WO2012139369A1 - 一种人造微结构及其应用的超材料 - Google Patents

一种人造微结构及其应用的超材料 Download PDF

Info

Publication number
WO2012139369A1
WO2012139369A1 PCT/CN2011/081397 CN2011081397W WO2012139369A1 WO 2012139369 A1 WO2012139369 A1 WO 2012139369A1 CN 2011081397 W CN2011081397 W CN 2011081397W WO 2012139369 A1 WO2012139369 A1 WO 2012139369A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial microstructure
artificial
split ring
ring
spiral
Prior art date
Application number
PCT/CN2011/081397
Other languages
English (en)
French (fr)
Inventor
刘若鹏
栾琳
何方龙
赵治亚
寇超锋
何嘉威
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011100911222A external-priority patent/CN102738589A/zh
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Priority to US13/634,470 priority Critical patent/US9640848B2/en
Priority to EP11860702.7A priority patent/EP2544298B1/en
Publication of WO2012139369A1 publication Critical patent/WO2012139369A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/082Microstripline resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0236Electromagnetic band-gap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20372Hairpin resonators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors

Definitions

  • the present invention relates to a material, and more particularly to an artificial microstructure and a metamaterial for use thereof. Background technique
  • Metamaterials are a new type of synthetic material that responds to electromagnetics and consist of a substrate and an artificial microstructure attached to the substrate. Since the artificial microstructure is usually a structure with a certain geometrical arrangement of metal wires, it is possible to electromagnetically generate a response, so that the super material as a whole exhibits electromagnetic characteristics different from the substrate, and such electromagnetic properties realize existing materials. Special functions that cannot be realized, such as the convergence and divergence of electromagnetic waves, can be used in the field of electromagnetic communication such as antennas and radars.
  • the technical problem to be solved by the present invention is to provide a metamaterial having a high-integration artificial microstructure in view of the deficiencies of the prior art.
  • the invention provides an artificial microstructure, wherein the artificial microstructure is a wire of a conductive material, wherein the artificial microstructure comprises a split ring and two ends extending from the end ends of the split ring to the ring respectively.
  • the root bending line, the two bending lines do not intersect each other and do not intersect the opening ring.
  • the split ring is a "concave" shaped split ring, and the concave portion of the split ring is open, the split ring includes a rectangular split ring and a rear end extending from the end of the rectangular split ring toward the ring On parallel lines.
  • the bending lines of the two ⁇ axes are symmetrically distributed.
  • the split ring is a rectangular split ring.
  • the split ring is a circular split ring.
  • Each of the bending lines is a spiral extending spirally toward the inside of the ring.
  • the spiral is a circular spiral.
  • the spiral is a square spiral.
  • the number of turns of the spiral is greater than two.
  • Each of the bending lines extends in a serpentine shape from the end points of the two ends of the split ring to the inner regions on both sides.
  • the line spacing of the bending lines is equal to the line width of the bending line.
  • the serpentine curved corner of the curved line is a right angle.
  • the serpentine curved corner of the curved line is rounded.
  • the artificial microstructure is made of a metal material.
  • the artificial microstructure is a silver wire or a copper wire.
  • the artificial microstructure is made of a non-metallic material.
  • the artificial microstructure is made of a conductive plastic, indium tin oxide, carbon nanotube or graphite.
  • embodiments of the present invention also provide a metamaterial comprising a substrate and a plurality of the above-described artificial microstructures, the artificial microstructures being attached to the substrate.
  • the artificial microstructures are arranged in an array on the substrate.
  • the substrate is divided into a plurality of identical rectangular parallelepiped substrate units arranged in an array, and one of the artificial microstructures is attached to each of the substrate units.
  • the metamaterial having the highly integrated artificial microstructure of the present invention has the following beneficial effects:
  • the invention can significantly reduce the artificial microstructure by satisfying the same or similar magnetic permeability and achieving similar electromagnetic response characteristics. Volume, more artificial microstructures can be integrated on the same volume of substrate, thereby reducing the area and volume of the metamaterial, which is of great significance for the miniaturization and even miniaturization of the product.
  • FIG. 1 is a schematic structural view of a prior art metamaterial
  • FIG. 2 is a schematic view of a prior art first open resonant ring
  • FIG. 3 is a schematic view of a conventional second open resonant ring
  • FIG. 4 is a schematic view of a third open resonant ring of the prior art
  • Figure 5 is a schematic view of a metamaterial according to a first embodiment of the present invention.
  • Figure 6 is a schematic structural view of a metamaterial unit of the metamaterial of Figure 5;
  • Figure 7 is a schematic view of a spiral of the artificial microstructure shown in Figure 6 in polar coordinates
  • Figure 8 is a schematic view showing the size of a structure of a metamaterial unit of the metamaterial of Figure 5;
  • Figure 9 is a schematic view of an artificial microstructure of a second embodiment of the present invention.
  • Figure 10 is a schematic view of an artificial microstructure according to a third embodiment of the present invention.
  • Figure 11 is a schematic view of a metamaterial according to a fourth embodiment of the present invention.
  • 12-13 is a schematic view of a substrate unit of the metamaterial of FIG. 11;
  • Figure 14 is a schematic view showing the simulation of the metamaterial shown in Figure 1;
  • Figure 15 is a schematic view showing the simulation of the metamaterial shown in Figure 11;
