WO2012140928A1 - Sputtering target for solar cell - Google Patents

Sputtering target for solar cell Download PDF

Info

Publication number
WO2012140928A1
WO2012140928A1 PCT/JP2012/051083 JP2012051083W WO2012140928A1 WO 2012140928 A1 WO2012140928 A1 WO 2012140928A1 JP 2012051083 W JP2012051083 W JP 2012051083W WO 2012140928 A1 WO2012140928 A1 WO 2012140928A1
Authority
WO
WIPO (PCT)
Prior art keywords
indium
target
sputtering
ingot
solar cell
Prior art date
Application number
PCT/JP2012/051083
Other languages
French (fr)
Japanese (ja)
Inventor
朋哉 武内
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020137019848A priority Critical patent/KR101355902B1/en
Priority to CN201280007612.2A priority patent/CN103380230B/en
Publication of WO2012140928A1 publication Critical patent/WO2012140928A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target

Definitions

  • the present invention relates to a sputtering target for solar cells, and more particularly, to a sputtering target for solar cells in which the sputtering rate is constant until the end of life and uniform film formation is possible.
  • An indium thin film used as a light absorption layer of a thin film solar cell is generally formed by sputtering an indium sputtering target (hereinafter also referred to as an indium target). Since indium is a soft material and has a melting point of 156.4 ° C. and a low melting point metal, indium targets are often manufactured by casting and rolling.
  • Patent Document 1 discloses a target manufacturing method in which after a thin film such as indium is formed on a backing plate, a molten metal such as indium is poured onto the thin film, and the backing plate and the target material are integrally formed. .
  • This method is a method called a direct casting method with respect to the indirect casting method in which the target material is bonded to the backing plate after the target material is manufactured by casting or the like, and the target material and the backing plate can be joined without gaps. It is said that a uniform film is formed without thermal unevenness during sputtering.
  • Patent Document 2 is characterized in that the indium raw material is divided into a plurality of times and put into a mold, indium oxide is removed from the surface of the molten metal that is generated each time, and then the ingot obtained by cooling is obtained by surface grinding.
  • the manufacturing method of the indium target for solar cells is disclosed. This manufacturing method is also a method using a direct casting method, and since the target obtained by this method has a small amount of indium oxide entrained in the molten metal, it is reported that a decrease in light transmittance of the light absorption layer is prevented. Yes.
  • the conventional indium target manufactured by these manufacturing methods has a sputtering rate that is not sufficiently high, so that efficient film formation is difficult.
  • the sputtering target it is desired that the initial sputtering rate is high and the sputtering rate is high until the life end.
  • the homogeneity of the obtained film is deteriorated particularly when the sputtering proceeds to some extent.
  • the present invention has been made under the above circumstances, and provides a sputtering target for a solar cell that has a high sputtering rate at the initial stage of sputtering, a small decrease in the sputtering rate with time, and can form a homogeneous film. With the goal.
  • the present invention that achieves the above object was manufactured from a workpiece obtained by performing a process of applying physical stress to an indium ingot to reduce the thickness of the ingot to 70% or less of the original thickness.
  • a sputtering target for a solar cell comprising a target material, a backing plate, and a bonding material made of indium-tin or an indium-gallium alloy for joining the target material and the backing plate.
  • the target material is obtained by applying a physical stress to the indium ingot to reduce the thickness of the ingot to 50% or less of the original thickness. It is preferable that the target material is manufactured from a processed material.
  • the indium-tin and the indium-gallium alloy preferably have a melting point of 140 ° C. or lower.
  • the indium-tin and indium-gallium alloy preferably have a melting point of 130 ° C. or lower.
  • the processing for applying the physical stress is rolling.
  • the processing for applying the physical stress is forging.
  • the average of the difference in depth between the two points is preferably 100 ⁇ m or less.
  • the average of the difference in depth between the two points is preferably 60 ⁇ m or less.
  • the sputtering target for a solar cell of the present invention has a high sputtering rate at the initial stage of sputtering and a small decrease in the sputtering rate with time, and can form a more uniform indium film. That is, it can be expected to form a uniform film at a high rate until the end of life.
  • FIG. 1 shows an example of a top view of the target material when the usage ratio is 10% or more.
  • FIG. 2 is a photomicrograph of the surface of the indium film obtained when sputtering was performed using the indium target of Example 3.
  • FIG. 3 is a micrograph of the surface of the indium film obtained when sputtering was performed using the indium target of Example 6.
  • FIG. 4 is a photomicrograph of the surface of the indium film obtained when sputtering was performed using the indium target of Comparative Example 1.
  • the sputtering target for solar cells of the present invention is manufactured from a processed material obtained by performing a process of applying physical stress to an indium ingot to reduce the thickness of the ingot to 70% or less of the original thickness.
  • the target material in the sputtering target for solar cells of the present invention is a processed material obtained by applying a physical stress to an indium ingot to reduce the thickness of the ingot to 70% or less of the original thickness.
  • an oxide layer is formed on the surface of crystal particles forming the ingot or impurities are unevenly distributed.
  • this ingot is used as a target material as it is, the contact resistance between crystal grains of indium constituting the target material increases due to these unevenly distributed impurities.
  • the output is constant, a voltage increase and a current value decrease during sputtering, and the sputtering rate decreases.
  • unevenly distributed impurities are considered to cause arcing and current loss.
  • the process for applying physical stress is not particularly limited as long as it is a plastic process that deforms the material by applying a large force to the material, and examples thereof include rolling, forging, extrusion molding, and pressing. Among these, rolling and forging are preferable in that the processing operation is easy and the oxide layer and impurities can be divided or dispersed reliably.
  • the rolling method is not particularly limited as long as the above conditions are satisfied, and may be the same as the conventional rolling method performed on indium ingots and the like.
  • the forging method is not particularly limited as long as the above conditions are satisfied, and may be the same as the forging method conventionally performed for indium ingots and the like.
  • the degree of processing to apply physical stress is such that the ingot thickness is 70% or less of the original thickness, preferably 60% or less, more preferably 50% or less, and still more preferably. It is a grade which makes it 40% or less.
  • the oxide layer and impurities can be sufficiently divided or dispersed, ensuring a uniform sputtering rate and ensuring a uniform film thickness. Formation becomes possible.
  • the thickness of the ingot is set to 70% or less of the original thickness, for example, when the thickness of the ingot used for processing to apply physical stress is 15 mm, the thickness of the ingot after processing is set to 10.5 mm or less. Means.
  • the ingot ingot can be produced by a conventional casting method.
  • an ingot material such as an ingot shape, a ball shape or a granular shape is heated and melted at 170 to 200 ° C., and the obtained molten metal is poured into a mold and cooled to obtain an ingot.
  • the purity of the indium material is preferably 99.99% or more, more preferably 99.995% or more.
  • the dispersion of impurities tends to be sufficiently performed by performing the process of applying the physical stress to the ingot. Moreover, the influence which an impurity has on solar cell efficiency is small.
  • the shape and size of the ingot there is no particular limitation on the shape and size of the ingot, and it is appropriately determined according to the shape and size of the target material.
  • the ingot has a plate shape or a cylindrical shape, and its thickness is usually 3 to 40 mm.
  • the method for producing the target material from the processed material obtained by applying physical stress to the ingot, and cutting, polishing, etc. can be appropriately performed unless the effects of the present invention are impaired. it can. You may use a processed material as it is as a target material, without adding a process to the said processed material.
  • the bonding material in the sputtering target for solar cell of the present invention is made of indium-tin alloy or indium-gallium alloy.
  • a bonding material made of indium-tin alloy or indium-gallium alloy is used, a high sputter rate obtained by the process of applying the physical stress can be maintained for a long time after the start of sputtering.
  • these bonding materials have a melting point lower than that of indium which is a material of the target material, they can be melted and bonded at a temperature lower than the melting point of indium during bonding.
  • By bonding at a temperature lower than the melting point of indium, which is the material of the target material it is possible to prevent the oxide layer and impurities separated or dispersed by the process of applying physical stress from being aggregated again. For this reason, it is considered that when a bonding material made of indium-tin alloy or indium-gallium alloy is used, a high sputter rate obtained by the process of applying the physical stress can be maintained.
  • the melting point of the bonding material is equal to the melting point of indium
  • the melting point of indium which is a material of the target material
  • some crystal grains of the target material grow or melt during bonding.
  • the oxide layer and impurities separated or dispersed by the process of applying physical stress are aggregated again and unevenly distributed. As a result, it becomes difficult to maintain a high sputtering rate for a long time after the start of sputtering.
  • the indium-tin and indium-gallium alloy preferably have a melting point of 140 ° C. or lower, more preferably 130 ° C. or lower, and further preferably 125 ° C. or lower.
  • the melting point of indium-tin and the indium-gallium alloy is 140 ° C. or lower, the melting point is sufficiently lower than the melting point of indium (156.4 ° C.), so that bonding at a temperature lower than the melting point of indium is easy. It is possible to reliably prevent re-aggregation of the oxide layer and impurities separated or dispersed by the process of applying stress.
  • the lower limit of the melting point of indium-tin and indium-gallium alloy is not particularly limited, but the melting point is preferably 65 ° C. or higher in consideration of handling and sputtering conditions.
  • the indium content is about 44 to 83% by mass, and when the melting point is 130 ° C. or lower, the indium content is 47 to 73% by mass. %.
  • the indium content ratio is about 97% by mass or less, and when the melting point is 130 ° C. or less, the indium content ratio is about 95% by mass or less.
  • the melting point is 65 ° C. or more, the indium content ratio is about 60% by mass or more.
  • the amount of the bonding material used for joining the target material and the backing plate is not particularly limited as long as sufficient bonding between the target material and the backing plate is possible.
  • the size of the target material and the backing plate, the material of the backing plate, etc. It can be determined appropriately depending on the situation.
  • the backing plate in the sputtering target for solar cell of the present invention is not particularly limited as long as the target material can be bonded by the bonding material and has a predetermined function, and for example, a backing plate made of copper or the like can be used.
  • the sputtering target for solar cell of the present invention can be manufactured by joining the target material and a backing plate by the known method using the bonding material.
  • the target material and the backing plate are melted by heating to a temperature lower than the melting point of indium, for example, 120 to 150 ° C., at the temperature at which the bonding material dissolves, and the dissolved bonding material is applied to the bonding surface of the backing plate Then, after bonding the respective bonding surfaces and press-bonding both, they are cooled.
  • a bonding agent is applied to each bonding surface of the target material and the backing plate, the respective bonding surfaces are bonded together, and a temperature lower than the melting point of indium at a temperature at which the bonding material dissolves the sputtering target and the backing plate, For example, it is cooled to 120 to 150 ° C. and then cooled.
  • the target material is heated to a temperature slightly lower than the melting point of indium, for example, 120 to 150 ° C.
  • the backing plate is heated to a temperature higher than the melting point of indium, for example, 170 to 200 ° C.
  • the dissolved bonding material is applied to the bonding surface of the backing plate, the bonding surfaces of the target material and the backing plate are bonded together, the two are pressure-bonded, and then cooled.
  • the sputtering target for solar cell of the present invention is manufactured using the precursor as a target material by bonding the precursor of the target material and the backing plate with the bonding material and then processing the precursor portion. May be.
  • the precursor of the target material is the processed material obtained by applying a physical stress to the ingot, or a material obtained by subjecting the processed material to processing such as cutting or polishing.
  • the sputtering target for solar cells of this invention is a sputtering target manufactured by the indirect casting method.
  • the sputtering target for a solar cell of the present invention can be sputtered under the same conditions as a conventional indium target.
  • the average erosion depth difference (hereinafter also referred to as an average step) is preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 50 ⁇ m or less. This will be described below.
  • the usage ratio is the ratio of the mass of the target material reduced by sputtering (the difference between the mass of the target material before sputtering and the mass of the target material after sputtering) to the mass of the target material before sputtering. It is.
  • FIG. 1 shows an example of a top view of the target material when the usage ratio is 10% or more.
  • an erosion 2 which is a portion dug by sputtering is formed in a ring shape on the sputter portion of the surface 4 thereof.
  • the erosion 2 is formed deeper toward the center of the region sandwiched between the outer line and the inner line of the ring.
  • a deepest portion 5 is formed in a circular shape at substantially the center of the region of the ring.
  • the deepest part is a part including a part formed deepest in the erosion part, for example, a part having a depth of 90 to 100% with respect to the maximum depth of erosion.
  • the erosion depth is the length in a direction perpendicular to the surface 4 from the surface 4 of the target material 1 to the surface of the erosion part.
  • the surface of the erosion part including the deepest part is observed with an electron microscope, and at the deepest part, for example, as shown in FIG. 3, three or more line segments having a length of 10 mm are assumed.
  • On each of the line segments two measurement points sandwiching the grain boundaries of the indium crystal grains are set at a pitch of 100 ⁇ m.
  • the erosion depth is measured at each measurement point, and the difference in erosion depth (grain boundary difference) between two measurement points on the line segment is determined for each line segment.
  • the average grain boundary difference of all line segments is calculated, and the average is defined as the average step.
  • the depth of the erosion can be obtained by a surface roughness measuring device, for example. Specific measurement methods will be described in detail in the following examples.
  • the two measurement points sandwiching the grain boundaries of indium crystal grains are set at a pitch of 100 ⁇ m, the two measurement points are adjacent to each other.
  • One indium is set on each indium crystal grain.
  • the depth of erosion increases as the sputtering rate increases. Therefore, the difference in the erosion depth at the two measurement points in each set means the difference in the sputtering rate between the two indium crystal grains adjacent to each other.
  • the large average step means that in crystal grains adjacent to each other, the sputter rate of one crystal grain and the sputter rate of the other crystal grain are greatly different, and that the average step is small, It means that the sputter rate of one crystal grain and the sputter rate of the other crystal grain are not greatly different in crystal grains adjacent to each other.
  • the sputtering rate does not vary greatly between adjacent crystal grains, so that a uniform stapper rate can be obtained over the entire sputtering portion of the target material. As a result, a uniform film can be formed by sputtering. Can be formed.
  • the average step is larger than 100 ⁇ m, the sputter rate is greatly different between adjacent crystal grains, so that a uniform stapper rate cannot be obtained over the entire sputtered portion of the target material. It is difficult to form a simple film.
  • the oxide layer and impurities unevenly distributed on the surface of the crystal grains forming the ingot are divided or dispersed. Furthermore, since it is joined by a bonding material made of an indium-tin alloy or the like, the divided or dispersed state is maintained. For this reason, the sputtering rate does not vary greatly between adjacent crystal grains, and the average step is likely to be 100 ⁇ m or less. As a result, when the sputtering target for solar cells of the present invention is used, a homogeneous film can be formed by sputtering.
  • the indium ingot is not processed to apply physical stress, or when the indium ingot is not joined by an indium-tin alloy bonding material, the surface of the crystal grain Thus, the oxide layer and impurities are not divided or dispersed, and are unevenly distributed. For this reason, the sputtering rate differs greatly between adjacent crystal grains, and the average step is less likely to be 100 ⁇ m or less. As a result, when a conventional solar cell sputtering target is used, it is difficult to form a homogeneous film by sputtering.
  • the average step is likely to appear at the stage and part where sputtering has progressed. For example, when the usage ratio is 10% or more, it appears remarkably in the deepest part of the erosion.
  • Mass M 1 of the indium target before sputtering embodiment the mass of the indium target after sputtering implemented as M 2
  • M 3 mass sputtering before the implementation of the target material M 3 mass sputtering before the implementation of the target material, and the use ratio determined by the following equation.
  • (M 1 -M 2 ) means the mass of the target material reduced by sputtering.
  • Sputter rate Sputtering was performed using the manufactured indium target under the following conditions.
  • the initial rate was R 0
  • the usage rate was 15% or more
  • the rate was R 15 .
  • the deepest part of erosion was a part having a depth of 90 to 100% with respect to the maximum depth of erosion.
  • the obtained rolled plate was cut into a disk shape having a diameter of 102 mm, and both surfaces were cut with a 1 mm mill to make a smooth surface.
  • the rolled disc (target material) and a disc-shaped oxygen-free copper backing plate having a diameter of 110 mm were heated to 130 ° C. on the hot plate with their bonding surfaces facing upward.
  • An alloy (melting point 125 ° C.) composed of 50% by mass of In (purity 99.99% or more) and 50% by mass of Sn (purity 99.99% or more) is used as a bonding material, and a 130 ° C. molten metal of this alloy is used as the bonding surface of the backing plate. Then, it was adhered while being thinly stretched using a trowel.
  • the indium target was produced by processing the rolled disk part into a size of 101 mm in diameter and 6 mm in thickness with a lathe. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
  • Example 1 sputtering was performed on the indium target under the above conditions, and when the usage ratio was 16%, the rate and average step difference when the usage ratio was 15% or more were obtained. Also in the following examples and comparative examples, when the usage ratio is as shown in Table 1 or Table 2, the rate and average step difference when the usage ratio was 15% or more were obtained.
  • Example 2 The heating temperature of the rolled disk and the backing plate was 120 ° C., and an alloy (melting point 115 ° C.) consisting of 90% by mass of In (purity 99.99% or more) and 10% by mass of Ga (purity 99.99% or more) as a bonding material
  • the indium target was prepared in the same manner as in Example 1 except that the molten metal temperature of this alloy was set to 120 ° C.
  • Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
  • Example 3 An indium target was produced in the same manner as in Example 1 except that the thickness of the flat ingot was 18 mm. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
  • Example 4 The thickness of the flat ingot was 18 mm, the heating temperature of the rolled disk and the backing plate was 120 ° C., and 90% by mass of In (purity 99.99% or more) and Ga (purity 99.99) as a bonding material.
  • An indium target was prepared in the same manner as in Example 1 except that an alloy (melting point: 115 ° C.) composed of 10% by mass was used and the molten metal temperature of the alloy was set to 120 ° C.
  • Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
  • Example 5 The thickness of the flat ingot was 18 mm, the heating temperature of the rolled disc and the backing plate was 100 ° C., and 80% by mass of In (purity 99.99% or more) and Ga (purity 99.99) as a bonding material.
  • An indium target was prepared in the same manner as in Example 1 except that an alloy (melting point: 90 ° C.) composed of 20% by mass was used and the molten metal temperature of the alloy was set to 100 ° C.
  • Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
  • Example 6 An indium target was produced in the same manner as in Example 1 except that the thickness of the flat ingot was 22.5 mm. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
  • Example 7 The thickness of the flat ingot was 18 mm, and instead of rolling the ingot, the entire ingot was struck by hand with a hammer to forge the thickness of the ingot. was performed in the same manner as in Example 1 except that the thickness was 9 mm, and an indium target was produced. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
  • Example 3 An indium target was prepared in the same manner as in Example 1 except that the thickness of the flat ingot was 11 mm. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 2.
  • the rolled disc and a disc-shaped oxygen-free copper backing plate having a diameter of 110 mm were placed on a hot plate with their bonding surfaces facing upward, and the rolled disc was heated to 140 ° C. and the backing plate to 180 ° C. .
  • An In (purity of 99.99% or more) metal (melting point: 156.4 ° C.) was used as a bonding material, and a 180 ° C. molten metal of this In metal was adhered to the bonding surface of the backing plate while being thinly stretched using a trowel.
  • the heated rolled disk was placed on this, and it was cooled with the weight placed on the rolled disk so as not to move, and bonding was performed.
  • the indium target was produced by processing the rolled disk part into a size of 101 mm in diameter and 6 mm in thickness with a lathe.
  • Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 2.
  • Comparative Example 5 An indium target was produced in the same manner as in Comparative Example 4 except that the thickness of the flat ingot was 18 mm. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 2.
  • Example 6 An indium target was produced in the same manner as in Example 7 except that the thickness of the ingot was 10.5 mm. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
  • Example 2 and Comparative Example 4 even if the ingot thickness is reduced to 70% or less of the original thickness, the initial rate is high. Even if a sputtering target is obtained, if the target material and the backing plate are bonded using a bonding material other than indium-tin and indium-gallium alloy bonding materials, the sputtering rate may greatly decrease as the sputtering progresses. Recognize.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

