WO2012133829A1 - Liquid crystal aligning agent, and liquid crystal alignment film produced using same - Google Patents

Liquid crystal aligning agent, and liquid crystal alignment film produced using same Download PDF

Info

Publication number
WO2012133829A1
WO2012133829A1 PCT/JP2012/058693 JP2012058693W WO2012133829A1 WO 2012133829 A1 WO2012133829 A1 WO 2012133829A1 JP 2012058693 W JP2012058693 W JP 2012058693W WO 2012133829 A1 WO2012133829 A1 WO 2012133829A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
polyamic acid
aligning agent
added
Prior art date
Application number
PCT/JP2012/058693
Other languages
French (fr)
Japanese (ja)
Inventor
勇歩 野口
直樹 作本
洋介 飯沼
隆夫 掘
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201280026089.8A priority Critical patent/CN103562783B/en
Priority to JP2013507818A priority patent/JP6056752B2/en
Priority to KR1020137028664A priority patent/KR101864913B1/en
Publication of WO2012133829A1 publication Critical patent/WO2012133829A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal alignment agent for producing a liquid crystal alignment film and a liquid crystal alignment film obtained from the liquid crystal alignment agent.
  • the object is to provide a liquid crystal alignment film capable of obtaining a liquid crystal display element having a high rate of relaxation of residual charges due to a direct current voltage, and a liquid crystal alignment agent for obtaining a liquid crystal alignment film.
  • Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals.
  • a liquid crystal alignment film a polyimide liquid crystal alignment film obtained by applying a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it is mainly used. It is used.
  • liquid crystal alignment films have high liquid crystal alignment characteristics and stable pretilt angles in addition to the demands for suppressing the decrease in contrast and reducing the afterimage phenomenon.
  • Characteristics such as a voltage holding ratio, suppression of an afterimage generated by AC driving, a small residual charge when a DC voltage is applied, and / or an early relaxation of a residual charge accumulated by a DC voltage are becoming increasingly important.
  • liquid crystal alignment film having a high voltage holding ratio and a short time until an afterimage generated by a direct current voltage disappears, in addition to polyamic acid or an imidized polymer thereof, one carboxylic acid group is included in the molecule.
  • a liquid crystal aligning agent containing a very small amount of a compound selected from a compound containing, a compound containing one carboxylic anhydride group in the molecule, and a compound containing one tertiary amino group in the molecule (See, for example, Patent Document 3).
  • a liquid crystal alignment film formed from a liquid crystal aligning agent containing a specific amount of a specific sulfonic acid ester together with a polyimide precursor and / or an imidized polymer of the polyimide precursor has other characteristics.
  • the present inventors have obtained a new finding that a liquid crystal display element can be obtained in which the relaxation time of residual charges due to a direct current voltage is shortened without impairing the above.
  • the present invention is based on such knowledge and has the following gist.
  • a liquid crystal aligning agent comprising an acid ester and an organic solvent.
  • X 1 is a tetravalent organic group
  • Y 1 is a divalent organic group
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • a 1 and A 2 is each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group or alkynyl group having 1 to 10 carbon atoms.
  • R 2 and R 3 are each independently a monovalent organic group having 1 to 30 carbon atoms which may have a substituent, and R 2 and R 3 are bonded to each other.
  • a ring structure may be formed.
  • a liquid crystal display device comprising the liquid crystal alignment film as described in 8 or 9 above.
  • the liquid crystal alignment film formed from the liquid crystal aligning agent containing a specific amount of a specific sulfonic acid ester together with the polyimide precursor and / or the imidized polymer of the polyimide precursor according to the present invention depends on the DC voltage of the liquid crystal display element.
  • the relaxation time of the residual charge can be shortened, and an excellent liquid crystal display element is provided along with excellent liquid crystal orientation and stable pretilt angle.
  • the mechanism by which the above-described effect is obtained by the liquid crystal aligning agent of the present invention is not necessarily clear but is generally considered as follows.
  • the carboxyl group of the polyimide precursor of the liquid crystal aligning agent and / or the imidized polymer of the polyimide precursor, or amino It reacts with a group to produce an anion represented by the following formula (3).
  • the imidized polymer used in the present invention is a polymer obtained by heating or reacting the polyimide precursor with an imidization catalyst.
  • the polyimide precursor contained in the liquid crystal aligning agent of the present invention is a polymer having a structural unit represented by the following formula (1).
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.
  • R 1 is particularly preferably a hydrogen atom or a methyl group from the viewpoint of ease of imidization by heat.
  • a 1 and A 2 are each independently a hydrogen atom or an alkyl group, an alkenyl group, or an alkynyl group having 1 to 10 carbon atoms which may have a substituent.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent as long as it has 1 to 10 carbon atoms as a whole, and may further form a ring structure by the substituent.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are combined to form a ring structure.
  • the organooxy group that is a substituent can have a structure represented by OR.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • the thioester group as a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R.
  • the structure represented by can be shown.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • a 1 and A 2 a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
  • X 1 is a tetravalent organic group
  • Y 1 is a divalent organic group
  • X 1 is a tetravalent organic group and is not particularly limited. Two or more kinds of X 1 may be mixed in the polyimide precursor. Specific examples of X 1 include X-1 to X-46 shown below. Among these, from the availability of monomers, X 1 is X-1, X-2, X-3, X-4, X-5, X-6, X-8, X-16, X-19, X -21, X-25, X-26, X-27, X-28 or X-32 are preferred.
  • Y 1 is a divalent organic group and is not particularly limited. Two or more kinds of Y 1 may be mixed in the polyimide precursor. Specific examples of Y 1 include the following Y-1 to Y-113. Among these, in order to obtain good liquid crystal orientation, it is preferable to introduce a highly linear diamine into the polyamic acid ester.
  • Y 1 is Y-7, Y-10, Y-11, Y-12, Y-13, Y-21, Y-22, Y-23, Y-25, Y-26, Y-27, Y-41, Y-42, Y-43, Y-44, Y- 45, Y-46, Y-48, Y-61, Y-63, Y-64, Y-71, Y-72, Y-73, Y-74, Y-75, Y-98, Y-100, Y-101, Y-102, Y-103, Y-0104, Y-105, Y-106, Y-107, Y-108, Y-109, or Y-110 diamines are more preferred.
  • Y 1 is Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y-86.
  • Y-33, Y-34, Y-35, Y-36, Y-40, Y-41Y-42, Y-44, Y-45, Y-49, Y-50, Y-51, Y-61, Y -110, Y-111, Y-112, or Y-113 is more preferred.
  • R 2 and R 3 are each independently a monovalent organic group having 1 to 30, preferably 1 to 20, more preferably 1 to 10 carbon atoms which may have a substituent. It is a group. This organic group is selected from the group consisting of an alkyl group, an alkenyl group, an alkynyl group, and an aryl group, and R 2 and R 3 may form a ring structure.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • aryl group examples include a phenyl group, ⁇ -naphthyl group, ⁇ -naphthyl group, o-biphenylyl group, m-biphenylyl group, p-biphenylyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1 -Phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
  • the alkyl group, alkenyl group, alkynyl group, and aryl group may have a substituent as long as the whole has 1 to 20 carbon atoms, and may further form a ring structure by the substituent. .
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are combined to form a ring structure.
  • this substituent include halogen groups, hydroxyl groups, thiol groups, nitro groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, aryl groups, alkyls.
  • halogen group as a substituent examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the organooxy group as a substituent can have a structure represented by —O—R such as an alkoxy group, an alkenyloxy group, and an aryloxy group. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • alkyloxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, a nonyloxy group, a decyloxy group, and a lauryloxy group.
  • the organothio group as a substituent can have a structure represented by —SR, such as an alkylthio group, an alkenylthio group, and an arylthio group.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • alkylthio group examples include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, an octylthio group, a nonylthio group, a decylthio group, and a laurylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the alkylsilyl group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, tripentylsilyl group, trihexylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, octyldimethylsilyl group, Examples include decyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • the thioester group as a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • the phosphate group that is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • the amide group as a substituent includes —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R.
  • the structure represented can be shown.
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • R 2 in the above formula (2) is an optionally substituted alkyl group having 1 to 4 carbon atoms, or It is preferably a phenyl group, more preferably an alkyl group having 1 to 4 carbon atoms which may have a substituent, and still more preferably a methyl group which may have a substituent.
  • the substituent that may be substituted with R 2 in the formula (2) is preferably an electron-withdrawing group because the stability of the anion generated from the sulfonate ester can be increased.
  • the electron-withdrawing group include a nitro group, a cyano group, a halogen atom, a hydroxyl group, and an alkoxy group, more preferably a halogen atom, and still more preferably a fluorine atom.
  • sulfonate ester used in the present invention include methyl trifluoromethanesulfonate, ethyl trifluoromethanesulfonate, methyl p-toluenesulfonate, methyl methanesulfonate, 2,2,2-trifluoroethyl methanesulfonate. , 2-methoxyethyl methanesulfonate, and propane sultone.
  • methyl trifluoromethanesulfonate or ethyl trifluoromethanesulfonate is more preferable.
  • the content of the sulfonic acid ester in the liquid crystal aligning agent of the present invention is too small, the effect is not exhibited, and if it is excessive, the other properties may be adversely affected.
  • it is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 100 parts by mass of a polymer made of an imidized polymer of the polyimide precursor. 0.1 parts by mass to 5 parts by mass.
  • the polyimide precursor represented by the formula (1) can be synthesized by the following methods (1) to (3) using the monomer.
  • a polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and a diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the polymer, and these may be used alone or in combination. Good.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can synthesize
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 times mol with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times the mole of the diamine component.
  • the polyamic acid is obtained by a reaction between a tetracarboxylic dianhydride represented by the above formula (4) and a diamine compound represented by the above formula (7). Obtainable. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone because of the solubility of the monomer and polymer, and these may be used alone or in combination of two or more. It may be used.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature during the imidation reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
  • Chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction of a diamine component and tetracarboxylic dianhydride is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • an organic solvent the solvent used at the time of the polymerization reaction mentioned above can be used.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning agent of the present invention is at least one polymer selected from the group consisting of the polyimide precursor represented by the above formula (1) and an imidized polymer of the polyimide precursor, and the above formula (2).
  • the sulfonic acid ester represented and the organic solvent are contained.
  • the polyimide precursor which consists of a polyamic acid ester and / or a polyamic acid from the point of the solubility with respect to an organic solvent is preferable. Two or more kinds of polymers may be used in the present invention.
  • the weight average molecular weight of the polymer contained in the liquid crystal aligning agent of the present invention is preferably 5,000 to 300,000, and more preferably 10,000 to 200,000.
  • the number average molecular weight is preferably 2,500 to 150,000, and more preferably 5,000 to 100,000.
  • the liquid crystal aligning agent of the present invention is preferably in the form of a solution in which the above polymer and sulfonic acid ester are dissolved in an organic solvent.
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer and the sulfonic acid ester are uniformly dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
  • the liquid crystal aligning agent of this invention may contain the solvent for improving the coating-film uniformity at the time of apply
  • a solvent a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, butyl cellosolve acetate, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1- Butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of these
  • the liquid crystal aligning agent of the present invention preferably contains two or more organic solvents selected from the group consisting of N-methyl-2-pyrrolidone, ⁇ -butyrolactone, and butyl cellosolve, and N-methyl-2-pyrrolidone and butyl cellosolve. Is more preferable, and N-methyl-2-pyrrolidone, ⁇ -butyrolactone and butyl cellosolve are particularly preferable.
  • the sulfonic acid ester can be added to a concentrated solution or diluted solution of the above polymer and stirred at 0 ° C. to 100 ° C., preferably 20 ° C. to 50 ° C., to prepare a liquid crystal aligning agent.
  • the stirring time is preferably 1 hour to 48 hours, and more preferably 1 to 14 hours.
  • the liquid crystal aligning agent of this invention may contain various additives, such as a silane coupling agent and a crosslinking agent.
  • the silane coupling agent is added for the purpose of improving the adhesion between the substrate on which the liquid crystal alignment agent is applied and the liquid crystal alignment film formed thereon.
  • the liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate on which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode or the like is formed.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate. In this case, a material that reflects light such as aluminum can be used for the electrode.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • drying is performed at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baking is performed at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes.
  • the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
  • Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
  • the photo-alignment treatment method there is a method in which the surface of the coating film is irradiated with radiation deflected in a certain direction, and in some cases, a heat treatment is further performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • the radiation ultraviolet rays and visible rays having a wavelength of 100 nm to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 nm to 400 nm are preferable, and those having a wavelength of 200 nm to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 to 250 ° C.
  • Dose of the radiation is preferably 1 ⁇ 10,000mJ / cm 2, particularly preferably 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
  • the molecular weight of the polyamic acid ester is measured by a GPC (normal temperature gel permeation chromatography) apparatus, and is a number average molecular weight (hereinafter also referred to as Mn) and a weight average molecular weight (hereinafter also referred to as Mw) as polyethylene glycol and polyethylene oxide equivalent values. ) was calculated.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF ) Is 10ml / L) Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000,
  • FFS fringe field switching
  • the mixture was stirred at room temperature for 24 hours to obtain a polyamic acid (PAA-9) solution.
  • the viscosity of this polyamic acid solution at a temperature of 25 ° C. was 375 mPa ⁇ s.
  • the obtained polyamic acid ester solution was poured into 607 g of water while stirring, and the deposited precipitate was collected by filtration, followed by 607 g of water once, 607 g of ethanol once, and 125 g of ethanol three times.
  • the polyamic acid ester resin powder was obtained by washing and drying.
  • 2.75 g of the obtained polyamic acid ester resin powder was placed in a 100 ml Erlenmeyer flask, 24.79 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-1).
  • the obtained polyamic acid ester solution was poured into 633 g of water while stirring, and the deposited precipitate was collected by filtration, followed by once with 633 g of water, once with 633 g of ethanol, and three times with 130 g of ethanol.
  • the obtained polyamic acid ester solution was poured into 865 g of water while stirring, and the precipitated white precipitate was collected by filtration, then once with 865 g of water, once with 865 g of ethanol, and 3 times with 180 g of ethanol.
  • 2.32 g of the obtained polyimide resin powder was placed in a 50 ml Erlenmeyer flask, 20.92 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyimide solution (SPI-1).
  • the obtained polyamic acid ester solution was poured into 885 g of water while stirring, and the precipitated white precipitate was collected by filtration, followed by once with 885 g of water, once with 885 g of ethanol, and with 220 g of ethanol.
  • Example 1 A stirrer was placed in a 50 ml Erlenmeyer flask, 6.12 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was taken, 0.0639 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. Next, 1.76 g of NMP and 1.96 g of BCS were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-1).
  • PAA-1 polyamic acid solution obtained in Synthesis Example 1
  • Example 2 A stirrer was placed in a 50 ml Erlenmeyer flask, 6.23 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was taken, 0.0770 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-2S) was obtained. Next, to another 50 ml Erlenmeyer flask containing a stir bar, 2.25 g of polyamic acid solution (PAA-2S) was taken, 2.57 g of NMP and 1.23 g of BCS were added, and the mixture was stirred for 30 minutes with a magnetic stirrer. The mixture was stirred to obtain a liquid crystal aligning agent (A-2).
  • PAA-2S polyamic acid solution obtained in Synthesis Example 2
  • Example 3 A stirrer was placed in a 50 ml Erlenmeyer flask, 4.53 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 3 was taken, 0.1470 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-3S) was obtained. Next, 1.64 g of polyamic acid solution (PAA-3S) was taken into another 50 ml Erlenmeyer flask containing a stir bar, NMP (3.24 g) and BCS (1.23 g) were added, and a magnetic stirrer was added for 30 minutes. The mixture was stirred to obtain a liquid crystal aligning agent (A-3).
  • Example 4 A stirrer was placed in a 50 ml Erlenmeyer flask, 4.82 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 4 was taken, 0.0754 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-4S1) was obtained. Next, 2.61 g of polyamic acid solution (PAA-4S1) was taken into another 50 ml Erlenmeyer flask containing a stirring bar, 2.21 g of NMP, and 1.19 g of BCS were added, and the mixture was stirred for 30 minutes with a magnetic stirrer. The mixture was stirred to obtain a liquid crystal aligning agent (A-4).
  • PAA-4S1 polyamic acid solution obtained in Synthesis Example 4 was taken, 0.0754 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours.
  • Example 5 A stirrer was placed in a 50 ml Erlenmeyer flask, 4.82 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 4 was taken, 0.0359 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-4S2) was obtained. Next, 2.61 g of polyamic acid solution (PAA-4S2) was taken into another 50 ml Erlenmeyer flask containing a stirring bar, 2.22 g of NMP and 1.21 g of BCS were added, and the mixture was stirred for 30 minutes with a magnetic stirrer. The mixture was stirred to obtain a liquid crystal aligning agent (A-5).
  • PAA-4S2 polyamic acid solution obtained in Synthesis Example 4 was taken, 0.0359 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours.
  • Example 6 A stirrer was placed in a 50 ml Erlenmeyer flask, 7.27 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 5 was taken, 0.0856 g of methyl p-toluenesulfonate was added, and the mixture was stirred at room temperature for 4 hours. A polyamic acid solution (PAA-5S) was obtained. Next, 2.61 g of polyamic acid solution (PAA-5S) was taken into another 50 ml Erlenmeyer flask containing a stir bar, 2.20 g of NMP and 1.23 g of BCS were added, and a magnetic stirrer was used for 30 minutes. The mixture was stirred to obtain a liquid crystal aligning agent (A-6).
  • Example 7 A stirrer was placed in a 50 ml Erlenmeyer flask, 6.88 g of the polyamic acid solution (PAA-6) obtained in Synthesis Example 6 was taken, 0.0553 g of methyl methanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. A solution (PAA-6S) was obtained. Next, to another 50 ml Erlenmeyer flask containing a stir bar, 2.46 g of polyamic acid solution (PAA-6S) was taken, 2.34 g of NMP and 1.24 g of BCS were added, and the mixture was stirred with a magnetic stirrer for 30 minutes. The mixture was stirred to obtain a liquid crystal aligning agent (A-7).
  • PAA-6S polyamic acid solution obtained in Synthesis Example 6
  • Example 8 A stirrer was placed in a 50 ml Erlenmeyer flask, 6.50 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 7 was taken, 0.0836 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-7S1) was obtained. Next, 2.33 g of polyamic acid solution (PAA-7S1) was taken into another 50 ml Erlenmeyer flask containing a stirring bar, 2.55 g of NMP and 1.20 g of BCS were added, and the mixture was stirred for 30 minutes with a magnetic stirrer. The mixture was stirred to obtain a liquid crystal aligning agent (A-8).
  • Example 9 A stirrer was placed in a 50 ml Erlenmeyer flask, 6.48 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 7 was taken, 0.0462 g of 2,2,2-trifluoroethyl methanesulfonate was added, For 4 hours to obtain a polyamic acid solution (PAA-7S2). Next, in another 50 ml Erlenmeyer flask containing a stirring bar, 2.34 g of polyamic acid solution (PAA-7S2) was taken, 2.48 g of NMP and 1.24 g of BCS were added, and 30 minutes with a magnetic stirrer. The mixture was stirred to obtain a liquid crystal aligning agent (A-9).
  • PAA-7S2 polyamic acid solution obtained in Synthesis Example 7 was taken, 0.0462 g of 2,2,2-trifluoroethyl methanesulfonate was added, For 4 hours to obtain a polyamic acid solution (PAA-7S2). Next, in
  • Example 11 A stirrer was placed in a 50 ml Erlenmeyer flask, 9.87 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 9 was taken, 0.1875 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-9S) was obtained. Next, in another 50 ml Erlenmeyer flask containing a stir bar, 3.57 g of polyamic acid solution (PAA-9S) was taken, 1.25 g of NMP and 1.22 g of BCS were added, and a magnetic stirrer was used for 30 minutes. The liquid crystal aligning agent (A-11) was obtained by stirring.
  • Example 12 A stirrer is placed in a 50 ml Erlenmeyer flask, 10.01 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 10 is taken, 0.0671 g of propane sultone is added, and the mixture is stirred at room temperature for 4 hours. A solution (PAE-1S) was obtained. Next, 3.63 g of polyamic acid ester solution (PAE-1S) was taken into another 50 ml Erlenmeyer flask containing a stir bar, 1.20 g of NMP and 1.21 g of BCS were added, and the mixture was stirred with a magnetic stirrer. The mixture was stirred for a while to obtain a liquid crystal aligning agent (A-12).
  • PAE-1S polyamic acid ester solution
  • Example 13 A stirrer was placed in a 50 ml Erlenmeyer flask, 10.31 g of the polyamic acid ester solution (PAE-2) obtained in Synthesis Example 11 was taken, 0.0813 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. A polyamic acid ester solution (PAE-2S) was obtained. Next, 3.62 g of polyamic acid ester solution (PAE-2S) was taken into another 50 ml Erlenmeyer flask containing a stir bar, 1.23 g of NMP and 1.21 g of BCS were added, and the mixture was stirred with a magnetic stirrer. The mixture was stirred for a while to obtain a liquid crystal aligning agent (A-13).
  • PAE-2S polyamic acid ester solution obtained in Synthesis Example 11 was taken, 0.0813 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for
  • Example 14 A stirrer was placed in a 50 ml Erlenmeyer flask, 10.32 g of the polyimide solution (SPI-1) obtained in Synthesis Example 13 was taken, 0.0352 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. (SPI-1S) was obtained. Next, 3.61 g of polyimide solution (SPI-1S) was taken into another 50 ml Erlenmeyer flask containing a stirring bar, 1.22 g of NMP and 1.20 g of BCS were added, and the mixture was stirred with a magnetic stirrer for 30 minutes. As a result, a liquid crystal aligning agent (A-14) was obtained.
  • Example 15 A stirrer was placed in a 50 ml Erlenmeyer flask, 5.28 g of the polyamic acid solution (PAA-10) obtained in Synthesis Example 14 was taken, 0.0813 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-10S) was obtained. Next, in another 50 ml Erlenmeyer flask containing a stir bar, 1.85 g of polyamic acid solution (PAA-10S) was taken, 3.00 g of NMP and 1.21 g of BCS were added, and a magnetic stirrer was used for 30 minutes. The mixture was stirred to obtain a liquid crystal aligning agent (A-15).
  • PAA-10S polyamic acid solution obtained in Synthesis Example 14 was taken, 0.0813 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-10S) was obtained.
  • Example 16 A stirrer was placed in a 50 ml Erlenmeyer flask, 3.74 g of the polyimide solution (SPI-2) obtained in Synthesis Example 15 was taken, 0.0539 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. (SPI-2S) was obtained. Next, 0.32 g of NMP and 4.05 g of BCS were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-16).
  • Example 17 A stirrer was placed in a 50 ml Erlenmeyer flask, 9.91 g of the polyamic acid ester solution (PAE-3) obtained in Synthesis Example 12 was taken, 0.0909 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. A polyamic acid ester solution (PAE-3S) was obtained. Next, to another 50 ml Erlenmeyer flask containing a stirrer, 3.60 g of polyamic acid ester solution (PAE-3S) was taken, 1.23 g of NMP and 1.22 g of BCS were added, and 30 ⁇ m with a magnetic stirrer. The mixture was stirred for a while to obtain a liquid crystal aligning agent (A-17).
  • PAE-3S polyamic acid ester solution obtained in Synthesis Example 12 was taken, 0.0909 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature
  • Example 18 A stirrer was placed in a 50 ml Erlenmeyer flask, 10.10 g of the polyamic acid solution (PAA-11) obtained in Synthesis Example 16 was taken, 0.0619 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-11S) was obtained. Next, to another 50 ml Erlenmeyer flask containing a stir bar, 3.69 g of polyamic acid solution (PAA-11S) was taken, 1.12 g of NMP and 1.22 g of BCS were added, and 30 minutes with a magnetic stirrer. The mixture was stirred to obtain a liquid crystal aligning agent (A-18).
  • PAA-11S polyamic acid solution obtained in Synthesis Example 16 was taken, 0.0619 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-11S) was obtained. Next,
  • Example 19 In a 20 ml sample tube containing a stir bar, 2.24 g of the polyamic acid solution (PAA-12) obtained in Synthesis Example 19 and 2.48 g of the polyamic acid solution (PAA-2S) obtained in Example 2 were obtained. 3.33 g of NMP and 2.00 g of BCS were added and stirred for 30 minutes with a magnetic stirrer to obtain a liquid crystal aligning agent (A-19).
  • Example 20 In a 20 ml sample tube containing a stir bar, 2.41 g of the polyamic acid ester solution (PAE-5) obtained in Synthesis Example 18 and 1.93 g of the polyamic acid solution (PAA-3S1) obtained in Example 4 were used. NMP 0.43 g, GBL 3.27 g, BCS 2.00 g, and N- ⁇ - (9-fluorenylmethoxycarbonyl) -Nt-butoxycarbonyl-L-histidine ( Hereinafter, 0.0844 g of Fmoc-His) was added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-20).
  • PAE-5 polyamic acid ester solution obtained in Synthesis Example 18
  • PAA-3S1 polyamic acid solution obtained in Example 4 were used.
  • Example 21 A stirrer was placed in a 50 ml Erlenmeyer flask, 30.70 g of the polyamic acid solution (PAA-13) obtained in Synthesis Example 20 was taken, 0.9011 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-13S) was obtained. Next, in another 50 ml Erlenmeyer flask containing a stir bar, 2.02 g of polyamic acid solution (PAA-13S) was taken, 4.68 g of NMP and 1.66 g of BCS were added, and a magnetic stirrer was used for 30 minutes. The mixture was stirred to obtain a liquid crystal aligning agent (A-21).
  • PAA-13S polyamic acid solution obtained in Synthesis Example 20 was taken, 0.9011 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-13S) was obtained
  • Example 22 To a 20 ml sample tube containing a stir bar, 3.36 g of the polyamic acid ester solution (PAE-4) obtained in Synthesis Example 17 and 2.24 g of the polyamic acid solution (PAA-13S) obtained in Example 21 were used. , 1.37 g of NMP, 4.22 g of GBL, 2.81 g of BCS, and 0.1146 g of Fmoc-His as an imidization accelerator were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-22 )
  • Example 30 A stirrer was placed in a 50 ml Erlenmeyer flask, 4.00 g of the polyamic acid ester solution (PAE-6) obtained in Synthesis Example 21 was taken, 0.019 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. Next, 2.41 g of GBL, 1.61 g of BCS and 0.1478 g of Fmoc-His were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-23).
  • PAE-6 polyamic acid ester solution obtained in Synthesis Example 21
  • Example 31 A stirrer was placed in a 50 ml Erlenmeyer flask, 4.00 g of the polyamic acid ester solution (PAE-6) obtained in Synthesis Example 21 was taken, 0.0205 g of ethyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. Next, 2.41 g of GBL, 1.61 g of BCS, and 0.1425 g of Fmoc-His were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-24).
  • PAE-6 polyamic acid ester solution obtained in Synthesis Example 21
  • a coating film having a thickness of 100 nm.
  • the coating surface was irradiated with 1000 mJ / cm 2 of 254 nm ultraviolet light through a polarizing plate to obtain a substrate with a liquid crystal alignment film. Further, a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-2041 manufactured by Merck & Co., Inc.
  • Liquid crystal MLC-2041 manufactured by Merck & Co., Inc.
  • ⁇ T after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 34%, 0%, 0%, 0% and 0%, respectively.
  • %Met As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ⁇ T after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 34%, 0%, 0%, 0% and 0%, respectively. %Met.
  • Example 24 Using the liquid crystal aligning agent (A-7) obtained in Example 7, a rubbing treatment was performed under the conditions of a roller rotation speed of 700 rpm, a stage moving speed of 10 mm / s, and a rubbing cloth pushing pressure of 0.3 mm instead of light irradiation.
  • An FFS drive liquid crystal cell was produced in the same manner as in Example 23 except that.
  • ⁇ T after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 3%, 2%, 2%, 1% and 0, respectively. %Met.
  • Example 25 Using the liquid crystal aligning agent (A-14) obtained in Example 14, a rubbing treatment was performed under the conditions of a roller rotation speed of 700 rpm, a stage moving speed of 10 mm / s, and a rubbing cloth pushing pressure of 0.3 mm instead of light irradiation.
  • An FFS drive liquid crystal cell was produced in the same manner as in Example 23 except that.
  • ⁇ T after 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes of AC drive is 32%, 0%, 0%, 0% and 0%, respectively. %Met.
  • Example 26 An FFS drive liquid crystal cell was produced in the same manner as in Example 23 except that the liquid crystal aligning agent (A-18) obtained in Example 18 was used and irradiated with 100 mJ / cm 2 of polarized ultraviolet light. As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ⁇ T after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 27%, 1%, 1%, 1% and 0, respectively. %Met.
  • Example 27 An FFS drive liquid crystal cell was produced in the same manner as in Example 23 except that the liquid crystal aligning agent (A-19) obtained in Example 19 was used and irradiated with polarized ultraviolet rays of 750 mJ / cm 2 .
  • ⁇ T after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 31%, 0%, 0%, 0% and 0%, respectively. %Met.
  • Example 28 An FFS drive liquid crystal cell was produced in the same manner as in Example 23, except that the liquid crystal aligning agent (A-20) obtained in Example 20 was used and irradiated with 500 mJ / cm 2 of polarized ultraviolet light.
  • ⁇ T after 29 minutes, 0 minutes, 10 minutes, 20 minutes and 60 minutes of AC driving is 29%, 0%, 0%, 0% and 0%, respectively.
  • %Met the liquid crystal aligning agent
  • Example 32 An FFS drive liquid crystal cell was produced in the same manner as in Example 23, except that the liquid crystal aligning agent (A-23) obtained in Example 30 was used and irradiated with 500 mJ / cm 2 of polarized ultraviolet light.
  • ⁇ T after 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes of AC drive is 30%, 0%, 0%, 0% and 0%, respectively.
  • %Met As a result of evaluating the charge relaxation characteristics of the FFS drive liquid crystal cell, ⁇ T after 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes of AC drive is 30%, 0%, 0%, 0% and 0%, respectively. %Met.
  • Example 33 An FFS drive liquid crystal cell was produced in the same manner as in Example 23, except that the liquid crystal aligning agent (A-24) obtained in Example 31 was used and irradiated with 500 mJ / cm 2 of polarized ultraviolet light. As a result of evaluating the charge relaxation characteristics of the FFS driving liquid crystal cell, ⁇ T after 29 minutes, 0 minutes, 10 minutes, 20 minutes and 60 minutes of AC driving is 29%, 0%, 0%, 0% and 0%, respectively. %Met.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can increase the rate of relaxation of residual charges in the liquid crystal display element accumulated by a DC voltage.
  • the present invention is widely useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements.