  • Figure 16 is a schematic view of an artificial microstructure of a fifth embodiment of the present invention.
  • Figure 17 is a schematic view of an artificial microstructure according to a sixth embodiment of the present invention. detailed description
  • the present invention provides a magnetic resonance metamaterial having a small volume and high integration effect with respect to existing materials and known metamaterials.
  • the existing artificial microstructure 9a of the metamaterial 9 is usually an open resonant ring.
  • FIG. 2 shows a single-open resonant ring.
  • FIG. 3 shows a structure in which two open-ended single-ring resonant rings are connected by a wire.
  • the number of turns of the conventional open resonant ring is not more than one.
  • a glimpse of this article refers to the pole O e of the polar coordinate surrounded by the open resonant ring as shown in Fig. 2, and the open harmonic
  • the line connecting the end point to the pole point near the pole point o e at the two end points of the ring is the polar axis of the polar coordinate, and the counterclockwise direction is the positive direction, then the polar coordinates are sequentially used along each point on the open resonant ring ( Pe , ⁇ ) to indicate that each 360 degrees is one turn until the other end point of the open resonant ring is far from the pole.
  • the present invention provides a metamaterial having a highly integrated artificial microstructure comprising at least one substrate 1 of uniform uniform thickness, and the substrate 1 can be virtually divided into identical
  • the thickness of the substrate unit 10 is not necessarily equal to the length and width, as long as it is not longer than the length and width.
  • the substrate 1 can be regarded as an array composed of a plurality of such base units 10 in the X direction, the y direction as the column, and the z direction as the lamination direction, wherein the x, y, and z directions are orthogonal to each other.
  • Substrate 1 can be composed of FR-4, F4b, CEM1, CEM3 and TP-1 ceramic materials. When the substrate 1 is in the above-described circular shape, a plurality of substrates can be mounted and fixed in a circular axis.
  • Each of the substrate units 10 is attached with an artificial microstructure 2, and the substrate unit 10 and the artificial microstructures 2 on the substrate unit 10 together constitute a metamaterial unit 3, as shown in Fig. 6, the invention has a high
  • the metamaterial of the integrated artificial microstructure can be regarded as an array of a plurality of metamaterial units 3 arranged in three directions of x, y, and z.
  • the artificial microstructure 2 is usually a plane or a three-dimensional structure having a certain geometric pattern composed of a metal wire such as a copper wire or a silver wire.
  • the artificial microstructure may have other metal materials such as gold wires, or may be mixed with at least two metals.
  • the resulting material may even be made of a non-metallic material such as conductive plastic, ITO (indium tin oxide), carbon nanotubes, graphite, and the like.
  • the artificial microstructures 1 of the present invention are all structures responsive to a magnetic field.
  • the artificial microstructure 2 includes a split ring 20 and two curved lines extending from the end points PI, P2 of the split ring 20 to the inside of the ring.
  • the two bending lines do not intersect each other and do not intersect the split ring 20.
  • the two bending lines are two spiral lines extending counterclockwise and clockwise to the inside thereof, respectively being the first spiral line 21 and the second spiral line 22, and the first and second spirals respectively.
  • the lines 21, 22 do not intersect and do not intersect the single-open resonant ring 20.
  • the spiral here means that for a curve on a plane, there is a point 0 on the plane, such that 0 is the pole of a polar coordinate system, and 0 is connected to one end of the curve.
  • any point on the curve is represented by polar coordinates (p, ⁇ ), where p is the extreme length of the point, ⁇ is the polar angle of the point, ⁇ ( ⁇ ) represents a very long function of the polar angle, when such a curve satisfies the condition: 1) continuous, no disconnection, ie ⁇
  • the spiral 22 of the present invention is at least two turns, that is, the polar angle of the end point ⁇ 2 is not less than 4 ⁇ .
  • the first and second spirals 21 and 22 do not intersect, meaning that in the same polar coordinate system, the two spiral lines are respectively represented by the function ⁇ ) ⁇ 2 ( ⁇ ), and there is no point on the two spiral lines ( ⁇ , ⁇ , ( ⁇ 2 ( ⁇ 2 ), ⁇ 2 ), such that the two points satisfy ⁇ ? ), and e es+Skji, k is an integer.
  • the first and second spirals respectively do not intersect the single-opening resonant ring, and are similar thereto.
  • first and second spirals 21, 22 of the present invention are further excluded from each other, that is, there is a straight line such that the first spiral 21 is on one side of the straight line, and the second spiral 22 is on the straight line. On the other side, line 5 in Figure 6.
  • the first and second spirals 21, 22 are axisymmetric with respect to the straight line 5.
  • the ideal dielectric constant in air is the dielectric constant of the substrate 1
  • A is the area of the electrode container
  • d is the spacing between the two capacitor plates.
  • the length of the first spiral or the second spiral, t is the thickness of the metal wire attached to the substrate 1. It can be seen that the longer the spiral is, the closer the two spirals are, the larger the equivalent capacitance value is when the other conditions are not changed.
  • the present invention will compare the superiority of the metamaterial of the present invention with respect to existing metamaterial technology, taking the prior art structure shown in Fig. 4 as an example.
  • the substrate is made of FR-4 grade epoxy resin.
  • the size of the metamaterial unit is 25mmx25mmx25mm:
  • the existing single-turn open resonant ring structure has a magnetic resonance frequency of about 25 GHz.
  • the multi-turn open resonant ring structure that is spirally wound has a resonant frequency of approximately 8 GHz.
