WO2012137456A1 - 余寿命判定方法 - Google Patents

余寿命判定方法 Download PDF

Info

Publication number
WO2012137456A1
WO2012137456A1 PCT/JP2012/002247 JP2012002247W WO2012137456A1 WO 2012137456 A1 WO2012137456 A1 WO 2012137456A1 JP 2012002247 W JP2012002247 W JP 2012002247W WO 2012137456 A1 WO2012137456 A1 WO 2012137456A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
assembled battery
soc
remaining life
discharge
Prior art date
Application number
PCT/JP2012/002247
Other languages
English (en)
French (fr)
Inventor
素宣 奥村
公一 市川
松川 靖
前川 活徳
山田 敏弘
Original Assignee
トヨタ自動車株式会社
プライムアースEvエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, プライムアースEvエナジー株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201280011246.8A priority Critical patent/CN103403565B/zh
Priority to CA2831568A priority patent/CA2831568C/en
Priority to JP2013508749A priority patent/JP5623629B2/ja
Priority to US14/008,849 priority patent/US9523740B2/en
Publication of WO2012137456A1 publication Critical patent/WO2012137456A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Definitions

  • the present invention relates to a technique for estimating the remaining life of an assembled battery in which a plurality of batteries are electrically connected.
  • an object of the present invention is to provide a technique for estimating the remaining life of a battery in which a significant change in voltage value (V) and resistance value (R) does not occur even when the life approaches.
  • the state of charge (SOC) of an assembled battery composed of a plurality of batteries is equal to or lower than a lower limit value of a predetermined normal use range used in charge / discharge control of the assembled battery.
  • SOC state of charge
  • the discharge capacity of each battery block is measured, and the capacity difference among the discharge capacities of the plurality of battery blocks is calculated.
  • the remaining life of the battery block or the assembled battery is determined based on the calculated capacity difference.
  • each battery block can correspond to each battery or can correspond to a plurality of batteries. That is, if the assembled battery is divided for each battery, each battery becomes each battery block. Moreover, one battery block can also be comprised with a some battery, and an assembled battery is comprised by a some battery block in this case.
  • the capacity difference between the maximum value and the minimum value of the discharge capacities in the plurality of battery blocks is equal to or greater than a predetermined value, it is determined that the remaining life of the assembled battery or the battery block having a smaller discharge capacity is equal to or less than a predetermined period be able to.
  • the lower limit value of the normal use range can be set to 40% state of charge (SOC).
  • SOC 40% is often set as the lower limit value of SOC when charging and discharging the assembled battery. Therefore, by discharging the assembled battery until it becomes lower than the lower limit value, variation in discharge capacity among a plurality of battery blocks is achieved. Appears prominently, and the remaining life can be determined with higher accuracy.
  • the lower limit of the normal use range can be set to 0% state of charge (SOC).
  • the assembled battery can be discharged until the state of charge (SOC) of the assembled battery becomes lower than the lower limit value from the reference value that is the target of charge / discharge control. Since the reference value (SOC) is lower than the SOC that corresponds to the fully charged state, the variation in discharge capacity among multiple battery blocks can be grasped more efficiently in a shorter time than when the assembled battery is discharged from the fully charged state. can do.
  • SOC state of charge
  • This example is a technique for determining the remaining life of an assembled battery collected from a vehicle or the like.
  • the remaining life is a period during which an assembled battery or a battery described later can be used in the future within a range satisfying predetermined charge / discharge characteristics.
  • FIG. 1 is a diagram showing an outline of a remaining life determination system for determining the remaining life of an assembled battery.
  • the assembled battery that is a target for determining the remaining life is a nickel metal hydride battery (Ni-MH battery) collected from a vehicle is taken as an example.
  • a secondary battery such as a lithium ion battery can be used.
  • the assembled battery 10 is an assembled battery (battery pack) configured by electrically connecting a plurality of batteries 10a in series.
  • the battery 10a (corresponding to a battery block) is shown as a unit cell, but the present invention is not limited to this.
  • this battery module when a battery module is configured by electrically connecting a plurality of (for example, six) single cells in series, this battery module can be the battery 10a shown in FIG.
  • the battery module is configured as one unit. That is, a battery module can be comprised by accommodating a several cell in one case. In this case, the assembled battery 10 can be configured by electrically connecting a plurality of battery modules in series.
  • a battery 10a shown in FIG. 1 can be obtained by electrically connecting a plurality of battery modules in series.
  • the plus terminal of the assembled battery 10 is connected to the load 4s via the positive line PL, and the minus terminal of the assembled battery 10 is connected to the load 4s via the negative line NL.
  • the current sensor 5 detects the current value of the assembled battery 10 when the assembled battery 10 is connected to the load 4s.
  • Each battery 10a is electrically connected in parallel with an electric resistance 4 as a discharge circuit.
  • the voltage sensor 3 is provided in each battery 10 a, detects the voltage of each battery 10 a when the battery pack 10 is discharged, and outputs the detection result to the discharge capacity calculation unit 2.
  • the state of charge (SOC: State of charge) of the assembled battery 10 is a ratio obtained by removing the proportion of discharged electricity from the state where the assembled battery 10 is fully charged.
  • the SOC indicates the ratio of the current charge capacity to the full charge capacity.
  • the full charge capacity includes a full charge capacity when the assembled battery 10 is in an initial state and a full charge capacity after use (after deterioration) of the assembled battery 10.
  • the initial state is a state immediately after the assembled battery 10 is manufactured, in other words, a state when the assembled battery 10 is used for the first time.
  • the full charge capacity after use of the assembled battery 10 is lower than the full charge capacity when the assembled battery 10 is in the initial state.
  • the SOC of the assembled battery 10 is estimated from, for example, the integrated value of the discharge current measured by the current sensor 5 or estimated from the electromotive force of the assembled battery 10 calculated using the voltage measured by the voltage sensor 3. can do.
  • the SOC of the battery pack 10 can be estimated by various known estimation methods.
  • the discharge curve (change in voltage with respect to the discharge capacity) of each battery 10a can be obtained.
  • the plurality of batteries 10a constituting the assembled battery 10 are electrically connected in series.
  • the assembled battery 10 includes a plurality of batteries 10a electrically connected in parallel. It may be.
  • the vehicle can be driven using the output of the assembled battery 10, or kinetic energy generated during braking of the vehicle can be stored in the assembled battery 10 as regenerative power.
  • the assembled battery 10 can be electrically connected to the motor / generator.
  • the motor / generator converts the electrical energy output from the assembled battery 10 into kinetic energy used for driving the vehicle, or converts the kinetic energy generated during vehicle braking into electrical energy supplied to the assembled battery 10. To do.
  • FIG. 2 is a flowchart showing a flow of processing in the battery deterioration determination method according to the present embodiment.
  • the assembled battery 10 having a plurality of electrically connected batteries 10a is discharged until the SOC becomes equal to or lower than the lower limit SOC_min of the normal use range (S101, S102). Specifically, the SOC of the assembled battery 10 is set to the lower limit SOC_min or less by connecting the assembled battery 10 to the load 4 s and discharging the assembled battery 10.
  • the discharge rate can be less than 1 It. Further, when the assembled battery 10 is discharged, the voltage value of the corresponding battery 10 a is detected by each voltage sensor 3. The voltage value of the battery 10 a is lowered by the discharge of the assembled battery 10.
  • the normal use range means a range of SOC that can satisfy the following conditions (1) to (3).
  • Input / output (W) can be sufficiently secured for vehicle requirements.
  • a sufficient charge / discharge capacity (energy amount (Wh)) can be secured.
  • the “normal use range” means that when the assembled battery 10 is mounted on a vehicle, the input / output performance required for the assembled battery 10 is sufficiently exhibited, and the assembled battery 10 is used within the use range. This means a use range in which significant deterioration of the battery 10 can be suppressed. Further, the normal use range may be determined by the input / output characteristics unique to the assembled battery 10 (battery 10a), or may be determined by a request on the vehicle side.
  • the “end voltage (discharge end voltage)” for completing the discharge process is the end voltage of the battery 10a.
  • the final voltage of the single battery is a final voltage for completing the discharge process.
  • about 6.0V to 7.2V as a detection voltage by the voltage sensor 3 can be set as a final voltage for completing the discharge process.
  • the end voltage of the nickel metal hydride battery is 1.0 to 1.2 V.
  • the voltage is about 6.0V to 7.2V, it can be estimated that the battery module has been discharged to near the lower limit SOC_min of the normal use range.
  • the battery 10a is composed of a plurality of battery modules, a value obtained by multiplying the end voltage of the battery module by the number of battery modules is the end voltage for completing the discharge process.
  • the discharge capacity of each discharged battery 10a is measured (S103).
  • the discharge capacity can be measured based on the time during which each battery 10a is discharged to the end voltage and the discharge current value.
  • the calculation of the discharge capacity is performed by the discharge capacity calculation unit 2 (see FIG. 1).
  • the discharge capacity calculation unit 2 is realized by arithmetic processing by ASIC (Application Specific Specific Integrated Circuit), processing executed by executing a program stored in the MEMORY by a processor such as a CPU or MPU, and the like.
  • ASIC Application Specific Specific Integrated Circuit
  • the discharge capacities in the plurality of batteries 10a can be acquired.
  • the maximum value and the minimum value of the discharge capacity can be specified.
  • a difference (capacity difference) ⁇ Ah between the discharge capacity (maximum value) and the discharge capacity (minimum value) is calculated (S104).
  • the capacity difference ⁇ Ah is greater than or equal to a predetermined value ⁇ Ah_th (S105).
  • the predetermined value ⁇ Ah_th can be set in advance in consideration of the remaining life of the battery 10a.
  • the capacity difference ⁇ Ah increases as the remaining life of a specific battery 10a becomes shorter than the remaining life of another battery 10a. Therefore, by comparing the capacity difference ⁇ Ah with the predetermined value ⁇ Ah_th, it is possible to specify the battery 10a having the shorter remaining life.
  • the predetermined period can be appropriately set based on the viewpoint of reusing the battery 10a. In other words, it can be determined that the battery 10a determined that the remaining life is not less than the predetermined period can be reused.
  • the assembled battery 10 when the above-described capacity difference ⁇ Ah exceeds a predetermined ratio (for example, 10%) in the full charge capacity of the assembled battery 10, the assembled battery 10 (particularly, the battery 10a on the side having a low discharge capacity Ah). It is determined that the remaining lifetime is less than a predetermined period. Since the assembled battery 10 includes a plurality of batteries 10a as a unit, if the assembled battery 10 includes a battery 10a having a remaining life of a predetermined period or less, the remaining life of the assembled battery 10 is also a predetermined period or less. Determined. Here, if the plurality of batteries 10a constituting the assembled battery 10 are disassembled, it is possible to specify the battery 10a whose remaining life is a predetermined period or less.
  • a predetermined ratio for example, 10%
  • the predetermined ratio described above can be appropriately set in consideration of the input / output characteristics of the assembled battery 10 and the like.
  • the reason why the determination criterion is “10%” is that the variation width of the discharge capacity is within about 10% is an example of the determination criterion that the battery 10a can be used normally (for example, (See JP 2002-15781 A).
  • the remaining lifetimes of all the batteries 10a constituting the assembled battery 10 are not necessarily short. That is, only the remaining life of the specific battery 10a may be short.
  • the average value of the discharge capacities of all the batteries 10a is calculated, and the remaining life of the battery 10a exhibiting a discharge capacity that is lower than the average value (discharge capacity) by a predetermined value (for example, 10% of the full charge capacity) or more. Can be determined to be short.
  • the batteries 10a other than the battery 10a determined to have a short remaining life can be reused when a new assembled battery 10 is manufactured.
  • the method of selecting (extracting) the reusable battery 10a from the assembled battery 10 after use is not limited to the method of comparing the discharge capacity of each battery 10a with the average value of the discharge capacity, and the discharge capacity of each battery 10a is You may compare with other criteria.
  • S101 it is desirable to discharge each of the batteries 10a in the assembled battery 10 until the SOC of the assembled battery 10 is 40% or less.
  • the SOC 40% may be set as the lower limit value SOC_min of the normal use range, and when the SOC of the battery pack 10 is lower than the lower limit value SOC_min of the normal use range, the discharge capacity variation (capacity difference ⁇ Ah) appears remarkably. Because it starts.
  • each of the batteries 10a in the assembled battery 10 is more preferably discharged until the SOC of the assembled battery 10 becomes “0%”.
  • the variation ((DELTA) Ah) of discharge capacity can be observed in the largest state, more accurate remaining life determination can be performed. That is, as the SOC of the battery pack 10 is decreased, the capacity difference ⁇ Ah can be widened, and the capacity difference ⁇ Ah used for determining the remaining life can be easily grasped.
  • the discharge of each battery 10a in the assembled battery 10 in S101 starts from a state where the SOC of the assembled battery 10 is “SOC center”.
  • the “SOC center” is a target reference value (SOC) when the battery pack 10 is charged and discharged. That is, charging / discharging of the assembled battery 10 is controlled so that the SOC of the assembled battery 10 changes along the SOC center.
  • the battery pack 10 when the SOC of the battery pack 10 is lower than “SOC center”, the battery pack 10 is charged within a range in which the power required by the driver can be output. This is called charge / discharge operation mode. Further, when the SOC of the battery pack 10 rises above “SOC center”, the charge / discharge operation mode is canceled and the battery pack 10 is actively discharged.
  • Charge / discharge control of the assembled battery 10 based on the SOC center is often performed in a vehicle (particularly, a hybrid vehicle) on which the assembled battery 10 is mounted.
  • a hybrid vehicle is a vehicle provided with an engine or a fuel cell in addition to the assembled battery 10 as a power source for running the vehicle.
  • the “SOC center” characteristic of the vehicle on which the assembled battery 10 is mounted is used as a reference when performing the discharging process shown in FIG. 2, so that the fully charged state (the SOC is higher than the SOC center).
  • the discharge capacity variation (capacity difference ⁇ Ah) in the plurality of batteries 10a can be grasped more efficiently in a shorter time than when the discharge process is performed.
  • the discharge shown in S101 can be performed on the assembled battery 10 removed from the vehicle, the assembled battery 10 is forcibly charged / discharged (particularly, charged) after being removed from the vehicle. ) Is preferably not applied. This is because the capacity balance caused by actual use (charging / discharging) in the vehicle when discharging starts from a state in which it is forcibly charged (quality variation at the time of manufacture and the environment exposed when the vehicle is mounted) This is because the variation in capacitance caused by the temperature or the like is alleviated and it becomes difficult to observe the capacitance difference ⁇ Ah.
  • FIG. 3 is a diagram showing the degree of variation ⁇ Ah in the discharge capacity of the plurality of batteries 10a when the assembled battery 10 having a sufficient remaining life is discharged to SOC 0%.
  • FIG. 4 is a diagram showing the degree of variation ⁇ Ah in the discharge capacity of the plurality of batteries 10a when the assembled battery 10 including the battery 10a having a reduced negative electrode charge amount and a short remaining life is discharged to SOC 0%. It is. 3 and 4, the discharge curves (discharge capacities Ah1 to Ah6) are obtained for the six batteries 10a.
  • the variation (maximum capacity difference) of the discharge capacities Ah1 to Ah6 in the plurality of batteries 10a when discharged to SOC 0% is as follows. , ⁇ Ah1.
  • the discharge capacities Ah1 to Ah1 in the plurality of batteries 10a when discharged to 0% SOC are obtained.
  • the variation (maximum capacity difference) of Ah6 is ⁇ Ah2, which is significantly larger than the capacity difference ⁇ Ah1 shown in FIG.
  • FIGS. 5 and 6 are diagrams showing the relationship between the discharge capacity and the unipolar potential (positive electrode potential and negative electrode potential).
  • the vertical axis represents the monopolar potential
  • the horizontal axis represents the discharge capacity.
  • each of the positive electrode potential and the negative electrode potential can be obtained by arranging a reference electrode between the positive electrode and the negative electrode.
  • the positive electrode potential is a potential between the positive electrode and the reference electrode
  • the negative electrode potential is a potential between the negative electrode and the reference electrode.
  • FIG. 5 shows a state where the capacity balance between the positive electrode and the negative electrode is not shifted
  • FIG. 6 shows a state where the capacity balance between the positive electrode and the negative electrode is shifted.
  • the deterioration of the battery is predicted based on the change of the voltage value (V) or the resistance value (R).
  • V voltage value
  • R resistance value
  • the assembled battery 10 is discharged until the SOC of the assembled battery 10 falls below the lower limit SOC_min of the normal use range, and the discharge capacity variation ( ⁇ Ah) that occurs at that time is observed.
  • the decrease in the negative electrode charge amount in each battery 10a constituting the assembled battery 10 can be grasped, and the remaining life of the assembled battery 10 (battery 10a) can be estimated.
  • the remaining life determination method described in the present embodiment it is possible to determine the remaining life of the battery 10a in the assembled battery 10 collected from the vehicle after traveling. As a result of the determination of the remaining life, by taking out only the battery 10a (so-called good battery 10a) having a relatively small variation in discharge capacity, the good battery 10a is combined and packaged again as the assembled battery 10. Can do. Thereby, the battery 10a which still has a sufficient remaining life can be effectively reused.
  • the measurement of the discharge capacity may be performed for each battery module (corresponding to the battery 10a) in which a plurality of (for example, six) cells are electrically connected in series, or n cells (n> 1: Natural number) may be divided into blocks and may be performed for each block. In this case, the remaining life can be determined for each block.
  • 10 assembled battery
  • 10a battery
  • PL positive electrode line
  • NL negative electrode line
  • 2 discharge capacity calculation unit
  • 4 electrical resistance
  • 3 voltage sensor
  • 5 current sensor
  • Ah1 to Ah6 discharge capacity of each battery

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】 寿命が近づいても電圧値(V)や抵抗値(R)の顕著な変化が発生しない電池において、この電池の余寿命を推測する技術を提供する。 【解決手段】 複数の電池から構成される組電池(10)の充電状態(SOC)が、組電池の充放電制御で用いられる所定の通常使用範囲の下限値以下となるまで、組電池を放電させ、組電池の放電時において、複数の電池を複数の電池ブロックに分けたときの電池ブロック毎の放電容量を測定し、複数の電池ブロックにおける放電容量の内の容量差を算出し、算出された容量差に基づいて、電池ブロック又は組電池の余寿命を判定する。

Description

余寿命判定方法
 本発明は、複数の電池が電気的に接続された組電池の余寿命を推測する技術に関するものである。
 電池が劣化または故障すると、電圧値(V)の変化特性に変化が生じたり、抵抗値(R)に変化が生じたりする。この特性を利用して、実際に電池の劣化や故障が発生した場合に、電圧値や抵抗値の変化に基づいて、電池の劣化度合を判定する技術が知られている(たとえば、特許文献1~6を参照。)。
特開2005-188965号公報 特開2003-151645号公報 特開2003-028940号公報 特開2001-231179号公報 特開2008-126788号公報 特開2000-092732号公報
 しかし、特にニッケル水素電池(Ni-MH電池)の場合、実際に劣化がある程度まで進行したり、故障が発生したりするまでは電圧値(V)や抵抗値(R)の顕著な変化が発生しないため、電池の余寿命を推測しようとする場合、上記従来の判定技術は利用できない。
 そこで、本発明の目的は、寿命が近づいても電圧値(V)や抵抗値(R)の顕著な変化が発生しない電池において、この電池の余寿命を推測する技術を提供することにある。
 本願第1の発明である余寿命判定方法は、複数の電池から構成される組電池の充電状態(SOC)が、組電池の充放電制御で用いられる所定の通常使用範囲の下限値以下となるまで、組電池を放電させ、組電池の放電時において、複数の電池を複数の電池ブロックに分けたとき電池ブロック毎の放電容量を測定し、複数の電池ブロックにおける放電容量の内の容量差を算出し、算出された容量差に基づいて、電池ブロック又は組電池の余寿命を判定することを特徴とする。
 ここで、各電池ブロックは、各電池に対応させたり、複数の電池に対応させたりすることができる。すなわち、組電池を電池毎に分ければ、各電池が各電池ブロックとなる。また、1つの電池ブロックを複数の電池で構成することもでき、この場合には、複数の電池ブロックによって組電池が構成される。複数の電池ブロックにおける放電容量の最大値と最小値との容量差が所定値以上である場合に、組電池又は、放電容量が小さい側の電池ブロックの余寿命が所定期間以下であると判定することができる。
 また、通常使用範囲の下限値としては、40%の充電状態(SOC)に設定することができる。SOC40%は、組電池の充放電を行うときに、SOCの下限値として設定されることが多いため、下限値以下となるまで組電池を放電させることにより、複数の電池ブロックにおける放電容量のバラツキが顕著に現れ、より精度の高い余寿命判定を行うことができる。
 さらに、通常使用範囲の下限値としては、0%の充電状態(SOC)に設定することができる。これにより、複数の電池ブロックにおける放電容量のばらつきがより顕著にあらわれ、より正確に余寿命判定を行うことができる。
 また、組電池の充電状態(SOC)が、充放電制御の目標となる基準値から下限値以下となるまで、組電池を放電させることができる。基準値(SOC)は、満充電状態に相当するSOCよりも低いため、満充電の状態から組電池を放電させるよりも、短時間で効率的に、複数の電池ブロックにおける放電容量のバラツキを把握することができる。
 なお、車両から取り外されてから充放電処理が施されていない組電池を用いて、充電状態(SOC)が下限値以下となるまで放電させることもできる。これは、強制的に充電された状態から放電を始めると、車両で実際に利用されたことにより生じた容量バランス(正極および負極の間における容量の対応関係)のズレが緩和されてしまい、放電容量のバラツキを観測しにくくなってしまうからである。
 本発明によれば、寿命が近づいても電圧値(V)や抵抗値(R)の顕著な変化が発生しない電池において、この電池の余寿命を推測する技術を提供することができる。
組電池(電池)の余寿命を判定する余寿命判定システムの概要を示す図である。 本実施例による電池劣化判定方法における処理の流れを示すフローチャートである。 十分な余寿命のある組電池をSOC0%まで放電させた場合において、複数の電池における放電容量のバラツキΔAhの程度を示す図である。 負極充電量が減少して余寿命が短くなっている組電池をSOC0%まで放電させた場合において、複数の電池における放電容量のバラツキΔAhの程度を示す図である。 正極および負極における容量バランスがずれていない電池において、放電容量および単極電位(正極電位および負極電位)の関係を示す図である。 正極および負極における容量バランスがずれた電池において、放電容量および単極電位(正極電位および負極電位)の関係を示す図である。
 以下、本発明の実施例について説明する。
 本実施例は、車両などから回収した組電池の余寿命を判定する技術である。余寿命とは、組電池又は、後述する電池を、所定の充放電特性を満たす範囲内において、将来、使用し続けることができる期間である。
 図1は、組電池の余寿命を判定する余寿命判定システムの概要を示す図である。本実施例では、余寿命の判定対象となる組電池が、車両から回収されたニッケル水素電池(Ni-MH電池)である場合を例に挙げている。なお、ニッケル水素電池の他にも、リチウムイオン電池などの二次電池を用いることができる。
 組電池10は、複数の電池10aを電気的に直列に接続して構成される組電池(電池パック)となっている。図1では、電池10a(電池ブロックに相当する)を単電池として示しているが、これに限るものではない。
 具体的には、複数(例えば、6個)の単電池を電気的に直列に接続して電池モジュールを構成したとき、この電池モジュールを、図1に示す電池10aとすることができる。ここで、電池モジュールは、1つのユニットとして構成される。すなわち、1つのケースに複数の単電池を収容することにより、電池モジュールを構成することができる。この場合には、複数の電池モジュールを電気的に直列に接続することにより、組電池10を構成することができる。一方、複数の電池モジュールを電気的に直列に接続したものを、図1に示す電池10aとすることもできる。
 組電池10のプラス端子は、正極ラインPLを介して負荷4sと接続され、組電池10のマイナス端子は、負極ラインNLを介して負荷4sと接続されている。電流センサ5は、組電池10が負荷4sと接続されているとき、組電池10の電流値を検出する。また、各電池10aには放電回路としての電気抵抗4が電気的に並列に接続されている。電圧センサ3は、各電池10aに設けられており、組電池10を放電しているときの各電池10aの電圧を検出し、検出結果を放電容量算出部2に出力する。
 組電池10の充電状態(SOC:State of Charge)は、組電池10を満充電にした状態から、放電した電気量の割合を除いた割合である。言い換えれば、SOCは、満充電容量に対する、現在の充電容量の割合を示す。ここで、満充電容量は、組電池10の使用(劣化)によって変化するため、SOCは、現在の満充電容量を基準として算出される。満充電容量には、組電池10が初期状態にあるときの満充電容量や、組電池10の使用後(劣化後)における満充電容量が含まれる。初期状態とは、組電池10を製造した直後の状態、言い換えれば、組電池10を初めて使用したときの状態である。組電池10の使用後における満充電容量は、組電池10が初期状態にあるときの満充電容量よりも低下する。
 組電池10のSOCは、例えば、電流センサ5により計測される放電電流の積算値から推定したり、電圧センサ3により計測される電圧を用いて算出される組電池10の起電力から推定したりすることができる。もちろん、組電池10のSOCは、公知の種々の推定手法により、推定することができる。
 各電池10aを放電したときの電圧センサ3による検出結果に基づいて、各電池10aの放電カーブ(放電容量に対する電圧の変化)を求めることができる。
 なお、本実施例では、組電池10を構成する複数の電池10aが電気的に直列に接続されているが、組電池10には、電気的に並列に接続された複数の電池10aが含まれていてもよい。
 上述のような組電池10を搭載した車両では、組電池10の出力を用いて車両を走行させたり、車両の制動時に発生する運動エネルギを回生電力として組電池10に蓄えたりすることができる。具体的には、組電池10をモータ・ジェネレータと電気的に接続することができる。モータ・ジェネレータは、組電池10から出力された電気エネルギを、車両の走行に用いられる運動エネルギに変換したり、車両の制動時に発生する運動エネルギを、組電池10に供給される電気エネルギに変換したりする。
 図2は、本実施例による電池劣化判定方法における処理の流れを示すフローチャートである。
 まず、電気的に接続された複数の電池10aを有する組電池10を、SOCが、通常使用範囲の下限値SOC_min以下となるまで放電させる(S101,S102)。具体的には、組電池10を負荷4sと接続して組電池10を放電させることにより、組電池10のSOCを下限値SOC_min以下とする。
 組電池10(電池10a)の放電を行うときには、放電レートを1It未満とすることができる。また、組電池10を放電しているとき、各電圧センサ3によって、対応する電池10aの電圧値が検出される。電池10aの電圧値は、組電池10の放電によって低下する。
 ここで、通常使用範囲とは、以下の(1)~(3)の条件を満たすことのできるSOCの範囲を意味している。
(1)車の要求に対して入出力(W)が十分に確保できる。
(2)要求される寿命を満たす。
(3)充放電容量(エネルギ量(Wh))を十分に確保できる。
 このように、「通常使用範囲」とは、組電池10が車両に搭載された場合に、組電池10として要求される入出力性能を十分に発揮しつつ、その使用範囲で使用することで組電池10の大幅な劣化を抑制することのできる使用範囲を意味している。また、通常使用範囲は、組電池10(電池10a)の固有の入出力特性によって決定されてもよく、また、車両側の要求により決定されてもよい。
 ここで、組電池10のSOCが、通常使用範囲の下限値SOC_minに到達するとき、一般的には、組電池10の放電を制限する制御が行われ、組電池10のSOCが下限値SOC_minよりも低くならないようにしている。一方、組電池10のSOCが、通常使用範囲の上限値SOC_maxに到達するとき、一般的には、組電池10の充電を制限する制御が行われ、組電池10のSOCが上限値SOC_maxよりも高くならないようにしている。
 また、上記放電処理を完了させる「終止電圧(放電終止電圧)」は、電池10aの終止電圧となる。例えば、電池10aが単電池で構成されているときには、単電池の終止電圧が、放電処理を完了させる終止電圧となる。また、電池10aが電池モジュールとして構成されているときには、電圧センサ3による検出電圧としての6.0V~7.2V程度を、放電処理を完了させる終止電圧とすることができる。
 すなわち、6個のニッケル水素電池(単電池)から電池モジュールが構成されているとき、ニッケル水素電池(単電池)の終止電圧が1.0~1.2Vであるため、電池モジュールの検出電圧が6.0V~7.2V程度になると、通常使用範囲の下限値SOC_min付近まで、電池モジュールが放電されたと推定できる。一方、電池10aが複数の電池モジュールによって構成されているときには、電池モジュールの終止電圧に、電池モジュールの数を乗算した値が、放電処理を完了させる終止電圧となる。
 次に、放電させた各電池10aの放電容量を測定する(S103)。各電池10aを終止電圧まで放電させている間の時間と、放電電流値とに基づいて、放電容量を測定することができる。放電容量の算出は、放電容量算出部2(図1参照)にて行われる。放電容量算出部2は、ASIC(Application Specific Integrated Circuit)による演算処理や、MEMORYに格納されたプログラムをCPUやMPU等のプロセッサにより実行して行われる処理等により実現される。
 S103の処理によって、複数の電池10aにおける放電容量をそれぞれ取得することができる。複数の電池10aにおいて、放電容量にバラツキが発生しているときには、放電容量の最大値および最小値を特定することができる。この場合には、放電容量(最大値)および放電容量(最小値)の差(容量差)ΔAhを算出する(S104)。
 次に、容量差ΔAhが所定値ΔAh_th以上であるか否かを判別する(S105)。所定値ΔAh_thは、電池10aの余寿命を考慮して、予め設定することができる。組電池10において、特定の電池10aの余寿命が他の電池10aの余寿命よりも短くなるほど、容量差ΔAhは広がる。したがって、容量差ΔAhを所定値ΔAh_thと比較することにより、余寿命が短い側の電池10aを特定することができる。
 そこで、容量差ΔAhが所定値ΔAh_th以上である場合に、組電池10(特に、放電容量Ahが低い側の電池10a)の余寿命が所定期間以下であると判定する(S106)。ここで、所定期間は、電池10aを再利用する観点に基づいて、適宜設定することができる。すなわち、余寿命が所定期間以下ではないと判定された電池10aについては、再利用が可能であると判断することができる。
 具体的には、上述の容量差ΔAhが、組電池10の満充電容量に占める所定割合(例えば、10%)を超える場合に、組電池10(特に、放電容量Ahが低い側の電池10a)の余寿命が所定期間以下であると判定する。組電池10は、複数の電池10aをユニット化しているため、余寿命が所定期間以下である電池10aが組電池10に含まれていれば、組電池10の余寿命も所定期間以下であると判定される。ここで、組電池10を構成する複数の電池10aを分解すれば、余寿命が所定期間以下である電池10aを特定することができる。
 ここで、上述した所定割合は、組電池10の入出力特性などを考慮して適宜設定することができる。一例として、判定基準を「10%」としているのは、放電容量のばらつき幅が10%程度以内であることが、電池10aが正常に使用できることの判定基準の一例であるためである(たとえば、特開2002-15781号公報を参照)。
 上述したように、放電容量のばらつき(容量差ΔAh)が10%を超えた場合でも、組電池10を構成するすべての電池10aの余寿命が短いとは限らない。つまり、特定の電池10aの余寿命だけが短いことがある。ここで、すべての電池10aにおける放電容量の平均値を算出し、この平均値(放電容量)よりも所定値(例えば、満充電容量の10%)以上低い放電容量を示す電池10aについて、余寿命が短いと判定することができる。
 余寿命が短いと判定された電池10a以外の電池10aについては、新たな組電池10を製造する際に再利用することができる。なお、使用後の組電池10から再利用できる電池10aを選択(抽出)する方法は、各電池10aの放電容量を放電容量の平均値と比較する方法に限られず、各電池10aの放電容量を他の基準と比較してもよい。
 なお、S101において、組電池10における電池10aのそれぞれを、組電池10のSOCが40%以下」となるまで放電させることが望ましい。SOC40%は、通常使用範囲の下限値SOC_minとして設定されることがあり、組電池10のSOCが通常使用範囲の下限値SOC_minよりも低下すると、放電容量のバラツキ(容量差ΔAh)が顕著に現れ始めるからである。
 また、S101において、組電池10における電池10aのそれぞれを、組電池10のSOCが「0%」となるまで放電させることがより好ましい。これにより、複数の電池10aにおいて、放電容量のバラツキ(ΔAh)を、最も大きい状態で観測することができるため、より正確な余寿命判定ができる。すなわち、組電池10のSOCを低下させるほど、容量差ΔAhを広げることができ、余寿命の判定に用いられる容量差ΔAhを把握しやすくなる。
 また、S101での組電池10における電池10aそれぞれの放電は、組電池10のSOCが「SOC中心」の状態から始めることが望ましい。ここで、「SOC中心」とは、組電池10を充放電させる際に目標となる基準値(SOC)である。すなわち、組電池10のSOCがSOC中心に沿って変化するように、組電池10の充放電が制御される。
 具体的には、組電池10のSOCが「SOC中心」よりも低下すると、運転者が要求する動力を出力できる範囲内において、組電池10が充電される。これを充放電運転モードという。また、組電池10のSOCが「SOC中心」よりも上昇すると、充放電運転モードが解除され、組電池10の放電が積極的に行われる。
 SOC中心を基準とした組電池10の充放電制御は、組電池10が搭載された車両(特に、ハイブリッド車)において行われることが多い。ハイブリッド車とは、車両を走行させる動力源として、組電池10の他に、エンジン又は燃料電池を備えた車両である。このように、組電池10が搭載された車両に特徴的な「SOC中心」を、図2に示す放電処理を行うときの基準とすることにより、満充電状態(SOC中心よりもSOCが高い状態)から放電処理を行うときよりも、短時間で効率的に、複数の電池10aにおける放電容量のバラツキ(容量差ΔAh)を把握することができる。
 さらに、S101にて示す放電は、車両から取り外された組電池10に対して行うことができるが、この組電池10は、車両から取り外された後に、強制的な充放電処理(特に、充電処理)が施されていないことが好ましい。これは、強制的に充電された状態から放電を始めると、車両で実際に利用(充放電)されたことにより生じた容量バランスのズレ(製造時の品質のバラツキや車両搭載時にさらされた環境の温度などに起因して発生する容量のバラツキ)が緩和されてしまい、容量差ΔAhを観測しにくくなってしまうからである。
 図3は、十分な余寿命のある組電池10をSOC0%まで放電させた場合において、複数の電池10aにおける放電容量のバラツキΔAhの程度を示す図である。図4は、負極充電量が減少して余寿命が短くなっている電池10aを含む組電池10をSOC0%まで放電させた場合において、複数の電池10aにおける放電容量のバラツキΔAhの程度を示す図である。図3および図4では、6個の電池10aに関して、放電カーブ(放電容量Ah1~Ah6)を取得している。
 図3に示すように、負極充電量が十分にあり余寿命が長い組電池10の場合、SOC0%まで放電させたときの複数の電池10aにおける放電容量Ah1~Ah6のバラツキ(最大容量差)は、ΔAh1となる。一方、図4に示すように、負極充電量が減少して余寿命が短くなっている電池10aを含む組電池10の場合、SOC0%まで放電させたときの複数の電池10aにおける放電容量Ah1~Ah6のバラツキ(最大容量差)は、ΔAh2となり、図3に示す容量差ΔAh1に比べて大幅に増加している。
 図5および図6は、放電容量と、単極電位(正極電位および負極電位)との関係を示す図である。図5および図6において、縦軸は単極電位であり、横軸は放電容量である。
 ここで、正極電位および負極電位のそれぞれは、正極および負極の間に参照極を配置することによって取得することができる。正極電位は、正極および参照極の間の電位となり、負極電位は、負極および参照極の間の電位となる。図5は、正極および負極における容量バランスがずれていない状態を示し、図6は、正極および負極における容量バランスがずれている状態を示す。
 従来の余寿命判定方法では、電圧値(V)や抵抗値(R)の変化に基づいて、電池の劣化を予測していた。しかし、ニッケル水素電池における負極充電量の減少のように、まだ実際には電池10aの劣化が進んでいない状態では、電圧値(V)や抵抗値(R)の顕著な変化は、寿命に到達する直前まで観測できない。すなわち、負極充電量が減少すると、正極および負極における容量バランスがずれ、図5に示す状態から図6に示す状態に変化するだけであるため、電圧値(V)や抵抗値(R)の顕著な変化を観測できない。したがって、余寿命の推測が正確に行えなかった。
 一方、本実施例のように、組電池10のSOCが通常使用範囲の下限値SOC_minよりも低下するまで、組電池10を放電させ、そのときに生ずる放電容量のバラツキ(ΔAh)を観測することで、組電池10を構成する各電池10aにおける負極充電量の減少を把握することができ、組電池10(電池10a)の余寿命を推測することができる。
 本実施例に記載の余寿命判定方法を用いることにより、走行後の車両から回収された組電池10における電池10aの余寿命を判定することができる。余寿命の判定の結果、比較的、放電容量のバラツキの少ない電池10a(いわゆる、良品の電池10a)のみを取り出すことにより、これら良品の電池10aを組み合わせて再度、組電池10としてパッケージ化することができる。これにより、まだ十分な余寿命を有する電池10aを有効に再利用することができる。
 放電容量の測定は、複数(例えば、6個)の単電池が電気的に直列に接続された電池モジュール(電池10aに相当する)毎に行ってもよいし、単電池をn個(n>1:自然数)毎にブロック化し、ブロック毎に行ってもよい。この場合、ブロック毎に余寿命を判定することができる。
10:組電池、10a:電池、PL:正極ライン、NL:負極ライン、2:放電容量算出部、4:電気抵抗、3:電圧センサ、5:電流センサ、Ah1~Ah6:各電池の放電容量

Claims (6)

  1.  複数の電池から構成される組電池の充電状態(SOC)が、前記組電池の充放電制御で用いられる所定の通常使用範囲の下限値以下となるまで前記組電池を放電させ、
     前記組電池の放電時において、前記複数の電池を複数の電池ブロックに分けたときの前記電池ブロック毎の放電容量を測定し、
     前記複数の電池ブロックにおける前記放電容量の内の容量差を算出し、
     算出された前記容量差に基づいて、前記電池ブロック又は前記組電池の余寿命を判定することを特徴とする余寿命判定方法。
  2.  前記複数の電池ブロックにおける放電容量の最大値と最小値との容量差が所定値以上である場合に、前記組電池又は、放電容量が小さい側の前記電池ブロックの余寿命が所定期間以下であると判定することを特徴とする請求項1に記載の余寿命判定方法。
  3.  前記下限値が40%の充電状態(SOC)であることを特徴とする請求項1又は2に記載の余寿命判定方法。
  4.  前記下限値が0%の充電状態(SOC)であることを特徴とする請求項1又は2に記載の余寿命判定方法。
  5.  前記組電池の充電状態(SOC)が、充放電制御の目標となる基準値から前記下限値以下となるまで、前記組電池を放電させることを特徴とする請求項1から4のいずれか1つに記載の余寿命判定方法。
  6.  車両から取り外されてから充放電処理が施されていない前記組電池を用いて、充電状態(SOC)が前記下限値以下となるまで放電させることを特徴とする請求項1から5のいずれか1つに記載の余寿命判定方法。
PCT/JP2012/002247 2011-04-01 2012-03-30 余寿命判定方法 WO2012137456A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280011246.8A CN103403565B (zh) 2011-04-01 2012-03-30 剩余寿命判定方法
CA2831568A CA2831568C (en) 2011-04-01 2012-03-30 Method for determining remaining lifetime
JP2013508749A JP5623629B2 (ja) 2011-04-01 2012-03-30 余寿命判定方法
US14/008,849 US9523740B2 (en) 2011-04-01 2012-03-30 Method for determining remaining lifetime

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-082078 2011-04-01
JP2011082078 2011-04-01

Publications (1)

Publication Number Publication Date
WO2012137456A1 true WO2012137456A1 (ja) 2012-10-11

Family

ID=46968867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002247 WO2012137456A1 (ja) 2011-04-01 2012-03-30 余寿命判定方法

Country Status (5)

Country Link
US (1) US9523740B2 (ja)
JP (1) JP5623629B2 (ja)
CN (1) CN103403565B (ja)
CA (1) CA2831568C (ja)
WO (1) WO2012137456A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073427A (ja) * 2013-09-04 2015-04-16 トヨタ自動車株式会社 組電池管理システムおよび装置
KR20160043369A (ko) * 2014-10-13 2016-04-21 현대모비스 주식회사 배터리 교체 시기 판단 시스템 및 방법
WO2022004356A1 (ja) 2020-06-30 2022-01-06 株式会社デンソー 二次電池の劣化度判定装置
WO2022004357A1 (ja) 2020-06-30 2022-01-06 株式会社デンソー 二次電池の劣化度判定システム用のサーバ及び外部端末、劣化度判定システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9037426B2 (en) * 2011-05-13 2015-05-19 GM Global Technology Operations LLC Systems and methods for determining cell capacity values in a multi-cell battery
JP2015117633A (ja) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 充電制御装置
US10126723B2 (en) * 2015-01-30 2018-11-13 General Electric Company Performing passive maintenance on an energy storage farm
CN106842041A (zh) * 2016-12-28 2017-06-13 深圳天珑无线科技有限公司 一种计算电池容量的方法及装置
US10985576B2 (en) 2017-01-09 2021-04-20 Milwaukee Electric Tool Corporation Battery pack
KR20200101754A (ko) * 2019-02-20 2020-08-28 삼성에스디아이 주식회사 배터리 제어 장치 및 배터리 제어 방법
CN113994562A (zh) * 2019-07-04 2022-01-28 沃尔沃建筑设备公司 通过将使用过的电动车辆电池组重新用作电池充电器的电源来赋予其第二次生命的方法
CN111001588B (zh) * 2019-11-01 2022-12-09 安徽绿沃循环能源科技有限公司 电池组梯次回收利用方法
CN113678009A (zh) * 2019-11-29 2021-11-19 旻泰克科技股份有限公司 电池状态推定装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140272A (ja) * 1994-11-08 1996-05-31 Matsushita Electric Ind Co Ltd 蓄電池の状態管理システム
JP2000224701A (ja) * 1999-01-28 2000-08-11 Honda Motor Co Ltd バッテリ劣化判断装置
JP2004031123A (ja) * 2002-06-26 2004-01-29 Nissan Motor Co Ltd 並列接続された組電池の容量演算方法および装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170678A (ja) * 1985-01-25 1986-08-01 Nissan Motor Co Ltd バツテリ状態検知装置
JPH07335266A (ja) 1994-06-08 1995-12-22 Nissan Motor Co Ltd 組電池及びその充電装置
US5606242A (en) * 1994-10-04 1997-02-25 Duracell, Inc. Smart battery algorithm for reporting battery parameters to an external device
JP3870577B2 (ja) 1998-09-14 2007-01-17 株式会社デンソー 組電池のばらつき判定方法及びバッテリ装置
JP4052418B2 (ja) 2000-02-15 2008-02-27 日立マクセル株式会社 電池容量検出方法および装置並びに電池パック
JP4215962B2 (ja) * 2000-10-23 2009-01-28 株式会社デンソー ハイブリッド車の電池制御装置
JP2002247773A (ja) 2001-02-20 2002-08-30 Matsushita Electric Ind Co Ltd 二次電池の劣化状態診断方法及びそれを用いた残量演算修正制御装置
JP2003151645A (ja) 2001-11-16 2003-05-23 Fujitsu Ten Ltd 電池残量検知方法および電気機器
JP2003248940A (ja) 2002-02-21 2003-09-05 Funai Electric Co Ltd 光ディスク装置
JP4032934B2 (ja) 2002-11-15 2008-01-16 ソニー株式会社 電池容量算出方法、電池容量算出装置、及び電池容量算出プログラム
JP3997965B2 (ja) * 2003-07-29 2007-10-24 トヨタ自動車株式会社 組電池の充放電制御装置および方法、プログラム、電池制御システム
JP4514449B2 (ja) 2003-12-24 2010-07-28 古河電気工業株式会社 二次蓄電池の残存容量を判定する方法、および、判定結果を用いて車両に搭載された二次電池の残存容量を検出する方法と装置、並びに、二次蓄電池の残存容量を判定するための端子電圧を演算するために使用する傾きと切片とを求める方法と装置
JP2008126788A (ja) 2006-11-20 2008-06-05 Toyota Motor Corp 車両用電池寿命判定装置及び電池寿命判定システム
WO2011145250A1 (ja) * 2010-05-17 2011-11-24 パナソニック株式会社 リチウムイオン二次電池システムおよび電池パック

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140272A (ja) * 1994-11-08 1996-05-31 Matsushita Electric Ind Co Ltd 蓄電池の状態管理システム
JP2000224701A (ja) * 1999-01-28 2000-08-11 Honda Motor Co Ltd バッテリ劣化判断装置
JP2004031123A (ja) * 2002-06-26 2004-01-29 Nissan Motor Co Ltd 並列接続された組電池の容量演算方法および装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073427A (ja) * 2013-09-04 2015-04-16 トヨタ自動車株式会社 組電池管理システムおよび装置
KR20160043369A (ko) * 2014-10-13 2016-04-21 현대모비스 주식회사 배터리 교체 시기 판단 시스템 및 방법
KR102268638B1 (ko) * 2014-10-13 2021-06-23 현대모비스 주식회사 배터리 교체 시기 판단 시스템 및 방법
WO2022004356A1 (ja) 2020-06-30 2022-01-06 株式会社デンソー 二次電池の劣化度判定装置
WO2022004357A1 (ja) 2020-06-30 2022-01-06 株式会社デンソー 二次電池の劣化度判定システム用のサーバ及び外部端末、劣化度判定システム

Also Published As

Publication number Publication date
CA2831568C (en) 2016-09-13
CN103403565B (zh) 2015-07-01
US9523740B2 (en) 2016-12-20
US20140336964A1 (en) 2014-11-13
CA2831568A1 (en) 2012-10-11
JP5623629B2 (ja) 2014-11-12
CN103403565A (zh) 2013-11-20
JPWO2012137456A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5623629B2 (ja) 余寿命判定方法
CN107817450B (zh) 蓄电元件包及管理装置、soc推测方法、介质、面板***
US10551443B2 (en) Battery deterioration determination device, battery deterioration determination method, and vehicle
US11124072B2 (en) Battery control device and electric motor vehicle system
JP3964635B2 (ja) メモリー効果の検出方法およびその解消方法
US8907674B2 (en) System and method for determining degradation of rechargeable lithium ion battery
JP5719236B2 (ja) 二次電池の制御装置
JP5708668B2 (ja) 蓄電システム
EP2362478B1 (en) Determination system and determination method for determining whether metal lithium is precipitated in a lithium ion secondary battery, and vehicle equipped with the determination system
JP5621818B2 (ja) 蓄電システムおよび均等化方法
JP5868499B2 (ja) 電池制御装置
KR20180120589A (ko) 차량 탑재의 전지 시스템 및 전지의 경년 열화 추정 방법
JP5738784B2 (ja) 蓄電システム
JP6500789B2 (ja) 二次電池の制御システム
US20110115435A1 (en) Charge control device and vehicle equipped with the same
JP2010249797A (ja) 二次電池の状態判定装置及び制御装置
US20130314042A1 (en) Method for Ascertaining the Open Circuit Voltage of a Battery, Battery with a Module for Ascertaining the Open Circuit Voltage and a Motor Vehicle Having a Corresponding Battery
JP7131290B2 (ja) 表示装置およびそれを備える車両
JP2012104239A (ja) リチウムイオン電池の蓄電量推定方法、リチウムイオン電池の蓄電量推定プログラム、リチウムイオン電池の蓄電量補正方法及びリチウムイオン電池の蓄電量補正プログラム
US9772382B2 (en) Method for monitoring a state of a rechargeable battery based on a state value which characterizes the respective state of the rechargeable battery
JP4874646B2 (ja) 電池用制御装置、電動車両、及び二次電池の制御方法
CN115864559A (zh) 电池的充电方法
US10283980B2 (en) Electrical storage system
WO2020085097A1 (ja) 電池制御装置
JP6747333B2 (ja) 二次電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508749

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2831568

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14008849

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12767578

Country of ref document: EP

Kind code of ref document: A1