WO2012133149A1 - ブルッカイト型の酸化チタンを用いた過酸化水素の直接製造法 - Google Patents

ブルッカイト型の酸化チタンを用いた過酸化水素の直接製造法 Download PDF

Info

Publication number
WO2012133149A1
WO2012133149A1 PCT/JP2012/057454 JP2012057454W WO2012133149A1 WO 2012133149 A1 WO2012133149 A1 WO 2012133149A1 JP 2012057454 W JP2012057454 W JP 2012057454W WO 2012133149 A1 WO2012133149 A1 WO 2012133149A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen peroxide
catalyst
directly producing
producing hydrogen
titanium oxide
Prior art date
Application number
PCT/JP2012/057454
Other languages
English (en)
French (fr)
Inventor
石原 達己
常昭 岩切
加藤 賢治
Original Assignee
三菱瓦斯化学株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, 国立大学法人九州大学 filed Critical 三菱瓦斯化学株式会社
Publication of WO2012133149A1 publication Critical patent/WO2012133149A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver

Definitions

  • the present invention relates to a method for producing hydrogen peroxide by directly reacting hydrogen and oxygen, and more particularly, a method for producing hydrogen peroxide directly using a catalyst containing brookite-type titanium oxide and a specific active metal. About.
  • hydrogen peroxide Since hydrogen peroxide has an oxidizing power and a strong bleaching and sterilizing action, it is used as a bleaching and sterilizing agent for paper, pulp, fiber, processed fishery products and the like. In addition, it is an important industrial product widely used for oxidation reactions including epoxidation and hydroxylation. Furthermore, hydrogen peroxide is used for surface cleaning in the semiconductor industry, for chemical polishing of copper, tin and other copper alloy surfaces, for etching electronic circuits, and the like. And since hydrogen peroxide is only water and oxygen even if it decomposes, it is positioned as important from the viewpoint of green chemistry, and has attracted attention as an alternative material for chlorine bleach.
  • hydrogen peroxide is produced by an organic method, an anthraquinone method, an electrolysis method or the like, and an anthraquinone method is used as an industrial production method.
  • the anthraquinone method has a number of steps such as reduction, oxidation of the anthraquinone medium, extraction of the generated hydrogen peroxide, purification, concentration, etc., and the capital investment cost is high.
  • There are environmental problems such as use and release of organic solvents into the atmosphere.
  • Patent Document 4 in a method for producing hydrogen peroxide from oxygen and hydrogen under pressure in a sulfuric acid aqueous solution using a platinum group catalyst, by allowing halogen ions such as bromide ions to coexist in the aqueous solution, This shows that high concentration hydrogen peroxide can be selectively produced. That is, in the conventional technique, in order to obtain hydrogen peroxide with a high selectivity in a method for producing hydrogen peroxide with high concentration by catalytically reacting oxygen and hydrogen in a reaction medium, 2 MPa or more. It was necessary to carry out the reaction under high pressure.
  • Patent Document 6 discloses a high concentration peroxidation under low pressure by catalytically reacting oxygen and hydrogen using an aqueous solution as a reaction medium on a catalyst in which titania and a platinum group metal are supported on a carrier that is difficult to crush.
  • a method for producing hydrogen peroxide that makes it possible to obtain hydrogen.
  • Patent Document 7 discloses a suspension obtained by suspending a titanium-containing silicate porous body in a solution (metal salt-containing solution) in which a Pd salt and an Au salt are dissolved, and preparing a suspension.
  • a method for producing a catalyst is described in which a liquid is irradiated with ultraviolet rays to deposit metal fine particles containing an alloy of Pd and Au on the surface of a titanium-containing porous silicate.
  • this method is a method in which a metal is supported on a suspended catalyst by a photoprecipitation method, and the performance of the catalyst is poor because the supported component is not supported in a highly dispersed manner.
  • Patent Document 8 as a method for improving a catalyst for producing direct hydrogen peroxide, a catalyst carrier is acid-washed, and gold and / or palladium, conveniently depositing gold and palladium on the washing carrier at the same time, is used as a catalyst. It is described that the precursor is formed and then the catalyst precursor is preferably heat treated at a temperature of 400 ° C. or higher to form a catalyst comprising gold, palladium or gold and palladium particles. And it is described that silica, titania, alumina, ferric oxide, zeolite or activated carbon is used as a carrier.
  • the production conditions are water / methanol and water / acetone, which are unsuitable for obtaining a purified hydrogen peroxide final product from an industrial standpoint, and the reaction pressure is as high as 1 MPa or more.
  • US Pat. No. 6,057,097 contains at least one metal selected from groups 7 to 11 of the periodic table and is supported on SiO 2 functionalized by acidic groups bonded to the surface of those metals.
  • a catalyst for obtaining hydrogen has been proposed, but the reaction pressure is as high as 9.6 MPa, and further, a reaction in a methanol system, and a purification step is required to obtain a final product.
  • Patent Document 10 proposes a method for producing hydrogen peroxide including a step of reacting hydrogen and oxygen in a solvent in the presence of a cationic polymer containing a noble metal and a halogen-containing anion. It is a reaction in the medium.
  • the present invention has been made based on the background as described above, and can achieve high selectivity and yield even under a low pressure of about 1 atm without using an organic solvent in an aqueous medium.
  • An object is to provide a method capable of producing hydrogen peroxide directly and stably from oxygen.
  • the present inventors have conducted intensive studies on the relationship between the crystal structure of titanium oxide (titania) and the production rate and selectivity of hydrogen peroxide.
  • brookite-type titanium oxide was used as a carrier.
  • Hydrogen peroxide was produced by reacting hydrogen and oxygen in the presence of a catalyst supporting at least one active metal selected from the group consisting of platinum, palladium, silver and gold. The inventors have found that the selectivity and yield are improved in a well-balanced manner and have reached the present invention.
  • ⁇ 1> A step of reacting hydrogen and oxygen in the presence of a catalyst in which at least one active metal selected from the group consisting of platinum, palladium, silver, and gold is supported on brookite-type titanium oxide.
  • This is a direct method for producing hydrogen peroxide.
  • ⁇ 2> The method for directly producing hydrogen peroxide according to ⁇ 1>, wherein the weight of the active metal is 0.01 to 10% by weight with respect to the brookite type titanium oxide.
  • ⁇ 3> The method for directly producing hydrogen peroxide according to ⁇ 1> or ⁇ 2>, wherein the catalyst is hydrogen-reduced at a temperature of 400 ° C. or higher in advance.
  • ⁇ 4> The method for directly producing hydrogen peroxide according to any one of ⁇ 1> to ⁇ 3>, wherein the catalyst is reduced with hydrazine.
  • ⁇ 5> The peroxide according to any one of ⁇ 1> to ⁇ 4>, wherein the catalyst further supports one or more selected from the group consisting of ruthenium, rhodium, iridium, and osmium. This is a direct production method of hydrogen.
  • ⁇ 6> The method for directly producing hydrogen peroxide according to any one of ⁇ 1> to ⁇ 5>, wherein the active metal is palladium and / or gold.
  • ⁇ 7> The method for directly producing hydrogen peroxide according to ⁇ 6>, wherein the active metals are palladium and gold, and the molar ratio of palladium / gold is 0.1 to 10.
  • ⁇ 8> The method for directly producing hydrogen peroxide according to any one of ⁇ 1> to ⁇ 7>, wherein the brookite-type titanium oxide has a specific surface area of at least 50 m 2 / g.
  • ⁇ 9> The method for directly producing hydrogen peroxide according to any one of ⁇ 1> to ⁇ 8>, wherein hydrogen peroxide is produced in the absence of an organic solvent.
  • ⁇ 10> The method for directly producing hydrogen peroxide according to any one of ⁇ 1> to ⁇ 9> above, wherein an inorganic acid selected from hydrogen halide or sulfuric acid is added to the reaction system and reacted.