Abstract

Provided are: a liquid crystal alignment film which enables the manufacture of a liquid crystal display element having a rapid rate of relaxing residual charge generated upon the application of a direct-current voltage; and a liquid crystal aligning agent which can be used for the manufacture of a liquid crystal alignment film. A liquid crystal aligning agent characterized by comprising: at least one polymer selected from the group consisting of polyimide precursors each having a structural unit represented by formula (1) and polymers produced by imidizing the polyimide precursors; a sulfonic acid ester represented by formula (2); and an organic solvent. (In formula (1), X1 represents a tetravalent organic group; Y1 represents a bivalent organic group; and R1 represents a hydrogen atom or an alkyl group having 1-5 carbon atoms.) [Formula 2] R2-SO2-OR3 (2) (In formula (2), R2 and R3 independently represent a monovalent organic group having 1-30 carbon atoms which may have a substituent, wherein R2 and R3 may be bound to each other to form a cyclic structure.)

Description

液晶配向剤及びそれを用いた液晶配向膜Liquid crystal alignment agent and liquid crystal alignment film using the same
 本発明は、液晶配向膜を作製するための液晶配向剤、及びこの液晶配向剤から得られる液晶配向膜に関する。詳しくは、直流電圧による残留電荷の緩和速度の早い液晶表示素子が得られる液晶配向膜、及び液晶配向膜を得るための液晶配向剤を提供することにある。 The present invention relates to a liquid crystal alignment agent for producing a liquid crystal alignment film and a liquid crystal alignment film obtained from the liquid crystal alignment agent. Specifically, the object is to provide a liquid crystal alignment film capable of obtaining a liquid crystal display element having a high rate of relaxation of residual charges due to a direct current voltage, and a liquid crystal alignment agent for obtaining a liquid crystal alignment film.
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。液晶配向膜としては、これまで、ポリアミック酸(ポリアミド酸)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤をガラス基板等に塗布し焼成したポリイミド系の液晶配向膜が主として用いられている。 Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals. Conventionally, as the liquid crystal alignment film, a polyimide liquid crystal alignment film obtained by applying a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it is mainly used. It is used.
 液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像現象の低減といった要求から、液晶配向膜においては、優れた液晶配向性や安定したプレチルト角の発現に加えて、高い電圧保持率、交流駆動により発生する残像の抑制、直流電圧を印加した際の少ない残留電荷、及び/又は直流電圧による蓄積した残留電荷の早い緩和といった特性が次第に重要となっている。 As liquid crystal display elements have become higher in definition, liquid crystal alignment films have high liquid crystal alignment characteristics and stable pretilt angles in addition to the demands for suppressing the decrease in contrast and reducing the afterimage phenomenon. Characteristics such as a voltage holding ratio, suppression of an afterimage generated by AC driving, a small residual charge when a DC voltage is applied, and / or an early relaxation of a residual charge accumulated by a DC voltage are becoming increasingly important.
 ポリイミド系の液晶配向膜においては、上記のような要求にこたえるために、種々の提案がなされてきている。例えば、直流電圧によって発生する残像が消えるまでの時間の短い液晶配向膜として、ポリアミド酸やイミド基含有ポリアミド酸に加えて、特定構造の3級アミンを含有する液晶配向剤を使用したもの(例えば、特許文献1参照)や、ピリジン骨格などを有する特定ジアミン化合物を原料に使用した可溶性ポリイミドを含有する液晶配向剤を使用したもの(例えば、特許文献2参照)などが提案されている。 Various proposals have been made for polyimide-based liquid crystal alignment films in order to meet the above requirements. For example, as a liquid crystal alignment film having a short time until an afterimage generated by a direct current voltage disappears, a liquid crystal alignment agent containing a tertiary amine having a specific structure in addition to polyamic acid or imide group-containing polyamic acid (for example, Patent Document 1), and those using a liquid crystal aligning agent containing a soluble polyimide using a specific diamine compound having a pyridine skeleton as a raw material (for example, see Patent Document 2) have been proposed.
 また、電圧保持率が高く、かつ直流電圧によって発生した残像が消えるまでの時間が短い液晶配向膜として、ポリアミド酸やそのイミド化重合体などに加えて、分子内に1個のカルボン酸基を含有する化合物、分子内に1個のカルボン酸無水物基を含有する化合物及び分子内に1個の3級アミノ基を含有する化合物から選ばれる化合物を極少量含有する液晶配向剤を使用したもの(例えば、特許文献3参照)が提案されている。 Further, as a liquid crystal alignment film having a high voltage holding ratio and a short time until an afterimage generated by a direct current voltage disappears, in addition to polyamic acid or an imidized polymer thereof, one carboxylic acid group is included in the molecule. Using a liquid crystal aligning agent containing a very small amount of a compound selected from a compound containing, a compound containing one carboxylic anhydride group in the molecule, and a compound containing one tertiary amino group in the molecule (See, for example, Patent Document 3).
日本特開平9-316200号公報Japanese Unexamined Patent Publication No. 9-316200 日本特開平10-104633号公報Japanese Unexamined Patent Publication No. 10-104633 日本特開平8-76128号公報Japanese Unexamined Patent Publication No. 8-76128
 このように、液晶ディスプレイの残像を抑制する手法は種々検討されている。しかし、近年では大画面で高精細の液晶テレビが主体となり、残像に対する要求はより厳しくなり、且つ過酷な使用環境での長期使用に耐えうる特性が要求されるようになってきている。本発明は、上記の事情によりなされたものであり、その目的は、直流電圧による残留電荷の緩和時間が早い液晶表示素子を作製できる液晶配向膜、及び該配向膜を得るための液晶配向剤を提供することにある。 As described above, various methods for suppressing the afterimage of the liquid crystal display have been studied. However, in recent years, liquid crystal televisions with large screens and high-definition are mainly used, and the demand for afterimages has become stricter, and characteristics that can withstand long-term use in harsh use environments have been demanded. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid crystal alignment film capable of producing a liquid crystal display element having a quick relaxation time of residual charges due to a DC voltage, and a liquid crystal alignment agent for obtaining the alignment film. It is to provide.
 本発明者の研究によると、ポリイミド前駆体及び/又は該ポリイミド前駆体のイミド化重合体とともに、特定のスルホン酸エステルを特定量含有する液晶配向剤から形成された液晶配向膜は、他の特性を損なうことなく、直流電圧による残留電荷の緩和時間を早めた液晶表示素子を得ることができるという新たな知見を得た。 According to the study of the present inventors, a liquid crystal alignment film formed from a liquid crystal aligning agent containing a specific amount of a specific sulfonic acid ester together with a polyimide precursor and / or an imidized polymer of the polyimide precursor has other characteristics. The present inventors have obtained a new finding that a liquid crystal display element can be obtained in which the relaxation time of residual charges due to a direct current voltage is shortened without impairing the above.
 本発明は、かかる知見に基づくものであり、下記の要旨を有する。
1.下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体と、下記式(2)で表されるスルホン酸エステルと、有機溶媒とを含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000003
(式(1)において、Xは4価の有機基であり、Yは2価の有機基であり、Rは水素原子、又は炭素数1~5のアルキル基であり、A及びAはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基若しくはアルキニル基である。)
Figure JPOXMLDOC01-appb-C000004
(式(2)において、R及びRは、それぞれ独立して、置換基を有してもよい炭素数1~30の1価の有機基であり、RとRが互いに結合し環構造を形成してもよい。)
The present invention is based on such knowledge and has the following gist.
1. At least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor, and a sulfone represented by the following formula (2) A liquid crystal aligning agent comprising an acid ester and an organic solvent.
Figure JPOXMLDOC01-appb-C000003
(In Formula (1), X 1 is a tetravalent organic group, Y 1 is a divalent organic group, R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and A 1 and A 2 is each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group or alkynyl group having 1 to 10 carbon atoms.
Figure JPOXMLDOC01-appb-C000004
(In Formula (2), R 2 and R 3 are each independently a monovalent organic group having 1 to 30 carbon atoms which may have a substituent, and R 2 and R 3 are bonded to each other. A ring structure may be formed.)
2.前記スルホン酸エステルの含有量が前記重合体100質量部に対して0.01質量部~30質量部である上記1に記載の液晶配向剤。
3.Rが置換基を有してよいメチル基である上記1又は2に記載の液晶配向剤。
4.Rがメチル基である上記1~3のいずれか1項に記載の液晶配向剤。
5.前記スルホン酸エステルが、トリフルオロメタンスルホン酸メチル、又はトリフルオロメタンスルホン酸エチルである上記1又は2に記載の液晶配向剤。
6.前記重合体の重量平均分子量が、5,000~300,000である上記1~5のいずれか1項に記載の液晶配向剤。
7.前記重合体の含有量が、有機溶媒に対して0.5質量%~20質量%である上記1~6のいずれか1項に記載の液晶配向剤。
8.上記1~7のいずれか1項に記載の液晶配向剤を塗布、焼成して得られる液晶配向膜。
9.上記1~7のいずれか1項に記載の液晶配向剤を塗布、焼成して得られる被膜に、偏光させた放射線を照射して得られる液晶配向膜。
10.上記8又は9に記載の液晶配向膜を具備する液晶表示素子。
2. 2. The liquid crystal aligning agent according to 1, wherein the content of the sulfonic acid ester is 0.01 to 30 parts by mass with respect to 100 parts by mass of the polymer.
3. 3. The liquid crystal aligning agent according to 1 or 2 above, wherein R 2 is a methyl group that may have a substituent.
4). 4. The liquid crystal aligning agent according to any one of 1 to 3 above, wherein R 3 is a methyl group.
5. 3. The liquid crystal aligning agent according to 1 or 2, wherein the sulfonic acid ester is methyl trifluoromethanesulfonate or ethyl trifluoromethanesulfonate.
6). 6. The liquid crystal aligning agent according to any one of 1 to 5, wherein the polymer has a weight average molecular weight of 5,000 to 300,000.
7. 7. The liquid crystal aligning agent according to any one of 1 to 6, wherein the content of the polymer is 0.5% by mass to 20% by mass with respect to the organic solvent.
8). 8. A liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of 1 to 7 above.
9. 8. A liquid crystal alignment film obtained by irradiating a film obtained by applying and baking the liquid crystal aligning agent according to any one of 1 to 7 above with polarized radiation.
10. 10. A liquid crystal display device comprising the liquid crystal alignment film as described in 8 or 9 above.
 本発明による、ポリイミド前駆体及び/又は該ポリイミド前駆体のイミド化重合体とともに、特定のスルホン酸エステルを特定量含有する液晶配向剤から形成された液晶配向膜は、液晶表示素子の直流電圧による残留電荷の緩和時間を早めることができ、優れた液晶配向性や安定したプレチルト角の発現などとともに、優れた液晶表示素子が提供される。 The liquid crystal alignment film formed from the liquid crystal aligning agent containing a specific amount of a specific sulfonic acid ester together with the polyimide precursor and / or the imidized polymer of the polyimide precursor according to the present invention depends on the DC voltage of the liquid crystal display element. The relaxation time of the residual charge can be shortened, and an excellent liquid crystal display element is provided along with excellent liquid crystal orientation and stable pretilt angle.
 本発明の液晶配向剤により上記の効果が得られるメカニズムは、必ならずしも明確ではないが概ね次のように考えられる。本発明の液晶配向剤に含有される上記式(2)のスルホン酸エステルが存在した場合、液晶配向剤のポリイミド前駆体及び/又は該ポリイミド前駆体のイミド化重合体の有するカルボキシル基、又はアミノ基と反応し、下記式(3)で表されるアニオンを生成する。
Figure JPOXMLDOC01-appb-C000005
 この式(3)で表されるアニオンが、液晶配向剤の塗膜を焼成して形成される液晶配向膜中に存在することにより、得られる液晶配向膜の比抵抗が低下し、かつ、液晶表示素子の直流電圧による残留電荷の緩和速度を向上させる効果が発現するものと考えられる。
The mechanism by which the above-described effect is obtained by the liquid crystal aligning agent of the present invention is not necessarily clear but is generally considered as follows. When the sulfonic acid ester of the above formula (2) contained in the liquid crystal aligning agent of the present invention is present, the carboxyl group of the polyimide precursor of the liquid crystal aligning agent and / or the imidized polymer of the polyimide precursor, or amino It reacts with a group to produce an anion represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000005
When the anion represented by the formula (3) is present in the liquid crystal alignment film formed by baking the coating film of the liquid crystal aligning agent, the specific resistance of the obtained liquid crystal alignment film is reduced, and the liquid crystal It is considered that the effect of improving the rate of relaxation of the residual charge due to the DC voltage of the display element appears.
<ポリイミド前駆体>
 本発明に用いられるポリイミド前駆体は、加熱、又はイミド化触媒と反応させることによって下記に示すイミド化反応が可能な部位を有するポリマーである。下記式中、Rは、水素原子又は炭素数1~5、好ましくは1~2のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000006
<Polyimide precursor>
The polyimide precursor used in the present invention is a polymer having a site capable of undergoing the imidation reaction shown below by heating or reacting with an imidization catalyst. In the following formulae, R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.
Figure JPOXMLDOC01-appb-C000006
 また、本発明に用いられるイミド化重合体は、上記ポリイミド前駆体を加熱、又はイミド化触媒と反応させることによって得られる重合体である。
 本発明の液晶配向剤が含有するポリイミド前駆体は、下記式(1)で表される構造単位を有する重合体である。
Figure JPOXMLDOC01-appb-C000007
The imidized polymer used in the present invention is a polymer obtained by heating or reacting the polyimide precursor with an imidization catalyst.
The polyimide precursor contained in the liquid crystal aligning agent of the present invention is a polymer having a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
 上記式(1)において、R1は、水素原子、又は炭素数1~5、好ましくは1~2のアルキル基である。Rがアルキル基の場合、アルキル基における炭素数が増えるに従ってイミド化が進行する温度が高くなる。そのため、R1は、熱によるイミド化のしやすさの観点から、水素原子、又はメチル基が特に好ましい。式(1)において、A及びAはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10の、アルキル基、アルケニル基、若しくはアルキニル基である。上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられる。より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。 In the above formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms. When R 1 is an alkyl group, the temperature at which imidization proceeds increases as the number of carbon atoms in the alkyl group increases. Therefore, R 1 is particularly preferably a hydrogen atom or a methyl group from the viewpoint of ease of imidization by heat. In the formula (1), A 1 and A 2 are each independently a hydrogen atom or an alkyl group, an alkenyl group, or an alkynyl group having 1 to 10 carbon atoms which may have a substituent. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group. Examples of the alkenyl group include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C═C structures. More specifically, vinyl group, allyl group, 1-propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group And cyclohexenyl group. Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C≡C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
 上記のアルキル基、アルケニル基、及びアルキニル基は、全体として炭素数が1~10であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。 The above alkyl group, alkenyl group, and alkynyl group may have a substituent as long as it has 1 to 10 carbon atoms as a whole, and may further form a ring structure by the substituent. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are combined to form a ring structure.
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
Examples of this substituent include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. Groups, alkenyl groups and alkynyl groups.
Examples of the halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
A phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
 置換基であるオルガノオキシ基としては、O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。 The organooxy group that is a substituent can have a structure represented by OR. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
 置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。 As the substituent, the organothio group can have a structure represented by —S—R. Examples of R include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。 The organosilyl group as a substituent can have a structure represented by —Si— (R) 3 . The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。 The acyl group as a substituent can have a structure represented by —C (O) —R. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above. Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
As the ester group which is a substituent, a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
The thioester group as a substituent can have a structure represented by —C (S) O—R or —OC (S) —R. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
 置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアミド基としては、-C(O)NH、又は、-C(O)NHR、-NHC(O)R、-C(O)N(R)、-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
The phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 . The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
Examples of the substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R. The structure represented by can be shown. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、A及びAとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。 In general, when a bulky structure is introduced, there is a possibility that the reactivity of the amino group and the liquid crystal orientation may be lowered. Therefore, as A 1 and A 2 , a hydrogen atom or a carbon atom that may have a substituent is 1 An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
 上記式(1)において、Xは、4価の有機基であり、Yは、2価の有機基である。Xは4価の有機基であり、特に限定されるものではない。ポリイミド前駆体中、Xは、2種類以上が混在していてもよい。Xの具体例を示すならば、以下に示すX-1~X-46が挙げられる。なかでも、モノマーの入手性から、Xは、X-1、X-2、X-3、X-4、X-5、X-6、X-8、X-16、X-19、X-21、X-25、X-26、X-27、X-28又はX-32が好ましい。 In the above formula (1), X 1 is a tetravalent organic group, and Y 1 is a divalent organic group. X 1 is a tetravalent organic group and is not particularly limited. Two or more kinds of X 1 may be mixed in the polyimide precursor. Specific examples of X 1 include X-1 to X-46 shown below. Among these, from the availability of monomers, X 1 is X-1, X-2, X-3, X-4, X-5, X-6, X-8, X-16, X-19, X -21, X-25, X-26, X-27, X-28 or X-32 are preferred.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 また、式(1)において、Yは2価の有機基であり、特に限定されるものではない。ポリイミド前駆体中、Yは、2種類以上が混在していてもよい。Yの具体例を示すと、下記のY-1~Y-113が挙げられる。
 なかでも、良好な液晶配向性を得るためには、直線性の高いジアミンをポリアミック酸エステルに導入することが好ましく、その場合のYとしては、Y-7、Y-10、Y-11、Y-12、Y-13、Y-21、Y-22、Y-23、Y-25、Y-26、Y-27、Y-41、Y-42、Y-43、Y-44、Y-45、Y-46、Y-48、Y-61、Y-63、Y-64、Y-71、Y-72、Y-73、Y-74、Y-75、Y-98、Y-100、Y-101、Y-102、Y-103、Y-0104、Y-105、Y-106、Y-107、Y-108、Y-109、又はY-110のジアミンがより好ましい。
In Formula (1), Y 1 is a divalent organic group and is not particularly limited. Two or more kinds of Y 1 may be mixed in the polyimide precursor. Specific examples of Y 1 include the following Y-1 to Y-113.
Among these, in order to obtain good liquid crystal orientation, it is preferable to introduce a highly linear diamine into the polyamic acid ester. In this case, Y 1 is Y-7, Y-10, Y-11, Y-12, Y-13, Y-21, Y-22, Y-23, Y-25, Y-26, Y-27, Y-41, Y-42, Y-43, Y-44, Y- 45, Y-46, Y-48, Y-61, Y-63, Y-64, Y-71, Y-72, Y-73, Y-74, Y-75, Y-98, Y-100, Y-101, Y-102, Y-103, Y-0104, Y-105, Y-106, Y-107, Y-108, Y-109, or Y-110 diamines are more preferred.
 また、プレチルト角を高くしたい場合は、側鎖に長鎖アルキル基、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造を有するジアミンをポリアミック酸エステルに導入することが好ましく、その場合のYとしては、Y-76、Y-77、Y-78、Y-79、Y-80、Y-81、Y-82、Y-83、Y-84、Y-85、Y-86、Y-87、Y-88、Y-89、Y-90、Y-91、Y-92、Y-93、Y-94、Y-95、Y-96、又はY-97のジアミンがより好ましい。これらジアミンを全ジアミンの1~50モル%添加することにより、任意のプレチルト角を発現させることができる。 In order to increase the pretilt angle, it is preferable to introduce a diamine having a long chain alkyl group, an aromatic ring, an aliphatic ring, a steroid skeleton, or a combination thereof in the side chain into the polyamic acid ester. In this case, Y 1 is Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y-86. Y-87, Y-88, Y-89, Y-90, Y-91, Y-92, Y-93, Y-94, Y-95, Y-96, or Y-97 diamine is more preferable. . By adding 1 to 50 mol% of these diamines, any pretilt angle can be expressed.
 ポリイミド前駆体の体積抵抗率を低くすることで、直流電圧の蓄積による電荷の緩和速度をさらに早くすることができるため、ヘテロ原子を有する構造、多環芳香族構造、又はビフェニル骨格を有するジアミンをポリアミック酸に導入することが好ましく、その場合のYとしては、Y-19、Y-23、Y-25、Y-26、Y-27、Y-30、Y-31、Y-32、Y-33、Y-34、Y-35、Y-36、Y-40、Y-41Y-42、Y-44、Y-45、Y-49、Y-50、Y-51、Y-61、Y-110、Y-111、Y-112、又はY-113がより好ましい。 By reducing the volume resistivity of the polyimide precursor, the rate of charge relaxation due to the accumulation of DC voltage can be further increased, so that a diamine having a heteroatom structure, a polycyclic aromatic structure, or a biphenyl skeleton In this case, Y 1 is preferably Y-19, Y-23, Y-25, Y-26, Y-27, Y-30, Y-31, Y-32, Y. -33, Y-34, Y-35, Y-36, Y-40, Y-41Y-42, Y-44, Y-45, Y-49, Y-50, Y-51, Y-61, Y -110, Y-111, Y-112, or Y-113 is more preferred.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
<スルホン酸エステル>
 本発明の液晶配向剤に含有されるスルホン酸エステルは、下記式(2)で表わされる。
Figure JPOXMLDOC01-appb-C000031
 上記式(2)において、R及びRは、それぞれ独立して、置換基を有してもよい炭素数1~30、好ましくは1~20、より好ましくは1~10の1価の有機基である。この有機基はアルキル基、アルケニル基、アルキニル基、及びアリール基からなる群から選ばれ、R及びRで環構造を形成してもよい。
<Sulfonate>
The sulfonic acid ester contained in the liquid crystal aligning agent of the present invention is represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000031
In the above formula (2), R 2 and R 3 are each independently a monovalent organic group having 1 to 30, preferably 1 to 20, more preferably 1 to 10 carbon atoms which may have a substituent. It is a group. This organic group is selected from the group consisting of an alkyl group, an alkenyl group, an alkynyl group, and an aryl group, and R 2 and R 3 may form a ring structure.
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。アリール基としては、例えばフェニル基、α-ナフチル基、β-ナフチル基、o-ビフェニリル基、m-ビフェニリル基、p-ビフェニリル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基などが挙げられる。 Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group. Examples of the alkenyl group include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C═C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups. And isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like. Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C≡C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like. Examples of the aryl group include a phenyl group, α-naphthyl group, β-naphthyl group, o-biphenylyl group, m-biphenylyl group, p-biphenylyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1 -Phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
 上記のアルキル基、アルケニル基、アルキニル基、及びアリール基は、全体として炭素数が1~20であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アリール基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
The alkyl group, alkenyl group, alkynyl group, and aryl group may have a substituent as long as the whole has 1 to 20 carbon atoms, and may further form a ring structure by the substituent. . Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are combined to form a ring structure.
Examples of this substituent include halogen groups, hydroxyl groups, thiol groups, nitro groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, aryl groups, alkyls. A group, an alkenyl group and an alkynyl group.
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 置換基であるオルガノオキシ基としては、アルコキシ基、アルケニルオキシ基、アリールオキシ基など-O-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルオキシ基の具体例としては、メトキシ基、エトキシ基、プロピオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ラウリルオキシ基などが挙げられる。
Examples of the halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
The organooxy group as a substituent can have a structure represented by —O—R such as an alkoxy group, an alkenyloxy group, and an aryloxy group. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above. Specific examples of the alkyloxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, a nonyloxy group, a decyloxy group, and a lauryloxy group. .
 置換基であるオルガノチオ基としては、アルキルチオ基、アルケニルチオ基、アリールチオ基など-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基などが挙げられる。 The organothio group as a substituent can have a structure represented by —SR, such as an alkylthio group, an alkenylthio group, and an arylthio group. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above. Specific examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, an octylthio group, a nonylthio group, a decylthio group, and a laurylthio group.
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、オクチルジメチルシリル基、デシルジメチルシリル基などが挙げられる。 The organosilyl group as a substituent can have a structure represented by —Si— (R) 3 . The R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above. Specific examples of the alkylsilyl group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, tripentylsilyl group, trihexylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, octyldimethylsilyl group, Examples include decyldimethylsilyl group.
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。 The acyl group as a substituent can have a structure represented by —C (O) —R. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above. Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
As the ester group which is a substituent, a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
The thioester group as a substituent can have a structure represented by —C (S) O—R or —OC (S) —R. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
 置換基であるリン酸エステル基としては、-OP(O)-(OR)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアミド基としては、-C(O)NH、-C(O)NHR、-NHC(O)R、-C(O)N(R)、又は-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
The phosphate group that is a substituent can have a structure represented by —OP (O) — (OR) 2 . The R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
The amide group as a substituent includes —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R. The structure represented can be shown. The R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
 スルホン酸エステルの分子量を小さくすることで、少ない添加量で効果が得られるために、上記式(2)においてRは、置換基を有してもよい炭素数1~4のアルキル基、又はフェニル基であることが好ましく、より好ましくは置換基を有してもよい炭素数1~4のアルキル基であり、更に好ましくは置換基を有してよいメチル基である。
 上記式(2)におけるRに置換してよい置換基としては、スルホン酸エステルより生成するアニオンの安定性を高めることができるという理由から、電子吸引性基であることが好ましい。電子吸引性基の具体的な例としては、ニトロ基、シアノ基、ハロゲン原子、ヒドロキシル基、アルコキシ基などが挙げられ、より好ましくはハロゲン原子、更に好ましくはフッ素原子が挙げられる。
In order to obtain an effect with a small addition amount by reducing the molecular weight of the sulfonic acid ester, R 2 in the above formula (2) is an optionally substituted alkyl group having 1 to 4 carbon atoms, or It is preferably a phenyl group, more preferably an alkyl group having 1 to 4 carbon atoms which may have a substituent, and still more preferably a methyl group which may have a substituent.
The substituent that may be substituted with R 2 in the formula (2) is preferably an electron-withdrawing group because the stability of the anion generated from the sulfonate ester can be increased. Specific examples of the electron-withdrawing group include a nitro group, a cyano group, a halogen atom, a hydroxyl group, and an alkoxy group, more preferably a halogen atom, and still more preferably a fluorine atom.
 また、上記式(2)におけるRは、上記と同様にスルホン酸エステルの分子量を小さくすることで、少ない添加量で効果が得られるという理由から、炭素数1~4のアルキル基、又はフェニル基であることが好ましく、より好ましくは炭素数1~4のアルキル基であり、更に好ましくはメチル基である。
 本発明に用いるスルホン酸エステルの好ましい具体例としては、トリフルオロメタンスルホン酸メチル、トリフルオロメタンスルホン酸エチル、p-トルエンスルホン酸メチル、メタンスルホン酸メチル、メタンスルホン酸2,2,2-トリフルオロエチル、メタンスルホン酸2-メトキシエチル、プロパンスルトンが挙げられる。なかでも、トリフルオロメタンスルホン酸メチル、又はトリフルオロメタンスルホン酸エチルがより好ましい。
In addition, R 3 in the above formula (2) is an alkyl group having 1 to 4 carbon atoms or a phenyl group because the effect can be obtained with a small addition amount by reducing the molecular weight of the sulfonate ester as described above. Is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
Preferable specific examples of the sulfonate ester used in the present invention include methyl trifluoromethanesulfonate, ethyl trifluoromethanesulfonate, methyl p-toluenesulfonate, methyl methanesulfonate, 2,2,2-trifluoroethyl methanesulfonate. , 2-methoxyethyl methanesulfonate, and propane sultone. Of these, methyl trifluoromethanesulfonate or ethyl trifluoromethanesulfonate is more preferable.
 本発明の液晶配向剤におけるスルホン酸エステルの含有量は、少なすぎると効果が発現せず、過剰すぎてもその他の特性に悪影響を及ぼす可能性があるため、液晶配向剤のポリイミド前駆体及び/又は該ポリイミド前駆体のイミド化重合体からなる体重合体100質量部に対して0.01質量部~30質量部が好ましく、より好ましくは0.1質量部~10質量部であり、更に好ましくは0.1質量部~5質量部である。 If the content of the sulfonic acid ester in the liquid crystal aligning agent of the present invention is too small, the effect is not exhibited, and if it is excessive, the other properties may be adversely affected. Alternatively, it is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 100 parts by mass of a polymer made of an imidized polymer of the polyimide precursor. 0.1 parts by mass to 5 parts by mass.
<ポリアミック酸エステルの製造方法>
 本発明のポリイミド前駆体がポリアミック酸エステルである場合、ポリアミック酸エステルは、下記式(4)~(6)で表されるテトラカルボン酸誘導体のいずれかと、式(7)で表されるジアミン化合物との反応によって得ることができる。
<Method for producing polyamic acid ester>
When the polyimide precursor of the present invention is a polyamic acid ester, the polyamic acid ester is selected from the tetracarboxylic acid derivatives represented by the following formulas (4) to (6) and the diamine compound represented by the formula (7): Can be obtained by reaction with.
Figure JPOXMLDOC01-appb-C000032