This sputtering target for solar cells is characterized in being formed by bonding together a backing plate and a target material using an indium-tin alloy bonding material or an indium-gallium alloy bonding material, said target material being obtained by making the thickness of an indium ingot 70 % of the original thickness thereof or less by processing the ingot by applying physical stress thereto. This sputtering target for solar cells has a high sputter rate at the sputter initial stage, a small sputter rate reduction with time, and can form an indium film having more uniform qualities. Namely, the high-rate formation of the film having the uniform qualities can be expected until the end of the service-life.

Description

太陽電池用スパッタリングターゲットSputtering target for solar cell
 本発明は、太陽電池用スパッタリングターゲットに関し、さらに詳しくは、ライフエンドまでスパッタレートが一定であり、均一な成膜が可能な太陽電池用スパッタリングターゲットに関する。 The present invention relates to a sputtering target for solar cells, and more particularly, to a sputtering target for solar cells in which the sputtering rate is constant until the end of life and uniform film formation is possible.
 薄膜太陽電池の光吸収層として使用されるインジウム薄膜は、一般にインジウム製のスパッタリングターゲット(以下、インジウムターゲットともいう)をスパッタすることにより成膜されている。インジウムは軟質材料であり、融点が156.4℃と低融点金属であるので、インジウムターゲットは鋳造および圧延により製造されることが多い。 An indium thin film used as a light absorption layer of a thin film solar cell is generally formed by sputtering an indium sputtering target (hereinafter also referred to as an indium target). Since indium is a soft material and has a melting point of 156.4 ° C. and a low melting point metal, indium targets are often manufactured by casting and rolling.
 特許文献1には、バッキングプレートにインジウム等の薄膜を形成した後、その薄膜の上にインジウム等の溶湯を流し込み、バッキングプレートとターゲット材とを一体に形成するターゲットの製造方法が開示されている。この方法は、ターゲット材を鋳造等により製造した後に、ターゲット材をバッキングプレートにボンディングする間接鋳造法に対して直接鋳造法と呼ばれる方法であり、ターゲット材とバッキングプレートとを隙間なく接合できるので、スパッタ時に熱的なムラが生じず、均一な膜が形成されるとされている。 Patent Document 1 discloses a target manufacturing method in which after a thin film such as indium is formed on a backing plate, a molten metal such as indium is poured onto the thin film, and the backing plate and the target material are integrally formed. . This method is a method called a direct casting method with respect to the indirect casting method in which the target material is bonded to the backing plate after the target material is manufactured by casting or the like, and the target material and the backing plate can be joined without gaps. It is said that a uniform film is formed without thermal unevenness during sputtering.
 特許文献2には、インジウム原料を複数回に分けて鋳型に投入し、その都度生成した溶湯表面の酸化インジウムを除去し、その後、冷却して得られたインゴットを表面研削して得ることを特徴とする太陽電池用インジウムターゲットの製造方法が開示されている。この製造方法も直接鋳造法を用いた方法であり、この方法により得られたターゲットは、溶湯の酸化インジウムの巻き込み量が少ないので、光吸収層の光透過率低下が防止されると報告されている。 Patent Document 2 is characterized in that the indium raw material is divided into a plurality of times and put into a mold, indium oxide is removed from the surface of the molten metal that is generated each time, and then the ingot obtained by cooling is obtained by surface grinding. The manufacturing method of the indium target for solar cells is disclosed. This manufacturing method is also a method using a direct casting method, and since the target obtained by this method has a small amount of indium oxide entrained in the molten metal, it is reported that a decrease in light transmittance of the light absorption layer is prevented. Yes.
 しかし、これらの製造方法で製造された従来のインジウムターゲットは、スパッタレートが十分には高くなく、効率的な成膜が困難であった。スパッタリングターゲットにおいては、初期スパッタレートが高く、ライフエンドまで高スパッタレートであることが望まれる。また、従来のインジウムターゲットにてスパッタを行うと、特にスパッタがある程度進行した時点において、得られる膜の均質性が低下するという問題があった。 However, the conventional indium target manufactured by these manufacturing methods has a sputtering rate that is not sufficiently high, so that efficient film formation is difficult. In the sputtering target, it is desired that the initial sputtering rate is high and the sputtering rate is high until the life end. Further, when sputtering is performed with a conventional indium target, there is a problem that the homogeneity of the obtained film is deteriorated particularly when the sputtering proceeds to some extent.
特開昭63-44820号公報JP 63-44820 A 特開2010-24474号公報JP 2010-24474 A
 本発明は、上記事情の下になされたものであり、スパッタ初期のスパッタレートが高く、かつスパッタレートの経時的な低下が小さく、さらに均質な膜が形成できる太陽電池用スパッタリングターゲットを提供することを目的とする。 The present invention has been made under the above circumstances, and provides a sputtering target for a solar cell that has a high sputtering rate at the initial stage of sputtering, a small decrease in the sputtering rate with time, and can form a homogeneous film. With the goal.
 前記目的を達成する本発明は、インジウム製の鋳塊に物理的応力を加える加工を行って該鋳塊の厚みを元の厚みの70%以下にすることにより得られた加工材から製造されたターゲット材、バッキングプレート、および前記ターゲット材とバッキングプレートとを接合するインジウム-スズまたはインジウム-ガリウム合金製のボンディング材からなることを特徴とする太陽電池用スパッタリングターゲットである。 The present invention that achieves the above object was manufactured from a workpiece obtained by performing a process of applying physical stress to an indium ingot to reduce the thickness of the ingot to 70% or less of the original thickness. A sputtering target for a solar cell, comprising a target material, a backing plate, and a bonding material made of indium-tin or an indium-gallium alloy for joining the target material and the backing plate.
 本発明の太陽電池用スパッタリングターゲットにおいては、前記ターゲット材は、インジウム製の鋳塊に物理的応力を加える加工を行って該鋳塊の厚みを元の厚みの50%以下にすることにより得られた加工材から製造されたターゲット材であることが好ましい。 In the solar cell sputtering target of the present invention, the target material is obtained by applying a physical stress to the indium ingot to reduce the thickness of the ingot to 50% or less of the original thickness. It is preferable that the target material is manufactured from a processed material.
 本発明の太陽電池用スパッタリングターゲットにおいては、前記インジウム-スズおよびインジウム-ガリウム合金は、その融点が140℃以下であることが好ましい。 In the solar cell sputtering target of the present invention, the indium-tin and the indium-gallium alloy preferably have a melting point of 140 ° C. or lower.
 本発明の太陽電池用スパッタリングターゲットにおいては、前記インジウム-スズおよびインジウム-ガリウム合金は、その融点が130℃以下であることが好ましい。 In the solar cell sputtering target of the present invention, the indium-tin and indium-gallium alloy preferably have a melting point of 130 ° C. or lower.
 本発明の太陽電池用スパッタリングターゲットにおいては、前記物理的応力を加える加工が圧延であることが好ましい。 In the sputtering target for a solar cell of the present invention, it is preferable that the processing for applying the physical stress is rolling.
 本発明の太陽電池用スパッタリングターゲットにおいては、前記物理的応力を加える加工が鍛造であることが好ましい。 In the sputtering target for a solar cell of the present invention, it is preferable that the processing for applying the physical stress is forging.
 本発明の太陽電池用スパッタリングターゲットにおいては、その使用比率が10%以上である時に形成されたエロージョンの最深部において100μmピッチで設定された、インジウムの結晶粒の粒界を挟む2点の測定箇所におけるエロージョンの深さを測定したときのその2点間の前記深さの差の平均が100μm以下であることが好ましい。 In the sputtering target for solar cell of the present invention, two measurement points sandwiching the grain boundaries of indium crystal grains set at a pitch of 100 μm at the deepest part of the erosion formed when the use ratio is 10% or more. When the depth of erosion at is measured, the average of the difference in depth between the two points is preferably 100 μm or less.
 本発明の太陽電池用スパッタリングターゲットにおいては、その使用比率が10%以上である時に形成されたエロージョンの最深部において100μmピッチで設定された、インジウムの結晶粒の粒界を挟む2点の測定箇所におけるエロージョンの深さを測定したときのその2点間の前記深さの差の平均が60μm以下であることが好ましい。 In the sputtering target for solar cell of the present invention, two measurement points sandwiching the grain boundaries of indium crystal grains set at a pitch of 100 μm at the deepest part of the erosion formed when the use ratio is 10% or more. When the depth of erosion at is measured, the average of the difference in depth between the two points is preferably 60 μm or less.
 本発明の太陽電池用スパッタリングターゲットは、スパッタ初期のスパッタレートが高く、かつスパッタレートの経時的な低下が小さく、さらに均質なインジウム膜を形成することができる。つまり、ライフエンドに至るまで高レートで均質な膜を形成することが期待できる。 The sputtering target for a solar cell of the present invention has a high sputtering rate at the initial stage of sputtering and a small decrease in the sputtering rate with time, and can form a more uniform indium film. That is, it can be expected to form a uniform film at a high rate until the end of life.
図1は、使用比率が10%以上である時のターゲット材の上面図の一例を示す。FIG. 1 shows an example of a top view of the target material when the usage ratio is 10% or more. 図2は、実施例3のインジウムターゲットを用いてスパッタを行ったときに得られたインジウム膜表面の顕微鏡写真である。FIG. 2 is a photomicrograph of the surface of the indium film obtained when sputtering was performed using the indium target of Example 3. 図3は、実施例6のインジウムターゲットを用いてスパッタを行ったときに得られたインジウム膜表面の顕微鏡写真である。FIG. 3 is a micrograph of the surface of the indium film obtained when sputtering was performed using the indium target of Example 6. 図4は、比較例1のインジウムターゲットを用いてスパッタを行ったときに得られたインジウム膜表面の顕微鏡写真である。FIG. 4 is a photomicrograph of the surface of the indium film obtained when sputtering was performed using the indium target of Comparative Example 1.
 本発明の太陽電池用スパッタリングターゲットは、インジウム製の鋳塊に物理的応力を加える加工を行って該鋳塊の厚みを元の厚みの70%以下にすることにより得られた加工材から製造されたターゲット材、バッキングプレート、および前記ターゲット材とバッキングプレートとを接合するインジウム-スズまたはインジウム-ガリウム合金製のボンディング材からなることを特徴とする。 The sputtering target for solar cells of the present invention is manufactured from a processed material obtained by performing a process of applying physical stress to an indium ingot to reduce the thickness of the ingot to 70% or less of the original thickness. A target material, a backing plate, and a bonding material made of indium-tin or an indium-gallium alloy for joining the target material and the backing plate.
 本発明の太陽電池用スパッタリングターゲットにおけるターゲット材は、インジウム製の鋳塊に物理的応力を加える加工を行って該鋳塊の厚みを元の厚みの70%以下にすることにより得られた加工材から製造されたターゲット材である。 The target material in the sputtering target for solar cells of the present invention is a processed material obtained by applying a physical stress to an indium ingot to reduce the thickness of the ingot to 70% or less of the original thickness. Is a target material manufactured from
 鋳塊に物理的応力を加えず、鋳塊からターゲット材を製造した場合、高いスパッタレートを得ることができない。一方、鋳塊に物理的応力を加えて加工材とし、その加工材からターゲット材を製造した場合には、高いスパッタレートを得ることができる。この理由は明らかではないが、たとえば以下のような理由が考えられる。 When a target material is manufactured from an ingot without applying physical stress to the ingot, a high sputter rate cannot be obtained. On the other hand, when a physical stress is applied to the ingot to obtain a processed material, and a target material is manufactured from the processed material, a high sputter rate can be obtained. Although this reason is not clear, for example, the following reasons can be considered.