  • the spiral structure of the present invention can move the magnetic resonance resonance frequency to a low frequency band (ie, its resonance frequency becomes smaller);
  • the use of the spiral structure of the present invention will greatly reduce the size of each artificial microstructure and metamaterial unit, so that more artificial microstructures can be placed on the same substrate. It achieves high integration and miniaturization while achieving the same magnetic permeability.
  • the trace pitch d of the first and second spirals 21, 22 can be minimized to 0.1 mm, so that the length and width h can be made to be about the length and width H of the artificial microstructure shown in FIG. One tenth, the area is reduced to one percent. Therefore, with the metamaterial of the present invention, the volume of the artificial microstructure can be significantly reduced by using the present invention while satisfying the same or similar magnetic permeability and achieving similar electromagnetic response characteristics, and can be integrated on the same volume of the substrate. More artificial microstructures, which in turn reduce the area and volume of metamaterials, can even be reduced to one-hundredth and one-thousandth, which is very significant for the miniaturization and even miniaturization of products.
  • the first and second spirals of the present invention are not only square spirals as shown in Fig. 8, but also circular spirals as shown in Fig. 9.
  • the square spiral line means that the spiral line is formed while satisfying the above conditions 1), 2), and 3), and can be regarded as being formed by sequentially connecting a plurality of straight line segments 90 degrees from the inside to the outside, and the straight line segments are longer than the long line segments.
  • the front straight line segment, and the circular spiral line herein means that the polar coordinates of the above spiral line satisfy the above conditions 1), 2), 3), and satisfy ⁇ 00 so that there are no sharp corners and bumps on the spiral line. It is a smooth curve, as shown in Figure 9.
  • the trace intervals of the first and second spiral lines are all or substantially uniform, that is, any two points on the first spiral line 21 satisfy A.
  • the trace spacings are not necessarily equal. As shown in Figure 10, the trace spacing of each spiral is not equal.
  • the size of the artificial microstructure can be reduced to more than one tenth under the condition of achieving the same or similar magnetic permeability, which is greatly reduced.
  • the small size of the super material is conducive to the further miniaturization and miniaturization of communication devices and devices such as antennas.
  • the metamaterial 200 provided by the fourth embodiment of the present invention is different from the artificial microstructure shown in FIG. 1 in that the two curved lines 203b of the artificial microstructure 203 are from a near "concave" shape.
  • the ends of the two parallel lines of the split ring 203a are each curvedly curved toward the inner regions on both sides.
  • the serpentine bending extension refers to a trajectory formed by reciprocating back and forth in a direction perpendicular to the direction from which a starting point always travels forward (or not backwards).
  • the effect of an artificial microstructure on the electromagnetic properties of a metamaterial can be analyzed by equating the artificial microstructure into a circuit.
  • a serpentine curved line is added to the split ring, and each two adjacent traces can be equivalent to two plates of one capacitor, so each bend line is equivalent to a plurality of capacitors connected in series to obtain a total resistance, increasing Its capacitance, and the two bending lines are equivalent to a total capacitance.
  • the artificial microstructure of the present invention is equivalent to an increased capacitance compared to a split ring without a curved line.
  • increasing the capacitance is equivalent to the increase of the capacitance, which contributes to the accumulation of a large amount of electricity, and thereby effectively increases the magnetic induction intensity through the electromagnetic effect.
  • the improved artificial microstructure of the present invention is equivalent to an increase in capacitance, thereby increasing the magnetic induction in the structure and thereby increasing the absolute value of the negative magnetic permeability.
  • the material unit composed of each of the substrate unit 202a and the artificial microstructure 203 is as shown in FIG. 12, and the substrate 202 is selected from FR-4 epoxy resin material and has a thickness of 0.4 mm.
  • the material unit of the present embodiment has a negative magnetic permeability in the range of 0.21 to 0.24 GHz, and the lowest magnetic permeability can reach -26, and the lowest magnetic permeability is the loss of the imaginary part is very small. , basically 0.
  • FIG. 13 The other conditions are exactly the same as the embodiment shown in FIG. 13 except that there are no two bending lines in FIG. 13 to form a near-concave-shaped split ring as shown in FIG. 1.
  • the simulated electromagnetic response curve is shown in FIG. Shown. It can be seen from the figure that its magnetic permeability is negative in the range of 0.38 ⁇ 0.46GHz, and the minimum can only reach -5.5, and its absolute value is relatively small, so it is difficult to achieve the required negative magnetic permeability effect.
  • the absolute value of the negative magnetic permeability of the metamaterial can be remarkably improved, thereby enhancing the negative magnetic permeability effect to meet the requirement of the negative magnetic permeability value under specific conditions.
  • the corners of the split ring are not necessarily right angles, and may be a rounded transition as shown in FIG.
  • the split ring is not necessarily a near "concave" shape, but may also be a circular ring having a notch, as shown in FIG.
  • the two curved lines may be the same or different, and may be symmetrically distributed in a mirror image or in parallel side by side.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Aerials With Secondary Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提供了一种人造微结构,所述人造微结构为导电材料的丝线。所述人造微结构包括开口环和自所述开口环的两端端点分别向环内弯曲延伸的两根弯曲线,所述两弯曲线互不相交且不与所述开口环相交。采用本发明人造微结构的超材料可以显著地减小人造微结构的体积,有利于产品的小型化。同时能够提高超材料的负磁导率的绝对值,以满足特定条件下对负磁导率值的要求。另本发明还提供一种具有上述人造微结构的超材料。

Description

一种人造微结构及其应用的超材料
本申请要求于 2011年 4月 12日提交中国专利局、申请号为 201110091122.2, 发明名称为 "一种具有高集成度人造微结构的超材料" 的中国专利申请的优先 权, 2011年 7月 29日提交中国专利局、 申请号为 201110216376.2, 发明名称为 "负磁导率超材料" 的中国专利申请的优先权, 其全部内容通过引用结合在本 申请中。 技术领域
本发明涉及一种材料, 特别是涉及一种人造微结构及其应用的超材料。 背景技术
超材料是一种能够对电磁产生响应的新型人工合成材料, 由基材和附着在 基材上的人造微结构组成。 由于人造微结构通常为金属线排布成的具有一定几 何图形的结构, 因此能够能电磁产生响应, 从而使超材料整体体现出不同于基 材的电磁特性, 这样的电磁特性能实现现有材料不能实现的特殊功能, 例如实 现电磁波的汇聚、 发散等, 可用在天线、 雷达等电磁通讯领域。
现有的超材料中的人造微结构通常占用面积大, 不利于电子元件和设备的 小型化发展。 发明内容
本发明要解决的技术问题在于, 针对现有技术的缺陷, 提供一种具有高集 成度人造微结构的超材料。
本发明提供一种人造微结构, 所述人造微结构为导电材料的丝线, 其特征 在于, 所述人造微结构包括开口环和自所述开口环的两端端点分别向环内弯曲 延伸的两根弯曲线, 所述两弯曲线互不相交且不与所述开口环相交。
其中, 所述开口环为 "凹" 字形开口环, 且所述开口环的内凹部分开口, 所述开口环包括矩形开口环和自所述矩形开口环的两端端点向环内延伸的一对 平行线。
所述两 ^的弯曲线轴对称分布。
所述开口环为矩形开口环。 所述开口环为圓形开口环。
所述各弯曲线为向环内部螺旋延伸出的螺旋线。
所述螺旋线为圓形螺旋线。
所述螺旋线为方形螺旋线。
所述螺旋线的圏数大于 2。
所述各弯曲线为自所述开口环的两端端点分别向两侧的内部区域蛇形弯曲 延伸。
所述弯曲线的走线间距等于所述弯曲线的线宽。
所述弯曲线的蛇形弯曲的拐角为直角。
所述弯曲线的蛇形弯曲的拐角为圓角。
所述人造微结构采用金属材料制成。
所述人造微结构为银线或铜线。
所述人造微结构采用非金属材料制成。
所述人造微结构采用导电塑料、 铟锡氧化物、 碳纳米管或石墨。
相应地, 本发明实施例还提供了一种超材料, 其包括基板及多个上述的人 造微结构, 所述人造微结构附着在所述基板上。
所述人造微结构在所述基板上成阵列排布。
所述基材划分为多个阵列排布的相同的长方体形基材单元, 每个基材单元 上附着有一个所述人造微结构。
实施本发明的具有高集成度人造微结构的超材料, 具有以下有益效果: 在 满足相同或相近磁导率、 实现相近电磁响应特性的情况下, 采用本发明可以显 著地减小人造微结构的体积, 在相同体积的基材上可以集成更多的人造微结构, 进而减小超材料的面积和体积, 这对于产品的小型化甚至微型化, 有着非常重 大的促进意义。
另外, 实施本发明的具有高集成度人造微结构的超材料, 还有助于大量电 量的集聚, 进而提高负磁导率的绝对值。 附图说明 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术的超材料的结构示意图;
图 2是现有的第一种开口谐振环的示意图;
图 3是现有的第二种开口谐振环的示意图;
图 4是现有的第三种开口谐振环的示意图;
图 5是本发明第一实施方式的超材料的示意图;
图 6是图 5的超材料的一个超材料单元的结构示意图;
图 7是图 6所示人造微结构的一个螺旋线在极坐标中的示意图;
图 8是图 5的超材料的一个超材料单元的结构的尺寸示意图;
图 9是本发明第二实施方式的人造微结构的示意图;
图 10是本发明第三实施方式的人造微结构的示意图;
图 11是本发明第四实施方式的超材料的示意图;
图 12-13是图 11的超材料的基材单元示意图;
图 14是图 1所示的超材料的仿真示意图;
图 15是图 11所示的超材料的仿真示意图;
图 16是本发明第五实施方式的人造微结构的示意图;
图 17是本发明第六实施方式的人造微结构的示意图。 具体实施方式
为了改进现有技术的电磁材料的电磁特性, 本发明提供一种磁谐振超材料, 相对于现有材料和已知的超材料, 具有体积小、 集成度高的效果。
请一并参阅如图 1 , 现有的超材料 9的人造微结构 9a通常为开口谐振环。 请一并参阅如图 2及图 3 , 图 2所示的为单开口谐振环, 图 3所示的是两个开口 相向的单开口谐振环之间通过一金属丝连接而形成的结构。
图 4示出了另一种现有技术的结构, 其是在图 2所示的开口谐振环两末端 点处分别向环内部延伸出一条折线, 形成 "=" 形的平行线, 使得整个结构近似 于未封口的 "凹" 字形。
由以上图示可知, 现有的开口谐振环的圏数不大于 1。 本文的一圏, 是指如 图 2所示, 以开口谐振环所围成的环形内部的一点为极坐标的极点 Oe, 开口谐 振环两末端点中离极点 oe近的一个末端点到极点的连线为该极坐标的极轴, 取 逆时针为正方向, 则沿开口谐振环上的每一点依次用极坐标(Pe, Θ ) 来表示, 每到一个 360度为一圏, 直到达到开口谐振环的离极点远的另一末端点。
请一并参阅图 5及图 6,本发明提供一种具有高集成度人造微结构的超材料, 其包括至少一块均匀等厚的基材 1 ,基材 1可被虚拟地划分为完全相同的多个长 方体形的基材单元 10, 例如边长均为一种频率的电磁波的波长的十分之一到五 分之一的长方体。 当然, 基材单元 10的厚度并不必然与长、 宽相等, 只要满足 不大于长、 宽即可。 基材 1可看作是由多个这样的基材单元 10以 X方向为行、 y方向为列、 z方向为层叠方向组成的阵列, 其中 x、 y、 z方向两两正交垂直。 基材 1可由 FR-4, F4b, CEM1 , CEM3和 TP-1 陶瓷材料构成。 当基材 1为上 述圓环形, 则可以将多个基材以圓心轴地安装固定。
每个基材单元 10上附着有一个人造微结构 2, 基材单元 10及基材单元 10 上的人造微结构 2共同构成一个超材料单元 3 , 如图 6所示, 则本发明的具有高 集成度人造微结构的超材料可看作是由多个超材料单元 3沿 x、 y、 z三个方向 阵列排布而成。
人造微结构 2通常为金属线例如铜线、 银线组成的具有一定几何图形的平 面或立体结构, 当然, 人造微结构还可以有其他金属材料如金线, 也可以由至 少两种金属混合而成的材料, 甚至也可能采用非金属材料制成, 例如导电塑料、 ITO (铟锡氧化物)、 碳纳米管、 石墨等。 本发明的人造微结构 1均为对磁场有 响应的结构。
所述人造微结构 2包括开口环 20和自所述开口环 20的两端端点 PI、 P2分 别向环内弯曲延伸的两根弯曲线。 所述两弯曲线互不相交且不与所述开口环 20 相交。 本实施方式中, 所述两根弯曲线为向其内部分别逆时针、 顺时针螺旋延 伸出的两条螺旋线, 分别为第一螺旋线 21和第二螺旋线 22 , 第一、 第二螺旋线 21、 22不相交且均不与所述单开口谐振环 20相交。
请参阅图 7, 这里的螺旋线是指, 对于一条平面上的曲线, 在该平面上存在 一点 0, 使得以 0点为一极坐标系的极点, 0点与该曲线的一个端点的连线为 该极坐标系的极轴, 取逆时针为正方向, 则该曲线上任一点用极坐标(p, Θ ) 表示, 其中, p为该点的极长, Θ为该点的极角, ρ(θ)表示极长关于极角的函数, 当这样的曲线满足条件: 1 )连续、 没有断开, 即 ^
2 ) Ρ(θ) < ρ{θ + 2π) ^ 使得该曲线没有交点;
3 )该曲线的另一端点的极角 θο > 2π。
则这样的曲线称之为螺旋线。 以本发明的第二螺旋线 22 为例, 存在一点 02为极点,其与该线的一端点 Ρ20的连线为极轴,逆时针为正方向, 则端点 Ρ20 的极角为 0度, 该线上的任一点均满足上述条件 1 )、 2 ), 且另一端点也即单开 口谐振环 20的一个末端点 Ρ2的极角约为 5.5π, 满足条件 3 ), 因此该曲线 22 为螺旋线。优选地,本发明的螺旋线至少为两圏,即末端点 Ρ2的极角不小于 4π。
第一、 第二螺旋线 21、 22不相交, 是指在同一极坐标系中, 两条螺旋线分 别用函 ρ^θ) ρ2(θ)表示, 则两条螺旋线上不存在一点 (ρ^θ , Θ , (ρ22), θ2), 使得这两点满足 ^ ? ), 且 e es+Skji, k为一整数。 第一、 第二螺旋 线分别不与所述单开口谐振环相交, 也与之类似。
进一步的, 本发明的第一、 第二螺旋线 21、 22还互不包含, 即存在一条直 线, 使得第一螺旋线 21在所述直线的一侧, 第二螺旋线 22在所述直线的另一 侧, 如图 6中的直线 5。 所述第一、 第二螺旋线 21、 22以所述直线 5轴对称。
本发明由于在单开口谐振环上增加了两个金属的螺旋线, 而根据上述条件 2 )可知任一螺旋线上的两点 (ρ(θ), θ)、 (ρ(θ+2π), θ+2π)之间存在走线间隔, 当 对电磁场产生响应时, 这两点可以等效为两电容极板, 且极板间距即走线间隔 等于 ρ(θ+2π)-ρ(θ), 则整个螺旋线可以等效为一个极板长度约等于螺旋线总长度 的、 极板成螺旋形的电容。
已知电容公式为
C - εΑ/ - p p A/
L _ /d ~ 7d;
其中, 为空气中的理想介电常数, 为基材 1的介电常数, A为电极容板 的面积, d为两电容极板之间的间距。 电容极板的面积 A=L。t, 其中 L。为第一螺 旋线或第二螺旋线的长度, t为附着在基材 1上的金属线的厚度。 可见, 在其他 条件不改变的情况下, 螺旋线越长, 两个螺旋线之间越近, 则等效电容值越大。
同理我们可以定性的判断电感 L的变化, 线长越长, 电感 L越大。 本发明 中螺旋线螺旋圏数越多, 其电感越大(存在互感)。
由 LC振荡电路的公式 可知, 当电感值增大, 其对应的谐振频率将降低。
本发明将以图 4所示的现有技术的结构为例, 比较本发明的超材料相对于 现有的超材料技术的优越性。
对于图 4和图 8所示的两种人造微结构, 基材选用 FR-4等级的环氧树脂材 料。
1) 当二者所在的超材料单元尺寸相同时, 此时超材料单元的尺寸为 25mmx25mmx25mm:
如图 4所示,图中各段尺寸分别为: S2=25mm, H=24mm, D=10mm, W=4mm, S=0.025mm。 经过仿真, 现有的这种单圏的开口谐振环结构其磁导率的谐振频 率大约在 25GHz左右。
如图 8所示,本发明一实施例中,图中各段尺寸分别为: SfSSmm, h=24mm, d=0.5mm, w=4mm, S=0.025mm。 经过仿真, 通过螺旋绕行的多圏开口谐振环 结构其谐振频率大概在 8GHz。
2 ) 当两种人造微结构的总线长相等时, 例如均为 120mm:
图 4所示的现有的单圏开口谐振环的尺寸保持不变, 超材料单元的尺寸也 为 25mmx25mmx25mm, 测得该超材料单元的磁导率为 μ=5.4;
图 7 所示的本发明另一实施例中, 超材料单元的尺寸减小至 1 Ommx 1 Ommx 1 Omm , 图中各段尺寸分别为: S^lOmm, h=8mm, d=0.5mm, w=0.5mm, S=0.025mm。 经过仿真, 测得该具有螺旋线的多圏开口谐振环结构 的超材料单元的磁导率 μ=5.6。
上述对比实施例中除人造微结构以外的所有参数均相同。 由上述结果可知, 当人造微结构的轮廓尺寸 (或者超材料单元的尺寸)相当时, 采用本发明的螺 旋形结构可以使磁导率谐振频率向低频段移动(即其谐振频率变小); 同时, 当 实现相等或相近的磁导率时, 采用本发明的螺旋形结构将大大减小每个人造微 结构和超材料单元的尺寸, 因此在同一块基板上可以设置更多的人造微结构, 在实现相同磁导率的同时有利于实现高集成度和小型化。
本发明中, 第一、 第二螺旋线 21、 22的走线间距 d最小可以做到 0.1mm, 因此其长和宽 h可以制造成约为图 4所示人造微结构的长和宽 H的十分之一, 则面积降至其百分之一。 因此, 采用本发明的超材料, 在满足相同或相近磁导率、 实现相近电磁响 应特性的情况下, 采用本发明可以显著地减小人造微结构的体积, 在相同体积 的基材上可以集成更多的人造微结构, 进而减小超材料的面积和体积, 甚至可 以减小到百分之一、 千分之一, 这对于产品的小型化甚至微型化, 有着非常重 大的促进意义。
本发明的第一、 第二螺旋线不仅仅为如图 8所示的方形螺旋线, 还可以是 图 9所示的圓形螺旋线。 方形螺旋线是指在满足上述条件 1)、 2)、 3)而形成螺 旋线的同时, 可以看作是由多个直线段依次互成 90度自内向外连接而成, 后一 直线段均长于前一直线段, 而本文的圓形螺旋线是指在上述螺旋线的极坐标满 足上述条件 1)、 2)、 3) 的同时, 还满足 ^ 00,使得该螺旋线上没有尖角 和凸点而是一条平滑曲线, 如图 9所示。
其中, 图 8、 图 9所示的人造微结构 2中, 其第一、 第二螺旋线的走线间隔 都是或者近似均匀相等的, 即第一螺旋线 21 上的任两点均满足 A to + ^)-Ρι{θι) = p +4^) - (^I +2 ), 而第二螺旋线 22上的任两点也均 满足 2( +2 )-Α( ) = Α( +4^·)-Α( +2 )。 但是, 在其他实施例中, 走 线间隔并不必然是相等的, 如图 10所示, 每条螺旋线的走线间隔就不相等。
上述实施方式的超材料, 由于螺旋方向相反的两根螺旋线均紧密排布, 使 得在实现相同或相近磁导率的条件下人造微结构的尺寸可减小至十分之一以 上, 大大减小了超材料的体积, 有利于天线等通讯设备和器件的进一步小型化 和微型化发展。
请一并参阅图 11-13, 本发明第四实施方式提供的超材料 200与图 1所示的 人造微结构的区别在于, 人造微结构 203的两根弯曲线 203b是从近 "凹" 字形 开口环 203a的所述两平行线末端分别向两侧的内部区域蛇形弯曲延伸的。 这里 的蛇形弯曲延伸, 是指一点自一起始点始终向前(或者不倒退)行进的同时在 垂直于其行进的方向来回往复所形成的轨迹。
在超材料领域中, 可以通过将人造微结构等效为电路来分析人造微结构对 超材料的电磁特性的影响。 本发明中, 在开口环中增设蛇形的弯曲线, 每两相 邻走线可以等效为一个电容的两个极板, 因此每个弯曲线相当于多个电容串联 得到一个总电阻, 增加其电容量, 而两个弯曲线相当于一个总电容。 与没有设 置弯曲线的开口环相比, 本发明的人造微结构相当于增加了电容。 在电磁学中, 已知磁导率 μ与磁场强度 Η、 磁感应强度 Β及磁导率 μ之间 的关系为: μ=Β/Η。 由公式可以看出, 磁导率 μ与磁感应强度 Β成正比, 另夕卜, 增加电容等效于电容量的提升, 有助于大量电量的集聚, 进而通过电磁效应, 有效地提高磁感应强度, 本发明的改进后的人造微结构相当于增加了电容, 从 而提高了结构内的磁感应强度, 进而提高负磁导率的绝对值。
例如, 在本发明的第四实施例中, 每个基材单元 202a、 人造微结构 203构 成的材料单元如图 12所示, 基板 202选择 FR-4环氧树脂材料, 厚度为 0.4mm, 基材单元的尺寸为 40mm X 40mm x 0.4mm, 即 A=40mm; 人造微结构 203由铜 线制成, 厚度为 0.018mm, 到基材单元的四条边均预留 W=lmm, 线宽也为 W, 即 1mm, 且所有的走线间距也为 W, 即 lmm。
对上述材料单元进行仿真, 得到的磁导率关于频率的电磁响应曲线如图 14 所示。 由图可知, 本实施例的材料单元在 0.21~0.24GHz范围内其磁导率均为负 值, 且最低磁导率能够达到 -26, 且达到最低磁导率是其虚部的损耗非常小, 基 本上为 0。
而其他条件与上述图 13所示实施例完全相同, 只是没有图 13 中的两条弯 曲线从而形成如图 1 所示的近 "凹" 字形开口环, 其仿真得到的电磁响应曲线 如图 15所示。 由图可知, 其在 0.38~0.46GHz范围内其磁导率为负值, 且最小 只能达到 -5.5 , 其绝对值相对较小, 很难达到所需要的负磁导率效果。
因此, 采用本发明的人造微结构, 能够明显提高超材料的负磁导率的绝对 值, 从而强化负磁导率效果, 以满足特定条件下对负磁导率值的要求。
上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 例如开口环的边角不一定为直角, 可以为如图 16所示的圓角 过渡, 另外, 开口环也并不必然为近 "凹" 字形, 还可以是具有缺口的圓环形, 如图 17所示。 两个弯曲线可以相同, 也可以不同, 可以为镜像对称分布, 也可 以为平行并排设置。
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。