(式中、X、Y、R、A及びAはそれぞれ上記式(1)中の定義と同じである。)
Figure JPOXMLDOC01-appb-C000032

(In the formula, X 1 , Y 1 , R 1 , A 1 and A 2 are the same as defined in the formula (1)).
 上記式(1)で表されるポリイミド前駆体は、上記モノマーを用いて、以下に示す(1)~(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
The polyimide precursor represented by the formula (1) can be synthesized by the following methods (1) to (3) using the monomer.
(1) When synthesizing from polyamic acid A polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and a diamine.
Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone from the solubility of the polymer, and these may be used alone or in combination. Good. The concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
(2) When synthesized by reaction of tetracarboxylic acid diester dichloride and diamine Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine.
Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンから合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
(3) When synthesizing from tetracarboxylic acid diester and diamine Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and diamine.
Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can synthesize | combine by making it react for time.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルであることが好ましい。 Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 times mol with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times the mole of the diamine component.
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
Among the three polyamic acid ester synthesis methods, a high molecular weight polyamic acid ester is obtained, and therefore the synthesis method (1) or (2) is particularly preferable.
The polyamic acid ester solution obtained as described above can be polymerized by being poured into a poor solvent while being well stirred. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリアミック酸の製造方法>
 本発明に用いられるポリイミド前駆がポリアミック酸である場合、該ポリアミック酸は、上記式(4)で表されるテトラカルボン酸二無水物と上記式(7)で表されるジアミン化合物との反応によって得ることができる。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
<Method for producing polyamic acid>
When the polyimide precursor used in the present invention is a polyamic acid, the polyamic acid is obtained by a reaction between a tetracarboxylic dianhydride represented by the above formula (4) and a diamine compound represented by the above formula (7). Obtainable.
Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
 上記の反応に用いる有機溶媒は、モノマー及びポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone because of the solubility of the monomer and polymer, and these may be used alone or in combination of two or more. It may be used. The concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミドの製造方法>
 本発明に用いられポリイミドは、前記ポリアミック酸エステル及び/又はポリアミック酸からなるポリイミド前駆体をイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
<Production method of polyimide>
The polyimide used for this invention can be manufactured by imidating the polyimide precursor which consists of the said polyamic acid ester and / or polyamic acid. When a polyimide is produced from a polyamic acid ester, chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。 Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。 The temperature during the imidation reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
When manufacturing a polyimide from a polyamic acid, the chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction of a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
The temperature for carrying out the imidization reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
In the solution after the imidation reaction of polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Thus, the liquid crystal aligning agent of the present invention is preferable.
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
The poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
<液晶配向剤>
 本発明の液晶配向剤は、上記した式(1)で表わされるポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体、上記した式(2)で表されるスルホン酸エステル、及び有機溶媒を含有する。本発明の液晶配向剤に含有される重合体としては、有機溶媒に対する溶解性の点から、ポリアミック酸エステル及び/又はポリアミック酸からなるポリイミド前駆体が好ましい。また、本発明に用いる重合体は2種類以上でもよい。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of the present invention is at least one polymer selected from the group consisting of the polyimide precursor represented by the above formula (1) and an imidized polymer of the polyimide precursor, and the above formula (2). The sulfonic acid ester represented and the organic solvent are contained. As a polymer contained in the liquid crystal aligning agent of this invention, the polyimide precursor which consists of a polyamic acid ester and / or a polyamic acid from the point of the solubility with respect to an organic solvent is preferable. Two or more kinds of polymers may be used in the present invention.
 本発明の液晶配向剤に含有される重合体の重量平均分子量は、好ましくは5,000~300,000であり、より好ましくは、10,000~200,000である。また、数平均分子量は、好ましくは、2,500~150,000であり、より好ましくは、5,000~100,000である。本発明の液晶配向剤は、上記の重合体とスルホン酸エステルが有機溶媒中に溶解した溶液の形態であるのが好ましい。 The weight average molecular weight of the polymer contained in the liquid crystal aligning agent of the present invention is preferably 5,000 to 300,000, and more preferably 10,000 to 200,000. The number average molecular weight is preferably 2,500 to 150,000, and more preferably 5,000 to 100,000. The liquid crystal aligning agent of the present invention is preferably in the form of a solution in which the above polymer and sulfonic acid ester are dissolved in an organic solvent.
 本発明の液晶配向剤における重合体及びスルホン酸エステルの含有量(濃度)は、形成させようとするポリイミド膜の厚みの設定によっても適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から、有機溶媒に対して、ポリマー成分の含有量は、0.5質量%~以上が好ましく、溶液の保存安定性の点からは20質量%以下が好ましく、より好ましくは、1~15質量%である。なお、この場合、予め、ポリマーの濃厚溶液を作製し、かかる濃厚溶液から液晶配向剤とする場合に希釈してもよい。かかるポリマー成分の濃厚溶液の濃度は10~30質量%が好ましく、10~15質量%がより好ましい。また、ポリマー成分の粉末を有機溶媒に溶解して溶液を作製する際に加熱してもよい。加熱温度は、20℃~150℃が好ましく、20℃~80℃が特に好ましい。 The content (concentration) of the polymer and sulfonic acid ester in the liquid crystal aligning agent of the present invention can be changed as appropriate depending on the setting of the thickness of the polyimide film to be formed. From the viewpoint of formation, the content of the polymer component is preferably 0.5% by mass or more with respect to the organic solvent, and is preferably 20% by mass or less, more preferably 1% by mass from the viewpoint of storage stability of the solution. To 15% by mass. In this case, a concentrated solution of the polymer may be prepared in advance, and diluted when such a concentrated solution is used as the liquid crystal alignment agent. The concentration of the concentrated solution of the polymer component is preferably 10 to 30% by mass, and more preferably 10 to 15% by mass. Alternatively, the polymer component powder may be heated when dissolved in an organic solvent to prepare a solution. The heating temperature is preferably 20 ° C to 150 ° C, particularly preferably 20 ° C to 80 ° C.
 本発明の液晶配向剤が含有する上記有機溶媒は、重合体及びスルホン酸エステルが均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独ではポリマー成分を均一に溶解できない溶媒であっても、ポリマーが析出しない範囲であれば、上記の有機溶媒に混合してもよい。 The organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer and the sulfonic acid ester are uniformly dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt | dissolve a polymer component uniformly by itself, if it is a range which a polymer does not precipitate, you may mix with said organic solvent.
 本発明の液晶配向剤は、重合体及びスルホン酸エステルを溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒には、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、ブチルセロソルブアセテート、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種類上を併用してもよい。 The liquid crystal aligning agent of this invention may contain the solvent for improving the coating-film uniformity at the time of apply | coating a liquid crystal aligning agent to a board | substrate other than the organic solvent for dissolving a polymer and a sulfonate ester. Good. As such a solvent, a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, butyl cellosolve acetate, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1- Butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of these solvents may be used in combination.
 本発明の液晶配向剤は、N-メチル-2-ピロリドン、γ-ブチロラクトン、及びブチルセロソルブからなる群から選ばれる2種類以上の有機溶媒を含有するのが好ましく、N-メチル-2-ピロリドン及びブチルセロソルブを含有するのがさらに好ましく、N-メチル-2-ピロリドン、γ-ブチロラクトン及びブチルセロソルブを含有するのが特に好ましい。 The liquid crystal aligning agent of the present invention preferably contains two or more organic solvents selected from the group consisting of N-methyl-2-pyrrolidone, γ-butyrolactone, and butyl cellosolve, and N-methyl-2-pyrrolidone and butyl cellosolve. Is more preferable, and N-methyl-2-pyrrolidone, γ-butyrolactone and butyl cellosolve are particularly preferable.
 スルホン酸エステルは、上記の重合体の濃厚溶液若しくは希釈溶液に添加し、0℃~100℃、好ましくは20℃~50℃で撹拌し、液晶配向剤を調製することができる。撹拌時間は、1時間~48時間が好ましく、1~14時間がより好ましい。
 本発明の液晶配向剤は、シランカップリング剤や架橋剤などの各種添加剤を含有してもよい。シランカップリング剤は、液晶配向剤が塗布される基板と、そこに形成される液晶配向膜との密着性を向上させる目的で添加される。
The sulfonic acid ester can be added to a concentrated solution or diluted solution of the above polymer and stirred at 0 ° C. to 100 ° C., preferably 20 ° C. to 50 ° C., to prepare a liquid crystal aligning agent. The stirring time is preferably 1 hour to 48 hours, and more preferably 1 to 14 hours.
The liquid crystal aligning agent of this invention may contain various additives, such as a silane coupling agent and a crosslinking agent. The silane coupling agent is added for the purpose of improving the adhesion between the substrate on which the liquid crystal alignment agent is applied and the liquid crystal alignment film formed thereon.
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking. The substrate on which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode or the like is formed. In the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate. In this case, a material that reflects light such as aluminum can be used for the electrode.
 本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃~120℃で1分~10分乾燥させ、その後150℃~300℃で5分~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。 Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, in order to sufficiently remove the organic solvent contained, drying is performed at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baking is performed at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes. The thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
 得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。
 光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100nm~800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100nm~400nmの波長を有する紫外線が好ましく、200nm~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmが特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
As a specific example of the photo-alignment treatment method, there is a method in which the surface of the coating film is irradiated with radiation deflected in a certain direction, and in some cases, a heat treatment is further performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability. Can be mentioned. As the radiation, ultraviolet rays and visible rays having a wavelength of 100 nm to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 nm to 400 nm are preferable, and those having a wavelength of 200 nm to 400 nm are particularly preferable. Further, in order to improve the liquid crystal orientation, radiation may be irradiated while heating the coated substrate at 50 to 250 ° C. Dose of the radiation is preferably 1 ~ 10,000mJ / cm 2, particularly preferably 100 ~ 5,000mJ / cm 2. The liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
 以下に、本実施例及び比較例で使用した化合物の略号、及び各特性の測定方法は、以下のとおりである。
1,3DMCBDE-Cl:ジメチル 1,3-ビス(クロロカルボニル)-1,3-ジメチルシクロブタン-2,4-ジカルボキシレート
NMP:N-メチル-2-ピロリドン
GBL:ガンマブチロラクトン
BCS:ブチルセロソルブ
DAH-1:下記式(DAH-1)
The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
Below, the symbol of the compound used by the present Example and the comparative example, and the measuring method of each characteristic are as follows.
1,3DMCBDE-Cl: Dimethyl 1,3-bis (chlorocarbonyl) -1,3-dimethylcyclobutane-2,4-dicarboxylate NMP: N-methyl-2-pyrrolidone GBL: Gamma butyrolactone BCS: Butyl cellosolve DAH-1 : The following formula (DAH-1)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[粘度]
 合成例において、ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[viscosity]
In the synthesis examples, the viscosity of the polyamic acid ester and the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, and cone rotor TE-1 (1 ° 34 ′, R24 ), Measured at a temperature of 25 ° C.
[分子量]
 また、ポリアミック酸エステルの分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
[Molecular weight]
The molecular weight of the polyamic acid ester is measured by a GPC (normal temperature gel permeation chromatography) apparatus, and is a number average molecular weight (hereinafter also referred to as Mn) and a weight average molecular weight (hereinafter also referred to as Mw) as polyethylene glycol and polyethylene oxide equivalent values. ) Was calculated.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF ) Is 10ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Two samples of the mixed sample were measured separately.
[FFS駆動液晶セルの作製]
 ガラス基板上に、第1層目に電極として形状の膜厚50nmのITO電極を、第2層目に絶縁膜として形状の膜厚500nmの窒化珪素を、第3層目に電極として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有するフリンジフィールドスィッチング(Fringe Field Switching:以下、FFSという)駆動用電極が形成されているガラス基板に、スピンコート塗布にて液晶配向剤を塗布した。80℃のホットプレート上で5分間乾燥させた後、250℃の熱風循環式オーブンで60分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光紫外線の照射、又はラビング処理を施し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
[Production of FFS drive liquid crystal cell]
On a glass substrate, an ITO electrode having a thickness of 50 nm as an electrode in the first layer, a silicon nitride having a thickness of 500 nm as an insulating film in the second layer, and a comb-like shape as an electrode in the third layer Spin coating is applied to a glass substrate on which a fringe field switching (hereinafter referred to as FFS) driving electrode having ITO electrodes (electrode width: 3 μm, electrode interval: 6 μm, electrode height: 50 nm) is formed. A liquid crystal aligning agent was applied. After drying on an 80 ° C. hot plate for 5 minutes, baking was performed in a hot air circulation oven at 250 ° C. for 60 minutes to form a coating film having a thickness of 100 nm. The coating surface was irradiated with polarized ultraviolet light or rubbed to obtain a substrate with a liquid crystal alignment film. Further, a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 μm on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
 上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
[電荷緩和特性]
 上記液晶セルを光源上に置き、V-T特性(電圧-透過率特性)を測定した後、±1.5V/60Hzの矩形波を印加した状態での液晶セルの透過率(Ta)を測定した。その後、±1.5V/60Hzの矩形波10分間印加した後、直流2Vを重畳し120分間駆動させた。 直流電圧を切り、再び±1.5V/60Hzの矩形波のみで0分、5分、10分、20分、60分駆動させた時の液晶セルの透過率(Tb)をそれぞれ測定し、各時間での透過率(Tb)と初期の透過率(Ta)の差(ΔT)から液晶表示素子内に残留した電圧により生じた透過率の差を算出した。
The two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added. An empty cell was produced by curing. Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell.
[Charge relaxation characteristics]
Place the above liquid crystal cell on the light source, measure the VT characteristics (voltage-transmittance characteristics), and then measure the transmittance (Ta) of the liquid crystal cell with a ± 1.5 V / 60 Hz rectangular wave applied. did. Thereafter, a rectangular wave of ± 1.5 V / 60 Hz was applied for 10 minutes, and then DC 2 V was superimposed and driven for 120 minutes. Turn off the DC voltage, and measure the transmittance (Tb) of the liquid crystal cell when it is driven for 0 min, 5 min, 10 min, 20 min, 60 min with only a square wave of ± 1.5 V / 60 Hz. The difference in transmittance caused by the voltage remaining in the liquid crystal display element was calculated from the difference (ΔT) between the transmittance in time (Tb) and the initial transmittance (Ta).
(合成例1)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、1,2,3,4-シクロブタンテトラカルボン酸二無水物を5.89g(30.0mmol)取り、NMPを64.08g加えて、窒素を送りながら撹拌した。次に、反応容器内の液を撹拌しながらp-フェニレンジアミン(以下、p-PDAとも言う。)を3.04g(28.1mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-1)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は171mPa・sであった。また、このポリアミック酸の分子量はMn=12373、Mw=28957であった。
(Synthesis Example 1)
To a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 5.89 g (30.0 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was taken, and 64.08 g of NMP was added. Stirring while feeding nitrogen. Next, while stirring the liquid in the reaction vessel, 3.04 g (28.1 mmol) of p-phenylenediamine (hereinafter also referred to as p-PDA) is added so that the solid content concentration becomes 10% by mass. NMP was added and stirred at room temperature for 24 hours to obtain a solution of polyamic acid (PAA-1). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 171 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 12373 and Mw = 28957.
(合成例2)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を3.65g(24.0mmol)及びDA-4を1.46g(6.0mmol)取り、NMPを55.74g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を5.83g(29.7mmol)添加し、更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-2)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は264mPa・sであった。また、このポリアミック酸の分子量はMn=11630、Mw=30056であった。
(Synthesis Example 2)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 3.65 g (24.0 mmol) of 3,5-diaminobenzoic acid and 1.46 g (6.0 mmol) of DA-4 were added, and NMP was added 55 times. .74 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.83 g (29.7 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and NMP was further added so that the solid content concentration was 15% by mass. The mixture was stirred at room temperature for 24 hours to obtain a polyamic acid (PAA-2) solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 264 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 11630 and Mw = 30056.
(合成例3)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を20.08g(132mmol)及びDA-4を21.33g(88.0mmol)取り、NMPを268.48g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を42.49g(217mmol)添加し、更に固形分濃度が20質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-3)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は2156mPa・sであった。また、このポリアミック酸の分子量はMn=18794、Mw=63387であった。
(Synthesis Example 3)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 20.08 g (132 mmol) of 3,5-diaminobenzoic acid and 21.33 g (88.0 mmol) of DA-4 were taken, and 268.48 g of NMP was taken. In addition, the mixture was stirred and dissolved while feeding nitrogen. While stirring the diamine solution, 42.49 g (217 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and NMP was further added so that the solid concentration was 20% by mass. The solution was stirred for 24 hours to obtain a polyamic acid (PAA-3) solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 2156 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 18794 and Mw = 63387.
(合成例4)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を3.65g(24.0mmol)取り、NMPを8.99g加えて、窒素を送りながら撹拌し溶解させた。次に、DA-4を1.46g(6.01mmol)取り、GBLを15.75g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-ブタンテトラカルボン酸二無水物を4.16g(21.0mmol)添加し、水冷下で2時間撹拌した。次に、GBLを11.18g加え、ピロメリット酸二無水物を1.96g(9.0mmol)加えた。更に固形分濃度が20質量%になるようにGBLを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は1904mPa・sであった。また、このポリアミック酸の分子量はMn=8509、Mw=16774であった。
 更にこの溶液に3-グリシドキシプロピルメチルジエトキシシランを0.03g加え、室温で24時間攪拌し、ポリアミック酸溶液(PAA-4)を得た。
(Synthesis Example 4)
Take 3.65 g (24.0 mmol) of 3,5-diaminobenzoic acid in a 100 mL four-necked flask with a stirrer and a nitrogen inlet tube, add 8.9 g of NMP, and stir and dissolve while feeding nitrogen. It was. Next, 1.46 g (6.01 mmol) of DA-4 was taken, 15.75 g of GBL was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 4.16 g (21.0 mmol) of 1,2,3,4-butanetetracarboxylic dianhydride was added and stirred for 2 hours under water cooling. Next, 11.18 g of GBL was added, and 1.96 g (9.0 mmol) of pyromellitic dianhydride was added. Furthermore, GBL was added so that a solid content concentration might be 20 mass%, and it stirred at room temperature for 24 hours. The viscosity of the obtained polyamic acid solution at a temperature of 25 ° C. was 1904 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 8509 and Mw = 16774.
Further, 0.03 g of 3-glycidoxypropylmethyldiethoxysilane was added to this solution, and the mixture was stirred at room temperature for 24 hours to obtain a polyamic acid solution (PAA-4).
(合成例5)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、m-フェニレンジアミンを2.60g(24.0mmol)及びDA-4を1.45g(6.0mmol)取り、NMPを53.69g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらピロメリット酸二無水物を6.41g(39.4mmol)添加し、更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-5)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は208mPa・sであった。また、このポリアミック酸の分子量はMn=10671、Mw=22829であった。
(Synthesis Example 5)
To a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, take 2.60 g (24.0 mmol) of m-phenylenediamine and 1.45 g (6.0 mmol) of DA-4, and add 53.69 g of NMP. The mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 6.41 g (39.4 mmol) of pyromellitic dianhydride was added, NMP was further added so that the solid concentration was 15% by mass, and the mixture was stirred at room temperature for 24 hours to be polyamic acid. A solution of (PAA-5) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 208 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 10671 and Mw = 22829.
(合成例6)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、4,4’-ジアミノジフェニルエーテルを4.81g(24.0mmol)及びDA-5を1.56g(6.0mmol)取り、NMPを61.85g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を5.77g(29.4mmol)添加し、更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-6)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は799mPa・sであった。また、このポリアミック酸の分子量はMn=12569、Mw=27653であった。
(Synthesis Example 6)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 4.81 g (24.0 mmol) of 4,4′-diaminodiphenyl ether and 1.56 g (6.0 mmol) of DA-5 were added, and 61 mg of NMP was added. .85 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.77 g (29.4 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and NMP was further added so that the solid content concentration was 15% by mass. The mixture was stirred at room temperature for 24 hours to obtain a solution of polyamic acid (PAA-6). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 799 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 122569 and Mw = 27653.
(合成例7)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を3.65g(24.0mmol)及び2,6-ジアミノピリジンを0.66g(6.0mmol)取り、NMPを51.67g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を5.83g(29.7mmol)添加し、更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-7)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は60mPa・sであった。また、このポリアミック酸の分子量はMn=5090、Mw=7824であった。
(Synthesis Example 7)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, take 3.65 g (24.0 mmol) of 3,5-diaminobenzoic acid and 0.66 g (6.0 mmol) of 2,6-diaminopyridine, 51.67 g of NMP was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.83 g (29.7 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and NMP was further added so that the solid content concentration was 15% by mass. The mixture was stirred at room temperature for 24 hours to obtain a polyamic acid (PAA-7) solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 60 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 5090 and Mw = 7824.
(合成例8)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、m-フェニレンジアミンを0.65g(6.0mmol)及びDA-6を1.57g(4.0mol)取り、NMPを35.29g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらピロメリット酸二無水物を2.14g(9.8mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-8)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は219mPa・sであった。また、このポリアミック酸の分子量はMn=15827、Mw=36626であった。
(Synthesis Example 8)
To a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 0.65 g (6.0 mmol) of m-phenylenediamine and 1.57 g (4.0 mol) of DA-6 were added, and 35.29 g of NMP was added. The mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.14 g (9.8 mmol) of pyromellitic dianhydride was added, NMP was further added so that the solid content concentration was 10% by mass, and the mixture was stirred at room temperature for 24 hours to be polyamic acid. A solution of (PAA-8) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 219 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 15827 and Mw = 36626.
(合成例9)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を0.31g(2.0mmol)及び1,4-ビス(4-アミノフェニル)ピペラジンを0.81g(3.0mmol)取り、NMPを33.70g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を0.97g(5.0mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-9)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は375mPa・sであった。また、このポリアミック酸の分子量はMn=14398、Mw=35294であった。
(Synthesis Example 9)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 0.31 g (2.0 mmol) of 3,5-diaminobenzoic acid and 0.81 g of 1,4-bis (4-aminophenyl) piperazine ( 3.0 mmol), 33.70 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 0.97 g (5.0 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and NMP was further added so that the solid content concentration was 10% by mass. The mixture was stirred at room temperature for 24 hours to obtain a polyamic acid (PAA-9) solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 375 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 14398 and Mw = 35294.
(合成例10)
 攪拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、m-フェニレンジアミンを1.51g(14.0mmol)及びDA-4を0.84g(3.5mol)入れ、NMPを115.36g、塩基としてピリジンを3.16g(40.0mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながらジメチル 1,3-ビス(クロロカルボニル)シクロブタン-2,4-ジカルボキシレートを4.95g(16.7mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステル溶液を607gの水に撹拌しながら投入し、析出した沈殿物をろ取し、続いて、607gの水で1回、607gのエタノールで1回、125gのエタノールで3回洗浄し、乾燥することでポリアミック酸エステル樹脂粉末を得た。
 このポリアミック酸エステルの分子量はMn=5967、Mw=12346であった。
 得られたポリアミック酸エステル樹脂粉末2.75gを100ml三角フラスコに取り、NMPを24.79g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-1)を得た。
(Synthesis Example 10)
A 300 mL four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 1.51 g (14.0 mmol) of m-phenylenediamine and 0.84 g (3.5 mol) of DA-4 were added, and 115.36 g of NMP was used as a base. 3.16 g (40.0 mmol) of pyridine was added and dissolved by stirring. Next, while stirring this diamine solution, 4.95 g (16.7 mmol) of dimethyl 1,3-bis (chlorocarbonyl) cyclobutane-2,4-dicarboxylate was added and reacted for 4 hours under water cooling. The obtained polyamic acid ester solution was poured into 607 g of water while stirring, and the deposited precipitate was collected by filtration, followed by 607 g of water once, 607 g of ethanol once, and 125 g of ethanol three times. The polyamic acid ester resin powder was obtained by washing and drying.
The molecular weight of this polyamic acid ester was Mn = 5967 and Mw = 1346.
2.75 g of the obtained polyamic acid ester resin powder was placed in a 100 ml Erlenmeyer flask, 24.79 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-1).
(合成例11)
 攪拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、3,5-ジアミノ安息香酸を2.01g(13.2mmol)及びDA-4を0.80g(3.3mol)入れ、NMPを120.31g、塩基としてピリジンを2.99g(37.9mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながらジメチル 1,3-ビス(クロロカルボニル)シクロブタン-2,4-ジカルボキシレートを4.69g(15.8mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステル溶液を633gの水に撹拌しながら投入し、析出した沈殿物をろ取し、続いて、633gの水で1回、633gのエタノールで1回、130gのエタノールで3回洗浄し、乾燥することでポリアミック酸エステル樹脂粉末を得た。
 このポリアミック酸エステルの分子量はMn=6757、Mw=11827であった。
 得られたポリアミック酸エステル樹脂粉末2.72gを100ml三角フラスコに取り、NMPを24.46g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-2)を得た。
(Synthesis Example 11)
A 300 mL four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 2.01 g (13.2 mmol) of 3,5-diaminobenzoic acid and 0.80 g (3.3 mol) of DA-4 were added, and 120.31 g of NMP was added. Then, 2.99 g (37.9 mmol) of pyridine was added as a base, and dissolved by stirring. Next, while stirring this diamine solution, 4.69 g (15.8 mmol) of dimethyl 1,3-bis (chlorocarbonyl) cyclobutane-2,4-dicarboxylate was added and reacted for 4 hours under water cooling. The obtained polyamic acid ester solution was poured into 633 g of water while stirring, and the deposited precipitate was collected by filtration, followed by once with 633 g of water, once with 633 g of ethanol, and three times with 130 g of ethanol. The polyamic acid ester resin powder was obtained by washing and drying.
The molecular weight of this polyamic acid ester was Mn = 6757 and Mw = 11827.
2.72 g of the obtained polyamic acid ester resin powder was placed in a 100 ml Erlenmeyer flask, 24.46 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-2).
(合成例12)
 撹拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、p-フェニレンジアミンを2.01g(18.6mmol)、DA-4を1.12g(4.6mmol)を入れ、NMPを164.36g、塩基としてピリジンを4.21g(53.3mmol)加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながら1,3DM-CBDE-Clを7.22g(22.2mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、865gの水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて865gの水で1回、865gのエタノールで1回、180gのエタノールで3回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=14692、Mw=31251であった。
 得られたポリアミック酸エステル樹脂粉末2.14gを50ml三角フラスコにとり、NMPを20.35g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-3)を得た。
(Synthesis Example 12)
A 300 mL four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 2.01 g (18.6 mmol) of p-phenylenediamine, 1.12 g (4.6 mmol) of DA-4, 164.36 g of NMP, base As a solution, 4.21 g (53.3 mmol) of pyridine was added and dissolved by stirring. Next, while stirring this diamine solution, 7.22 g (22.2 mmol) of 1,3DM-CBDE-Cl was added and reacted for 4 hours under water cooling. The obtained polyamic acid ester solution was poured into 865 g of water while stirring, and the precipitated white precipitate was collected by filtration, then once with 865 g of water, once with 865 g of ethanol, and 3 times with 180 g of ethanol. The white polyamic acid ester resin powder was obtained by washing twice and drying. The molecular weight of this polyamic acid ester was Mn = 14692 and Mw = 31251.
2.14 g of the obtained polyamic acid ester resin powder was placed in a 50 ml Erlenmeyer flask, 20.35 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-3).
(合成例13)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、4,4’-ジアミノジフェニルエーテルを5.40g(27.0mmol)及びDA-4を0.73g(3.0mmol)取り、NMPを65.23g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を6.66g(29.7mmol)添加し、更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸溶液を得た。このポリアミック酸溶液の温度25℃における粘度は233mPa・sであった。
(Synthesis Example 13)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 5.40 g (27.0 mmol) of 4,4′-diaminodiphenyl ether and 0.73 g (3.0 mmol) of DA-4 were taken, and 65 NMP was added. .23 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 6.66 g (29.7 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 15% by mass. NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 233 mPa · s.
 次に100mlナス型フラスコに上記ポリアミック酸溶液を25.52g取り、NMPを37.53g加えて、固形分濃度6質量%とした。このポリアミック酸溶液に無水酢酸を16.93g、及びピリジンを7.91g加えて、50℃で3時間撹拌した。得られた反応溶液を、306gのメタノールに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて306gのエタノールで2回、100gのエタノールで3回洗浄し、乾燥することで白色のポリイミド樹脂粉末を得た。このポリイミド樹脂のイミド化率は98%であった。また、このポリイミド樹脂の分子量はMn=10539、Mw=21428であった。
 得られたポリイミド樹脂粉末2.32gを50ml三角フラスコにとり、NMPを20.92g加え、室温で24時間撹拌し溶解させて、ポリイミド溶液(SPI-1)を得た。
Next, 25.52 g of the above polyamic acid solution was taken into a 100 ml eggplant-shaped flask, and 37.53 g of NMP was added to obtain a solid content concentration of 6% by mass. To this polyamic acid solution, 16.93 g of acetic anhydride and 7.91 g of pyridine were added and stirred at 50 ° C. for 3 hours. The obtained reaction solution was poured into 306 g of methanol while stirring, and the precipitated white precipitate was collected by filtration, subsequently washed twice with 306 g of ethanol, three times with 100 g of ethanol, and dried to obtain a white precipitate. A polyimide resin powder was obtained. The imidation ratio of this polyimide resin was 98%. Moreover, the molecular weight of this polyimide resin was Mn = 10539 and Mw = 2214.
2.32 g of the obtained polyimide resin powder was placed in a 50 ml Erlenmeyer flask, 20.92 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyimide solution (SPI-1).
(合成例14)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を2.09g(13.7mmol)、DA-4を1.51g(6.2mmol)、DA-7を1.90g(5.0mmol)、及びNMPを41.22g加え、40℃で撹拌し溶解させた。次にこのジアミン溶液を撹拌しながら、1,2,3,4-シクロブタンテトラカルボン酸二無水物を4.79g(24.4mmol)を加え、40℃で24時間反応させ、ポリアミック酸溶液(PAA-10)を得た。このポリアミック酸の分子量はMn=15400、Mw=52600であった。
(Synthesis Example 14)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 2.09 g (13.7 mmol) of 3,5-diaminobenzoic acid, 1.51 g (6.2 mmol) of DA-4, and DA-7 were added. 1.90 g (5.0 mmol) and 41.22 g of NMP were added and stirred at 40 ° C. to dissolve. Next, while stirring the diamine solution, 4.79 g (24.4 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was added and reacted at 40 ° C. for 24 hours to obtain a polyamic acid solution (PAA). -10) was obtained. The molecular weight of this polyamic acid was Mn = 15400 and Mw = 52600.
(合成例15)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を1.07g(7.0mmol)、DA-4を1.70g(7.0mmol)、DA-8を2.61g(6.0mmol)、及びNMPを27.37g加え、80℃で撹拌して溶解させた。このジアミン溶液を撹拌しながらビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸二無水物を3.75g(15.0mmol)加えて、80℃で5時間反応させた。5時間後、1,2,3,4-シクロブタンテトラカルボン酸二無水物を0.95g(4.8mmol)、及びNMPを12.93g加え、40℃で6時間反応させ、ポリアミック酸溶液を得た。
(Synthesis Example 15)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 1.07 g (7.0 mmol) of 3,5-diaminobenzoic acid, 1.70 g (7.0 mmol) of DA-4, and DA-8 were added. 2.61 g (6.0 mmol) and 27.37 g of NMP were added and dissolved by stirring at 80 ° C. While stirring the diamine solution, 3.75 g (15.0 mmol) of bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride was added and reacted at 80 ° C. for 5 hours. It was. After 5 hours, 0.95 g (4.8 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 12.93 g of NMP were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution. It was.
 このポリアミック酸溶液20.0gにNMPを加えて、6質量%に希釈した後、イミド化触媒として無水酢酸を4.04g、ピリジンを1.25g加え、100℃で3時間反応させた。この反応溶液を330gのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、150gのメタノールで2回洗浄し、乾燥することでポリイミド樹脂粉末を得た。このポリイミドのイミド化率は80%であった。このポリイミドの分子量は、Mn=19100、Mw=61600であった。
 得られたポリイミド樹脂粉末5.02gを100ml三角フラスコに取り、NMPを33.60g加えて、室温で24時間撹拌し溶解させて、ポリイミド溶液(SPI-2)を得た。
After adding NMP to 20.0 g of this polyamic acid solution and diluting to 6% by mass, 4.04 g of acetic anhydride and 1.25 g of pyridine were added as an imidation catalyst and reacted at 100 ° C. for 3 hours. This reaction solution was added to 330 g of methanol while stirring, and the deposited precipitate was collected by filtration, subsequently washed twice with 150 g of methanol, and dried to obtain a polyimide resin powder. The imidation ratio of this polyimide was 80%. The molecular weight of this polyimide was Mn = 19100 and Mw = 61600.
5.02 g of the obtained polyimide resin powder was placed in a 100 ml Erlenmeyer flask, 33.60 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyimide solution (SPI-2).
(合成例16)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、4,4’-ジアミノジフェニル-N-メチルアミンを0.43(2.0mmol)及び1,3-ビス(4-アミノフェノキシ)プロパンを2.07g(8.0mol)取り、NMPを37.68g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらピロメリット酸二無水物を2.05g(9.4mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-11)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は214mPa・sであった。また、このポリアミック酸の分子量はMn=17227、Mw=44964であった。
(Synthesis Example 16)
To a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 0.44 (2.0 mmol) of 4,4′-diaminodiphenyl-N-methylamine and 1,3-bis (4-aminophenoxy) propane 2.07 g (8.0 mol) was added, 37.68 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.05 g (9.4 mmol) of pyromellitic dianhydride was added, NMP was further added so that the solid concentration was 10% by mass, and the mixture was stirred at room temperature for 24 hours to polyamic acid. A solution of (PAA-11) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 214 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 17227 and Mw = 44964.
(合成例17)
 攪拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、p-フェニレンジアミンを2.81g(26.0mmol)、DA-1を1.10g(2.89mmol)入れ、NMPを51.99g、GBLを155.97g、塩基としてピリジンを5.16g(65.18mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながらジメチル 1,3-ビス(クロロカルボニル)シクロブタン-2,4-ジカルボキシレートを8.83g(27.2mmol)添加し、水冷下4時間反応させた。4時間後、アクリロイルクロリドを0.75g(8.3mmol)加えて、水冷下で30分間反応させた。得られたポリアミド酸エステル溶液を905gの2-プロパノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、448gの2-プロパノールで5回洗浄し、乾燥することでポリアミック酸エステル樹脂粉末を得た。
 このポリアミック酸エステルの分子量はMn=15623、Mw=30510であった。
 得られたポリアミック酸エステル樹脂粉末10.10gを100ml三角フラスコに取り、GBLを91.06g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-4)を得た。
(Synthesis Example 17)
A 300 mL four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere. 2.81 g (26.0 mmol) of p-phenylenediamine, 1.10 g (2.89 mmol) of DA-1 were added, 51.99 g of NMP, and GBL were added. 155.97 g and 5.16 g (65.18 mmol) of pyridine as a base were added and dissolved by stirring. Next, while stirring the diamine solution, 8.83 g (27.2 mmol) of dimethyl 1,3-bis (chlorocarbonyl) cyclobutane-2,4-dicarboxylate was added and reacted for 4 hours under water cooling. After 4 hours, 0.75 g (8.3 mmol) of acryloyl chloride was added and reacted for 30 minutes under water cooling. The obtained polyamic acid ester solution was poured into 905 g of 2-propanol with stirring, and the deposited precipitate was collected by filtration, then washed with 448 g of 2-propanol five times and dried to obtain a polyamic acid ester. A resin powder was obtained.
The molecular weight of this polyamic acid ester was Mn = 15623 and Mw = 30510.
10.10 g of the obtained polyamic acid ester resin powder was placed in a 100 ml Erlenmeyer flask, 91.06 g of GBL was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-4).
(合成例18)
 撹拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、p-PDAを2.03g(18.8mmol)、DA-3を1.23g(4.6mmol)入れ、NMPを167.80g、塩基としてピリジンを4.21g(53.3mmol)加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらジメチル 1,3-ビス(クロロカルボニル)シクロブタン-2,4-ジカルボキシレートを7.22g(22.2mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、885gの水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、885gの水で1回、885gのエタノールで1回、220gのエタノールで3回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=14116、Mw=27044であった。
 得られたポリアミック酸エステル樹脂粉末7.26gを100ml三角フラスコに取り、GBLを65.35g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-5)を得た。
(Synthesis Example 18)
A 300 mL four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 2.03 g (18.8 mmol) of p-PDA, 1.23 g (4.6 mmol) of DA-3, 167.80 g of NMP, and pyridine as a base 4.21 g (53.3 mmol) was added and dissolved by stirring. Next, while stirring this diamine solution, 7.22 g (22.2 mmol) of dimethyl 1,3-bis (chlorocarbonyl) cyclobutane-2,4-dicarboxylate was added and reacted for 4 hours under water cooling. The obtained polyamic acid ester solution was poured into 885 g of water while stirring, and the precipitated white precipitate was collected by filtration, followed by once with 885 g of water, once with 885 g of ethanol, and with 220 g of ethanol. The white polyamic acid ester resin powder was obtained by washing 3 times and drying. The molecular weight of this polyamic acid ester was Mn = 14116 and Mw = 27044.
7.26 g of the obtained polyamic acid ester resin powder was placed in a 100 ml Erlenmeyer flask, 65.35 g of GBL was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-5).