  • ⁇ 11> The method for directly producing hydrogen peroxide according to ⁇ 10>, wherein the addition amount of the inorganic acid is 0.01 to 10% by weight based on the reaction solution.
  • a brookite type titanium oxide is used as a catalyst carrier, whereby the reaction rate of hydrogen peroxide, The selectivity and yield can be improved in a well-balanced manner, and a highly concentrated aqueous hydrogen peroxide solution can be obtained in a short reaction time.
  • a purification step is not required to obtain a final product.
  • FIG. 1 is a diagram showing an X-ray diffraction of a catalyst obtained in Example 1.
  • FIG. 2 is a diagram showing an X-ray diffraction of a catalyst obtained in Example 2.
  • any brookite type titanium oxide can be used without particular limitation.
  • the specific surface area is important as the catalyst carrier, and the brookite type titanium oxide as the catalyst carrier in the present invention preferably has a large specific surface area, preferably 10 m 2 / g or more, particularly preferably 50 m 2 / g or more. preferable. Further, the upper limit of the specific surface area is preferably 150 m 2 / g or less, and more preferably 100 m 2 / g or less.
  • the catalyst used in the present invention is one in which at least one active metal selected from the group consisting of platinum, palladium, silver and gold is supported on the above brookite type titanium oxide as a carrier.
  • platinum, palladium, silver or gold can be used alone or as a mixture or as an alloy for the active metal.
  • one or more selected from the group consisting of ruthenium, osnium, rhodium and iridium can be used as a mixture or alloy as long as the effects of the present invention are not impaired. .
  • the active metal it is preferable to use palladium and / or gold as the active metal.
  • the molar ratio of palladium / gold varies depending on the dispersion state of the active metal when supported on brookite-type titanium oxide as a carrier, but is preferably 0.1 to 10, and more preferably 1 to 5.
  • the active metal supported on the carrier is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight based on the carrier.
  • the amount of catalyst used is preferably 1 to 100 g / l, more preferably 5 to 40 g / l, based on the reaction solution.
  • a method for supporting the active metal on brookite-type titanium oxide a method in which the titanium oxide is suspended in an aqueous solution in which a metal salt of the active metal is dissolved and then reduced and supported by a reducing agent is also preferably used.
  • a reducing agent oxalic acid, hydrazine or formalin can be used, and hydrazine is preferably used.
  • an inorganic acid to the reaction system for reaction.
  • the amount of inorganic acid added is preferably 0.01 to 10% by weight based on the reaction solution.
  • this inorganic acid application of hydrogen halide or sulfuric acid is preferable, and it is preferable to add either or both of them.
  • the reaction temperature during the synthesis reaction is preferably from 0 to 100 ° C., particularly preferably from 5 to 50 ° C.
  • the pressure of the reaction is not particularly limited, but is preferably atmospheric pressure to 10M Pascal, and particularly preferably atmospheric pressure to 2M Pascal.
  • the reaction time is usually 0.1 to 100 hours, preferably 0.5 to 10 hours. This reaction can be carried out either batchwise or continuously. Further, the flow rates of the hydrogen gas and oxygen gas as raw materials are preferably such that the explosion range is avoided and oxygen is excessive with respect to hydrogen.
  • the hydrogen reaction rate is preferably 30% or more, and more preferably 40% or more.
  • the selectivity for hydrogen peroxide is preferably 40% or more, and more preferably 60% or more.
  • the yield of hydrogen peroxide is preferably 25% or more.
  • Example 1 Showa Denko high surface area brookite type titania (specific surface area 74 m 2 / g) 10 g, HAuCl 4 0.05 g and PdCl 2 0.12 g were suspended in 300 ml of water and heated to 60 ° C. NaOH (2.5 ⁇ 10 ⁇ 4 mol / ml) was added until pH 10 and then a 3% aqueous hydrazine solution was added dropwise. When the color change ceased, the end of the reduction was judged, and the water was removed by heating until it became semi-liquid while stirring with a magnetic stirrer. Further, after removing the magnetic stirrer, the magnetic stirrer was dried overnight in a 85 ° C. dryer.
  • NaOH 2.5 ⁇ 10 ⁇ 4 mol / ml
  • the dried sample was sized to 0.5 to 1.8 mm and subjected to reduction treatment for 4 hours in a H 2 stream at 450 ° C. and 40 ml / min to obtain a black granular catalyst.
  • the obtained catalyst was examined for X-ray diffraction. The result is shown in FIG.
  • Example 2 (Evaporation to dryness method) Showa Denko high surface area brookite type titania (specific surface area 74 m 2 / g) 10 g, HAuCl 4 0.05 g and PdCl 2 0.12 g were suspended in 100 ml of water. While stirring with a magnetic stirrer, the water was removed by heating until it became semi-liquid. Furthermore, after removing the magnetic stirrer, it was dried at 60 ° C. overnight. The dried sample was pulverized, sized to 0.5 to 1.18 mm, and reduced for 4 hours in a H 2 stream at 450 ° C. and 40 ml / min to obtain a black granular catalyst. The obtained catalyst was examined for X-ray diffraction. The result is shown in FIG. Hydrogen peroxide was produced in the same manner as in Example 1 except that the catalyst obtained above was used. The obtained results are shown in Table 1.
  • Example 3 Showa Denko high surface area brookite type titania (specific surface area 74 m 2 / g) 10 g, HAuCl 4 0.086 g and PdCl 2 0.203 g were suspended in 300 ml of water and heated to 60 ° C. NaOH (2.5 ⁇ 10 ⁇ 4 mol / ml) was added until pH 10 and 3% aqueous hydrazine solution was added dropwise. When the color change ceased, the end of the reduction was judged, and the water was removed by heating until it became semi-liquid while stirring with a magnetic stirrer. Further, after removing the magnetic stirrer, the magnetic stirrer was dried overnight in an 85 ° C. dryer. The dried sample was sized to 0.5 to 1.8 mm to obtain a granular catalyst. Hydrogen peroxide was produced in the same manner as in Example 1 except that the catalyst obtained above was used. The obtained results are shown in Table 1.
  • Example 4 Showa Denko high surface area brookite type titania (specific surface area 74 m 2 / g) 10 g and PdCl 2 0.203 g were suspended in 300 ml of water and heated to 60 ° C. NaOH (2.5 ⁇ 10 ⁇ 4 mol / ml) was added until pH 10 and 3% aqueous hydrazine solution was added dropwise. When the color change ceased, the end of the reduction was judged, and the water was removed by heating until it became semi-liquid while stirring with a magnetic stirrer. Further, after removing the magnetic stirrer, the magnetic stirrer was dried overnight in an 85 ° C. dryer. The dried sample was sized to 0.5 to 1.8 mm to obtain a granular catalyst. Hydrogen peroxide was produced in the same manner as in Example 1 except that the catalyst obtained above was used. The obtained results are shown in Table 1.
  • Example 5 Showa Denko high surface area brookite type titania (specific surface area 74m 2 / g) 10g, PdCl 2 0.203g and Pt (NH 3 ) 4 Cl 2 ⁇ H 2 O 0.22g suspended in 300ml water up to 60 ° C Heated. NaOH (2.5 ⁇ 10 ⁇ 4 mol / ml) was added until pH 10 and 3% aqueous hydrazine solution was added dropwise. When the color change ceased, the end of the reduction was judged, and the water was removed by heating until it became semi-liquid while stirring with a magnetic stirrer. Further, after removing the magnetic stirrer, the magnetic stirrer was dried overnight in an 85 ° C. dryer. The dried sample was sized to 0.5 to 1.8 mm to obtain a granular catalyst. Hydrogen peroxide was produced in the same manner as in Example 1 except that the catalyst obtained above was used. The obtained results are shown in Table 1.
  • the dried sample was sized to 0.5 to 1.8 mm and subjected to reduction treatment for 4 hours in a H 2 stream at 450 ° C. and 40 ml / min to obtain a black granular catalyst.
  • Hydrogen peroxide was produced in the same manner as in Example 1 except that the catalyst obtained above was used. The obtained results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

 本発明によれば、ブルッカイト型の酸化チタンに、白金、パラジウム、銀及び金からなる群より選択される少なくとも1種の活性金属を担持させた触媒の存在下で、水素と酸素とを反応させる工程を有する過酸化水素の直接製造法を提供することができる。

Description

ブルッカイト型の酸化チタンを用いた過酸化水素の直接製造法
 本発明は、水素と酸素を直接反応させて過酸化水素を製造する方法に関し、更に詳しくは、ブルッカイト型の酸化チタンと特定の活性金属とを含有する触媒を用いた過酸化水素の直接製造法に関する。
 過酸化水素は、酸化力を有し強力な漂白・殺菌作用を持つことから、紙、パルプ、繊維、水産加工品等の漂白剤、殺菌剤として利用されている。また、エポキシ化及びヒドロキシル化をはじめとする酸化反応に広範囲に用いられる重要な工業製品である。更には半導体産業における表面の清浄に、銅、錫及び他の銅合金表面の化学的研磨に、電子回路の蝕刻等に過酸化水素は用いられる。そして、過酸化水素は分解しても水と酸素にしかならないためグリーンケミストリーの観点から重要な位置付けがなされており、塩素系漂白剤の代替材料としても着目されている。
 従来、過酸化水素は、有機法、アントラキノン法、電解法等より製造されており、特に工業的な製造方法としてアントラキノン法が用いられている。しかし、アントラキノン法は、アントラキノン媒体の還元、酸化、生成過酸化水素の抽出、精製、濃縮等といったように多段階からなり、設備投資コストが高くなるという欠点があるのに加え、エネルギーを多量に使用することと、有機溶剤の大気への放出があるなど環境上の問題点がある。
 これらの問題点を改善するために、上記製造法以外の製造方法が試みられているが、その一つに、反応媒体中で触媒を用いて、酸素と水素から直接的に過酸化水素を製造する方法がある。例えば、白金族金属を触媒として用い、酸素と水素から過酸化水素を製造する方法が提案されており、ある程度高い濃度の過酸化水素が生成する事が知られている(例えば、特許文献1、特許文献2および特許文献3)。これらでは、いずれも反応圧力が2MPa以上で、反応媒体として酸や無機塩を溶存させた水溶液を用いている。反応中の選択率の低下を抑制するため、反応媒体中にハロゲンイオンを添加することにより触媒の活性が抑制されて過酸化水素生成反応の選択性が大幅に向上し、取得過酸化水素の濃度が高くなることが示されている。
 特許文献4には、白金族触媒を用い、硫酸酸性水溶液中で加圧下、酸素及び水素から過酸化水素を製造する方法に於いて、水溶液中に臭化物イオン等のハロゲンイオンを共存させる事によって、選択的に高濃度の過酸化水素を製造出来る事を示している。即ち従来の技術では、酸素と水素を反応媒体中で接触的に反応させて高濃度の過酸化水素を製造する方法に於いて、高い選択率で過酸化水素を取得するためには、2MPa以上の高圧下で反応を行う必要があった。また、チタニアを担体とする白金族金属触媒を用いた製造方法では、低圧下で、選択率を著しく低下させることなく高濃度の過酸化水素が得られることが示されている(例えば、特許文献5)。しかし、このチタニアは粒子径が小さいものが多く、また粒子形状も粉砕し易いものであるため工業用触媒としての実用化は困難であった。
 一方、特許文献6には、破砕しにくい担体にチタニアと白金族金属を担持した触媒上で、水溶液を反応媒体として酸素と水素を接触的に反応せしめることにより、低圧下で高濃度の過酸化水素を得ることを可能とした過酸化水素の製造方法を提案している。
 更に、特許文献7には、Pd塩およびAu塩を溶解した溶液(金属塩含有溶液)中に、チタン含有珪酸塩多孔体を懸濁させて、懸濁液を調製し、得られた懸濁液に、紫外線を照射して、チタン含有珪酸塩多孔体の表面に、PdとAuとの合金を含む金属微粒子を析出させる、触媒の製造方法が記載されている。但し、この方法は懸濁された触媒に光析出法で金属を担持させる方法であり、担持成分がうまく高分散担持されていないため触媒の性能が悪い。更には、触媒を得るのに非常に長い時間を要するため実際の製造に必要な触媒量を得る方法としては不適である。また、特許文献8には、直接法過酸化水素の製造触媒の改良法として、触媒担体を酸洗浄し、金及び/又はパラジウム、都合よくは同時に金とパラジウムを洗浄担体上に堆積させて触媒前駆体を形成し、その後触媒前駆体を好ましくは400℃以上の温度で熱処理して、金、パラジウム又は金とパラジウムの粒子を含む触媒を形成させることが記載されている。そして、担体として、シリカ、チタニア、アルミナ、酸化第二鉄、ゼオライト又は活性炭を使用することが記載されている。但し、製造条件としては水/メタノール系、水/アセトン系であり工業的見地からは精製された過酸化水素最終製品を得るのには不適であり、反応圧力も1Mpa以上と高い。
 特許文献9には、周期律表のグループ7ないし11から選択された少なくとも1つの金属を含み、それらの金属の表面に結合された酸性基により機能化されたSiO上に支持された過酸化水素を得るための触媒が提案されているが、反応圧力が9.6MPaと非常に高く、更にはメタノール系での反応であり、最終製品を得るには精製工程が必要である。
 特許文献10には、貴金属およびハロゲン含有アニオンを含むカチオン性ポリマーの存在下で、溶媒中で水素と酸素を反応させるステップを含む過酸化水素の製造方法が提案されているが、この方法もメタノール媒体中での反応である。
特公昭56-47121号公報 特公昭55-18646号公報 特公平1-23401号公報 特開昭63-156005号公報 特開平8-2904号公報 特開平9-301705号公報 特開2008-212872号公報 特表2009-500171号公報 特開2008-296213号公報 特開2009-542565号公報
 かかる過酸化水素の直接製造法では、合成反応の選択性、生成速度等の因子からなる製造効率が重要となる。この点、上記従来法によれば、ある程度の過酸化水素を製造することができる。しかしながら、上記従来の方法では、選択性、生成速度、収率等を総合的に満足させつつ反応を進行させるものではなく、また反応成績を上げるために、高い反応圧力を必要とするもの、更には水/メタノール系及び水/アセントン系の反応溶液を使用しているものもあり、工業的製造に制限を受けるか、経済的に満足できるレベルにまで達していないのが現状である。
 本発明は以上のような背景のもとになされたものであり、水媒体中で有機溶媒を使用せず1気圧程度の低い圧力のもとでも高い選択率、収率を達成できる、水素と酸素から過酸化水素を直接的に安定的に製造することができる方法を提供することを目的とする。
 本発明者等は、上記課題を解決すべく、酸化チタン(チタニア)の結晶構造と過酸化水素の生成速度および選択率の関係について鋭意検討を行った結果、ブルッカイト型の酸化チタンを担体とし、それに白金、パラジウム、銀及び金からなる群より選択される少なくとも1種の活性金属を担持させた触媒の存在下で、水素と酸素とを反応させて過酸化水素を製造したところ、反応速度、選択率及び収率がバランスよく向上することを見出し本発明に到達した。
 即ち、上記課題は、以下の本発明によって解決することができる。
<1> ブルッカイト型の酸化チタンに、白金、パラジウム、銀及び金からなる群より選択される少なくとも1種の活性金属を担持させた触媒の存在下で、水素と酸素とを反応させる工程を有する過酸化水素の直接製造法である。
<2> 前記活性金属の重量が、前記ブルッカイト型の酸化チタンに対して0.01~10重量%である、上記<1>に記載の過酸化水素の直接製造法である。
<3> 前記触媒が、予め400℃以上の温度で水素還元されたものである、上記<1>または<2>に記載の過酸化水素の直接製造法である。
<4> 前記触媒が、ヒドラジンによって還元されたものである、上記<1>から<3>のいずれかに記載の過酸化水素の直接製造法である。
<5> 前記触媒が、更に、ルテニウム、ロジウム、イリジウム及びオスミウムからなる群より選択される1種以上を担持させたものである、上記<1>から<4>のいずれかに記載の過酸化水素の直接製造法である。
<6> 前記活性金属が、パラジウムおよび/または金である、上記<1>から<5>のいずれかに記載の過酸化水素の直接製造法である。
<7> 前記活性金属が、パラジウムおよび金であり、パラジウム/金のモル比が0.1~10である、上記<6>に記載の過酸化水素の直接製造法である。
<8> 前記ブルッカイト型の酸化チタンが、少なくとも50m/gの比表面積を有する、上記<1>から<7>のいずれかに記載の過酸化水素の直接製造法である。
<9> 有機溶媒の不存在下で過酸化水素を製造する、上記<1>から<8>のいずれかに記載の過酸化水素の直接製造法である。
<10>
 反応系にハロゲン化水素又は硫酸から選択される無機酸を添加して反応させる、上記<1>から<9>のいずれかに記載の過酸化水素の直接製造法である。
<11>
 前記無機酸の添加量が、反応溶液に対して0.01~10重量%である、上記<10>に記載の過酸化水素の直接製造法である。
 本発明の製造方法によれば、従来、触媒の担体としてよく知られたアナターゼ型あるいはルチル型の酸化チタンではなく、ブルッカイト型の酸化チタンを触媒担体として用いることにより、過酸化水素の反応速度、選択率及び収率をバランスよく向上させることができ、短時間の反応時間で高濃度の過酸化水素水溶液を得ることが出来る。また、本発明では、有機溶媒を用いる必要はないため、最終製品を得るには精製工程を必要としないという利点もある。
実施例1で得られた触媒のX線回折を示す図である。 実施例2で得られた触媒のX線回折を示す図である。
 以下、本発明を詳細に説明する。
 本発明における触媒担体としては、ブルッカイト型の酸化チタンであれば特に制限なく用いることができる。ブルッカイト型の酸化チタンとしては、例えば、密度4.13g/cm、格子定数:a=5.45Å、b=9.18Å、c=5.15Åである結晶構造を有するものがその代表例として挙げられる。
 これらブルッカイト型の酸化チタンは、X線回折によっても同定することができる。
 更に、触媒担体としては比表面積が重要であり、本発明における触媒担体であるブルッカイト型の酸化チタンは、比表面積が大きいものが望ましく、10m2/g以上が好ましく、特に50m2/g以上が好ましい。また、比表面積の上限は、150m2/g以下であることが好ましく、100m2/g以下であることがより好ましい。
 本発明に使用される触媒は、担体である上記ブルッカイト型の酸化チタンに、白金、パラジウム、銀及び金からなる群より選択される少なくとも1種の活性金属を担持させたものである。上記活性金属は、具体的には、白金、パラジウム、銀または金を単独もしくは混合物として、あるいは合金として用いることができる。本発明においては、本発明の効果を損なわない範囲で、更に、上記活性金属に加え、ルテニウム、オスニウム、ロジウム及びイリジウムからなる群より選択される1種以上を混合物もしくは合金としても用いることが出来る。
 本発明においては、上記活性金属として、パラジウムおよび/または金を使用することが好ましい。パラジウム/金のモル比は、担体であるブルッカイト型の酸化チタンに担持した場合の活性金属の分散状態によって異なるが、0.1~10が好ましく、1~5がより好ましい。
 上記活性金属を担体であるブルッカイト型の酸化チタンに担持する方法としては、含浸法またはイオン交換法を適用することが好ましい。含浸法としては、蒸発乾固法、平衡吸着法、ポアフィリング法などを適用することができる。上記活性金属の担体への担持量は、担体に対して、0.01~10重量%が好ましく、0.05~5重量%がより好ましい。そして、本発明の過酸化水素の直接製造法において、触媒の使用量は、反応液に対して1~100g/lが好ましく、5~40g/lがより好ましい。
 更に、上記活性金属をブルッカイト型の酸化チタンに担持する方法として、活性金属の金属塩を溶解した水溶液に該酸化チタンを懸濁させた後、還元剤で還元して担持する方法も好ましく用いられる。上記還元剤としては、しゅう酸、ヒドラジンあるいはホルマリンを用いることができ、中でもヒドラジンが好ましく用いられる。そして、反応触媒として使用する際には、予め200℃以上の温度で水素還元することが好ましく、より好ましくは300℃、特に好ましくは400℃以上である。
 尚、本発明に係る方法では、反応系に無機酸を添加して反応させることが好ましい。これにより、過酸化水素合成反応の選択率を向上させ、製造効率を確保することができる。無機酸の添加量は、反応溶液に対して0.01~10重量%とするのが好ましい。そして、この無機酸としては、ハロゲン化水素又は硫酸の適用が好ましく、両者のいずれか一方又は双方を添加するのが好ましい。
 合成反応時の反応温度は、0~100℃が好ましく、特に5~50℃の範囲が好ましい。反応の圧力は特に制限はないが、好ましくは大気圧~10Mパスカルであり、特に大気圧~2Mパスカルが好ましい。反応時間は、通常0.1~100時間であり、好ましくは0.5~10時間である。この反応は回分式でも連続式でも行うことができる。また、原料となる水素ガスと酸素ガスの流量は、爆発範囲を避け、かつ、水素に対して酸素が過剰となるような割合が好ましい。
 本発明においては、水素の反応率は、30%以上が好ましく、40%以上がより好ましい。また、本発明においては、過酸化水素の選択率は、40%以上が好ましく、60%以上がより好ましい。更に、本発明においては、過酸化水素の収率は、25%以上が好ましい。
 以下、実施例および比較例に基づいて、本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 昭和電工製高表面積ブルッカイト型チタニア(比表面積が74m2/g)10g、HAuCl40.05gおよびPdCl20.12gを水300mlに懸濁し、60℃まで加熱した。NaOH(2.5×10-4mol/ml)をpH10になるまで加えた後、3%ヒドラジン水溶液を滴下した。色の変化がなくなったところで還元終了を判断し、引き続きマグネチックスターラーで攪拌しながら、加熱して半液体状になるまで水分を除去した。さらに、マグネチックスターラーを除去後、85℃乾燥機で一晩乾燥させた。この乾燥試料を0.5~1.8mmに整粒し、450℃、40ml/minのH2気流中で4時間還元処理を行うことにより、黒色の粒状触媒を得た。得られた触媒のX線回折を調べた。その結果を図1に示す。
 攪拌装置およびガス吹き込み管を備えたテフロンで内張りをした230mlのオートクレイブに、上記で製造したAu/Pd担持のブルッカイト型チタニア触媒1.5g、NaCl0.368g、及び硫酸2.8gを蒸留水で希釈し、全量が75mlとなるように仕込んだ。オートクレイブを10℃に調整しながら、ガスを50ml/min(水素:2.5%、酸素:19.5%、窒素:30%、アルゴン:48%)でオートクレイブに吹き込みながら圧力を0.1Mパスカルに調整し、回転数800rpmで攪拌しながら2時間反応させた。
(1)過酸化水素の生成速度は、以下のように求めた。
過酸化水素生成速度=(生成した過酸化水素モル濃度)÷(反応時間)
 なお、生成した過酸化水素のモル濃度は、硫酸チタニルを過酸化水素の発色剤として使用し、紫外可視分光光度計(商品名:V-550、日本分光製)を用いて測定した。
(2)水素の反応率は、以下のように求めた。
水素の反応率=(消費された水素量)÷(吹き込んだ水素の全量)
 なお、消費された水素量は、ガスクロマトグラフィー(商品名:GC-8A、島津製作所製)を用いて測定した。
(3)過酸化水素の選択率は次式によって計算した。
 過酸化水素の選択率(%)=[(反応により生成した過酸化水素のモル量)÷(消費された水素量から算出した過酸化水素の理論生成モル量)]×100
 なお、生成した過酸化水素のモル量は、硫酸チタニルを過酸化水素の発色剤として使用し、紫外可視分光光度計(商品名:V-550、日本分光製)を用いて測定した。
(4)過酸化水素の収率は、以下のように求めた。
過酸化水素の収率=(水素の反応率)×(過酸化水素の選択率)
 これらの結果を表1に示す。
(実施例2)
(蒸発乾固法)
 昭和電工製高表面積ブルッカイト型チタニア(比表面積が74m2/g)10g、HAuCl0.05gおよびPdCl0.12gを水100mlに懸濁した。マグネチックスターラーで攪拌しながら、加熱して半液体状になるまで水分を除去した。さらに、マグネチックスターラーを除去後、60℃にて一晩乾燥した。この乾燥試料を粉砕後、0.5~1.18mmに整粒し、450℃、40ml/minのH気流中で4時間還元処理を行うことにより、黒色の粒状触媒を得た。得られた触媒のX線回折を調べた。その結果を図2に示す。
 上記で得られた触媒を使用した以外は、実施例1と同様に過酸化水素を製造した。得られた結果を表1に示す。
(実施例3)
 昭和電工製高表面積ブルッカイト型チタニア(比表面積が74m2/g)10g、HAuCl0.086gおよびPdCl0.203gを水300mlに懸濁し、60℃まで加熱した。NaOH(2.5×10-4mol/ml)をpH10になるまで加えた後、3%ヒドラジン水溶液を滴下した。色の変化がなくなったところで還元終了を判断し、引き続きマグネチックスターラーで攪拌しながら、加熱して半液体状になるまで水分を除去した。さらに、マグネチックスターラーを除去後、85℃乾燥機で一晩乾燥させた。この乾燥試料を0.5~1.8mmに整粒し、粒状触媒を得た。
 上記で得られた触媒を使用した以外は、実施例1と同様に過酸化水素を製造した。得られた結果を表1に示す。
(実施例4)
 昭和電工製高表面積ブルッカイト型チタニア(比表面積が74m2/g)10g、PdCl0.203g を水300mlに懸濁し、60℃まで加熱した。NaOH(2.5×10-4mol/ml)をpH10になるまで加えた後、3%ヒドラジン水溶液を滴下した。色の変化がなくなったところで還元終了を判断し、引き続きマグネチックスターラーで攪拌しながら、加熱して半液体状になるまで水分を除去した。さらに、マグネチックスターラーを除去後、85℃乾燥機で一晩乾燥させた。この乾燥試料を0.5~1.8mmに整粒し、粒状触媒を得た。
 上記で得られた触媒を使用した以外は、実施例1と同様に過酸化水素を製造した。得られた結果を表1に示す。
(実施例5)
 昭和電工製高表面積ブルッカイト型チタニア(比表面積が74m2/g)10g、PdCl0.203g および Pt(NH3)4Cl2・H2O 0.22gを水300mlに懸濁し、60℃まで加熱した。NaOH(2.5×10-4mol/ml)をpH10になるまで加えた後、3%ヒドラジン水溶液を滴下した。色の変化がなくなったところで還元終了を判断し、引き続きマグネチックスターラーで攪拌しながら、加熱して半液体状になるまで水分を除去した。さらに、マグネチックスターラーを除去後、85℃乾燥機で一晩乾燥させた。この乾燥試料を0.5~1.8mmに整粒し、粒状触媒を得た。
 上記で得られた触媒を使用した以外は、実施例1と同様に過酸化水素を製造した。得られた結果を表1に示す。
(比較例1)
 事前に500℃で2時間空気焼成した堺化学製ルチル型チタニア(STR-100N、表面積38m2/g)10g、HAuCl40.05gおよびPdCl0.12gを水100mlに懸濁した。マグネチックスターラーで攪拌しながら、加熱して半液体状になるまで水分を除去した。さらに、マグネチックスターラーを除去後、60℃にて一晩乾燥した。この乾燥試料を粉砕後、0.5~1.18mmに整粒し、450℃、40ml/minのH気流中で4時間還元処理を行うことにより、黒色の粒状触媒を得た。
 上記で得られた触媒を使用した以外は、実施例1と同様に過酸化水素を製造した。得られた結果を表1に示す。
(比較例2)
 堺化学製ルチル型チタニア(STR-100N、表面積38m2/g)10g、HAuCl40.05gおよびPdCl0.12gを水300mlに懸濁し、60℃まで加熱した。NaOH(2.5×10-4mol/ml)をpH10になるまで加えた後、3%ヒドラジン水溶液を滴下した。色の変化がなくなったところで還元終了を判断し、引き続きマグネチックスターラーで攪拌しながら、加熱して半液体状になるまで水分を除去した。さらに、マグネチックスターラーを除去後、85℃乾燥機で一晩乾燥させた。この乾燥試料を0.5~1.8mmに整粒し、450℃、40ml/minのH2気流中で4時間還元処理を行うことにより、黒色の粒状触媒を得た。
 上記で得られた触媒を使用した以外は、実施例1と同様に過酸化水素を製造した。得られた結果を表1に示す。
(比較例3)
 キシダ化学製アナターゼ型チタニア(020-78675;表面積5.8m2/g)10g、HAuCl40.05gおよびPdCl0.12gを水100mlに懸濁した。マグネチックスターラーで攪拌しながら、加熱して半液体状になるまで水分を除去した。さらに、マグネチックスターラーを除去後、60℃にて一晩乾燥した。この乾燥試料を粉砕後、0.5~1.18mmに整粒し、450℃、40ml/minのH気流中で4時間還元処理を行うことにより、黒色の粒状触媒を得た。
 上記で得られた触媒を使用した以外は、実施例1と同様に過酸化水素を製造した。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかな通り、実施例1から5で使用したブルッカイト型チタニアに特定の活性金属を担持させた触媒を用いた本発明の過酸化水素の製造方法によれば、ルチル型チタニア及びアナターゼ型チタニアに金属を担持させた触媒を用いた過酸化水素の製造方法に比べて、過酸化水素の生成速度、選択率及び収率がバランスよく優れ、特に選択率が高く工業的な価値が認められた。特にガス循環型の反応系を考えた場合は選択率が高い事は非常に経済的に有利である。

Claims (11)

  1.  ブルッカイト型の酸化チタンに、白金、パラジウム、銀及び金からなる群より選択される少なくとも1種の活性金属を担持させた触媒の存在下で、水素と酸素とを反応させる工程を有する過酸化水素の直接製造法。
  2.  前記活性金属の重量が、前記ブルッカイト型の酸化チタンに対して0.01~10重量%である、請求項1に記載の過酸化水素の直接製造法。
  3.  前記触媒が、予め400℃以上の温度で水素還元されたものである、請求項1または2に記載の過酸化水素の直接製造法。
  4.  前記触媒が、ヒドラジンによって還元されたものである、請求項1から3のいずれかに記載の過酸化水素の直接製造法。
  5.  前記触媒が、更に、ルテニウム、ロジウム、イリジウム及びオスミウムからなる群より選択される1種以上を担持させたものである、請求項1から4のいずれかに記載の過酸化水素の直接製造法。
  6.  前記活性金属が、パラジウムおよび/または金である、請求項1から5のいずれかに記載の過酸化水素の直接製造法。
  7.  前記活性金属が、パラジウムおよび金であり、パラジウム/金のモル比が0.1~10である、請求項6に記載の過酸化水素の直接製造法。
  8.  前記ブルッカイト型の酸化チタンが、少なくとも50m/gの比表面積を有する、請求項1から7のいずれかに記載の過酸化水素の直接製造法。
  9.  有機溶媒の不存在下で過酸化水素を製造する、請求項1から8のいずれかに記載の過酸化水素の直接製造法。
  10.  反応系にハロゲン化水素又は硫酸から選択される無機酸を添加して反応させる、請求項1から9のいずれかに記載の過酸化水素の直接製造法。
  11.  前記無機酸の添加量が、反応溶液に対して0.01~10重量%である、請求項10に記載の過酸化水素の直接製造法。
PCT/JP2012/057454 2011-03-30 2012-03-23 ブルッカイト型の酸化チタンを用いた過酸化水素の直接製造法 WO2012133149A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011074746A JP2014114167A (ja) 2011-03-30 2011-03-30 ブルッカイト型の酸化チタンを用いた過酸化水素の直接製造法
JP2011-074746 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133149A1 true WO2012133149A1 (ja) 2012-10-04

Family

ID=46930873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057454 WO2012133149A1 (ja) 2011-03-30 2012-03-23 ブルッカイト型の酸化チタンを用いた過酸化水素の直接製造法

Country Status (3)

Country Link
JP (1) JP2014114167A (ja)
TW (1) TW201302604A (ja)
WO (1) WO2012133149A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010372A1 (ja) * 2012-07-10 2014-01-16 三菱瓦斯化学株式会社 過酸化水素の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111517276B (zh) * 2019-02-02 2021-12-24 国家纳米科学中心 一种光催化分解水制备氢气和双氧水的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518646B2 (ja) * 1975-12-10 1980-05-20
JP2004518604A (ja) * 2000-12-21 2004-06-24 アルコ ケミカル テクノロジィ, エル.ピー. 過酸化水素の製造方法
JP2009500171A (ja) * 2005-07-11 2009-01-08 ユニバーシティ・カレッジ・カーディフ・コンサルタンツ・リミテッド 触媒の改良
JP2010143810A (ja) * 2008-12-22 2010-07-01 Kyushu Univ イオン性液体を用いた過酸化水素の直接製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518646B2 (ja) * 1975-12-10 1980-05-20
JP2004518604A (ja) * 2000-12-21 2004-06-24 アルコ ケミカル テクノロジィ, エル.ピー. 過酸化水素の製造方法
JP2009500171A (ja) * 2005-07-11 2009-01-08 ユニバーシティ・カレッジ・カーディフ・コンサルタンツ・リミテッド 触媒の改良
JP2010143810A (ja) * 2008-12-22 2010-07-01 Kyushu Univ イオン性液体を用いた過酸化水素の直接製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOHEI MODA ET AL.: "Ti02 Tanji Pd-Au Shokubai ni yoru H2 karano Chokusetsu H202 Gosei", DAI 105 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, 24 March 2010 (2010-03-24), pages 123, XP008176216 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010372A1 (ja) * 2012-07-10 2014-01-16 三菱瓦斯化学株式会社 過酸化水素の製造方法
JP2014015353A (ja) * 2012-07-10 2014-01-30 Mitsubishi Gas Chemical Co Inc 過酸化水素の製造方法
US9919923B2 (en) 2012-07-10 2018-03-20 Mitsubishi Gas Chemical Company, Inc. Method for producing hydrogen peroxide

Also Published As

Publication number Publication date
TW201302604A (zh) 2013-01-16
JP2014114167A (ja) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5073133B2 (ja) 過酸化水素を直接合成するための触媒および方法
TWI229052B (en) Process for the continuous production of hydrogen peroxide
KR100284671B1 (ko) 과산화수소의제조방법
JP5588107B2 (ja) 触媒の改良
KR20180024478A (ko) 중형기공 쉘을 갖는 과산화수소 제조용 나노촉매 및 이를 이용한 과산화수소의 제조방법
EP2776155A1 (en) A catalyst for direct synthesis of hydrogen peroxide
TWI238857B (en) Direct synthesis of hydrogen peroxide in a multicomponent solvent system
WO2012133149A1 (ja) ブルッカイト型の酸化チタンを用いた過酸化水素の直接製造法
JP5048643B2 (ja) イオン性液体を用いた過酸化水素の直接製造法
JP2008212872A (ja) 触媒およびその製造方法ならびに過酸化水素の製造方法
KR101825907B1 (ko) 코어-쉘 구조를 갖는 과산화수소 제조용 촉매 및 이를 이용한 과산화수소의 제조방법
Mehri et al. In Situ Generated H2O2 over Supported Pd–Au Clusters in Hybrid Titania Nanocrystallites
US9610573B2 (en) Process to obtain hydrogen peroxide, and catalyst supports for the same process
WO2018016359A1 (ja) 過酸化水素製造用貴金属触媒および過酸化水素の製造方法
CN114618486B (zh) 一种铂钯银复式催化剂及其制备方法、应用
JP2013146720A (ja) 担持酸化ルテニウムの製造方法及び塩素の製造方法
WO2016050859A2 (en) Method for preparing a catalyst support and a catalyst
RU2526460C1 (ru) Способ приготовления катализатора и способ получения пероксида водорода
EP3107652A1 (en) Process to obtain hydrogen peroxide, and catalyst and catalysts supports for said process
Tawkaew et al. Preparation and photocatalytic activity of iron oxide-loaded potassium titanate layered compounds
JP2019181332A (ja) ヨウ化水素分解用触媒
EP3160901A1 (en) A catalyst for direct synthesis of hydrogen peroxide, its preparation and use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP