WO2012137291A1 - 太陽電池およびその製造方法、太陽電池モジュール - Google Patents

太陽電池およびその製造方法、太陽電池モジュール Download PDF

Info

Publication number
WO2012137291A1
WO2012137291A1 PCT/JP2011/058542 JP2011058542W WO2012137291A1 WO 2012137291 A1 WO2012137291 A1 WO 2012137291A1 JP 2011058542 W JP2011058542 W JP 2011058542W WO 2012137291 A1 WO2012137291 A1 WO 2012137291A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar cell
semiconductor substrate
hole
cell according
Prior art date
Application number
PCT/JP2011/058542
Other languages
English (en)
French (fr)
Inventor
陽一郎 西本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/009,132 priority Critical patent/US9490375B2/en
Priority to PCT/JP2011/058542 priority patent/WO2012137291A1/ja
Priority to CN201180069639.XA priority patent/CN103460402B/zh
Priority to JP2013508653A priority patent/JP5596852B2/ja
Priority to KR1020137026601A priority patent/KR101563412B1/ko
Priority to DE112011105125.5T priority patent/DE112011105125T5/de
Priority to TW100131890A priority patent/TWI489640B/zh
Publication of WO2012137291A1 publication Critical patent/WO2012137291A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell, a method for manufacturing the solar cell, and a solar cell module, and in particular, a solar cell having a structure in which a light receiving surface electrode is drawn out and arranged on the back side through a through hole (through hole), About.
  • the structure of a crystalline silicon (Si) solar cell includes an antireflection film formed on a photoelectric conversion part having a pn junction and a comb-shaped surface electrode formed on the light receiving surface side of the photoelectric conversion part. And a back electrode formed on the entire back surface of the photoelectric conversion portion. Since the irradiation light is blocked by the surface electrode on the light receiving surface side, the region covered with the surface electrode does not contribute to power generation. That is, so-called shadow loss occurs. The ratio of such shadow loss is a little less than 10%.
  • MWT Metal Wrap Through
  • EWT emitter Wrap Through
  • the bus electrode (all of the surface electrodes in the EWT cell) is used as the electrode. It is possible to reduce the shadow loss by arranging on the back surface where the area is loose, and to reduce the series resistance by increasing the electrode area. In a solar cell using such a through hole, the current collected on the light receiving surface side passes through the through hole. For this reason, the number of through holes and the resistance in the through holes affect the characteristics of the solar cell.
  • the resistance loss Ploss1 of the through hole when one through hole is opened is expressed by the following formula (1).
  • the resistance loss Ploss4 of the through hole when four through holes are opened is expressed by the following formula (2).
  • the resistance of the through hole depends on the diameter of the through hole.
  • the current collected on the light receiving surface side flows through the metal filled in the through hole, and in the case of the EWT cell, the current flows through the diffusion layer on the side surface of the through hole.
  • a volume V of a cylinder having a radius r and a height d is expressed by the following mathematical formula (3).
  • a side area A of a cylinder having a radius of r and a height of d is expressed by the following formula (4). Accordingly, the resistance of the through hole can be reduced as the diameter of the through hole is increased. That is, it can be said that it is preferable that the through-hole diameter is large and the number of through-holes is large in order to increase the photoelectric conversion efficiency of the MWT cell and the EWT cell.
  • the EWT cell and the MWT cell differ only in the position of the electrodes, and there is no significant difference in the process.
  • a substrate a p-type silicon substrate
  • the diffusion material is changed to an appropriate one, a similar cell can be manufactured even if an n-type silicon substrate is applied. .
  • a through hole is formed in a p-type Si substrate (hereinafter sometimes referred to as a substrate) with a laser.
  • fine irregularities called texture are formed on the surface of the substrate. The surface reflectance of the solar cell is reduced by the texture, and high conversion efficiency can be obtained.
  • a silicon nitride (SiN) film (PECVD-SiN film) is formed as an antireflection film on the light receiving surface side of the substrate by a plasma CVD (plasma-enhanced chemical vapor deposition: PECVD) method.
  • PECVD plasma-enhanced chemical vapor deposition
  • vapor phase diffusion using phosphorus oxychloride (POCl 3 ) is performed to form an n-type impurity diffusion layer, and a silicon nitride (SiN) film (PECVD-SiN film) formed by PECVD is used as an antireflection film.
  • the n-type impurity diffusion layer may be formed using SOD (Spin on Dopant). If the substrate to be used is a single crystal Si substrate, there is an option to use a silicon thermal oxide film (SiO 2 ) as an antireflection film.
  • phosphorus (P) -doped titanium dioxide (TiO 2 ) is used as SOD (Spin on Dopant), a process of forming an antireflection film simultaneously with the formation of the n-type impurity diffusion layer is also possible.
  • electrodes are printed and fired on the front and back surfaces of the substrate including the inside of the through hole, and the MWT cell is completed through laser isolation.
  • the surface electrode of a solar cell is formed by printing and firing a conductive paste to break through the conductive paste antireflection film and make contact with the diffusion layer underneath, so-called fire-through The method is taken.
  • Non-Patent Document 1 describes that it is necessary to change the paste used between the back surface n-type electrode and the front surface n-type electrode.
  • a through hole is formed after forming a pn junction that is a heterojunction.
  • an insulating film is formed on the side surface of the through hole. Measures are taken.
  • the surface electrode is arranged on the back side by filling the through hole with a conductive paste.
  • the filled paste must be held in the through hole and cured or baked as it is.
  • the viscosity of the conductive paste is too high, the conductive paste printed from the back surface and the conductive paste printed from the front surface are difficult to contact in the through hole.
  • the viscosity of the conductive paste is too low, the conductive paste cannot be held in the through hole, so that the resistance of the through hole increases.
  • the viscosity of the conductive paste is low, there is a high possibility of soiling the printing stage, which adversely affects productivity.
  • Patent Document 4 when filling a through hole with a conductive paste, the back surface of the through hole is covered with a support disposed on the back surface of the substrate, and printed and dried. Hold the paste inside. According to the method of Patent Document 4, the conductive paste can be held in the through hole, and the resistance loss in the through hole can be reduced.
  • the resistivity of the conductive paste is more than an order of magnitude higher than that of the same type of metal. For this reason, even if the entire through hole is filled with the conductive paste, the resistance cannot be lowered sufficiently. There is a problem that the conversion efficiency decreases.
  • the present invention has been made in view of the above, and an object thereof is to obtain a solar cell excellent in photoelectric conversion efficiency and high in productivity, a manufacturing method thereof, and a solar cell module.
  • a solar cell according to the present invention includes a first conductivity type semiconductor substrate in which a through hole is formed, and a second conductivity provided on one surface side of the semiconductor substrate.
  • the lead electrode is configured by filling the through hole with a metal member made of a single metal, and is electrically connected to the light receiving surface electrode through a conductive material.
  • FIG. 1-1 is a plan view of the solar battery cell according to the first embodiment of the present invention as viewed from the light receiving surface.
  • FIG. 1-2 is a plan view of the solar cell according to the first embodiment of the present invention as viewed from the surface (back surface) opposite to the light receiving surface.
  • FIG. 1-3 is a cross-sectional view of a principal part taken along line AA in FIG. 1-1.
  • FIG. 2-1 is a perspective view showing an appearance of a metal plug constituting the extraction electrode according to the first embodiment of the present invention.
  • FIG. 2-2 is a perspective view showing an appearance of another metal plug constituting the extraction electrode according to the first embodiment of the present invention.
  • FIGS. 3-1 is a cross-sectional view illustrating the main part of the method for manufacturing the solar cell according to the first embodiment of the present invention.
  • FIG. 3-2 is a cross-sectional view of the principal part showing the method for manufacturing the solar battery cell according to the first embodiment of the present invention.
  • FIGS. 3-3 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 3-4 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 3-5 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. 3-6 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 3-7 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIG. 4 is a flowchart showing the method for manufacturing the solar battery cell according to the first embodiment of the present invention.
  • FIG. 5 is a plan view of a metal plug having a stress release portion.
  • FIG. 6 is a cross-sectional view schematically showing an example of a method for interconnecting solar cells according to the first embodiment of the present invention.
  • FIG. 7: is sectional drawing which shows typically the other example of the interconnection method of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. 8-1 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention.
  • FIGS. FIGS. 8-2 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention.
  • FIGS. FIGS. 8-3 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention.
  • FIGS. FIGS. 8-4 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention.
  • FIGS. FIGS. 8-5 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention.
  • FIGS. FIGS. 8-1 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention.
  • FIGS. FIGS. 8-2 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embod
  • FIG. 8-6 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention.
  • FIGS. FIGS. 8-7 is principal part sectional drawing which shows the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention.
  • FIGS. FIG. 8-8 is a cross-sectional view of the principal part showing the method for manufacturing the solar battery cell according to the second embodiment of the present invention.
  • FIG. 9 is a flowchart showing a method for manufacturing a solar battery cell according to the second embodiment of the present invention.
  • FIG. 10A is a plan view of a conventional MWT cell viewed from the back side.
  • 10-2 is a cross-sectional view of a main part taken along line BB in FIG.
  • FIG. 10-1 is a cross-sectional view of the main part in a region where no protrusion is present.
  • FIG. 11A is a plan view of the solar battery cell according to the third embodiment of the present invention viewed from the back surface.
  • FIG. 11B is a cross-sectional view of main parts taken along line CC in FIG. 11A, and is a cross-sectional view of main parts in a region where no protrusion is present.
  • FIG. 12 is a perspective view schematically showing a configuration of a conventional general solar battery cell.
  • FIG. 13: is sectional drawing which shows the form of the metal plug concerning Embodiment 4 of this invention.
  • FIG. 14 is a cross-sectional view of the main part showing the positional relationship between the metal plug and the silicon substrate 10 according to the fourth embodiment of the present invention.
  • FIG. 1-1 is a plan view of the solar cell 1 according to the first embodiment of the present invention as viewed from the light receiving surface.
  • FIG. 1-2 is a plan view of the solar battery cell as viewed from the surface (back surface) opposite to the light receiving surface.
  • FIG. 1-3 is a cross-sectional view of a principal part taken along line AA in FIG. 1-1.
  • the solar battery cell 1 according to the first exemplary embodiment is an MWT cell having a structure in which a surface electrode is drawn out to the back surface through a through hole (through hole).
  • the solar cell 1 has an antireflection film 14 and a light receiving surface electrode 21 on the light receiving surface of the silicon substrate 10 provided with a plurality of through holes (through holes) H.
  • the silicon substrate 10 includes a p-type silicon substrate 11, an n-type impurity diffusion layer 12 provided on the light-receiving surface side surface of the silicon substrate 10 in which n-type impurities are diffused, and a back-side surface of the silicon substrate 10. And a p + layer (Back Surface Field: BSF layer) 13 containing a high concentration impurity.
  • the n-type impurity diffusion layer 12 is formed so that a part thereof wraps around the through hole H and the area around the through hole on the back surface of the silicon substrate 10.
  • the light-receiving surface electrode 21 is a surface n electrode that is electrically connected to the n-type impurity diffusion layer 12 on the light-receiving surface side of the silicon substrate 10, and is a so-called grid electrode. Since the light-receiving surface electrode 21 is formed using fire-through, the antireflection film 14 hardly exists below the light-receiving surface electrode 21 on the light-receiving surface side of the silicon substrate 10, and other than the lower portion of the light-receiving surface electrode 21. Exists in the area. 1-3 is shown for reference in order to show the positional relationship with the silicon substrate 10.
  • a lead electrode 22 which is a back surface n electrode is embedded.
  • the extraction electrode 22 is electrically connected to the light receiving surface electrode 21 and is extracted to the back side of the silicon substrate 10 through the through hole H.
  • the extraction electrode 22 is shown through the antireflection film 14.
  • FIG. 2-1 is a perspective view showing an appearance of a metal plug that is a metal member constituting the extraction electrode 22. That is, the lead electrode 22 is configured by filling the through hole H with a metal plug made of a single metal.
  • the metal plug is configured by providing a plurality of cylindrical protrusions 222 on one surface of the flat portion 221.
  • the protrusions 222 are provided on one surface of the flat portion 221 at the same predetermined interval as the interval between the adjacent through holes H in the direction orthogonal to the line segment AA in FIG. ing.
  • the protrusions 222 are filled in the through holes H, and one surface of the flat part 221 is disposed in contact with the back surface (n-type impurity diffusion layer 12) of the silicon substrate 10.
  • a single metal is a metal that does not contain non-conductive impurities, and includes alloys.
  • the metal plug is preferably made of a material having good bonding properties with solder or the electrode material paste of the light receiving surface electrode 21.
  • the single metal is preferably a material having a low resistivity in order to reduce the resistivity of the extraction electrode 22 as compared with the case where the extraction electrode is formed from an electrode material paste containing silver (Ag), glass or the like. Examples of such a material include a copper-based material mainly composed of copper (Cu), a silver-based material mainly composed of silver (Ag), and a nickel-based material mainly composed of nickel (Ni). Among these, copper-based materials are inexpensive and are preferable as materials for metal plugs.
  • connection region 221 a is a region for electrical connection between an external member such as a solar battery cell and the extraction electrode 22.
  • a conductive tab or the like is connected to the connection region 221a via solder or a conductive adhesive.
  • the position of the connection region 221a can be flexibly dealt with by a method of electrical interconnection with an external member, and does not limit the installation location.
  • the insulating film should just coat
  • a plurality of protrusions 222 are formed on one surface of the flat portion 221, and a connection region 221a is formed at the center of the other surface of the end portion of the flat portion 221 in the longitudinal direction of the metal plug. Is provided.
  • the metal plug may have a form in which one protrusion 222 is formed on one surface of the flat part 221 as shown in FIG.
  • FIG. 2-2 is a perspective view showing an appearance of another metal plug constituting the extraction electrode 22.
  • the conductive tabs are electrically connected to each other through the solder or conductive adhesive between the connection regions 221a of the metal plugs filled in the through holes H. Is done.
  • the back surface p electrode 24 electrically connected to the BSF layer 13 having the p-type conductivity type in the silicon substrate 10 and a predetermined region on the surface of the back surface p electrode 24 are provided.
  • a back surface p-electrode 25 for connection is provided.
  • the back surface p electrode 24 is an aluminum electrode formed by printing and baking an electrode material paste mainly composed of aluminum.
  • the back p electrode 25 for connection is a silver electrode formed by printing and baking an electrode material paste mainly composed of silver.
  • the back surface p electrode 24 and the connection back surface p electrode 25 constitute a p electrode 23.
  • the back surface p-electrode 24 and the extraction electrode 22 are electrically separated by a pn isolation groove 51 that reaches the inside of the silicon substrate 11 from the surface of the n-type impurity diffusion layer 12 that wraps around the back surface of the silicon substrate 10. .
  • FIG. 1-1 shows an example in which five light receiving surface electrodes 21 are provided for easy understanding, a larger number of light receiving surface electrodes 21 are actually provided.
  • two lead electrodes 22 are provided for each light receiving surface electrode 21, but the correspondence between the number of light receiving surface electrodes 21 and the number of lead electrodes 22 depends on the number of light receiving surface electrodes 21.
  • the number of installations can be flexibly handled, and the number of installations is not limited. That is, for example, one extraction electrode 22 may be provided for ten light receiving surface electrodes 21.
  • FIGS. 3-1 to 3-7 are cross-sectional views illustrating the main part of the method for manufacturing the solar battery cell 1 according to the first embodiment.
  • FIG. 4 is a flowchart illustrating a method for manufacturing the solar battery cell 1 according to the first embodiment.
  • a p-type silicon substrate is used.
  • the diffusion material is changed to an appropriate one, a similar solar cell can be manufactured even if an n-type silicon substrate is applied.
  • a cylindrical through hole H is formed at a predetermined position of a p-type silicon substrate 11 (hereinafter also referred to as the substrate 11) (FIG. 3-1, step S10).
  • the formation method of the through hole H is not specifically limited, For example, it can form using a laser.
  • the shape of the through hole H is not particularly limited. When forming the through holes H using a laser, it is advantageous from the viewpoint of productivity to open the through holes H having a small diameter but a large diameter rather than opening many through holes H having a small diameter.
  • step S20 minute irregularities called texture are formed on the surface of the substrate 11, and the damaged layer around the through hole H is removed (step S20).
  • the surface reflectance of the solar cell is reduced by the texture, and high photoelectric conversion efficiency can be obtained.
  • wet etching is used to form a texture of a crystalline silicon solar cell.
  • damage at the time of slicing the substrate is removed, and a damage layer around the through hole H introduced by the laser at the time of forming the through hole H is also removed.
  • Even when the texture is formed by dry etching there is a step of removing the slice damage due to alkali before the formation of the texture, and the damaged layer around the through hole is removed there.
  • the diffusion layer 12 is formed on the surface of the substrate 11 (hereinafter, referred to as the diffusion layer 12 in some cases).
  • a semiconductor pn junction is formed.
  • a glassy (phosphosilicate glass, PSG: Phospho-Silicate Glass) layer deposited on the surface during the diffusion process is formed on the surface immediately after the formation of the diffusion layer 12. Therefore, the substrate 11 is immersed in a hydrofluoric acid aqueous solution or the like to remove the PSG layer by etching (FIG. 3-2, step S30).
  • the diffusion layer 12 may be formed using SOD.
  • a silicon nitride (SiN) film (PECVD-SiN film) is formed on the light receiving surface side of the substrate 11 by, for example, plasma CVD (PECVD) as the antireflection film 14 (FIG. 3-3, step S40).
  • PECVD plasma CVD
  • the substrate 11 is a single crystal Si substrate, there is an option to use a silicon thermal oxide film (SiO 2 ) as the antireflection film 14.
  • titanium dioxide (TiO 2 ) doped with phosphorus (P) is used as the SOD, a process of forming the antireflection film 14 simultaneously with the formation of the diffusion layer 12 is also possible.
  • an aluminum paste 24a which is an electrode material paste, is applied to the shape of the back surface p electrode 24 as the p electrode 23 on the back surface side of the substrate 11 by screen printing.
  • the paste is applied and dried (FIG. 3-4, step S50). In the figure, only the aluminum paste 24a is shown.
  • a metal plug to be the extraction electrode 22 is inserted and installed from the back side of the substrate 11 so that the protruding portion 222 is accommodated in the through hole H (FIG. 3-5, step S60).
  • the silver paste 21a as the electrode material paste is applied to the shape of the light-receiving surface electrode 21 as the surface n-electrode on the light-receiving surface side of the substrate 11 by, for example, screen printing, and dried (FIG. 3-6, step S70). .
  • the silver paste 21a is applied by filling the upper portion of the through hole H so as to contact the metal plug in the through hole H.
  • the silver paste 21a does not leak from the through-hole H during printing, and the printing stage is not soiled.
  • the flat part 221 provided in the metal plug corresponds to the back surface n electrode conventionally formed by printing, the printing process of the back surface n electrode which has been necessary so far can be omitted.
  • the electrode paste on the front and back surfaces of the substrate 11 is simultaneously fired at a temperature of, for example, about 600 ° C. to 900 ° C., so that the antireflection film 14 is made of the glass material contained in the silver paste 21a on the front side of the substrate 11.
  • the silver material contacts the silicon and re-solidifies.
  • the light receiving surface electrode 21 is obtained, and conduction between the light receiving surface electrode 21 and the silicon of the substrate 11 is ensured.
  • the silver material contained in the silver paste 21a comes into contact with the metal plug and re-solidifies. Thereby, the light-receiving surface electrode 21 is electrically and mechanically connected to the extraction electrode 22 (step S80).
  • the roughened upper surface of the protrusion 222 of the metal plug leads to the protrusion 222 of the conductive paste. Connection is improved.
  • a metal plug having a plurality of protrusions 222 formed on the flat part 221 thermal stress is applied to the flat part 221 (between adjacent protrusions 222) due to the difference in thermal expansion coefficient between the substrate 11 and the metal plug during firing.
  • the metal plug may be bent. Therefore, as shown in FIG.
  • FIG. 5 is a plan view of a metal plug provided with a stress release portion 223.
  • the aluminum paste 24 a reacts with the silicon of the substrate 11 to obtain the back surface p electrode 24, and the BSF layer 13 is formed immediately below the back surface p electrode 24.
  • the silicon substrate 10 having the p-type silicon substrate 11, the n-type impurity diffusion layer 12, and the BSF layer 13 is obtained.
  • the silver material of the silver paste 21a comes into contact with aluminum and re-solidifies to obtain the back p electrode 25 for connection (FIGS. 3-7).
  • FIG. 3-7 In the figure, only the light-receiving surface electrode 21, the extraction electrode 22, and the back surface p-electrode 24 are shown.
  • step S90 laser isolation is performed (FIG. 3-7, step S90). That is, a pn isolation groove 51 that reaches the inside of the silicon substrate 11 from the surface of the diffusion layer 12 that wraps around the back surface of the silicon substrate 10 is formed by laser, and the back surface p electrode 24 and the extraction electrode 22 are electrically separated.
  • the solar battery cell 1 according to the first exemplary embodiment is completed.
  • FIG. 6 is a cross-sectional view schematically showing an example of a method for interconnecting solar cells 1.
  • FIG. 6 shows a cross section in the direction perpendicular to the line segment AA in FIG. 1-1 in the plane of the silicon substrate 10.
  • the entire surface of the extraction electrode 22 excluding the upper surface 222 a of the protruding portion and the connection region 221 a is covered with an insulating film 224, and the solar cell 1 is covered with a new member such as a solder paste 31 and a conductive tab 32.
  • connection region 221a of the metal plug is on the other surface of the flat portion 221 (the surface on the side where the protruding portion 222 is not installed).
