WO2012140895A1 - 音響スピーカー装置 - Google Patents

音響スピーカー装置 Download PDF

Info

Publication number
WO2012140895A1
WO2012140895A1 PCT/JP2012/002543 JP2012002543W WO2012140895A1 WO 2012140895 A1 WO2012140895 A1 WO 2012140895A1 JP 2012002543 W JP2012002543 W JP 2012002543W WO 2012140895 A1 WO2012140895 A1 WO 2012140895A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
moisture
cabinet
adsorbing material
adsorption
Prior art date
Application number
PCT/JP2012/002543
Other languages
English (en)
French (fr)
Inventor
湯淺 明子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280018218.9A priority Critical patent/CN103477655B/zh
Priority to US14/111,455 priority patent/US8942402B2/en
Publication of WO2012140895A1 publication Critical patent/WO2012140895A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2803Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means for loudspeaker transducers

Definitions

  • the present invention relates to an acoustic speaker device, and more particularly, to an acoustic speaker device excellent in low-frequency reproduction capability.
  • miniaturization In recent years, with the progress of miniaturization of audio equipment, acoustic speaker devices have also been miniaturized and / or thinned (hereinafter referred to as “miniaturization”). However, it is known that in a small-sized acoustic speaker device, it is difficult to reproduce a low frequency range because the volume of the cabinet is small.
  • a general acoustic speaker device has a configuration in which a speaker unit is incorporated in a cabinet.
  • the air in the cabinet is compressed by the vibration of the speaker, and this acts as an air spring to hinder the movement of the speaker.
  • the smaller the volume of the cabinet the greater the effect of hindering the movement of the speaker, so that the sound pressure level decreases and the lowest resonance frequency increases, particularly in the low frequency range. Therefore, although it is necessary to increase the volume of the cabinet in order to increase the reproduction capability in the low sound range, the increase in the volume hinders the downsizing of the acoustic speaker device.
  • Patent Document 1 discloses an acoustic speaker device having a configuration in which a plurality of acoustic fins are inclined and attached to the wall surface of a cabinet, and an opening is provided at the end of the acoustic fin. According to this configuration, a square three-dimensional spiral sound path is formed by the acoustic fins, and the sense of volume in the low sound range is increased.
  • Patent Document 2 discloses a loudspeaker assembly having a structure in which a mass (material mass) of adsorbing material such as activated carbon is provided in a cabinet (box). According to this configuration, the activated carbon quickly adsorbs or desorbs the compression or expansion of the gas in the cabinet caused by the vibration of the speaker unit (specifically, the diaphragm). Thereby, the pressure fluctuation in a cabinet is suppressed and the fall of the sound quality level in a bass part can be prevented.
  • a mass (material mass) of adsorbing material such as activated carbon
  • Patent Document 3 discloses an acoustic enclosure that uses activated carbon that is at least partially hydrophobic or treated to be hydrophobic as the activated carbon provided in the cabinet.
  • activated carbon adsorbs water vapor, water molecules are adsorbed and blocked by the pores of the activated carbon, thereby preventing air adsorption. Therefore, in Patent Document 3, at least partially hydrophobic activated carbon is used.
  • zeolite is known as a typical adsorbing material together with activated carbon, and various techniques for processing this zeolite into a film or sheet have been proposed.
  • Patent Document 4 proposes a film-like gas adsorbing material obtained by extruding a synthetic resin containing 1 to 50% by weight of a zeolite-based adsorbent into a film and then stretching it.
  • the adsorption ability with respect to ammonia and hydrogen sulfide is evaluated in the Example.
  • Patent Document 5 proposes a technique of kneading zeolite as a getter material to a resin film constituting a multilayer film in a vacuum heat insulating material using the multilayer film.
  • the multilayer film has a structure in which a PET (polyethylene terephthalate) film, aluminum foil, and PE (polyethylene) film are laminated, and the vacuum heat insulating material is heat-sealed around the multilayer film to form a bag.
  • the structure is such that powder silica or the like is filled as an aggregate, the inside is evacuated, and the opening is heat sealed.
  • the PET film and PE film are kneaded with zeolite or zeolite and activated carbon as a getter material. Thus, moisture, carbon dioxide, and the like from outside the multilayer film can be adsorbed by the getter material before entering the film.
  • JP 2008-79268 A JP-T 60-500635 Japanese translation of PCT publication No. 2004-537938 JP 63-256133 A Japanese Patent Application Laid-Open No. 07-103389
  • Patent Document 1 since the technique disclosed in Patent Document 1 requires an installation space for acoustic fins, it may not be suitable for a miniaturized acoustic speaker device.
  • activated carbon can adsorb the air in the cabinet well in a dry environment, but it is described in Patent Document 3 in a highly humid environment. As shown, since water molecules are adsorbed by the pores of the activated carbon, it becomes difficult to adsorb the air in the cabinet. As a result, the pressure fluctuation in the cabinet cannot be sufficiently suppressed, and the sound quality level may be lowered.
  • Patent Document 2 discloses a diaphragm or the like that prevents moisture from entering the activated carbon mass (material mass).
  • the provision of the diaphragm or the like complicates the structure of the acoustic speaker device, and a space for installing the diaphragm or the like is required. Therefore, there is a possibility that the size reduction or the like cannot be sufficiently handled.
  • a technology that suppresses the adsorption of moisture to the activated carbon by introducing a dry gas into the cabinet may be considered.
  • the dry gas cannot be completely sealed in the cabinet, the dry gas is gradually replaced with the atmosphere. Therefore, the introduction of dry gas into the cabinet is expected to be effective in the short term, but the long-term effect cannot be expected.
  • the partial pressure of water vapor in the cabinet ( It has become clear that it is important to suppress the equilibrium water vapor pressure) to 1000 Pa or less. Therefore, for example, in order to prevent the activated carbon from adsorbing moisture, it is conceivable to use a zeolite-based adsorbing material in the cabinet.
  • the film- or sheet-like gas adsorbing material disclosed in Patent Document 4 or 5 cannot sufficiently adsorb a large amount of water, it is difficult to adsorb the equilibrium water vapor pressure in the cabinet to 1000 Pa or less. It has become.
  • the gas adsorbing material disclosed in Patent Document 4 is mainly targeted for adsorption of ammonia and hydrogen sulfide, and there is no description of moisture adsorption.
  • the gas adsorbing material disclosed in Patent Document 5 describes the adsorption of moisture together with carbon dioxide, it is not intended for adsorption in a wide space such as a cabinet, but will enter into a multilayer film. Therefore, a large volume of moisture cannot be adsorbed.
  • a film-like or sheet-like gas adsorbing material is generally produced by mixing a thermoplastic resin with a predetermined amount of zeolite (and additives, etc.), mixing, and thermoforming. Is done.
  • the metal ions may act as a catalyst depending on, for example, conditions during heat molding, and may erode (copper corrosion) the thermoplastic resin.
  • Patent Document 4 describes an example in which polypropylene is used as a thermoplastic resin. In this case, since the heat molding temperature is 230 ° C. to 250 ° C., sufficient catalytic action by metal ions occurs. there is a possibility.
  • thermoforming temperature if the range of the thermoforming temperature is not appropriately set for a specific type of thermoplastic resin, it cannot be formed into a film or sheet, or even if it can be formed, it will be torn, cracked, or There is a risk of discoloration.
  • a gas adsorbing material is greatly reduced in handleability.
  • Patent Document 4 or 5 does not describe any specific type (type) of zeolite, introduction of metal ions into the zeolite, etc., so that high activation of the zeolite has not been studied in the first place. . Therefore, even if the gas adsorbing material disclosed in Patent Document 4 or 5 is applied to an acoustic speaker device, it is insufficient for sufficiently adsorbing water in the cabinet.
  • the present invention has been made to solve such a problem, and is an acoustic speaker having a configuration capable of realizing good low-frequency reproduction capability and also capable of being reduced in size and / or reduced in thickness.
  • An object is to provide an apparatus.
  • an acoustic speaker device is provided in a cabinet, a speaker unit attached to the cabinet, and the cabinet, and is capable of adsorbing moisture and gas components in the cabinet.
  • Gas adsorbing material wherein the gas adsorbing material is composed of at least a porous carbon material and a sheet-like moisture adsorbing material, and the sheet-like moisture adsorbing material is made of ZSM-5 type zeolite exchanged with copper ions, It is a structure in which it is dispersed in at least a base material made of a polymer material and is attached to at least a part of the inner wall of the cabinet.
  • the sheet-like moisture adsorbing material may be affixed to at least an inner surface serving as a front side of the cabinet.
  • the sheet-like moisture adsorbing material may be affixed to at least a portion of the inner surface of the cabinet that is directly below the porous carbon material.
  • the base material of the sheet-like moisture adsorbing material may be a resin composition containing a thermoplastic resin as the polymer material.
  • the sheet-like moisture adsorbing material is heat-molded into a sheet shape after blending 40 parts by weight or less of the ZSM-5 type zeolite with 100 parts by weight of the resin composition. It may be.
  • the sheet-like moisture adsorbing material may be heat-molded at an upper limit temperature that is 60 ° C. higher than the softening temperature of the thermoplastic resin.
  • an acoustic speaker device having a configuration that can realize a good reproduction capability in the low frequency range and can cope with downsizing and / or thinning. Play.
  • FIG. 1 It is typical sectional drawing which shows schematic structure of the acoustic speaker apparatus which concerns on embodiment of this invention. It is typical sectional drawing which shows an example of a structure of the sheet-like moisture adsorption material with which the acoustic speaker apparatus shown in FIG. 1 is provided.
  • it is a graph which shows the adsorption
  • the acoustic speaker device 10 is a sealed type including a cabinet 12, a speaker unit 13, a porous carbon material package 14A, and a sheet-like moisture adsorption material 14B.
  • the cabinet 12 (or an enclosure, a sound box, etc.) is configured such that a speaker unit 13 is attached to the front surface 11 thereof, and the inside thereof is substantially sealed.
  • the specific shape, material, dimensions, and the like of the cabinet 12 are not particularly limited, and a known shape and material are selected according to the application, and dimensions according to the application are set.
  • the speaker unit 13 is attached to the front surface 11 of the cabinet 12, the front thereof is located outside the cabinet 12, and the rear thereof faces the space inside the cabinet 12.
  • a cone type is used as the speaker unit 13.
  • the specific configuration of the speaker unit 13 is not particularly limited, and may be a dome type, a horn type, or a ribbon type depending on various conditions such as use, shape, and dimensions. Well-known things, such as these, can be used suitably.
  • a porous carbon material package 14A and a sheet-like moisture adsorbing material 14B are provided inside the cabinet 12 and used as a gas adsorbing material capable of adsorbing moisture and gas components in the cabinet 12.
  • the porous carbon material package 14A rapidly adsorbs or desorbs the compression or expansion of the gas in the cabinet 12 caused by the speaker unit 13, in other words, buffers the compression or expansion of the air in the cabinet 12. It is a gas adsorbing material that adsorbs or desorbs air.
  • the porous carbon material packaging body 14A is composed of a porous carbon material 41 and a bag body 42 as will be described later, and is placed on the floor surface (lower inner surface) in the cabinet 12 without being fixed. Yes.
  • the sheet-like moisture adsorbing material 14B adsorbs moisture in the cabinet 12 as much as possible to suppress or avoid moisture adsorption by the porous carbon material package 14A.
  • the moisture in the cabinet 12 is porous. It is a gas adsorbing material that preferentially adsorbs over the carbonaceous material packaging body 14A.
  • the sheet-like moisture adsorbing material 14B is made of a copper ion exchanged ZSM-5 type zeolite 43 (hereinafter abbreviated as “Cu-ZSM-5 zeolite 43” for convenience of explanation). It is comprised as a resin sheet disperse
  • the Cu-ZSM-5 zeolite 43 and the thermoplastic resin composition 44 will be described later.
  • the speaker unit 13 when an electric signal is applied, pressure is generated in the voice coil, and the cone-shaped diaphragm vibrates. Thereby, sound is emitted from the front and rear of the diaphragm. Since the sound from the front and the sound from the rear are in opposite phases, the sound emitted from the rear is blocked by covering the rear of the speaker unit 13 with a closed box called the cabinet 12.
  • the sound pressure generated behind the diaphragm increases the internal pressure of the cabinet 12.
  • the inside of the cabinet 12 becomes an air spring and hinders the operation of the speaker unit 13 (movement of the diaphragm). Since this hindrance becomes more prominent as the volume of the cabinet 12 is smaller, the action of the air spring can be relaxed by the porous carbon material packaging body 14A, and the lowering of the reproduction ability in the low sound range can be effectively suppressed.
  • the bag body 42 of the porous carbon material packaging body 14 ⁇ / b> A is made of a non-woven fabric having air permeability, and its four sides are sealed to form a bag shape.
  • a porous carbon material 41 is sealed inside the bag body 42.
  • the porous carbon material 41 is a material (porous material) having carbon as a main component and a large number of fine pores (pores) on the surface thereof, and its specific configuration is not particularly limited. Typical examples include various activated carbons, porous carbon black, carbon nanotubes, porous carbon ceramics and the like. Among these, activated carbon is particularly preferably used in terms of gas adsorption performance and cost in the cabinet 12.
  • activated carbon examples include plant-based activated carbon such as sawdust, coconut shell, and charcoal; minerals such as coal (lignite, lignite, bituminous coal, anthracite, etc.), grass charcoal (peat), oil carbon, coal pitch, and petroleum pitch Examples include raw material activated carbon; synthetic resin activated carbon such as phenol, rayon, and acrylonitrile. Only one type of these activated carbons may be used, or two or more types may be used in appropriate combination.
  • the shape of the porous carbon material 41 is not particularly limited, and a known shape such as a powder shape, a granular shape (pellet shape), a fiber shape, a honeycomb shape, or a lump shape can be suitably used.
  • a known shape such as a powder shape, a granular shape (pellet shape), a fiber shape, a honeycomb shape, or a lump shape
  • examples of the shape of the grains (pellets) include a crushed shape, a cylindrical shape, and a spherical shape.
  • the porous carbon material 41 is in the form of powder or particles, it is preferably used by being enclosed in a packaging material such as the bag body 42. However, if the porous carbon material 41 is in the form of a fiber or a lump, it need not be enclosed in the packaging material. In view of gas adsorption performance, it is preferably powdery or granular.
  • the bag body 42 is composed of a non-woven fabric as described above, but the specific fiber material used for the non-woven fabric is not particularly limited, such as nylon fiber, vinylon fiber, polyester fiber, polyolefin fiber, rayon fiber, cellulose fiber, etc. What is necessary is just to be formed with a well-known fiber material.
  • the structure for sealing the periphery of the four sides is not particularly limited, and in the case of fibers made of a thermoplastic resin such as polyolefin fibers, the nonwoven fabric may be directly heated and sealed, or a hot melt adhesive may be used. You may use, and a well-known sealing member etc. may be used.
  • the bag body 42 may be made of a woven fabric.
  • the fiber material used at this time may be a known material as described above.
  • the bag body 42 may be made of a breathable sheet material, not a cloth body such as a nonwoven fabric or a woven fabric, as long as good breathability to the extent that gas adsorption is possible is ensured.
  • the Cu-ZSM-5 zeolite 43 is obtained by subjecting a zeolite having a ZSM-5 framework (ZSM-5 type zeolite) to copper ion exchange (copper ion exchange step), followed by water washing (water washing step), and then drying (drying step). It can be prepared by going through a process. In addition, you may perform processes other than copper ion exchange, water washing, and drying as needed.
  • the specific configuration of the ZSM-5 type zeolite to be used is not particularly limited, and a commercially available powder can be suitably used.
  • the particle size of the ZSM-5 type zeolite is not particularly limited, and can be sufficiently dispersed in the thermoplastic resin composition 44 and can be satisfactorily formed into a sheet (or film) as described later. It is sufficient if the particle diameter is.
  • An example of a preferable particle diameter is in the range of 0.1 to 10 ⁇ m, but it is of course not limited to this range.
  • a copper ion exchange process can be performed by a well-known method. Specifically, for example, a method of immersing ZSM-5 type zeolite in an aqueous solution of a soluble salt of copper is common.
  • the soluble salt of copper used at this time include inorganic salts such as copper chloride, copper nitrate, and copper sulfate, and organic salts such as copper acetate and copper propionate.
  • the ones subjected to ion exchange with an aqueous solution containing a divalent copper ion (Cu 2+ ) carboxylate (carboxylate) such as copper (II) propionate or copper (II) acetate are adsorbed with water. This is preferable because the activity tends to increase.
  • the water washing step is a step of sufficiently washing the ZSM-5 type zeolite after the copper ion exchange step.
  • Specific conditions for washing with water are not particularly limited.
  • high-purity water such as ion-exchanged water may be used, and the washing time may be set to a time that can sufficiently remove soluble salts and the like.
  • the drying step is a step of removing water adhering to the surface of the ZSM-5 type zeolite after the water washing step.
  • the specific method of drying is not particularly limited, and general heat drying or drying under reduced pressure may be used, and the drying temperature and drying time may be set to a temperature and time at which moisture can be sufficiently removed.
  • the Cu-ZSM-5 zeolite 43 thus prepared can exhibit an activity excellent in moisture adsorption in a low partial pressure region. Specifically, it is known that in zeolite, the diameter of the pores can be controlled by selecting the kind of ions. Since the Cu-ZSM-5 zeolite 43 has a ZSM-5 skeleton and has copper ions introduced therein, the pores formed on the surface thereof have a diameter and shape suitable for water adsorption. It has become. In addition, as described above, after the copper ion exchange process, the water washing process, and the drying process, the introduced copper ions are activated by the heat treatment.
  • the Cu-ZSM-5 zeolite 43 has pores suitable for physical adsorption and can exhibit good chemical adsorption by activated copper ions, particularly in the low partial pressure region. It is possible to develop an excellent water adsorption activity by a behavior similar to chemical adsorption.
  • the prepared Cu-ZSM-5 zeolite 43 can be used as it is for the production (sheet molding) of the sheet-like moisture adsorbing material 14B, but can be subjected to various post-treatments or post-processing as required. . Specifically, for example, heat drying treatment, vacuum heat treatment, granular processing, or surface modification treatment can be exemplified.
  • the heat drying treatment can be performed in order to desorb (remove) the moisture adsorbed by the Cu-ZSM-5 zeolite 43. This is because the moisture in the air may be adsorbed while the Cu-ZSM-5 zeolite 43 is prepared and stored until used for sheet molding. Thus, since the moisture contained in the Cu-ZSM-5 zeolite 43 can be used in sheet forming, the moisture adsorption capacity of the resulting sheet-like moisture adsorption material 14B can be relatively increased. It becomes possible.
  • the conditions for the heat-drying treatment for the Cu-ZSM-5 zeolite 43 typically, it is heated within a range of approximately 100 ° C. to 300 ° C., for example, for several hours using a known drying furnace or the like. Thus, about 90 to 95% of the moisture absorbed during storage can be desorbed.
  • the vacuum heat treatment can be performed to desorb moisture from the Cu-ZSM-5 zeolite 43 and to activate the introduced copper ions.
  • Activation of copper ions by vacuum heat treatment means that higher water adsorption activity is expressed by reducing divalent copper ions (Cu 2+ ) to monovalent copper ions (Cu + ). Therefore, it is preferable to perform vacuum heat treatment in order to improve the moisture adsorption capacity of the obtained sheet-like moisture adsorption material 14B.
  • the conditions of the vacuum heat treatment for the Cu-ZSM-5 zeolite 43 are not particularly limited, but typically the pressure is 10 Pa or less, preferably 1 mPa or less, and the heating temperature is 300 ° C. or more, preferably approximately 500 to 600 ° C. Can be mentioned.
  • the temperature is basically required to be set to 300 ° C. or higher for more appropriate reduction of copper ions, but may be 300 ° C. or lower depending on conditions.
  • the powdered Cu-ZSM-5 zeolite 43 may be aggregated and processed into a granular shape using a known method.
  • the surface modification treatment may be performed by applying a known modification treatment to the surface of the Cu-ZSM-5 zeolite 43 within a range that does not inhibit moisture adsorption, for example, in order to improve dispersibility in the thermoplastic resin composition 44. .
  • thermoplastic resin composition 44 used for the sheet-like moisture adsorbing material 14B
  • thermoplastic resin composition 44 used for the sheet-like moisture adsorbing material 14B
  • thermoplastic resin composition 44B used for the sheet-like moisture adsorbing material 14B
  • thermoplastic resin composition 44B used for the sheet-like moisture adsorbing material 14B
  • thermoplastic resin composition 44B used for the sheet-like moisture adsorbing material 14B
  • a method for forming the sheet-like moisture adsorbing material 14B will be described in detail. I will explain it.
  • the thermoplastic resin composition 44 is a base material of the sheet-like moisture adsorbing material 14B, is a composition containing a thermoplastic resin as a main component and further containing various additives as necessary.
  • thermoplastic resin as the main component is not particularly limited.
  • polyolefin resins such as low density polyethylene, high density polyethylene, linear low density polyethylene, and polypropylene
  • Polyester resins such as phthalates and polybutylene naphthalates (including not only aromatic but also aliphatic); polyamide resins such as nylon and aramid; polyacetal resins; polyarylate resins, polysulfone resins, polycarbonate resins, polyethersulfone resins, polyethers Other aromatic resins such as ether ketone resins; polyphenylene resins such as polyphenylene ether resins, polyphenylene sulfide resins, polyphenylene oxide resins; polyimide resins, polyethers Polyimide resins such as imide resins and polyamideimide resins; ABS (Acrylonitrile-Butadiene- Styrene) resin
  • the thermoplastic resin composition 44 may contain various additives such as a dispersant, an antioxidant, an antistatic agent, a flame retardant, and a plasticizer in addition to the one or more types of thermoplastic resins described above. It may contain a gas adsorbent other than ZSM-5 zeolite 43, a filler as a filler, and the like. Therefore, in the present embodiment, the thermoplastic resin composition 44 is defined as a component other than the Cu-ZSM-5 zeolite 43 regarded as one composition mainly composed of a thermoplastic resin. can do.
  • a typical additive is a dispersant that improves the dispersibility of the Cu-ZSM-5 zeolite 43 when the thermoplastic resin and the Cu-ZSM-5 zeolite 43 are mixed.
  • a lubricant such as paraffin can be used as the dispersant, but the dispersant is not limited thereto, and a known one may be appropriately selected according to the type of thermoplastic resin. Can do.
  • the blending amount of Cu-ZSM-5 zeolite 43 with respect to the thermoplastic resin composition 44 is not particularly limited, but the Cu-ZSM-5 zeolite 43 is 40 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin composition 44. It is preferable to blend so as to be. If the compounding amount of Cu-ZSM-5 zeolite 43 is 40 parts by weight or less, the sheet-like moisture obtained can be obtained regardless of various conditions (type of thermoplastic resin, type of additive, sheet size, molding conditions, etc.) Copper corrosion does not occur in the adsorbing material 14B, and it is possible to effectively suppress the occurrence of cracks or tears. Therefore, good strength and good handleability can be realized in the obtained sheet-like moisture adsorbing material 14B. If the Cu-ZSM-5 zeolite 43 exceeds 40 parts by weight, the appearance may be impaired due to cracking or tearing depending on various conditions, and the handleability may be lowered.
  • the thickness of the sheet-like moisture adsorbing material 14B is not particularly limited, and may be a thickness that can realize flexibility so that it can be recognized as a sheet-like shape, depending on the type of thermoplastic resin or additive. That's fine. In general, the thickness may be in the range of approximately 1 ⁇ m or more and 1 mm (1000 ⁇ m) or less, but the thickness is preferably reduced to a range of 1 to 10 ⁇ m.
  • the molding method of the sheet-like moisture adsorbing material 14B according to the present embodiment is not particularly limited. As described above, 40 parts by weight of Cu-ZSM-5 zeolite 43 is added to 100 parts by weight of the thermoplastic resin composition 44. What is necessary is just to heat-mold to a sheet form after mix
  • a predetermined amount of raw material pellets of one or more types of thermoplastic resin, an additive such as a dispersant (for example, paraffin), and Cu-ZSM-5 zeolite 43 are prepared and supplied to a hopper or the like. Supply to a vessel and mix. The resulting mixture is supplied to a molding machine, and sheet molding is performed while heating.
  • the molding machine is not particularly limited as long as it can form a sheet. Typically, a known extruder or a known film casting apparatus can be used.
  • an upper limit temperature is set as a temperature that is 60 ° C. higher than the softening temperature (melting point) of the thermoplastic resin used.
  • the softening temperature is 130 ° C.
  • the upper limit temperature during sheet molding is set to 190 ° C. or lower.
  • the softening temperature varies depending on the degree of polymerization.
  • the softening temperature is not necessarily 130 ° C., and is generally in the range of 100 to 140 ° C.
  • the upper limit temperature may be set so as to be equal to or lower than a temperature 60 ° C. higher than the softening temperature on the basis of the softening temperature of the thermoplastic resin used.
  • the upper limit temperature may be set based on the softening temperature in a polymer alloy or polymer blend state, or the upper limit may be set based on the softening temperature of any one thermoplastic resin. The temperature may be set.
  • the porous carbon material package 14 ⁇ / b> A and the sheet-like moisture adsorbing material 14 ⁇ / b> B may be provided in the cabinet 12, but the sheet-like moisture adsorbing material 14 ⁇ / b> B is attached to the inner surface of the cabinet 12.
  • the adsorption activity of the sheet-like moisture adsorbing material 14B according to the present embodiment is higher for water than for nitrogen or oxygen, which are the main components of the atmosphere. Therefore, even if the sheet-like moisture adsorbing material 14B comes into contact with the atmosphere and adsorbs nitrogen or oxygen first, if moisture exists in the cabinet 12, it adsorbs moisture preferentially. Thereby, substitution of nitrogen or oxygen with water occurs, and moisture in the cabinet 12 can be adsorbed quickly.
  • the porous carbon material packaging body 14 ⁇ / b> A can adsorb or desorb air so as to buffer the compression or expansion of the air in the cabinet 12 during the operation of the speaker unit 13.
  • the acoustic speaker device 10 can sufficiently exhibit the reproduction capability in the low sound range.
  • the adsorption start water vapor pressure of the sheet-like moisture adsorbing material 14B is preferably 50 Pa or less.
  • the adsorption start water vapor pressure here refers to an equilibrium pressure at which an adsorption amount of about 0.1 ml / g or more is measured on a moisture adsorption isotherm measured by the adsorption capacity method at 25 ° C.
  • the adsorption start water vapor pressure of the general porous carbon material 41 is in the range of 80 to 500 Pa. Further, the adsorption start water vapor pressure when starting to adsorb a large amount of moisture or the adsorption start water vapor pressure starting to adsorb rapidly is in the range of 1200 to 2000 Pa. Therefore, if a sheet-like moisture adsorption material 14B having an adsorption start water vapor pressure sufficiently lower than that of the porous carbon material 41 is used, moisture adsorption of the porous carbon material 41 can be suppressed almost completely. If the adsorption start water vapor pressure of the sheet-like moisture adsorbing material 14B is less than 80 Pa or more, the moisture adsorption of the porous carbon material 41 may be insufficiently suppressed.
  • the inner surface of the cabinet 12 refers to the inner wall surface of the cabinet 12, and the inner surface to which the sheet-like moisture adsorbing material 14B is attached does not substantially hinder the installation of various members constituting the acoustic speaker device 10. It is preferable that it is a plane.
  • the sheet-like moisture adsorption material 14B is affixed on the floor surface and the top
  • the method for attaching the sheet-like moisture adsorbing material 14B is not particularly limited, and various known adhesives, known double-sided tapes, and other known physical fixing members can be used.
  • the specific position where the sheet-like moisture adsorbing material 14B is attached is not limited to the floor surface and the top surface, but is preferably a position satisfying at least one of the following two conditions.
  • the sheet-like moisture adsorbing material 14 ⁇ / b> B is affixed to at least the inner surface that is the front side of the cabinet 12. This first condition considers the intrusion of moisture from the outside of the cabinet 12.
  • the acoustic speaker device 10 is not configured to open the rear but is configured to be closed at the rear as in the closed type illustrated in FIG. 1, the possibility of moisture entering from outside the cabinet 12 is substantially the speaker. Only the front surface 11 on which the unit 13 is provided is provided. Therefore, by adhering the sheet-like moisture adsorbing material 14B to the front side, moisture entering from the outside can be preferentially adsorbed. Thereby, the possibility that the porous carbon material package 14A (strictly speaking, the enclosed porous carbon material 41) may adsorb moisture can be reduced.
  • the sheet-like moisture adsorbing material 14B is attached to at least a portion of the inner surface of the cabinet 12 that is directly below the porous carbon material packaging body 14A. This second condition considers the position in the cabinet 12 of the porous carbon material package 14A.
  • the sheet-like moisture adsorbing material 14B is provided to adsorb moisture first so that the porous carbon material packaging body 14A does not adsorb moisture. And in order to arrange
  • the sheet-like moisture adsorbing material 14B since the sheet-like moisture adsorbing material 14B is entirely attached to the floor surface and the top surface in the cabinet 12, the sheet-like moisture adsorbing material 14B has the first condition. It will be pasted to satisfy. As shown in FIG. 1, the porous carbon material package 14 ⁇ / b> A is placed on the floor surface in the cabinet 12, and the sheet-like moisture adsorbing material 14 ⁇ / b> B is attached to the floor surface of the cabinet 12. . Therefore, the sheet-like moisture adsorbing material 14B is attached so as to satisfy the second condition.
  • the porous carbon material package 14A is merely placed on the floor surface, but may be fixed on the floor surface by a known method or may be fixed at a position other than the floor surface. Good. At this time, the sheet-like moisture adsorbing material 14B may be attached to an appropriate inner surface in the cabinet 12 so as to satisfy the first condition and / or the second condition described above.
  • the acoustic speaker device 10 includes the porous carbon material package 14A that preferentially adsorbs and desorbs air as a gas adsorbing material in the cabinet 12 to which the speaker unit 13 is attached. And a sheet-like moisture adsorbing material 14B containing the Cu-ZSM-5 zeolite 43 and the thermoplastic resin composition 44. Moreover, from the result of the reference example mentioned later, in the general use environment of the acoustic speaker apparatus 10, the partial pressure (equilibrium water vapor pressure) of the water in air
  • the sheet-like moisture adsorbing material 14B can express high adsorption activity with respect to water. Moisture in the cabinet 12 can be quickly adsorbed and removed. Therefore, it becomes possible to maintain the equilibrium water vapor pressure below 1000 Pa in the cabinet 12, and it is effective that the porous carbon material 41 enclosed in the porous carbon material package 14A is saturated by adsorbing moisture. To be suppressed.
  • the porous carbon material package 14A can adsorb or desorb air so as to buffer the compression or expansion of the air in the cabinet 12 when the speaker unit 13 is operating.
  • the acoustic speaker device 10 can obtain a sufficient reproduction capability in the low sound range. Therefore, for example, even if the capacity of the cabinet 12 is not increased, it is possible to obtain an acoustic effect equivalent to that obtained when the cabinet 12 having a substantially large capacity is used.
  • the porous carbon material 41 unlike the prior art, it is not necessary to subject the porous carbon material 41 to an expensive hydrophobization treatment or to introduce a dry gas into the cabinet 12, which is simple.
  • the high-quality acoustic speaker device 10 can be manufactured in the process.
  • the acoustic speaker device 10 is a sealed type as shown in FIG. 1, but the present embodiment is not limited to this, and there is room for improvement in the reproduction capability of the low frequency range. Any type of speaker device can be used. Specifically, for example, a bass reflex type may be used.
  • the acoustic speaker device 10 is a bass-reflex type
  • a duct connected from the front surface 11 to the inside of the cabinet 12 is provided.
  • the sheet-like moisture adsorbing material 14B is attached at least inside the duct, or the cabinet 12 is used. What is necessary is just to stick on the opening vicinity of the duct in the inside.
  • the porous carbon material packaging body 14A can be used when the speaker unit 13 is operating. Air can be adsorbed or desorbed so as to buffer the compression or expansion of air within 12.
  • a base material is at least It is made of a polymer material, and it is sufficient that the Cu-ZSM-5 zeolite 43 is dispersed in this base material.
  • the polymer material used as the base material may be, for example, a thermosetting resin composition, a resin composition that is cured by a chemical reaction other than heat, or may not be cured, and Cu A resin composition that can maintain the shape of a sheet or film with the ZSM-5 zeolite 43 dispersed may be used.
  • the sheet-like moisture adsorbing material 14B is affixed to the floor surface and the top surface.
  • the sheet-like moisture adsorbing material 14B is affixed to the first condition described above (at least the inner surface on the front side of the cabinet 12).
  • the second condition described above at least the condition attached to the portion of the inner surface of the cabinet 12 directly below the porous carbon material package 14A.
  • the present embodiment is not limited to this, and the sheet-like moisture adsorbing material 14B may be attached to the entire inner surface of the cabinet 12, and each of the above-described conditions may be satisfied. It may be pasted so as not to satisfy.
  • an acoustic speaker device having the following configurations is also included as a modification of the present embodiment.
  • the acoustic speaker device includes at least a cabinet, a speaker unit attached to the cabinet, and a gas adsorption material for a speaker device provided in the cabinet.
  • the gas adsorption material for a speaker device comprises at least a porous carbon material and a sheet-like moisture adsorbent, and the sheet-like moisture adsorbent is at least copper ion exchanged ZSM-5 type zeolite ( Cu-ZSM-5 zeolite) and a thermoplastic resin component may be included.
  • the speaker unit when the speaker unit is in operation, a sufficient gas adsorption and desorption effect can be obtained by the porous carbon material, so that the reproduction capability in the low sound range can be fully exhibited. Further, when the sheet-like moisture adsorbent is applied to an acoustic speaker device, the space volume required for installation is small, so that it is possible to improve the sound quality in the low frequency range in a small acoustic speaker device.
  • the number of Cu-ZSM-5 zeolite blended with respect to the thermoplastic resin component may be 40 parts by weight or less.
  • the number of parts of Cu-ZSM-5 zeolite blended with the thermoplastic resin component is optimized, so that the resulting sheet-like moisture adsorbent is not cracked or cracked and has a thickness of about 1 to 10 ⁇ m. Thinning is possible, and sufficient strength can be realized.
  • the sheet-like gas adsorbent is molded by thermoforming, and the temperature of the thermoplastic resin at the time of thermoforming is not more than 60 ° C. higher than the softening temperature of the thermoplastic resin. It may be a thing. This makes it possible to easily produce a sheet-like moisture adsorbent having sufficient strength that can be thinned to a thickness of about 1 to 10 ⁇ m without cracking or splitting.
  • Cu-ZSM-5 zeolite may be preliminarily heated and dried before being molded.
  • the moisture previously contained in the Cu-ZSM-5 zeolite can be desorbed, so that a larger amount of moisture can be adsorbed at room temperature and under a low partial pressure.
  • the Cu-ZSM-5 zeolite may be previously subjected to vacuum heat treatment before molding. As a result, it is possible to desorb moisture previously contained in the Cu-ZSM-5 zeolite and improve moisture adsorption capacity, and the Cu-ZSM-5 zeolite converts Cu 2+ contained in the Cu + to Cu + . And can be reduced. Therefore, the sheet-like gas adsorbent exhibits higher adsorption activity and can improve the moisture adsorption function.
  • a sheet-like moisture adsorbent may be attached to the inner wall of the cabinet. Thereby, the space volume required for installation of the sheet-like moisture adsorbent can be reduced, and the acoustic speaker device can be further miniaturized.
  • evaluation of the physical property of the sheet-like moisture adsorption material 14B in the following examples and the like, and evaluation of the low frequency reproduction capability of the acoustic speaker device 10 were performed as follows.
  • the weight of the sheet-like moisture adsorption material 14B used for evaluation was weighed, and the sample was inserted into a sample tube having a known volume.
  • the sample tube and a manifold having a known volume were connected via an opening / closing part (cock).
  • the temperature was adjusted so that the temperature of the manifold and the sample tube became the measured temperature.
  • the temperature is adjusted to be constant by placing the manifold in a constant temperature bath and the sample tube in the constant temperature water bath. Next, the inside of the manifold and the sample tube was evacuated with the opening / closing part opened. Thereafter, the opening / closing part was closed, and a predetermined amount of gas (water vapor) was introduced into the manifold.
  • the amount of gas introduced into the manifold was set as a predetermined pressure when the opening / closing part was opened after performing the above-described operation in a state where no sample was contained in the sample tube. For example, as will be described later, when measuring the adsorption amount at 10 Pa, gas was introduced into the manifold until the pressure was slightly higher than 10 Pa based on the volume of the manifold and the sample tube.
  • the open / closed portion in the closed state was opened, gas (water vapor) was introduced from the manifold to the sample tube, and the pressure in the manifold was measured after a predetermined time had elapsed.
  • the amount of gas (water vapor) adsorbed on the sample was calculated from the pressure drop at this time, and divided by the weight of the sheet-like moisture adsorbing material 14B measured in advance, thereby obtaining the adsorption capacity per unit weight.
  • the amount of gas adsorbed on the sample is shown as a volume in a standard state of 25 ° C. and 1 atm.
  • the acoustic speaker device 10 having the configuration described in the embodiment was used, and the sheet-like moisture adsorbing material 14B obtained in each example and comparative example was attached to the floor surface and the top surface in the cabinet 12. Then, the acoustic speaker device 10 is installed in an environment where the temperature is 30 ° C. and the relative humidity is 70%, that is, the water vapor pressure is 2970 Pa, assuming a summer season, and an input of a sine wave 1W is applied, and a distance of 1 m from the acoustic speaker device 10 The sound pressure was measured at. The sound pressure measurement was performed immediately after the acoustic speaker device 10 was installed in the environment and one day after the installation. In addition, the measured value of 20 dB and 50 dB after 1 day was shown as a representative value of a low sound range.
  • FIG. 3 and FIG. 3 show a reference example that verifies that the partial pressure of water in the atmosphere is about 1000 Pa in the general usage environment of the acoustic speaker device 10. This will be specifically described with reference to FIG.
  • the adsorption isotherm was measured using a trade name: BELSORP-18 (BEL Japan, Inc.) manufactured by Nippon Bell Co., Ltd. Specifically, water is adsorbed in the vicinity of 3169 Pa, which is saturated water vapor at a temperature of 25 ° C. from the water vapor pressure at which the adsorption starts, by bringing water (gas state) from low pressure into contact with the surfaces of the hydrophobized untreated activated carbon and the hydrophobized treated activated carbon. The amount of water reaching equilibrium was quantified.
  • the horizontal axis represents the equilibrium water vapor pressure (unit: Pa) for water adsorption
  • the vertical axis represents the amount of water adsorption (unit: ml / g).
  • the adsorption isotherm of the hydrophobized untreated activated carbon is indicated by a solid line and a white square symbol
  • the adsorption isotherm of the hydrophobized activated carbon is indicated by a dotted line and a black rhombus symbol.
  • the adsorption start pressure is 80 Pa
  • the adsorption amount increases rapidly from the vicinity where the equilibrium water vapor pressure exceeds 1000 Pa
  • the adsorption amount near 3169 Pa is 750 ml / g was reached.
  • the adsorption start pressure was 80 Pa as in the case of hydrophobized untreated activated carbon, and the amount of adsorption increased rapidly from the vicinity where the equilibrium water vapor pressure exceeded 1500 Pa. Therefore, the tendency for the amount of adsorption to rapidly increase beyond the predetermined equilibrium water vapor pressure does not change regardless of the presence or absence of the hydrophobic treatment, and the hydrophobized activated carbon is 1000 Pa or more compared to the hydrophobized untreated activated carbon. It became clear that only the amount of adsorbed was reduced.
  • FIG. 4 shows changes in water vapor pressure for one year calculated from the average temperature and average relative humidity in Osaka, Japan.
  • the water vapor pressure is 1000 Pa or more in the period from April to November. Therefore, it can be said that the water vapor pressure of 1000 Pa is a general environment as the usage environment of the acoustic speaker device 10.
  • the rapid moisture adsorption occurs when the water vapor pressure is around 1000 Pa.
  • the activated carbon is a gas in the cabinet 12 in a normal use environment. It has been clarified that the compression and expansion of the material becomes a problem for the function of rapidly adsorbing and desorbing.
  • thermoplastic resin composition 44 high-density polyethylene (HDPE, softening temperature 130 ° C.) was used.
  • the amount of Cu-ZSM-5 zeolite 43 was 40 parts by weight with respect to 100 parts by weight of high-density polyethylene.
  • the Cu-ZSM-5 zeolite 43 was previously subjected to vacuum heat treatment at 600 ° C. for 4 hours.
  • an acoustic speaker device 10 to which the obtained sheet-like moisture adsorbing material 14B was applied was manufactured according to the above embodiment.
  • the porous carbon material 41 used at this time is activated carbon (coconut shell charcoal) made of coconut shell as a raw material, and the activated carbon is enclosed in a four-side sealed bag made of a non-woven fabric having air permeability to thereby form a porous carbon material package.
  • 14A was produced and placed on the floor in the cabinet 12. Further, the obtained sheet-like moisture adsorbing material 14 ⁇ / b> B was attached to the floor surface and the dotted surface of the cabinet 12.
  • Table 1 shows the production conditions and evaluation results of the obtained sheet-like moisture adsorbing material 14B, and the evaluation results of the acoustic speaker device 10 to which the obtained sheet-like moisture adsorbing material 14B is applied. Moreover, about the obtained sheet-like moisture adsorption material 14B, the adsorption isotherm of water at 25 degreeC is shown in FIG.
  • Example 2 A sheet-like moisture adsorbing material 14B of this example was obtained in the same manner as in Example 1 except that the Cu-ZSM-5 zeolite 43 was previously heat-dried at 200 ° C. for 4 hours.
  • the acoustic speaker device 10 to which the sheet-like moisture adsorbing material 14B was applied was manufactured in the same manner as in Example 1.
  • Table 1 shows the production conditions and evaluation results of the obtained sheet-like moisture adsorbing material 14B, and the evaluation results of the acoustic speaker device 10 to which the obtained sheet-like moisture adsorbing material 14B is applied.
  • Example 3 This example is the same as Example 1 except that polypropylene (PP, softening temperature 160 ° C.) is used as the thermoplastic resin composition 44 and the resin temperature at the time of sheet molding is 200 ° C., which is lower than the upper limit temperature.
  • PP polypropylene
  • the sheet-like moisture adsorption material 14B was obtained, and the acoustic speaker device 10 to which the sheet-like moisture adsorption material 14B was applied was produced in the same manner as in Example 1.
  • Table 1 shows the production conditions and evaluation results of the obtained sheet-like moisture adsorbing material 14B, and the evaluation results of the acoustic speaker device 10 to which the obtained sheet-like moisture adsorbing material 14B is applied.
  • Example 4 The sheet of this example is the same as Example 1 except that nylon (softening temperature 225 ° C.) is used as the thermoplastic resin composition 44 and the resin temperature at the time of sheet molding is 250 ° C. which is lower than the upper limit temperature.
  • the acoustic speaker device 10 to which the sheet-like moisture adsorbing material 14B was obtained and the sheet-like moisture adsorbing material 14B was applied was manufactured in the same manner as in Example 1.
  • Table 1 shows the production conditions and evaluation results of the obtained sheet-like moisture adsorbing material 14B, and the evaluation results of the acoustic speaker device 10 to which the obtained sheet-like moisture adsorbing material 14B is applied.
  • Example 5 Except that the blending amount of the Cu-ZSM-5 zeolite 43 was 20 parts by weight and no pretreatment was performed on the Cu-ZSM-5 zeolite 43, the same procedure as in Example 1 was repeated. While obtaining the sheet-like moisture adsorption material 14B, the acoustic speaker device 10 to which the sheet-like moisture adsorption material 14B was applied was produced in the same manner as in Example 1.
  • Table 2 shows the production conditions and evaluation results of the obtained sheet-like moisture adsorbing material 14B, and the evaluation results of the acoustic speaker device 10 to which the obtained sheet-like moisture adsorbing material 14B is applied.
  • Example 6 Except that the blending amount of Cu-ZSM-5 zeolite 43 was 40 parts by weight, the sheet-like moisture adsorbing material 14B of this example was obtained in the same manner as in Example 5, and the sheet-like moisture adsorbing material 14B was applied. The manufactured acoustic speaker device 10 was manufactured in the same manner as in Example 5.
  • Table 2 shows the production conditions and evaluation results of the obtained sheet-like moisture adsorbing material 14B, and the evaluation results of the acoustic speaker device 10 to which the obtained sheet-like moisture adsorbing material 14B is applied.
  • Example 7 Except that the blending amount of Cu-ZSM-5 zeolite 43 is 42 parts by weight, the sheet-like moisture adsorbing material 14B of this example is obtained in the same manner as in Example 5, and the sheet-like moisture adsorbing material 14B is applied.
  • the manufactured acoustic speaker device 10 was manufactured in the same manner as in Example 5.
  • Table 2 shows the production conditions and evaluation results of the obtained sheet-like moisture adsorbing material 14B, and the evaluation results of the acoustic speaker device 10 to which the obtained sheet-like moisture adsorbing material 14B is applied.
  • Example 8 The sheet-like moisture adsorbing material 14B of this example is obtained and the sheet-like moisture adsorbing material 14B is applied in the same manner as in Example 5 except that the resin temperature at the time of forming the sheet is 200 ° C. exceeding the upper limit temperature.
  • the manufactured acoustic speaker device 10 was manufactured in the same manner as in Example 5.
  • Table 2 shows the production conditions and evaluation results of the obtained sheet-like moisture adsorbing material 14B, and the evaluation results of the acoustic speaker device 10 to which the obtained sheet-like moisture adsorbing material 14B is applied.
  • Example 9 Except that the resin temperature at the time of forming the sheet is 220 ° C. exceeding the upper limit temperature, the sheet-like moisture adsorbing material 14B of this example is obtained in the same manner as in Example 5 and the sheet-like moisture adsorbing material 14B is applied.
  • the manufactured acoustic speaker device 10 was manufactured in the same manner as in Example 5.
  • Table 2 shows the production conditions and evaluation results of the obtained sheet-like moisture adsorbing material 14B, and the evaluation results of the acoustic speaker device 10 to which the obtained sheet-like moisture adsorbing material 14B is applied.
  • Comparative Example 1 A comparative acoustic speaker device was manufactured using only the porous carbon material package 14A in the same manner as in Example 1 without applying the sheet-like moisture adsorbing material 14B.
  • Table 3 shows the evaluation results of the comparative acoustic speaker device.
  • Comparative Example 2 Copper ion-exchanged X-type zeolite (hereinafter abbreviated as “Cu-X zeolite” for convenience of explanation) is used, and the blending amount of the Cu—X zeolite is 20 parts by weight. Except for the above, a comparative sheet-like moisture adsorbing material was obtained in the same manner as in Example 1, and a comparative acoustic speaker device to which the comparative sheet-like moisture adsorbing material was applied was produced in the same manner as in Example 1.
  • Cu-X zeolite copper ion-exchanged X-type zeolite
  • Cu-X zeolite is obtained by subjecting X-type zeolite, which is a general-purpose zeolite also used as a moisture adsorbent, to copper ion exchange in the same manner as Cu-ZSM-5 zeolite 43.
  • Table 3 shows the production conditions and evaluation results of the obtained comparative sheet-like moisture adsorbing material, and the evaluation results of the comparative acoustic speaker device to which the obtained comparative sheet-like moisture adsorbing material is applied.
  • Comparative Example 3 A comparative sheet-like moisture adsorbing material was obtained in the same manner as in Comparative Example 2 except that the compounding amount of Cu-X zeolite was 40 parts by weight. It was manufactured in the same manner as in Comparative Example 2.
  • Table 3 shows the production conditions and evaluation results of the obtained comparative sheet-like moisture adsorbing material, and the evaluation results of the comparative acoustic speaker device to which the obtained comparative sheet-like moisture adsorbing material is applied.
  • Example 7 the occurrence of tearing was confirmed in a part of the obtained sheet-like moisture adsorbing material 14B. This is considered to be because the compounding amount of Cu-ZSM-5 zeolite 43 exceeded 40 parts by weight.
  • Example 8 the brown color change was confirmed in the obtained sheet-like moisture adsorbing material 14B, and in Example 9, dark brown color change and cracks were confirmed in the obtained sheet-like moisture adsorbing material 14B. It is judged that this is because copper corrosion occurred in the thermoplastic resin because the resin temperature during sheet molding exceeded the upper limit temperature in both Examples 8 and 9, and in Example 9, in particular, the resin during sheet molding. Since the temperature was higher than that of Example 8, it was determined that strong discoloration and cracking occurred due to strong copper corrosion caused by the thermoplastic resin.
  • Example 2 Cu-ZSM-5 zeolite 43 was subjected to a heat treatment as a pretreatment
  • Example 6 Cu-ZSM-5 zeolite 43 was subjected to a pretreatment
  • the moisture adsorption activity is high in the sheet-like moisture adsorption material 14B obtained in these examples. This is because Cu-ZSM-5 zeolite 43 is preliminarily subjected to vacuum heat treatment to desorb moisture, and copper ions contained in Cu-ZSM-5 zeolite 43 are activated, resulting in higher moisture adsorption activity. It is judged that it was made.
  • Example 2 the water vapor pressure at the start of adsorption in Example 2 is slightly higher than that in Example 1. This is because the pretreatment was not a vacuum heat treatment but a heat treatment at 200 ° C. for 4 hours, so that the Cu-ZSM-5 zeolite 43 It is judged that this is because the contained copper ions cannot be activated sufficiently. However, since the water vapor pressure at the start of adsorption is lower than that in Example 6 in which no pretreatment was performed, the heat contained in the Cu-ZSM-5 zeolite 43 was desorbed by heat treatment at 200 ° C. for 4 hours, resulting in a lower pressure. It is judged that moisture adsorption from the region is possible.
  • the water vapor pressure at the start of adsorption in Examples 5 to 9 is slightly higher than those in Examples 1 to 4, but this is because the Cu-ZSM-5 zeolite 43 was not pretreated, Alternatively, it is determined that copper ions are not activated. However, it can be seen that the moisture adsorption activity is expressed from a relatively low pressure region because a part of the moisture is desorbed from the Cu-ZSM-5 zeolite 43 by heating during molding.
  • Comparative Examples 2 and 3 since the comparative sheet-like moisture adsorption material does not have a good moisture adsorption capability, the coconut shell charcoal that is the porous carbon material 41 starts to adsorb moisture from a water vapor pressure of 100 Pa.
  • both the comparative sheet-like moisture adsorbing material and the coconut shell charcoal adsorbed moisture from around 200 Pa in Comparative Example 2 and from around 180 Pa in Comparative Example 3.
  • the water vapor pressure exceeds 1000 Pa, the coconut shell charcoal rapidly adsorbs a large amount of water, and at 2000 Pa, the gas in the cabinet 12 cannot be sufficiently adsorbed and desorbed.
  • Comparative Example 1 the comparative sheet-like moisture adsorbing material is not used, but the coconut shell charcoal, which is the porous carbon material 41 at this time, starts to adsorb moisture from a water vapor pressure of 100 Pa, and when it exceeds 1000 Pa, a large amount The water was rapidly adsorbed, and at 2000 Pa, about 80% of the pores became saturated due to water molecule adsorption. That is, in Comparative Example 1, as in Comparative Examples 2 and 3 using the comparative sheet-like moisture adsorbing material, it became clear that a large amount of moisture adsorption occurs when the water vapor pressure exceeds 1000 Pa.
  • the zeolite used for the sheet-like moisture adsorbing material is insufficient with Cu-X zeolite, and it is judged that Cu-ZSM-5 zeolite 43 is important as in the present invention.
  • the tensile strength is equivalent to that in Examples 5 and 6, but the sheet thickness is in Example 5 or 6 (Cu-ZSM-5 zeolite 43).
  • the production conditions were the same except for the blending amount. This is considered to be because the compounding amount of Cu-ZSM-5 zeolite 43 exceeded 40 parts by weight.
  • the resin temperature at the time of sheet molding is not more than the upper limit temperature, it is determined that the occurrence of tearing, cracking, and discoloration due to copper corrosion is suppressed.
  • Example 7 the tensile strength of Example 7 is equivalent to that of Example 5 or 6 despite being thick, because the compounding amount of Cu-ZSM-5 zeolite 43 exceeded 40 parts by weight. This is considered to be because the relative resin strength decreased due to the tearing.
  • the sheet-like moisture adsorbing material 14B obtained in Examples 8 and 9 also has a tensile strength equal to that in Examples 5 and 6, but the sheet thickness is increased until it exceeds Example 7. This is considered to be because the resin temperature at the time of sheet formation exceeded the upper limit temperature, and copper corrosion occurred and the thermoplastic resin became brittle. In particular, in Example 9, since the resin temperature was higher than that in Example 8, it was determined that the resin was thicker than Example 8.
  • Example 8 and 9 are thick, the tensile strength is equivalent to that of Example 5 or 6 because the increase in tensile strength is small and relative to copper corrosion. It is determined that the resin strength has decreased.
  • the measured sound pressures of 20 Hz and 50 Hz were lower than those of Examples 1 to 9.
  • the coconut shell charcoal as the porous carbon material 41 is 2000 Pa, about 80% of the pores are saturated by adsorption due to water molecule adsorption, so that the air in the cabinet 12 is sufficiently adsorbed and It is judged that it is in a state where it cannot be detached.
  • FIG. 6 shows the evaluation results of the sound pressure measurement in the low frequency range performed for the acoustic speaker device 10 of Example 1 and the comparative acoustic speaker device of Comparative Example 1.
  • the shaded broken line in the figure indicates the sound pressure measured immediately after the acoustic speaker device 10 of the first embodiment is installed in the measurement environment
  • the solid line indicates the measurement environment of the acoustic speaker device 10 of the first embodiment.
  • the sound pressure measured one day after installation is shown, and the thick line shows the sound pressure measured for the comparative acoustic speaker device of Comparative Example 1.
  • the comparative example 1 is a structure which does not provide the sheet-like water
  • the acoustic speaker device 10 provided with the sheet-like moisture adsorbing material 14B obtained in Example 1 is a comparative acoustic of Comparative Example 1 in which only the porous carbon material package 14A is installed. Compared with the speaker device, it was found that a good sound pressure level was exhibited in a low frequency region of 30 to 100 Hz. Moreover, in the acoustic speaker device 10 of Example 1, almost no change was observed both immediately after installation and one day later.
  • the measured sound pressures of 20 Hz and 50 Hz were equivalent to those of Comparative Example 1, and were lower than those of Examples 1 to 9. Thereby, it is determined that the comparative sheet-like moisture adsorbing material could not sufficiently adsorb the moisture in the cabinet 12.
  • the sheet-like moisture adsorption material 14B used in Example 7 the sheet is torn, and in the sheet-like moisture adsorption material 14B used in Example 8 or 9, the sheet is discolored and the sheet is It is thickened.
  • the abnormalities generated in these sheets do not disturb the low frequency reproduction capability of the acoustic speaker device 10, but may be unfavorable in appearance and have poor handling properties. Can have an effect.
  • the compounding amount of the Cu-ZSM-5 zeolite 43 in the sheet-like moisture adsorbing material 14B is preferably 40 parts by weight or less, and the resin temperature during sheet molding is the upper limit temperature (thermoplasticity). It has become clear that the temperature is preferably 60 ° C. or higher than the softening temperature of the resin.
  • the present invention can satisfactorily adsorb and desorb gas with a porous carbon material in the cabinet during operation of the acoustic speaker device even in a high humidity environment, reproduction of low frequencies is possible. The ability can be demonstrated effectively. Therefore, the present invention can be suitably used for improving the sound quality of the low sound range in the general field of acoustic speaker devices regardless of the type such as a sealed type or a bass reflex type.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Drying Of Gases (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明に係る音響スピーカー装置(10)は、そのキャビネット12内に少なくとも2種類の気体吸着材料を備えている。一方の気体吸着材料である多孔性炭素材料包装体(14A)は、多孔性炭素材料(41)により、スピーカーユニット(13)が動作している際に、キャビネット(12)内の空気の圧縮または膨張を緩衝するように空気を吸着または脱離する。他方の気体吸着剤であるシート状水分吸着材料(14B)は、銅イオン交換されたZSM-5型ゼオライト(43)が、熱可塑性樹脂組成物(44)中に分散されたものであり、キャビネット(12)の内壁の少なくとも一部に貼り付けられている。これにより、キャビネット(12)内の水分を迅速に吸着することが可能である。