 インジウム製の鋳塊においては、その鋳塊を形成する結晶粒子の表面に酸化物層が形成されていたり、不純物が偏在していたりすると考えられる。この鋳塊をそのままターゲット材に使用した場合、これら偏在した不純物等が原因となって、ターゲット材を構成するインジウムの結晶粒同士の接触抵抗が大きくなる。その結果、出力一定時において、スパッタ時の電圧上昇および電流値の減少が生じ、スパッタレートが小さくなると考えられる。また、このような偏在した不純物等は、アーキングや電流損失の原因にもなると考えられる。 In an indium ingot, it is considered that an oxide layer is formed on the surface of crystal particles forming the ingot or impurities are unevenly distributed. When this ingot is used as a target material as it is, the contact resistance between crystal grains of indium constituting the target material increases due to these unevenly distributed impurities. As a result, it is considered that when the output is constant, a voltage increase and a current value decrease during sputtering, and the sputtering rate decreases. Moreover, such unevenly distributed impurities are considered to cause arcing and current loss.
 一方、インジウム製の鋳塊に物理的応力を加える加工を行うと、鋳塊の結晶粒子表面に偏在していた酸化物層や不純物は分断または分散されると考えられる。その結果、ターゲット材を構成するインジウムの結晶粒同士の接触抵抗が小さくなり、出力一定時において、スパッタ時の電圧降下および電流値の増大が得られ、スパッタレートが大きくなると考えられる。また、このような不純物等の分断または分散により、アーキングや電流損失の発生を抑制することができる。 On the other hand, when a process of applying physical stress to the indium ingot is performed, it is considered that the oxide layer and impurities unevenly distributed on the crystal particle surface of the ingot are divided or dispersed. As a result, the contact resistance between the indium crystal grains constituting the target material is reduced, and when the output is constant, a voltage drop and an increase in current value during sputtering are obtained, and the sputtering rate is considered to be increased. In addition, arcing and current loss can be suppressed by dividing or dispersing such impurities.
 物理的応力を加える加工としては、材料に大きな力を加えて材料を変形させる塑性加工であれば特に制限はなく、たとえば圧延、鍛造、押出し成形、プレス等を挙げることができる。これらのうち、圧延および鍛造が、加工操作が容易である点、酸化物層や不純物の分断または分散を確実に行うことができる点等において好ましい。 The process for applying physical stress is not particularly limited as long as it is a plastic process that deforms the material by applying a large force to the material, and examples thereof include rolling, forging, extrusion molding, and pressing. Among these, rolling and forging are preferable in that the processing operation is easy and the oxide layer and impurities can be divided or dispersed reliably.
 前記圧延の方法は、前記条件を満たす限り特に制限はなく、従来インジウム製の鋳塊等に対して行われている圧延法と同じで差し支えない。前記鍛造の方法も、前記条件を満たす限り特に制限はなく、従来インジウム製の鋳塊等に対して行われている鍛造法と同じで差し支えない。物理的応力を加える加工が圧延である場合には、圧延によって得られた圧延板等が前記加工材となる。物理的応力を加える加工が鍛造である場合には、鍛造によって得られた鍛造板等が前記加工材となる。 The rolling method is not particularly limited as long as the above conditions are satisfied, and may be the same as the conventional rolling method performed on indium ingots and the like. The forging method is not particularly limited as long as the above conditions are satisfied, and may be the same as the forging method conventionally performed for indium ingots and the like. When the process for applying physical stress is rolling, a rolled plate or the like obtained by rolling is the processed material. When the process for applying physical stress is forging, a forged plate or the like obtained by forging becomes the processed material.
 物理的応力を加える加工の程度は、鋳塊の厚みを元の厚みの70%以下にする程度であり、好ましくは60%以下にする程度、より好ましくは50%以下にする程度、さらに好ましくは40%以下にする程度である。物理的応力を加える加工により鋳塊の厚みを元の厚みの70%以下にすると、酸化物層や不純物の分断または分散を十分に行うことができ、均一なスパッタレートの確保および均質な膜の形成が可能になる。鋳塊の厚みを元の厚みの70%以下にするとは、たとえば物理的応力を加える加工に供する鋳塊の厚みが15mmである場合、加工後の鋳塊の厚みを10.5mm以下にすることを意味する。 The degree of processing to apply physical stress is such that the ingot thickness is 70% or less of the original thickness, preferably 60% or less, more preferably 50% or less, and still more preferably. It is a grade which makes it 40% or less. When the thickness of the ingot is reduced to 70% or less of the original thickness by processing applying physical stress, the oxide layer and impurities can be sufficiently divided or dispersed, ensuring a uniform sputtering rate and ensuring a uniform film thickness. Formation becomes possible. When the thickness of the ingot is set to 70% or less of the original thickness, for example, when the thickness of the ingot used for processing to apply physical stress is 15 mm, the thickness of the ingot after processing is set to 10.5 mm or less. Means.
 インジウム製の鋳塊の製造方法は、従来行われている鋳造法で差し支えない。たとえば、インゴッド状、ボール状または粒状等のインジウム材料を170~200℃に加熱して溶解し、得られた溶湯を金型に流し込み、これを冷却して鋳塊が得られる。 The ingot ingot can be produced by a conventional casting method. For example, an ingot material such as an ingot shape, a ball shape or a granular shape is heated and melted at 170 to 200 ° C., and the obtained molten metal is poured into a mold and cooled to obtain an ingot.
 インジウム材料の純度は99.99%以上が好ましく、99.995%以上がより好ましい。インジウム材料の純度が99.99%以上であると、鋳塊に前記物理的応力を加える加工を行うことにより、不純物の分散が十分になりやすい。また、不純物が太陽電池効率に与える影響が小さい。 The purity of the indium material is preferably 99.99% or more, more preferably 99.995% or more. When the purity of the indium material is 99.99% or more, the dispersion of impurities tends to be sufficiently performed by performing the process of applying the physical stress to the ingot. Moreover, the influence which an impurity has on solar cell efficiency is small.
 鋳塊の形状および大きさには特に制限はなく、目的とするターゲット材の形状および大きさに合わせて適宜決定される。たとえば鋳塊の形状は板状や円筒状であり、その厚みは通常3~40mmである。 There is no particular limitation on the shape and size of the ingot, and it is appropriately determined according to the shape and size of the target material. For example, the ingot has a plate shape or a cylindrical shape, and its thickness is usually 3 to 40 mm.
 鋳塊に物理的応力を加える加工を行って得られた加工材からターゲット材を製造する方法には特に制限はなく、本発明の効果を阻害しない限り、切削加工、研磨等を適宜行うことができる。前記加工材に加工を加えず、加工材をそのままターゲット材として使用してもよい。 There is no particular limitation on the method for producing the target material from the processed material obtained by applying physical stress to the ingot, and cutting, polishing, etc. can be appropriately performed unless the effects of the present invention are impaired. it can. You may use a processed material as it is as a target material, without adding a process to the said processed material.
 本発明の太陽電池用スパッタリングターゲットにおけるボンディング材は、インジウム-スズ合金製またはインジウム-ガリウム合金製である。インジウム-スズ合金製またはインジウム-ガリウム合金製のボンディング材を使用すると、前記物理的応力を加える加工により得られた高スパッタレートをスパッタ開始後長期にわたり維持することができる。 The bonding material in the sputtering target for solar cell of the present invention is made of indium-tin alloy or indium-gallium alloy. When a bonding material made of indium-tin alloy or indium-gallium alloy is used, a high sputter rate obtained by the process of applying the physical stress can be maintained for a long time after the start of sputtering.
 これらのボンディング材は、ターゲット材の材料であるインジウムよりも融点が低いので、ボンディング時にインジウムの融点よりも低い温度で融解させ、ボンディングすることができる。ターゲット材の材料であるインジウムの融点よりも低い温度でボンディングすることにより、前記物理的応力を加える加工により分断または分散された酸化物層や不純物が再び凝集するのを防止することができる。このため、インジウム-スズ合金製またはインジウム-ガリウム合金製のボンディング材を使用すると、前記物理的応力を加える加工により得られた高スパッタレートを維持できると考えられる。 Since these bonding materials have a melting point lower than that of indium which is a material of the target material, they can be melted and bonded at a temperature lower than the melting point of indium during bonding. By bonding at a temperature lower than the melting point of indium, which is the material of the target material, it is possible to prevent the oxide layer and impurities separated or dispersed by the process of applying physical stress from being aggregated again. For this reason, it is considered that when a bonding material made of indium-tin alloy or indium-gallium alloy is used, a high sputter rate obtained by the process of applying the physical stress can be maintained.
 これに対し、ボンディング材の融点がインジウムの融点と同等である場合には、ボンディング時にインジウムの融点と同等以上の温度で融解させ、ボンディングすることが必要になる。ターゲット材の材料であるインジウムの融点と同等以上の温度でボンディングを行うと、ボンディング時にターゲット材の一部の結晶粒が成長あるいは融解する。そうすると、前記物理的応力を加える加工により分断または分散された酸化物層や不純物が再び凝集し、偏在することになる。その結果、高スパッタレートをスパッタ開始後長期にわたり維持することが困難になる。 On the other hand, when the melting point of the bonding material is equal to the melting point of indium, it is necessary to perform bonding at a temperature equal to or higher than the melting point of indium during bonding. When bonding is performed at a temperature equal to or higher than the melting point of indium, which is a material of the target material, some crystal grains of the target material grow or melt during bonding. Then, the oxide layer and impurities separated or dispersed by the process of applying physical stress are aggregated again and unevenly distributed. As a result, it becomes difficult to maintain a high sputtering rate for a long time after the start of sputtering.
 前記インジウム-スズおよびインジウム-ガリウム合金は、その融点が140℃以下であることが好ましく、より好ましくは130℃以下であり、さらに好ましくは125℃以下である。インジウム-スズおよびインジウム-ガリウム合金の融点が140℃以下であると、インジウムの融点(156.4℃)より十分低いので、インジウムの融点よりも低い温度でのボンディングが容易であり、前記物理的応力を加える加工により分断または分散された酸化物層や不純物の再凝集を確実に防止することができる。 The indium-tin and indium-gallium alloy preferably have a melting point of 140 ° C. or lower, more preferably 130 ° C. or lower, and further preferably 125 ° C. or lower. When the melting point of indium-tin and the indium-gallium alloy is 140 ° C. or lower, the melting point is sufficiently lower than the melting point of indium (156.4 ° C.), so that bonding at a temperature lower than the melting point of indium is easy. It is possible to reliably prevent re-aggregation of the oxide layer and impurities separated or dispersed by the process of applying stress.
 インジウム-スズおよびインジウム-ガリウム合金の融点の下限は特に制限はないが、取り扱いおよびスパッタ条件等を考慮すると、その融点は65℃以上であることが好ましい。 The lower limit of the melting point of indium-tin and indium-gallium alloy is not particularly limited, but the melting point is preferably 65 ° C. or higher in consideration of handling and sputtering conditions.
 インジウム-スズ合金における組成と融点との関係としては、たとえば融点が140℃以下の場合インジウム含有比率は44~83質量%程度であり、融点が130℃以下の場合インジウム含有比率は47~73質量%程度である。 Regarding the relationship between the composition and the melting point in the indium-tin alloy, for example, when the melting point is 140 ° C. or lower, the indium content is about 44 to 83% by mass, and when the melting point is 130 ° C. or lower, the indium content is 47 to 73% by mass. %.
 インジウム-ガリウム合金おける組成と融点との関係としては、たとえば融点が140℃以下の場合インジウム含有比率は約97質量%以下であり、融点が130℃以下の場合インジウム含有比率は約95質量%以下であり、融点が65℃以上の場合インジウム含有比率は約60質量%以上である。 Regarding the relationship between the composition and the melting point in the indium-gallium alloy, for example, when the melting point is 140 ° C. or less, the indium content ratio is about 97% by mass or less, and when the melting point is 130 ° C. or less, the indium content ratio is about 95% by mass or less. When the melting point is 65 ° C. or more, the indium content ratio is about 60% by mass or more.