  • the back surface p-electrode 24 can be formed on almost the entire surface excluding the through hole H on the back surface of the silicon substrate 10.
  • the only electrode in contact with the back surface of the silicon substrate 10 is the back surface p-electrode 24, and a large area of the BSF layer can be secured.
  • the pn isolation groove is unnecessary.
  • FIG. 7 is a cross-sectional view schematically showing another example of a method for interconnecting solar cells 1.
  • FIG. 7 shows a cross section in the direction orthogonal to the line segment AA in FIG. 1-1 in the plane of the silicon substrate 10.
  • the connection region 221 a is formed on one surface of the flat part 221 (on the side where the protruding part 222 is installed). The workability is better if it is on the surface.
  • the back surface p-electrode 24 can be formed on almost the entire surface excluding the through hole H on the back surface of the silicon substrate 10.
  • the only electrode in contact with the back surface of the silicon substrate 10 is the back surface p-electrode 24, and a large area of the BSF layer can be secured. For this reason, there is also an advantage that a high open-circuit voltage can be obtained without causing a decrease in open-circuit voltage due to recombination of carriers generated in the silicon substrate 10.
  • the pn isolation groove is unnecessary.
  • connection region 221a in the metal plug may be flexibly handled as appropriate depending on the interconnection method.
  • a conductive adhesive can be used instead of the solder paste 31.
  • FIGS. 6 and 7 attention is paid to the connection method of the extraction electrode 22, and some members of the solar battery cell 1 are omitted.
  • a metal plug made of a single metal is disposed in the through hole H, and the light receiving surface electrode 21 is drawn out through the metal plug and installed on the back surface of the substrate 11.
  • the conductive paste is composed of metal particles, organic components, glass frit, etc., its resistivity is one digit or more larger than that of a single metal. Therefore, by forming the electrode in the through hole H, which has been conventionally formed by filling the conductive paste, with a single metal, the resistance loss in the through hole H can be reduced, and the photoelectric conversion efficiency is high. A solar battery cell can be realized.
  • the metal plug is disposed in the through hole H, it is not necessary to fill the entire through hole H with the conductive paste when the light receiving surface electrode 21 is formed. This facilitates printing of the conductive paste. Furthermore, since the conductive paste is printed in a state where the metal plug is disposed in the through hole H, the printing stage is not soiled during printing, and productivity can be improved.
  • the metal plug is held only by the adhesive force of the conductive paste used to form the light-receiving surface electrode 21, and there is a problem that the weight of the metal plug cannot be supported depending on the diameter of the protrusion 222. there is a possibility.
  • This case can be dealt with by applying an adhesive to a part of the flat part 221 excluding the stress release part 223 and fixing the metal plug to the silicon substrate 10.
  • FIG. 8-1 to 8-8 are cross-sectional views illustrating the main part of the method for manufacturing the solar battery cell according to the second embodiment.
  • FIG. 9 is a flowchart illustrating a method for manufacturing a solar battery cell according to the second embodiment.
  • FIGS. 8-1 to 8-8 members similar to those in FIGS. 3-1 to 3-7 are given the same reference numerals.
  • the silver paste 21a as the electrode material paste is applied to the shape of the light receiving surface electrode 21 as the surface n electrode on the light receiving surface side of the substrate 11 by, for example, screen printing, and dried (FIG. 8-5). Step S110). At this time, the silver paste 21 a is applied except for a region around the through hole H on the light receiving surface side of the substrate 11.
  • the electrode paste on the front and back surfaces of the substrate 11 is fired simultaneously (FIG. 8-6, step S120).
  • the silver material comes into contact with silicon and re-solidifies while the antireflection film 14 is melted with the glass material contained in the silver paste 21a.
  • the light receiving surface electrode 21 is obtained, and conduction between the light receiving surface electrode 21 and the silicon of the substrate 11 is ensured.
  • the light receiving surface electrode 21 is divided at the position of the through hole H.
  • the aluminum paste 24 a reacts with the silicon of the substrate 11 to obtain the back surface p electrode 24, and the BSF layer 13 is formed immediately below the back surface p electrode 24.
  • the silicon substrate 10 having the p-type silicon substrate 11, the n-type impurity diffusion layer 12, and the BSF layer 13 is obtained.
  • the back surface p-electrode 24 is formed on almost the entire surface of the back surface of the silicon substrate 10 except for the region around the through hole H.
  • step S130 laser isolation is performed (FIG. 8-6, step S130). That is, a pn isolation groove 51 that reaches the inside of the silicon substrate 11 from the surface of the diffusion layer 12 that wraps around the back surface of the silicon substrate 10 is formed by laser, and the back surface p electrode 24 and the extraction electrode 22 that is formed later are electrically connected. Separate.
  • a metal plug to be the extraction electrode 22 is inserted and installed from the back side of the substrate 11 so that the protrusion 222 is accommodated in the through hole H (FIG. 8-7, step S140).
  • a solder paste is printed on the through hole H on the surface of the substrate 11 and the periphery thereof (region where the light receiving surface electrode 21 is not formed) (step S150), and reflow is performed to solder the light receiving surface electrode 21 to the solder 33.
  • the metal plug is electrically and mechanically connected (FIG. 8-8, step S160).
  • the through hole H it is not necessary to fill the through hole H with a conductive paste when forming the light receiving surface electrode 21. This facilitates printing of the conductive paste. Further, the printing stage is not soiled with the conductive paste during printing, and productivity can be improved.
  • FIG. 10A is a plan view of a conventional MWT cell viewed from the back side.
  • 10-2 is a cross-sectional view of a main part taken along line BB in FIG. 10-1, and is a cross-sectional view of the main part in a region where no through hole H is present.
  • FIG. 11A is a plan view of the solar cell according to the third embodiment viewed from the back surface.
  • FIG. 11B is a cross-sectional view of main parts taken along the line CC in FIG. 11A.
  • the flat portion 221 of the metal plug that is the extraction electrode 22 is covered with the insulating film 224.
  • the flat portion 221 and the insulating film 224 of the extraction electrode 22 are seen through.
  • the back surface p-electrode 24 should not be formed in the region where the back surface n-electrode 122 is formed so as not to cause a short circuit between the electrodes. There wasn't.
  • the flat part 221 of the metal plug which is the lead electrode 22 corresponding to the back surface n electrode 122 of the conventional MWT cell is It is covered with an insulating film 224. Therefore, as shown in FIGS. 11A and 11B, there is no problem even if the flat portion 221 of the metal plug is disposed on the back surface p-electrode 24, and no short circuit occurs between the electrodes.
  • the isolation may be performed only on the periphery of the through hole H on the back surface side of the silicon substrate 10. That is, as shown in FIG. 11A, the pn isolation groove 51 is formed only in the peripheral portion of the through hole H on the back surface side of the silicon substrate 10.
  • both the back surface n electrode and the back surface p electrode are in contact with the back surface of the silicon substrate 10, so that the back surface p electrode 24 is formed.
  • the BSF layer is not formed immediately below the unprocessed region, and the BSF layer is not formed on the entire back surface of the silicon substrate 10. For this reason, there is a high probability that the carriers generated in the silicon substrate 10 will recombine before reaching each electrode, and the open circuit voltage is generally lower than that of a general solar battery cell as shown in FIG. there were.
  • FIG. 12 is a perspective view schematically showing a configuration of a conventional general solar battery cell.
  • a solar battery cell 100 shown in FIG. 12 includes a p-type silicon substrate 101 and an n-type impurity diffusion layer 102 provided on the light-receiving surface side surface of the p-type silicon substrate 101 and having n-type impurities diffused. It has a photoelectric conversion part in which a pn junction is formed. Further, the solar cell 100 has an antireflection film 103 and a comb-shaped light receiving surface electrode 104 on the n-type impurity diffusion layer 102.
  • the light receiving surface electrode 104 includes a bus electrode 105 and a grid electrode 106. Also, a back electrode 107 is provided on the entire back surface of the p-type silicon substrate 101, and a BSF layer 108 is provided on the back surface of the p-type silicon substrate 101 covered with the back electrode 107.
  • the solar cell according to the third embodiment only the back surface p-electrode 24 is in contact with the back surface of the silicon substrate 10, and a large area of the BSF layer can be secured. For this reason, there is also an advantage that a high open-circuit voltage can be obtained without causing a decrease in open-circuit voltage due to recombination of carriers generated in the silicon substrate 10.
  • the back surface p-electrode 24 is formed around the extraction electrode 22 as in the case of FIGS. 10-1 and 10-2.
  • region which is not formed exists in a line form.
  • the BSF layer 13 is not formed on the back surface of the silicon substrate 10 immediately below the region where the back surface p-electrode 24 is not formed, and there is a concern about the effect of recombination in this region. For this reason, the effect which suppresses the fall of the open circuit voltage resulting from the recombination of a carrier is higher in the photovoltaic cell concerning Embodiment 3 than the photovoltaic cell concerning Embodiment 1.
  • a wide area of the BSF layer can be secured, and a high open circuit voltage can be obtained.
  • FIG. 13 is sectional drawing which shows the form of the metal plug concerning Embodiment 4.
  • FIG. 13 includes a pair of male member 41 and female member 42.
  • the male member 41 has the same configuration as the metal plug of the first to third embodiments, and includes a flat portion 411 and a protruding portion 412.
  • the female member 42 has a blade portion 421 and a cylindrical projection 422.
  • the outer diameter of the protrusion 422 is substantially equal to the diameter of the through hole H.
  • the inner diameter of the protrusion 422 is substantially equal to the outer diameter of the protrusion 412.
  • FIG. 14 is a cross-sectional view of the main part showing the positional relationship between the metal plug and the silicon substrate 10 according to the fourth embodiment. In FIG. 14, attention is paid to the method of connecting the metal plugs, and some members of the solar cell 1 are omitted.
  • the female member 42 is inserted into the through hole H from the light receiving surface side in the process of FIGS. 8-7 in the second embodiment. Then, a solder paste is printed on the through hole H on the surface of the substrate 11 and the periphery thereof (region where the light receiving surface electrode 21 is not formed), and reflow is performed, so that the light receiving surface electrode 21 is soldered to the female mold member 42. Connect electrically and mechanically.
  • the male member 41 is inserted into the through hole H from the light receiving surface side, and the male member 41 and the female member 42 are electrically and mechanically connected.
  • an adhesive may be applied to a part of the flat portion 411 to fix the metal plug to the substrate 11.
  • the through hole H it is not necessary to fill the through hole H with a conductive paste when forming the light receiving surface electrode 21. This facilitates printing of the conductive paste. Further, the printing stage is not soiled with the conductive paste during printing, and productivity can be improved.
  • the solar cell according to the present invention is useful for realizing an MWT solar cell that has excellent photoelectric conversion efficiency and high productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 貫通孔が形成された第1導電型の半導体基板と、前記半導体基板の一面側に設けられた第2導電型の不純物拡散層と、前記半導体基板の一面側において前記不純物拡散層と電気的に接続して設けられた受光面電極と、前記貫通孔を介して前記半導体基板の他面側に引き出されて前記受光面電極に電気的に接続して設けられた引き出し電極と、前記半導体基板の他面側において前記半導体基板と電気的に接続するとともに前記引き出し電極と電気的に分離された裏面電極と、を備え、前記引き出し電極は、前記貫通孔の内部に単体金属からなる金属部材が充填されて構成され、導電性材料を介して前記受光面電極に電気的に接続される。

Description

太陽電池およびその製造方法、太陽電池モジュール
 本発明は、太陽電池およびその製造方法、太陽電池モジュールに関し、特に、スルーホール(貫通穴)を介して受光面電極を裏面側に引き出して配置した構造の太陽電池およびその製造方法、太陽電池モジュールに関する。
 従来、結晶系シリコン(Si)太陽電池の構造は、pn接合を形成した光電変換部の上に成膜された反射防止膜と、光電変換部の受光面側に形成された櫛型の表面電極と、光電変換部の裏面の全面に形成された裏面電極と、を用いた構造が一般的である。照射光は受光面側において表面電極により遮られるため、表面電極で覆われた領域は発電に寄与しない。すなわち、いわゆるシャドーロスが生じる。このようなシャドーロスの割合は、10%弱である。
 電極面積を減らす事でシャドーロスを減らす事は可能である。しかし、電極の断面積が減少することにより電極の抵抗は増えるため、表面電極の抵抗損失が増加する。抵抗損失の増加は曲線因子(FF)の低下を招くため、単純に電極面積を減らしただけでは変換効率を上げる事はできない。電極面積を減らすのであれば、その分、電極を厚くする、電極材質そのものの抵抗率を下げる、などの抵抗損失を低減する方策が必要となる。
 このように相反した要求を解決する一つの方法として、スルーホール(貫通穴)を介して表面電極(もしくは拡散層)を裏面に配置した構造の太陽電池が検討されており、MWT(Metal Wrap Through)セル(拡散層の場合はEWT(Emitter Wrap Through)セル)と呼ばれる(例えば、特許文献1、特許文献2参照)。
 上述した従来の構造の太陽電池では、表面電極の電極面積を減らすと抵抗損失が増えるという問題があったが、このような構造の太陽電池ではバス電極(EWTセルでは表面電極の全て)を電極面積の制約の緩い裏面に配置してシャドーロスを減らすと共に、電極面積を増やす事で直列抵抗を下げるといった手法が可能となる。このようなスルーホールを利用した太陽電池では、受光面側で収集された電流はスルーホールを通る。このため、スルーホールの数とスルーホール内での抵抗とが太陽電池の特性に影響を与える。
 例えば、受光面の面積が面積Sである太陽電池において、スルーホールが1つ開いている場合とスルーホールが4つの開いている場合とについて考えてみる。光電流密度をJ、スルーホールの抵抗をRとすると、スルーホールが1つ開いている場合でのスルーホールの抵抗損失Ploss1は下記の数式(1)で表される。一方、スルーホールが4つ開いている場合でのスルーホールの抵抗損失Ploss4は下記の数式(2)で表される。そして、数式(1)および数式(2)から分かるように、スルーホールの数が多いほど、抵抗損失を減らすことができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 また、スルーホールの抵抗は、スルーホールの径に依存している。受光面側で収集された電流は、MWTセルの場合はスルーホールに充填された金属を、EWTセルの場合はスルーホールの側面の拡散層を流れる。そして、半径がr、高さがdの円柱の体積Vは、下記の数式(3)で表される。また、半径がr、高さがdの円柱の側面積Aは、下記の数式(4)で表される。したがって、スルーホールの径が大きいほど、スルーホールの抵抗を小さくする事ができる。すなわち、MWTセル、EWTセルの高光電変換効率化にはスルーホールの径が大きく、且つ、スルーホールの数が多い方が好ましいと言える。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 つぎに、MWTセルの製造プロセスについて説明する。なお、EWTセルとMWTセルとでは電極の位置が違うだけで、プロセスに大きな差は無い。ここではp型のシリコン基板(以下、基板と呼ぶ)の使用を仮定しているが、拡散材料を適切なものに変更すれば、n型のシリコン基板を適用しても同様のセルが作製できる。
 まず、レーザーによりp型のSi基板(以下、基板と呼ぶ場合がある)にスルーホールを形成する。つぎに、基板の表面にテクスチャーと呼ばれる微小凹凸を形成する。テクスチャーにより太陽電池の表面反射率は低減し、高い変換効率を得ることができる。
 つぎに、基板をオキシ塩化リン(POCl)ガス雰囲気中で加熱することにより、基板の表面にn型不純物拡散層を形成して半導体pn接合を形成する。つぎに、基板の受光面側に反射防止膜としてプラズマCVD(plasma-enhanced Chemical Vapor Deposition:PECVD)法により例えば窒化シリコン(SiN)膜(PECVD-SiN膜)を形成する。
 ここではn型不純物拡散層の形成にオキシ塩化リン(POCl)を用いた気相拡散を行い、反射防止膜としてPECVDによる窒化シリコン(SiN)膜(PECVD-SiN膜)を使用しているが、SOD(Spin on Dopant)を用いてn型不純物拡散層を形成しても構わない。また、使用する基板が単結晶Si基板であれば、反射防止膜としてシリコン熱酸化膜(SiO)を使用する選択肢もある。また、SOD(Spin on Dopant)としてリン(P)ドープの二酸化チタン(TiO)を用いれば、n型不純物拡散層の形成と同時に反射防止膜を形成するというプロセスも可能である。
 その後、スルーホール内を含む基板の表裏面に電極の印刷・焼成を行い、レーザーによるアイソレーションを経て、MWTセルが完成する。
 このように拡散層および反射防止膜の形成方法によって幾つかのプロセスが考えられるが、スルーホールの拡散層、反射防止膜の有無は電極形成に大きな影響を与えるので、注意が必要である。一般に、太陽電池の表面電極の形成には、導電性ペーストを印刷・焼成することで導電性ペースト反射防止膜を食い破り、その下の拡散層とコンタクトを取る、いわゆるファイヤースルー(fire-through)という手法が取られている。
 例えばスルーホールに拡散層のみが存在する場合は、スルーホールの充填にファイヤースルー用のペーストを用いると、焼成の際にペーストがスルーホール内部の拡散層を破壊してリークパスを形成するため良好な特性が得られない、という問題が起こる。このため、非特許文献1では、裏面n型電極と表面n型電極とでは用いるペーストを変える必要があることが記述されている。また、特許文献3では、ヘテロ接合であるpn接合を形成した後にスルーホールを形成しているが、スルーホール内に導電性材料を充填する前に、スルーホールの側面に絶縁膜を形成するという対策を採っている。
特開平04-223378号公報 特開平02-051282号公報 特開2008-294080号公報 特開2009-88406号公報
A. van der Heide, D. Gribenski, J. Szlufcik, Photovoltech, "INDUSTRIAL FABRICATION OF MULTI CRYSTALLINE MWT CELL WITH INTERCONNECTION FLEXIBILITY OF 16.5% EFFICIENCY" 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany, p942-p945
 以上のプロセスを踏まえて前述の「スルーホールの径が大きく、且つ、数多くのスルーホールを開ける」という方針を考えると、この方針は実用性に乏しいことがわかる。何故ならば、スルーホールの形成はレーザーを用いた枚葉処理であり、スルーホールの数が多くなるほど生産性は落ちるからである。したがって、小さいスルーホールを数多く開けるよりも、数は少ないものの大きなスルーホールを開ける方が実用的であると言えるが、ここでもまた問題が生じる。
 MWTセルの場合は、導電性ペーストをスルーホールに充填することによって表面電極を裏面側に配置するが、充填したペーストをスルーホール内に保持し、そのまま硬化させる、または焼成しなくてはならない。しかしながら、導電性ペーストの粘度が高すぎる場合には、裏面から印刷した導電性ペーストと表面から印刷した導電性ペーストとがスルーホール内で接触し難くなる。また、導電性ペーストの粘度が低すぎる場合には、スルーホール内に導電性ペーストを保持できないため、スルーホールの抵抗が増加する。更に、導電性ペーストの粘度が低い場合においては、印刷ステージを汚す可能性が高くなり、生産性にも悪影響を与える。
 このような問題を解決するために、特許文献4では、スルーホールに導電性ペーストを充填する際、基板の裏面に配置した支持体によりスルーホールの裏面を覆い、印刷、乾燥させる事でスルーホール内にペーストを保持させる。特許文献4の方法によれば、スルーホール内に導電性ペーストを保持でき、スルーホールでの抵抗損失を減らすことが可能である。しかしながら、導電性ペーストの抵抗率は同種の金属よりも抵抗率が1桁以上も大きく、このため、スルーホール全体に導電性ペーストが充填されたとしても、十分に抵抗を下げる事ができず光電変換効率が低下する、という問題がある。
 なお、EWTセルの場合にはスルーホール内の導電に拡散層を利用するのでこのような問題は生じない。しかし、拡散層の抵抗率と導電性ペーストの抵抗率とを比べると、後者の方が圧倒的に小さいため、MWTセルの方が高い変換効率が得られると考えられており、現時点ではMWTセルの検討の方が盛んである。
 本発明は、上記に鑑みてなされたものであって、光電変換効率に優れ、且つ生産性の高い太陽電池およびその製造方法、太陽電池モジュールを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池は、貫通孔が形成された第1導電型の半導体基板と、前記半導体基板の一面側に設けられた第2導電型の不純物拡散層と、前記半導体基板の一面側において前記不純物拡散層と電気的に接続して設けられた受光面電極と、前記貫通孔を介して前記半導体基板の他面側に引き出されて前記受光面電極に電気的に接続して設けられた引き出し電極と、前記半導体基板の他面側において前記半導体基板と電気的に接続するとともに前記引き出し電極と電気的に分離された裏面電極と、を備え、前記引き出し電極は、前記貫通孔の内部に単体金属からなる金属部材が充填されて構成され、導電性材料を介して前記受光面電極に電気的に接続されること、を特徴とする。
 本発明によれば、光電変換効率に優れ、且つ生産性の高い太陽電池が得られる、という効果を奏する。
図1-1は、本発明の実施の形態1にかかる太陽電池セルを受光面から見た平面図である。 図1-2は、本発明の実施の形態1にかかる太陽電池セルを受光面と反対側の面(裏面)から見た平面図である。 図1-3は、図1-1の線分A-Aにおける要部断面図である。 図2-1は、本発明の実施の形態1にかかる引き出し電極を構成する金属プラグの外観を示す斜視図である。 図2-2は、本発明の実施の形態1にかかる引き出し電極を構成する他の金属プラグの外観を示す斜視図である。 図3-1は、本発明の実施の形態1にかかる太陽電池セルの製造方法を示す要部断面図である。 図3-2は、本発明の実施の形態1にかかる太陽電池セルの製造方法を示す要部断面図である。 図3-3は、本発明の実施の形態1にかかる太陽電池セルの製造方法を示す要部断面図である。 図3-4は、本発明の実施の形態1にかかる太陽電池セルの製造方法を示す要部断面図である。 図3-5は、本発明の実施の形態1にかかる太陽電池セルの製造方法を示す要部断面図である。 図3-6は、本発明の実施の形態1にかかる太陽電池セルの製造方法を示す要部断面図である。 図3-7は、本発明の実施の形態1にかかる太陽電池セルの製造方法を示す要部断面図である。 図4は、本発明の実施の形態1にかかる太陽電池セルの製造方法を示すフローチャートである。 図5は、ストレスリリース部を備えた金属プラグの平面図である。 図6は、本発明の実施の形態1にかかる太陽電池セルの相互接続方法の一例を模式的に示す断面図である。 図7は、本発明の実施の形態1にかかる太陽電池セルの相互接続方法の他の例を模式的に示す断面図である。 図8-1は、本発明の実施の形態2にかかる太陽電池セルの製造方法を示す要部断面図である。 図8-2は、本発明の実施の形態2にかかる太陽電池セルの製造方法を示す要部断面図である。 図8-3は、本発明の実施の形態2にかかる太陽電池セルの製造方法を示す要部断面図である。 図8-4は、本発明の実施の形態2にかかる太陽電池セルの製造方法を示す要部断面図である。 図8-5は、本発明の実施の形態2にかかる太陽電池セルの製造方法を示す要部断面図である。 図8-6は、本発明の実施の形態2にかかる太陽電池セルの製造方法を示す要部断面図である。 図8-7は、本発明の実施の形態2にかかる太陽電池セルの製造方法を示す要部断面図である。 図8-8は、本発明の実施の形態2にかかる太陽電池セルの製造方法を示す要部断面図である。 図9は、本発明の実施の形態2にかかる太陽電池セルの製造方法を示すフローチャートである。 図10-1は、従来のMWTセルを裏面から見た平面図である。 図10-2は、図10-1の線分B-Bにおける要部断面図であり、突起部の存在しない領域の要部断面図である。 図11-1は、本発明の実施の形態3にかかる太陽電池セルを裏面から見た平面図である。 図11-2は、図11-1の線分C-Cにおける要部断面図であり、突起部の存在しない領域の要部断面図である。 図12は、従来の一般的な太陽電池セルの構成を模式的に示す斜視図である。 図13は、本発明の実施の形態4にかかる金属プラグの形態を示す断面図である。 図14は、本発明の実施の形態4にかかる金属プラグとシリコン基板10との配置関係を示す要部断面図である。
 以下に、本発明にかかる太陽電池およびその製造方法、太陽電池モジュールの実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。また、平面図であっても、図面を見易くするためにハッチングを付す場合がある。
実施の形態1.
 図1-1は、本発明の実施の形態1にかかる太陽電池セル1を受光面から見た平面図である。図1-2は、太陽電池セルを受光面と反対側の面(裏面)から見た平面図である。図1-3は、図1-1の線分A-Aにおける要部断面図である。実施の形態1にかかる太陽電池セル1は、スルーホール(貫通穴)を介して表面電極を裏面に引き出して配置した構造を有するMWTセルである。
 太陽電池セル1は、複数のスルーホール(貫通孔)Hが設けられたシリコン基板10の受光面上に反射防止膜14と受光面電極21とを有する。シリコン基板10は、p型のシリコン基板11と、シリコン基板10の受光面側の表面に設けられてn型の不純物が拡散されたn型不純物拡散層12と、シリコン基板10の裏面側の表面に設けられて高濃度不純物を含んだp+層(Back Surface Field:BSF層)13とを有する。n型不純物拡散層12は、その一部がスルーホールHの内面およびシリコン基板10の裏面におけるスルーホールの周囲の領域まで回り込んで形成されている。
 受光面電極21は、シリコン基板10の受光面側においてn型不純物拡散層12に電気的に接続する表面n電極であり、いわゆるグリッド電極である。反射防止膜14は、受光面電極21がファイヤースルーを用いて形成されているため、シリコン基板10の受光面側において受光面電極21の下部には殆ど存在せず、受光面電極21の下部以外の領域に存在する。図1-3では、シリコン基板10との位置関係を示すために参考に図示している。
 シリコン基板10のスルーホールHには、裏面n電極である引き出し電極22が埋設されている。引き出し電極22は、受光面電極21に電気的に接続しており、スルーホールHを介してシリコン基板10の裏面側に引き出されている。なお、図1-1では、反射防止膜14を透過させて引き出し電極22を示している。
 図2-1は、引き出し電極22を構成する金属部材である金属プラグの外観を示す斜視図である。すなわち、引き出し電極22は、スルーホールHの内部に単体金属からなる金属プラグが充填されて構成されている。金属プラグは、平坦部221の一面上に円柱状の複数の突起部222が設けられて構成されている。突起部222は、シリコン基板10の面内において図1-1の線分A-Aと直交する方向において隣接するスルーホールH同士の間隔と同じ所定の間隔で平坦部221の一面上に設けられている。そして、突起部222がスルーホールHに充填され、平坦部221の一面側がシリコン基板10の裏面(n型不純物拡散層12)に当接して配置されている。
 ここで、単体金属とは不導電性の不純物を含有しない金属であり、合金も含む。また、金属プラグは、突起部の上面222aが受光面電極21と電気的に接続するため、半田や受光面電極21の電極材料ペーストとの接合性が良好な材料が好ましい。そして、単体金属は、引き出し電極が銀(Ag)、ガラスなどを含む電極材料ペーストから形成される場合よりも引き出し電極22の抵抗率を低減するために、抵抗率が低い材料が好ましい。このような材料としては、例えば銅(Cu)を主体とする銅系材料、銀(Ag)を主体とする銀系材料、ニッケル(Ni)を主体とするニッケル系材料などが挙げられる。その中でも、銅系材料は安価であり、金属プラグの材料として好ましい。
 金属プラグの表面は、平坦部221の他面の一部に設けられた接続領域221aおよび突起部の上面222aを除いた全面が絶縁膜(図示せず)で被覆されている。すなわち、突起部の上面222aおよび接続領域221aは、絶縁膜が被覆されていない。接続領域221aは、太陽電池セルなどの外部部材と引き出し電極22との電気的相互接続をするための領域である。接続領域221aには、半田や導電性接着剤を介して導電性のタブ等が接続される。なお、接続領域221aの位置は、外部部材との電気的相互接続の方法により柔軟に対応するものであって、設置場所を限定するものではない。また、絶縁膜は、少なくとも平坦部221におけるシリコン基板10の裏面側との当接面を被覆していればよい。
 図2-1に示した金属プラグでは、平坦部221の一面上に複数の突起部222が形成され、金属プラグの長手方向における平坦部221の端部側の他面中央部に接続領域221aが設けられている。これは、金属プラグの一形態であり、金属プラグは例えば図2-2に示すように平坦部221の一面上に一つの突起部222が形成された形態とされてもよい。図2-2は、引き出し電極22を構成する他の金属プラグの外観を示す斜視図である。図2-2に示すような金属プラグの場合は、各スルーホールHに充填された各金属プラグの接続領域221a同士が半田や導電性接着剤を介して導電性のタブが電気的に相互接続される。
 シリコン基板10の裏面上には、シリコン基板10のうちp型の導電型を有するBSF層13に電気的に接続する裏面p電極24と、裏面p電極24の表面上の所定領域に設けられた接続用裏面p電極25とを備えている。裏面p電極24は、アルミニウムを主体とする電極材料ペーストを印刷・焼成して形成されたアルミニウム電極である。接続用裏面p電極25は、銀を主体とする電極材料ペーストを印刷・焼成して形成された銀電極である。裏面p電極24と接続用裏面p電極25とによりp電極23が構成される。また、裏面p電極24と引き出し電極22とは、シリコン基板10の裏面に回り込んだn型不純物拡散層12の表面からシリコン基板11の内部まで達するpn分離溝51により電気的に分離されている。
 なお、図1-1においては理解の容易のため受光面電極21が5本設けられた例を示しているが、実際にはより多くの本数の受光面電極21が設けられる。また、図1-1においては各受光面電極21に対して2つの引き出し電極22が設けられているが、受光面電極21の本数と引き出し電極22の数との対応は、受光面電極21の本数等により柔軟に対応するものであって、設置数を限定するものではない。すなわち、例えば10本の受光面電極21に対して引き出し電極22が1つ設けられる等の形態としてもよい。
 つぎに、実施の形態1にかかる太陽電池セル1の製造方法について図3-1~図3-7、図4を参照して説明する。図3-1~図3-7は、実施の形態1にかかる太陽電池セル1の製造方法を示す要部断面図である。図4は、実施の形態1にかかる太陽電池セル1の製造方法を示すフローチャートである。なお、ここではp型のシリコン基板の使用を仮定しているが、拡散材料を適切なものに変更すれば、n型のシリコン基板を適用しても同様の太陽電池セルが作製できる。
 まず、p型のシリコン基板11(以下、基板11と呼ぶ場合がある)の所定の位置に、円筒状のスルーホールHを形成する(図3-1、ステップS10)。なお、スルーホールHの形成方法は特に限定されず、例えばレーザーを用いて形成することが可能である。また、スルーホールHの形状も特に限定されない。レーザーを用いてスルーホールHを形成する場合は、径の小さいスルーホールHを数多く開けるよりも、数は少ないものの径の大きなスルーホールHを開ける方が生産性の観点から有利である。
 つぎに、基板11の表面にテクスチャーと呼ばれる微小凹凸を形成し、またスルーホールHの周辺部のダメージ層を除去する(ステップS20)。テクスチャーにより太陽電池の表面反射率は低減し、高い光電変換効率を得ることができる。一般に結晶系シリコン太陽電池のテクスチャーの形成にはウェットエッチングが用いられる。ウェットエッチングによるテクスチャーの形成時に、基板スライス時のダメージが除去されるとともに、スルーホールHの形成時にレーザーにより導入されたスルーホールHの周辺部のダメージ層も除去される。ドライエッチングによってテクスチャーを形成する場合でもテクスチャーの形成前にアルカリによるスライスダメージの除去工程があり、そこでスルーホールの周辺部のダメージ層は除去される。
 つぎに、基板11をオキシ塩化リン(POCl)ガス雰囲気中で加熱することにより、基板11の表面にリン(P)が拡散したn型不純物拡散層12(以下、拡散層12と呼ぶ場合がある)を形成して半導体pn接合を形成する。そして、拡散層12の形成直後の表面には拡散処理中に表面に堆積したガラス質(燐珪酸ガラス、PSG:Phospho-Silicate Glass)層が形成されている。このため、基板11をフッ酸水溶液等に浸漬してPSG層をエッチング除去する(図3-2、ステップS30)。なお、SODを用いて拡散層12を形成しても構わない。
 つぎに、基板11の受光面側に反射防止膜14として例えばプラズマCVD(PECVD)法により窒化シリコン(SiN)膜(PECVD-SiN膜)を形成する(図3-3、ステップS40)。なお、基板11が単結晶Si基板であれば、反射防止膜14としてシリコン熱酸化膜(SiO)を使用する選択肢もある。また、SODとしてリン(P)がドープされた二酸化チタン(TiO)を用いれば、拡散層12の形成と同時に反射防止膜14を形成するというプロセスも可能である。
 つぎに、p電極23を印刷する。例えばスクリーン印刷によって、基板11の裏面側にp電極23として裏面p電極24の形状に電極材料ペーストであるアルミニウムペースト24aを塗布し、さらに接続用裏面p電極25の形状に電極材料ペーストである銀ペーストを塗布し、乾燥させる(図3-4、ステップS50)。なお、図中ではアルミニウムペースト24aのみを示している。
 つぎに、突起部222がスルーホールHに収まるように、引き出し電極22となる金属プラグを基板11の裏面側から挿入・設置する(図3-5、ステップS60)。つぎに、例えばスクリーン印刷によって、基板11の受光面側に表面n電極である受光面電極21の形状に電極材料ペーストである銀ペースト21aを塗布し、乾燥させる(図3-6、ステップS70)。銀ペースト21aは、スルーホールH内の金属プラグに接触するようにスルーホールHの上部を埋めて塗布される。
 ここで、スルーホールHは金属プラグによって塞がれているため、印刷時に銀ペースト21aがスルーホールHから漏れて印刷ステージを汚すことがない。また、金属プラグに設けられた平坦部221が、従来は印刷により形成されていた裏面n電極に相当するため、これまで必要であった裏面n電極の印刷工程を省略することができる。
 つぎに、基板11の表面および裏面の電極ペーストを例えば600℃~900℃程度の温度で同時に焼成することで、基板11の表側では銀ペースト21a中に含まれているガラス材料で反射防止膜14が溶融している間に銀材料がシリコンと接触し再凝固する。これにより、受光面電極21が得られ、受光面電極21と基板11のシリコンとの導通が確保される。また、スルーホールH内では、銀ペースト21a中に含まれている銀材料が金属プラグと接触し再凝固する。これにより、受光面電極21は、引き出し電極22と電気的・機械的に接続される(ステップS80)。
 このように導電性ペーストにより受光面電極21と金属プラグとの電気的接続を得るので、金属プラグの突起部222の上面は粗面化されていた方が、導電性ペーストの突起部222への接続が良くなる。平坦部221に複数の突起部222が形成された金属プラグを使用した場合、焼成時に基板11と金属プラグとの熱膨張係数の差により平坦部221(隣接する突起部222間)に熱応力が加わり、金属プラグがたわむことが考えられる。そこで、図5に示すように平坦部221(隣接する突起部222間)にストレスリリース部223、すなわち平坦部221(隣接する突起部222間)に働く応力を緩和する応力緩和構造を設けることで金属プラグのたわみを解消できる。図5は、ストレスリリース部223を備えた金属プラグの平面図である。
 また、アルミニウムペースト24aも基板11のシリコンと反応して裏面p電極24が得られ、かつ裏面p電極24の直下にBSF層13が形成される。これにより、p型のシリコン基板11と、n型不純物拡散層12と、BSF層13とを有するシリコン基板10が得られる。また、銀ペースト21aの銀材料がアルミニウムと接触し再凝固して接続用裏面p電極25が得られる(図3-7)。なお、図中では受光面電極21、引き出し電極22および裏面p電極24のみを示している。
 つぎに、レーザーによるアイソレーションを行う(図3-7、ステップS90)。すなわち、シリコン基板10の裏面に回り込んだ拡散層12の表面からシリコン基板11の内部まで達するpn分離溝51をレーザーにより形成し、裏面p電極24と引き出し電極22とを電気的に分離する。以上の工程を経て、実施の形態1にかかる太陽電池セル1が完成する。
 その後、複数の太陽電池セル1が電気的に直列(または並列)に相互接続されて太陽電池モジュールが作製される。図6は、太陽電池セル1の相互接続方法の一例を模式的に示す断面図である。図6では、シリコン基板10の面内において図1-1の線分A-Aと直交する方向における断面を示している。図6に示すように引き出し電極22において突起部の上面222aおよび接続領域221aを除いた全面が絶縁膜224で被覆され、半田ペースト31と導電性のタブ32などの新たな部材により太陽電池セル1同士の相互接続を行う場合は、金属プラグの接続領域221aが平坦部221の他面(突起部222が設置されていない側の面)にある方が作業性が良い。また、裏面p電極24は、シリコン基板10の裏面においてスルーホールHを除くほぼ全面に形成できる。この場合はシリコン基板10の裏面に接している電極は裏面p電極24のみであり、BSF層の面積を広く確保することができる。このため、シリコン基板10で発生したキャリアの再結合に起因した開放電圧の低下を招き難く、高い開放電圧が得られる、という利点もある。この形態ではpn分離溝は不要である。
 図7は、太陽電池セル1の相互接続方法の他の例を模式的に示す断面図である。図7では、シリコン基板10の面内において図1-1の線分A-Aと直交する方向における断面を示している。図7に示すように金属プラグの平坦部221を太陽電池セル1の外側に延長して相互接続を行う場合は、接続領域221aが平坦部221の一面(突起部222が設置されている側の面)にある方が作業性が良い。また、裏面p電極24は、シリコン基板10の裏面においてスルーホールHを除くほぼ全面に形成できる。この場合はシリコン基板10の裏面に接している電極は裏面p電極24のみであり、BSF層の面積を広く確保することができる。このため、シリコン基板10で発生したキャリアの再結合に起因した開放電圧の低下を招き難く、高い開放電圧が得られる、という利点もある。この形態ではpn分離溝は不要である。
 なお、金属プラグにおける接続領域221aの配置位置は、相互接続の方法によって適宜柔軟に対応すればよい。また、半田ペースト31の代わりに導電性接着剤を使用することもできる。また、図6および図7においては引き出し電極22の接続方法に注目して示しており、太陽電池セル1の一部の部材を省略して図示している。
 上述した実施の形態1においては、単体金属からなる金属プラグをスルーホールHに配置し、この金属プラグを介して受光面電極21を引き出して基板11の裏面に設置する。一般に導電性ペーストは金属粒子、有機成分、ガラスフリット等で構成されているため、その抵抗率は単体金属と比較して1桁以上大きい。そこで、従来、導電性ペーストを充填して形成されていたスルーホールH内の電極を、単体金属により構成することにより、スルーホールHでの抵抗損失が低減することができ、光電変換効率の高い太陽電池セルが実現できる。
 また、実施の形態1においては、金属プラグをスルーホールHに配置するため、受光面電極21の形成時にスルーホールH全体に導電性ペーストを充填する必要がない。これにより、導電性ペーストの印刷が容易になる。更に金属プラグがスルーホールHに配置された状態で導電性ペーストの印刷が行われるため、印刷の際に印刷ステージを汚すことが無く、生産性を向上させることができる。
 したがって、実施の形態1によれば、引き出し電極22の抵抗が低く光電変換効率に優れ、且つ生産性の高い太陽電池セルが得られる。
 なお、上記においては、金属プラグは受光面電極21の形成に用いる導電性ペーストの接着力でのみで保持されおり、突起部222の径によっては、金属プラグの自重を支えきれないという問題が生じる可能性がある。この場合は、ストレスリリース部223を除く平坦部221の一部に接着剤を塗布し、金属プラグをシリコン基板10に固定することで対処可能である。
実施の形態2.
 実施の形態1では導電性ペーストにより受光面電極21と金属プラグとの電気的接続を得ているが、半田ペーストの印刷およびリフローを用いてもこれらの電気的接続を得ることができる。以下、実施の形態2にかかる太陽電池セルの製造方法について図8-1~図8-8、図9を参照して説明する。図8-1~図8-8は、実施の形態2にかかる太陽電池セルの製造方法を示す要部断面図である。図9は、実施の形態2にかかる太陽電池セルの製造方法を示すフローチャートである。なお、図8-1~図8-8において、図3-1~図3-7と同様の部材については同じ符号を付している。
 実施の形態2にかかる太陽電池セルの製造方法において、図8-1~図8-4およびステップS10~ステップS50に示したアルミニウムペースト24aの塗布までのプロセスは、図3-1~図3-4および図4に示したプロセスと同じである。ただし、シリコン基板10の裏面においてスルーホールHを除くほぼ全面に裏面p電極24となるアルミニウムペースト24aを塗布する。なお、ここでは、接続用裏面p電極25の形成の説明は省略する。
 アルミニウムペースト24aの塗布後、例えばスクリーン印刷によって、基板11の受光面側に表面n電極である受光面電極21の形状に電極材料ペーストである銀ペースト21aを塗布し、乾燥させる(図8-5、ステップS110)。このとき、銀ペースト21aは、基板11の受光面側におけるスルーホールHの周囲の領域を除いて塗布される。
 つぎに、基板11の表面および裏面の電極ペーストを同時に焼成する(図8-6、ステップS120)。これにより、基板11の表側では銀ペースト21a中に含まれているガラス材料で反射防止膜14が溶融している間に銀材料がシリコンと接触し再凝固する。これにより、受光面電極21が得られ、受光面電極21と基板11のシリコンとの導通が確保される。この段階では、受光面電極21はスルーホールHの位置において分割されている。
 また、アルミニウムペースト24aも基板11のシリコンと反応して裏面p電極24が得られ、かつ裏面p電極24の直下にBSF層13が形成される。これにより、p型のシリコン基板11と、n型不純物拡散層12と、BSF層13とを有するシリコン基板10が得られる。なお、裏面p電極24は、シリコン基板10の裏面においてスルーホールHの周囲の領域を除くほぼ全面に形成される。
 つぎに、レーザーによるアイソレーションを行う(図8-6、ステップS130)。すなわち、シリコン基板10の裏面に回り込んだ拡散層12の表面からシリコン基板11の内部まで達するpn分離溝51をレーザーにより形成し、裏面p電極24と、後に形成される引き出し電極22とを電気的に分離する。
 つぎに、突起部222がスルーホールHに収まるように、引き出し電極22となる金属プラグを基板11の裏面側から挿入・設置する(図8-7、ステップS140)。つぎに、基板11の表面におけるスルーホールHおよびその周辺(受光面電極21の形成されていない領域)に半田ペーストを印刷し(ステップS150)、リフローを行うことにより、受光面電極21を半田33により金属プラグに電気的・機械的に接続する(図8-8、ステップS160)。以上の工程を経て、実施の形態2にかかる太陽電池セルが完成する。
 上述した実施の形態2においても、スルーホールH内の電極を単体金属により構成することにより、実施の形態1の場合と同様に引き出し電極22の抵抗が低く光電変換効率に優れた太陽電池セルが得られる。
 また、受光面電極21の形成時にスルーホールHに導電性ペーストを充填する必要がない。これにより、導電性ペーストの印刷が容易になる。更に印刷の際に導電性ペーストで印刷ステージを汚すことが無く、生産性を向上させることができる。
実施の形態3.
 図10-1は、従来のMWTセルを裏面から見た平面図である。図10-2は、図10-1の線分B-Bにおける要部断面図であり、スルーホールHの存在しない領域の要部断面図である。図11-1は、実施の形態3にかかる太陽電池セルを裏面から見た平面図である。図11-2は、図11-1の線分C-Cにおける要部断面図であり、スルーホールHの存在しない領域の要部断面図である。実施の形態3にかかる太陽電池セルでは、引き出し電極22である金属プラグの平坦部221は絶縁膜224で被覆されている。なお、図11-1においては、引き出し電極22の平坦部221および絶縁膜224を透過して見ている。
 従来のMWTセルでは、図10-1および図10-2に示すように、電極間の短絡が生じないように裏面n電極122を形成する領域には裏面p電極24が形成されていてはいけなかった。
 一方、図11-1および図11-2に示すような実施の形態3にかかる太陽電池セルでは、従来のMWTセルの裏面n電極122に相当する引き出し電極22である金属プラグの平坦部221は絶縁膜224で被覆されている。このため、図11-1および図11-2に示すように、裏面p電極24上に金属プラグの平坦部221が配置されても支障は無く、電極間の短絡が生じない。この場合、アイソレーションはシリコン基板10の裏面側のスルーホールHの周辺部のみに行えばよい。すなわち、図11-1に示すように、pn分離溝51は、シリコン基板10の裏面側のスルーホールHの周辺部のみに形成される。
 また、図10-1および図10-2に示すような従来のMWTセルの電極構造では、シリコン基板10の裏面に裏面n電極と裏面p電極との両方が接していたため裏面p電極24の形成されていない領域の直下にはBSF層が形成されず、BSF層がシリコン基板10の裏面の全面には形成されない。このため、シリコン基板10で発生したキャリアがそれぞれの電極に到達するまでに再結合してしまう確率が高く、概して図12に示すような一般的な太陽電池セルよりも開放電圧が低いという問題があった。
 図12は、従来の一般的な太陽電池セルの構成を模式的に示す斜視図である。図12に示す太陽電池セル100は、p型のシリコン基板101と、p型のシリコン基板101の受光面側の表面に設けられてn型の不純物が拡散されたn型不純物拡散層102とによりpn接合を形成した光電変換部を有する。また、太陽電池セル100は、n型不純物拡散層102上に反射防止膜103と櫛形の受光面電極104とを有する。受光面電極104は、バス電極105とグリッド電極106とにより構成される。また、p型のシリコン基板101の裏面の全面に裏面電極107を有し、裏面電極107覆われたp型のシリコン基板101の裏面側の表面にはBSF層108が設けられている。
 一方、実施の形態3にかかる太陽電池セルでは、シリコン基板10の裏面に接しているのは裏面p電極24のみであり、BSF層の面積を広く確保することができる。このため、シリコン基板10で発生したキャリアの再結合に起因した開放電圧の低下を招き難く、高い開放電圧が得られる、という利点もある。
 また、図1-1~図1-3に示した実施の形態1にかかる太陽電池セルでは、図10-1および図10-2の場合と同様に引き出し電極22の周囲に裏面p電極24の形成されていない領域がライン状に存在する。そして、シリコン基板10に裏面において、裏面p電極24の形成されていない領域の直下にはBSF層13が形成されず、この領域での再結合の影響が懸念される。このため、キャリアの再結合に起因した開放電圧の低下を抑制する効果は、実施の形態1にかかる太陽電池セルよりも実施の形態3にかかる太陽電池セルの方が高い。
 上述した実施の形態3においても、スルーホールH内の電極を単体金属により構成することにより、実施の形態1の場合と同様に引き出し電極22の抵抗が低く光電変換効率に優れた太陽電池セルが得られる。
 また、実施の形態3にかかる太陽電池セルでは、BSF層の面積を広く確保することができ、高い開放電圧が得られる。
実施の形態4.
 実施の形態1~実施の形態3では金属プラグが一つの導体で形成されていたが、金属プラグは2つの部材で構成してもよい。図13は、実施の形態4にかかる金属プラグの形態を示す断面図である。図13に示す金属プラグは、一対の雄型部材41および雌型部材42からなる。雄型部材41は、実施の形態1~実施の形態3の金属プラグと同様の構成を有し、平坦部411と突起部412を有する。雄型部材41は、少なくとも平坦部441におけるシリコン基板10の裏面側との当接面が絶縁膜により被覆されている。雌型部材42は、羽根部421と円筒形の突起部422を有する。突起部422の外径は、スルーホールHの径と略同等とされる。突起部422の内径は、突起部412の外径と略同等とされる。
 そして、図14に示すように雌型部材42の羽根部421と雄型部材41の平坦部411とによりシリコン基板10を挟んで金属プラグとシリコン基板10とを固定し、シリコン基板10から金属プラグが抜けにくくすることができる。図14は、実施の形態4にかかる金属プラグとシリコン基板10との配置関係を示す要部断面図である。なお、図14においては金属プラグの接続方法に注目して示しており、太陽電池セル1の一部の部材を省略して図示している。
 このような金属プラグを用いる場合は、実施の形態2における図8-7のプロセスにおいて雌型部材42を受光面側からスルーホールHに挿入する。そして、基板11の表面におけるスルーホールHおよびその周辺(受光面電極21の形成されていない領域)に半田ペーストを印刷し、リフローを行うことにより、受光面電極21を半田により雌型部材42に電気的・機械的に接続する。
 つぎに、雄型部材41を受光面側からスルーホールHに挿入し、雄型部材41と雌型部材42とを電気的・機械的に接続する。なお、平坦部411の一部に接着剤を塗布し、金属プラグを基板11に固定してもよい。
 上述した実施の形態4においても、スルーホールH内の電極を単体金属により構成することにより、実施の形態1の場合と同様に引き出し電極22の抵抗が低く光電変換効率に優れた太陽電池セルが得られる。
 また、受光面電極21の形成時にスルーホールHに導電性ペーストを充填する必要がない。これにより、導電性ペーストの印刷が容易になる。更に印刷の際に導電性ペーストで印刷ステージを汚すことが無く、生産性を向上させることができる。
 以上のように、本発明にかかる太陽電池は、光電変換効率に優れ、且つ生産性の高いMWT型の太陽電池の実現に有用である。
 1 太陽電池セル
 10 シリコン基板
 11 シリコン基板(基板)
 12 n型不純物拡散層(拡散層)
 13 p+層(BSF層)
 14 反射防止膜
 21 受光面電極
 21a 銀ペースト
 22 引き出し電極
 23 p電極
 24 裏面p電極
 24a アルミニウムペースト
 25 接続用裏面p電極
 31 半田ペースト
 32 タブ
 33 半田
 41 雄型部材
 42 雌型部材
 51 pn分離溝
 100 太陽電池セル
 101 シリコン基板
 102 n型不純物拡散層
 103 反射防止膜
 104 受光面電極
 105 バス電極
 106 グリッド電極
 107 裏面電極
 108 BSF層
 122 裏面n電極
 221 平坦部
 221a 接続領域
 222a 突起部の上面
 222 突起部
 223 ストレスリリース部
 224 絶縁膜
 411 平坦部
 412 突起部
 421 羽根部
 422 突起部

Claims (23)

  1.  貫通孔が形成された第1導電型の半導体基板と、
     前記半導体基板の一面側に設けられた第2導電型の不純物拡散層と、
     前記半導体基板の一面側において前記不純物拡散層と電気的に接続して設けられた受光面電極と、
     前記貫通孔を介して前記半導体基板の他面側に引き出されて前記受光面電極に電気的に接続して設けられた引き出し電極と、
     前記半導体基板の他面側において前記半導体基板と電気的に接続するとともに前記引き出し電極と電気的に分離された裏面電極と、
     を備え、
     前記引き出し電極は、前記貫通孔の内部に単体金属からなる金属部材が充填されて構成され、導電性材料を介して前記受光面電極に電気的に接続されること、
     を特徴とする太陽電池。
  2.  前記金属部材は、平坦部の一面上に少なくとも一つの突起部が設けられて構成され、
     前記突起部が前記貫通孔に充填され、前記平坦部の一面側が前記半導体基板の他面側に当接して配置されること、
     を特徴とする請求項1に記載の太陽電池。
  3.  前記金属部材は、前記平坦部の一面上に所定の間隔をおいて複数個の前記突起部が形成され、前記突起部間に働く応力を緩和する応力緩和構造を有すること、
     を特徴とする請求項2に記載の太陽電池。
  4.  前記金属部材は、少なくとも前記平坦部における前記半導体基板の他面側との当接面が絶縁膜で被覆されていること、
     を特徴とする請求項2または3に記載の太陽電池。
  5.  前記金属部材は、前記突起部の上面および前記平坦部の他面の一部を除いた全面が絶縁膜で被覆されていること、
     を特徴とする請求項4に記載の太陽電池。
  6.  前記裏面電極が前記半導体基板の他面側の全面に形成されていること、
     を特徴とする請求項5に記載の太陽電池。
  7.  前記裏面電極が前記貫通孔の周辺部を除いた前記半導体基板の他面側の全面に形成され、
     前記引き出し電極と裏面電極とを電気的に分離する分離溝を前記周縁部に備えること、
     を特徴とする請求項4に記載の太陽電池。
  8.  前記金属部材は、前記突起部の上面が粗面化されていること、
     を特徴とする請求項2~7のいずれか1つに記載の太陽電池。
  9.  前記金属部材が一対の雄型部材および雌型部材からなり、前記雄型部材と前記雌型部材とにより前記半導体基板を挟むことにより前記金属部材と前記半導体基板とが固定されること、
     を特徴とする請求項2~7のいずれか1つに記載の太陽電池。
  10.  前記平坦部の一面側が接着剤により前記半導体基板の他面側に固定されること、
     を特徴とする請求項2~7のいずれか1つに記載の太陽電池。
  11.  前記単体金属が、銅を主体とする銅系金属であること、
     を特徴とする請求項1~10のいずれか1つに記載の太陽電池。
  12.  第1導電型の半導体基板に貫通孔を形成する貫通孔形成工程と、
     前記半導体基板の一面側に第2導電型の不純物拡散層を形成する不純物拡散層形成工程と、
     前記半導体基板の一面側において前記不純物拡散層と電気的に接続する受光面電極を形成する受光面電極形成工程と、
     前記貫通孔を介して前記半導体基板の他面側に引き出された引き出し電極を形成する引き出し電極形成工程と、
     前記受光面電極と前記引き出し電極とを導電性材料を介して電気的に接続する接続工程と、
     前記半導体基板の他面側において前記半導体基板と電気的に接続する裏面電極を形成する裏面電極形成工程と、
     を含み、
     前記引き出し電極形成工程では、単体金属からなる金属部材を前記貫通孔に充填すること、
     を特徴とする太陽電池の製造方法。
  13.  前記金属部材は、平坦部の一面上に少なくとも一つの突起部が設けられて構成され、
     前記突起部が前記貫通孔に充填され、前記平坦部の一面側が前記半導体基板の他面側に当接して配置されること、
     を特徴とする請求項12に記載の太陽電池の製造方法。
  14.  前記金属部材は、前記平坦部の一面上に所定の間隔をおいて複数個の前記突起部が形成され、前記突起部間に働く応力を緩和する応力緩和構造を有すること、
     を特徴とする請求項13に記載の太陽電池の製造方法。
  15.  前記金属部材は、少なくとも前記平坦部における前記半導体基板の他面側との当接面が絶縁膜で被覆されていること、
     を特徴とする請求項13または14に記載の太陽電池の製造方法。
  16.  前記金属部材は、前記突起部の上面および前記平坦部の他面の一部を除いた全面が絶縁膜で被覆されていること、
     を特徴とする請求項15に記載の太陽電池の製造方法。
  17.  前記裏面電極を前記半導体基板の他面側の全面に形成すること、
     を特徴とする請求項16に記載の太陽電池の製造方法。
  18.  前記裏面電極を前記貫通孔の周辺部を除いた前記半導体基板の他面側の全面に形成し、
     前記引き出し電極と裏面電極とを電気的に分離する分離溝を前記周縁部に形成すること、
     を特徴とする請求項15に記載の太陽電池の製造方法。
  19.  前記金属部材は、前記突起部の上面が粗面化されていること、
     を特徴とする請求項13~18のいずれか1つに記載の太陽電池の製造方法。
  20.  前記金属部材が一対の雄型部材および雌型部材からなり、前記雄型部材と前記雌型部材とにより前記半導体基板を挟んで前記金属部材と前記半導体基板とを固定すること、
     を特徴とする請求項13~18のいずれか1つに記載の太陽電池の製造方法。
  21.  前記平坦部の一面側を接着剤により前記半導体基板の他面側に固定すること、
     を特徴とする請求項13~18のいずれか1つに記載の太陽電池の製造方法。
  22.  前記単体金属が、銅を主体とする銅系金属であること、
     を特徴とする請求項12~21のいずれか1つに記載の太陽電池の製造方法。
  23.  請求項1~11のいずれか1つに記載の構造を有する太陽電池セルの少なくとも2つ以上が電気的に直列または並列に接続されてなること、
     を特徴とする太陽電池モジュール。
PCT/JP2011/058542 2011-04-04 2011-04-04 太陽電池およびその製造方法、太陽電池モジュール WO2012137291A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/009,132 US9490375B2 (en) 2011-04-04 2011-04-04 Solar cell and method for manufacturing the same, and solar cell module
PCT/JP2011/058542 WO2012137291A1 (ja) 2011-04-04 2011-04-04 太陽電池およびその製造方法、太陽電池モジュール
CN201180069639.XA CN103460402B (zh) 2011-04-04 2011-04-04 太阳能电池及其制造方法、太阳能电池模块
JP2013508653A JP5596852B2 (ja) 2011-04-04 2011-04-04 太陽電池およびその製造方法、太陽電池モジュール
KR1020137026601A KR101563412B1 (ko) 2011-04-04 2011-04-04 태양전지 및 그 제조 방법, 태양전지 모듈
DE112011105125.5T DE112011105125T5 (de) 2011-04-04 2011-04-04 Solarzelle und Verfahren zum Herstellen derselben, und Solarzellenmodul
TW100131890A TWI489640B (zh) 2011-04-04 2011-09-05 太陽電池及其製造方法、太陽電池模組

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058542 WO2012137291A1 (ja) 2011-04-04 2011-04-04 太陽電池およびその製造方法、太陽電池モジュール

Publications (1)

Publication Number Publication Date
WO2012137291A1 true WO2012137291A1 (ja) 2012-10-11

Family

ID=46968732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058542 WO2012137291A1 (ja) 2011-04-04 2011-04-04 太陽電池およびその製造方法、太陽電池モジュール

Country Status (7)

Country Link
US (1) US9490375B2 (ja)
JP (1) JP5596852B2 (ja)
KR (1) KR101563412B1 (ja)
CN (1) CN103460402B (ja)
DE (1) DE112011105125T5 (ja)
TW (1) TWI489640B (ja)
WO (1) WO2012137291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482708B2 (ja) 2020-07-13 2024-05-14 株式会社カネカ 太陽電池セル及び太陽電池モジュール

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136442B2 (en) * 2013-01-25 2015-09-15 Tsmc Solid State Lighting Ltd. Multi-vertical LED packaging structure
US10840400B2 (en) * 2013-08-29 2020-11-17 Taiwan Semiconductor Manufacturing Co., Ltd. Photovoltaic device with back reflector
US20150179847A1 (en) * 2013-12-20 2015-06-25 Seung Bum Rim Built-in bypass diode
RU2016142353A (ru) * 2014-03-31 2018-05-04 Фудзицу Лимитед Аппаратура и способ повторной передачи сигнала и система передачи данных
US10998140B2 (en) * 2016-08-02 2021-05-04 Zeon Corporation Solar cell module
CN107946382A (zh) * 2017-11-16 2018-04-20 南京日托光伏科技股份有限公司 Mwt与hit结合的太阳能电池及其制备方法
CN108649087B (zh) * 2018-05-09 2020-11-13 晶澳太阳能有限公司 一种太阳能电池组件及其制备方法
CN113016091A (zh) * 2019-10-18 2021-06-22 株式会社安能科多科技 元件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154172U (ja) * 1980-04-15 1981-11-18
JPS6186956U (ja) * 1984-11-13 1986-06-07
JPH11330518A (ja) * 1998-05-15 1999-11-30 Canon Inc 薄膜半導体の分離方法、光電変換装置の製造方法および太陽電池
JP2007311425A (ja) * 2006-05-16 2007-11-29 Nippon Telegr & Teleph Corp <Ntt> 太陽電池の製造方法および太陽電池
WO2009063754A1 (ja) * 2007-11-12 2009-05-22 Sharp Kabushiki Kaisha 光電変換素子及びその製造方法
WO2009066583A1 (ja) * 2007-11-22 2009-05-28 Sharp Kabushiki Kaisha 素子間配線部材、光電変換素子およびこれらを用いた光電変換素子接続体ならびに光電変換モジュール

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154172A (en) 1980-05-01 1981-11-28 Isao Yamaguchi Turbine engine utilizing hydraulic pressure produced below bottom of ship
JPH0251282A (ja) 1988-08-12 1990-02-21 Sharp Corp 光電変換装置
JPH04223378A (ja) 1990-12-25 1992-08-13 Sharp Corp 太陽電池
JP2000091602A (ja) 1998-09-07 2000-03-31 Honda Motor Co Ltd 太陽電池の電極取出し方法
JP2000349318A (ja) 1999-06-03 2000-12-15 Tdk Corp 太陽電池
JP4427843B2 (ja) 1999-09-29 2010-03-10 Tdk株式会社 電子部品およびその製造方法
US20070186971A1 (en) 2005-01-20 2007-08-16 Nanosolar, Inc. High-efficiency solar cell with insulated vias
JP2007012730A (ja) 2005-06-29 2007-01-18 Sanyo Electric Co Ltd 光起電力装置およびその製造方法
JP5025184B2 (ja) 2006-07-28 2012-09-12 京セラ株式会社 太陽電池素子及びこれを用いた太陽電池モジュール、並びに、これらの製造方法
WO2008078771A1 (ja) 2006-12-26 2008-07-03 Kyocera Corporation 太陽電池素子及び太陽電池素子の製造方法
JP2008294080A (ja) 2007-05-22 2008-12-04 Sanyo Electric Co Ltd 太陽電池セル及び太陽電池セルの製造方法
US20090114261A1 (en) * 2007-08-29 2009-05-07 Robert Stancel Edge Mountable Electrical Connection Assembly
JP5078509B2 (ja) 2007-09-04 2012-11-21 三洋電機株式会社 太陽電池
JP2009088406A (ja) 2007-10-02 2009-04-23 Sanyo Electric Co Ltd 太陽電池及びその製造方法
EP2068369A1 (en) * 2007-12-03 2009-06-10 Interuniversitair Microelektronica Centrum (IMEC) Photovoltaic cells having metal wrap through and improved passivation
US20100024481A1 (en) 2008-08-01 2010-02-04 Centier Bridal Corp. Method for Producing Layered Rings
JP2010050350A (ja) 2008-08-22 2010-03-04 Sanyo Electric Co Ltd 太陽電池モジュール及び太陽電池
JP2010080578A (ja) 2008-09-25 2010-04-08 Sharp Corp 光電変換素子およびその製造方法
JP2010080576A (ja) 2008-09-25 2010-04-08 Sharp Corp 光電変換素子およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154172U (ja) * 1980-04-15 1981-11-18
JPS6186956U (ja) * 1984-11-13 1986-06-07
JPH11330518A (ja) * 1998-05-15 1999-11-30 Canon Inc 薄膜半導体の分離方法、光電変換装置の製造方法および太陽電池
JP2007311425A (ja) * 2006-05-16 2007-11-29 Nippon Telegr & Teleph Corp <Ntt> 太陽電池の製造方法および太陽電池
WO2009063754A1 (ja) * 2007-11-12 2009-05-22 Sharp Kabushiki Kaisha 光電変換素子及びその製造方法
WO2009066583A1 (ja) * 2007-11-22 2009-05-28 Sharp Kabushiki Kaisha 素子間配線部材、光電変換素子およびこれらを用いた光電変換素子接続体ならびに光電変換モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482708B2 (ja) 2020-07-13 2024-05-14 株式会社カネカ 太陽電池セル及び太陽電池モジュール

Also Published As

Publication number Publication date
JPWO2012137291A1 (ja) 2014-07-28
KR20130143118A (ko) 2013-12-30
CN103460402B (zh) 2016-08-17
TWI489640B (zh) 2015-06-21
KR101563412B1 (ko) 2015-10-26
CN103460402A (zh) 2013-12-18
DE112011105125T5 (de) 2014-01-02
JP5596852B2 (ja) 2014-09-24
US20140026955A1 (en) 2014-01-30
TW201242049A (en) 2012-10-16
US9490375B2 (en) 2016-11-08

Similar Documents

Publication Publication Date Title
JP5596852B2 (ja) 太陽電池およびその製造方法、太陽電池モジュール
US8106291B2 (en) Solar battery and manufacturing method therefor
JP5172480B2 (ja) 光電変換装置およびその製造方法
JP5570654B2 (ja) 太陽電池素子および太陽電池モジュール
JP5390102B2 (ja) へテロ接合およびインターフィンガ構造を有する半導体デバイス
US8603851B2 (en) Solar cell and method of manufacturing the same by simultaneously forming first and second doping regions
KR101719949B1 (ko) 태양전지 셀 및 그 제조 방법, 태양전지 모듈
JP6104037B2 (ja) 光起電力装置およびその製造方法、光起電力モジュール
EP2302690A1 (en) Solar battery cell and process for producing the same
EP2538447B1 (en) Solar cell and method for manufacturing the same
US20160197207A1 (en) Solar cell, solar cell module, and manufacturing method of solar cell
WO2013100084A1 (ja) 電極用導電性ペースト、太陽電池および太陽電池の製造方法
JPWO2010095634A1 (ja) 太陽電池モジュール
JPWO2010001473A1 (ja) 光起電力装置およびその製造方法
WO2013100085A1 (ja) 太陽電池素子、太陽電池素子の製造方法および太陽電池モジュール
JP2010080578A (ja) 光電変換素子およびその製造方法
EP2597685A2 (en) Photovoltaic device and method of manufacturing the same
JP2010080576A (ja) 光電変換素子およびその製造方法
KR100995654B1 (ko) 태양전지 및 그 제조방법
JP2015159198A (ja) 光起電力素子、その製造方法およびその製造装置
JP6785964B2 (ja) 太陽電池セルおよび太陽電池モジュール
JP4627511B2 (ja) 光電変換素子および光電変換素子の作製方法
JP2008159997A (ja) 太陽電池素子の製造方法及び導電性ペースト
KR20110032407A (ko) 태양전지 및 그 제조방법
JP2015029014A (ja) 太陽電池素子および太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508653

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14009132

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011105125

Country of ref document: DE

Ref document number: 1120111051255

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20137026601

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11863126

Country of ref document: EP

Kind code of ref document: A1