流出流量表 达式; 尿素泵腔内尿素压力表达式; 尿素緩冲腔内尿素压力表达式; 尿素緩冲腔尿素回流流量表达式; 以及尿素喷射器尿素喷出流量表 达式。
在根据本发明的再一优选实施方式中, 控制模型可以包括前馈 控制器, 所述控制量可以包括前馈控制分量。
在根据本发明的另一优选实施方式中, 所述前馈控制分量 C0FF 可以表示为:
Figure imgf000005_0001
其中 γ2、 γ3和 γ4为控制系数, 且基于获取的所述工况参数和所 述物理模型相关的常量参数而确定; r为驱动电机与尿素泵柱塞之间 的连接机构的曲拐半径; Qin为尿素泵尿素流入流量; Qr为尿素泵尿 素流出流量; Qinj为尿素喷射器尿素喷出流量; 以及 Qs为尿素緩冲 腔尿素回流流量。
在根据本发明的又一优选实施方式中, 所述控制模型可以包括 反馈控制器, 所述控制量可以包括反馈控制分量。
在根据本发明的再一优选实施方式中, 所述反馈控制分量 C0FB 可以
Figure imgf000005_0002
其中 e 为所述尿素緩冲腔内尿素压力的实际值与其目标值之间的误 差; γ4为控制系数, 且基于获取的所述工况参数和所述物理模型相 关的常量参数而确定; r为驱动电机与尿素泵柱塞之间的连接机构的 曲拐半径; 以及 kp, ki和 1¾分别为针对比例控制、 积分控制和微分 控制的控制系数, 且 kp, ki和 kd被选择为使尿素喷射***稳定。
根据本发明的另一方面, 还提供了一种用于控制柴油发动机的 尿素喷射***的方法。 谚方法可以包括: 获取与所述尿素喷射*** 相关的工况参数; 依据所述工况参数、 尿素緩沖腔内尿素压力的目 标值和基于表征所述尿素喷射***的物理模型而设计的控制模型, 来确定用于控制所述尿素喷射***的控制量, 所述控制量为尿素泵 驱动电动机的转速; 以及根据确定的所述控制量, 来确定用于驱动 所述尿素泵驱动电机的驱动信号。
根据本发明的实施方式, 特别是各个优选实施方式, 对尿素喷 射***的控制是基于表征柴油发动机的尿素喷射***的物理模型而 进行的。 由于柴油发动机的尿素喷射***的物理模型适用于该*** 在任何工况下的工作过程, 所以本发明基于物理模型的技术方案可 以达到较为精确的尿素喷射压力并实现快速的***响应, 进而可以 减小尿素压力的实际值同其目标压力之间的偏差, 并且在优选的实 施方式中可以使其最小。 此外, 基于尿素喷射***的物理模型所设 计的控制模型均可以定量化, 因而大大减少了针对控制模型的标定 工作量, 改善了发动机尿素喷射***的效率和功能性。 附图说明
通过对结合附图所示出的实施方式进行详细说明, 本发明的上 述以及其他特征将更加明显, 本发明附图中相同的标号表示相同或 相似的部件。 在附图中:
图 1示意性地示出了柴油发动机的尿素喷射***的结构示意图。 图 2 示意性地示出了根据本发明的一个实施方式的用于控制柴 油发动机的尿素喷射***的设备的方框图。
图 3 示意性地示出了根据本发明的柴油发动机的尿素喷射*** 的闭环反馈控制的示意性方框图。
图 4 示意性地示出了根据本发明的一个实施方式的用于控制柴 油发动机的尿素喷射***的方法的流程图。 具体实施方式 在下文中, 将参考附图通过实施方式对本发明提供的用于控制 尿素喷射***的设备和方法进行详细的描述。 应当理解, 给出这些 实施方式仅仅是为了使本领域技术人员能够更好地理解进而实现本 发明, 而并非以任何方式限制本发明的范围。
另外, 在本文中, 所使用的术语 "工况参数"表示任何能够指示发 动机的 (目标或实际) 物理状态或运行状况的物理量的值。 而且, 在本文中, "参数 "与其所表示的物理量可以互换使用。 例如, "指示 尿素流量的参数"与"尿素流量"在本文中具有等同的含义。 而且, 在 本文中, 假设尸表示某个特定的物理量, 则 >表示尸对时间的导数, 即 随时间的变化率; 表示谅物理量尸的观测值。
此外, 在本文中, 所使用的术语 "获取 "包括目前已知或将来开发 的各种手段, 例如釆集、 测量、 读取、 估计、 估算、 观测等等; 所 使用的术语"测量"包括目前已知或将来开发的各种手段, 例如直接 测量、 读取、 计算、 估算等等手段。
接下来, 将首先参考图 1 来描述柴油发动机的尿素喷射***的 结构示意图。 应当理解, 图 1 中仅示出柴油发动机的尿素喷射*** 中与本发明有关的部分, 事实上读尿素喷射***还可以包括任意数 目的其他部件。
如图 1 所示, 尿素喷射***包括: 尿素箱 101、 尿素泵入口阀 102、 尿素泵 103、 尿素泵出口阀 104、 驱动电机 106、 尿素緩冲腔 107、 尿素喷射器 108、 尿素喷射器驱动电磁阀 109以及尿素控制单 元 (DCU ) 1 10。
在尿素箱 101 中容纳着尿素溶液, 其处于大气压力之下。 尿素 箱 101通过入流管 123与尿素泵 103的泵腔连通。 并且在与尿素泵 接口的入口处设置有尿素泵入口阀 102。在尿素泵 103腔内的压力小 于大气压时, 大气压力将克服入口阀弹簧 1 1 1 所提供的预紧力使得 该入口阀打开, 从而使得尿素溶液被吸入到该尿素泵的腔中。 而在 尿素泵腔内的压力大于大气压时, 该入口阀将关闭。 因此, 通过该 入口阀 102, 为尿素提供了从尿素箱 101至尿素泵 103的单向通路。 尿素泵 103包括尿素泵柱塞 105 ,读尿素泵柱塞 105由驱动电机 106经由尿素泵机构连杆 1 12 (即尿素泵柱塞 105与驱动电机 106之 间的连接机构) 来驱动。 当驱动电机 106 响应于来自尿素控制单元 1 10的驱动信号 131 , 驱动尿素泵柱塞 105向下运动时, 将在尿素泵 腔内.形成真空从而使得尿素泵腔内部的压力小于大气压, 以由此使 得入口阀 102打开, 将尿素溶液吸入到尿素泵腔内部。 另一方面, 当驱动电机 106响应于来自尿素控制单元 1 10的驱动信号 131 ,驱动 尿素泵柱塞 105 向上运动时, 将在尿素泵腔内形成高压尿素溶波。 此时, 尿素泵腔内部的压力远大于大气压, 因而入口阀 102 关闭。 同时, 在尿素泵腔内部的压力大于尿素緩冲腔 107 中的压力时, 将 使得尿素泵出口阀 107打开,从而使得尿素溶液进入尿素緩沖腔 107 中。 而在尿素泵柱塞 107 向下运动时, 尿素泵腔内的压力将小于尿 素緩冲腔 107中的压力, 因而尿素泵出口阀 104关闭。 因而, 与尿 素泵入口阀 102类似,谅尿素泵出口阀 104提供了尿素从尿素泵 103 到尿素緩冲腔 107的单向通路。
尿素緩冲腔 107 用于储存高压尿素溶液。 一般而言, 高压尿素 溶液的压力应保持在 9 个大气压。 然而, 需要说明的是, 针对不同 的尿素喷射***, 该压力可以略有不同。
尿素緩冲腔可与尿素泵喷射器 108连通。 尿素泵喷射器 108是 尿素喷射***中的关键部件。 喷射器驱动电磁阀 109在尿素控制单 元 110所提供的驱动信号 134的驱动下, 打开或者关闭电磁阀, 从 而使得尿素溶液通过尿素喷射器 108喷出, 进入到 SCR管道中。
此外, 尿素箱中安装有测量元件 (例如温度传感器, 或者液位 传感器) , 以将所测量的尿素箱温度和液位信号 132提供给尿素控 制单元 1 10。 另外, 在尿素泵緩沖腔中也安装有测量元件(例如压力 传感器) , 以将测量的尿素緩冲腔中的压力信号 133 发送给尿素控 制单元 1 10。
尿素控制单元 1 10 将基于尿素***的这些工况参数和预定的控 制策略, 为尿素泵驱动电机 106和尿素喷射器驱动电磁阀 109提供 驱动信号, 以便实现目标的尿素喷射压力。
此外, 在如图 1 所示的***中, 为了避免尿素溶液结晶, 尿素 泵緩冲腔 107 中的尿素溶液将经过回流管 121 而流回到尿素箱 101 中, 从而在尿素箱 101和尿素緩冲腔 107之间形成了一个循环。
从图 1 及上面对尿素喷射***的描述可见, 尿素喷射*** 100 包括大量部件, 其工况非常复杂, 因此想要通过控制尿素泵驱动电 机 106来精确地控制尿素泵緩冲腔 107中的尿素压力是非常困难的。
因此, 为了解决这一技术问题, 本发明人设计了一种用于控制 尿素喷射***以便得到期望的尿素压力的技术方案。 本发明人将尿 素喷射***的物理模型知识应用于***控制, 基于对尿素泵、 尿素 緩冲腔、 尿素喷射器的相关参数的模型知识的运用来实现现有技术 中无法实现的有效控制。 在下文中, 将参考特定的实施方式对本发 明所提供的技术方案进行详细的描述, 以使得本领域技术人员根据 此处的公开, 能够容易地理解和实现本发明。
首先, 将参考图 2 来描述本发明所提供的用于控制柴油发动机 的尿素喷射***的设备。 该图 2.示意性地示出了根据本发明的一个 实施方式的用于控制尿素喷射***的设备的示例方框图。 本领域技 术人员可以理解, 谅设备 200可以具体实施为例如图 1 所示的电控 单元 1 18, 然而, 本发明并不局限于此, 而是也可以作为一个独立的 控制设备来实现。
如图 2所示, 控制设备 200可以包括工况参数获取装置 201、 控 制量确定装置 202、 信号生成装置 203, 并且优选地还包括观测值确 定装置 204。 该工况参数获取装置 201与控制量确定装置 202耦合, 配置用于获取与 i玄尿素喷射***相关的工况参数, 以便提供给该控 制量确定装置 202。该控制量确定装置 202耦合至信号生成装置 203 , 且被配置为基于来自所述工况参数获取装置 201 的工况参数、 尿素 緩冲腔内尿素压力的目标值以及基于尿素喷射***的物理模型而设 计的控制模型确定控制量。
在下文中, 将首先结合实例来描述一种示例实施方式以说明谅 尿素喷射***的物理模型的建立。 然而, 需要说明的是, 在根据本 发明的实施方式中, 可以采用任何适当的方式来建立表征该尿素喷 射***的物理模型, 而并不仅限于此处给出的示例性实施方式。
在该示例性实施方式中, 尿素喷射***的物理模型可以通过以 下各项来表征: 尿素泵尿素流入流量表达式; 尿素泵尿素流出流量 表达式; 尿素泵腔内尿素压力表达式; 尿素緩冲腔内尿素压力表达 式; 尿素喷射器尿素喷出流量表达式; 以及尿素緩冲腔尿素回流流量 表达式。 接着将详细给出这些表达式, 然而需要说明的是, 这只是 出于示例的目的, 本发明并不局限于此。 尿素喷射***的物理模型
为了考虑尿素喷射***主要的机械、 液压和控制部件之间的物 理关系, 同时又能够利用给出的物理模型设计基于模型的尿素压力 控制模型, 首先进行如下假设:
• 忽略尿素喷射***的泄漏
• 忽略温度变化对尿素密度的影响
•假定尿素流量系数不随温度和压力的变化而改变
在上述假设下, 可以得到如下的一些关系表达式。
1. 尿素泵尿素流入流量表达式
泵, 例如可以得到关于尿素流入流量的如下表达式:
Figure imgf000010_0001
(式 1 ) 其中:
Qi n : 尿素泵尿素流入流量
Cin: 尿素泵入口阀的流量系数 (常量)
Ain: 尿素泵入口阀开启的等效横截面面积 Ρ·: 尿素密度 (常量) 尿素箱尿素压力, 为大气压力, 即 Pm = P。 (大气压)
尿素泵腔内尿素压力
2. 尿素泵尿素流出流量表达式
针对尿素泵, 例如可以得到关于尿素流出流量的如下表达式
Figure imgf000011_0001
其中:
Qr: 尿素泵尿素流出流量
Cr: 尿素泵出口阀的流量系数 (常量)
Ar: 尿素泵出口阀开启的等效横截面面积 p: 尿素密度 (常量)
Pr 尿素緩冲腔内尿素压力
3. 尿素泵腔内尿素压力表达式
针对尿素泵, 例如可以得到针对尿素泵腔内尿素压力的如下表 达式
Figure imgf000011_0002
(式 3 ) 其中:
βρ: 尿素泵腔内尿素溶液的弹性模量,因尿素泵腔内尿素压力较小, 通 常最大为几个大气压力, 故可以认为 βρ为常量, 即 βρ = β νρ: 尿素泵腔体积。 vp = , 其中: max为尿素泵腔最大容积。
A为尿素泵柱塞冲程, Ap为尿素泵柱塞的等效横截面积。 Qr: 尿素泵尿素流出流量 Qin: 尿素泵尿素流入流量 为尿素泵柱塞往复运动线速度。 《9 = tor cos( )。 其中 ω为尿素泵驱 动电机的转速; r为驱动电机的转轴与尿素泵柱塞连接机构的曲拐半径。
4. 尿素緩冲腔内尿素压力表达式
针对尿素緩沖腔, 例如可以确定关于尿素緩冲腔内尿素压力的 如下表达式:
. p 、
(式 4 ) 其中:
Pr: 尿素緩冲腔内尿素压力
β: 尿素溶液的弹性模量。 由于尿素压力通常较小, 因此可以视为常量。
Vr: 尿素緩冲腔体积 (常量) Qr: 尿素泵尿素流出流量
QinJ: 尿素喷射器尿素喷出流量
Qs: 尿素緩冲腔到尿素箱中的尿素回流流量
5. 尿素喷射器尿素喷出流量表达式
例如可以针对尿素喷出流量确定如下表达式:
Figure imgf000012_0001
(式 5 ) 其中:
Qinj: 尿素喷射器尿素喷出流量
Cinj: 尿素喷射器的流量系数 (常量)
Aini: 尿素喷射器开启的等效横截面面积 (常量)
!0 Pr: 尿素緩冲腔内尿素压力
Ph: SCR管道尾气压力 (常量), 约等于大气压力, 即 Ph=P,
Ρ·: 尿素密度 (常量)
6. 尿素緩冲腔尿素回流流量表达式
(式 6 ) 其中:
As: 尿素緩冲腔回流孔的等效横截面积 (常量)
Cs: 尿素緩冲腔回流孔的流量系数 (常量)
Pr: 尿素緩冲腔内尿素压力
P: 尿素密度 (常量)
P0: 大气压力
基于上文中给出的尿素喷射***的物理模型, 可以设计用于该 ***的控制模型, 下面将参考实施方式来描述基于***物理模型的 控制模型设计。 然而需要说明的是, 这些实施方式只是出于说明的 目的而给出的, 本发明并不局限于此。 相反, 在本发明的教导下, 本领域技术人员可以对其做出各种修改和变型。 控制模型设计
控制模型设计的目的就是为了在发动机的各种运行工况下, 通 过对尿素緩沖腔中的尿素压力实现闭环控制, 使尿素压力实际测量 值接近其目标值。 下面, 给出了基于尿素喷射***的物理模型来设 计控制模型的一种示例性实施方式。
首先, 可以用 ^,rfei来表示尿素緩冲管腔内的尿素压力目标值, 以 来表示尿素压力的实际测量值。于是,尿素压力的实际测量值 Pr 与目标值 , ^之间的误差可以表示为: e = Pr - Pr,des (式 7) 将目标值 ,rfei移动至误差 e的一端, 于是可以得到:
+ Prdes (式 8) 对式 7的两端求时间倒数, 则可以到
e^Pr (式 9 ) e = Pr (式 10) 式 4的左右两端求时间导数, 则可以得到下式: (式 u )
Figure imgf000014_0001
需要说明的是此处 为常数, 因为尿素的压力通常较小。
通过对前面的尿素泵尿素流出流量表达式(即式 2)的两端求时 间导数, 可以得到:
Figure imgf000014_0002
(式 12) 通过对前面的尿素喷射器尿素喷出流量表达式(即式 5)的两端求时 间
O CinjAinj ρ
Figure imgf000014_0003
(式 13) 通过对前面的尿素緩冲腔尿素回流流量表达式(即式 6)的两端求时 间导数, 可以得到:
Figure imgf000014_0004
(式 14) 将式得到的式 12至 14代入上面的式 11, 则可以得到:
Figure imgf000015_0001
(式 15) 前述的尿素泵腔内尿素压力表达式(即式 3)、 尿素緩冲腔内尿 素压力表达式 (即式 4) 以分别带入到上式 15的右端, ' 则可以得 到:
Figure imgf000015_0002
(式 16) 经过进一步的整理, 可以将式 16表示为
= YiQin - r2Qr + r3 Qinj + a ) + ϊβ (式 17) 其中
Figure imgf000016_0001
VrVp p { Pp ~ Pr)
Figure imgf000016_0002
Figure imgf000016_0003
由于如前所述尿素溶液弹性模量 β、 尿素泵出口阀流量系数 Cr、 尿素泵出口阀的等效横截面积 Ar、 尿素緩冲腔体积 ¼、 尿素密度卩、 尿素喷射器流量系数 Cinj、 尿素喷射器等效横截面面积 Ainj、尿素緩冲 管腔回流孔的等效横截面积 As、尿素緩冲管腔回流孔的流量系数(^等均 为常量, 因此, 可以看出系数 γι、 γ2、 γ3和 γ4是尿素泵腔内尿素压 力 Ρρ和緩冲泵腔内尿素压力 Pr的多项式, 其可以基于工况参数和所 述物理模型相关的常量参数而确定。 具体地, γι 可以由尿素泵腔内 尿素压力 Ρρ、 緩沖泵腔内尿素压力 I 尿素泵柱塞冲程 h (用于确定 Vp)以及相关物理模型的常量参数来确定, 这些常量包括尿素溶液弹 性模量 β、 尿素泵出口阀流量系数 cr、 尿素泵出口阀的等效横截面 Ar、 尿素緩冲腔体积 V 尿素密度 p等。 类似地, γ2可以由尿素泵 腔内尿素压力 Ρρ和緩沖泵腔内尿素压力 Pr、 尿素泵柱塞冲程 h (用于 确定 Vp)以及相关物理模型的常量参数来确定,这些常量包括素溶液 弹性模量 β、 尿素泵出口阀流量系数 Cr、 尿素泵出口阀的等效横截 面 Ar、 尿素緩冲腔体积 Vr、 尿素密度 、 尿素喷射器量系数 Cinj、 尿 素喷射器等效横截面面积 Ainj、 尿素緩冲管腔回流孔的等效横截面积
As、 尿素緩冲管腔回流孔的流量系数 ^来确定。 同样, γ3可以由尿素 泵腔内尿素压力 Ρρ和緩冲泵腔内尿素压力 Pr以及相关物理模型的常 量参数来确定, 这些常量包括素溶液弹性模量 β、尿素泵出口阀流量 系数 C 、 尿素泵出口阀的等效横截面积 Ar、 尿素缓冲腔体积 ¼、 尿 素密度 p、 尿素喷射器量系数 Cinj、 尿素喷射器等效横截面面积 Ainj、 尿素緩冲管腔回流孔的等效横截面积 As、尿素緩冲管腔回流孔的流量系 数 (^来确定。 类似地, γ4可以由尿素泵腔内尿素压力 Pp、 緩冲泵腔内 尿素压力 Pr、尿素泵柱塞冲程 h (用于确定 Vp)以及相关物理模型的常 量参数来确定, 这些常量包括尿素溶液弹性模量 β、尿素泵出口阀的 流量系数 Cr、尿素泵出口阀的等效横截面积 Ar、尿素緩冲腔体积 ¼、 尿素密度 p以及尿素泵柱塞等效横截面积 Ap。 基于上述表达式 10和 17, 并令 g + k^ + kpe+ ki Je = 0, 则可 以设计如下控制模型: 一丄 [ rjQin~r2Qr QinJ^Qs) ]—丄 ( +^)
(式 18 ) 考虑到平均速度 ^ = iy/ ^, 则可以得到:
Figure imgf000017_0001
(式 19) 实际上, 该控制模型包括两个部分。 其中一个部分为前馈控制 项: coFF= " -[ γβίη ~y2Qr + ( Qtnj +a) ]
(式 20) 其中 γι、 γ2、 γ3和 γ4为控制系数, 且基于获取的所述工况参数和所 述物理模型相关的常量参数而确定; r为驱动电机与尿素泵柱塞之间 的连接机构的曲拐半径; Qin为尿素泵尿素流入流量; Qr为尿素泵尿 素流出流量; Qinj为尿素喷射器尿素喷出流量; 以及 Qs为尿素緩冲 腔尿素回流流量。
另一部分为反馈控制项:
{kpe + k^e + kde) (式 21 ) 其中, γ4为控制系数, 类似地可以基于获取的所述工况参数和所述 物理模型相关的常量参数而确定; r为驱动电机与尿素泵柱塞之间的 连接机构的曲拐半径; 以及 kp、 及 kd为分别针对比例控制、 积分控 制和微分控制的控制系数。 对于谅反馈控制项, 可以选择适当的 kp, !¾及1¾增益值, 以确保谅尿素喷射***稳定, 换句话说确保下式 的特征根位 s平面的左半平面:
(式 22 )
Figure imgf000018_0001
即, 确保当 t→0 时, e→0。 通过这样的方式, 就可以得到适当 的 kp、 l 及 增益值。
然而, 如本领域技术人员所知, 谅控制模型可以仅包括前馈控 制项、 反馈控制项, 或者可以包括二者的组合。 而且反馈控制也不 局限于 PID控制, PI控制在实际应用中也是可^ f亍的。 因此, 本发明 并不局限于此处给出的示例性实施方式。
因此, 在根据本发明的一个实施方式中, 需要测量的工况参数 可以包括尿素泵柱塞冲程 h、柱塞泵腔内尿素压力、 Pp和尿素緩冲腔 内尿素压力 Pr、 尿素泵腔流入流量 Qin、 尿素泵腔流出流量 、 尿素 喷射器尿素喷出流量 Qinj和尿素緩冲腔尿素回流流量 Qs。 这些参数 是基于所述控制模型来确定控制量需要的参数。 然而, 本发明并不 局限于此, 而是还可以测量更多的参数或者其他替代参数, 以从这 些参数计算或确定这些工况参数。 例如, 对于尿素杲柱塞冲程 h, 其 是凸轮轴转角 Θ的函数, 因此可以获取谅凸轮轴转角 θ, 基于凸轮轴 转角与尿素泵柱塞冲程的物理关系来计算该尿素泵柱塞沖程。
应当理解, 上文给出的控制模型仅是一种示例性的实施方式。 针对谊控制模型的各种变形是可能的。 例如, 在某些工况条件下, 在物理模型中可以不考虑上文表达式中的一个或多个参数或方面, 和 /或可以增加与发动机的尿素喷射***有关的新的参数或方面。 实 际上, 基于本发明给出的如上启示和教导, 本领域技术人员可以结 合其具体需求和条件, 设计实现任何适当的控制模型。
此外, 谅控制模型优选地是预先基于物理模型而确定的, 这样 在发动机运行期间可以直接基于各种工况参数、 ***目标值来确定 控制量的值, 这样可以加速***的响应速度, 提高控制效率。
在前述的工况参数中, 部分参数依据现有技术可以通过传感器 等测量设备直接测量, 例如尿素緩冲腔内的尿素压力 Pr。 另外, 有一 些工况参数诸如尿素泵柱塞冲程 h( )可以通过测量的其他参数(如, 凸轮轴转角) 并基于它们之间的物理关系计算得到。 此外, 还有一 些参数是依据现有技术是无法或难以通过测量而得到, 或者实现的 成本高, 针对这样的参数, 可以通过其他相关参数的状态而估算得 到, 或者通过其他经验方式来得到。 这样的参数的一个示例是尿素 泵腔内尿素压力 Pp
在根据本发明的一个优选实施方式中, 还包括观测值确定装置
204, 用于确定参数 (诸如尿素泵腔内尿素压力) 的观测值。 如图 2 所示, 该观测值确定装置 204与工况参数获取装置 201 和所述控制 量确定装置 202耦合, 配置用于依据所述工况参数以及基于所述物 理模型而设计的观测器模型, 来确定尿素泵腔内尿素压力 Pp的观测 值, 以供所述控制量确定装置来确定所述控制量。 在下文中, 出于 说明的目的, 将给出状态观测器模型设计的一个实例, 然而需要说 明的是, 如本领域技术人员所知, 可以采用各种手段来设计观测器。 尿素压力状态观测器模型
为了能够确定尿素泵腔内尿素压力 Pp的观测器值,观测器将借助 于前述的尿素泵腔内尿素压力表达式 3 和尿素緩冲腔内尿素压力表 达式 4。 首先可以假设尿素泵腔内尿素压力 Pp的状态观测值为¾,尿素緩 冲腔内的尿素压力 的测量值为 ζ , 尿素緩冲腔内的尿素压力的状态 观测值为 。
基于表达式 3和 4,通过为尿素泵腔内尿素压力表达式和尿素緩 冲腔内尿素压力表达式分别增加调整项, 并将表达式 2、 表达式 5 和表达式 6代入前述式 3和 4来设计观测器, 从而得到以下的两个 ) (式 23 )
Figure imgf000020_0001
Lr (Pr - Pr)
(式 24 ) 式 23和 24中与调整项相关的调整因子 Lp和 Lr可以选择为使 得上述两个表达式 23和 24均稳定和收敛的适当值。 这可以根据实 际应用要求来确定。
由此, 式 23和式 24所联立的方程有解。 因此, 这意味可以基 于工况参数 (包括例如尿素泵腔体积 Vp (或者尿素泵柱塞冲程 h ) 、 尿素泵尿素流入流量 Qin、 尿素泵柱塞运动线速度 (或者尿素泵驱 动电的转速 ω ) )和尿素喷緩冲腔内尿素压力 Pr的测量值来得到 的 值, 或者优选地得到¾和 两者的值。
因此, 在谊优选的实施例中, 观测值确定装置 204 可以基于所 述物理模型以及所述工况参数, 来确定尿素泵腔内尿素压力观测值 ¾ , 以用于确定将在下文中描述的控制量。 优选地, 还可以进一步 确定尿素緩冲腔内的尿素压力的观测值 以用于确定将在下文中确 定的控制量。
实际上, 在确定该控制量时也可以使用尿素緩冲腔内的尿素压 力的测量值。 然而, 使用尿素緩冲腔内的尿素压力的观测值 是优选 的, 这是因为观测值 实际上相当于对测量值&的滤波后的值, 所以 该观测值的使用能够增加控制模型的准确性。
为了更加清楚起见, 在图 3 中示出了根据本发明的一个优选实 施方式的柴油发动机的尿素喷射***的非线性闭环反馈控制模型的 示意性方框图。 如图 3 所示, 该尿素喷射***配备有观测器和控制 器, 该控制器包括前馈控制部分和反馈控制 (诸如 PID )部分。 实际 测量的尿素泵腔内尿素压力与目标轨压值之间的误差被提供给如前 所述的反馈控制部分, 依据获取的工况参数, 诸如尿素腔柱塞泵冲 程 h, 观测器观测的压力观测值 和 以及尿素緩冲腔内尿素压力误 差, 通过反馈控制部分来提供反馈控制分量 coFB。 另一方面, 尿素压 力状态观测器基于控制量 ω、 轨压实际测量值 Pr以及获取的工况参 数(包括例如尿素腔柱塞冲程 h和尿素泵腔尿素流入流量 ^in )来观 测柱塞泵腔内尿素压力和尿素緩冲腔内尿素压力的观测值 和 。前 馈控制部分基于观测得到的这两个观测值和测量的工况参数 (即尿 素泵柱塞冲程 h和尿素泵腔尿素流入流量 Qin、 尿素泵腔尿素流出流 量 Qr、尿素喷射器尿素喷出流量 Qinj和尿素緩冲腔尿素回流流量 Qs ) 来提供前馈控制分量 coFF。 这两个分量 coFB和 CDf f共同构成控制量 ω , 即尿素泵驱动电机的转速。
由此可见, 实现该控制需要的工况参数可以包括: 尿素泵柱塞 冲程 h、 柱塞泵腔内尿素压力 Pp、 尿素緩冲腔内尿素压力 Pr、 尿素 泵尿素流入流量 Qin、 尿素泵尿素流出流量 Q,.、 尿素喷射器尿素喷出 流量 Qinj和尿素緩沖腔尿素回流流量 Qs。 而观测 Pr和 Pp时所用到 的尿素泵腔柱塞运动线速度 则可以是通过当前的控制量 ω依据其 与 ι9之间的关系而确定的值。 因此, 如上所述, 观测值确定装置 204 可以基于工况参数获取 装置 201 测量或者计算得到的工况参数, 依据例如前述设计的观测 器模型, 来确定尿素泵腔内尿素压力和尿素緩冲腔内尿素压力的观 测值 和 。 然后, 控制量确定装置 202可以利用这些工况参数(包 括通过观测器而观测得到的尿素压力值 和 在内) , 基于所述物理 模型而确定的控制模型和尿素泵腔内尿素压力的目标值来确定控制 量 ω。 而驱动信号生成装置 203 可以进一步基于该控制量的大小生 成用于驱动尿素泵驱动电机的驱动信号。
根据本发明的实施方式, 特别是优选实施方式, 提供的控制设 备是基于柴油发动机的尿素喷射***的物理模型而进行控制的。 由 于柴油发动机的尿素喷射***的物理模型适用于该***在任何工况 下的工作过程, 所以本发明基于物理模型的技术方案可以达到精确 的喷射压力和快速的***响应, 进而可以减小喷射尿素的实际压力 同目标压力之间的偏差, 并且在优选的实施方式中, 可以使其最小.。 基于尿素喷射***的物理模型所设计的控制模型均可以定量化, 因 而大大减少了针对控制模型的标定工作量, 改善了发动机尿素喷射 ***的效率和功能性。
此外, 本发明还提供了一种用于控制柴油发动机的尿素喷射系 统的方法。 接下来, 将参考图 4对其进行详细的描述, 其中图 4示 意性地示出了根据本发明的一个实施方式的用于控制柴油发动机的 尿素喷射***的方法的流程图。
如图 4所示, 首先在步骤 401 , 获取与所述尿素喷射***相关的 工况参数。 如前所述, 所述工况参数可以包括: 尿素泵柱塞冲程、 尿素泵腔内尿素压力、 尿素緩冲腔内尿素压力、 尿素泵尿素流入流 量、 尿素泵尿素流出流量、 尿素喷射器尿素喷出流量和尿素緩冲腔 尿素回流流量。
在优选的实施方式中, 如前所述, 可以在步骤 402 依据所述工 况参数以及基于所述物理模型而设计的观测器模型, 来确定尿素泵 腔内尿素压力的观测值, 以用于确定下面将描述的控制量。 在根据 本发明的一个实施方式中, 所述观测器模型通过为所述物理模型中 的尿素泵腔内尿素压力表达式和尿素緩冲腔内尿素压力表达式分别 增加调整项, 并选择使得调整后的所述两个表达式均稳定和收敛的 调整因子来设计。 更加优选地, 可以依据所述工况参数以及所述观 测器模型, 来确定尿素緩沖腔内尿素压力的观测值, 以用于确定所 述控制量。
接着, 可以在步骤 403 , 依据所述工况参数、 尿素緩冲腔内尿素 压力的目标值和基于表征所述尿素喷射***的物理模型而设计的控 制模型, 来确定用于控制所述尿素喷射***的控制量, 所述控制量 为尿素泵驱动电机的转速。
在根据本发明的一个实施方式中, 屎素喷射系統的物理模型可 以通过以下各项来表征: 尿素泵尿素流入流量表达式; 尿素泵尿素 流出流量表达式; 尿素泵腔内尿素压力表达式; 尿素緩沖腔内尿素 压力表达式; 尿素喷射器喷出流量表达式; 以及尿素緩冲腔尿素回流 流量表达式。
另外, 基于谅物理模型而设计的控制模型可以包括前馈控制器, 所述控制量包括前馈控制分量。 在本发明的一个实施方式中, 该前 馈控制分
Figure imgf000023_0001
其中 γι、 γ2、 γ3和 γ4为控制系数, 且基于获取的所述工况参数和所 述物理模型相关的常量参数而确定; r为驱动电机与尿素泵柱塞之间 的连接机构的曲拐半径; Qin为尿素泵尿素流入流量; Qr为尿素泵尿 素流出流量; Qinj为尿素喷射器尿素喷出流量; 以及 Qs为尿素緩冲 腔尿素回流流量。
此外或者备选地, 谅控制模型包括反馈控制器, 例如 PID反馈 馈控制器, 所述控制量包括反馈控制分量。 在根据本发明的一个实 施方式中, 所述反馈控制分量 coFB可以表示为: ωΒΡ =一 (k e + kf \ e + kde)
Ϊ4 J
其中 e 为所述尿素緩沖腔内尿素压力的实际值与其目标值之间的误 差; γ4为控制系数, 且基于获取的所述工况参数和所述物理模型相 关的常量参数而确定; r为驱动电机与尿素泵柱塞之间的连接机构的 曲拐半径; 以及 kp, ki和 kd分别为针对比例控制、 积分控制和微分 控制的控制系数, 且 kp, ki和 kd被选择为使尿素喷射***稳定。
随后, 可以在步骤 404 , 根据所述确定的控制量, 来确定用于驱 动所述尿素泵驱动电机的驱动信号。
谅方法中的各个步骤的操作实际上与前述控制设备的各个部件 的操作是基本对应的。 因此关于该方法中的各个步骤的具体操作或 者其中相关内容的细节, 可以参考前文参考图 2和图 3针对控制设 备所进行的描述。
此外, 需要说明的是, 本发明的实施方式可以通过硬件、 软件 或者软件和硬件的结合来实现。 硬件部分可以利用专用逻辑来实现; 软件部分可以存储在存储器中, 由适当的指令执行***, 例如微处 理器或者专用设计硬件来执行。 本领域的普通技术人员可以理解上 述的设备和方法可以使用计算机可执行指令和 /或包含在处理器控制 代码中来实现, 例如在诸如磁盘、 CD或 DVD-ROM的载体介质、 诸 如只读存储器 (固件) 的可编程的存储器或者诸如光学或电子信号 载体的数据载体上提供了这样的代码。 本发明的设备及其模块可以 由诸如超大规模集成电路或门阵列、 诸如逻辑芯片、 晶体管等的半 导体、 或者诸如现场可编程门阵列、 可编程逻辑设备等的可编程硬 件设备的硬件电路实现, 也可以用由各种类型的处理器执行的软件 实现, 也可以由上述硬件电路和软件的结合例如固件来实现。
应当注意, 尽管在上文详细描述中提及了控制设备和观测设备 的若干装置或子装置, 但是这种划分仅仅并非强制性的。 实际上, 根据本发明的实施方式, 上文描述的两个或更多装置的特征和功能 可以在一个装置中具体化。 反之, 上文描述的一个装置的特征和功 能可以进一步划分为由多个装置来具体化。
此外, 尽管在附图中以特定顺序描述了本发明方法的操作, 但 是, 这并非要求或者暗示必须按照读特定顺序来执行这些操作, 或 是必须执行全部所示的操作才能实现期望的结果。 相反, 流程图中 描绘的步骤可以改变执行顺序。 附加地或备选地, 可以省略某些步 骤, 将多个步骤合并为一个步骤执行, 和 /或将一个步骤分解为多个 步骤执行。
虽然已经参考目前考虑到的实施方式描述了本发明, 但是应谅 理解本发明不限于所公开的实施方式。 相反, 本发明旨在涵盖所附 权利要求的精神和范围内所包括的各种修改和等同布置。 以下权利 要求的范围符合最广泛解释, 以便包含所有这样的修改及等同结构 和功能。

Claims

1. 一种用于控制柴油发动机的尿素喷射***的设备, 其特征在 于, 包括:
工况参数获取装置, 配置用于获取与所述尿素喷射***相关的 工况参数;
控制量确定装置, 其与所述工况参数获取装置耦合, 配置用于 依据所述工况参数、 尿素緩冲腔内尿素压力的目标值和基于表征所 述尿素喷射***的物理模型而设计的控制模型, 来确定用于控制所 述尿素喷射***的控制量, 所述控制量为尿素泵驱动电动机的转速; 以及
驱动信号确定装置, 其与所述控制量确定装置耦合, 配置用于 根据确定的所述控制量, 来确定用于驱动所述尿素泵驱动电机的驱 动信号。
2. 根据权利要求 1所述的设备, 其特征在于, 进一步包括: 观测值确定装置, 其与所述工况参数获取装置和所述控制量确 定装置耦合, 配置用于依据所述工况参数以及基于所述物理模型而 设计的观测器模型, 来确定尿素泵腔内尿素压力的观测值, 以供所 述控制量确定装置来确定所述控制量。
3. 根据权利要求 2所述的设备, 其特征在于, 所述观测器模型 通过为所述物理模型中的尿素泵腔内尿素压力表达式和尿素緩冲腔 内尿素压力表达式分别增加调整项, 并选择使得调整后的所述两个 表达式均稳定和收敛的调整因子来设计。
4. 根据权利要求 2所述的设备, 其特征在于, 所述观测值确定 装置进一步配置用于:
依据所述工况参数以及所述观测器模型, 来确定尿素緩冲腔内 尿素压力的观测值, 以供所述控制量确定装置来确定所述控制量。
5. 根据权利要求 1所述的设备, 其特征在于, 所述工况参数包 括: 尿素泵柱塞冲程、 尿素泵腔内尿素压力、 尿素緩冲腔内尿素压 力、 尿素泵尿素流入流量、 尿素泵尿素流出流量、 尿素喷射器尿素 喷出流量和尿素緩冲腔尿素回流流量。
6. 根据权利要求 1 所述的设备, 其特征在于, 所述物理模型通 过以下各项来表征:
尿素 尿素流入流量表达式;
尿素泵尿素流出流量表达式;
尿素泵腔内尿素压力表达式;
尿素緩冲腔内尿素压力表达式;
尿素緩冲腔尿素回流流量表达式; 以及
尿素喷射器尿素喷出流量表达式。
7. 根据权利要求 1 所述的设备, 其特征在于, 所述控制模型包 括前馈控制器, 所述控制量包括前馈控制分量。
8. 根据权利要求 7所述的设备, 其特征在于, 所述前馈控制分 量 coFF表示为: c FF = -— [ γβίη - r2Qr + r3 Qinj + ) ] 其中 γι、 γ2 γ3和 γ4为控制系数, 且基于获取的所述工况参数和所 述物理模型相关的常量参数而确定; r为驱动电机与尿素泵柱塞之间 的连接机构的曲拐半径; Qin为尿素泵尿素流入流量; Qr为尿素泵尿 素流出流量; Qw为尿素喷射器尿素喷出流量; 以及 Qs为尿素緩冲 腔尿素回流流量。
9. 根据权利要求 7所述的设备, 其特征在于, 所述控制模型包 括反馈控制器, 所述控制量包括反馈控制分量。
10. 根据权利要求 9所述的设备, 其特征在于, 所述反馈控制分 量 oFB表示为: c BF =—— {k e + kAe + k^) 其中 e 为所述尿素緩冲腔内尿素压力的实际值与其目标值之间的误 差; γ4为控制系数, 且基于获取的所述工况参数和所述物理模型相 关的常量参数而确定; r为驱动电机与尿素泵柱塞之间的连接机构的 曲拐半径; 以及 kp, ki和 kd分别为针对比例控制、 积分控制和微分 控制的控制系数, 且 kp, ki和 kd被选择为使尿素喷射***稳定。
1 1. 一种用于控制柴油发动机的尿素喷射***的方法, 其特征在 于, 包括:
获取与所述尿素喷射***相关的工况参数;
依据所述工况参数、 尿素緩冲腔内尿素压力的目标值和基于表 征所述尿素喷射***的物理模型而设计的控制模型, 来确定用于控 制所述尿素喷射***的控制量, 所述控制量为尿素泵驱动电动机的 转速; 以及
根据确定的所述控制量, 来确定用亍驱动所述尿素泵驱动电机 的驱动信号。
12. 根据权利要求 1 1所述的方法, 其特征在于, 进一步包括: 依据所述工况参数以及基于所述物理模型而设计的观测器模 型, 来确定尿素泵腔内尿素压力的观测值, 以用于确定所述控制量。
13. 根据权利要求 12所述的方法, 其特征在于, 所述观测器模 型通过为所述物理模型中的尿素泵腔内尿素压力表达式和尿素緩冲 腔内尿素压力表达式分别增加调整项, 并选择使得调整后的所述两 个表达式均稳定和收敛的调整因子来设计。
14. 根据权利要求 12所述的方法, 其特征在于, 进一步包括: 依据所述工况参数以及所述观测器模型, 来确定尿素緩冲腔内 尿素压力的观测值, 以用于确定所述控制量。
15. 根据权利要求 11 所述的方法, 其特征在于, 所述工况参数 包括: 尿素泵柱塞沖程、 尿素泵腔内尿素压力、 尿素緩冲腔内尿素 压力、 尿素泵尿素流入流量、 尿素泵尿素流出流量、 尿素喷射器尿 素喷出流量和尿素緩冲腔尿素回流流量。 '
16. 根据权利要求 1 1 述的方法, 其特征在于, 所述物理模型通 过以下各项来表征:
尿素泵尿素流入流量表达式; 尿素乘尿素流出流量表达式;
尿素泵腔内尿素压力表达式;
尿素緩冲腔内尿素压力表达式;
尿素緩冲腔尿素回流流量表达式; 以及
尿素喷射器尿素喷出流量表达式。
17. 根据权利要求 1 1 所述的方法, 其特征在于, 所述控制模型 包括前馈控制器, 所述控制量包括前馈控制分量。
18. 根据权利要求 17所述的方法, 其特征在于, 所述前馈控制 分量 coFF表示为:
^ = "― [ YlQin - r2Qr + Qiry + Qs ) ] 其中 γ!、 γ2、 γ3和 γ4为控制系数, 且基于获取的所述工况参数和所 述物理模型相关的常量参数而确定; r为驱动电机与尿素泵柱塞之间 的连接机构的曲拐半径; Qin为尿素泵尿素流入流量; Qr为尿素泵尿 素流出流量; Qmj为尿素喷射器尿素喷出流量; 以及 Qs为尿素緩冲 腔尿素回流流量。
19. 根据权利要求 17所述的方法, 其特征在于, 所述控制模型 包括反馈控制器, 所述控制量包括反馈控制分量。
20. 根据权利要求 19所述的方法, 其特征在于, 所述反馈控制 分量 coFB表示为:
Figure imgf000029_0001
其中 e 为所述尿素緩冲腔内尿素压力的实际值与其目标值之间 的误差; γ4为控制系数, 且基于获取的所述工况参数和所述物理模 型相关的常量参数而确定; r为驱动电机与尿素泵柱塞之间的连接机 构的曲拐半径; 以及 kp, ki和 kd分别为针对比例控制、 积分控制和 微分控制的控制系数, 且 kp, ki和 kd被选择为使尿素喷射***稳定。
PCT/CN2011/073004 2011-04-19 2011-04-19 用于控制柴油发动机的尿素喷射***的设备和方法 WO2012142745A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/112,918 US9689292B2 (en) 2011-04-19 2011-04-19 Device and method for controlling urea injection system of diesel engine
PCT/CN2011/073004 WO2012142745A1 (zh) 2011-04-19 2011-04-19 用于控制柴油发动机的尿素喷射***的设备和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073004 WO2012142745A1 (zh) 2011-04-19 2011-04-19 用于控制柴油发动机的尿素喷射***的设备和方法

Publications (1)

Publication Number Publication Date
WO2012142745A1 true WO2012142745A1 (zh) 2012-10-26

Family

ID=47041022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073004 WO2012142745A1 (zh) 2011-04-19 2011-04-19 用于控制柴油发动机的尿素喷射***的设备和方法

Country Status (2)

Country Link
US (1) US9689292B2 (zh)
WO (1) WO2012142745A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111287824A (zh) * 2020-02-21 2020-06-16 无锡威孚力达催化净化器有限责任公司 空气辅助scr***中尿素泵的控制方法、装置及***
CN112483229A (zh) * 2020-12-11 2021-03-12 武汉洛特福动力技术有限公司 尿素供给泵回液缓冲装置
CN115263498A (zh) * 2022-07-22 2022-11-01 东风汽车股份有限公司 一种柴油车添加尿素去除氮氧化物过程中控制尿素结晶的方法、记录媒体及***

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10301996B2 (en) 2015-10-08 2019-05-28 Cummins Emission Solutions Inc. System and method for varying reductant delivery pressure to aftertreatment systems
DE102016102169A1 (de) 2016-02-08 2017-08-10 Denso Corporation Fluidinjektor für Abgasadditive
US10166509B2 (en) 2016-07-29 2019-01-01 Robert Bosch Gmbh Systems and method for feed forward control of diesel exhaust fluid delivery systems
CN109236428A (zh) * 2018-11-12 2019-01-18 南京蔚岚环境技术研究院有限公司 齿轮式尿素泵***及工作方法
US11008915B2 (en) * 2019-03-20 2021-05-18 Caterpillar Inc. Diesel exhaust fluid tank freeze mitigation
CN111894711B (zh) * 2019-05-06 2023-07-07 罗伯特·博世有限公司 用于尿素喷射***的辨伪方法和辨伪装置
JP2020186655A (ja) * 2019-05-10 2020-11-19 株式会社デンソー 制御装置
CN112761763B (zh) * 2021-01-04 2022-07-15 潍柴动力股份有限公司 一种尿素喷射***的控制方法及其控制装置
CN113606022B (zh) * 2021-08-12 2022-08-05 潍柴动力股份有限公司 尿素管路压力控制方法、发动机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025074A1 (de) * 2000-09-22 2002-03-28 Robert Bosch Gmbh Vorrichtung zur dosierung eines reduktionsmittels
CN101798946A (zh) * 2010-02-23 2010-08-11 中国人民解放军军事交通学院 一种柴油机尿素溶液添加装置与方法
CN101963084A (zh) * 2010-10-29 2011-02-02 上海交通大学 选择性催化还原尿素空气预混合喷射***
CN101994551A (zh) * 2009-08-14 2011-03-30 欧陆汽车有限责任公司 用于将还原剂定量输送到内燃机的排气***中的装置和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2400637C2 (ru) * 2005-12-22 2010-09-27 Грундфос Нонокс А/С Система и способ передачи текучей среды, и выхлопная система, содержащая систему передачи текучей среды
US7971426B2 (en) * 2007-11-01 2011-07-05 Ford Global Technologies, Llc Reductant injection system diagnostics
US8776503B2 (en) * 2010-09-20 2014-07-15 GM Global Technology Operations LLC Method and apparatus for monitoring a reductant injection system in an exhaust aftertreatment system
US8931259B2 (en) * 2011-09-02 2015-01-13 Mi Yan Reductant delivery apparatus with purging means

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025074A1 (de) * 2000-09-22 2002-03-28 Robert Bosch Gmbh Vorrichtung zur dosierung eines reduktionsmittels
CN101994551A (zh) * 2009-08-14 2011-03-30 欧陆汽车有限责任公司 用于将还原剂定量输送到内燃机的排气***中的装置和方法
CN101798946A (zh) * 2010-02-23 2010-08-11 中国人民解放军军事交通学院 一种柴油机尿素溶液添加装置与方法
CN101963084A (zh) * 2010-10-29 2011-02-02 上海交通大学 选择性催化还原尿素空气预混合喷射***

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111287824A (zh) * 2020-02-21 2020-06-16 无锡威孚力达催化净化器有限责任公司 空气辅助scr***中尿素泵的控制方法、装置及***
CN111287824B (zh) * 2020-02-21 2022-04-12 无锡威孚力达催化净化器有限责任公司 空气辅助scr***中尿素泵的控制方法、装置及***
CN112483229A (zh) * 2020-12-11 2021-03-12 武汉洛特福动力技术有限公司 尿素供给泵回液缓冲装置
CN115263498A (zh) * 2022-07-22 2022-11-01 东风汽车股份有限公司 一种柴油车添加尿素去除氮氧化物过程中控制尿素结晶的方法、记录媒体及***
CN115263498B (zh) * 2022-07-22 2023-04-25 东风汽车股份有限公司 一种柴油车添加尿素去除氮氧化物过程中控制尿素结晶的方法、记录媒体及***

Also Published As

Publication number Publication date
US20140047820A1 (en) 2014-02-20
US9689292B2 (en) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2012142745A1 (zh) 用于控制柴油发动机的尿素喷射***的设备和方法
US8745973B2 (en) System and method for controlling reducing agent injection in a selective catalytic reduction system
US20140130483A1 (en) Control apparatus for an internal combustion engine
JP2010121478A (ja) 内燃機関の排気浄化制御装置及び排気浄化システム
US8800274B2 (en) Method for managing ammonia slip
JP4748664B2 (ja) 排気浄化装置
US20160298515A1 (en) Method of Controlling an Engine System
BR102015031168B1 (pt) Método para controlar um dispositivo de frenagem motor, dispositivo de frenagem motor, e veículo possuindo o referido dispositivo
WO2012142744A1 (zh) 用于控制柴油发动机的高压共轨***的设备和方法
JP2010265767A (ja) 排気ガス冷却装置
EP3025036B1 (en) Scr exhaust emission control system and method therefore, for filling the urea reducing agent after returning to the tank
EP2682579A2 (en) Exhaust emission control system for internal combustion engine, and control method for exhaust emission control system
JP5338344B2 (ja) 内燃機関の制御装置
ITBO20120323A1 (it) Metodo di controllo di un motore a combustione interna
ITBO20120324A1 (it) Metodo di controllo di un motore a combustione interna
JP5737161B2 (ja) 過給機付きエンジンの制御装置
JP6217662B2 (ja) 添加剤供給装置
JP2009228651A (ja) エンジン用給気装置
JP2014118957A (ja) エンジン制御装置
JP5749450B2 (ja) Scrシステム
JP2007205171A (ja) ディーゼルエンジン
JP2015025411A (ja) エンジンの過給制御装置
JP2020041431A (ja) 内燃機関の排気浄化装置
JP6330631B2 (ja) 内燃機関の制御装置
JP2003232215A (ja) エンジンの排ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864119

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14112918

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864119

Country of ref document: EP

Kind code of ref document: A1