(合成例19)
 撹拌装置付き及び窒素導入管付きの1L四つ口フラスコに、p-フェニレンジアミンを19.47g(180mmol)及びDA-2を4.47g(18.8mmol)取り、NMPを502.03g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を38.04g(194mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-12)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は462mPa・sであった。また、このポリアミック酸の分子量はMn=16976、Mw=43749であった。
(Synthesis Example 19)
In a 1 L four-necked flask equipped with a stirrer and a nitrogen inlet tube, 19.47 g (180 mmol) of p-phenylenediamine and 4.47 g (18.8 mmol) of DA-2 were added, and 502.03 g of NMP was added. The mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 38.04 g (194 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and NMP was further added so that the solid concentration was 10% by mass. The solution was stirred for 24 hours to obtain a solution of polyamic acid (PAA-12). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 462 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 16976 and Mw = 43749.
(合成例20)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を3.65g(24.0mmol)取り、NMPを18.82g加えて、窒素を送りながら撹拌し溶解させた。次に、DA-4を3.88g(16.0mmol)取り、GBLを18.81g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-ブタンテトラカルボン酸二無水物を5.47g(27.6mmol)添加し、水冷下で2時間撹拌した。次に、GBLを4.71g加え、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物をを2.74g(12.2mmol)加えた。更に固形分濃度が25質量%になるようにGBLを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は2142mPa・sであった。また、このポリアミック酸の分子量はMn=6509、Mw=11481であった。
 更にこの溶液に3-グリシドキシプロピルメチルジエトキシシランを0.05g加え、室温で24時間攪拌し、ポリアミック酸溶液(PAA-13)を得た。
(Synthesis Example 20)
Take 3.65 g (24.0 mmol) of 3,5-diaminobenzoic acid in a 100 mL four-necked flask with a stirrer and a nitrogen inlet tube, add 18.82 g of NMP, and stir and dissolve while feeding nitrogen. It was. Next, 3.88 g (16.0 mmol) of DA-4 was taken, 18.81 g of GBL was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 5.47 g (27.6 mmol) of 1,2,3,4-butanetetracarboxylic dianhydride was added and stirred for 2 hours under water cooling. Next, 4.71 g of GBL was added, and 2.74 g (12.2 mmol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride was added. Furthermore, GBL was added so that a solid content concentration might be 25 mass%, and it stirred at room temperature for 24 hours. The viscosity of the obtained polyamic acid solution at a temperature of 25 ° C. was 2142 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 6509 and Mw = 11481.
Further, 0.05 g of 3-glycidoxypropylmethyldiethoxysilane was added to this solution and stirred at room temperature for 24 hours to obtain a polyamic acid solution (PAA-13).
(合成例21)
 攪拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、p-フェニレンジアミンを4.00g(37.0mmol)及びDA-4を1.56g(4.11mol)入れ、NMPを76.32g、GBLを228.03g、塩基として2,4,6-トリメチルピリジンを11.2g(92.7mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながらジメチル 1,3-ビス(クロロカルボニル)シクロブタン-2,4-ジカルボキシレートを12.56g(38.6mmol)添加し、水冷下4時間反応させた。4時間攪拌後、イソニコチン酸クロライドを0.878g(4.93mmol)加え、得られたポリアミック酸エステル溶液を1335gのエタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、661gのエタノールで5回洗浄し、乾燥することでポリアミック酸エステル樹脂粉末を得た。
 このポリアミック酸エステルの分子量はMn=14983、Mw=34387であった。
 得られたポリアミック酸エステル樹脂粉末3.45gを100ml三角フラスコに取り、GBLを30.94g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-6)を得た。
(Synthesis Example 21)
A 300 mL four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, and 4.00 g (37.0 mmol) of p-phenylenediamine and 1.56 g (4.11 mol) of DA-4 were added, 76.32 g of NMP and GBL were added. 228.03 g and 11.2 g (92.7 mmol) of 2,4,6-trimethylpyridine as a base were added and dissolved by stirring. Next, while stirring this diamine solution, 12.56 g (38.6 mmol) of dimethyl 1,3-bis (chlorocarbonyl) cyclobutane-2,4-dicarboxylate was added and reacted for 4 hours under water cooling. After stirring for 4 hours, 0.878 g (4.93 mmol) of isonicotinic acid chloride was added, and the resulting polyamic acid ester solution was added to 1335 g of ethanol while stirring, and the deposited precipitate was collected by filtration, The polyamic acid ester resin powder was obtained by washing 5 times with 661 g of ethanol and drying.
The molecular weight of this polyamic acid ester was Mn = 14993 and Mw = 34387.
3.45 g of the obtained polyamic acid ester resin powder was placed in a 100 ml Erlenmeyer flask, 30.94 g of GBL was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-6).
(合成例22)
 攪拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、p-フェニレンジアミンを3.09g(28.6mmol)及びDA-4を1.21g(3.18mol)入れ、NMPを58.81g、GBLを176.42g、塩基としてピリジンを5.67g(71.7mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながらジメチル 1,3-ビス(クロロカルボニル)シクロブタン-2,4-ジカルボキシレートを9.72g(29.9mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステル溶液を1018gのエタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、504gのエタノールで5回洗浄し、乾燥することでポリアミック酸エステル樹脂粉末を得た。
 このポリアミック酸エステルの分子量はMn=16701、Mw=33541であった。
 得られたポリアミック酸エステル樹脂粉末0.40gを100ml三角フラスコに取り、GBLを3.60g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-7)を得た。
(Synthesis Example 22)
A 300 mL four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, and 3.09 g (28.6 mmol) of p-phenylenediamine and 1.21 g (3.18 mol) of DA-4 were added, 58.81 g of NMP and GBL were added. 176.42 g and 5.67 g (71.7 mmol) of pyridine as a base were added and dissolved by stirring. Next, while stirring this diamine solution, 9.72 g (29.9 mmol) of dimethyl 1,3-bis (chlorocarbonyl) cyclobutane-2,4-dicarboxylate was added and reacted for 4 hours under water cooling. The obtained polyamic acid ester solution was added to 1018 g of ethanol while stirring, the deposited precipitate was collected by filtration, subsequently washed with 504 g of ethanol five times, and dried to obtain a polyamic acid ester resin powder. It was.
The molecular weight of this polyamic acid ester was Mn = 16701 and Mw = 33541.
0.40 g of the obtained polyamic acid ester resin powder was placed in a 100 ml Erlenmeyer flask, 3.60 g of GBL was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-7).
(実施例1)
 50ml三角フラスコに撹拌子を入れ、合成例1で得られたポリアミック酸溶液(PAA-1)を6.12g取り、トリフルオロメタンスルホン酸メチルを0.0639g加えて、室温で4時間撹拌した。次に、NMPを1.76g、及びBCSを1.96g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-1)を得た。
Example 1
A stirrer was placed in a 50 ml Erlenmeyer flask, 6.12 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was taken, 0.0639 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. Next, 1.76 g of NMP and 1.96 g of BCS were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-1).
(実施例2)
 50ml三角フラスコに撹拌子を入れ、合成例2で得られたポリアミック酸溶液(PAA-2)を6.23g取り、トリフルオロメタンスルホン酸メチルを0.0770g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-2S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-2S)を2.25g取り、NMPを2.57g、及びBCSを1.23g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-2)を得た。
(Example 2)
A stirrer was placed in a 50 ml Erlenmeyer flask, 6.23 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was taken, 0.0770 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-2S) was obtained. Next, to another 50 ml Erlenmeyer flask containing a stir bar, 2.25 g of polyamic acid solution (PAA-2S) was taken, 2.57 g of NMP and 1.23 g of BCS were added, and the mixture was stirred for 30 minutes with a magnetic stirrer. The mixture was stirred to obtain a liquid crystal aligning agent (A-2).
(実施例3)
 50ml三角フラスコに撹拌子を入れ、合成例3で得られたポリアミック酸溶液(PAA-3)を4.53g取り、トリフルオロメタンスルホン酸メチルを0.1470g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-3S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-3S)を1.64g取り、NMPを3.24g、及びBCSを1.23g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-3)を得た。
(Example 3)
A stirrer was placed in a 50 ml Erlenmeyer flask, 4.53 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 3 was taken, 0.1470 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-3S) was obtained. Next, 1.64 g of polyamic acid solution (PAA-3S) was taken into another 50 ml Erlenmeyer flask containing a stir bar, NMP (3.24 g) and BCS (1.23 g) were added, and a magnetic stirrer was added for 30 minutes. The mixture was stirred to obtain a liquid crystal aligning agent (A-3).
(実施例4)
 50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸溶液(PAA-4)を4.82g取り、トリフルオロメタンスルホン酸メチルを0.0754g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-4S1)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-4S1)を2.61g取り、NMPを2.21g、及びBCSを1.19g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-4)を得た。
Example 4
A stirrer was placed in a 50 ml Erlenmeyer flask, 4.82 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 4 was taken, 0.0754 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-4S1) was obtained. Next, 2.61 g of polyamic acid solution (PAA-4S1) was taken into another 50 ml Erlenmeyer flask containing a stirring bar, 2.21 g of NMP, and 1.19 g of BCS were added, and the mixture was stirred for 30 minutes with a magnetic stirrer. The mixture was stirred to obtain a liquid crystal aligning agent (A-4).
(実施例5)
 50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸溶液(PAA-4)を4.82g取り、トリフルオロメタンスルホン酸メチルを0.0359g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-4S2)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-4S2)を2.61g取り、NMPを2.22g、及びBCSを1.21g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-5)を得た。
(Example 5)
A stirrer was placed in a 50 ml Erlenmeyer flask, 4.82 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 4 was taken, 0.0359 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-4S2) was obtained. Next, 2.61 g of polyamic acid solution (PAA-4S2) was taken into another 50 ml Erlenmeyer flask containing a stirring bar, 2.22 g of NMP and 1.21 g of BCS were added, and the mixture was stirred for 30 minutes with a magnetic stirrer. The mixture was stirred to obtain a liquid crystal aligning agent (A-5).
(実施例6)
 50ml三角フラスコに撹拌子を入れ、合成例5で得られたポリアミック酸溶液(PAA-5)を7.27g取り、p-トルエンスルホン酸メチルを0.0856g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-5S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-5S)を2.61g取り、NMPを2.20g、及びBCSを1.23g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-6)を得た。
(Example 6)
A stirrer was placed in a 50 ml Erlenmeyer flask, 7.27 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 5 was taken, 0.0856 g of methyl p-toluenesulfonate was added, and the mixture was stirred at room temperature for 4 hours. A polyamic acid solution (PAA-5S) was obtained. Next, 2.61 g of polyamic acid solution (PAA-5S) was taken into another 50 ml Erlenmeyer flask containing a stir bar, 2.20 g of NMP and 1.23 g of BCS were added, and a magnetic stirrer was used for 30 minutes. The mixture was stirred to obtain a liquid crystal aligning agent (A-6).
(実施例7)
 50ml三角フラスコに撹拌子を入れ、合成例6で得られたポリアミック酸溶液(PAA-6)を6.88g取り、メタンスルホン酸メチルを0.0553g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-6S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-6S)を2.46g取り、NMPを2.34g、及びBCSを1.24g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-7)を得た。
(Example 7)
A stirrer was placed in a 50 ml Erlenmeyer flask, 6.88 g of the polyamic acid solution (PAA-6) obtained in Synthesis Example 6 was taken, 0.0553 g of methyl methanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. A solution (PAA-6S) was obtained. Next, to another 50 ml Erlenmeyer flask containing a stir bar, 2.46 g of polyamic acid solution (PAA-6S) was taken, 2.34 g of NMP and 1.24 g of BCS were added, and the mixture was stirred with a magnetic stirrer for 30 minutes. The mixture was stirred to obtain a liquid crystal aligning agent (A-7).
(実施例8)
 50ml三角フラスコに撹拌子を入れ、合成例7で得られたポリアミック酸溶液(PAA-7)を6.50g取り、トリフルオロメタンスルホン酸メチルを0.0836g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-7S1)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-7S1)を2.33g取り、NMPを2.55g、及びBCSを1.20g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-8)を得た。
(Example 8)
A stirrer was placed in a 50 ml Erlenmeyer flask, 6.50 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 7 was taken, 0.0836 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-7S1) was obtained. Next, 2.33 g of polyamic acid solution (PAA-7S1) was taken into another 50 ml Erlenmeyer flask containing a stirring bar, 2.55 g of NMP and 1.20 g of BCS were added, and the mixture was stirred for 30 minutes with a magnetic stirrer. The mixture was stirred to obtain a liquid crystal aligning agent (A-8).
(実施例9)
 50ml三角フラスコに撹拌子を入れ、合成例7で得られたポリアミック酸溶液(PAA-7)を6.48g取り、メタンスルホン酸2,2,2-トリフルオロエチルを0.0462g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-7S2)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-7S2)を2.34g取り、NMPを2.48g、及びBCSを1.24g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-9)を得た。
Example 9
A stirrer was placed in a 50 ml Erlenmeyer flask, 6.48 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 7 was taken, 0.0462 g of 2,2,2-trifluoroethyl methanesulfonate was added, For 4 hours to obtain a polyamic acid solution (PAA-7S2). Next, in another 50 ml Erlenmeyer flask containing a stirring bar, 2.34 g of polyamic acid solution (PAA-7S2) was taken, 2.48 g of NMP and 1.24 g of BCS were added, and 30 minutes with a magnetic stirrer. The mixture was stirred to obtain a liquid crystal aligning agent (A-9).
(実施例10)
 50ml三角フラスコに撹拌子を入れ、合成例8で得られたポリアミック酸溶液(PAA-8)を10.52g取り、メタンスルホン酸2-メトキシエチルを0.2204g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-8S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-8S)を3.77g取り、NMPを1.07g、及びBCSを1.22g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-10)を得た。
(Example 10)
A stirrer was placed in a 50 ml Erlenmeyer flask, 10.52 g of the polyamic acid solution (PAA-8) obtained in Synthesis Example 8 was taken, 0.2204 g of 2-methoxyethyl methanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. A polyamic acid solution (PAA-8S) was obtained. Next, in another 50 ml Erlenmeyer flask containing a stirring bar, 3.77 g of polyamic acid solution (PAA-8S) was taken, 1.07 g of NMP and 1.22 g of BCS were added, and a magnetic stirrer was used for 30 minutes. The mixture was stirred to obtain a liquid crystal aligning agent (A-10).
(実施例11)
 50ml三角フラスコに撹拌子を入れ、合成例9で得られたポリアミック酸溶液(PAA-9)を9.87g取り、トリフルオロメタンスルホン酸メチルを0.1875g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-9S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-9S)を3.57g取り、NMPを1.25g、及びBCSを1.22g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-11)を得た。
(Example 11)
A stirrer was placed in a 50 ml Erlenmeyer flask, 9.87 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 9 was taken, 0.1875 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-9S) was obtained. Next, in another 50 ml Erlenmeyer flask containing a stir bar, 3.57 g of polyamic acid solution (PAA-9S) was taken, 1.25 g of NMP and 1.22 g of BCS were added, and a magnetic stirrer was used for 30 minutes. The liquid crystal aligning agent (A-11) was obtained by stirring.
(実施例12)
 50ml三角フラスコに撹拌子を入れ、合成例10で得られたポリアミック酸エステル溶液(PAE-1)を10.01g取り、プロパンスルトンを0.0671g加えて、室温で4時間撹拌し、ポリアミック酸エステル溶液(PAE-1S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸エステル溶液(PAE-1S)を3.63g取り、NMPを1.20g、及びBCSを1.21g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-12)を得た。
(Example 12)
A stirrer is placed in a 50 ml Erlenmeyer flask, 10.01 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 10 is taken, 0.0671 g of propane sultone is added, and the mixture is stirred at room temperature for 4 hours. A solution (PAE-1S) was obtained. Next, 3.63 g of polyamic acid ester solution (PAE-1S) was taken into another 50 ml Erlenmeyer flask containing a stir bar, 1.20 g of NMP and 1.21 g of BCS were added, and the mixture was stirred with a magnetic stirrer. The mixture was stirred for a while to obtain a liquid crystal aligning agent (A-12).
(実施例13)
 50ml三角フラスコに撹拌子を入れ、合成例11で得られたポリアミック酸エステル溶液(PAE-2)を10.31g取り、トリフルオロメタンスルホン酸メチルを0.0813g加えて、室温で4時間撹拌し、ポリアミック酸エステル溶液(PAE-2S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸エステル溶液(PAE-2S)を3.62g取り、NMPを1.23g、及びBCSを1.21g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-13)を得た。
(Example 13)
A stirrer was placed in a 50 ml Erlenmeyer flask, 10.31 g of the polyamic acid ester solution (PAE-2) obtained in Synthesis Example 11 was taken, 0.0813 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. A polyamic acid ester solution (PAE-2S) was obtained. Next, 3.62 g of polyamic acid ester solution (PAE-2S) was taken into another 50 ml Erlenmeyer flask containing a stir bar, 1.23 g of NMP and 1.21 g of BCS were added, and the mixture was stirred with a magnetic stirrer. The mixture was stirred for a while to obtain a liquid crystal aligning agent (A-13).
(実施例14)
 50ml三角フラスコに撹拌子を入れ、合成例13で得られたポリイミド溶液(SPI-1)を10.32g取り、トリフルオロメタンスルホン酸メチルを0.0352g加えて、室温で4時間撹拌し、ポリイミド溶液(SPI-1S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリイミド溶液(SPI-1S)を3.61g取り、NMPを1.22g、及びBCSを1.20g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-14)を得た。
(Example 14)
A stirrer was placed in a 50 ml Erlenmeyer flask, 10.32 g of the polyimide solution (SPI-1) obtained in Synthesis Example 13 was taken, 0.0352 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. (SPI-1S) was obtained. Next, 3.61 g of polyimide solution (SPI-1S) was taken into another 50 ml Erlenmeyer flask containing a stirring bar, 1.22 g of NMP and 1.20 g of BCS were added, and the mixture was stirred with a magnetic stirrer for 30 minutes. As a result, a liquid crystal aligning agent (A-14) was obtained.
(実施例15)
 50ml三角フラスコに撹拌子を入れ、合成例14で得られたポリアミック酸溶液(PAA-10)を5.28g取り、トリフルオロメタンスルホン酸メチルを0.0813g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-10S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-10S)を1.85g取り、NMPを3.00g、及びBCSを1.21g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-15)を得た。
(Example 15)
A stirrer was placed in a 50 ml Erlenmeyer flask, 5.28 g of the polyamic acid solution (PAA-10) obtained in Synthesis Example 14 was taken, 0.0813 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-10S) was obtained. Next, in another 50 ml Erlenmeyer flask containing a stir bar, 1.85 g of polyamic acid solution (PAA-10S) was taken, 3.00 g of NMP and 1.21 g of BCS were added, and a magnetic stirrer was used for 30 minutes. The mixture was stirred to obtain a liquid crystal aligning agent (A-15).
(実施例16)
 50ml三角フラスコに撹拌子を入れ、合成例15で得られたポリイミド溶液(SPI-2)を3.74g取り、トリフルオロメタンスルホン酸メチルを0.0539g加えて、室温で4時間撹拌し、ポリイミド溶液(SPI-2S)を得た。次に、NMPを0.32g、及びBCSを4.05g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-16)を得た。
(Example 16)
A stirrer was placed in a 50 ml Erlenmeyer flask, 3.74 g of the polyimide solution (SPI-2) obtained in Synthesis Example 15 was taken, 0.0539 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. (SPI-2S) was obtained. Next, 0.32 g of NMP and 4.05 g of BCS were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-16).
(実施例17)
 50ml三角フラスコに撹拌子を入れ、合成例12で得られたポリアミック酸エステル溶液(PAE-3)を9.91g取り、トリフルオロメタンスルホン酸メチルを0.0909g加えて、室温で4時間撹拌し、ポリアミック酸エステル溶液(PAE-3S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸エステル溶液(PAE-3S)を3.60g取り、NMPを1.23g、及びBCSを1.22g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-17)を得た。
(Example 17)
A stirrer was placed in a 50 ml Erlenmeyer flask, 9.91 g of the polyamic acid ester solution (PAE-3) obtained in Synthesis Example 12 was taken, 0.0909 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. A polyamic acid ester solution (PAE-3S) was obtained. Next, to another 50 ml Erlenmeyer flask containing a stirrer, 3.60 g of polyamic acid ester solution (PAE-3S) was taken, 1.23 g of NMP and 1.22 g of BCS were added, and 30 μm with a magnetic stirrer. The mixture was stirred for a while to obtain a liquid crystal aligning agent (A-17).
(実施例18)
 50ml三角フラスコに撹拌子を入れ、合成例16で得られたポリアミック酸溶液(PAA-11)を10.10g取り、トリフルオロメタンスルホン酸メチルを0.0619g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-11S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-11S)を3.69g取り、NMPを1.12g、及びBCSを1.22g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-18)を得た。
(Example 18)
A stirrer was placed in a 50 ml Erlenmeyer flask, 10.10 g of the polyamic acid solution (PAA-11) obtained in Synthesis Example 16 was taken, 0.0619 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-11S) was obtained. Next, to another 50 ml Erlenmeyer flask containing a stir bar, 3.69 g of polyamic acid solution (PAA-11S) was taken, 1.12 g of NMP and 1.22 g of BCS were added, and 30 minutes with a magnetic stirrer. The mixture was stirred to obtain a liquid crystal aligning agent (A-18).
(実施例19)
 撹拌子を入れた20mlサンプル管に、合成例19で得られたポリアミック酸溶液(PAA-12)を2.24g、実施例2で得られたポリアミック酸溶液(PAA-2S)を2.48g、NMPを3.33g、及びBCSを2.00g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-19)を得た。
(Example 19)
In a 20 ml sample tube containing a stir bar, 2.24 g of the polyamic acid solution (PAA-12) obtained in Synthesis Example 19 and 2.48 g of the polyamic acid solution (PAA-2S) obtained in Example 2 were obtained. 3.33 g of NMP and 2.00 g of BCS were added and stirred for 30 minutes with a magnetic stirrer to obtain a liquid crystal aligning agent (A-19).
(実施例20)
 撹拌子を入れた20mlサンプル管に、合成例18で得られたポリアミック酸エステル溶液(PAE-5)を2.41g、実施例4で得られたポリアミック酸溶液(PAA-3S1)を1.93g、NMPを0.43g、GBLを3.27g、BCSを2.00g、更にイミド化促進剤としてN-α-(9-フルオレニルメトキシカルボニル)-N-t-ブトキシカルボニル-L-ヒスチジン(以下、Fmoc-Hisと略す)を0.0844g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-20)を得た。
(Example 20)
In a 20 ml sample tube containing a stir bar, 2.41 g of the polyamic acid ester solution (PAE-5) obtained in Synthesis Example 18 and 1.93 g of the polyamic acid solution (PAA-3S1) obtained in Example 4 were used. NMP 0.43 g, GBL 3.27 g, BCS 2.00 g, and N-α- (9-fluorenylmethoxycarbonyl) -Nt-butoxycarbonyl-L-histidine ( Hereinafter, 0.0844 g of Fmoc-His) was added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-20).
(実施例21)
 50ml三角フラスコに撹拌子を入れ、合成例20で得られたポリアミック酸溶液(PAA-13)を30.70g取り、トリフルオロメタンスルホン酸メチルを0.9011g加えて、室温で4時間撹拌し、ポリアミック酸溶液(PAA-13S)を得た。次に、撹拌子を入れた別の50ml三角フラスコに、ポリアミック酸溶液(PAA-13S)を2.02g取り、NMPを4.68g、及びBCSを1.66g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-21)を得た。
(Example 21)
A stirrer was placed in a 50 ml Erlenmeyer flask, 30.70 g of the polyamic acid solution (PAA-13) obtained in Synthesis Example 20 was taken, 0.9011 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. An acid solution (PAA-13S) was obtained. Next, in another 50 ml Erlenmeyer flask containing a stir bar, 2.02 g of polyamic acid solution (PAA-13S) was taken, 4.68 g of NMP and 1.66 g of BCS were added, and a magnetic stirrer was used for 30 minutes. The mixture was stirred to obtain a liquid crystal aligning agent (A-21).
(実施例22)
 撹拌子を入れた20mlサンプル管に、合成例17で得られたポリアミック酸エステル溶液(PAE-4)を3.36g、実施例21で得られたポリアミック酸溶液(PAA-13S)を2.24g、NMPを1.37g、GBLを4.22g、BCSを2.81g、更にイミド化促進剤としてFmoc-Hisを0.1146g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-22)を得た。
(Example 22)
To a 20 ml sample tube containing a stir bar, 3.36 g of the polyamic acid ester solution (PAE-4) obtained in Synthesis Example 17 and 2.24 g of the polyamic acid solution (PAA-13S) obtained in Example 21 were used. , 1.37 g of NMP, 4.22 g of GBL, 2.81 g of BCS, and 0.1146 g of Fmoc-His as an imidization accelerator were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-22 )
(実施例30)
 50ml三角フラスコに撹拌子を入れ、合成例21で得られたポリアミック酸エステル溶液(PAE-6)を4.00g取り、トリフルオロメタンスルホン酸メチルを0.019g加えて、室温で4時間撹拌した。次に、GBLを2.41g、及びBCSを1.61g、Fmoc-Hisを0.1478g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-23)を得た。
(Example 30)
A stirrer was placed in a 50 ml Erlenmeyer flask, 4.00 g of the polyamic acid ester solution (PAE-6) obtained in Synthesis Example 21 was taken, 0.019 g of methyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. Next, 2.41 g of GBL, 1.61 g of BCS and 0.1478 g of Fmoc-His were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-23).
(実施例31)
 50ml三角フラスコに撹拌子を入れ、合成例21で得られたポリアミック酸エステル溶液(PAE-6)を4.00g取り、トリフルオロメタンスルホン酸エチルを0.0205g加えて、室温で4時間撹拌した。次に、GBLを2.41g、及びBCSを1.61g、Fmoc-Hisを0.1425g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(A-24)を得た。
(Example 31)
A stirrer was placed in a 50 ml Erlenmeyer flask, 4.00 g of the polyamic acid ester solution (PAE-6) obtained in Synthesis Example 21 was taken, 0.0205 g of ethyl trifluoromethanesulfonate was added, and the mixture was stirred at room temperature for 4 hours. Next, 2.41 g of GBL, 1.61 g of BCS, and 0.1425 g of Fmoc-His were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-24).
(比較例1)
 拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を4.66g、NMPを1.58g、BCSを1.57g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(B-1)を得た。
(Comparative Example 1)
To a 20 ml sample tube containing a stirrer, 4.66 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1, 1.58 g of NMP, and 1.57 g of BCS were added and stirred for 30 minutes with a magnetic stirrer. A liquid crystal aligning agent (B-1) was obtained.
(比較例2)
 撹拌子を入れた20mlサンプル管に、合成例2で得られたポリアミック酸溶液(PAA-2)を2.46g、NMPを2.34g、BCSを1.21g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(B-2)を得た。
(Comparative Example 2)
2.46 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 and 2.34 g of NMP and 1.21 g of BCS were added to a 20 ml sample tube containing a stir bar, and stirred for 30 minutes with a magnetic stirrer. A liquid crystal aligning agent (B-2) was obtained.
(比較例3)
 撹拌子を入れた20mlサンプル管に、合成例16で得られたポリアミック酸溶液(PAA-11)を3.67g、NMPを1.15g、BCSを1.21g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(B-3)を得た。
(Comparative Example 3)
To a 20 ml sample tube containing a stir bar, 3.67 g of the polyamic acid solution (PAA-11) obtained in Synthesis Example 16, 1.15 g of NMP and 1.21 g of BCS were added and stirred for 30 minutes with a magnetic stirrer. A liquid crystal aligning agent (B-3) was obtained.
(比較例4)
 撹拌子を入れた20mlサンプル管に、合成例13で得られた可溶性ポリイミド溶液(SPI-1)を3.61g、NMPを1.22g、BCSを1.22g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(B-4)を得た。
(Comparative Example 4)
Add 3.61 g of the soluble polyimide solution (SPI-1) obtained in Synthesis Example 13 (SPI-1), 1.22 g of NMP, and 1.22 g of BCS to a 20 ml sample tube containing a stir bar, and stir for 30 minutes with a magnetic stirrer. A liquid crystal aligning agent (B-4) was obtained.
(比較例5)
 撹拌子を入れた20mlサンプル管に、合成例19で得られたポリアミック酸溶液(PAA-12)を3.15g、合成例2で得られたポリアミック酸溶液(PAA-2)を3.46g、NMPを4.62g、BCSを2.81g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(B-5)を得た。
(Comparative Example 5)
In a 20 ml sample tube containing a stir bar, 3.15 g of the polyamic acid solution (PAA-12) obtained in Synthesis Example 19 and 3.46 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 were obtained. 4.62 g of NMP and 2.81 g of BCS were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (B-5).
(比較例6)
 撹拌子を入れた20mlサンプル管に、合成例18で得られたポリアミック酸エステル溶液(PAE-5)を3.37g、合成例3で得られたポリアミック酸溶液(PAA-4)を2.69g、NMPを0.61g、GBLを4.56g、BCSを2.83g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(B-6)を得た。
(Comparative Example 6)
In a 20 ml sample tube containing a stir bar, 3.37 g of the polyamic acid ester solution (PAE-5) obtained in Synthesis Example 18 and 2.69 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 3 were used. NMP (0.61 g), GBL (4.56 g) and BCS (2.83 g) were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (B-6).
(比較例7)
 撹拌子を入れた20mlサンプル管に、合成例17で得られたポリアミック酸エステル溶液(PAE-4)を3.37g、合成例20で得られたポリアミック酸溶液(PAA-13)を2.25g、NMPを1.39g、GBLを4.25g、BCSを2.80g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(B-7)を得た。
(Comparative Example 7)
In a 20 ml sample tube containing a stir bar, 3.37 g of the polyamic acid ester solution (PAE-4) obtained in Synthesis Example 17 and 2.25 g of the polyamic acid solution (PAA-13) obtained in Synthesis Example 20 were used. Then, 1.39 g of NMP, 4.25 g of GBL and 2.80 g of BCS were added and stirred for 30 minutes with a magnetic stirrer to obtain a liquid crystal aligning agent (B-7).
(比較例15)
 50ml三角フラスコに撹拌子を入れ、合成例22で得られたポリアミック酸エステル溶液(PAE-7)を4.00g取り、GBLを2.41g、及びBCSを1.60g、Fmoc-Hisを0.1416g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(B-8)を得た。
(Comparative Example 15)
A stirrer was placed in a 50 ml Erlenmeyer flask, 4.00 g of the polyamic acid ester solution (PAE-7) obtained in Synthesis Example 22 was taken, 2.41 g of GBL, 1.60 g of BCS, and 0.1% of Fmoc-His. 1416 g was added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (B-8).
(実施例23)
 実施例1で得られた液晶配向剤(A-1)を1.0μmのフィルターで濾過した後、ガラス基板上に、第1層目として膜厚50nmのITO電極を、第2層目として絶縁膜として膜厚500nmの窒化ケイ素を、第3層目として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有するFFS駆動用電極が形成されているガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を1000mJ/cm照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
(Example 23)
After the liquid crystal aligning agent (A-1) obtained in Example 1 was filtered through a 1.0 μm filter, an ITO electrode having a film thickness of 50 nm as a first layer was insulated on a glass substrate as a second layer. Glass on which an FFS driving electrode having a comb-like ITO electrode (electrode width: 3 μm, electrode interval: 6 μm, electrode height: 50 nm) is formed as a third layer, silicon nitride having a thickness of 500 nm as a film The substrate was applied by spin coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 30 minutes to form a coating film having a thickness of 100 nm. The coating surface was irradiated with 1000 mJ / cm 2 of 254 nm ultraviolet light through a polarizing plate to obtain a substrate with a liquid crystal alignment film. Further, a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 μm on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
 上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
 このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ34%、0%、0%、0%及び0%であった。
The two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added. An empty cell was produced by curing. Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell.
As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 34%, 0%, 0%, 0% and 0%, respectively. %Met.
(実施例24)
 実施例7で得られた液晶配向剤(A-7)を用い、光照射の代わりに、ローラー回転数700rpm、ステージ移動速度10mm/s、ラビング布押し込み圧0.3mmの条件でラビング処理を施した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ3%、2%、2%、1%及び0%であった。
(Example 24)
Using the liquid crystal aligning agent (A-7) obtained in Example 7, a rubbing treatment was performed under the conditions of a roller rotation speed of 700 rpm, a stage moving speed of 10 mm / s, and a rubbing cloth pushing pressure of 0.3 mm instead of light irradiation. An FFS drive liquid crystal cell was produced in the same manner as in Example 23 except that. As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 3%, 2%, 2%, 1% and 0, respectively. %Met.
(実施例25)
 実施例14で得られた液晶配向剤(A-14)を用い、光照射の代わりに、ローラー回転数700rpm、ステージ移動速度10mm/s、ラビング布押し込み圧0.3mmの条件でラビング処理を施した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ32%、0%、0%、0%及び0%であった。
(Example 25)
Using the liquid crystal aligning agent (A-14) obtained in Example 14, a rubbing treatment was performed under the conditions of a roller rotation speed of 700 rpm, a stage moving speed of 10 mm / s, and a rubbing cloth pushing pressure of 0.3 mm instead of light irradiation. An FFS drive liquid crystal cell was produced in the same manner as in Example 23 except that. As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes of AC drive is 32%, 0%, 0%, 0% and 0%, respectively. %Met.
(実施例26)
 実施例18で得られた液晶配向剤(A-18)を用い、100mJ/cmの偏光された紫外線を照射した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ27%、1%、1%、1%及び0%であった。
(Example 26)
An FFS drive liquid crystal cell was produced in the same manner as in Example 23 except that the liquid crystal aligning agent (A-18) obtained in Example 18 was used and irradiated with 100 mJ / cm 2 of polarized ultraviolet light. As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 27%, 1%, 1%, 1% and 0, respectively. %Met.
(実施例27)
 実施例19で得られた液晶配向剤(A-19)を用い、750mJ/cmの偏光された紫外線を照射した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ31%、0%、0%、0%及び0%であった。
(Example 27)
An FFS drive liquid crystal cell was produced in the same manner as in Example 23 except that the liquid crystal aligning agent (A-19) obtained in Example 19 was used and irradiated with polarized ultraviolet rays of 750 mJ / cm 2 . As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 31%, 0%, 0%, 0% and 0%, respectively. %Met.
(実施例28)
 実施例20で得られた液晶配向剤(A-20)を用い、500mJ/cmの偏光された紫外線を照射した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ29%、0%、0%、0%及び0%であった。
(Example 28)
An FFS drive liquid crystal cell was produced in the same manner as in Example 23, except that the liquid crystal aligning agent (A-20) obtained in Example 20 was used and irradiated with 500 mJ / cm 2 of polarized ultraviolet light. As a result of evaluating the charge relaxation characteristics of the FFS driving liquid crystal cell, ΔT after 29 minutes, 0 minutes, 10 minutes, 20 minutes and 60 minutes of AC driving is 29%, 0%, 0%, 0% and 0%, respectively. %Met.
(実施例29)
 実施例22で得られた液晶配向剤(A-22)を用い、500mJ/cmの偏光された紫外線を照射した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ36%、0%、0%、0%及び0%であった。
(Example 29)
An FFS drive liquid crystal cell was produced in the same manner as in Example 23, except that the liquid crystal aligning agent (A-22) obtained in Example 22 was used and irradiated with 500 mJ / cm 2 of polarized ultraviolet light. As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 36%, 0%, 0%, 0% and 0%, respectively. %Met.
(実施例32)
 実施例30で得られた液晶配向剤(A-23)を用い、500mJ/cmの偏光された紫外線を照射した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ30%、0%、0%、0%及び0%であった。
(Example 32)
An FFS drive liquid crystal cell was produced in the same manner as in Example 23, except that the liquid crystal aligning agent (A-23) obtained in Example 30 was used and irradiated with 500 mJ / cm 2 of polarized ultraviolet light. As a result of evaluating the charge relaxation characteristics of the FFS drive liquid crystal cell, ΔT after 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes of AC drive is 30%, 0%, 0%, 0% and 0%, respectively. %Met.
(実施例33)
 実施例31で得られた液晶配向剤(A-24)を用い、500mJ/cmの偏光された紫外線を照射した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ29%、0%、0%、0%及び0%であった。
(Example 33)
An FFS drive liquid crystal cell was produced in the same manner as in Example 23, except that the liquid crystal aligning agent (A-24) obtained in Example 31 was used and irradiated with 500 mJ / cm 2 of polarized ultraviolet light. As a result of evaluating the charge relaxation characteristics of the FFS driving liquid crystal cell, ΔT after 29 minutes, 0 minutes, 10 minutes, 20 minutes and 60 minutes of AC driving is 29%, 0%, 0%, 0% and 0%, respectively. %Met.
(比較例8)
 比較例1で得られた液晶配向剤(B-1)を用い、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ36%、9%、4%、2%及び1%であった。
(Comparative Example 8)
Using the liquid crystal aligning agent (B-1) obtained in Comparative Example 1, an FFS drive liquid crystal cell was produced in the same manner as in Example 23. As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 36%, 9%, 4%, 2% and 1 respectively. %Met.
(比較例9)
 比較例2で得られた液晶配向剤(B-2)を用い、光照射の代わりに、ローラー回転数700rpm、ステージ移動速度10mm/s、ラビング布押し込み圧0.3mmの条件でラビング処理を施した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ4%、3%、2%、2%及び1%であった。
(Comparative Example 9)
Using the liquid crystal aligning agent (B-2) obtained in Comparative Example 2, a rubbing treatment was performed under the conditions of a roller rotation speed of 700 rpm, a stage moving speed of 10 mm / s, and a rubbing cloth indentation pressure of 0.3 mm instead of light irradiation. An FFS drive liquid crystal cell was produced in the same manner as in Example 23 except that. As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 4%, 3%, 2%, 2% and 1 respectively. %Met.
(比較例10)
 比較例3で得られた液晶配向剤(B-3)を用い、光照射の代わりに、ローラー回転数700rpm、ステージ移動速度10mm/s、ラビング布押し込み圧0.3mmの条件でラビング処理を施した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ30%、1%、1%、1%及び0%であった。
(Comparative Example 10)
Using the liquid crystal aligning agent (B-3) obtained in Comparative Example 3, a rubbing treatment was performed under the conditions of a roller rotation speed of 700 rpm, a stage moving speed of 10 mm / s, and a rubbing cloth indentation pressure of 0.3 mm instead of light irradiation. An FFS drive liquid crystal cell was produced in the same manner as in Example 23 except that. As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 30%, 1%, 1%, 1% and 0, respectively. %Met.
(比較例11)
 比較例4で得られた液晶配向剤(B-4)を用い、100mJ/cmの偏光された紫外線を照射した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ22%、6%、2%、1%及び0%であった。
(Comparative Example 11)
An FFS drive liquid crystal cell was produced in the same manner as in Example 23 except that the liquid crystal aligning agent (B-4) obtained in Comparative Example 4 was used and irradiated with 100 mJ / cm 2 of polarized ultraviolet rays. As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 22%, 6%, 2%, 1% and 0, respectively. %Met.
(比較例12)
 比較例5で得られた液晶配向剤(B-5)を用い、750mJ/cmの偏光された紫外線を照射した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ28%、5%、5%、5%及び4%であった。
(Comparative Example 12)
An FFS drive liquid crystal cell was produced in the same manner as in Example 23 except that the liquid crystal aligning agent (B-5) obtained in Comparative Example 5 was used and irradiated with polarized ultraviolet rays of 750 mJ / cm 2 . As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 28%, 5%, 5%, 5% and 4 respectively. %Met.
(比較例13)
 比較例6で得られた液晶配向剤(B-6)を用い、500mJ/cmの偏光された紫外線を照射した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ31%、8%、7%、7%及び4%であった。
(Comparative Example 13)
An FFS drive liquid crystal cell was produced in the same manner as in Example 23, except that the liquid crystal aligning agent (B-6) obtained in Comparative Example 6 was used and irradiated with 500 mJ / cm 2 of polarized ultraviolet light. As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 31%, 8%, 7%, 7% and 4 respectively. %Met.
(比較例14)
 比較例7で得られた液晶配向剤(B-7)を用い、500mJ/cmの偏光された紫外線を照射した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ38%、3%、3%、3%及び1%であった。
(Comparative Example 14)
An FFS drive liquid crystal cell was produced in the same manner as in Example 23, except that the liquid crystal aligning agent (B-7) obtained in Comparative Example 7 was used and irradiated with 500 mJ / cm 2 of polarized ultraviolet light. As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after AC drive 0 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes was 38%, 3%, 3%, 3% and 1 respectively. %Met.
(比較例16)
 比較例15で得られた液晶配向剤(B-8)を用い、500mJ/cmの偏光された紫外線を照射した以外は、実施例23と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、20分及び60分後のΔTは、それぞれ29%、5%、2%、1%及び0%であった。
(Comparative Example 16)
An FFS drive liquid crystal cell was produced in the same manner as in Example 23, except that the liquid crystal aligning agent (B-8) obtained in Comparative Example 15 was used and irradiated with 500 mJ / cm 2 of polarized ultraviolet light. As a result of evaluating the charge relaxation characteristics of this FFS drive liquid crystal cell, ΔT after 29 minutes, 5 minutes, 10 minutes, 20 minutes and 60 minutes of AC drive was 29%, 5%, 2%, 1% and 0, respectively. %Met.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 本発明の液晶配向剤から得られる液晶配向膜は、直流電圧によって蓄積した液晶表示素子内の残留電荷の緩和速度を早くすることができる。その結果、TN素子、STN素子、TFT液晶素子、更には、垂直配向型の液晶表示素子などに広く有用である。 The liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can increase the rate of relaxation of residual charges in the liquid crystal display element accumulated by a DC voltage. As a result, the present invention is widely useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements.
 なお、2011年3月31日に出願された日本特許出願2011-078688号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-076888 filed on March 31, 2011 are cited here as disclosure of the specification of the present invention. Incorporated.

Claims (10)

  1.  下記式(1)で表される繰り返し単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体、下記式(2)で表されるスルホン酸エステルと、有機溶媒とを含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、Xは4価の有機基であり、Yは2価の有機基であり、Rは水素原子、又は炭素数1~5のアルキル基であり、A及びAはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基若しくはアルキニル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)において、R及びRは、それぞれ独立して、置換基を有してもよい炭素数1~30の1価の有機基であり、RとRが互いに結合し環構造を形成してもよい。)
    At least one polymer selected from the group consisting of a polyimide precursor having a repeating unit represented by the following formula (1) and an imidized polymer of the polyimide precursor, a sulfonic acid represented by the following formula (2) A liquid crystal aligning agent comprising an ester and an organic solvent.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), X 1 is a tetravalent organic group, Y 1 is a divalent organic group, R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and A 1 and A 2 is each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group or alkynyl group having 1 to 10 carbon atoms.
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (2), R 2 and R 3 are each independently a monovalent organic group having 1 to 30 carbon atoms which may have a substituent, and R 2 and R 3 are bonded to each other. A ring structure may be formed.)
  2.  前記スルホン酸エステルの含有量が前記重合体100質量部に対して0.01質量部~30質量部である請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the content of the sulfonic acid ester is 0.01 to 30 parts by mass with respect to 100 parts by mass of the polymer.
  3.  Rが置換基を有してよいメチル基である請求項1又は2に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1 or 2, wherein R 2 is a methyl group which may have a substituent.
  4.  Rがメチル基である請求項1~3のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 3, wherein R 3 is a methyl group.
  5.  前記スルホン酸エステルが、トリフルオロメタンスルホン酸メチル、又はトリフルオロメタンスルホン酸エチルである請求項1又は2に記載の液晶配向剤。 3. The liquid crystal aligning agent according to claim 1, wherein the sulfonic acid ester is methyl trifluoromethanesulfonate or ethyl trifluoromethanesulfonate.
  6.  前記重合体の重量平均分子量が、5,000~300,000である請求項1~5のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 5, wherein the polymer has a weight average molecular weight of 5,000 to 300,000.
  7.  前記重合体の含有量が、有機溶媒に対して0.5質量%~20質量%である請求項1~6のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 6, wherein the content of the polymer is 0.5% by mass to 20% by mass with respect to the organic solvent.
  8.  請求項1~7のいずれか1項に記載の液晶配向剤を塗布、焼成して得られる液晶配向膜。 A liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか1項に記載の液晶配向剤を塗布、焼成して得られる被膜に、偏光させた放射線を照射して得られる液晶配向膜。 A liquid crystal alignment film obtained by irradiating a film obtained by applying and baking the liquid crystal aligning agent according to any one of claims 1 to 7 with polarized radiation.
  10.  請求項8又は9に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 8.
PCT/JP2012/058693 2011-03-31 2012-03-30 Liquid crystal aligning agent, and liquid crystal alignment film produced using same WO2012133829A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280026089.8A CN103562783B (en) 2011-03-31 2012-03-30 Aligning agent for liquid crystal and use the liquid crystal orientation film of this aligning agent for liquid crystal
JP2013507818A JP6056752B2 (en) 2011-03-31 2012-03-30 Liquid crystal alignment agent and liquid crystal alignment film using the same
KR1020137028664A KR101864913B1 (en) 2011-03-31 2012-03-30 Liquid crystal aligning agent, and liquid crystal alignment film produced using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011078688 2011-03-31
JP2011-078688 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133829A1 true WO2012133829A1 (en) 2012-10-04

Family

ID=46931523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058693 WO2012133829A1 (en) 2011-03-31 2012-03-30 Liquid crystal aligning agent, and liquid crystal alignment film produced using same

Country Status (5)

Country Link
JP (1) JP6056752B2 (en)
KR (1) KR101864913B1 (en)
CN (1) CN103562783B (en)
TW (1) TWI534178B (en)
WO (1) WO2012133829A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050133A1 (en) * 2013-10-01 2015-04-09 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2015060360A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
JP2015092222A (en) * 2013-10-03 2015-05-14 Jsr株式会社 Liquid crystal alignment agent
CN105683827A (en) * 2013-10-23 2016-06-15 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
US20160264520A1 (en) * 2013-10-23 2016-09-15 Nissan Chemical Industries. Ltd. Novel diamine, polyamic acid, and polyimide
JP2016222798A (en) * 2015-05-29 2016-12-28 三菱瓦斯化学株式会社 Polyimide resin
JP2018087343A (en) * 2013-02-28 2018-06-07 日産化学工業株式会社 Polymer
US10336865B2 (en) * 2013-10-23 2019-07-02 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152174A1 (en) * 2014-04-03 2015-10-08 日産化学工業株式会社 Liquid crystal alignment agent containing polyamic acid ester-polyamic acid compolymer, and liquid crystal alignment film using same
CN108069978B (en) * 2016-11-16 2020-07-14 中国科学院大连化学物理研究所 Synthesis method of 1,2,4, 5-cyclohexane tetracarboxylic dianhydride
CN117551267B (en) * 2024-01-10 2024-04-19 武汉柔显科技股份有限公司 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138479A (en) * 1993-02-26 1995-05-30 Toshiba Corp Polyamic acid composition and liquid crystal element
JPH07319162A (en) * 1993-02-17 1995-12-08 Shin Etsu Chem Co Ltd Photosensitive resin composition and protective film for electronic parts
JPH0887017A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Production of liquid crystal display element
JP2003076012A (en) * 2001-09-07 2003-03-14 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition and pattern forming method using the same
JP2007248622A (en) * 2006-03-14 2007-09-27 Fujifilm Corp Antiglare mirror
JP2011100032A (en) * 2009-11-06 2011-05-19 Hitachi Displays Ltd Liquid crystal display device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201172B2 (en) 1994-09-08 2001-08-20 ジェイエスアール株式会社 Liquid crystal alignment agent
JP3613421B2 (en) 1996-05-31 2005-01-26 Jsr株式会社 Liquid crystal alignment agent
JP3650982B2 (en) 1996-10-02 2005-05-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
TW522155B (en) * 1999-10-04 2003-03-01 Ind Tech Res Inst Solvent soluble polyimide and a method for making thereof
JP2003322860A (en) * 2002-05-01 2003-11-14 Hitachi Ltd Material for liquid crystal alignment layer, liquid crystal display element, method for manufacturing the same and liquid crystal display
CN101040028B (en) * 2004-10-13 2012-03-28 罗利克有限公司 Photocrosslinkable materials
JP4911281B2 (en) * 2006-01-31 2012-04-04 大日本印刷株式会社 Method for forming hybrid oriented retardation control layer
JP5050450B2 (en) 2006-08-31 2012-10-17 住友ベークライト株式会社 Interlayer insulating film, positive photosensitive resin composition for forming protective film, protective film, interlayer insulating film, and semiconductor device and display element using the same
JP2008250189A (en) * 2007-03-30 2008-10-16 Sanyo Chem Ind Ltd Photosensitive resin composition
KR101464308B1 (en) * 2007-05-10 2014-11-21 주식회사 동진쎄미켐 Aligment material for liquid crystal display device and a preparing method of same
JP5598466B2 (en) 2009-04-02 2014-10-01 日産化学工業株式会社 Polyimide precursor composition containing polyamic acid alkyl ester
CN102471629B (en) * 2009-07-21 2015-09-09 日产化学工业株式会社 Form the composition with the heat cured film of light orientation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07319162A (en) * 1993-02-17 1995-12-08 Shin Etsu Chem Co Ltd Photosensitive resin composition and protective film for electronic parts
JPH07138479A (en) * 1993-02-26 1995-05-30 Toshiba Corp Polyamic acid composition and liquid crystal element
JPH0887017A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Production of liquid crystal display element
JP2003076012A (en) * 2001-09-07 2003-03-14 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition and pattern forming method using the same
JP2007248622A (en) * 2006-03-14 2007-09-27 Fujifilm Corp Antiglare mirror
JP2011100032A (en) * 2009-11-06 2011-05-19 Hitachi Displays Ltd Liquid crystal display device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087343A (en) * 2013-02-28 2018-06-07 日産化学工業株式会社 Polymer
KR20160067131A (en) * 2013-10-01 2016-06-13 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
KR102172129B1 (en) 2013-10-01 2020-10-30 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2015050133A1 (en) * 2013-10-01 2015-04-09 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
JP2015092222A (en) * 2013-10-03 2015-05-14 Jsr株式会社 Liquid crystal alignment agent
CN105659155A (en) * 2013-10-23 2016-06-08 日产化学工业株式会社 Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
WO2015060360A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
US20160264520A1 (en) * 2013-10-23 2016-09-15 Nissan Chemical Industries. Ltd. Novel diamine, polyamic acid, and polyimide
US20160264867A1 (en) * 2013-10-23 2016-09-15 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent containing polyimide precursor having thermally-leaving group and/or polyimide
CN105683827A (en) * 2013-10-23 2016-06-15 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
US9976086B2 (en) 2013-10-23 2018-05-22 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent containing polyimide precursor having thermally-leaving group and/or polyimide
JPWO2015060360A1 (en) * 2013-10-23 2017-03-09 日産化学工業株式会社 Liquid crystal aligning agent containing polyimide precursor and / or polyimide having thermally detachable group
US20160244673A1 (en) * 2013-10-23 2016-08-25 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
US10011772B2 (en) * 2013-10-23 2018-07-03 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
US10023530B2 (en) * 2013-10-23 2018-07-17 Nissan Chemical Industries, Ltd. Diamine, polyamic acid, and polyimide
US10336865B2 (en) * 2013-10-23 2019-07-02 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
CN105683827B (en) * 2013-10-23 2019-11-05 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal aligning element
CN105659155B (en) * 2013-10-23 2020-01-21 日产化学工业株式会社 Liquid crystal aligning agent containing polyimide precursor and/or polyimide having thermally-releasable group
JP2016222798A (en) * 2015-05-29 2016-12-28 三菱瓦斯化学株式会社 Polyimide resin

Also Published As

Publication number Publication date
TW201302856A (en) 2013-01-16
CN103562783B (en) 2016-08-17
JPWO2012133829A1 (en) 2014-07-28
CN103562783A (en) 2014-02-05
KR20140037834A (en) 2014-03-27
TWI534178B (en) 2016-05-21
JP6056752B2 (en) 2017-01-11
KR101864913B1 (en) 2018-06-05

Similar Documents

Publication Publication Date Title
JP6056752B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP5708636B2 (en) End-modified polyamic acid ester-containing liquid crystal aligning agent and liquid crystal aligning film
JP6048143B2 (en) Liquid crystal aligning agent and liquid crystal aligning film containing polyamic acid ester and polyamic acid
WO2011115118A1 (en) Liquid crystal alignment agent containing polyamic acid ester, and liquid crystal alignment film
TWI637027B (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2016191932A (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP5962512B2 (en) Liquid crystal aligning agent and liquid crystal aligning film
WO2013018904A1 (en) Liquid crystal orientation liquid for light orientation processing technique, and liquid crystal orientation film employing same
JP6152849B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP5630625B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6597645B2 (en) Liquid crystal alignment agent
JP6460342B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP6558543B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
WO2014010402A1 (en) Liquid crystal alignment agent containing polyamic acid ester, liquid crystal alignment film, and liquid crystal display element
WO2015119168A1 (en) Liquid-crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507818

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137028664

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12763694

Country of ref document: EP

Kind code of ref document: A1