 ターゲット材とバッキングプレートとの接合に用いられるボンディング材の量は、ターゲット材とバッキングプレートとの十分な接合が可能な限り特に制限はなく、ターゲット材およびバッキングプレートの大きさ、バッキングプレートの材料等に応じて適宜決定することができる。 The amount of the bonding material used for joining the target material and the backing plate is not particularly limited as long as sufficient bonding between the target material and the backing plate is possible. The size of the target material and the backing plate, the material of the backing plate, etc. It can be determined appropriately depending on the situation.
 本発明の太陽電池用スパッタリングターゲットにおけるバッキングプレートは、前記ターゲット材を前記ボンディング材により接合でき、バッキングプレート所定の機能を有する限り特に制限はなく、たとえば銅製等のバッキングプレートを使用することができる。 The backing plate in the sputtering target for solar cell of the present invention is not particularly limited as long as the target material can be bonded by the bonding material and has a predetermined function, and for example, a backing plate made of copper or the like can be used.
 本発明の太陽電池用スパッタリングターゲットは、前記ターゲット材とバッキングプレートとを前記ボンディング材により公知の方法により接合することにより製造することができる。たとえば、前記ターゲット材およびバッキングプレートを、ボンディング材が溶解する温度で、インジウムの融点よりも低い温度、たとえば120~150℃に加熱して溶解させ、バッキングプレートのボンディング面に溶解したボンディング材を塗布し、それぞれのボンディング面を貼り合わせて両者を圧着した後、冷却する。あるいは、ターゲット材およびバッキングプレートのそれぞれのボンディング面にボンディング剤を塗布し、それぞれのボンディング面を貼り合わせて、スパッタリングターゲットおよびバッキングプレートをボンディング材が溶解する温度で、インジウムの融点よりも低い温度、たとえば120~150℃に加熱した後、冷却する。 The sputtering target for solar cell of the present invention can be manufactured by joining the target material and a backing plate by the known method using the bonding material. For example, the target material and the backing plate are melted by heating to a temperature lower than the melting point of indium, for example, 120 to 150 ° C., at the temperature at which the bonding material dissolves, and the dissolved bonding material is applied to the bonding surface of the backing plate Then, after bonding the respective bonding surfaces and press-bonding both, they are cooled. Alternatively, a bonding agent is applied to each bonding surface of the target material and the backing plate, the respective bonding surfaces are bonded together, and a temperature lower than the melting point of indium at a temperature at which the bonding material dissolves the sputtering target and the backing plate, For example, it is cooled to 120 to 150 ° C. and then cooled.
 あるいは、前記ターゲット材をインジウムの融点よりもわずかに低い温度、たとえば120~150℃加熱し、バッキングプレートをインジウムの融点よりも高い温度、たとえば170~200℃に加熱する。バッキングプレートのボンディング面に溶解したボンディング材を塗布し、ターゲット材とバッキングプレートとのボンディング面を貼り合わせて、両者を圧着した後、冷却する。 Alternatively, the target material is heated to a temperature slightly lower than the melting point of indium, for example, 120 to 150 ° C., and the backing plate is heated to a temperature higher than the melting point of indium, for example, 170 to 200 ° C. The dissolved bonding material is applied to the bonding surface of the backing plate, the bonding surfaces of the target material and the backing plate are bonded together, the two are pressure-bonded, and then cooled.
 また、本発明の太陽電池用スパッタリングターゲットは、ターゲット材の前駆体とバッキングプレートとを前記ボンディング材により接合した後、その前駆体部分に加工を施すことによりその前駆体をターゲット材にして製造してもよい。ターゲット材の前駆体とは、鋳塊に物理的応力を加える加工を行って得られた前記加工材、またはこの加工材に切削加工、研磨等の加工施して得られる材料である。 Further, the sputtering target for solar cell of the present invention is manufactured using the precursor as a target material by bonding the precursor of the target material and the backing plate with the bonding material and then processing the precursor portion. May be. The precursor of the target material is the processed material obtained by applying a physical stress to the ingot, or a material obtained by subjecting the processed material to processing such as cutting or polishing.
 なお、本発明の太陽電池用スパッタリングターゲットは、間接鋳造法により製造されたスパッタリングターゲットである。 In addition, the sputtering target for solar cells of this invention is a sputtering target manufactured by the indirect casting method.
 本発明の太陽電池用スパッタリングターゲットは、従来のインジウムターゲットと同様の条件でスパッタすることができる。 The sputtering target for a solar cell of the present invention can be sputtered under the same conditions as a conventional indium target.
 本発明の太陽電池用スパッタリングターゲットにおいては、その使用比率が10%以上である時に形成されたエロージョンの最深部において100μmピッチで設定された、インジウムの結晶粒の粒界を挟む2点の測定箇所におけるエロージョンの深さの差の平均(以下、平均段差ともいう)が100μm以下であることが好ましく、60μm以下であることがより好ましく、50μm以下であることがさらに好ましい。以下、このことについて説明する。 In the sputtering target for solar cell of the present invention, two measurement points sandwiching the grain boundaries of indium crystal grains set at a pitch of 100 μm at the deepest part of the erosion formed when the use ratio is 10% or more. The average erosion depth difference (hereinafter also referred to as an average step) is preferably 100 μm or less, more preferably 60 μm or less, and even more preferably 50 μm or less. This will be described below.
 使用比率とは、スパッタにより減少したターゲット材の質量(スパッタをする前のターゲット材の質量とスパッタをした後のターゲット材の質量との差)の、スパッタをする前のターゲット材の質量に対する比率である。 The usage ratio is the ratio of the mass of the target material reduced by sputtering (the difference between the mass of the target material before sputtering and the mass of the target material after sputtering) to the mass of the target material before sputtering. It is.
 図1に、使用比率が10%以上である時のターゲット材の上面図の一例を示す。直径4インチの円盤状のターゲット材1には、その表面4のスパッタ部に、スパッタにより掘れた部分であるエロージョン2がリング状に形成されている。エロージョン2はそのリングの外郭線と内郭線とで挟まれた領域の中央部に向かって深く形成される。そのリングの前記領域のほぼ中央部に最深部5が円状に形成されている。 FIG. 1 shows an example of a top view of the target material when the usage ratio is 10% or more. In the disc-shaped target material 1 having a diameter of 4 inches, an erosion 2 which is a portion dug by sputtering is formed in a ring shape on the sputter portion of the surface 4 thereof. The erosion 2 is formed deeper toward the center of the region sandwiched between the outer line and the inner line of the ring. A deepest portion 5 is formed in a circular shape at substantially the center of the region of the ring.
 最深部とは、エロージョン部において最も深く形成された部分を含む部分であって、たとえばエロージョンの最大の深さに対して90~100%の深さを有する部分である。エロージョンの深さとは、ターゲット材1の表面4からエロージョン部表面までの、表面4に対して直角方向の長さである。 The deepest part is a part including a part formed deepest in the erosion part, for example, a part having a depth of 90 to 100% with respect to the maximum depth of erosion. The erosion depth is the length in a direction perpendicular to the surface 4 from the surface 4 of the target material 1 to the surface of the erosion part.
 その最深部を含むエロージョン部表面を電子顕微鏡で観察し、その最深部において、たとえば、図1に示したようにほぼ均等に間隔を置いて3箇所以上の測定部位3を設定し、各測定部位3において長さ10mmの線分を3本以上想定する。その各線分上に、100μmのピッチで、インジウムの結晶粒の粒界を挟む2つの測定点を設定する。各測定点においてエロージョンの深さを測定し、各線分ごとにその線分上の2つの測定点間のエロージョンの深さの差(粒界差)を求める。全線分の粒界差の平均を算出し、その平均を平均段差とする。 The surface of the erosion part including the deepest part is observed with an electron microscope, and at the deepest part, for example, as shown in FIG. 3, three or more line segments having a length of 10 mm are assumed. On each of the line segments, two measurement points sandwiching the grain boundaries of the indium crystal grains are set at a pitch of 100 μm. The erosion depth is measured at each measurement point, and the difference in erosion depth (grain boundary difference) between two measurement points on the line segment is determined for each line segment. The average grain boundary difference of all line segments is calculated, and the average is defined as the average step.
 前記エロージョンの深さは、たとえば、表面粗さ測定装置により求めることができる。具体的な測定方法については下記実施例において詳述する。 The depth of the erosion can be obtained by a surface roughness measuring device, for example. Specific measurement methods will be described in detail in the following examples.
 ターゲット材を構成する結晶粒の大きさとの関係から、100μmのピッチで、インジウムの結晶粒の粒界を挟む2点の測定箇所を設定すると、その2点の測定箇所は、相互に隣接する2つのインジウムの結晶粒上に1ヵ所ずつ設定される。エロージョンの深さは、スパッタレートが大きいほど大きくなる。したがって、前記各組の2点の測定箇所におけるエロージョンの深さの差は、相互に隣接する2つのインジウム結晶粒におけるスパッタレートの差を意味する。 From the relationship with the size of the crystal grains constituting the target material, when two measurement points sandwiching the grain boundaries of indium crystal grains are set at a pitch of 100 μm, the two measurement points are adjacent to each other. One indium is set on each indium crystal grain. The depth of erosion increases as the sputtering rate increases. Therefore, the difference in the erosion depth at the two measurement points in each set means the difference in the sputtering rate between the two indium crystal grains adjacent to each other.
 つまり、前記平均段差が大きいことは、相互に隣接する結晶粒において、一方の結晶粒のスパッタレートと他方の結晶粒のスパッタレートとが大きく異なることを意味し、前記平均段差が小さいことは、相互に隣接する結晶粒において、一方の結晶粒のスパッタレートと他方の結晶粒のスパッタレートとが大きく異ならないことを意味する。 In other words, the large average step means that in crystal grains adjacent to each other, the sputter rate of one crystal grain and the sputter rate of the other crystal grain are greatly different, and that the average step is small, It means that the sputter rate of one crystal grain and the sputter rate of the other crystal grain are not greatly different in crystal grains adjacent to each other.
 前記平均段差が100μm以下であると、相互に隣接する結晶粒間においてスパッタレートが大きく異ならないので、ターゲット材のスパッタ部全面にわたって均一なスタッパレートが得られ、その結果、スパッタにより均質な膜を形成することができる。これに対し、前記平均段差が100μmより大きいと、相互に隣接する結晶粒間においてスパッタレートが大きく異なるので、ターゲット材のスパッタ部全面にわたって均一なスタッパレートが得られず、その結果、スパッタにより均質な膜を形成することが困難になる。 When the average step is 100 μm or less, the sputtering rate does not vary greatly between adjacent crystal grains, so that a uniform stapper rate can be obtained over the entire sputtering portion of the target material. As a result, a uniform film can be formed by sputtering. Can be formed. On the other hand, if the average step is larger than 100 μm, the sputter rate is greatly different between adjacent crystal grains, so that a uniform stapper rate cannot be obtained over the entire sputtered portion of the target material. It is difficult to form a simple film.
 本発明の太陽電池用スパッタリングターゲットにおいては、インジウム製の鋳塊に物理的応力を加える加工を行うことにより、その鋳塊を形成する結晶粒の表面に偏在する酸化物層や不純物が分断または分散され、さらにインジウム-スズ合金製のボンディング材等により接合されているので、分断または分散された状態が維持されている。このため、隣接する結晶粒間においてスパッタレートが大きく異なることはなく、前記平均段差が100μm以下になりやすい。その結果、本発明の太陽電池用スパッタリングターゲットを用いると、スパッタにより均質な膜を形成することができる。 In the sputtering target for solar cell of the present invention, by applying a physical stress to the indium ingot, the oxide layer and impurities unevenly distributed on the surface of the crystal grains forming the ingot are divided or dispersed. Furthermore, since it is joined by a bonding material made of an indium-tin alloy or the like, the divided or dispersed state is maintained. For this reason, the sputtering rate does not vary greatly between adjacent crystal grains, and the average step is likely to be 100 μm or less. As a result, when the sputtering target for solar cells of the present invention is used, a homogeneous film can be formed by sputtering.
 一方、インジウム製の鋳塊に物理的応力を加える加工を行っていない場合、または前記加工を行っても、インジウム-スズ合金製のボンディング材等により接合されていない場合には、結晶粒の表面に酸化物層や不純物が分断または分散されず、偏在する状態になっている。このため、隣接する結晶粒間においてスパッタレートが大きく異なり、前記平均段差が100μm以下になりにくい。その結果、従来の太陽電池用スパッタリングターゲットを用いると、スパッタにより均質な膜を形成することが困難である。 On the other hand, when the indium ingot is not processed to apply physical stress, or when the indium ingot is not joined by an indium-tin alloy bonding material, the surface of the crystal grain Thus, the oxide layer and impurities are not divided or dispersed, and are unevenly distributed. For this reason, the sputtering rate differs greatly between adjacent crystal grains, and the average step is less likely to be 100 μm or less. As a result, when a conventional solar cell sputtering target is used, it is difficult to form a homogeneous film by sputtering.
 前記平均段差は、スパッタが進行した段階および部位において現れやすい。たとえば使用比率が10%以上の場合に、また前記エロージョンの最深部において顕著に現れる。 The average step is likely to appear at the stage and part where sputtering has progressed. For example, when the usage ratio is 10% or more, it appears remarkably in the deepest part of the erosion.
 実施例および比較例で使用した測定方法を記す。
(バルク抵抗、電流および電圧)
 バルク抵抗は、三菱化学ロレスターHP MCP-T410(直列4探針プローブ TYPE ESP )を用いて、AUTO RANGEモードでインジウムターゲットのターゲット材表面にプローブをあてて測定した。電圧および電流値は、スパッタ中にスパッタ装置の電源メーターから読み取った。
The measurement methods used in the examples and comparative examples will be described.
(Bulk resistance, current and voltage)
The bulk resistance was measured by applying a probe to the surface of the target material of the indium target in the AUTO RANGE mode using Mitsubishi Chemical Lorester HP MCP-T410 (series 4-probe probe TYPE ESP). The voltage and current values were read from the power meter of the sputtering apparatus during sputtering.
 (使用比率)
 作製されたインジウムターゲットを用いてスパッタを行い、スパッタ実施後のインジウムターゲットの質量を測定した。スパッタ実施前のインジウムターゲットの質量をM1、スパッタ実施後のインジウムターゲットの質量をM2、スパッタ実施前のターゲット材の質量をM3として、使用比率を下式により求めた。下式において、(M1-M2)は、スパッタにより減少したターゲット材の質量を意味する。
(Use ratio)
Sputtering was performed using the produced indium target, and the mass of the indium target after the sputtering was measured. Mass M 1 of the indium target before sputtering embodiment, the mass of the indium target after sputtering implemented as M 2, M 3 mass sputtering before the implementation of the target material, and the use ratio determined by the following equation. In the following formula, (M 1 -M 2 ) means the mass of the target material reduced by sputtering.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(スパッタレート)
 作製されたインジウムターゲットを用いて以下の条件でスパッタを行った。
(Sputter rate)
Sputtering was performed using the manufactured indium target under the following conditions.
 装置名  ハイレートスパッタ装置 真空器械工業株式会社EX-3013M
 到達真空度  3.0×10-4~8.3×10-5Pa
 O2フロー量  0sccm
 Arフロー量  49sccm
 スパッタ圧力       6.5×10-1Pa
 出力        154W
 基板温度    室温
 使用ガラス  縦40mm、横40mm、厚さ0.8mm、コーニング#1737
 一定時間ごとにスパッタにより形成された膜の厚み(Å)および使用比率を測定した。横軸にスパッタ時間、縦軸に膜厚をとり、曲線を作成した。スパッタ開始時における前記曲線の接線の傾きを初期レートとした。使用比率が15%になった時間における前記曲線の接線の傾きからスパッタレートを求め、その数値を使用比率15%以上時レートとした。
Equipment name High-rate sputtering equipment Vacuum Instrument Industry Co., Ltd. EX-3013M
Ultimate vacuum 3.0 × 10 −4 to 8.3 × 10 −5 Pa
O2 flow rate 0sccm
Ar flow rate 49sccm
Sputtering pressure 6.5 × 10 −1 Pa
Output 154W
Substrate temperature Room temperature Glass used 40 mm long, 40 mm wide, 0.8 mm thick, Corning # 1737
The thickness (Å) and usage ratio of the film formed by sputtering at regular intervals were measured. A curve was created by taking the sputtering time on the horizontal axis and the film thickness on the vertical axis. The initial rate was the slope of the tangent to the curve at the start of sputtering. The sputter rate was determined from the slope of the tangent line of the curve at the time when the usage ratio was 15%, and the value was used as the usage rate of 15% or more.
 初期レートをR0、使用比率15%以上時レートをR15として、スパッタレート低下率を次式により求めた。 The initial rate was R 0 , the usage rate was 15% or more, and the rate was R 15 .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
(平均段差)
 上記スパッタレートの測定方法で示したスパッタを行ったインジウムターゲットを使用し、使用比率10%以上である時に形成されたリング状のエロージョンの最深部において、ほぼ均等に間隔を置いて3箇所の測定部位を設定し、各測定部位において長さ10mmの線分を3本想定し、その各線分上に100μmピッチで2つの測定点を設定した。各測定点におけるエロージョンの深さ、つまりターゲット材の表面から各測定箇所までの、前記表面に対して直角方向の長さを、下記条件により測定した。前記9本の線分ごとにその線分上の2つの測定点におけるエロージョンの深さの差(粒界差)を求め、それらの平均を平均段差とした。エロージョンの最深部は、エロージョンの最大の深さに対して90~100%の深さを有する部分とした。
(Average step)
Using the sputtered indium target shown in the above sputtering rate measurement method, three points are measured at almost equal intervals in the deepest part of the ring-shaped erosion formed when the usage ratio is 10% or more. A part was set, and three line segments having a length of 10 mm were assumed at each measurement part, and two measurement points were set on each line segment at a pitch of 100 μm. The depth of erosion at each measurement point, that is, the length in the direction perpendicular to the surface from the surface of the target material to each measurement location was measured under the following conditions. For each of the nine line segments, the difference in erosion depth (grain boundary difference) at two measurement points on the line segment was determined, and the average of these was defined as the average step. The deepest part of erosion was a part having a depth of 90 to 100% with respect to the maximum depth of erosion.
 装置名  表面粗さ測定システム 日本真空技術株式会社、DEKTAK 6M
 Scan length 100μm
 Scan type   Standard Scan
 Stylus type Radius12.5μm
 Stylus force       15mg
 Meas Range  2620KÅ
(膜の表面粗さRa)
 上記スパッタレートの測定方法で示したスパッタを行って得られたインジウム膜の、膜厚5000Åの時の表面粗さRa(μm)を、KEYENCE製 COLOR3D Laser Scanning Microscope VK-8710を用いて下記条件で測定した。
Equipment name Surface roughness measurement system Nippon Vacuum Technology Co., Ltd., DEKTAK 6M
Scan length 100μm
Scan type Standard Scan
Stylus type Radius12.5μm
Stylus force 15mg
Meas Range 2620KÅ
(Surface roughness Ra)
The surface roughness Ra (μm) at the thickness of 5000 mm of the indium film obtained by performing the sputtering shown in the above sputtering rate measurement method is measured under the following conditions using a COLORENCE COLOR3D Laser Scanning Microscope VK-8710. It was measured.
  [測定条件]
フィルタ:光量1%
Z測定ピッチ:0.01μm
測定モード:表面形状
測定エリア:面
測定品質:高精細
 [実施例1]
 In(純度99.99%以上)を180℃で溶解し、得られた溶湯を金型に注入して、縦100mm、横100mm、厚さ15mmの平板状の鋳塊を鋳造した。得られた鋳塊に対して、日本クロス圧延製圧延機を用いて、常温にて、圧下量1mm/passの条件で圧延を行い、厚さ9mmの圧延板を得た。得られた圧延板を直径102mmの円盤状に切り出し、両面を、各1mmフライスを用いて切削して平滑面とした。この圧延円板(ターゲット材)および直径110mmの円盤状の無酸素銅製バッキングプレートを、それぞれのボンディング面を上にしてホットプレート上で130℃になるように加熱した。In(純度99.99%以上)50質量%とSn(純度99.99%以上)50質量%とからなる合金(融点125℃)をボンディング材として用い、この合金の130℃の溶湯を前記バッキングプレートのボンディング面に、コテを用いて薄く引き延ばしながら付着させた。この上に加熱していた前記圧延円板を乗せ、動かないように重りを圧延円板の上に乗せたまま冷却し、ボンディングを行った。この後、圧延円板部分を旋盤にて直径101mm、厚さ6mmのサイズに加工することによりインジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表1に示した。
[Measurement condition]
Filter: 1% light intensity
Z measurement pitch: 0.01μm
Measurement mode: Surface shape measurement area: Surface measurement quality: High definition [Example 1]
In (purity 99.99% or more) was melted at 180 ° C., and the resulting molten metal was poured into a mold to cast a flat ingot having a length of 100 mm, a width of 100 mm, and a thickness of 15 mm. The obtained ingot was rolled using a Japanese cross rolling mill at room temperature under a reduction amount of 1 mm / pass to obtain a 9 mm thick rolled sheet. The obtained rolled plate was cut into a disk shape having a diameter of 102 mm, and both surfaces were cut with a 1 mm mill to make a smooth surface. The rolled disc (target material) and a disc-shaped oxygen-free copper backing plate having a diameter of 110 mm were heated to 130 ° C. on the hot plate with their bonding surfaces facing upward. An alloy (melting point 125 ° C.) composed of 50% by mass of In (purity 99.99% or more) and 50% by mass of Sn (purity 99.99% or more) is used as a bonding material, and a 130 ° C. molten metal of this alloy is used as the bonding surface of the backing plate. Then, it was adhered while being thinly stretched using a trowel. The heated rolled disk was placed on this, and it was cooled with the weight placed on the rolled disk so as not to move, and bonding was performed. Then, the indium target was produced by processing the rolled disk part into a size of 101 mm in diameter and 6 mm in thickness with a lathe. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
 実施例1においては、前記インジウムターゲットに対して上記条件でスパッタを行い、使用比率が16%である時に使用比率15%以上時レートおよび平均段差を求めた。以下の実施例および比較例においても、表1または表2に示された使用比率である時において使用比率15%以上時レートおよび平均段差を求めた。 In Example 1, sputtering was performed on the indium target under the above conditions, and when the usage ratio was 16%, the rate and average step difference when the usage ratio was 15% or more were obtained. Also in the following examples and comparative examples, when the usage ratio is as shown in Table 1 or Table 2, the rate and average step difference when the usage ratio was 15% or more were obtained.
 [実施例2]
 圧延円板およびバッキングプレートの加熱温度を120℃としたこと、およびボンディング材として、In(純度99.99%以上)90質量%とGa(純度99.99%以上)10質量%とからなる合金(融点115℃)を用い、この合金の溶湯温度を120℃にしたこと以外は実施例1と同様に行い、インジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表1に示した。
[Example 2]
The heating temperature of the rolled disk and the backing plate was 120 ° C., and an alloy (melting point 115 ° C.) consisting of 90% by mass of In (purity 99.99% or more) and 10% by mass of Ga (purity 99.99% or more) as a bonding material The indium target was prepared in the same manner as in Example 1 except that the molten metal temperature of this alloy was set to 120 ° C. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
 [実施例3]
 平板状の鋳塊の厚さを18mmとしたこと以外は実施例1と同様に行い、インジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表1に示した。
[Example 3]
An indium target was produced in the same manner as in Example 1 except that the thickness of the flat ingot was 18 mm. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
 また、このインジウムターゲットを用いて上記スパッタレート測定を行ったときにそのスパッタによって得られたインジウム膜の、膜厚5000Åの時の表面をKEYENCE製 COLOR3D Laser Scanning Microscope VK-8710を用いて観察した。得られた画像を図2に示した。 Also, when the above sputtering rate measurement was performed using this indium target, the surface of the indium film obtained by sputtering was observed using a COLORENCE COLOR3D Laser Scanning Microscope VK-8710 made by KEYENCE. The obtained image is shown in FIG.
 [実施例4]
 平板状の鋳塊の厚さを18mmとしたこと、圧延円板およびバッキングプレートの加熱温度を120℃としたこと、およびボンディング材として、In(純度99.99%以上)90質量%とGa(純度99.99%以上)10質量%とからなる合金(融点115℃)を用い、この合金の溶湯温度を120℃にしたこと以外は実施例1と同様に行い、インジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表1に示した。
[Example 4]
The thickness of the flat ingot was 18 mm, the heating temperature of the rolled disk and the backing plate was 120 ° C., and 90% by mass of In (purity 99.99% or more) and Ga (purity 99.99) as a bonding material. An indium target was prepared in the same manner as in Example 1 except that an alloy (melting point: 115 ° C.) composed of 10% by mass was used and the molten metal temperature of the alloy was set to 120 ° C. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
 [実施例5]
 平板状の鋳塊の厚さを18mmとしたこと、圧延円板およびバッキングプレートの加熱温度を100℃としたこと、およびボンディング材として、In(純度99.99%以上)80質量%とGa(純度99.99%以上)20質量%とからなる合金(融点90℃)を用い、この合金の溶湯温度を100℃にしたこと以外は実施例1と同様に行い、インジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表1に示した。
[Example 5]
The thickness of the flat ingot was 18 mm, the heating temperature of the rolled disc and the backing plate was 100 ° C., and 80% by mass of In (purity 99.99% or more) and Ga (purity 99.99) as a bonding material. An indium target was prepared in the same manner as in Example 1 except that an alloy (melting point: 90 ° C.) composed of 20% by mass was used and the molten metal temperature of the alloy was set to 100 ° C. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
 [実施例6]
 平板状の鋳塊の厚さを22.5mmとしたこと以外は実施例1と同様に行い、インジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表1に示した。
[Example 6]
An indium target was produced in the same manner as in Example 1 except that the thickness of the flat ingot was 22.5 mm. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
 また、このインジウムターゲットを用いて上記スパッタレート測定を行ったときにそのスパッタによって得られたインジウム膜の、膜厚5000Åの時の表面を実施例3と同様の条件で観察した。得られた画像を図3に示した。 Further, when the above sputtering rate measurement was performed using this indium target, the surface of the indium film obtained by sputtering was observed under the same conditions as in Example 3. The obtained image is shown in FIG.
 [実施例7]
 平板状の鋳塊の厚さを18mmとしたこと、およびこの鋳塊に対して圧延を行う代わりに、この鋳塊全面を、手でハンマーを用いて叩いて鍛造を行い、鋳塊の厚さを9mmにしたこと以外は実施例1と同様に行い、インジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表1に示した。
[Example 7]
The thickness of the flat ingot was 18 mm, and instead of rolling the ingot, the entire ingot was struck by hand with a hammer to forge the thickness of the ingot. Was performed in the same manner as in Example 1 except that the thickness was 9 mm, and an indium target was produced. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
 [比較例1]
 直径110mmの円盤状の無酸素銅バッキングプレートに内径が102mmのステンレス製の円筒金型を、その中心線を前記バッキングプレートの中心線に合わせて装着し、金型が動かないようにクランプで固定した。これをホットプレート上で180℃(Inの融点以上)となるよう加熱した。このバッキングプレート上にIn(純度99.99%以上)を、溶解後の厚さが7mmとなるように投入し、溶解させた後表面の酸化物を除去し、冷却することでIn溶湯を凝固させた。この凝固体を、旋盤を用いて直径101mm、厚さ6mmの円盤状に加工し、インジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表2に示した。
[Comparative Example 1]
A stainless steel cylindrical mold with an inner diameter of 102 mm is mounted on a disc-shaped oxygen-free copper backing plate with a diameter of 110 mm, with its center line aligned with the center line of the backing plate, and fixed with a clamp to prevent the mold from moving. did. This was heated to 180 ° C. (above the melting point of In) on a hot plate. On this backing plate, In (purity of 99.99% or more) was introduced so that the thickness after dissolution was 7 mm, and after dissolution, the oxide on the surface was removed, and the molten In was solidified by cooling. . This solidified body was processed into a disk shape having a diameter of 101 mm and a thickness of 6 mm using a lathe to produce an indium target. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 2.
 また、このインジウムターゲットを用いて上記スパッタレート測定を行ったときにそのスパッタによって得られたインジウム膜の、膜厚5000Åの時の表面を実施例3と同様の条件で観察した。得られた画像を図4に示した。 Further, when the above sputtering rate measurement was performed using this indium target, the surface of the indium film obtained by sputtering was observed under the same conditions as in Example 3. The obtained image is shown in FIG.
 [比較例2]
 平板状の鋳塊の厚さを9mmとしたこと、およびこの鋳塊に圧延を行わず、そのままこの鋳塊を直径102mmの円盤状に切り出し、両面を、各1mmフライスを用いて切削し平滑面としたこと以外は実施例1と同様に行い、インジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表2に示した。
[Comparative Example 2]
The thickness of the flat ingot was 9 mm, and this ingot was not rolled, but this ingot was cut into a disk shape with a diameter of 102 mm, and both surfaces were cut using a 1 mm milling cutter to make a smooth surface. An indium target was produced in the same manner as in Example 1 except that. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 2.
 [比較例3]
 平板状の鋳塊の厚さを11mmとしたこと以外は実施例1と同様に行い、インジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表2に示した。
[Comparative Example 3]
An indium target was prepared in the same manner as in Example 1 except that the thickness of the flat ingot was 11 mm. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 2.
 [比較例4]
 In(純度99.99%以上)を180℃で溶解し、得られた溶湯を金型に注入して、縦100mm、横100mm、厚さ15mmの平板状の鋳塊を鋳造した。得られた鋳塊に対して、日本クロス圧延製圧延機を用いて、常温にて、圧下量1mm/passの条件で圧延を行い、鋳塊の厚さを9mmにした。得られた圧延板を直径102mmの円盤状に切り出し、両面を、各1mmフライスを用いて切削して平滑面とした。この圧延円板および直径110mmの円盤状の無酸素銅製バッキングプレートを、それぞれのボンディング面を上にしてホットプレート上に乗せ、圧延円板が140℃、バッキングプレートが180℃になるように加熱した。In(純度99.99%以上)金属(融点156.4℃)をボンディング材として用い、このIn金属の180℃の溶湯を前記バッキングプレートのボンディング面に、コテを用いて薄く引き延ばしながら付着させた。この上に加熱していた前記圧延円板を乗せ、動かないように重りを圧延円板の上に乗せたまま冷却し、ボンディングを行った。この後、圧延円板部分を旋盤にて直径101mm、厚さ6mmのサイズに加工することによりインジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表2に示した。
[Comparative Example 4]
In (purity 99.99% or more) was melted at 180 ° C., and the resulting molten metal was poured into a mold to cast a flat ingot having a length of 100 mm, a width of 100 mm, and a thickness of 15 mm. The obtained ingot was rolled using a Japanese cross rolling mill at room temperature under a reduction amount of 1 mm / pass to make the ingot thickness 9 mm. The obtained rolled plate was cut into a disk shape having a diameter of 102 mm, and both surfaces were cut with a 1 mm mill to make a smooth surface. The rolled disc and a disc-shaped oxygen-free copper backing plate having a diameter of 110 mm were placed on a hot plate with their bonding surfaces facing upward, and the rolled disc was heated to 140 ° C. and the backing plate to 180 ° C. . An In (purity of 99.99% or more) metal (melting point: 156.4 ° C.) was used as a bonding material, and a 180 ° C. molten metal of this In metal was adhered to the bonding surface of the backing plate while being thinly stretched using a trowel. The heated rolled disk was placed on this, and it was cooled with the weight placed on the rolled disk so as not to move, and bonding was performed. Then, the indium target was produced by processing the rolled disk part into a size of 101 mm in diameter and 6 mm in thickness with a lathe. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 2.
 [比較例5]
 平板状の鋳塊の厚さを18mmとしたこと以外は比較例4と同様に行い、インジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表2に示した。
[Comparative Example 5]
An indium target was produced in the same manner as in Comparative Example 4 except that the thickness of the flat ingot was 18 mm. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 2.
 [比較例6]
 鋳塊の厚さを10.5mmにしたこと以外は実施例7と同様に行い、インジウムターゲットを作製した。このインジウムターゲットに対して、上記測定方法にて各種評価を行った。結果を表1に示した。
[Comparative Example 6]
An indium target was produced in the same manner as in Example 7 except that the thickness of the ingot was 10.5 mm. Various evaluations were performed on the indium target by the measurement method. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1における実施例1、3および6と表2における比較例2および3との比較から、鋳塊の厚みを元の厚みの70%以下にする圧延を行うことにより、得られるスパッタリングターゲットの初期レートが高くなり、このスパッタリングターゲットをスパッタして得られるIn膜の表面粗さが小さくなることがわかる。図2および図3と図4との比較からも、鋳塊の厚みを元の厚みの70%以下にする圧延を行うことにより得られたスパッタリングターゲットをスパッタして得られるIn膜は、表面粗さが小さいことがわかる。また、表1における実施例7と比較例6との比較から、鋳塊の厚みを元の厚みの70%以下にする鍛造を行うことによっても圧延の場合と同様の効果が得られることがわかる。 From the comparison between Examples 1, 3 and 6 in Table 1 and Comparative Examples 2 and 3 in Table 2, the initial stage of the sputtering target obtained by rolling the ingot thickness to 70% or less of the original thickness It can be seen that the rate increases and the surface roughness of the In film obtained by sputtering this sputtering target decreases. 2 and 3 and 4 also show that the In film obtained by sputtering the sputtering target obtained by rolling the ingot to 70% or less of the original thickness is rough surface. It can be seen that is small. Moreover, from the comparison between Example 7 and Comparative Example 6 in Table 1, it is understood that the same effect as in the case of rolling can be obtained also by performing forging in which the thickness of the ingot is 70% or less of the original thickness. .
 また、実施例2と比較例4との比較および実施例3~5と比較例5との比較から、たとえ鋳塊の厚みを元の厚みの70%以下にする圧延を行って初期レートの高いスパッタリングターゲットを得たとしても、インジウム-スズおよびインジウム-ガリウム合金製のボンディング材以外のボンディング材を使用してターゲット材とバッキングプレートとを接合すると、スパッタの進行に従ってスパッタレートが大きく低下することがわかる。これに対して、鋳塊の厚みを元の厚みの70%以下にする圧延を行い、さらにインジウム-スズまたはインジウム-ガリウム合金製のボンディング材を使用してターゲット材とバッキングプレートとを接合すると、初期レートが高く、さらにスパッタが進行してもスパッタレートの低下が小さいことがわかる。 Further, from the comparison between Example 2 and Comparative Example 4 and the comparison between Examples 3 to 5 and Comparative Example 5, even if the ingot thickness is reduced to 70% or less of the original thickness, the initial rate is high. Even if a sputtering target is obtained, if the target material and the backing plate are bonded using a bonding material other than indium-tin and indium-gallium alloy bonding materials, the sputtering rate may greatly decrease as the sputtering progresses. Recognize. On the other hand, when rolling the ingot thickness to 70% or less of the original thickness and further bonding the target material and the backing plate using a bonding material made of indium-tin or indium-gallium alloy, It can be seen that the initial rate is high and the decrease in the sputtering rate is small even when sputtering proceeds.
1  ターゲット材
2  エロージョン
3  測定部位
4  表面
5  最深部
1 Target material 2 Erosion 3 Measurement site 4 Surface 5 Deepest part

Claims (8)

  1.  インジウム製の鋳塊に物理的応力を加える加工を行って該鋳塊の厚みを元の厚みの70%以下にすることにより得られた加工材から製造されたターゲット材、バッキングプレート、および前記ターゲット材とバッキングプレートとを接合するインジウム-スズまたはインジウム-ガリウム合金製のボンディング材からなることを特徴とする太陽電池用スパッタリングターゲット。 A target material, a backing plate, and the target manufactured from a processed material obtained by applying a physical stress to an indium ingot to reduce the thickness of the ingot to 70% or less of the original thickness A sputtering target for a solar cell, comprising a bonding material made of indium-tin or an indium-gallium alloy for bonding a material and a backing plate.
  2.  前記ターゲット材は、インジウム製の鋳塊に物理的応力を加える加工を行って該鋳塊の厚みを元の厚みの50%以下にすることにより得られた加工材から製造されたターゲット材であることを特徴とする請求項1に記載の太陽電池用スパッタリングターゲット。 The target material is a target material manufactured from a processed material obtained by applying a physical stress to an indium ingot to reduce the thickness of the ingot to 50% or less of the original thickness. The solar cell sputtering target according to claim 1.
  3.  前記インジウム-スズおよびインジウム-ガリウム合金は、その融点が140℃以下であることを特徴とする請求項1または2に記載の太陽電池用スパッタリングターゲット。 The solar cell sputtering target according to claim 1 or 2, wherein the indium-tin and the indium-gallium alloy have a melting point of 140 ° C or lower.
  4.  前記インジウム-スズおよびインジウム-ガリウム合金は、その融点が130℃以下であることを特徴とする請求項1または2に記載の太陽電池用スパッタリングターゲット。 The solar cell sputtering target according to claim 1 or 2, wherein the indium-tin and the indium-gallium alloy have a melting point of 130 ° C or lower.
  5.  前記物理的応力を加える加工が圧延であることを特徴とする請求項1~4のいずれかに記載の太陽電池用スパッタリングターゲット。 The solar cell sputtering target according to any one of claims 1 to 4, wherein the process of applying physical stress is rolling.
  6.  前記物理的応力を加える加工が鍛造であることを特徴とする請求項1~4のいずれかに記載の太陽電池用スパッタリングターゲット。 5. The solar cell sputtering target according to claim 1, wherein the process of applying physical stress is forging.
  7.  請求項1~6のいずれかに記載の太陽電池用スパッタリングターゲットであって、その使用比率が10%以上である時に形成されたエロージョンの最深部において100μmピッチで設定された、インジウムの結晶粒の粒界を挟む2点の測定箇所におけるエロージョンの深さを測定したときのその2点間の前記深さの差の平均が100μm以下であることを特徴とする太陽電池用スパッタリングターゲット。 The solar cell sputtering target according to any one of claims 1 to 6, wherein the indium crystal grains are set at a pitch of 100 µm at the deepest part of the erosion formed when the use ratio is 10% or more. A sputtering target for a solar cell, wherein an average of the depth difference between the two points when measuring the depth of erosion at two measurement points sandwiching the grain boundary is 100 μm or less.
  8.  請求項1~6のいずれかに記載の太陽電池用スパッタリングターゲットであって、その使用比率が10%以上である時に形成されたエロージョンの最深部において100μmピッチで設定された、インジウムの結晶粒の粒界を挟む2点の測定箇所におけるエロージョンの深さを測定したときのその2点間の前記深さの差の平均が60μm以下であることを特徴とする太陽電池用スパッタリングターゲット。 The solar cell sputtering target according to any one of claims 1 to 6, wherein the indium crystal grains are set at a pitch of 100 µm at the deepest part of the erosion formed when the use ratio is 10% or more. A sputtering target for solar cells, wherein the average of the difference in depth between the two points when the depth of erosion at the two measurement points sandwiching the grain boundary is 60 μm or less.
PCT/JP2012/051083 2011-04-15 2012-01-19 Sputtering target for solar cell WO2012140928A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137019848A KR101355902B1 (en) 2011-04-15 2012-01-19 Sputtering target for solar cell
CN201280007612.2A CN103380230B (en) 2011-04-15 2012-01-19 Sputtering target for solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-091415 2011-04-15
JP2011091415A JP5291754B2 (en) 2011-04-15 2011-04-15 Sputtering target for solar cell

Publications (1)

Publication Number Publication Date
WO2012140928A1 true WO2012140928A1 (en) 2012-10-18

Family

ID=47009114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051083 WO2012140928A1 (en) 2011-04-15 2012-01-19 Sputtering target for solar cell

Country Status (5)

Country Link
JP (1) JP5291754B2 (en)
KR (1) KR101355902B1 (en)
CN (1) CN103380230B (en)
TW (1) TWI473898B (en)
WO (1) WO2012140928A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490108B2 (en) 2010-09-01 2016-11-08 Jx Nippon Mining & Metals Corporation Indium target and method for manufacturing same
US9758860B2 (en) 2012-01-05 2017-09-12 Jx Nippon Mining & Metals Corporation Indium sputtering target and method for manufacturing same
US9761421B2 (en) 2012-08-22 2017-09-12 Jx Nippon Mining & Metals Corporation Indium cylindrical sputtering target and manufacturing method thereof
US9922807B2 (en) 2013-07-08 2018-03-20 Jx Nippon Mining & Metals Corporation Sputtering target and method for production thereof
CN113564543A (en) * 2021-07-20 2021-10-29 昆山嘉美荣材料科技有限公司 Silver palladium indium target material and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5611886B2 (en) * 2011-04-19 2014-10-22 Jx日鉱日石金属株式会社 Laminated structure and manufacturing method thereof
CN111809152B (en) * 2020-06-12 2022-08-05 先导薄膜材料(广东)有限公司 Indium tin alloy target material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234968A (en) * 1984-05-07 1985-11-21 Nippon Mining Co Ltd Bonded target and its manufacture
JPS6344820B2 (en) * 1981-05-07 1988-09-07 Mitsui Mining & Smelting Co
JPH10330928A (en) * 1997-06-05 1998-12-15 Riyouka Massey Kk Sputtering target material and its production
JP2011236445A (en) * 2010-04-30 2011-11-24 Jx Nippon Mining & Metals Corp Indium metal target and method for manufacturing the same
JP4837785B1 (en) * 2010-09-01 2011-12-14 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864554A (en) * 1994-08-23 1996-03-08 Mitsubishi Materials Corp Sputtering target material for forming thin film of thin film transistor
JPH1180942A (en) * 1997-09-10 1999-03-26 Japan Energy Corp Ta sputtering target, its production and assembled body
US6348139B1 (en) * 1998-06-17 2002-02-19 Honeywell International Inc. Tantalum-comprising articles
JP2001026860A (en) * 1999-07-14 2001-01-30 Hitachi Metals Ltd Co-Pt-B BASE TARGET AND ITS PRODUCTION
JP2006257510A (en) 2005-03-17 2006-09-28 Mitsui Mining & Smelting Co Ltd Sputtering target manufacturing method, and sputtering target
KR101466996B1 (en) 2006-03-07 2014-12-01 캐보트 코포레이션 Methods of producing deformed metal articles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344820B2 (en) * 1981-05-07 1988-09-07 Mitsui Mining & Smelting Co
JPS60234968A (en) * 1984-05-07 1985-11-21 Nippon Mining Co Ltd Bonded target and its manufacture
JPH10330928A (en) * 1997-06-05 1998-12-15 Riyouka Massey Kk Sputtering target material and its production
JP2011236445A (en) * 2010-04-30 2011-11-24 Jx Nippon Mining & Metals Corp Indium metal target and method for manufacturing the same
JP4837785B1 (en) * 2010-09-01 2011-12-14 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490108B2 (en) 2010-09-01 2016-11-08 Jx Nippon Mining & Metals Corporation Indium target and method for manufacturing same
US9758860B2 (en) 2012-01-05 2017-09-12 Jx Nippon Mining & Metals Corporation Indium sputtering target and method for manufacturing same
US9761421B2 (en) 2012-08-22 2017-09-12 Jx Nippon Mining & Metals Corporation Indium cylindrical sputtering target and manufacturing method thereof
US9922807B2 (en) 2013-07-08 2018-03-20 Jx Nippon Mining & Metals Corporation Sputtering target and method for production thereof
CN113564543A (en) * 2021-07-20 2021-10-29 昆山嘉美荣材料科技有限公司 Silver palladium indium target material and preparation method thereof

Also Published As

Publication number Publication date
JP5291754B2 (en) 2013-09-18
KR20130095848A (en) 2013-08-28
CN103380230B (en) 2014-10-15
KR101355902B1 (en) 2014-01-28
CN103380230A (en) 2013-10-30
JP2012251174A (en) 2012-12-20
TWI473898B (en) 2015-02-21
TW201247916A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
JP5291754B2 (en) Sputtering target for solar cell
CN114269957B (en) Pure copper plate
JP6077102B2 (en) Titanium target for sputtering and manufacturing method thereof
JP5472353B2 (en) Silver-based cylindrical target and manufacturing method thereof
WO2012005098A1 (en) Cu-ga alloy, and cu-ga alloy sputtering target
KR102362400B1 (en) Sputtering target and manufacturing method therefor
KR20120068967A (en) Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
TWI390067B (en) Indium target and its manufacturing method
WO2012029355A1 (en) Indium target and method for producing same
JP2013112884A (en) Aluminum alloy substrate and method for producing the same
JP5708315B2 (en) Copper alloy sputtering target
JP5943944B2 (en) Polycrystalline silicon sputtering target
JPH1161395A (en) Ito sputtering target
JP5871106B2 (en) In alloy sputtering target, manufacturing method thereof, and In alloy film
JP5038553B2 (en) Manufacturing method of sputtering target
JP6678528B2 (en) Indium target member and method of manufacturing the same
JP5183818B1 (en) Indium sputtering target member and method for manufacturing the same
CN110709532B (en) Sputtering target material, sputtering target, aluminum plate for sputtering target, and method for producing same
JP4719174B2 (en) Manufacturing method of sputtering target
TW202245018A (en) Hot-rolled copper alloy sheet and sputtering target
WO2013088785A1 (en) Indium sputtering target member and method for producing same
JP2011058078A (en) SPUTTERING TARGET, Ta-W ALLOY FILM USING THE SAME, AND LIQUID CRYSTAL DISPLAY DEVICE
JP2005231924A (en) ZnS POWDER FOR MANUFACTURING SINTERED COMPACT TARGET FOR FORMING OPTICAL RECORDING MEDIUM PROTECTIVE FILM AND MIXED POWDER CONTAINING THE SAME POWDER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137019848

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12770701

Country of ref document: EP

Kind code of ref document: A1