Description

音響スピーカー装置
 本発明は、音響スピーカー装置に関し、特に低音域の再生能力に優れた音響スピーカー装置に関する。
 近年、音響機器の小型化が進むとともに、音響スピーカー装置についても小型化および/または薄型化(以下「小型化等」と称する。)が進められてきている。しかしながら、小型化等された音響スピーカー装置では、キャビネットの容積が小さいため、低音域の再生が困難となることが知られている。
 具体的には、一般的な音響スピーカー装置はキャビネットにスピーカーユニットが組み込まれた構成となっている。スピーカーユニットに電気信号が印加されると、スピーカーの振動によりキャビネット内の空気が圧縮され、これが空気バネとなってスピーカーの動きを妨げることになる。キャビネットの容積が小さいほど、スピーカーの動きを妨げる影響が大きく発現するので、特に低音領域において音圧レベルが低下し、最低共振周波数が高まってしまう。したがって、低音域の再生能力を高めるためには、キャビネットの容積を大きくする必要があるものの、その大容積化は音響スピーカー装置の小型化等を妨げることになる。
 そこで、従来から、小型化等されているか否かに関わらず、音響スピーカー装置においては、低音域の再生能力を改善するための様々な技術が提案されている。
 例えば、特許文献1には、キャビネットの壁面に複数の音響フィンが傾斜して取り付けられ、音響フィンの終端に開口部が設けられた構成の音響スピーカー装置が開示されている。この構成によれば、音響フィンにより角型3次元螺旋音道が形成され、低音域の量感が増すことになる。
 また、特許文献2には、キャビネット(ボックス)内に活性炭等の吸着材料の塊(材料塊)を設けた構成の拡声器アセンブリが開示されている。この構成によれば、活性炭は、スピーカーユニット(具体的には振動板)の振動により発生するキャビネット内の気体の圧縮または膨張を、急速に吸着または脱離する。これにより、キャビネット内の圧力変動が抑制され、低音部における音質レベルの低下を防ぐことができる。
 また、特許文献3には、キャビネット内に設けられる活性炭として、少なくとも部分的に疎水性であるか、疎水性になるよう処理された活性炭を用いた音響エンクロージャーが開示されている。活性炭が水蒸気を吸着すると、水分子が活性炭の細孔に吸着されてブロックされるため、空気の吸着を妨げる。そこで、特許文献3では、少なくとも部分的に疎水性の活性炭が用いられている。
 ところで、ゼオライトは、活性炭とともに代表的な吸着材料として知られているが、このゼオライトをフィルム状またはシート状に加工して用いる技術が種々提案されている。
 例えば、特許文献4には、ゼオライト系吸着剤を1から50重量%配合した合成樹脂をフィルム状に押出した後、延伸させたフィルム状気体吸着材料が提案されている。特許文献4では、実施例においてアンモニアおよび硫化水素に対する吸着能が評価されている。
 また、特許文献5には、多層フィルムを用いた真空断熱材において、多層フィルムを構成する樹脂フィルムにゲッター材としてゼオライトを混練する技術が提案されている。
 多層フィルムは、PET(ポリエチレンテレフタレート)フィルム、アルミ箔およびPE(ポリエチレン)フィルムをラミネートした構成となっており、真空断熱材は、この多層フィルムの周囲をヒートシールして袋状にし、その内部に骨材として粉末のシリカ等を充填し内部を真空排気後、開口部をヒートシールした構成となっている。そして、PETフィルムおよびPEフィルムにはゲッター材としてゼオライト、あるいはゼオライトおよび活性炭が混練されている。これにより、多層フィルム外からの水分、炭酸ガス等をフィルム内部に侵入する前にゲッター材により吸着させることができる。
特開2008-79268号公報 特表昭60-500645号公報 特表2004-537938号公報 特開昭63-256133号公報 特開平07-103389号公報
 ここで、特許文献1に開示される技術は、音響フィンの設置空間を必要とするため、小型化等された音響スピーカー装置には適さない場合がある。
 また、特許文献2に開示される技術では、乾燥している環境下では、活性炭はキャビネット内の空気を良好に吸着することができるが、高湿の環境下では、特許文献3に記載されているように、水分子が活性炭の細孔に吸着されるので、キャビネット内の空気を吸着しにくくなる。その結果、キャビネット内の圧力変動の抑制に十分対応できなくなり、音質レベルの低下を招く場合がある。
 なお、特許文献2には、湿気が活性炭の塊(材料塊)に侵入しないようにするダイヤフラム等が開示されている。しかしながら、このダイヤフラム等を設けることによって、音響スピーカー装置の構造が複雑化するとともに、ダイヤフラム等を設置する空間が必要になるため、小型化等に十分対応することができないおそれがある。
 また、キャビネット内に乾燥ガスを導入することで、活性炭への水分の吸着を抑制する技術も考えられる。しかしながら、キャビネット内で乾燥ガスを完全に密封できるわけではないので、乾燥ガスは徐々に大気に置換されていく。それゆえ、キャビネット内への乾燥ガスの導入は、短期的には効果が期待されるが、長期的な効果の持続は期待できない。
 また、特許文献3に開示される技術では、活性炭を少なくとも部分的に疎水化することにより、活性炭への水の吸着を抑制している。しかしながら、本発明者らの検討によれば、このような疎水化処理によっても、後述する参考例に示すように水の吸着を十分に抑制できないことが明らかとなっている。さらに、特許文献3に開示されているケイ素含有化合物による疎水化処理は、一般的な疎水化処理にも用いられているが、比較的高価な処理であり、コスト面からも好ましくない。
 さらに後述するように、本発明者らの検討によれば、キャビネット内に活性炭を設けることにより、音響スピーカー装置の低音域の再生能力の改善を図る場合には、キャビネット内の水蒸気の分圧(平衡水蒸気圧)を1000Pa以下に抑制することが重要であることが明らかとなっている。それゆえ、例えば、活性炭に水分を吸着させないために、キャビネット内にゼオライト系の吸着材料を併用することが考えられる。
 しかしながら、特許文献4または5に開示されるフィルム状またはシート状の気体吸着材料では、大容量の水分を十分に吸着できないため、キャビネット内での平衡水蒸気圧を1000Pa以下まで吸着することは困難となっている。例えば特許文献4に開示される気体吸着材料は、アンモニアおよび硫化水素を主たる吸着の対象としており、水分の吸着については記載がない。また、特許文献5に開示される気体吸着材料は、炭酸ガスとともに水分の吸着について記載があるものの、キャビネットのような広い空間内での吸着を対象としているのではなく、多層フィルム内に侵入しようとする水分の吸着を対象としているので、大容量の水分を吸着することはできない。
 さらに、ゼオライトを高活性化して気体の吸着容量を大きくするために、例えば、イオン交換等によってゼオライトに金属イオンを導入する技術が知られているが、本発明者らの検討によれば、このような活性化技術は、特許文献4または5に開示される気体吸着材料には適用できない場合がある。
 具体的には、フィルム状またはシート状の気体吸着材料は、一般的には、熱可塑性樹脂に対して所定量のゼオライト(および添加剤等)を配合して混合し、加熱成形することにより製造される。このとき、ゼオライトに金属イオンが導入されていると、例えば加熱成形時の条件等によって、金属イオンが触媒として作用し、熱可塑性樹脂を侵食(銅蝕)する可能性がある。例えば、特許文献4には、熱可塑性樹脂としてポリプロピレンを用いた実施例が記載されているが、この場合の加熱成形温度は230℃~250℃であるので、金属イオンによる触媒作用が十分発生する可能性がある。
 このように、熱可塑性樹脂の具体的な種類に対して加熱成形温度の範囲を適宜設定しておかないと、フィルム状またはシート状に成形できなかったり、成形できたとしても裂け、割れ、あるいは変色等が生じたりするおそれがある。このような気体吸着材料は、その取扱性が大幅に低下してしまう。
 そもそも特許文献4または5には、ゼオライトの具体的な型(種類)、ゼオライトへの金属イオンの導入等については何ら記載されていないので、ゼオライトを高活性化することについてはそもそも検討されていない。それゆえ、特許文献4または5に開示される気体吸着材料は、音響スピーカー装置に適用したとしても、キャビネット内の水を十分に吸着するには不十分となっている。
 本発明はこのような課題を解決するためになされたものであって、良好な低音域の再生能力を実現することができ、小型化および/または薄型化にも対応可能な構成を有する音響スピーカー装置を提供することを目的とする。
 本発明に係る音響スピーカー装置は、前記の課題を解決するために、キャビネットと、当該キャビネットに取り付けられたスピーカーユニットと、前記キャビネット内に設けられ、当該キャビネット内の水分並びに気体成分を吸着可能とする気体吸着材料と、を備え、前記気体吸着材料は、少なくとも多孔性炭素材料およびシート状水分吸着材料から構成され、前記シート状水分吸着材料は、銅イオン交換されたZSM-5型ゼオライトが、少なくとも高分子材料からなる基材中に分散されたものであり、前記キャビネットの内壁の少なくとも一部に貼り付けられている構成である。
 前記構成の音響スピーカー装置においては、前記シート状水分吸着材料は、少なくとも、前記キャビネットの前側となる内面に貼り付けられている構成であってもよい。
 また、前記構成の音響スピーカー装置においては、前記シート状水分吸着材料は、少なくとも、前記キャビネットの内面のうち、前記多孔性炭素材料の直下となる部位に貼り付けられている構成であってもよい。
 また、前記構成の音響スピーカー装置においては、前記シート状水分吸着材料の前記基材は、前記高分子材料として熱可塑性樹脂を含有する樹脂組成物であってもよい。
 また、前記構成の音響スピーカー装置においては、前記シート状水分吸着材料は、前記樹脂組成物100重量部に対して前記ZSM-5型ゼオライトを40重量部以下配合した上でシート状に加熱成形されたものであってもよい。
 また、前記構成の音響スピーカー装置においては、前記シート状水分吸着材料は、前記熱可塑性樹脂の軟化温度より60℃高い温度である上限温度以下で加熱成形されたものであってもよい。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明では、以上の構成により、良好な低音域の再生能力を実現することができ、小型化および/または薄型化にも対応可能な構成を有する音響スピーカー装置を提供することができる、という効果を奏する。
本発明の実施の形態に係る音響スピーカー装置の概略構成を示す模式的断面図である。 図1に示す音響スピーカー装置が備えるシート状水分吸着材料の構成の一例を示す模式的断面図である。 本発明の参考例において、疎水化処理を施した活性炭と施していない活性炭とにおける水分の吸着等温線を示すグラフである。 日本国大阪においての1年間の水蒸気圧の変化を示すグラフである。 本発明の実施例1の音響スピーカー装置に用いたシート状水分吸着材料における水分の吸着等温線を示すグラフである。 本発明の実施例1の音響スピーカー装置、および比較例1の比較音響スピーカー装置における音圧の測定結果を示すグラフである。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。また、本実施の形態よって本発明が限定されるものではない。
 [音響スピーカー装置の構成]
 まず、本実施の形態に係る音響スピーカー装置の構成の一例について、図1を参照して具体的に説明する。図1に示すように、音響スピーカー装置10は、キャビネット12、スピーカーユニット13、多孔性炭素材料包装体14A、シート状水分吸着材料14Bを備えている密閉型である。
 キャビネット12(あるいはエンクロージャー、音響箱等)は、その前面11にスピーカーユニット13が取り付けられるよう構成されており、その内部は実質的に密閉されている。キャビネット12の具体的な形状、材質、寸法等については特に限定されず、その用途に応じて公知の形状、材質が選択され、その用途に応じた寸法が設定される。
 スピーカーユニット13は、キャビネット12の前面11に取り付けられ、その前方はキャビネット12の外側に位置し、その後方はキャビネット12の内部の空間に面している。本実施の形態では、スピーカーユニット13としてはコーン型(cone type)が用いられている。なお、スピーカーユニット13の具体的な構成は特に限定されず、その用途、形状、寸法等の諸条件に応じて、ドーム型(dome type)、ホーン型(horn type)、リボン型(ribbon type)等の公知のものを好適に用いることができる。
 キャビネット12の内部には、多孔性炭素材料包装体14Aおよびシート状水分吸着材料14Bが設けられている。これらは、キャビネット12内に設けられ、当該キャビネット12内の水分並びに気体成分を吸着可能とする気体吸着材料として用いられている。
 多孔性炭素材料包装体14Aは、スピーカーユニット13により生じるキャビネット12内の気体の圧縮または膨張を、急速に吸着または脱離するものであり、言い換えれば、キャビネット12内の空気の圧縮または膨張を緩衝するように空気を吸着または脱離する気体吸着材料である。多孔性炭素材料包装体14Aは、後述するように多孔性炭素材料41と袋体42とから構成されており、キャビネット12内の床面(下側の内面)で固定されずに載置されている。
 シート状水分吸着材料14Bは、キャビネット12内の水分をできる限り吸着して、多孔性炭素材料包装体14Aによる水分の吸着を抑制または回避するものであり、言い換えれば、キャビネット12内の水分を多孔性炭素材料包装体14Aよりも優先的に吸着する気体吸着材料である。
 図2を参照して説明すると、シート状水分吸着材料14Bは、銅イオン交換されたZSM-5型ゼオライト43(以下、説明の便宜上、「Cu-ZSM-5ゼオライト43」と略す。)が、熱可塑性樹脂を含有する樹脂組成物44(熱可塑性樹脂組成物44)中に分散された樹脂シートとして構成されており、本実施の形態では、キャビネット12の内面のうち床面および天面(上側の内面)に貼り付けられている。なお、Cu-ZSM-5ゼオライト43および熱可塑性樹脂組成物44については後述する。
 スピーカーユニット13は、電気信号が印加されることによりボイスコイルに圧力が発生し、コーン型の振動板が振動する。これにより振動板の前方および後方から音声が発せられる。前方からの音声と後方からの音声とは互いに逆位相となっているので、スピーカーユニット13の後方をキャビネット12という密閉した箱体で覆うことで、後方から発せられる音声が遮断される。
 ここで、振動板の後方に生ずる音圧は、キャビネット12の内部圧力を上昇させる。これによりキャビネット12内部が空気バネとなってスピーカーユニット13の動作(振動板の動き)を妨げることになる。この妨げは、キャビネット12の容積が小さいほど顕著となるので、多孔性炭素材料包装体14Aにより空気バネの作用を緩和し、低音域の再生能力の低下を有効に抑制することができる。
 [多孔性炭素材料包装体]
 次に、多孔性炭素材料包装体14Aについて説明する。多孔性炭素材料包装体14Aの袋体42は、通気性を有する不織布からなり、その四方がシールされて袋状に構成されている。この袋体42の内部に多孔性炭素材料41が封入されている。
 多孔性炭素材料41は、炭素を主成分とし、その表面に多数の微細な孔(細孔)を有する材料(多孔性材料)であり、その具体的な構成は特に限定されない。代表的なものとしては、各種活性炭、多孔性カーボンブラック、カーボンナノチューブ、多孔性カーボンセラミックス等が挙げられる。これらの中でも、キャビネット12内における気体吸着性能およびコストの面から活性炭が特に好ましく用いられる。
 具体的な活性炭としては、おが屑炭、ヤシ殻炭、木炭等の植物原料系活性炭;石炭(亜炭、褐炭、瀝青炭、無煙炭等)、草炭(ピート)、オイルカーボン、石炭ピッチ、石油ピッチ等の鉱物原料系活性炭;フェノール系、レーヨン系、アクリロニトリル系等の合成樹脂系活性炭;等が挙げられる。これら活性炭は1種類のみを用いてもよいし、2種類以上を適宜組み合わせて用いてもよい。
 また、多孔性炭素材料41の形状も特に限定されず、粉末状、粒状(ペレット状)、繊維状、ハニカム状、塊状等の公知の形状を好適に用いることができる。粒状の場合、粒(ペレット)の形状は、破砕状、円柱状、球状等を挙げることができる。多孔性炭素材料41が粉末状または粒状であれば、袋体42等の包装材に封入して用いることが好ましいが、繊維状または塊状の場合には、包装材に封入しなくてもよい。気体吸着性能を鑑みれば、粉末状または粒状であることが好ましい。
 袋体42は、前記の通り不織布で構成されているが、不織布に用いられる具体的な繊維材料は特に限定されず、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリオレフィン繊維、レーヨン繊維、セルロース繊維等の公知の繊維材料で形成されていればよい。また、四方の周囲をシールする構成も特に限定されず、ポリオレフィン繊維等の熱可塑性樹脂からなる繊維の場合には、不織布を直接加熱してシールしてもよいし、ホットメルト系の接着剤を用いてもよいし、公知のシール用部材等を用いてもよい。
 また、内部に封入している多孔性炭素材料41が外部に漏れ出すことが回避できるのであれば、袋体42は織物で構成されてもよい。このとき用いられる繊維材料も前述した公知のものであればよい。あるいは、気体吸着が可能な程度の良好な通気性が確保されるのであれば、袋体42は、不織布、織物等の布体ではなく、通気性シート材で構成されてもよい。
 [銅イオン交換されたZSM-5型ゼオライト]
 次に、シート状水分吸着材料14Bに用いられるCu-ZSM-5ゼオライト43の構成の一例について、具体的に説明する。
 Cu-ZSM-5ゼオライト43は、ZSM-5骨格を有するゼオライト(ZSM-5型ゼオライト)を銅イオン交換(銅イオン交換工程)してから水洗し(水洗工程)、その後乾燥する(乾燥工程)プロセスを経ることにより調製することができる。なお、必要に応じて、銅イオン交換、水洗、および乾燥以外の工程を行ってもよい。
 用いられるZSM-5型ゼオライトの具体的な構成は特に限定されず、市販の粉体状のものを好適に用いることができる。また、ZSM-5型ゼオライトの粒径も特に限定されず、後述するように、熱可塑性樹脂組成物44中に十分に分散でき、かつ、シート状(またはフィルム状)に良好に成形できる範囲内の粒径であればよい。好ましい粒径の一例としては、0.1~10μmの範囲内が挙げられるが、もちろんこの範囲内に限定されない。
 銅イオン交換工程は、公知の方法により行うことができる。具体的には、例えば、銅の可溶性塩の水溶液にZSM-5型ゼオライトを浸漬する方法が一般的である。このとき用いられる銅の可溶性塩としては、例えば、塩化銅、硝酸銅、硫酸銅等の無機塩、あるいは、酢酸銅、プロピオン酸銅等の有機塩等が挙げられる。これらの中でも、プロピオン酸銅(II)または酢酸銅(II)等の2価の銅イオン(Cu2+)のカルボン酸塩(カルボキシラート)を含む水溶液でイオン交換を行ったものは、水分吸着活性が高くなる傾向にあるため好ましい。
 水洗工程は、銅イオン交換工程の後、ZSM-5型ゼオライトを十分に水洗する工程である。水洗の具体的な条件は特に限定されず、例えばイオン交換水等といった純度の高い水を用いればよく、また、水洗時間も、可溶性塩等を十分に除去できる時間に設定すればよい。
 乾燥工程は、水洗工程の後にZSM-5型ゼオライトの表面に付着している水分を除去する工程である。乾燥の具体的な手は特に限定されず、一般的な加熱乾燥または減圧下乾燥を用いればよく、また、乾燥温度および乾燥時間も、水分を十分に除去できる温度および時間に設定すればよい。
 このようにして調製されたCu-ZSM-5ゼオライト43は、低分圧領域において水分吸着に優れた活性を発現することができる。具体的には、ゼオライトにおいては、イオンの種類を選択することで細孔の径を制御することが可能であることが知られている。そして、Cu-ZSM-5ゼオライト43は、ZSM-5骨格を有し、銅イオンが導入されたものであるので、その表面に形成されている細孔が、水の吸着に適する径および形状となっている。加えて、前述したように銅イオン交換工程、水洗工程、乾燥工程を経た後では、導入された銅イオンが加熱処理により活性化されている。これにより、Cu-ZSM-5ゼオライト43は、物理的吸着に好適な細孔を有し、活性化された銅イオンにより良好な化学的吸着を発現することができ、特に、低分圧領域では、化学的吸着に類する挙動によって優れた水分吸着活性を発現することが可能となっている。
 また、調製されたCu-ZSM-5ゼオライト43は、そのままシート状水分吸着材料14Bの製造(シート成形)に用いることができるが、必要に応じて様々な後処理または後加工を施すことができる。具体的には、例えば、加熱乾燥処理、真空熱処理、顆粒状加工、もしくは表面修飾処理等を挙げることができる。
 加熱乾燥処理は、Cu-ZSM-5ゼオライト43が吸着した水分を脱離(除去)するために行うことができる。これは、Cu-ZSM-5ゼオライト43を調製した後、シート成形に用いるまで保管されている間に、空気中の水分を吸着している場合があり得るためである。これにより、Cu-ZSM-5ゼオライト43に含まれる水分を脱離させた状態でシート成形に用いることができるので、得られるシート状水分吸着材料14Bの水分吸着容量を相対的に大きくすることが可能となる。
 Cu-ZSM-5ゼオライト43に対する加熱乾燥処理の条件は特に限定されないが、代表的には、公知の乾燥炉等を用いて、おおむね100℃~300℃の範囲内で、例えば数時間程度加熱することで、保管中に吸収した水分の約90~95%を脱離させることができる。
 真空熱処理は、Cu-ZSM-5ゼオライト43の水分を脱離させるとともに、導入された銅イオンを活性化するために行うことができる。真空熱処理による銅イオンの活性化とは、2価の銅イオン(Cu2+)を1価の銅イオン(Cu+ )に還元することにより、より高い水分吸着活性を発現させることを意味する。したがって、得られるシート状水分吸着材料14Bの水分吸着能力をより良好なものとする上では、真空熱処理を行うことが好ましい。
 Cu-ZSM-5ゼオライト43に対する真空熱処理の条件は特に限定されないが、代表的には、圧力が10Pa以下、好ましくは1mPa以下、加熱温度が300℃以上、好ましくはおおむね500~600℃の範囲内となる条件を挙げることができる。温度については、銅イオンの還元をより適切に進行させる上で、基本的には300℃以上に設定する必要があるが、条件によっては300℃以下であってもよい。
 顆粒状加工については、公知の方法を用いて粉体状のCu-ZSM-5ゼオライト43を凝集させて顆粒状に加工すればよい。また、表面修飾処理は、例えば熱可塑性樹脂組成物44への分散性を向上させるために、水分吸着を阻害しない範囲で、Cu-ZSM-5ゼオライト43の表面に公知の修飾処理を施せばよい。
 [熱可塑性樹脂組成物およびシート状水分吸着材料]
 次に、シート状水分吸着材料14Bに用いられる熱可塑性樹脂組成物44の構成の一例、シート状水分吸着材料14Bの構成の一例、並びに、シート状水分吸着材料14Bの成形方法の一例について、具体的に説明する。
 熱可塑性樹脂組成物44は、シート状水分吸着材料14Bの基材であり、熱可塑性樹脂を主成分として含有し、さらに必要に応じて種々の添加剤等を含有する組成物である。
 主成分である熱可塑性樹脂の具体的な種類は特に限定されず、例えば、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリエステル樹脂(芳香族だけでなく脂肪族も含む);ナイロン、アラミド等のポリアミド樹脂;ポリアセタール樹脂;ポリアリレート樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂等のその他の芳香族系樹脂;ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンオキシド樹脂等のポリフェニレン系樹脂;ポリイミド樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂等のポリイミド系樹脂;ABS(Acrylonitrile-Butadiene- Styrene)樹脂、α-メチルスチレン系ABS樹脂、フェニルマレイミド系ABS樹脂、ASA(Acrylonitrile-Styrene-Acrylate)樹脂、AES(Acrylonitrile-Ethylene-Styrene)樹脂等のABS系樹脂;AS(Acrylonitrile-Stylene)樹脂(SAN(Stylene AcryloNitrille copolymer));酢酸セルロース、セルロースアセテートプチトレート等のセルロース系樹脂;等が挙げられる。これら熱可塑性樹脂は1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。
 熱可塑性樹脂組成物44には、前述した1種類以上の熱可塑性樹脂以外に、分散剤、酸化防止剤、帯電防止剤、難燃剤、可塑剤等の各種添加剤を含んでもよいし、Cu-ZSM-5ゼオライト43以外の気体吸着剤、充填材としてのフィラー等を含んでいてもよい。したがって、本実施の形態では、熱可塑性樹脂組成物44とは、Cu-ZSM-5ゼオライト43以外の成分を、熱可塑性樹脂を主成分とする一つの組成物と見なしたものであると定義することができる。
 なお、代表的な添加剤としては、熱可塑性樹脂とCu-ZSM-5ゼオライト43とを混合するときにCu-ZSM-5ゼオライト43の分散性を向上させる分散剤が挙げられる。この分散剤としては、具体的には、例えば、パラフィン等の潤滑剤を用いることができるが、分散剤はこれに限定されず、熱可塑性樹脂の種類に応じて公知のものを適宜選択することができる。
 熱可塑性樹脂組成物44に対するCu-ZSM-5ゼオライト43の配合量は特に限定されないが、100重量部の熱可塑性樹脂組成物44に対して、Cu-ZSM-5ゼオライト43を40重量部以下となるように配合することが好ましい。Cu-ZSM-5ゼオライト43の配合量が40重量部以下であれば、諸条件(熱可塑性樹脂の種類、添加剤の種類、シートの寸法、成形条件等)を問わず、得られるシート状水分吸着材料14Bに銅蝕が起こらず、割れまたは裂け等が生じることを有効に抑制することができる。それゆえ、得られるシート状水分吸着材料14Bにおいて良好な強度および良好な取扱性を実現することができる。なお、Cu-ZSM-5ゼオライト43が40重量部を超えている場合、諸条件によっては割れまたは裂け等が生じて外観が損なわれ、また取扱性が低下する場合がある。
 シート状水分吸着材料14Bの幅または長さ等の寸法については、用いられる音響スピーカー装置10のキャビネット12の大きさ等に合わせて適切な寸法を設定することができる。また、シート状水分吸着材料14Bの厚さも特に限定されず、熱可塑性樹脂の種類または添加剤の種類にもよるが、シート状と認識できる程度に可撓性を実現できる程度の厚さであればよい。一般的には、おおよそ1μm以上1mm(1000μm)以下の範囲内の厚さであればよいが、さらには1~10μmの範囲内まで薄肉化されていることが好ましい。
 本実施の形態に係るシート状水分吸着材料14Bの成形方法は特に限定されず、前述したように、100重量部の熱可塑性樹脂組成物44に対してCu-ZSM-5ゼオライト43を40重量部以下となるように配合した上で、シート状に加熱成形すればよい。
 具体的には、例えば、まず、1種類以上の熱可塑性樹脂の原料ペレット、分散剤(例えばパラフィン)等の添加剤、Cu-ZSM-5ゼオライト43をそれぞれ所定量準備して、ホッパー等の供給器に供給して混合する。得られる混合物を成形機に供給して、加熱しながらシート成形を行う。成形機はシート成形が可能なものであれば特に限定されないが、代表的には、公知の押出成形機または公知のフィルムキャスト装置等を用いることができる。
 ここで、本実施の形態では、予め加熱成形時の上限温度を設定しておくことが好ましい。この上限温度は、用いられる熱可塑性樹脂の軟化温度(融点)より60℃高い温度として設定される。例えば、熱可塑性樹脂が高密度ポリエチレン(HDPE)であれば、その軟化温度は130℃であるので、シート成形時の上限温度は190℃以下となるように設定される。このような上限温度を設定することで、薄肉化したシート状水分吸着材料14Bを容易に成形することができるとともに、得られるシート状水分吸着材料14Bにおいては銅蝕が起こらないので、割れまたは裂けの発生がほとんどなく、十分な強度と良好な取扱性を確保することができる。
 なお、同種の熱可塑性樹脂であっても重合度等によって軟化温度に幅があり、例えばポリエチレンの場合であれば、軟化温度は必ずしも130℃とはならず、おおむね100~140℃の範囲内に入っている。それゆえ、上限温度は、用いられる熱可塑性樹脂の軟化温度を基準として、当該軟化温度より60℃高い温度以下となるように設定すればよい。また、熱可塑性樹脂を2種類以上用いる場合、ポリマーアロイまたはポリマーブレンドした状態での軟化温度を基準として上限温度を設定してもよいし、いずれか1つの熱可塑性樹脂の軟化温度を基準として上限温度を設定してもよい。
 [気体吸着材料の配置および気体吸着作用]
 次に、気体吸着材料である多孔性炭素材料包装体14Aおよびシート状水分吸着材料14Bのキャビネット12内での配置と、その気体吸着作用について具体的に説明する。
 多孔性炭素材料包装体14Aおよびシート状水分吸着材料14Bは、キャビネット12内に設けられていればよいが、シート状水分吸着材料14Bは、キャビネット12の内面に貼り付けられている。これにより、シート状水分吸着材料14Bを設置する容積は非常に小さくなるので、キャビネット12の内部の容積を実質的に小さくすることがない。そのため、音響スピーカー装置10の大型化を回避できるとともに、音響スピーカー装置10が小型であっても小型化を妨げることなくシート状水分吸着材料14Bを設置することができる。
 また、本実施の形態に係るシート状水分吸着材料14Bの吸着活性は、大気の主成分である窒素または酸素等に対するよりも水に対する方が高くなっている。そのため、シート状水分吸着材料14Bは、大気に接触して窒素または酸素等を先に吸着しても、キャビネット12内に水分が存在していれば、水分を優先的に吸着する。これにより、窒素または酸素等と水との置換が生じ、キャビネット12内の水分を迅速に吸着することができる。
 それゆえ、シート状水分吸着材料14Bが優先的に水分を吸着することによって、多孔性炭素材料包装体14Aが水分を吸着して飽和する状態に陥るおそれを有効に抑制することができる。そのため、多孔性炭素材料包装体14Aは、スピーカーユニット13の動作時に、キャビネット12内の空気の圧縮または膨張を緩衝するように空気を吸着または脱離することができる。その結果、音響スピーカー装置10においては、低音域の再生能力を十分に発揮することができる。
 ここで、シート状水分吸着材料14Bの吸着開始水蒸気圧は、50Pa以下以上であることが好ましい。ここでいう吸着開始水蒸気圧とは、吸着容量法により25℃の条件にて測定した水分吸着等温線において、おおむね0.1ml/g以上の吸着量が測定される平衡圧を指す。
 一般的な多孔性炭素材料41の吸着開始水蒸気圧は80~500Paの範囲内である。また、水分を大量に吸着し始める際の吸着開始水蒸気圧、または、急激に吸着し始める吸着開始水蒸気圧は、1200~2000Paの範囲内である。そのため、シート状水分吸着材料14Bとして、その吸着開始水蒸気圧が多孔性炭素材料41より十分低いものを用いれば、多孔性炭素材料41の水分吸着をほぼ完全に抑制することが可能となる。シート状水分吸着材料14Bの吸着開始水蒸気圧が80Pa以上未満であれば、多孔性炭素材料41の水分吸着を抑制することが不十分となる可能性がある。
 ここで、キャビネット12の内面とは、キャビネット12の内側の壁面を指し、シート状水分吸着材料14Bが貼り付けられる内面は、音響スピーカー装置10を構成する各種部材の設置を実質的に阻害しないような面であることが好ましい。本実施の形態では、図1に示すように、床面および天面にシート状水分吸着材料14Bが貼り付けられている。また、シート状水分吸着材料14Bを貼り付ける方法も特に限定されず、公知の各種接着剤、公知の両面テープ、その他、公知の物理的な固定部材等を利用することができる。
 ここで、シート状水分吸着材料14Bが貼り付けられる具体的な位置については、床面および天面に限定されないが、次の2つの条件の少なくとも一方を満たすような位置であることが好ましい。
 まず、第一の条件としては、シート状水分吸着材料14Bは、少なくとも、キャビネット12の前側となる内面に貼り付けられていることが好ましい。この第一の条件は、キャビネット12の外からの水分の侵入を考慮したものである。
 音響スピーカー装置10が、後方を開放する構成ではなく、図1に示す密閉型のように後方が閉じた構成であれば、キャビネット12の外から水分が侵入する可能性は、実質的に、スピーカーユニット13が設けられている前面11のみとなる。そこで、シート状水分吸着材料14Bを前側に貼り付けることで、外から侵入する水分を優先的に吸着することができる。これにより、多孔性炭素材料包装体14A(厳密には封入されている多孔性炭素材料41)が、水分を吸着してしまう可能性を低減することができる。
 また、第二の条件としては、シート状水分吸着材料14Bは、キャビネット12の内面のうち、少なくとも、多孔性炭素材料包装体14Aの直下となる部位に貼り付けられていることが好ましい。この第二の条件は、多孔性炭素材料包装体14Aのキャビネット12内の位置を考慮したものである。
 前記の通り、シート状水分吸着材料14Bは、多孔性炭素材料包装体14Aが水分を吸着しないように、先んじて水分を吸着するために設けられている。そして、多孔性炭素材料包装体14Aをキャビネット12内で簡素な手法で安定して配置させるには、本実施の形態のように床面に載置すればよい。そこで、シート状水分吸着材料14Bを多孔性炭素材料包装体14Aの直下となる部位に貼り付けることで、キャビネット12内の水分を、多孔性炭素材料包装体14Aで吸着される前に、シート状水分吸着材料14Bにより優先的に吸着することが可能となる。
 本実施の形態では、前述した通り、シート状水分吸着材料14Bは、キャビネット12内の床面および天面に全体的に貼り付けられているので、シート状水分吸着材料14Bは、第一の条件を満たすように貼り付けられていることになる。また、図1に示すように、多孔性炭素材料包装体14Aは、キャビネット12内の床面に載置されており、キャビネット12の床面にはシート状水分吸着材料14Bが貼り付けられている。それゆえ、シート状水分吸着材料14Bは、第二の条件を満たすように貼り付けられていることになる。
 なお、多孔性炭素材料包装体14Aは、床面に単に載置されているだけであるが、公知の手法で床面上に固定されてもよいし、床面以外の位置に固定されてもよい。このとき、シート状水分吸着材料14Bは、前述した第一の条件および/または第二の条件を満たすように、キャビネット12内の適切な内面に貼り付けられればよい。
 以上のように、本実施の形態に係る音響スピーカー装置10は、スピーカーユニット13が取り付けられるキャビネット12内において、気体吸着材料として、空気を優先的に吸着および脱離する多孔性炭素材料包装体14Aと、Cu-ZSM-5ゼオライト43および熱可塑性樹脂組成物44を含むシート状水分吸着材料14Bとを備えている。また、後述する参考例の結果から、音響スピーカー装置10の一般的な使用環境では、大気中の水の分圧(平衡水蒸気圧)はおおむね1000Pa程度である。
 前記構成によれば、大気中の水の分圧が1000Paを超える高湿度の環境下であっても、シート状水分吸着材料14Bは、水に対して高い吸着活性を発現することができるので、キャビネット12内の水分を迅速に吸着して除去することができる。それゆえ、キャビネット12内を平衡水蒸気圧を1000Pa未満に保持することが可能となり、多孔性炭素材料包装体14Aに封入されている多孔性炭素材料41が、水分を吸着して飽和することが有効に抑制される。
 これにより、多孔性炭素材料包装体14Aは、スピーカーユニット13が動作している際に、キャビネット12内の空気の圧縮または膨張を緩衝するように空気を吸着または脱離することができる。その結果、キャビネット12内における圧力変動が有効に抑制されるので、音響スピーカー装置10においては、充分な低音域の再生能力が得られる。それゆえ、例えばキャビネット12の容量を大きくしなくても、実質的に大容量のキャビネット12を用いた場合と同等の音響効果を得ることが可能となる。
 また、本実施の形態によれば、従来の技術ように、多孔性炭素材料41に高価な疎水化処理を施したり、あるいはキャビネット12内へ乾燥ガスを導入したりする必要がないので、簡素な工程で高品質の音響スピーカー装置10を製造することができる。
 さらに、水分吸着材料がシート状であるため、キャビネット12の内面に貼り付けることができる。それゆえ、キャビネット12の内部空間の形状をほぼ維持することができるとともに、内部の外観等を損なうことない。加えて、シート状水分吸着材料14Bの設置に要する容積も小さくすることができるので、実質的にキャビネット12内の容積が狭くなることがない。それゆえ、音響スピーカー装置10の大型化を有効に抑えることができ、小型の音響スピーカー装置10に好適に用いることができる。
[変形例]
 本実施の形態に係る音響スピーカー装置10は、図1に示すように密閉型であるが、本実施の形態はこれに限定されるものではなく、低音域の再生能力に改善の余地がある音響スピーカー装置であれば、どのようなタイプのものにも利用することができる。具体的には、例えば、バスレフ型(bass reflex type)であってもよい。
 音響スピーカー装置10がバスレフ型であれば、前面11からキャビネット12内につながるダクトが設けられることになるが、この場合、シート状水分吸着材料14Bは、少なくともダクトの内部に貼り付けたり、キャビネット12内におけるダクトの開口付近に貼り付けたりすればよい。これにより、多孔性炭素材料41よりもシート状水分吸着材料14Bが優先的に水分を吸着することができるので、多孔性炭素材料包装体14Aは、スピーカーユニット13が動作している際に、キャビネット12内の空気の圧縮または膨張を緩衝するように空気を吸着または脱離することができる。
 また、本実施の形態では、シート状水分吸着材料14Bは、基材として熱可塑性樹脂組成物44を用いた構成となっているが、本実施の形態はこれに限定されず、基材は少なくとも高分子材料からなっており、この基材中にCu-ZSM-5ゼオライト43を分散させる構成となっていればよい。基材となる高分子材料としては、例えば、熱硬化性樹脂組成物であってもよいし、熱以外の化学反応的に硬化する樹脂組成物であってもよいし、必ずしも硬化せず、Cu-ZSM-5ゼオライト43を分散した状態で、シート状またはフィルム状に形状を保持できるような樹脂組成物であってもよい。
 また、本実施の形態では、シート状水分吸着材料14Bは、床面および天面に貼り付けられており、好ましくは、前述した第一の条件(少なくとも、キャビネット12の前側となる内面に貼り付けられている条件)を満たすか、または、前述した第二の条件(キャビネット12の内面のうち、少なくとも、多孔性炭素材料包装体14Aの直下となる部位に貼り付けられている条件)を満たすか、あるいは両方の条件を満たしていればよいが、本実施の形態は、これに限定されず、キャビネット12の全内面にシート状水分吸着材料14Bが貼り付けられてもよいし、前述した各条件を満たさないように貼り付けられてもよい。
 さらに、下記の各構成を有する音響スピーカー装置についても、本実施の形態の変形例として含まれる。
 具体的には、本実施の形態に係る音響スピーカー装置は、少なくとも、キャビネットと、前記キャビネットに取り付けられたスピーカーユニットと、前記キャビネット内部に設けられたスピーカー装置用気体吸着材料と、を有する音響スピーカー装置であって、前記スピーカー装置用気体吸着材料が、少なくとも、多孔性炭素材料とシート状水分吸着剤とを備え、前記シート状水分吸着剤が、少なくとも銅イオン交換されたZSM-5型ゼオライト(Cu-ZSM-5ゼオライト)と熱可塑性樹脂成分とを含むものであってもよい。
 これにより、大気中の水の分圧が1000Paを超える環境であっても、水に対して高い吸着活性を有するシート状水分吸着剤によって、キャビネット内の水分を迅速に吸着除去することができるので、キャビネット内の平衡水蒸気圧を1000Pa未満に保つことができ、多孔性炭素材料が、水分を吸着して飽和することを抑制することができる。
 その結果、スピーカーユニットの動作時には、多孔性炭素材料により十分な気体吸着および脱着効果が得られるので、低音域の再生能力を十分に発揮することができる。また、シート状水分吸着剤は、音響スピーカー装置に適用する際に、設置に要する空間容積が小さいため、小型の音響スピーカー装置において低音域の音質を改善することが可能となる。
 前記構成の音響スピーカー装置においては、前記熱可塑性樹脂成分に対するCu-ZSM-5ゼオライトの配合部数を、40重量部以下としたものであってもよい。これにより、熱可塑性樹脂成分に対するCu-ZSM-5ゼオライトの配合部数が適正化されるので、得られるシート状水分吸着剤には、割れや裂けが生じることなく、また、1~10μm厚程度まで薄肉化可能であり、十分な強度を実現することができる。
 また、前記構成の音響スピーカー装置においては、前記シート状気体吸着剤が、加熱成形によって成形され、加熱成型時の熱可塑性樹脂温度が、前記熱可塑性樹脂の軟化温度より60℃高い温度以下であるものであってもよい。これにより、割れや裂けが生じることなく、1~10μm厚程度まで薄肉化可能な、十分な強度を有するシート状水分吸着剤を容易に作製することができる。
 また、前記構成の音響スピーカー装置においては、Cu-ZSM-5ゼオライトが、成形までに予め加熱乾燥処理がなされているものであってもよい。これにより、Cu-ZSM-5ゼオライトに予め含まれる水分を脱離させることができるので、常温かつ低分圧下において、さらなる大容量の水分吸着が可能となる。
 また、前記構成の音響スピーカー装置においては、Cu-ZSM-5ゼオライトが、成形までに予め真空熱処理がなされているものであってもよい。これにより、Cu-ZSM-5ゼオライトに予め含まれる水分を脱離させ、水分吸着能力を向上することが可能であるとともに、Cu-ZSM-5ゼオライトが、に含まれるCu2+をCu+ へと還元することができる。それゆえ、シート状気体吸着剤は、より高い吸着活性を発現し、水分吸着機能を向上させることができる。
 また、前記構成の音響スピーカー装置においては、シート状水分吸着剤を、キャビネット内壁に貼り付けたものであってもよい。これにより、シート状水分吸着剤の設置に要する空間容積を小さくすることができ、音響スピーカー装置の一層の小型化が可能となる。
 本発明について、実施例、比較例および参考例に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。当業者は本発明の範囲を逸脱することなく、種々の変更、修正、および改変を行うことができる。
 なお、以下の実施例等におけるシート状水分吸着材料14Bの物性の評価、並びに、音響スピーカー装置10の低音域の再生能力の評価は次に示すようにして行った。
 [シート状水分吸着材料の外観評価方法]
 各実施例および比較例で得られたシート状水分吸着材料14Bについて、シートに割れ、裂け、または変色等の外観上で確認できる問題点が発生しているか否かを、目視により評価した。
 [シート状水分吸着材料の吸着開始水蒸気圧の評価方法]
 各実施例および比較例で得られたシート状水分吸着材料14Bについて、商品名:Autosorb 1-C(Quantachrome Instruments製)を用いて、25℃での水の吸着等温線を測定し、0.1ml/g以上の吸着量が測定される平衡圧として吸着開始水蒸気圧を求めた。なお、水の吸着等温線の測定方法について、以下に簡単に説明する。
 まず、評価に用いるシート状水分吸着材料14Bの重量を秤量し、既知の容積のサンプル管にサンプルを挿入した。次に、当該サンプル管と既知の容積のマニホールドとを、開閉部(コック)を介して接続した。
 そしてマニホールドおよびサンプル管の温度が測定温度になるように温度調節した。本実施の形態では、測定温度を25℃としているため、マニホールドを恒温槽に、サンプル管を恒温水槽に入れて温度を一定に調節した。次に、開閉部を開いた状態でマニホールドおよびサンプル管の内部を真空にした。その後、開閉部を閉じて、マニホールド内に所定量の気体(水蒸気)を導入した。
 なお、マニホールドへの気体の導入量は、サンプル管にサンプルが入っていない状態で前述した操作を行ってから開閉部を開いたときに、所定の圧力となる量として設定した。例えば、後述するように10Paでの吸着量を測定する場合には、マニホールドおよびサンプル管の容積に基づいて、マニホールド内に10Paより少し大きな圧力になるまで気体を導入した。
 前述した閉じた状態の開閉部を開き、マニホールドからサンプル管に気体(水蒸気)を導入し、所定時間が経過した後にマニホールド内の圧力を測定した。このときの圧力低下からサンプルに吸着した気体(水蒸気)の量を算出し、予め測定しておいたシート状水分吸着材料14Bの重量で除することで、単位重量あたりの吸着容量を求めた。
 なお、下記の実施例および比較例において、サンプルに吸着した気体の量(吸着容量)は、25℃、1気圧の標準状態における体積として示すものとする。
 [シート状水分吸着材料の引っ張り強度の評価方法]
 各実施例および比較例で得られたシート状水分吸着材料14Bについて、商品名:Autograph(株式会社島津製作所製)にて、JIS K-7127に準じて引っ張り強度を測定した。
 [成形可能なシートの厚さの評価方法]
 各実施例および比較例において、シート状水分吸着材料14Bを成形する際に、当初はシート厚さ300μmの条件にて成形を開始し、割れまたは裂けの発生がないかを目視で確認しつつ、徐々にシート厚を薄くしていき、割れまたは裂けが発生する直前のシート厚を、「成形可能なシート厚さ」とした。また、シート厚さの測定は、商品名:SuperCaliper(株式会社ミツトヨ製、Mitutoyo Corporation)にて測定した。
 なお、下記の実施例および比較例では、厚さ10μmまでの成形を行ったので、評価結果として10μmが得られた実施例では、より薄肉化したシートの成形が可能であると判断することができる。
 [音響スピーカー装置の低音域の再生能力の評価方法]
 実施の形態で説明した構成の音響スピーカー装置10を用い、そのキャビネット12内の床面および天面に、各実施例および比較例で得られたシート状水分吸着材料14Bを貼り付けた。そして、当該音響スピーカー装置10を、夏季を想定した、気温30℃、相対湿度70%、すなわち水蒸気圧が2970Paの環境に設置し、正弦波1Wの入力を加え、音響スピーカー装置10から1mの距離にて音圧を測定した。なお、この音圧測定は、音響スピーカー装置10を前記環境に設置した直後、および設置1日後のそれぞれについて実施した。なお、低音域の代表値としては、1日後の20dBおよび50dBの測定値を示した。
 次に、前述した実施の形態で説明したように、音響スピーカー装置10の一般的な使用環境では、大気中の水の分圧が1000Pa程度となることを検証した参考例について、図3および図4を参照して具体的に説明する。
 (参考例)
 特許文献3に準じた方法で、疎水化材としてヘキサメチルジシロキサンを用いて活性炭を疎水化し「疎水化処理活性炭」を調製した。そして、元の疎水化していない活性炭(疎水化未処理活性炭)とともに、25℃での水の吸着等温線を評価した。その結果を図3に示す。
 なお、本参考例においては、吸着等温線の測定は、商品名:BELSORP-18(日本ベル株式会社製、BEL Japan, Inc.)を用いて行った。具体的には、疎水化未処理活性炭および疎水化処理活性炭のそれぞれの表面に低圧から水(気体状態)を接触させ、吸着を開始する水蒸気圧から25℃の飽和水蒸気である3169Pa付近において、吸着平衡に達する水分量を定量した。
 図3では、横軸に水の吸着における平衡水蒸気圧(単位:Pa)を、縦軸に水の吸着量(単位ml/g)を示している。また、疎水化未処理活性炭の吸着等温線は実線および白抜き正方形のシンボルで示しており、疎水化処理活性炭の吸着等温線は点線および黒い菱形のシンボルで示している。
 図3に示すように、疎水化未処理活性炭では、吸着開始圧が80Paであり、その吸着量は、平衡水蒸気圧が1000Paを超える付近から急激に増大し、3169Pa付近での吸着量は750ml/gにまで達していた。
 一方、疎水化処理活性炭では、疎水化未処理活性炭と同様に、吸着開始圧が80Paであり、その吸着量は平衡水蒸気圧が1500Paを超える付近から急激に増大していた。それゆえ、所定の平衡水蒸気圧を超えて急激に吸着量が増大するという傾向は、疎水化処理の有無に関わらず変化はなく、疎水化処理活性炭は、疎水化未処理活性炭に比べて1000Pa以上の吸着量のみ低減することが明らかとなった。
 ここで、平衡水蒸気圧1000Paという閾値について、図4を参照して説明する。図4では、日本国大阪市の平均気温、平均相対湿度から算出した1年間の水蒸気圧の変化を示している。図4に示すように、大阪市においては、概ね4月から11月の期間において、水蒸気圧が1000Pa以上となることがわかる。したがって、1000Paの水蒸気圧は、音響スピーカー装置10の使用環境として一般的な環境であるといえる。
 それゆえ、疎水化未処理活性炭および疎水化処理活性炭のいずれにおいても、水蒸気圧が1000Pa近傍にて急激な水分の吸着が生じるということは、通常の使用環境において、活性炭が、キャビネット12内における気体の圧縮および膨張を急速に吸着および脱離する機能に対する課題となることが明らかとなった。
 次に、本発明に係るシート状水分吸着材料14Bおよびこれを適用した音響スピーカー装置10についての具体的な実施例および比較例について説明する。
 (実施例1)
 熱可塑性樹脂組成物44として、高密度ポリエチレン(HDPE,軟化温度130℃)を用いた。また、Cu-ZSM-5ゼオライト43の配合量は、高密度ポリエチレン100重量部に対して40重量部とした。なお、Cu-ZSM-5ゼオライト43に対しては、予め600℃で4時間の真空熱処理を施した。
 次に、これらを押出成形機にてシート成形し、本実施例のシート状水分吸着材料14Bを得た。なお、シート成形時の樹脂温度は、上限温度である190℃とした。
 さらに、得られたシート状水分吸着材料14Bを適用した音響スピーカー装置10を、前記実施の形態に準じて製造した。このとき用いた多孔性炭素材料41は、ヤシ殻を原料とする活性炭(ヤシ殻炭)であり、この活性炭を、通気性を有する不織布の四方シール袋に封入することによって多孔性炭素材料包装体14Aを作製して、キャビネット12内の床面に載置した。また、得られたシート状水分吸着材料14Bは、キャビネット12の床面および点面に貼り付けた。
 得られたシート状水分吸着材料14Bの作製条件および評価結果、並びに、得られたシート状水分吸着材料14Bを適用した音響スピーカー装置10の評価結果を表1に示す。また、得られたシート状水分吸着材料14Bについて、25℃での水の吸着等温線を図5に示す。
 (実施例2)
 Cu-ZSM-5ゼオライト43に対して、予め200℃で4時間の加熱乾燥処理を施した以外は、前記実施例1と同様にして本実施例のシート状水分吸着材料14Bを得るとともに、当該シート状水分吸着材料14Bを適用した音響スピーカー装置10を、前記実施例1と同様にして製造した。
 得られたシート状水分吸着材料14Bの作製条件および評価結果、並びに、得られたシート状水分吸着材料14Bを適用した音響スピーカー装置10の評価結果を表1に示す。
 (実施例3)
 熱可塑性樹脂組成物44として、ポリプロピレン(PP,軟化温度160℃)を用い、シート成形時の樹脂温度を上限温度未満である200℃とした以外は、前記実施例1と同様にして本実施例のシート状水分吸着材料14Bを得るとともに、当該シート状水分吸着材料14Bを適用した音響スピーカー装置10を、前記実施例1と同様にして製造した。
 得られたシート状水分吸着材料14Bの作製条件および評価結果、並びに、得られたシート状水分吸着材料14Bを適用した音響スピーカー装置10の評価結果を表1に示す。
 (実施例4)
 熱可塑性樹脂組成物44として、ナイロン(軟化温度225℃)を用い、シート成形時の樹脂温度を上限温度未満である250℃とした以外は、前記実施例1と同様にして本実施例のシート状水分吸着材料14Bを得るとともに、当該シート状水分吸着材料14Bを適用した音響スピーカー装置10を、前記実施例1と同様にして製造した。
 得られたシート状水分吸着材料14Bの作製条件および評価結果、並びに、得られたシート状水分吸着材料14Bを適用した音響スピーカー装置10の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (実施例5)
 Cu-ZSM-5ゼオライト43の配合量を20重量部とするとともに、当該Cu-ZSM-5ゼオライト43に対して前処理を行わなかった以外は、前記実施例1と同様にして本実施例のシート状水分吸着材料14Bを得るとともに、当該シート状水分吸着材料14Bを適用した音響スピーカー装置10を、前記実施例1と同様にして製造した。
 得られたシート状水分吸着材料14Bの作製条件および評価結果、並びに、得られたシート状水分吸着材料14Bを適用した音響スピーカー装置10の評価結果を表2に示す。
 (実施例6)
 Cu-ZSM-5ゼオライト43の配合量を40重量部とした以外は、前記実施例5と同様にして本実施例のシート状水分吸着材料14Bを得るとともに、当該シート状水分吸着材料14Bを適用した音響スピーカー装置10を、前記実施例5と同様にして製造した。
 得られたシート状水分吸着材料14Bの作製条件および評価結果、並びに、得られたシート状水分吸着材料14Bを適用した音響スピーカー装置10の評価結果を表2に示す。
 (実施例7)
 Cu-ZSM-5ゼオライト43の配合量を42重量部とした以外は、前記実施例5と同様にして本実施例のシート状水分吸着材料14Bを得るとともに、当該シート状水分吸着材料14Bを適用した音響スピーカー装置10を、前記実施例5と同様にして製造した。
 得られたシート状水分吸着材料14Bの作製条件および評価結果、並びに、得られたシート状水分吸着材料14Bを適用した音響スピーカー装置10の評価結果を表2に示す。
 (実施例8)
 シート成形時の樹脂温度を、上限温度を超える200℃とした以外は、前記実施例5と同様にして本実施例のシート状水分吸着材料14Bを得るとともに、当該シート状水分吸着材料14Bを適用した音響スピーカー装置10を、前記実施例5と同様にして製造した。
 得られたシート状水分吸着材料14Bの作製条件および評価結果、並びに、得られたシート状水分吸着材料14Bを適用した音響スピーカー装置10の評価結果を表2に示す。
 (実施例9)
 シート成形時の樹脂温度を、上限温度を超える220℃とした以外は、前記実施例5と同様にして本実施例のシート状水分吸着材料14Bを得るとともに、当該シート状水分吸着材料14Bを適用した音響スピーカー装置10を、前記実施例5と同様にして製造した。
 得られたシート状水分吸着材料14Bの作製条件および評価結果、並びに、得られたシート状水分吸着材料14Bを適用した音響スピーカー装置10の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (比較例1)
 シート状水分吸着材料14Bを適用しないで、前記実施例1と同様にして、多孔性炭素材料包装体14Aのみを用いて比較音響スピーカー装置を製造した。比較音響スピーカー装置の評価結果を表3に示す。
 (比較例2)
 Cu-ZSM-5ゼオライト43に変えて銅イオン交換されたX型ゼオライト(以下、説明の便宜上、「Cu-Xゼオライト」と略す。)を用い、当該Cu-Xゼオライトの配合量を20重量部とした以外は、前記実施例1と同様にして比較シート状水分吸着材料を得るとともに、当該比較シート状水分吸着材料を適用した比較音響スピーカー装置を、前記実施例1と同様にして製造した。
 なお、Cu-Xゼオライトは、水分吸着剤としても利用されている汎用ゼオライトであるX型ゼオライトに対して、Cu-ZSM-5ゼオライト43と同様にして銅イオン交換を施したものである。
 得られた比較シート状水分吸着材料の作製条件および評価結果、並びに、得られた比較シート状水分吸着材料を適用した比較音響スピーカー装置の評価結果を表3に示す。
 (比較例3)
 Cu-Xゼオライトの配合量を40重量部とした以外は、前記比較例2と同様にして比較シート状水分吸着材料を得るとともに、当該比較シート状水分吸着材料を適用した比較音響スピーカー装置を、前記比較例2と同様にして製造した。
 得られた比較シート状水分吸着材料の作製条件および評価結果、並びに、得られた比較シート状水分吸着材料を適用した比較音響スピーカー装置の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 [評価結果]
 (1)シート状水分吸着材料の外観評価結果
 実施例1~6では、得られたシート状水分吸着材料14Bに割れまたは裂け等が生じることもなく、変色も見られなかった。これは、Cu-ZSM-5ゼオライト43の配合量が40重量部以下であることによると判断される。
 一方、実施例7では、得られたシート状水分吸着材料14Bの一部に裂けの発生が確認された。これは、Cu-ZSM-5ゼオライト43の配合量が40重量部を超えたためであると判断される。
 また、実施例8では、得られたシート状水分吸着材料14Bに茶褐色の変色が確認され、実施例9では、得られたシート状水分吸着材料14Bに濃い茶褐色の変色および割れが確認された。これは、実施例8および9のいずれもシート成形時の樹脂温度が上限温度を超えたため、熱可塑性樹脂に銅蝕が発生したためであると判断され、特に実施例9では、シート成形時の樹脂温度が実施例8よりも高かったことから、熱可塑性樹脂により強い銅蝕が発生したため、強い変色および割れが発生したものと判断される。
 (2)シート状水分吸着材料の吸着開始水蒸気圧の評価結果
 実施例1~9における吸着開始水蒸気圧は、比較例2または3(Cu-ZSM-5ゼオライト43に代えてCu-Xゼオライトを使用)と比べると、顕著に低くなっていた。したがって、これら実施例で得られたシート状水分吸着材料14Bは、高い水分吸着活性を発現することが明らかとなった。
 また、実施例1で得られたシート状水分吸着材料14Bについては、25℃での水の吸着等温線を評価した。その結果を図5に示す。図5に示すように、実施例1のシート状水分吸着材料14Bでは、参考例の疎水化処理活性炭および疎水化未処理活性炭では確認されなかった、水蒸気圧1000Pa以下の領域においても、水分の吸着が生じていることがわかる。
 ここで、実施例1、3および4では、実施例2(Cu-ZSM-5ゼオライト43に前処理として加熱処理を実施)、および、実施例6(Cu-ZSM-5ゼオライト43に前処理を実施していない)と比較しても、吸着開始水蒸気圧が顕著に低い。それゆえ、これら実施例で得られたシート状水分吸着材料14Bでは、水分吸着活性が高いことがわかる。これは、Cu-ZSM-5ゼオライト43に予め真空熱処理を施すことで、水分を脱離させるとともに、Cu-ZSM-5ゼオライト43に含まれる銅イオンが活性化され、より高い水分吸着活性を発現できたものと判断される。
 また、実施例2の吸着開始水蒸気圧は実施例1よりやや高いが、これは、前処理が真空熱処理ではなく、200℃で4時間の加熱処理であったため、Cu-ZSM-5ゼオライト43に含まれる銅イオンが十分に活性化できていないためであると判断される。ただし、前処理をしていない実施例6と比較すると吸着開始水蒸気圧が低いため、200℃で4時間の加熱処理により、Cu-ZSM-5ゼオライト43に予め含まれる水分が脱離し、より低圧領域からの水分吸着が可能となったものと判断される。
 また、実施例5~9の吸着開始水蒸気圧は実施例1~4よりやや高いが、これは、Cu-ZSM-5ゼオライト43に前処理を行っていないため、予め含まれる水分の脱離、あるいは、銅イオンの活性化がなされていないと判断される。ただし、成形時の加熱によりCu-ZSM-5ゼオライト43から水分が一部脱離したため、水分吸着活性は比較的低圧の領域から発現していることがわかる。
 一方、比較例2および3の比較シート状水分吸着材料では、吸着開始水蒸気圧は実施例1~9と比較して大幅に高くなった。これは、Cu-ZSM-5ゼオライト43の代わりにCu-Xゼオライトを用いたためであると判断される。
 また、比較例2および3では、比較シート状水分吸着材料が良好な水分吸着能力を有していないため、多孔性炭素材料41であるヤシ殻炭は、水蒸気圧100Paから水分の吸着を開始し、比較例2では200Pa付近から、比較例3では180Pa付近から、比較シート状水分吸着材料およびヤシ殻炭の両方が水分を吸着した。さらに、ヤシ殻炭は、水蒸気圧が1000Paを超えると、大量の水分を急激に吸着し、2000Paではキャビネット12内の気体を十分に吸着および脱離できない状態となった。
 なお、比較例1では、比較シート状水分吸着材料を用いていないが、このときの多孔性炭素材料41であるヤシ殻炭は、水蒸気圧100Paから水分の吸着を開始し、1000Paを超えると大量の水分を急激に吸着し、2000Paでは約80%の細孔が水分子吸着により吸着飽和となった。つまり、比較例1においては、比較シート状水分吸着材料を用いた比較例2および3の場合と同様に、水蒸気圧が1000Paを超えると大量の水分吸着が生じることが明らかとなった。
 したがって、比較例においては、シート状水分吸着材料を用いても用いなくても、多孔性炭素材料41の水分吸着を抑制する効果には大きな差がないと判断される。それゆえ、シート状水分吸着材料に用いられるゼオライトは、Cu-Xゼオライトでは不十分であり、本発明のように、Cu-ZSM-5ゼオライト43であることが重要であると判断される。
 (3)シート状水分吸着材料の引っ張り強度およびシート厚さの評価結果
 実施例1~6で得られたシート状水分吸着材料14Bでは、引っ張り強度が良好であり、シート厚さも評価限界の10μmまで薄肉化できた。これは、シート成形時の樹脂温度が上限温度以下であるため、Cu-ZSM-5ゼオライト43に含まれる銅イオンによる熱可塑性樹脂の銅蝕を抑制できているためであると判断される。
 一方、実施例7で得られたシート状水分吸着材料14Bでは、引っ張り強度は実施例5,6と同等であるものの、そのシート厚さが、実施例5または6(Cu-ZSM-5ゼオライト43の配合量を除いて作製条件が同じ)と比較して肉厚であった。これは、Cu-ZSM-5ゼオライト43の配合量が40重量部を超えたためであると判断される。ただし、シート成形時の樹脂温度が上限温度以下であるため、銅蝕に起因する裂け、割れ、変色の発生は抑制されたものと判断される。
 なお、実施例7の引っ張り強度が、肉厚であるにも関わらず実施例5または6と同等であるのは、Cu-ZSM-5ゼオライト43の配合量が40重量部を超えたことに起因する裂けにより、相対的な樹脂強度が低下したためと判断される。
 また、実施例8および9で得られたシート状水分吸着材料14Bでも、引っ張り強度は実施例5,6と同等であるものの、そのシート厚さが、実施例7を超えるまで厚肉化した。これは、シート成形時の樹脂温度が上限温度を超えたため、銅蝕が起こって熱可塑性樹脂の脆化が生じたためであると判断される。特に実施例9では、樹脂温度が実施例8よりも高かったことから、実施例8よりも肉厚化したものと判断される。
 なお、実施例8および9の引っ張り強度が、肉厚であるにも関わらず、引っ張り強度が実施例5または6と同等であるのは、引っ張り強度の増大幅が小さく、銅蝕により相対的な樹脂強度が低下したためと判断される。
 (4)音響スピーカー装置の低音域の再生能力の評価結果
 実施例1~9の音響スピーカー装置10においては、いずれも一日後の20Hzおよび50Hzの音圧は、比較例1~3と比較して高い値が得られている。これは、シート状水分吸着材料14Bが優先的に水分を吸着することができたため、多孔性炭素材料包装体14Aにより、キャビネット12内の空気を良好に吸着または脱離することができたためと判断される。
 一方、比較例1の比較音響スピーカー装置においては、測定された20Hzおよび50Hzの音圧は、実施例1~9と比較すると低い値であった。これは、前述したように、多孔性炭素材料41であるヤシ殻炭が2000Paでは約80%の細孔が水分子吸着により吸着飽和となったことから、キャビネット12内の空気を十分に吸着および脱離できない状態となったためと判断される。
 ここで、実施例1の音響スピーカー装置10と、比較例1の比較音響スピーカー装置とについて行った低音域の音圧測定の評価結果を図6に示す。図6では、図中網掛けの破線が、実施例1の音響スピーカー装置10を測定環境へ設置した直後に測定された音圧を示し、実線が、実施例1の音響スピーカー装置10を測定環境へ設置してから1日後に測定された音圧を示し、太線が比較例1の比較音響スピーカー装置について測定された音圧を示す。また、比較例1は、シート状水分吸着材料14Bを設けない構成であるので、音圧の測定について、直後または一日後を分けることはしていない。
 図6に示す結果から明らかなように、実施例1で得られたシート状水分吸着材料14Bを設けた音響スピーカー装置10は、多孔性炭素材料包装体14Aのみを設置した比較例1の比較音響スピーカー装置と比較して、30~100Hzの低周波数領域において良好な音圧レベルを示すことがわかった。また、実施例1の音響スピーカー装置10においては、設置直後および1日後のいずれも、ほとんど変化が見られなかった。
 さらに、比較例2および3の比較音響スピーカー装置においては、測定された20Hzおよび50Hzの音圧は、比較例1と同等であり、実施例1~9と比較すると低い値であった。これにより、比較シート状水分吸着材料は、キャビネット12内の水分を十分に吸着することができなかったと判断される。
 なお、実施例7で用いたシート状水分吸着材料14Bでは、シートに裂けが生じてしまい、実施例8または9で用いたシート状水分吸着材料14Bでは、シートに変色が生じ、かつ、シートが肉厚化している。これらシートに生じた異常は、音響スピーカー装置10における低音域の再生能力を妨げるものではないが、外観上好ましくない場合があるとともに、取扱性も劣るため、例えばキャビネット12内への貼り付け作業に影響を及ぼす場合があり得る。
 それゆえ、本発明においては、シート状水分吸着材料14BにおけるCu-ZSM-5ゼオライト43の配合量は、40重量部以下にすることが好ましく、シート成形時の樹脂温度は、上限温度(熱可塑性樹脂の軟化温度より60℃高い温度)以下とすることが好ましいことが明らかとなった。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
  本発明は、高湿の環境下であっても、音響スピーカー装置の動作時に、キャビネット内において、多孔性炭素材料による気体の吸着および脱離を良好に実現することができるので、低音域の再生能力を有効に発揮することができる。それゆえ、本発明は、密閉型またはバスレフ型等のタイプによらず、音響スピーカー装置の分野全般において、低音域の音質の改善に好適に用いることができる。
10  音響スピーカー装置
11  前面
12  キャビネット
13  スピーカーユニット
14A 多孔性炭素材料包装体
14B シート状水分吸着材料
41  多孔性炭素材料
42  袋体
43  銅イオン交換されたZSM-5型ゼオライト(Cu-ZSM-5ゼオライト)
44  熱可塑性樹脂組成物
 
 

Claims (6)

  1.  キャビネットと、
     当該キャビネットに取り付けられたスピーカーユニットと、
     前記キャビネット内に設けられ、当該キャビネット内の水分並びに気体成分を吸着可能とする気体吸着材料と、を備え、
     前記気体吸着材料は、少なくとも多孔性炭素材料およびシート状水分吸着材料から構成され、
     前記シート状水分吸着材料は、銅イオン交換されたZSM-5型ゼオライトが、少なくとも高分子材料からなる基材中に分散されたものであり、前記キャビネットの内壁の少なくとも一部に貼り付けられていることを特徴とする、
    音響スピーカー装置。
  2.  前記シート状水分吸着材料は、少なくとも、前記キャビネットの前側となる内面に貼り付けられていることを特徴とする、
    請求項1に記載の音響スピーカー装置。
  3.  前記シート状水分吸着材料は、少なくとも、前記キャビネットの内面のうち、前記多孔性炭素材料の直下となる部位に貼り付けられていることを特徴とする、
    請求項1に記載の音響スピーカー装置。
  4.  前記シート状水分吸着材料の前記基材は、前記高分子材料として熱可塑性樹脂を含有する樹脂組成物であることを特徴とする、
    請求項1に記載の音響スピーカー装置。
  5.  前記シート状水分吸着材料は、前記樹脂組成物100重量部に対して前記ZSM-5型ゼオライトを40重量部以下配合した上でシート状に加熱成形されたものであることを特徴とする、
    請求項4に記載の音響スピーカー装置。
  6.  前記シート状水分吸着材料は、前記熱可塑性樹脂の軟化温度より60℃高い温度である上限温度以下で加熱成形されたものであることを特徴とする、
    請求項4に記載の音響スピーカー装置。
     
     
PCT/JP2012/002543 2011-04-12 2012-04-12 音響スピーカー装置 WO2012140895A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280018218.9A CN103477655B (zh) 2011-04-12 2012-04-12 音响扩音器装置
US14/111,455 US8942402B2 (en) 2011-04-12 2012-04-12 Acoustic speaker device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-087882 2011-04-12
JP2011087882A JP5873963B2 (ja) 2011-04-12 2011-04-12 音響スピーカー装置

Publications (1)

Publication Number Publication Date
WO2012140895A1 true WO2012140895A1 (ja) 2012-10-18

Family

ID=47009086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002543 WO2012140895A1 (ja) 2011-04-12 2012-04-12 音響スピーカー装置

Country Status (4)

Country Link
US (1) US8942402B2 (ja)
JP (1) JP5873963B2 (ja)
CN (1) CN103477655B (ja)
WO (1) WO2012140895A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150217620A1 (en) * 2013-01-29 2015-08-06 Trelleborgvibracoustic Gmbh Air spring comprising adsorptive material
WO2016021106A1 (ja) * 2014-08-04 2016-02-11 パナソニックIpマネジメント株式会社 スピーカシステムと、これを用いた電子機器

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2495991A1 (en) * 2011-03-04 2012-09-05 Knowles Electronics Asia PTE. Ltd. Packaging of acoustic volume increasing materials for loudspeaker devices
US8794373B1 (en) * 2013-03-15 2014-08-05 Bose Corporation Three-dimensional air-adsorbing structure
CN105051442B (zh) * 2013-04-23 2018-03-02 松下知识产权经营株式会社 包含气体吸附件的隔热体
US10219070B2 (en) * 2014-02-24 2019-02-26 Maksim Viktorovich CHYZHOV Acoustic system and method
CN104038855A (zh) * 2014-06-04 2014-09-10 瑞声光电科技(常州)有限公司 电声器件及所述电声器件的组装方法
WO2015198596A1 (ja) * 2014-06-24 2015-12-30 パナソニックIpマネジメント株式会社 気体吸着デバイス、およびそれを用いた真空断熱材
WO2016167640A1 (en) * 2015-04-16 2016-10-20 Sound Solutions International Co., Ltd. Acoustic sound adsorption material having attached sphere matrix
US10349167B2 (en) 2015-05-18 2019-07-09 Apple Inc. Audio speaker with back volume containing adsorptive material
GB2540160B (en) * 2015-07-07 2019-08-28 Nanoscape Ag Improved material for rapid gas sorption in loudspeakers
US9939783B2 (en) * 2015-08-19 2018-04-10 Apple Inc. Water resistant vent in an electronic device
US10244308B2 (en) 2015-08-27 2019-03-26 Apple Inc. Audio speaker having a rigid adsorptive insert
US9691371B1 (en) * 2015-12-18 2017-06-27 Bose Corporation Air adsorbing and sound absorbing structure
KR101788110B1 (ko) * 2015-12-29 2017-10-20 주식회사 이엠텍 공기 흡착제를 구비하는 마이크로스피커 인클로져
KR101788109B1 (ko) * 2015-12-29 2017-10-19 주식회사 이엠텍 공기 흡착제를 구비한 마이크로 스피커
EP3397601A1 (en) 2015-12-30 2018-11-07 3M Innovative Properties Company Acoustically active articles
KR101756673B1 (ko) * 2016-06-07 2017-07-25 주식회사 이엠텍 다공성 물질을 구비하는 마이크로스피커 인클로져
KR101788111B1 (ko) * 2016-06-09 2017-10-20 주식회사 이엠텍 다공성 물질을 구비하는 마이크로스피커 인클로져
CN107959913B (zh) * 2016-10-17 2020-10-16 华为技术有限公司 一种音频播放装置和设备
US10667038B2 (en) 2016-12-07 2020-05-26 Apple Inc. MEMS mircophone with increased back volume
CN110753572B (zh) 2017-06-14 2022-06-28 3M创新有限公司 声学活性材料
CN111357061B (zh) 2017-11-16 2022-04-12 3M创新有限公司 包含介电粒子的聚合物基质复合材料及其制备方法
US10927228B2 (en) 2017-11-16 2021-02-23 3M Innovative Properties Company Polymer matrix composites comprising intumescent particles and methods of making the same
US10913834B2 (en) 2017-11-16 2021-02-09 3M Innovative Properties Company Polymer matrix composites comprising indicator particles and methods of making the same
EP3710523B1 (en) 2017-11-16 2023-04-19 3M Innovative Properties Company Method of making polymer matrix composites
US10836873B2 (en) 2017-11-16 2020-11-17 3M Innovative Properties Company Polymer matrix composites comprising thermally insulating particles and methods of making the same
US11745167B2 (en) 2017-11-16 2023-09-05 3M Innovative Properties Company Polymer matrix composites comprising functional particles and methods of making the same
CN208353580U (zh) * 2018-06-12 2019-01-08 瑞声科技(新加坡)有限公司 扬声器箱
US11832050B2 (en) * 2018-09-19 2023-11-28 Apple Inc. Zeolitic material for improving loudspeaker performance
KR20210015556A (ko) 2019-08-02 2021-02-10 삼성전자주식회사 공기 흡착 부재 및 스피커 모듈을 포함하는 전자 장치
KR102639434B1 (ko) * 2019-08-02 2024-02-22 삼성전자 주식회사 공기 흡착 부재를 포함하는 스피커 모듈 및 상기 스피커 모듈을 포함하는 전자 장치
US11665466B2 (en) 2020-02-17 2023-05-30 Nexvel Co., Ltd Fabric sheet-shaped of an air absorbent for a speaker-box system using porous carbon fibers and a speaker-box system including the same
KR102155642B1 (ko) * 2020-02-17 2020-09-14 주식회사 넥스벨 다공성 카본 파이버를 이용한 직물 시트 형상의 스피커-박스 시스템 흡기제 및 이를 포함하는 스피커-박스 시스템
TWI754998B (zh) * 2020-07-22 2022-02-11 台灣立訊精密有限公司 聲學塊材的製作方法及聲學裝置
KR102555130B1 (ko) * 2021-12-16 2023-07-14 주식회사 이엠텍 다공성 물질로 제조되는 블록을 포함하는 마이크로 스피커 인클로져
CN113903320A (zh) * 2021-09-29 2022-01-07 瑞声光电科技(常州)有限公司 吸音材料及应用该吸音材料的扬声器
WO2023113559A1 (ko) * 2021-12-16 2023-06-22 주식회사 이엠텍 통기성 물질과 공기 흡착 물질로 이루어지며 층상 구조를 가지는 음향 증폭 블록 및 그 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033650A (ja) * 2001-07-24 2003-02-04 Rengo Co Ltd 無機イオン交換体−親水性高分子複合体およびその製造方法
WO2005101894A1 (ja) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. スピーカ装置
WO2006022199A1 (ja) * 2004-08-23 2006-03-02 Matsushita Electric Industrial Co., Ltd. スピーカ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3490108T1 (de) 1983-03-02 1985-05-02 Brian Douglas Malvern Victoria Ward Konstantdruckgerät
JPH0710346B2 (ja) 1987-04-14 1995-02-08 萩原工業株式会社 吸着材料
JPH07103389A (ja) 1993-10-04 1995-04-18 Fujitsu General Ltd 断熱材
GB2378082B (en) 2001-07-26 2005-03-09 Kh Technology Corp Improvements in loudspeakers
JP3693626B2 (ja) * 2002-04-19 2005-09-07 大陽日酸株式会社 吸着剤
JP4385970B2 (ja) * 2005-02-28 2009-12-16 パナソニック株式会社 断熱体
JP4807552B2 (ja) * 2005-04-27 2011-11-02 パナソニック株式会社 吸着材
JP2008079268A (ja) 2006-09-21 2008-04-03 Masaaki Takenaka スピーカー
JP5719995B2 (ja) * 2009-04-30 2015-05-20 パナソニックIpマネジメント株式会社 気体吸着デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033650A (ja) * 2001-07-24 2003-02-04 Rengo Co Ltd 無機イオン交換体−親水性高分子複合体およびその製造方法
WO2005101894A1 (ja) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. スピーカ装置
WO2006022199A1 (ja) * 2004-08-23 2006-03-02 Matsushita Electric Industrial Co., Ltd. スピーカ装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150217620A1 (en) * 2013-01-29 2015-08-06 Trelleborgvibracoustic Gmbh Air spring comprising adsorptive material
EP2759733B1 (de) 2013-01-29 2018-05-09 Vibracoustic GmbH Luftfeder mit adsorptivem Material
US10137751B2 (en) * 2013-01-29 2018-11-27 Vibracoustic Gmbh Air spring comprising adsorptive material
WO2016021106A1 (ja) * 2014-08-04 2016-02-11 パナソニックIpマネジメント株式会社 スピーカシステムと、これを用いた電子機器
JPWO2016021106A1 (ja) * 2014-08-04 2017-05-25 パナソニックIpマネジメント株式会社 スピーカシステムと、これを用いた電子機器

Also Published As

Publication number Publication date
CN103477655B (zh) 2016-06-22
CN103477655A (zh) 2013-12-25
JP5873963B2 (ja) 2016-03-01
JP2012222673A (ja) 2012-11-12
US20140037119A1 (en) 2014-02-06
US8942402B2 (en) 2015-01-27

Similar Documents

Publication Publication Date Title
WO2012140895A1 (ja) 音響スピーカー装置
JP5031926B2 (ja) スピーカ装置
CN111163395B (zh) 吸音颗粒、发声装置以及电子设备
CN109448688B (zh) 一种活性炭吸音材料和发声装置
JP4696061B2 (ja) スピーカ装置
TWI625302B (zh) 具改善聲音之揚聲器系統
JPWO2005099300A1 (ja) スピーカ装置
WO2021135875A1 (zh) 吸音颗粒、发声装置以及电子设备
CN109511056B (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
KR101878514B1 (ko) 시트상 기체 흡착제 및 이것을 이용한 단열체
JP5522282B2 (ja) スピーカ装置およびこれを用いた電子機器および車両
JP2011199574A (ja) 音響スピーカー装置
CN111163403B (zh) 吸音颗粒、发声装置以及电子设备
WO2020108249A1 (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
JPWO2006104103A1 (ja) スピーカ装置
WO2009014015A1 (ja) スピーカ装置用材料およびこれを用いたスピーカ装置
JP2010199660A (ja) スピーカ装置、このスピーカ装置を用いた電子機器および車両、およびこのスピーカ装置に用いるシート状の圧力調整体の製造方法
CN111182419B (zh) 吸音颗粒、发声装置以及电子设备
WO2020108255A1 (zh) 一种活性炭吸音材料和发声装置
WO2011001016A1 (en) An apparatus and method for improving low frequency response in a loudspeaker
JP4989342B2 (ja) スピーカ装置用材料およびこれを用いたスピーカ装置
JP5256929B2 (ja) スピーカ装置およびこれを用いた電子機器および車両
JP2009079719A (ja) 真空断熱材及びこれを用いた冷蔵庫
JP2010135955A (ja) スピーカシステム
CN210112267U (zh) 一种发声装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770954

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14111455

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12770954

Country of ref document: EP

Kind code of ref document: A1