Claims

权 利 要 求
1. 一种人造微结构, 所述人造微结构为导电材料的丝线, 其特征在于, 所 述人造微结构包括开口环和自所述开口环的两端端点分别向环内弯曲延伸的两 根弯曲线, 所述两弯曲线互不相交且不与所述开口环相交。
2. 如权利要求 1所述的人造微结构, 其特征在于, 所述开口环为 "凹" 字 形开口环, 且所述开口环的内 部分开口, 所述开口环包括矩形开口环和自所 述矩形开口环的两端端点向环内延伸的一对平行线。
3. 如权利要求 1所述的人造微结构, 其特征在于, 所述两根的弯曲线轴对 称分布。
4. 如权利要求 1所述的人造微结构, 其特征在于, 所述开口环为矩形开口 环。
5. 如权利要求 1所述的人造微结构, 其特征在于, 所述开口环为圓形开口 环。
6. 如权利要求 1-5任一项所述的人造微结构, 其特征在于, 所述各弯曲线 为向环内部螺旋延伸出的螺旋线。
7. 如权利要求 6所述的人造微结构, 其特征在于, 所述螺旋线为圓形螺旋 线。
8. 如权利要求 6所述的人造微结构, 其特征在于, 所述螺旋线为方形螺旋 线。
9. 如权利要求 6所述的人造微结构, 其特征在于, 所述螺旋线的圏数大于
2。
10. 如权利要求 1-5任一项所述的人造微结构, 其特征在于, 所述各弯曲线 为自所述开口环的两端端点分别向两侧的内部区域蛇形弯曲延伸。
11. 如权利要求 10所述的人造微结构, 其特征在于, 所述弯曲线的走线间 距等于所述弯曲线的线宽。
12. 如权利要求 10所述的人造微结构, 其特征在于, 所述弯曲线的蛇形弯 曲的拐角为直角。
13. 如权利要求 10所述的人造微结构, 其特征在于, 所述弯曲线的蛇形弯 曲的拐角为圓角。
14. 如权利要求 1-5任一项所述的人造微结构, 其特征在于, 所述人造微结 构采用金属材料制成。
15. 如权利要求 14所述的人造微结构, 其特征在于, 所述人造微结构为银 线或铜线。
16. 如权利要求 1-5任一项所述的人造微结构, 其特征在于, 所述人造微结 构采用非金属材料制成。
17. 如权利要求 16所述的人造微结构, 其特征在于, 所述人造微结构采用 导电塑料、 铟锡氧化物、 碳纳米管或石墨。
18. 一种超材料, 其包括基板及多个如权利要求 1-17任一项所述的人造微 结构, 所述人造微结构附着在所述基板上。
19. 如权利要求 18所述的超材料, 其特征在于, 所述人造微结构在所述基 板上成阵列排布。
20. 如权利要求 18所述的超材料, 其特征在于, 所述基材划分为多个阵列 排布的相同的长方体形基材单元, 每个基材单元上附着有一个所述人造微结构。
PCT/CN2011/081397 2011-04-12 2011-10-27 一种人造微结构及其应用的超材料 WO2012139369A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/634,470 US9640848B2 (en) 2011-04-12 2011-10-27 Artificial microstructure and metamaterial with the same
EP11860702.7A EP2544298B1 (en) 2011-04-12 2011-10-27 Artifical micro-structure and metamaterial using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110091122.2 2011-04-12
CN2011100911222A CN102738589A (zh) 2011-04-12 2011-04-12 一种具有高集成度人造微结构的超材料
CN201110216376.2 2011-07-29
CN201110216376 2011-07-29

Publications (1)

Publication Number Publication Date
WO2012139369A1 true WO2012139369A1 (zh) 2012-10-18

Family

ID=47008815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081397 WO2012139369A1 (zh) 2011-04-12 2011-10-27 一种人造微结构及其应用的超材料

Country Status (3)

Country Link
US (1) US9640848B2 (zh)
EP (1) EP2544298B1 (zh)
WO (1) WO2012139369A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055171A1 (en) * 2009-11-09 2011-05-12 Time Reversal Communications Device for receiving and / or emitting electromanetic waves
ITTO20130775A1 (it) 2013-09-26 2015-03-27 St Microelectronics Srl Dispositivo sensore con sistema di calibrazione integrato e metodo di calibrazione dello stesso

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071774A2 (en) * 2000-03-17 2001-09-27 The Regents Of The University Of California Left handed composite media
US20090262766A1 (en) * 2006-10-19 2009-10-22 Houtong Chen Active terahertz metamaterial devices
CN101667680A (zh) * 2009-08-31 2010-03-10 深圳市启汉科技有限公司 一种单级射频天线
CN101702067A (zh) * 2009-10-29 2010-05-05 电子科技大学 一种太赫兹波平面吸收材料
CN101919109A (zh) * 2007-02-07 2010-12-15 台湾积体电路制造股份有限公司 使用超材料的传输线的设计方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69431888T2 (de) * 1993-10-04 2003-07-24 Matsushita Electric Industrial Co., Ltd. Zweimodenresonator mit zwei unabhängig resonierenden Mikrowellen
US6522217B1 (en) * 1999-12-01 2003-02-18 E. I. Du Pont De Nemours And Company Tunable high temperature superconducting filter
JP3866716B2 (ja) * 2002-03-05 2007-01-10 富士通株式会社 フィルタ
JP2003338701A (ja) * 2002-05-20 2003-11-28 Seiko Epson Corp 高周波スイッチの製造方法及び高周波スイッチ並びに電子機器
JP2005117433A (ja) * 2003-10-08 2005-04-28 Eudyna Devices Inc フィルタ
EP1771756B1 (en) * 2004-07-23 2015-05-06 The Regents of The University of California Metamaterials
CN101369680B (zh) * 2005-03-21 2010-11-10 中国科学院物理研究所 一种对平面超导微带谐振器进行检测与优化的方法
US8674792B2 (en) * 2008-02-07 2014-03-18 Toyota Motor Engineering & Manufacturing North America, Inc. Tunable metamaterials
US9116302B2 (en) * 2008-06-19 2015-08-25 Ravenbrick Llc Optical metapolarizer device
US7889127B2 (en) * 2008-09-22 2011-02-15 The Boeing Company Wide angle impedance matching using metamaterials in a phased array antenna system
WO2010088373A2 (en) * 2009-01-29 2010-08-05 Emwavedev Inductive coupling in a transverse electromagnetic mode
KR101703846B1 (ko) * 2010-09-27 2017-02-08 삼성전자주식회사 다층 복합된 메타물질 구조물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071774A2 (en) * 2000-03-17 2001-09-27 The Regents Of The University Of California Left handed composite media
US20090262766A1 (en) * 2006-10-19 2009-10-22 Houtong Chen Active terahertz metamaterial devices
CN101919109A (zh) * 2007-02-07 2010-12-15 台湾积体电路制造股份有限公司 使用超材料的传输线的设计方法
CN101667680A (zh) * 2009-08-31 2010-03-10 深圳市启汉科技有限公司 一种单级射频天线
CN101702067A (zh) * 2009-10-29 2010-05-05 电子科技大学 一种太赫兹波平面吸收材料

Also Published As

Publication number Publication date
EP2544298A1 (en) 2013-01-09
US20130049903A1 (en) 2013-02-28
EP2544298B1 (en) 2018-07-18
EP2544298A4 (en) 2014-09-10
US9640848B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
CN105390819B (zh) 一种超宽带电磁超表面圆极化器
JP5697826B2 (ja) 複数の周波数帯域をフィルタにかけるための表面
EP2693860A1 (en) Wave-absorbing metamaterial
JP5666642B2 (ja) 小型アンテナ
CN102931495B (zh) 一种单频/双频电磁超介质吸波材料
EP2924802B1 (en) Harmonic oscillator and cavity filter and electromagnetic wave device thereof
WO2012139370A1 (zh) 一种人造微结构及其应用的磁谐振超材料
CN205194854U (zh) 一种超宽带电磁超表面圆极化器
US9166272B2 (en) Artificial microstructure and metamaterial using the same
WO2012139369A1 (zh) 一种人造微结构及其应用的超材料
US9768505B2 (en) MIMO antenna with no phase change
JP2014216751A (ja) 基板及びアンテナ
CN107863607B (zh) 基于环偶极子谐振的低损耗电磁感应透明超材料结构
US9041481B2 (en) Artificial microstructure and artificial electromagnetic material using the same
WO2012122814A1 (zh) 一种电磁透明的超材料
CN104638379A (zh) 天线反射板和低后瓣天线
CN203553361U (zh) 天线反射板和低后瓣天线
CN202217777U (zh) 一种谐振腔
WO2013023423A1 (zh) 一种谐振腔及具有该谐振腔的滤波器
CN102769199B (zh) 超材料板材及由其制成的超材料天线罩和无线通信***
CN103036042B (zh) 一种新型超材料
WO2012122803A1 (zh) 一种人造微结构及其应用的人工电磁材料
WO2013000224A1 (zh) 一种人造微结构及其应用的人工电磁材料
WO2019205395A1 (zh) 一种由接合线制作而成的高弹性天线
CN104620441A (zh) 人工介质谐振器和基于它的人工介质滤波器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13634470

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011860702

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE