WO2012137472A1 - アクティブマトリクス基板及び液晶表示装置 - Google Patents

アクティブマトリクス基板及び液晶表示装置 Download PDF

Info

Publication number
WO2012137472A1
WO2012137472A1 PCT/JP2012/002296 JP2012002296W WO2012137472A1 WO 2012137472 A1 WO2012137472 A1 WO 2012137472A1 JP 2012002296 W JP2012002296 W JP 2012002296W WO 2012137472 A1 WO2012137472 A1 WO 2012137472A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
liquid crystal
gate
lines
pixel
Prior art date
Application number
PCT/JP2012/002296
Other languages
English (en)
French (fr)
Inventor
誠二 金子
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012137472A1 publication Critical patent/WO2012137472A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3659Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes

Definitions

  • the present invention relates to an active matrix substrate and a liquid crystal display device.
  • the present invention relates to an active matrix substrate and a liquid crystal display device that can be driven at a low frequency and suppress display deterioration due to flickering of screen luminance.
  • Measures for reducing the power consumption of the display panel include increasing the aperture ratio of the panel in order to ensure excellent luminance and driving the panel at a low frequency.
  • the output of adjacent pixels is set to have a reverse polarity (dot inversion drive). This is because, by setting the outputs of adjacent pixels to opposite polarities, writing is averaged between the positive polarity and the negative polarity, and flicker becomes difficult to be visually recognized.
  • Patent Document 1 alternately generates a first timing signal corresponding to a first timing at which a positive drive voltage is to be applied and a second timing signal corresponding to a second timing at which a negative drive voltage is to be applied.
  • a timing generation driver for outputting to each of the liquid crystal display cells connected to the first data driver via the first data line and corresponding to the first timing signal input via the first gate line.
  • the first switching element for applying voltage to the second liquid crystal display cell connected to the second data driver via the second data line and input via the second gate line to the corresponding one liquid crystal display cell.
  • a liquid crystal display device including a second switching element that applies a voltage is disclosed.
  • the polarity of the drive voltage applied to the adjacent liquid crystal display element can be reversed without inverting the polarity of the data line drive voltage every horizontal period. It is described that a high-quality display without occurrence of luminance unevenness can be obtained and that the power consumed by driving the liquid crystal panel can be reduced.
  • Patent Document 1 Japanese Patent Document 1
  • two types of data drivers are required per panel, and a large amount of power is required to drive each data driver, and the manufacturing cost increases.
  • two gate lines and two data lines are required per pixel, the aperture ratio is reduced, and the power consumption of the backlight is increased accordingly.
  • An object of the present invention is to perform high-speed writing in an active matrix substrate and a liquid crystal display device including the same, thereby reducing power consumption and further reducing manufacturing costs.
  • the active matrix substrate of the present invention is m ⁇ n pixel units arranged in a matrix of m rows and n columns (m and n are integers of 2 or more);
  • the m first gate lines and the m second gate lines respectively corresponding to the m pixel rows of the m ⁇ n pixel portions extend in parallel with each other in the row direction and are spaced apart from each other in the column direction.
  • the gate line Including a data line to which a positive data signal is applied and a data line to which a negative data signal is applied, along the column direction so as to partition n pixel columns of the m ⁇ n pixel units.
  • each of the m pixel units included in the kth column (1 ⁇ k ⁇ n) pixel column is A liquid crystal element;
  • the (k + 1) th column data line and And a second switching element that switches a connection state with the liquid crystal element In response to a control signal disposed between the first and second gate lines corresponding to the pixel portion and applied to the other of the first and second gate lines, the (k + 1) th column data line and And a second switching element that switches a connection state with the liquid crystal element.
  • the pixel portion (herein referred to as the first pixel portion) included in the k-th pixel column, and the pixel column adjacent to it in the row direction and in the k + 1-th column (1 ⁇ k ⁇ n) will be described with respect to the pixel portion included in the pixel (here, the second pixel portion).
  • a positive data signal is applied to the kth and k + 2th data lines
  • a negative data signal is applied to the k + 1th data line
  • the first The first switching element of the pixel portion is provided to switch a connection state between the data line of the kth column and the liquid crystal element in response to a control signal applied to the first gate line.
  • a second switching element is provided to switch a connection state between the data line of the (k + 1) th column and the liquid crystal element in response to a control signal applied to the second gate line, and the first switching element of the second pixel unit
  • a switching element is provided to switch a connection state between the data line of the (k + 1) th column and the liquid crystal element in response to a control signal applied to the first gate line, and the second switching of the second pixel unit Device applied to second gate line It will be described which is provided to switch the connection state between the (k + 2) th column data line and the liquid crystal element in response to a control signal.
  • the control signal is applied to any one of the m first gate lines, while the control signal is not applied to any of the m second gate lines.
  • the control signal is applied to any one of the m second gate lines, while the control signal is not applied to any of the m first gate lines.
  • Driving is performed. Therefore, in the first driving period, when the first gate line corresponding to the first and second pixel portions is selected and the control signal is applied, the first pixel portion responds to the control signal.
  • the first switching element is turned on, and a positive driving voltage is applied to the liquid crystal element via the kth column data line to which the positive data signal is applied.
  • the first switching element is turned on in response to the control signal, and the liquid crystal element is negatively driven through the (k + 1) th column data line to which the negative data signal is applied. A voltage will be applied.
  • the first pixel portion receives a second signal in response to the control signal.
  • the switching element is turned on, and a negative drive voltage is applied to the liquid crystal element via the data line of the (k + 1) th column to which the negative data signal is applied.
  • the second switching element is turned on in response to the control signal, and the liquid crystal element is positively driven through the k + 2th column data line to which the positive data signal is applied. A voltage will be applied.
  • the first switching element of the first pixel unit is provided so as to switch a connection state between the data line of the kth column and the liquid crystal element in response to a control signal applied to the second gate line.
  • a second switching element of one pixel unit is provided to switch a connection state between the data line of the (k + 1) th column and the liquid crystal element in response to a control signal applied to the first gate line.
  • the first switching element is provided to switch the connection state between the data line of the (k + 1) th column and the liquid crystal element in response to a control signal applied to the second gate line, and Similarly, when the second switching element is provided so as to switch the connection state between the data line of the (k + 2) th column and the liquid crystal element in response to a control signal applied to the first gate line, Dot inversion Motion can be carried out.
  • the polarity of the data signal applied to each data line is not charged / discharged for each frame and inverted, and the drive voltage applied to each liquid crystal element of the adjacent first pixel portion and second pixel portion is determined. Since the polarity can be reversed, the power consumed by driving can be suppressed.
  • two switching elements are provided in one pixel portion, but one data line (here, the data line of the (k + 1) th column (1 ⁇ k ⁇ n))
  • a data signal is supplied to the second switching element of the pixel portion (first pixel portion) included in the k-th pixel row, while the pixel portion (second pixel portion) of the pixel portion (second pixel portion) included in the k + 1-th pixel row. Since the data signal is supplied to one switching element, it is only necessary to arrange one data line in each part that partitions adjacent pixel columns. Therefore, it is not necessary to arrange two data lines per pixel column in order to drive each of the first and second switching elements, and a large aperture ratio of the active matrix substrate can be ensured. The power consumption of the light can be suppressed.
  • the n + 1 data lines are arranged so that the data lines to which the positive data signal is applied and the data lines to which the negative data signal is applied are alternately arranged.
  • These data lines can be driven by a single type of data driver, and power consumption for driving the data driver can be suppressed as compared with the case where a plurality of types of data drivers are provided. Further, the manufacturing cost can be reduced as compared with the case where a plurality of types of data drivers are provided. Furthermore, the frame can be narrower than when a plurality of types of data drivers are provided.
  • the first switching elements or the second switching elements are on both sides of the first gate line and / or the second gate line. It is preferable that they are arranged to face each other.
  • the active matrix substrate of the present invention is preferably arranged so that the first gate lines and the second gate lines are alternately arranged in the column direction.
  • a pair of the first gate line and the second gate line is arranged so as to partition each pixel portion in the column direction. While the control signal is applied to the first gate line in the first driving period, the control signal is not applied to the second gate line, and the control signal is applied to the second gate line in the second driving period. On the other hand, no control signal is applied to the first gate line. That is, since a control signal is not applied to both the first gate line and the second gate line within the same frame, each pair of the first gate line and the second gate line is connected to each other. Even if a pair of both are arranged close to each other so as to partition the pixel portion in the column direction, it is possible to suppress deterioration in driving characteristics due to parasitic capacitance between the first gate line and the second gate line. .
  • the active matrix substrate of the present invention is preferably a thin film transistor (hereinafter also referred to as “TFT”) in which each of the first switching element and the second switching element includes an oxide semiconductor film.
  • TFT thin film transistor
  • each of the first switching element and the second switching element is a TFT including an oxide semiconductor film, high-speed writing drive is possible, and a change in luminance of the screen can be suppressed. It is possible to reduce the change in pixel potential due to TFT off-leak during the writing suspension period. Therefore, display deterioration due to flicker can be further suppressed.
  • the liquid crystal display device of the present invention includes the above-described active matrix substrate of the present invention, In the row direction, the data signals are applied to the n + 1 data lines so that the data lines to be applied with the positive data signal and the data lines to be applied with the negative data signal are alternately arranged in the row direction.
  • a first gate driver that does not apply a control signal to any of the gate lines; In the first driving period, no control signal is applied to any of the m second gate lines, and in the second driving period, any one of the m second gate lines.
  • a second gate driver for applying a control signal to be transmitted to the second switching element It is characterized by providing.
  • each data is arranged such that the data line to which the data driver applies the positive data signal and the data line to which the negative data signal is applied are alternately arranged in the row direction.
  • a signal is applied to each of the n + 1 data lines, and the first gate driver and the second gate driver are connected to any one of the m first gate lines in the first driving period. While the control signal transmitted to the first switching element is applied, the control signal is not applied to any of the m second gate lines, and the m second gates are applied during the second driving period.
  • a control signal to be transmitted to the second switching element is applied to any one of the lines, while a control signal is not applied to any of the m first gate lines.
  • Apply a voltage of Bets can be, also, it is possible to perform dot inversion driving for inverting the polarity of each pixel unit for each drive period.
  • a single type of data driver has alternating data lines to which positive data signals are applied and data lines to which negative data signals are applied in the row direction. Since the data signals are respectively applied to the n + 1 data lines so as to line up with each other, power consumption for driving the data driver can be suppressed as compared with the case where a plurality of types of data drivers are provided. Further, the manufacturing cost can be reduced as compared with the case where a plurality of types of data drivers are provided. Further, the frame can be narrower than when a plurality of types of data drivers are provided.
  • m first gate lines and m second gate lines respectively corresponding to m pixel rows of the pixel portion extend in parallel to each other in the row direction.
  • N + 1 data lines that are arranged and extend so as to partition the n pixel columns of the pixel portion are alternately arranged with data lines to which positive data signals are applied and data lines to which negative data signals are applied.
  • the pixel units are arranged side by side, and each pixel portion is connected to the liquid crystal element and the liquid crystal element in response to a control signal applied to one of the first and second gate lines.
  • the first A control signal is applied to the first gate line in the driving period to turn on the first switching element, and then a control signal is applied to the second gate line in the second driving period to activate the second switching element.
  • the voltage applied to the liquid crystal element in the adjacent pixel portion can be reversed, and the polarity of the voltage applied to each liquid crystal element can be reversed every driving period. That is, dot inversion driving can be performed.
  • the active matrix substrate By driving the active matrix substrate in this way, the polarity of the voltage applied to each liquid crystal element can be reversed without charging and discharging the polarity of the data signal applied to each data line. As a result, driving power can be suppressed.
  • two switching elements are provided in one pixel portion, but one data line (here, the data line in the (k + 1) th column (1 ⁇ k ⁇ n))
  • the control signal is supplied to the second switching element of the pixel unit included in the kth pixel column, while the control signal is supplied to the first switching element of the pixel unit included in the k + 1th pixel column.
  • the control signal is supplied to the first switching element of the pixel portion included in the k-th pixel column, while the control signal is supplied to the second switching element of the pixel portion included in the k + 1-th pixel column. Therefore, it is only necessary that one data line is arranged in each part that partitions adjacent pixel columns. Therefore, it is not necessary to arrange two data lines per pixel column in order to drive each of the first and second switching elements, and a large aperture ratio of the active matrix substrate can be ensured. The power consumption of the light can be suppressed.
  • the n + 1 data lines are arranged so that the data lines to which the positive data signal is applied and the data lines to which the negative data signal is applied are alternately arranged.
  • These data lines can be driven by a single type of data driver, and power consumption for driving the data driver can be suppressed as compared with the case where a plurality of types of data drivers are provided. Further, the manufacturing cost can be reduced as compared with the case where a plurality of types of data drivers are provided. Furthermore, the frame can be narrower than when a plurality of types of data drivers are provided.
  • FIG. 1 is a schematic configuration diagram of a liquid crystal display device of Embodiment 1.
  • FIG. FIG. 2 is an enlarged view of regions of four pixel portions Pjk, Pj (k + 1), P (j + 1) k, and P (j + 1) (k + 1) in FIG. 3 is an operation timing chart of the first embodiment.
  • FIG. 6 is an image diagram for explaining the operation of the first embodiment in (a) a first driving period and (b) a second driving period.
  • the graph which shows the relationship between the writing time and panel surface brightness
  • FIG. 1 shows a schematic configuration of the liquid crystal display device 10.
  • the liquid crystal display device 10 includes a reference voltage generation circuit 11 that generates and outputs a reference voltage of the entire device, a current amplifier 12 that amplifies a voltage signal from the reference voltage generation circuit 11 and outputs the current signal to a data driver 15 described later.
  • a plurality of first gate lines Ga (1), Ga (2),... And a plurality of second gate lines Gb (1), Gb (2),... (Hereinafter referred to as a plurality of second gate lines Gb (1), Gb (2),...) Based on the horizontal synchronization signal.
  • the two gate lines may be collectively referred to as a second gate line Gb.) And a plurality of data lines D (1) and D (2) based on the horizontal synchronization signal. , ... (Hereafter, data is collected from multiple data lines. Also referred to as D.) Of it comprises a single type of data driver 15 for applying a data signal to each of the.
  • the data driver 15 may be configured by one data driver, or may be configured by combining all the same types of data drivers.
  • the first gate line Ga, the second gate line Gb, and the data line D are formed on the active matrix substrate 20.
  • m ⁇ n pixel portions P11, P12,... are arranged in a matrix of m rows ⁇ n columns.
  • m and n are integers of 2 or more.
  • Each of the m ⁇ n pixel portions P is an intersection of the jth pixel row and the kth pixel column at integers j and k where 1 ⁇ j ⁇ m and 1 ⁇ k ⁇ n + 1.
  • the pixel portion Pjk is arranged in the area to be processed.
  • the plurality of first gate lines Ga are provided so as to correspond to m pixel rows of the m ⁇ n pixel portions and to extend in parallel with each other in the row direction.
  • Each of the m first gate lines Ga has the first gate line Ga (j) arranged in the j-th row.
  • a plurality of second gate lines Gb are provided so as to respectively correspond to m pixel rows of the m ⁇ n pixel portions and to extend in parallel with each other along the row direction.
  • Each of these m second gate lines Gb has the second gate line Gb (j) arranged in the j-th row.
  • the first gate line Ga (j) and the second gate line Gb (j) in the j-th row are arranged so as to be separated from each other in the column direction.
  • the n + 1 data lines D are provided so as to extend in parallel with each other along the column direction so as to partition n pixel columns of the m ⁇ n pixel portions P. Each of these n + 1 data lines D has a data line D (k) arranged in the k-th column.
  • the n + 1 data lines D include a data line to which a positive data signal is applied and a data line to which a negative data signal is applied, and a data line to which a positive data signal is applied and a negative data signal. Are arranged so as to be alternately arranged with data lines to which is applied.
  • Each pixel portion P includes a liquid crystal element 21, a first TFT 22 that is a first switching element, a second TFT 23 that is a second switching element, and a storage capacitor 24 for memory.
  • Each of the first TFT 22 and the second TFT includes an oxide semiconductor film as a semiconductor film. Examples of the oxide semiconductor film include indium gallium zinc composite oxide (IGZO).
  • the liquid crystal element 21 has one terminal connected to the counter electrode.
  • the storage capacitor 24 has one terminal connected to the common sources 22S and 23S of the first TFT 22 and the second TFT 23, and the other terminal connected to the counter electrode.
  • the first TFT 22 is disposed between the first gate line Ga (j) and the second gate line Gb (j).
  • the first TFT 22 can switch the connection state between the data line D (k) in the kth column and the liquid crystal element 21 (liquid crystal element CLa) in response to a control signal applied to the first gate line Ga (j).
  • the gate 22G is connected to the first gate line Ga (j) in the j-th row
  • the drain 22D is connected to the data line D (k) in the k-th column
  • the source 22S is connected to the other terminal of the liquid crystal element 21. It is connected to the.
  • the second TFT 23 is disposed between the first gate line Ga (j) and the second gate line Gb (j).
  • the second TFT 23 has a gate so that the connection state between the data line D (k + 1) of the (k + 1) th column and the liquid crystal element 21 can be switched in response to a control signal applied to the second gate line Gb (j).
  • 23G is connected to the second gate line Gb (j) of the jth row, the drain 23D is connected to the data line D (k + 1) of the (k + 1) th column, and the source 23S is connected to the other terminal of the liquid crystal element 21. It is connected.
  • the first TFT 22 switches the connection state between the data line D (k + 1) of the (k + 1) th column and the liquid crystal element 21 (liquid crystal element CLb) in response to a control signal applied to the first gate line Ga (j).
  • the gate 22G is connected to the first gate line Ga (j) in the jth row
  • the drain 22D is connected to the data line D (k + 1) in the (k + 1) th column
  • the source 22S is connected to the liquid crystal element 21. Is connected to the other terminal.
  • the second TFT 23 has a gate so that the connection state between the data line D (k + 2) in the (k + 2) th column and the liquid crystal element 21 can be switched in response to a control signal applied to the second gate line Gb (j).
  • 23G is connected to the second gate line Gb (j) of the jth row
  • the drain 23D is connected to the data line D (k + 2) of the (k + 2) th column
  • the source 23S is connected to the other terminal of the liquid crystal element 21. It is connected.
  • the first TFT 22 switches the connection state between the data line D (k) in the kth column and the liquid crystal element 21 (liquid crystal element CLc) in response to a control signal applied to the second gate line Gb (j + 1).
  • the gate 22G is connected to the second gate line Gb (j + 1) in the (j + 1) th row
  • the drain 22D is connected to the data line D (k) in the kth column
  • the source 22S is connected to the liquid crystal element 21. Is connected to the other terminal.
  • the second TFT 23 can switch the connection state between the data line D (k + 1) of the (k + 1) th column and the liquid crystal element 21 in response to a control signal applied to the first gate line Ga (j + 1).
  • the gate 23G is connected to the first gate line Ga (j + 1) of the (j + 1) th row
  • the drain 23D is connected to the data line D (k + 1) of the (k + 1) th column
  • the source 23S is connected to the liquid crystal element 21. Connected to the other terminal.
  • the first TFT 22 is connected to the data line D (k + 1) of the (k + 1) th column and the liquid crystal element 21 (liquid crystal element CLd) in response to a control signal applied to the second gate line Gb (j + 1).
  • the gate 22G is connected to the second gate line Gb (j + 1) of the (j + 1) th row
  • the drain 22D is connected to the data line D (k + 1) of the (k + 1) th column
  • the source 22S Is connected to the other terminal of the liquid crystal element 21.
  • the second TFT 23 can switch the connection state between the liquid crystal element 21 and the data line D (k + 2) of the (k + 2) th column in response to a control signal applied to the first gate line Ga (j + 1).
  • the gate 23G is connected to the first gate line Ga (j + 1) in the (j + 1) th row
  • the drain 23D is connected to the data line D (k + 2) in the (k + 2) th column
  • the source 23S is connected to the liquid crystal element 21. Connected to the other terminal.
  • the n + 1 data lines D are arranged such that data lines to which positive data signals are always applied and data lines to which negative data signals are always applied are alternately arranged in the row direction. That is, the data driver 15 always applies a positive data signal to the data line D (o) in the o-th column with respect to the odd integer o (1 ⁇ o ⁇ n + 1) and is an even integer e. A negative data signal is always applied to the data line D (e) of the e-th column with respect to (2 ⁇ e ⁇ n + 1), or for an integer o (1 ⁇ o ⁇ n + 1) which is an odd number.
  • a negative-polarity data signal is always applied to the o-th data line D (o), and the even-numbered integer e (2 ⁇ e ⁇ n + 1) is applied to the e-th data line D (e).
  • e even-numbered integer
  • e negative-polarity data signal
  • a positive data signal is always applied to the data lines D (k) and D (k + 2), and a negative data signal is always applied to the data line D (k + 1).
  • a signal is applied.
  • the first gate driver 13 selects the first gate line Ga (j), and the first gate line Ga (j) becomes H level. Thereby, a control signal is applied to the first TFT 22 of the pixel portion Pjk from the first gate driver 13 to be turned on, and a positive data signal is transmitted from the data driver 15 through the data line D (k). Therefore, a positive drive voltage is applied to the liquid crystal element CLa during the first drive period.
  • a first gate line Ga (j) is becomes H level
  • the control signal from the first gate driver 13 is turned on is applied to the 1TFT22 pixel portion Pj (k + 1), A negative data signal is transmitted from the data driver 15 via the data line D (k + 1). Therefore, a negative drive voltage is applied to the liquid crystal element CLb during the first drive period.
  • the first gate line Ga (j + 1) becomes the H level.
  • the control signal is applied to the second TFT 23 of the pixel portion P (j + 1) k from the first gate driver 13 to be turned on, and the negative polarity is transmitted from the data driver 15 via the data line D (k + 1). Data signals are transmitted. Therefore, a negative drive voltage is applied to the liquid crystal element CLc during the first drive period.
  • the first gate driver 13 selects the forward first following gate line Ga on the basis of the horizontal synchronizing signal, in a first drive period, positive or negative driving voltage to each liquid crystal element Applied.
  • the second gate driver 14 selects the second gate line Gb to (j), the second gate line Gb (j) becomes the H level.
  • a control signal is applied to the second TFT 23 of the pixel portion Pjk from the second gate driver 14 to turn it on, and a negative data signal is transmitted from the data driver 15 via the data line D (k + 1).
  • the Therefore, a negative drive voltage is applied to the liquid crystal element CLa during the second drive period.
  • the second gate driver 14 selects second gate line Gb the (j + 1) at time t 4, the second gate line Gb (j + 1) becomes the H level.
  • a control signal is applied to the first TFT 22 of the pixel portion P (j + 1) k from the second gate driver 14 to turn it on, and positive data from the data driver 15 via the data line D (k).
  • a signal is transmitted. Therefore, a positive drive voltage is applied to the liquid crystal element CLc during the second drive period.
  • the second gate driver 14 selects the forward order second gate line Gb based on a horizontal synchronizing signal, in a second drive period, positive or negative driving voltage to each liquid crystal element Applied.
  • a positive data signal is always applied to the data line D (k) and the data line D (k + 2), and a negative data signal is always applied to the data line D (k + 1).
  • positive, negative, negative, and positive drive voltages are applied to the liquid crystal elements CLa, CLb, CLc, and CLd, respectively.
  • negative, positive, positive, and negative drive voltages are applied to the liquid crystal elements CLa, CLb, CLc, and CLd, respectively. Therefore, the polarity of the data signal applied to each data line D can be reversed between adjacent liquid crystal elements without reversing the polarity, and the voltage applied to each liquid crystal element CLa, CLb, CLc, CLd. Can be inverted every frame.
  • the first gate driver 13, the second gate driver 14, and the data driver 15 are provided outside the active matrix substrate 20, but these are formed in the peripheral region of the active matrix substrate 20. It may be.
  • each liquid crystal element 21 is transmitted by always transmitting a positive polarity data signal or a negative polarity data signal without charging and discharging the polarity of the data signal applied to each data line D. Since the polarity of the voltage applied to can be reversed, driving power consumption can be suppressed. In addition, since the polarity of the voltage applied to each liquid crystal element 21 can be inverted without charging and discharging the polarity of the data signal applied to each data line D, stable control can be performed at high speed. Is possible.
  • FIGS. 5A to 5C show the relationship between the writing time and the panel surface brightness when the flicker pattern is displayed on the screen in the drive that pauses after high-speed writing.
  • the write time for each frame in FIG. 5A is A [msec]
  • FIG. 5B is the write time 2/3 ⁇ A [msec]
  • FIG. 5C is the write time 1/2 ⁇ . A case of A [msec] is shown. From FIG. 5, it is known that as the writing time for each frame becomes shorter, the luminance amplitude becomes smaller and the flickering of the screen luminance is reduced.
  • first TFT 22 and second TFT 23 are provided in one pixel portion P, but one data line D (here, for example, the data line in the (k + 1) th column) D (k + 1)) provides a data signal to the second TFT 23 of the pixel unit Pjk included in the kth pixel column, while the pixel unit Pj (k + 1) included in the k + 1th pixel column.
  • the first TFT 22 is configured to provide a data signal, or a data signal is applied to the first TFT 22 of the pixel portion P (j + 1) k included in the kth pixel column, while the k + 1th column.
  • the data signal is supplied to the second TFT 23 of the pixel portion P (j + 1) (k + 1) included in the pixel column, the adjacent pixel columns (the k-th column and the k + 1-th column) It is only necessary that one data line D is arranged in each part that divides the area. Therefore, it is not necessary to arrange two data lines per pixel column in order to drive each of the first TFT 22 and the second TFT 23, and the aperture ratio of the active matrix substrate 20 can be secured large. As a result, the backlight Power consumption can be suppressed.
  • the n + 1 data lines D are arranged such that data lines to which a positive data signal is applied and data lines to which a negative data signal is applied are alternately arranged. Therefore, it is possible to drive these data lines D with a single type of data driver 15, and power consumption for driving the data driver 15 can be suppressed as compared with the case where a plurality of types of data drivers are provided. . Further, the manufacturing cost can be reduced as compared with the case where a plurality of types of data drivers are provided. Furthermore, the frame can be narrower than when a plurality of types of data drivers are provided.
  • the first gate lines Ga and the second gate lines Gb are arranged on the active matrix substrate 20 so as to be alternately arranged in the column direction.
  • a pair of the first gate line Ga (j + 1) and the second gate line Gb (j) is arranged so as to partition the pixel row of the jth row and the pixel row of the j + 1th row in the column direction.
  • the Rukoto In the first driving period, a control signal is applied to the first gate line Ga, while no control signal is applied to the second gate line Gb, and in the second driving period, a control signal is applied to the second gate line Gb. On the other hand, no control signal is applied to the first gate line Ga.
  • the first gate line Ga (j + 1) and the second gate line Gb (j) are arranged so as to partition the j-th pixel row and the j + 1-th pixel row in the column direction, the pair of first gate lines Ga ( j + 1) and the second gate line Gb (j) can suppress the deterioration of drive characteristics due to parasitic capacitance.
  • the first gate lines Ga and the second gate lines Gb are arranged so as to be alternately arranged in the column direction on the active matrix substrate 20, but as shown in FIG.
  • the first gate line Ga and the second gate line Gb may be arranged so as not to be arranged alternately.
  • the second TFT 23 of the pixel portion Pjk and the first TFT 22 of the pixel portion P (j + 1) k are two second gate lines. They are arranged opposite to each other across Gb (j) and Gb (j + 1).
  • the second TFT 23 of the pixel portion P (j ⁇ 1) k and the first TFT 22 of the pixel portion Pjk are two first gate lines. They are arranged opposite to each other across Gb (j-1) and Gb (j). That is, the first TFT 22 and the second TFT 23 are arranged opposite to each other via the two first gate lines Ga or the two second gate lines Gb, thereby ensuring a large aperture ratio of the active matrix substrate 20. can do.
  • the n + 1 data lines D are described as including a data line to which a positive data signal is always applied and a data line to which a negative data signal is always applied.
  • a positive data signal is applied to a specific data line D (here, data line D (k)), and in another case, a negative data signal is applied to the data line D (k).
  • the polarity of the voltage applied to the specific data line D (k) may be inverted every plural frames. Even in this case, since the dot inversion drive can be performed without inverting the polarity of the data signal applied to each data line for each frame, the polarity of the voltage applied to the data line for each frame as described above. The power consumption can be reduced as compared with the case of inversion.
  • the present invention is useful for an active matrix substrate and a liquid crystal display device.
  • the present invention is useful for an active matrix substrate and a liquid crystal display device that can be driven at a low frequency and suppress display deterioration due to flickering of screen brightness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明のアクティブマトリクス基板のn+1本のデータ線(D)は、正極性のデータ信号が印加されるデータ線と負極性のデータ信号が印加されるデータ線とが行方向に交互に並ぶように配置される。 画素部(P1k~Pmk)の各々は、液晶素子(21)と、第1及び第2ゲート線(Ga(j),Gb(j))のうち一方に印加される制御信号に応答して第k列目のデータ線(D(k))と液晶素子(21)との接続状態を切り替える第1のスイッチング素子(22)と、他方に印加される制御信号に応答して第k+1列目のデータ線(D(k+1))と液晶素子(21)との接続状態を切り替える第2のスイッチング素子(23)と、を含む。 本発明によると、1フレーム毎に各データ線に印加するデータ信号の極性を反転させることなくドット反転駆動を行うことができるので、消費電力を低減することが可能となる。 本発明は、液晶表示装置に有用である。

Description

アクティブマトリクス基板及び液晶表示装置
 本発明は、アクティブマトリクス基板及び液晶表示装置に関する。特に、本発明は、低周波数で駆動可能であって且つ画面輝度のチラツキ(フリッカ)による表示の劣化を抑制したアクティブマトリクス基板及び液晶表示装置に関する。
 近年、電子ブック用端末や携帯電話等のディスプレイとして用いられる表示パネルには、低消費電力化の要求が高まっている。
 表示パネルの低消費電力化の手段としては、優れた輝度を確保するためにパネルの開口率を高めることや、低周波数でパネルの駆動を行うことが挙げられる。
 低周波数駆動を行う場合には、画面輝度のチラツキ(フリッカ)対策が必須となる。フリッカはデータ書き込みを高速化することにより抑制可能であることが知られており、高速書き込みによりフリッカを抑制しつつ低消費電力で駆動可能な表示装置が求められている。
 また、フリッカが視認されにくくするための対策として、隣接する画素の出力を逆極性とすること(ドット反転駆動)が行われている。これは、隣接する画素の出力を逆極性にすることにより、正極性と負極性とで書き込みが平均化され、フリッカが視認されにくくなるものである。
 特許文献1には、正極側駆動電圧を印加すべき第1のタイミングに相当する第1タイミング信号、及び負極側駆動電圧を印加すべき第2のタイミングに相当する第2タイミング信号を交互に生成して出力するタイミング生成ドライバと、第1データ線を介して第1データドライバに接続され且つ第1ゲート線を介して入力される第1タイミング信号により対応する各液晶表示セルに正極側駆動電圧を印加する第1スイッチング素子と、第2データ線を介して第2データドライバに接続され且つ第2ゲート線を介して入力される第2タイミング信号により対応する一の液晶表示セルに負極側駆動電圧を印加する第2スイッチング素子と、を備えた液晶表示装置が開示されている。そして、この液晶表示装置によれば、データ線駆動電圧の極性を1水平期間毎に反転させることなしに、隣接する液晶表示素子に印加する駆動電圧の極性を逆転させることができるため、フリッカや輝度ムラの発生が無い高品質の表示が得られ、また液晶パネルの駆動で消費される電力の低減が図れると記載されている。
特開平06-266315号公報
 しかしながら、特許文献1の構成によれば、データドライバが1つのパネルあたり2種類必要となり、各データドライバを駆動するために大きな消費電力が必要となり、しかも、製造コストが嵩む問題がある。また、1画素あたりにゲート線2本、データ線2本を要するので、開口率が小さくなり、その分、バックライトの消費電力が大きくなってしまう。
 本発明は、アクティブマトリクス基板やそれを備えた液晶表示装置において、高速書き込みを行い、消費電力を低減し、さらに製造コストを低減することを目的とする。
 本発明のアクティブマトリクス基板は、
 m行n列(m,nは、2以上の整数)のマトリクス状に配列されたm×n個の画素部と、
 上記m×n個の画素部のm行の画素行にそれぞれ対応し、行方向に沿って互いに並行して延びると共に列方向に互いに離間するm本の第1のゲート線及びm本の第2のゲート線と、
 正極性のデータ信号が印加されるデータ線及び負極性のデータ信号が印加されるデータ線を含み、上記m×n個の画素部のn列の画素列を区画するように列方向に沿って互いに並行して延びると共に該正極性のデータ信号が印加されるデータ線と該負極性のデータ信号が印加されるデータ線とが行方向に交互に並ぶように配置されるn+1本のデータ線と、を備え、
 上記m×n個の画素部のうち第k列目(1≦k≦n)の画素列に含まれるm個の画素部の各々は、
  液晶素子と、
  上記画素部に対応する第1及び第2ゲート線の間に配置され、該第1及び第2のゲート線のうち一方に印加される制御信号に応答して、第k列目のデータ線と上記液晶素子との接続状態を切り替える第1のスイッチング素子と、
  上記画素部に対応する第1及び第2ゲート線の間に配置され、該第1及び第2のゲート線のうち他方に印加される制御信号に応答して、第k+1列目のデータ線と上記液晶素子との接続状態を切り替える第2のスイッチング素子と、を含むことを特徴とする。
 上記の構成のアクティブマトリクス基板の駆動について、第k列目の画素列に含まれる画素部(ここでは第1画素部とする)と、それに行方向に隣接し、且つ第k+1列目の画素列に含まれる画素部(ここでは第2画素部とする)とについて(1≦k<n)、説明する。ここでは、第k列目及び第k+2列目のデータ線には正極性のデータ信号が印加され、第k+1列目のデータ線には負極性のデータ信号が印加される場合、且つ、第1画素部の第1のスイッチング素子が第1ゲート線に印加される制御信号に応答して第k列目のデータ線と上記液晶素子との接続状態を切り替えるように設けられ、第1画素部の第2のスイッチング素子が第2ゲート線に印加される制御信号に応答して第k+1列目のデータ線と上記液晶素子との接続状態を切り替えるように設けられ、第2画素部の第1のスイッチング素子が第1ゲート線に印加される制御信号に応答して第k+1列目のデータ線と上記液晶素子との接続状態を切り替えるように設けられ、そして、第2画素部の第2のスイッチング素子が第2ゲート線に印加される制御信号に応答して第k+2列目のデータ線と上記液晶素子との接続状態を切り替えるように設けられている場合について説明する。
 第1の駆動期間においては、m本の第1のゲート線のいずれか1本に制御信号が印加される一方でm本の第2のゲート線のいずれにも制御信号が印加されず、一方、第2の駆動期間においては、m本の第2のゲート線のいずれか1本に制御信号が印加される一方でm本の第1のゲート線のいずれにも制御信号が印加されないように駆動が行われる。そのため、第1の駆動期間においては、第1及び第2画素部に対応する第1のゲート線が選択されて制御信号が印加されると、第1画素部では、その制御信号に応答して第1のスイッチング素子がオンとなり、正極性のデータ信号が印加された第k列目のデータ線を介して液晶素子には正の駆動電圧が印加されることとなる。また、第2画素部では、その制御信号に応答して第1のスイッチング素子がオンとなり、負極性のデータ信号が印加された第k+1列目のデータ線を介して液晶素子には負の駆動電圧が印加されることとなる。第2の駆動期間においては、第1及び第2画素部に対応する第2のゲート線が選択されて制御信号が印加されると、第1画素部では、その制御信号に応答して第2のスイッチング素子がオンとなり、負極性のデータ信号が印加された第k+1列目のデータ線を介して液晶素子には負の駆動電圧が印加されることとなる。また、第2画素部では、その制御信号に応答して第2のスイッチング素子がオンとなり、正極性のデータ信号が印加された第k+2列目のデータ線を介して液晶素子には正の駆動電圧が印加されることとなる。
 したがって、上記の構成のアクティブマトリクス基板によれば、第1の駆動期間では、第1画素部、第2画素部にはそれぞれ正、負の駆動電圧が印加され、第2の駆動期間では、第1画素部、第2画素部にはそれぞれ負、正の駆動電圧が印加されることとなるので、各画素部においてフレーム毎に印加される電圧の極性を反転させてドット反転駆動を行うことができ、結果として、フリッカや輝度ムラが視認されにくく、高品質の表示が得られる。
 なお、第1画素部の第1のスイッチング素子が第2ゲート線に印加される制御信号に応答して第k列目のデータ線と上記液晶素子との接続状態を切り替えるように設けられ、第1画素部の第2のスイッチング素子が第1ゲート線に印加される制御信号に応答して第k+1列目のデータ線と上記液晶素子との接続状態を切り替えるように設けられ、第2画素部の第1のスイッチング素子が第2ゲート線に印加される制御信号に応答して第k+1列目のデータ線と上記液晶素子との接続状態を切り替えるように設けられ、そして、第2画素部の第2のスイッチング素子が第1ゲート線に印加される制御信号に応答して第k+2列目のデータ線と上記液晶素子との接続状態を切り替えるように設けられている場合についても、同様に、ドット反転駆動を行うことができる。
 このとき、各データ線に印加されるデータ信号の極性を1フレーム毎に充放電させて反転させることなく、隣接する第1画素部と第2画素部のそれぞれの液晶素子に印加する駆動電圧の極性を逆転させることができるので、駆動で消費される電力を抑制することができる。
 また、上記の構成によれば1つの画素部に2つのスイッチング素子が設けられているが、1本のデータ線(ここでは、第k+1列目のデータ線(1≦k<n))は、第k列目の画素列に含まれる画素部(第1画素部)の第2スイッチング素子にデータ信号を与える一方、第k+1列目の画素列に含まれる画素部(第2画素部)の第1スイッチング素子にデータ信号を与えるように構成されているので、隣接する画素列を区画する各部分にデータ線が1本ずつ配置されていればよい。このため、第1及び第2のスイッチング素子を各々駆動するために1つの画素列あたり2本のデータ線を配置する必要が無く、アクティブマトリクス基板の開口率を大きく確保でき、その結果として、バックライトの消費電力を抑制することができる。
 さらに、上記の構成によれば、n+1本のデータ線は正極性のデータ信号が印加されるデータ線と負極性のデータ信号が印加されるデータ線が交互に並ぶように配置されているので、これらのデータ線を単一種類のデータドライバで駆動することが可能であり、複数種類のデータドライバを設ける場合よりもデータドライバ駆動のための消費電力を抑制することができる。また、複数種類のデータドライバを設ける場合よりも製造コストを低減することができる。さらに、複数種類のデータドライバを設ける場合よりも狭額縁化することができる。
 本発明のアクティブマトリクス基板は、列方向に隣接する画素部において、上記第1スイッチング素子同士または上記第2スイッチング素子同士が上記第1のゲート線及び/または第2のゲート線を挟んで両側に対向して配置されることが好ましい。
 本発明のアクティブマトリクス基板は、上記第1のゲート線と上記第2のゲート線とが列方向において交互に並ぶように配置されることが好ましい。
 上記の構成によれば、第1のゲート線と第2のゲート線の一対が各画素部を列方向に区画するように配置されることとなる。第1の駆動期間では第1のゲート線に制御信号が印加される一方、第2ゲート線には制御信号が印加されず、第2の駆動期間では第2のゲート線に制御信号が印加される一方、第1ゲート線には制御信号が印加されない。つまり、第1のゲート線と第2のゲート線には同一フレーム内に両ゲート線に対し制御信号が印加されることがないので、第1のゲート線と第2のゲート線の一対が各画素部を列方向に区画するように両者の一対が近くに配置されても、第1のゲート線と第2のゲート線との間での寄生容量による駆動特性の劣化を抑制することができる。
 本発明のアクティブマトリクス基板は、上記第1スイッチング素子及び上記第2スイッチング素子のそれぞれが酸化物半導体膜を備えた薄膜トランジスタ(Thin Film Transistor、以下「TFT」とも称する)であることが好ましい。
 上記の構成によれば、第1スイッチング素子及び第2スイッチング素子のそれぞれが酸化物半導体膜を備えたTFTであるので、高速書き込み駆動が可能となり、画面の輝度変化を抑制することができると共に、書き込み休止期間のTFTオフリークによる画素電位変化を低減することができる。そのため、フリッカによる表示の劣化をさらに抑制することができる。
 本発明の液晶表示装置は、上述した本発明のアクティブマトリクス基板と、
 行方向において正極性のデータ信号の印加の対象となるデータ線と負極性のデータ信号の印加の対象となるデータ線とが交互に並ぶように、各データ信号を上記n+1本のデータ線にそれぞれ印加するデータドライバと、
 第1の駆動期間では、上記m本の第1のゲート線のいずれか1本に上記第1のスイッチング素子に送信する制御信号を印加し、第2の駆動期間では、上記m本の第1のゲート線のいずれにも制御信号を印加しない第1のゲートドライバと、
 上記第1の駆動期間では、上記m本の第2のゲート線のいずれにも制御信号を印加せず、上記第2の駆動期間では、上記m本の第2のゲート線のいずれか1本に上記第2のスイッチング素子に送信する制御信号を印加する第2のゲートドライバと、
を備えることを特徴とする。
 上記の構成によれば、データドライバが正極性のデータ信号の印加の対象となるデータ線と負極性のデータ信号の印加の対象となるデータ線とが行方向に交互に並ぶように、各データ信号を上記n+1本のデータ線にそれぞれ印加し、且つ、第1ゲートドライバ及び第2ゲートドライバは、第1の駆動期間においては、上記m本の第1のゲート線のいずれか1本に上記第1のスイッチング素子に送信する制御信号を印加する一方でm本の第2のゲート線のいずれにも制御信号を印加せず、第2の駆動期間においては、上記m本の第2のゲート線のいずれか1本に上記第2のスイッチング素子に送信する制御信号を印加する一方でm本の第1のゲート線のいずれにも制御信号を印加しないので、隣接する画素部同士で逆極性の電圧を印加することができ、また、各駆動期間毎に各画素部の極性を反転するドット反転駆動を行うことができる。
 また、上記の構成によれば、単一種類のデータドライバが、行方向において正極性のデータ信号の印加の対象となるデータ線と負極性のデータ信号の印加の対象となるデータ線とが交互に並ぶように、各データ信号を上記n+1本のデータ線にそれぞれ印加するので、複数種類のデータドライバを設ける場合よりもデータドライバ駆動のための消費電力を抑制することができる。また、複数種類のデータドライバを設ける場合よりも製造コストを低減することができる。また、複数種類のデータドライバを設ける場合よりも狭額縁化することができる。
 本発明のアクティブマトリクス基板は、画素部のm行の画素行にそれぞれ対応するm本の第1のゲート線及びm本の第2のゲート線が行方向に沿って互いに並行して延びるように配置され、画素部のn列の画素列を区画するように延びるn+1本のデータ線が正極性のデータ信号が印加されるデータ線と負極性のデータ信号が印加されるデータ線とが交互に並ぶように配置され、各画素部が、液晶素子と、第1及び第2のゲート線のうち一方に印加される制御信号に応答して第k列目のデータ線と液晶素子との接続状態を切り替える第1のスイッチング素子と、第1及び第2のゲート線のうち他方に印加される制御信号に応答して第k+1列目のデータ線と液晶素子との接続状態を切り替える第2のスイッチング素子と、を含むので、第1の駆動期間において第1のゲート線に制御信号を印加して第1のスイッチング素子をオンにし、次いで、第2の駆動期間において第2のゲート線に制御信号を印加して第2のスイッチング素子をオンにすることにより、隣接する画素部の液晶素子に印加される電圧を逆極性とすることができると共に、各液晶素子に印加される電圧の極性を1駆動期間毎に反転することができる。つまり、ドット反転駆動を行うことができる。そして、このようにアクティブマトリクス基板の駆動を行うことにより、各データ線に印加されるデータ信号の極性を充放電させて反転させることなく各液晶素子に印加される電圧の極性を反転することができるので、駆動電力を抑制することができる。
 また、本発明によれば1つの画素部に2つのスイッチング素子が設けられているが、1本のデータ線(ここでは、第k+1列目のデータ線(1≦k<n))は、第k列目の画素列に含まれる画素部の第2スイッチング素子に制御信号を与える一方で第k+1列目の画素列に含まれる画素部の第1スイッチング素子に制御信号を与えるように構成されている、或いは、第k列目の画素列に含まれる画素部の第1スイッチング素子に制御信号を与える一方で第k+1列目の画素列に含まれる画素部の第2スイッチング素子に制御信号を与えるように構成されているので、隣接する画素列を区画する各部分にデータ線が1本ずつ配置されていればよい。このため、第1及び第2のスイッチング素子を各々駆動するために1つの画素列あたり2本のデータ線を配置する必要が無く、アクティブマトリクス基板の開口率を大きく確保でき、その結果として、バックライトの消費電力を抑制することができる。
 さらに、本発明によれば、n+1本のデータ線が正極性のデータ信号が印加されるデータ線と負極性のデータ信号が印加されるデータ線とが交互に並ぶように配置されているので、これらのデータ線を単一種類のデータドライバで駆動することが可能であり、複数種類のデータドライバを設ける場合よりもデータドライバ駆動のための消費電力を抑制することができる。また、複数種類のデータドライバを設ける場合よりも製造コストを低減することができる。さらに、複数種類のデータドライバを設ける場合よりも狭額縁化することができる。
実施形態1の液晶表示装置の概略構成図である。 図1のうち4つの画素部Pjk,Pj(k+1),P(j+1)k,P(j+1)(k+1)の領域の拡大図である。 実施形態1の動作タイミングチャートである。 実施形態1の動作説明のための(a)第1の駆動期間及び(b)第2の駆動期間におけるイメージ図である。 1フレームの書き込み時間が(a)A[msec]、(b)2/3×A[msec]、及び(c)1/2×A[msec]における書き込み時間とパネル表面輝度の関係を示すグラフである。 変形例の液晶表示装置の概略構成図である。
 以下、図面を参照して本発明の実施の形態について説明する。
  <実施形態1>
 図1は、液晶表示装置10の概略構成を示す。
 液晶表示装置10は、装置全体の基準電圧を生成し出力する基準電圧作成回路11と、基準電圧作成回路11からの電圧信号を電流増幅して後述のデータドライバ15へと出力する電流アンプ12と、コントローラ(不図示)からの水平同期信号に基づいて複数本の第1ゲート線Ga(1),Ga(2),…(以下、複数本の第1ゲート線をまとめて第1ゲート線Gaと称することもある。)のそれぞれを制御する第1ゲートドライバ13と、水平同期信号に基づいて複数本の第2ゲート線Gb(1),Gb(2),…(以下、複数本の第2ゲート線をまとめて第2ゲート線Gbと称することもある。)のそれぞれを制御する第2ゲートドライバ14と、水平同期信号に基づいて複数本のデータ線D(1),D(2),…(以下、複数本のデータ線をまとめてデータ線Dと称することもある。)のそれぞれにデータ信号を印加する単一種類のデータドライバ15と、を備える。データドライバ15は、1つのデータドライバで構成されていてもよく、全て同種類のデータドライバを組み合わせて構成されていてもよい。なお、第1ゲート線Ga、第2ゲート線Gb及びデータ線Dは、アクティブマトリクス基板20上に形成されている。
  (アクティブマトリクス基板20)
 アクティブマトリクス基板20には、m×n個の画素部P11,P12,…(以下、複数の画素部をまとめて画素部Pと称することもある。)がm行×n列のマトリクス状に配列されている。ここで、m,nは2以上の整数とする。これらのm×n個の画素部Pのそれぞれは、1≦j≦m及び1≦k≦n+1である整数j,kにおいて、第j行目の画素行と第k列目の画素列の交差する領域に画素部Pjkが配置されている。
 複数本の第1ゲート線Gaは、m×n個の画素部のm行の画素行にそれぞれ対応し、行方向に沿って互いに並行して延びるように、m本設けられている。これらのm本の第1ゲート線Gaのそれぞれは、第j行目に第1ゲート線Ga(j)が配置されている。複数本の第2ゲート線Gbは、m×n個の画素部のm行の画素行にそれぞれ対応し、行方向に沿って互いに並行して延びるように、m本設けられている。これらのm本の第2ゲート線Gbのそれぞれは、第j行目に第2ゲート線Gb(j)が配置されている。そして、第j行目の第1ゲート線Ga(j)と第2ゲート線Gb(j)のそれぞれは、列方向に互いに離間するように配置されている。
 複数本のデータ線Dは、m×n個の画素部Pのn列の画素列を区画するように列方向に沿って互いに並行して延びるように、n+1本設けられている。これらのn+1本のデータ線Dのそれぞれは、第k列目にデータ線D(k)が配置されている。n+1本のデータ線Dは、正極性のデータ信号が印加されるものと負極性のデータ信号が印加されるものとを含み、正極性のデータ信号が印加されるデータ線と負極性のデータ信号が印加されるデータ線とが交互に並ぶように配置されている。
  (画素部P)
 次に、図2を用いて各画素部Pの構成について説明する。各画素部Pは、液晶素子21、第1のスイッチング素子である第1TFT22、第2のスイッチング素子である第2TFT23、及びメモリ用の蓄積コンデンサ24を備える。第1TFT22、第2TFTは、それぞれ、半導体膜として酸化物半導体膜を備える。酸化物半導体膜としては、例えば、インジウムガリウム亜鉛複合酸化物(IGZO)等が挙げられる。
 液晶素子21は、一方の端子が対向電極に接続されている。
 蓄積コンデンサ24は、一方の端子が第1TFT22及び第2TFT23の共通のソース22S、23Sに接続され、他方の端子が対向電極に接続されている。
 以下、1≦j<m、1≦k<nである整数k、nにおいて、第j行目~第j+1行目の画素行と第k列目~第k+1列目の画素列の交差する領域に位置する4個の画素部Pjk,Pj(k+1),P(j+1)k,P(j+1)(k+1)における第1TFT22及び第2TFT23について詳細に説明する。
  (画素部Pjk)
 第1TFT22は、第1ゲート線Ga(j)及び第2ゲート線Gb(j)の間に配置されている。第1TFT22は、第1ゲート線Ga(j)に印加される制御信号に応答して第k列目のデータ線D(k)と液晶素子21(液晶素子CLa)との接続状態を切り替えられるように、ゲート22Gが第j行目の第1ゲート線Ga(j)に接続され、ドレイン22Dが第k列目のデータ線D(k)に接続され、ソース22Sが液晶素子21の他方の端子に接続されている。
 第2TFT23は、第1ゲート線Ga(j)及び第2ゲート線Gb(j)の間に配置されている。第2TFT23は、第2ゲート線Gb(j)に印加される制御信号に応答して第k+1列目のデータ線D(k+1)と液晶素子21との接続状態を切り替えられるように、ゲート23Gが第j行目の第2ゲート線Gb(j)に接続され、ドレイン23Dが第k+1列目のデータ線D(k+1)に接続され、ソース23Sが液晶素子21の他方の端子に接続されている。
  (画素部Pj(k+1))
 第1TFT22は、第1ゲート線Ga(j)に印加される制御信号に応答して第k+1列目のデータ線D(k+1)と液晶素子21(液晶素子CLb)との接続状態を切り替えられるように、ゲート22Gが第j行目の第1ゲート線Ga(j)に接続され、ドレイン22Dが第k+1列目のデータ線D(k+1)に接続され、ソース22Sが液晶素子21の他方の端子に接続されている。
 第2TFT23は、第2ゲート線Gb(j)に印加される制御信号に応答して第k+2列目のデータ線D(k+2)と液晶素子21との接続状態を切り替えられるように、ゲート23Gが第j行目の第2ゲート線Gb(j)に接続され、ドレイン23Dが第k+2列目のデータ線D(k+2)に接続され、ソース23Sが液晶素子21の他方の端子に接続されている。
  (画素部P(j+1)k)
 第1TFT22は、第2ゲート線Gb(j+1)に印加される制御信号に応答して第k列目のデータ線D(k)と液晶素子21(液晶素子CLc)との接続状態を切り替えられるように、ゲート22Gが第j+1行目の第2ゲート線Gb(j+1)に接続され、ドレイン22Dが第k列目のデータ線D(k)に接続され、ソース22Sが液晶素子21の他方の端子に接続されている。
 第2TFT23は、第1ゲート線Ga(j+1)に印加される制御信号に応答して第k+1列目のデータ線D(k+1)と液晶素子21との接続状態を切り替えられるように、ゲート23Gが第j+1行目の第1ゲート線Ga(j+1)に接続され、ドレイン23Dが第k+1列目のデータ線D(k+1)に接続され、ソース23Sが液晶素子21の他方の端子に接続されている。
  (画素部P(j+1)(k+1))
 第1TFT22は、第2ゲート線Gb(j+1)に印加される制御信号に応答して第k+1列目のデータ線D(k+1)と液晶素子21(液晶素子CLd)との接続状態を切り替えられるように、ゲート22Gが第j+1行目の第2ゲート線Gb(j+1)に接続され、ドレイン22Dが第k+1列目のデータ線D(k+1)に接続され、ソース22Sが液晶素子21の他方の端子に接続されている。
 第2TFT23は、第1ゲート線Ga(j+1)に印加される制御信号に応答して第k+2列目のデータ線D(k+2)と液晶素子21との接続状態を切り替えられるように、ゲート23Gが第j+1行目の第1ゲート線Ga(j+1)に接続され、ドレイン23Dが第k+2列目のデータ線D(k+2)に接続され、ソース23Sが液晶素子21の他方の端子に接続されている。
  (動作)
 次に、図3を参照して、液晶表示装置10の動作について説明する。ここでは、表示データとして全面点灯のデータが入力されるものとする。
 n+1本のデータ線Dは、常に正極性のデータ信号が印加されるデータ線と、常に負極性のデータ信号が印加されるデータ線とが行方向に交互に並ぶように配置されている。つまり、データドライバ15は、奇数である整数o(1≦o≦n+1)に対して第o列目のデータ線D(o)には常に正極性のデータ信号を印加しかつ偶数である整数e(2≦e≦n+1)に対して第e列目のデータ線D(e)には常に負極性のデータ信号を印加する、或いは、奇数である整数o(1≦o≦n+1)に対して第o列目のデータ線D(o)には常に負極性のデータ信号を印加しかつ偶数である整数e(2≦e≦n+1)に対して第e列目のデータ線D(e)には常に正極性のデータ信号を印加する。ここでは、図3に示すように、データ線D(k),D(k+2)には常に正極性のデータ信号が印加され、データ線D(k+1)には常に負極性のデータ信号が印加されることとする。
  (第1の駆動期間)
 まず、時刻tから時刻tまでの第1の駆動期間における動作について説明する。
 はじめに、時刻tにおいてフレーム同期信号FRMがHレベルになると、第1ゲートドライバ13が第1ゲート線Ga(j)を選択し、第1ゲート線Ga(j)がHレベルになる。これにより、画素部Pjkの第1TFT22に第1ゲートドライバ13から制御信号が印加されてオンとなると共に、データドライバ15からデータ線D(k)を介して正極性のデータ信号が送信される。従って、第1の駆動期間中、液晶素子CLaには正の駆動電圧が印加されることとなる。
 同様に、時刻tにおいて第1ゲート線Ga(j)がHレベルになると、画素部Pj(k+1)の第1TFT22に第1ゲートドライバ13から制御信号が印加されてオンとなると共に、データドライバ15からデータ線D(k+1)を介して負極性のデータ信号が送信される。従って、第1の駆動期間中、液晶素子CLbには負の駆動電圧が印加されることとなる。
 その後、時刻tにおいて第1ゲートドライバ13が第1ゲート線Ga(j+1)を選択すると、第1ゲート線Ga(j+1)がHレベルになる。これにより、画素部P(j+1)kの第2TFT23に第1ゲートドライバ13から制御信号が印加されてオンとなると共に、データドライバ15からデータ線D(k+1)を介して負極性のデータ信号が送信される。従って、第1の駆動期間中、液晶素子CLcには負の駆動電圧が印加されることとなる。
 同様に、時刻tにおいて第1ゲート線Ga(j+1)がHレベルになると、画素部P(j+1)(k+1)の第2TFT23に第1ゲートドライバ13から制御信号が印加されてオンとなると共に、データドライバ15からデータ線D(k+2)を介して正極性のデータ信号が送信される。従って、第1の駆動期間中、液晶素子CLdには正の駆動電圧が印加されることとなる。
 時刻t以降も同様にして、第1ゲートドライバ13が水平同期信号に基づいて順次第1ゲート線Gaを選択し、第1の駆動期間中、各液晶素子に正または負の駆動電圧がそれぞれ印加される。
  (第2の駆動期間)
 次に、時刻tから時刻tまでの第2の駆動期間における動作について説明する。
 時刻tにおいてフレーム同期信号FRMがHレベルになると、第2ゲートドライバ14が第2ゲート線Gb(j)を選択し、第2ゲート線Gb(j)がHレベルになる。これにより、画素部Pjkの第2TFT23に第2ゲートドライバ14から制御信号が印加されてオンとなると共に、データドライバ15からデータ線D(k+1)を介して負極性のデータ信号が送信される。従って、第2の駆動期間中、液晶素子CLaには負の駆動電圧が印加されることとなる。
 同様に、時刻tにおいて第2ゲート線Gb(j)がHレベルになると、画素部Pj(k+1)の第2TFT23に第2ゲートドライバ14から制御信号が印加されてオンとなると共に、データドライバ15からデータ線D(k+2)を介して正極性のデータ信号が送信される。従って、第2の駆動期間中、液晶素子CLbには正の駆動電圧が印加されることとなる。
 その後、時刻tにおいて第2ゲートドライバ14が第2ゲート線Gb(j+1)を選択すると、第2ゲート線Gb(j+1)がHレベルになる。これにより、画素部P(j+1)kの第1TFT22に第2ゲートドライバ14から制御信号が印加されてオンとなると共に、データドライバ15からデータ線D(k)を介して正極性のデータ信号が送信される。従って、第2の駆動期間中、液晶素子CLcには正の駆動電圧が印加されることとなる。
 同様に、時刻tにおいて第2ゲート線Gb(j+1)がHレベルになると、画素部P(j+1)(k+1)の第1TFT22に第2ゲートドライバ14から制御信号が印加されてオンとなると共に、データドライバ15からデータ線D(k+1)を介して負極性のデータ信号が送信される。従って、第2の駆動期間中、液晶素子CLdには負の駆動電圧が印加されることとなる。
 時刻t以降も同様にして、第2ゲートドライバ14が水平同期信号に基づいて順次第2ゲート線Gbを選択し、第2の駆動期間中、各液晶素子に正または負の駆動電圧がそれぞれ印加される。
 また、時刻t以降の駆動期間においては、上記説明した第1の駆動期間と第2の駆動期間の動作が順番に繰り返される。
 以上説明したように、データ線D(k)及びデータ線D(k+2)に常に正極性のデータ信号を印加し、データ線D(k+1)に常に負極性のデータ信号を印加することにより、第1の駆動期間においては、図4(a)に示すように、液晶素子CLa,CLb,CLc,及びCLdにはそれぞれ正、負、負、及び正の駆動電圧が印加され、第2の駆動期間においては、図4(b)に示すように、液晶素子CLa,CLb,CLc,及びCLdにはそれぞれ負、正、正、及び負の駆動電圧が印加される。従って、各データ線Dへ印加するデータ信号の極性を反転させることなく、隣接する液晶素子同士で逆極性とすることができ、また、各液晶素子CLa,CLb,CLc,CLdにおいて印加される電圧の極性を1フレームごとに反転することができる。
 なお、上記実施形態では、第1ゲートドライバ13、第2ゲートドライバ14及びデータドライバ15はアクティブマトリクス基板20の外に設けられているとしたが、これらがアクティブマトリクス基板20の周辺領域に形成されていてもよい。
  (実施形態1の効果)
 実施形態1によれば、各データ線Dに印加されるデータ信号の極性を充放電させて反転させることなく、常に正極性のデータ信号または負極性のデータ信号を送信することにより各液晶素子21に印加される電圧の極性を反転することができるので、駆動電力の消費を抑制することができる。また、各データ線Dに印加されるデータ信号の極性を充放電させて反転させることなく各液晶素子21に印加される電圧の極性を反転することができるので、安定な制御を高速で行うことが可能となる。
 さらに、実施形態1によれば第1TFT22と第2TFT23とが酸化物半導体膜を備えているので、高速書き込み駆動が可能となる。図5(a)~(c)は、高速書き込み後に休止する駆動においてフリッカパターンを画面表示した場合の、書き込み時間とパネル表面輝度の関係を示す。図5(a)の各フレーム毎の書き込み時間をA[msec]として、図5(b)は書き込み時間が2/3×A[msec]、図5(c)は書き込み時間が1/2×A[msec]の場合を示す。図5より、各フレーム毎の書き込み時間が短くなるほど輝度の振幅が小さくなり、画面輝度のチラツキが低減されることが知られている。従って、高速で書き込みを行うことにより、画面の輝度変化を抑制することができると共に、書き込み休止期間のTFTオフリークによる画素電位変化を低減することができる。そのため、フリッカによる表示の劣化をさらに抑制することができる。
 また、実施形態1によれば、1つの画素部Pに2つのTFT(第1TFT22及び第2TFT23)が設けられているが、1本のデータ線D(ここでは、例えば第k+1列目のデータ線D(k+1))は、第k列目の画素列に含まれる画素部Pjkの第2TFT23にデータ信号を与える一方で第k+1列目の画素列に含まれる画素部Pj(k+1)の第1TFT22にデータ信号を与えるように構成されている、或いは、第k列目の画素列に含まれる画素部P(j+1)kの第1TFT22にデータ信号を与える一方で第k+1列目の画素列に含まれる画素部P(j+1)(k+1)の第2TFT23にデータ信号を与えるように構成されているので、隣接する画素列(第k列目及び第k+1列目)を区画する各部分にデータ線Dが1本ずつ配置されていればよい。このため、第1TFT22及び第2TFT23を各々駆動するために1つの画素列あたり2本のデータ線を配置する必要が無く、アクティブマトリクス基板20の開口率を大きく確保でき、その結果として、バックライトの消費電力を抑制することができる。
 さらに、実施形態1によれば、n+1本のデータ線Dは、正極性のデータ信号が印加されるデータ線と負極性のデータ信号が印加されるデータ線が交互に並ぶように配置されているので、これらのデータ線Dを単一種類のデータドライバ15で駆動することが可能であり、複数種類のデータドライバを設ける場合よりもデータドライバ15の駆動のための消費電力を抑制することができる。また、複数種類のデータドライバを設ける場合よりも製造コストを低減することができる。さらに、複数種類のデータドライバを設ける場合よりも狭額縁化することができる。
 実施形態1によれば、本発明のアクティブマトリクス基板20は、第1ゲート線Ga及び第2ゲート線Gbは、アクティブマトリクス基板20上において、列方向に交互に並ぶように配置されている。これにより、第1ゲート線Ga(j+1)と第2ゲート線Gb(j)の一対が第j行目の画素行と第j+1行目の画素行を列方向に区画するように配置されることとなる。第1の駆動期間では第1ゲート線Gaに制御信号が印加される一方で第2ゲート線Gbには制御信号が印加されず、第2の駆動期間では第2ゲート線Gbに制御信号が印加される一方で第1ゲート線Gaには制御信号が印加されない。つまり、第1ゲート線Ga(j+1)と第2ゲート線Gb(j)には同一フレームに両ゲート線に対し制御信号が印加されることがないので、第1ゲート線Ga(j+1)と第2ゲート線Gb(j)の一対が第j行目の画素行と第j+1行目の画素行を列方向に区画するように配置されても、一対の第1ゲート線Ga(j+1)と第2ゲート線Gb(j)間での寄生容量による駆動特性の劣化を抑制することができる。
       <変形例>
 実施形態1では、第1ゲート線Ga及び第2ゲート線Gbがアクティブマトリクス基板20上において列方向に交互に並ぶように配置されているとしたが、図6に変形例として示すように、第1ゲート線Ga及び第2ゲート線Gbが交互に並ばないように配置されていてもよい。
 この場合、列方向に隣接する画素部Pjk、P(j+1)kにおいて、画素部Pjkの第2TFT23と画素部P(j+1)kの第1TFT22とが、2本の第2ゲート線Gb(j),Gb(j+1)を挟んで両側に対向して配置される。また、列方向に隣接する画素部P(j-1)k、Pjkにおいては、画素部P(j-1)kの第2TFT23と画素部Pjkの第1TFT22とが、2本の第1ゲート線Gb(j-1),Gb(j)を挟んで両側に対向して配置される。つまり、2本の第1ゲート線Gaまたは2本の第2ゲート線Gbを介して第1TFT22と第2TFT23とが両側に対向して配置され、これにより、アクティブマトリクス基板20の開口率を大きく確保することができる。
 また、実施形態1では、n+1本のデータ線Dは、常に正極性のデータ信号が印加されるデータ線及び常に負極性のデータ信号が印加されるデータ線を含むとして説明したが、あるときは、特定のデータ線D(ここではデータ線D(k)とする)に正極性のデータ信号が印加され、また別のときには、データ線D(k)に負極性のデータ信号が印加されてもよい。或いは、複数フレーム毎に、特定のデータ線D(k)に対して印加される電圧の極性が反転しても構わない。この場合でも、1フレーム毎に各データ線に印加するデータ信号の極性を反転させることなくドット反転駆動を行うことができるので、上述したように、1フレームごとにデータ線に印加する電圧の極性を反転させる場合よりも消費電力を低減することが可能となる。
 本発明は、アクティブマトリクス基板及び液晶表示装置について有用である。特に、本発明は、低周波数で駆動可能であって且つ画面輝度のチラツキ(フリッカ)による表示の劣化を抑制したアクティブマトリクス基板及び液晶表示装置について有用である。
D     データ線
Ga    第1ゲート線
Gb    第2ゲート線
P     画素部
10    液晶表示装置
13    第1ゲートドライバ
14    第2ゲートドライバ
15    データドライバ
20    アクティブマトリクス基板
21(CL)液晶素子
22    第1スイッチング素子(第1TFT)
23    第2スイッチング素子(第2TFT)

Claims (4)

  1.  m行n列(m,nは、2以上の整数)のマトリクス状に配列されたm×n個の画素部と、
     上記m×n個の画素部のm行の画素行にそれぞれ対応し、行方向に沿って互いに並行して延びると共に列方向に互いに離間するm本の第1のゲート線及びm本の第2のゲート線と、
     正極性のデータ信号が印加されるデータ線及び負極性のデータ信号が印加されるデータ線を含み、上記m×n個の画素部のn列の画素列を区画するように列方向に沿って互いに並行して延びると共に該正極性のデータ信号が印加されるデータ線と該負極性のデータ信号が印加されるデータ線とが行方向に交互に並ぶように配置されるn+1本のデータ線と、
    を備え、
     上記m×n個の画素部のうち第k列目(1≦k≦n)の画素列に含まれるm個の画素部の各々は、
      液晶素子と、
      上記画素部に対応する第1及び第2ゲート線の間に配置され、該第1及び第2のゲート線のうち一方に印加される制御信号に応答して、第k列目のデータ線と上記液晶素子との接続状態を切り替える第1のスイッチング素子と、
      上記画素部に対応する第1及び第2ゲート線の間に配置され、該第1及び第2のゲート線のうち他方に印加される制御信号に応答して、第k+1列目のデータ線と上記液晶素子との接続状態を切り替える第2のスイッチング素子と、
    を含むことを特徴とするアクティブマトリクス基板。
  2.  請求項1において、
     上記第1のゲート線と上記第2のゲート線とが列方向において交互に並ぶように配置される
    ことを特徴とするアクティブマトリクス基板。
  3.  請求項1または2において、
     上記第1スイッチング素子及び上記第2スイッチング素子のそれぞれは酸化物半導体膜を備えた薄膜トランジスタである
    ことを特徴とするアクティブマトリクス基板。
  4.  請求項1~3のいずれか1項に記載のアクティブマトリクス基板と、
     行方向において正極性のデータ信号の印加の対象となるデータ線と負極性のデータ信号の印加の対象となるデータ線とが交互に並ぶように、各データ信号を上記n+1本のデータ線にそれぞれ印加するデータドライバと、
     第1の駆動期間では、上記m本の第1のゲート線のいずれか1本に上記第1のスイッチング素子に送信する制御信号を印加し、第2の駆動期間では、上記m本の第1のゲート線のいずれにも制御信号を印加しない第1のゲートドライバと、
     上記第1の駆動期間では、上記m本の第2のゲート線のいずれにも制御信号を印加せず、上記第2の駆動期間では、上記m本の第2のゲート線のいずれか1本に上記第2のスイッチング素子に送信する制御信号を印加する第2のゲートドライバと、
    を備えることを特徴とする液晶表示装置。
PCT/JP2012/002296 2011-04-05 2012-04-02 アクティブマトリクス基板及び液晶表示装置 WO2012137472A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-083959 2011-04-05
JP2011083959 2011-04-05

Publications (1)

Publication Number Publication Date
WO2012137472A1 true WO2012137472A1 (ja) 2012-10-11

Family

ID=46968883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002296 WO2012137472A1 (ja) 2011-04-05 2012-04-02 アクティブマトリクス基板及び液晶表示装置

Country Status (1)

Country Link
WO (1) WO2012137472A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409718A (zh) * 2021-05-27 2021-09-17 惠科股份有限公司 一种显示面板和显示装置
CN114333726A (zh) * 2021-12-29 2022-04-12 惠科股份有限公司 一种显示面板和显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139288A (ja) * 2004-11-12 2006-06-01 Samsung Electronics Co Ltd 表示装置及びその駆動方法
JP2007121767A (ja) * 2005-10-28 2007-05-17 Nec Lcd Technologies Ltd 液晶表示装置
JP2010135780A (ja) * 2008-11-07 2010-06-17 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139288A (ja) * 2004-11-12 2006-06-01 Samsung Electronics Co Ltd 表示装置及びその駆動方法
JP2007121767A (ja) * 2005-10-28 2007-05-17 Nec Lcd Technologies Ltd 液晶表示装置
JP2010135780A (ja) * 2008-11-07 2010-06-17 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409718A (zh) * 2021-05-27 2021-09-17 惠科股份有限公司 一种显示面板和显示装置
CN113409718B (zh) * 2021-05-27 2022-02-18 惠科股份有限公司 一种显示面板和显示装置
CN114333726A (zh) * 2021-12-29 2022-04-12 惠科股份有限公司 一种显示面板和显示装置

Similar Documents

Publication Publication Date Title
US9959830B2 (en) GOA circuit
KR101127593B1 (ko) 액정 표시 장치
WO2016155157A1 (zh) 显示面板及其驱动方法、液晶显示装置
JP5306762B2 (ja) 電気光学装置及び電子機器
US9568786B2 (en) Array substrate with multiple common lines, liquid crystal display and control method thereof
KR101502222B1 (ko) 액정 디스플레이 및 그 구동 방법
US8411003B2 (en) Liquid crystal display and methods of driving same
CN107450225B (zh) 显示面板及显示装置
CN108154861B (zh) 一种削角电压产生电路及液晶显示装置
JP4420620B2 (ja) 画像表示装置
US8456398B2 (en) Liquid crystal display module
JP2007052396A (ja) 駆動回路、表示装置及び表示装置の駆動方法
WO2017031944A1 (zh) 像素单元驱动电路、驱动方法和显示装置
CN107591144B (zh) 显示面板的驱动方法以及驱动装置
JP2007025644A (ja) 液晶ディスプレイパネルの駆動方法及び該駆動方法を用いた液晶ディスプレイパネル並びに該液晶ディスプレイパネルの駆動に用いる駆動モジュール
JP2009181100A (ja) 液晶表示装置
US9007359B2 (en) Display device having increased aperture ratio
US20150348483A1 (en) Driving method of liquid display panel
KR100744136B1 (ko) 인버젼 방식으로 디스플레이 패널을 구동하는 방법 및 그방법에 의해 구동되는 디스플레이 패널
KR20140115995A (ko) 표시 장치
KR102301158B1 (ko) 액정 표시 장치
JP2007140192A (ja) アクティブマトリクス型液晶表示装置
CN107731192B (zh) 液晶显示器的驱动***及液晶显示器的驱动方法
WO2012133281A1 (ja) 表示装置
TWI410946B (zh) 多閘極液晶顯示器之驅動機制

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP