WO2012132616A1 - Method for producing photoelectric conversion element - Google Patents

Method for producing photoelectric conversion element Download PDF

Info

Publication number
WO2012132616A1
WO2012132616A1 PCT/JP2012/053851 JP2012053851W WO2012132616A1 WO 2012132616 A1 WO2012132616 A1 WO 2012132616A1 JP 2012053851 W JP2012053851 W JP 2012053851W WO 2012132616 A1 WO2012132616 A1 WO 2012132616A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoelectric conversion
conversion element
amorphous silicon
type amorphous
Prior art date
Application number
PCT/JP2012/053851
Other languages
French (fr)
Japanese (ja)
Inventor
嶋田 聡
仁 坂田
藤田 和範
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012132616A1 publication Critical patent/WO2012132616A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a photoelectric conversion element.
  • Patent Document 1 discloses a semiconductor substrate having a light receiving surface and a back surface provided on the opposite side of the light receiving surface, a first semiconductor layer formed along a predetermined direction on the back surface, and a predetermined direction on the back surface. And a pair of second semiconductor layers disposed on both sides of the first semiconductor layer, and formed from one second semiconductor layer to the first semiconductor layer of the pair of second semiconductor layers.
  • the photoelectric conversion element provided with the transparent electrode layer which covers and the collection electrode layer formed on a transparent electrode layer is disclosed.
  • an insulating layer or the like may be stacked on a semiconductor layer formed on a semiconductor substrate.
  • pinholes may be formed in the insulating layer or the like due to dust or the like in the film forming apparatus.
  • the film quality may be adversely affected, for example, the semiconductor layer may be etched through the pinhole.
  • an amorphous semiconductor layer is formed on the back surface of a semiconductor substrate, an insulating layer is formed on the amorphous semiconductor layer, and a photoresist is formed on the insulating layer. Forming a layer, and etching the light-receiving surface opposite to the back surface of the semiconductor substrate in a state where the photoresist layer is formed on the insulating layer.
  • the power generation characteristics of the photoelectric conversion element can be improved.
  • it is sectional drawing of a photoelectric conversion element.
  • it is a flowchart which shows the procedure of the manufacturing method of a photoelectric conversion element.
  • it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element.
  • it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element.
  • it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element.
  • it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element.
  • it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element.
  • it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element.
  • FIG. 1 is a cross-sectional view of the photoelectric conversion element 10.
  • the photoelectric conversion element 10 includes an antireflection layer 12, an n-type amorphous silicon layer 14, an i-type amorphous silicon layer 16, an n-type single crystal silicon substrate 18, an i-n stacked portion 21, and i.
  • an arrow A shown in FIG. 1 indicates a direction in which light such as sunlight enters the photoelectric conversion element 10.
  • the “light receiving surface” means a surface on which light such as sunlight is mainly incident.
  • the “back surface” means a surface opposite to the light receiving surface.
  • the n-type single crystal silicon substrate 18 is a power generation layer that receives carriers incident from the light receiving surface and generates carriers.
  • the n-type single crystal silicon substrate 18 is used.
  • the present invention is not limited to this, and an n-type or p-type conductive crystal semiconductor substrate can be used.
  • a polycrystalline silicon substrate, a gallium arsenide substrate (GaAs), an indium phosphorus substrate (InP), or the like can be used.
  • the i-type amorphous silicon layer 16 is a passivation layer formed on the light-receiving surface of the n-type single crystal silicon substrate 18.
  • the n-type amorphous silicon layer 14 is formed on the i-type amorphous silicon layer 16.
  • the i-type amorphous silicon layer 16 and the n-type amorphous silicon layer 14 constitute an amorphous semiconductor layer portion formed on the light receiving surface.
  • the i-type amorphous silicon layer 16 is a layer made of an intrinsic amorphous semiconductor film.
  • the i-type amorphous silicon layer 16 has a lower dopant concentration in the film than the n-type amorphous silicon layer 14.
  • the i-type amorphous silicon layer 16 preferably has an n-type or p-type conductivity of 10 ⁇ 11 s / cm or less.
  • the n-type amorphous silicon layer 14 is a layer made of an amorphous semiconductor film containing an n-type conductive dopant.
  • the n-type amorphous silicon layer 14 has a higher dopant concentration in the film than the i-type amorphous silicon layer 16.
  • the n-type amorphous silicon layer 14 preferably has an n-type conductivity of 10 ⁇ 3 s / cm or more.
  • the amorphous silicon layer includes a microcrystalline semiconductor film.
  • a microcrystalline semiconductor film is a film in which crystal grains are precipitated in an amorphous semiconductor.
  • the average grain size of the crystal grains is not limited to this, but is estimated to be about 1 nm to 80 nm.
  • the antireflection layer 12 is formed on the n-type amorphous silicon layer 14 and reduces reflection of light incident from the light receiving surface of the photoelectric conversion element 10.
  • the antireflection layer 12 also functions as a protective layer that protects the surface of the n-type amorphous silicon layer 14.
  • the antireflection layer 12 is made of a transparent material and has a refractive index that reduces reflection of light incident from the light receiving surface of the photoelectric conversion element 10 in relation to the refractive index of the layer covered by the antireflection layer 12. And a film thickness is preferred.
  • the antireflection layer 12 includes, for example, aluminum nitride, silicon nitride, silicon oxide, and the like.
  • the i-n laminated portion 21 is formed on the back surface of the n-type single crystal silicon substrate 18. It is preferable that the i-n stacked unit 21 is arranged so that current can be collected evenly from the surface of the photoelectric conversion element 10 in an n-side electrode unit 25 described later.
  • the i-n stacked portion 21 preferably has a comb-teeth shape in which a plurality of finger portions extend in parallel.
  • the i-n stacked unit 21 includes an i-type amorphous silicon layer 22 and an n-type amorphous silicon layer 23.
  • the i-type amorphous silicon layer 22 is a passivation layer formed on the back surface of the n-type single crystal silicon substrate 18.
  • the n-type amorphous silicon layer 23 is formed on the i-type amorphous silicon layer 22.
  • the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23 constitute a first amorphous semiconductor layer portion formed on the back surface.
  • the i-type amorphous silicon layer 22 is a layer made of an intrinsic amorphous semiconductor film.
  • the i-type amorphous silicon layer 22 has a lower dopant concentration in the film than the n-type amorphous silicon layer 23.
  • the i-type amorphous silicon layer 22 preferably has an n-type or p-type conductivity of 10 ⁇ 11 s / cm or less.
  • the n-type amorphous silicon layer 23 is a layer made of an amorphous semiconductor film containing an n-type conductive dopant.
  • the n-type amorphous silicon layer 23 has a higher dopant concentration in the film than the i-type amorphous silicon layer 22.
  • the n-type amorphous silicon layer 23 preferably has an n-type conductivity of 10 ⁇ 3 s / cm or more.
  • the insulating layer 24 is formed to electrically insulate the i-n laminated portion 21 and the ip laminated portion 31.
  • the insulating layer 24 also functions as a protective layer formed on the n-type amorphous silicon layer 23.
  • the insulating layer 24 may be any material having electrical insulation properties, but preferably includes, for example, aluminum nitride, silicon nitride, silicon oxide, and the like.
  • the n-side electrode portion 25 is an electrode member provided for collecting and taking out the electricity generated in the photoelectric conversion element 10.
  • the n-side electrode unit 25 includes a transparent conductive layer 26, a metal layer 27, a first electrode unit 28, and a second electrode unit 29.
  • the transparent conductive layer 26 is formed on the n-type amorphous silicon layer 23.
  • the transparent conductive layer 26 is made of a metal oxide such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), titanium oxide (TiO 2 ), and indium tin oxide (ITO). It is configured to include at least one.
  • the transparent conductive layer 26 is described as being formed using indium tin oxide (ITO).
  • the metal layer 27 is formed on the transparent conductive layer 26.
  • the metal layer 27 is a seed layer including a metal such as copper (Cu) or an alloy, for example.
  • the “seed layer” refers to a layer that is a starting point for plating growth.
  • the first electrode portion 28 is an electrode formed on the metal layer 27 by plating growth.
  • the 1st electrode part 28 is comprised including copper (Cu), for example.
  • the second electrode part 29 is an electrode formed on the first electrode part 28 by plating growth.
  • the second electrode unit 29 includes tin (Sn).
  • the ip laminated portion 31 is formed on the back surface of the n-type single crystal silicon substrate 18 so as to be inserted into the i-n laminated portion 21.
  • the ip laminated portion 31 is preferably arranged so that current can be collected evenly from within the surface of the photoelectric conversion element 10 in the p-side electrode portion 35 described later.
  • the ip laminated portion 31 is preferably, for example, in a comb-teeth shape in which a plurality of finger portions extend in parallel.
  • the ip laminated portion 31 includes an i-type amorphous silicon layer 32 and a p-type amorphous silicon layer 33.
  • the i-type amorphous silicon layer 32 is a passivation layer formed on the back surface of the n-type single crystal silicon substrate 18.
  • the p-type amorphous silicon layer 33 is formed on the i-type amorphous silicon layer 32.
  • the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 constitute a second amorphous semiconductor layer portion formed on the back surface.
  • the i-type amorphous silicon layer 32 is a layer made of an intrinsic amorphous semiconductor film.
  • the i-type amorphous silicon layer 32 has a lower dopant concentration in the film than the p-type amorphous silicon layer 33.
  • the i-type amorphous silicon layer 32 preferably has an n-type or p-type conductivity of 10 ⁇ 11 s / cm or less.
  • the p-type amorphous silicon layer 33 is a layer made of an amorphous semiconductor film containing a p-type conductive dopant.
  • the p-type amorphous silicon layer 33 has a higher dopant concentration in the film than the i-type amorphous silicon layer 32.
  • the p-type amorphous silicon layer 33 preferably has a p-type conductivity of 10 ⁇ 5 s / cm or more.
  • the p-side electrode portion 35 is an electrode member provided for collecting and taking out the electricity generated in the photoelectric conversion element 10.
  • the p-side electrode part 35 includes a transparent conductive layer 36, a metal layer 37, a first electrode part 38, and a second electrode part 39.
  • the transparent conductive layer 36 is formed on the p-type amorphous silicon layer 33.
  • the metal layer 37 is formed on the transparent conductive layer 36.
  • the first electrode portion 38 is formed on the metal layer 37 by plating growth.
  • the second electrode portion 39 is formed on the first electrode portion 38 by plating growth.
  • FIG. 2 is a flowchart showing the procedure of the first embodiment of the method for manufacturing the photoelectric conversion element 10.
  • the manufacturing method of the photoelectric conversion element 10 is not limited to the manufacturing method shown in each process. In each step, for example, a sputtering method, a plasma CVD method, a screen printing method, a plating method, or the like can be used as appropriate.
  • an n-type single crystal silicon substrate 18 is prepared, and the light-receiving surface and the back surface of the n-type single crystal silicon substrate 18 are cleaned (S1).
  • the n-type single crystal silicon substrate 18 can be cleaned using, for example, an HF aqueous solution.
  • an i-type amorphous silicon layer 22a and an n-type amorphous silicon layer 23a are formed on the back surface of the n-type single crystal silicon substrate 18 (S2).
  • each of the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a can be formed by, for example, a plasma CVD method or the like.
  • an insulating layer 24a is formed on the n-type amorphous silicon layer 23a (S3).
  • the insulating layer 24a can be formed by, for example, a thin film forming method such as a sputtering method or a plasma CVD method.
  • a photoresist 20a is formed on the insulating layer 24a (S4).
  • the photoresist 20a can be formed, for example, by applying a thin film with a spin coater or a slit coater.
  • the unexposed photoresist 20a is excellent in alkali resistance.
  • a texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18 (S5).
  • a pyramidal uneven shape is formed on the light-receiving surface of the n-type single crystal silicon substrate 18 by using an alkaline anisotropic etching solution such as a potassium hydroxide aqueous solution (KOH aqueous solution). Can be formed.
  • KOH aqueous solution potassium hydroxide aqueous solution
  • the photoresist 20a is exposed based on a previously prepared pattern (S6). Thereby, in the photoresist 20a, a portion irradiated with light when exposed is in a state of being dissolved in an alkaline developer.
  • an alkaline developer is applied to the photoresist 20a, and the portion irradiated with light is removed from the photoresist 20a as shown in FIG. 6 (S7). Thereby, a photoresist 20 which is a mask for patterning the insulating layer 24 is formed.
  • the insulating layer 24a is etched to remove a part of the insulating layer 24a, and then the photoresist 20 is peeled off (S8).
  • the insulating layer 24b is formed by removing a portion of the insulating layer 24a located on a region for bonding the ip stacked portion 31 to the n-type single crystal silicon substrate 18 in a later step.
  • an acidic etching solution such as an HF aqueous solution is used for the etching of the insulating layer 24a.
  • each of the i-type amorphous silicon layer 16 and the n-type amorphous silicon layer 14 can be formed by, for example, a plasma CVD method or the like.
  • the antireflection layer 12 is formed on the n-type amorphous silicon layer 14 (S10).
  • the antireflection layer 12 can be formed, for example, by a thin film forming method such as a sputtering method or a CVD method.
  • the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a are etched using the insulating layer 24b patterned in S8 as a mask (S11). Specifically, portions of the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a other than the portion covered with the insulating layer 24b are removed. Thus, the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23 are formed by exposing a portion of the back surface of the n-type single crystal silicon substrate 18 where the insulating layer 24b is not located above. To do.
  • an alkaline etching solution such as an aqueous solution containing sodium hydroxide (NaOH) is used.
  • the insulating layer 24 b, the i-type amorphous silicon layer 22, the n-type amorphous silicon layer 23 and the exposed back surface of the n-type single crystal silicon substrate 18 are covered with i
  • the i-type amorphous silicon layer 32a and the p-type amorphous silicon layer 33a can be formed by, for example, a plasma CVD method or the like.
  • a part of the portion located on the insulating layer 24b is etched (S13). .
  • the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 are formed.
  • an alkaline etching solution such as an aqueous solution containing sodium hydroxide (NaOH) is used.
  • the insulating layer 24b is etched to further remove a part of the insulating layer 24b (S14). Specifically, the insulating layer 24 is formed by removing the exposed portion of the insulating layer 24b by etching using the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 as a mask.
  • an acidic etching solution such as an HF aqueous solution is used for the etching of the insulating layer 24b.
  • a transparent conductive layer 26a and a metal layer 27a are formed (S15). Specifically, it is formed by a thin film forming method such as a plasma CVD method or a sputtering method.
  • the transparent conductive layers 26 and 36 and the metal layers 27 and 37 are formed by dividing a portion of the transparent conductive layer 26 a and the metal layer 27 a located on the insulating layer 24. (S16).
  • the transparent conductive layer 26a and the metal layer 27a are divided by, for example, a lithography method.
  • the first electrode portion 28 and the second electrode portion 29 are sequentially formed on the metal layer 27 by electrolytic plating, and the first electrode portion 38 and the second electrode portion 29 are formed on the metal layer 37.
  • Two electrode portions 39 are sequentially formed (S17). Thereby, the n-side electrode part 25 and the p-side electrode part 35 are formed.
  • a texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18 using an alkaline anisotropic etching solution such as an aqueous potassium hydroxide solution (KOH aqueous solution).
  • KOH aqueous solution aqueous potassium hydroxide solution
  • the substantially entire surface of the insulating layer 24b is excellent in alkali resistance. Covered with a photoresist 20a. As a result, even if a pinhole exists in the insulating layer 24b, since the pinhole is blocked by the insulating layer 24b, the alkaline anisotropic etching solution passes through the pinhole. Thus, it is possible to prevent adhesion to the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a. Therefore, according to the first embodiment of the method for manufacturing the photoelectric conversion element 10, the power generation characteristics of the photoelectric conversion element 10 can be improved.
  • the texture structure is formed only on the light receiving surface of the n-type single crystal silicon substrate 18 and the texture structure is not formed on the back surface, the texture structure is formed only on the light receiving surface by temporarily covering the back surface with a sacrificial layer having excellent alkali resistance. After that, a separate step of peeling the sacrificial layer is required.
  • the alkali resistance is excellent, and after the photoresist 20a used for patterning the insulating layer 24a is formed, Since the texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18, a separate process such as providing a special sacrificial layer on the back surface side as described above is not necessary.
  • the photoresist 20a for patterning the insulating layer 24a also serves as the sacrificial layer, the number of steps for manufacturing the photoelectric conversion element 10 can be reduced.
  • FIG. 15 is a flowchart showing the procedure of the second embodiment of the method for manufacturing the photoelectric conversion element 10.
  • the manufacturing method of the photoelectric conversion element 10 is not limited to the manufacturing method shown in each process. In each step, for example, a sputtering method, a plasma CVD method, a screen printing method, a plating method, or the like can be used as appropriate.
  • steps of the second embodiment of the method for manufacturing the photoelectric conversion element 10 and the first embodiment of the method for manufacturing the photoelectric conversion element 10 are the same in steps S1 to S4 and S8 to S17, and between S4 to S8. Since only the process is different, the difference will be mainly described.
  • S1 to S4 are performed as in the first embodiment of the method for manufacturing the photoelectric conversion element 10.
  • the photoresist 20a is exposed based on a pattern prepared in advance (S5a).
  • a portion irradiated with light when exposed is in a state of being dissolved in an alkaline developer.
  • an alkaline developer is applied to the photoresist 20a to remove the portion irradiated with light in the photoresist 20a (S6a). Thereby, a photoresist 20 which is a mask for patterning the insulating layer 24 is formed.
  • a texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18 (S7a).
  • a pyramidal uneven shape is formed on the light-receiving surface of the n-type single crystal silicon substrate 18 by using an alkaline anisotropic etching solution such as a potassium hydroxide aqueous solution (KOH aqueous solution). Can be formed.
  • KOH aqueous solution potassium hydroxide aqueous solution
  • S8 to S17 are performed as in the first embodiment of the method for manufacturing the photoelectric conversion element 10.
  • the second embodiment of the method for manufacturing the photoelectric conversion element 10 a part of the photoresist 20a is removed before the texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18. Therefore, it is possible to prevent damage to the i-type amorphous silicon layer 22a and the p-type amorphous silicon layer 23a located below the portion covered with the photoresist 20, but the removed portion The i-type amorphous silicon layer 22a and the p-type amorphous silicon layer 23a located below may be damaged. However, the portion that may be damaged is a region that is etched in the subsequent step S11. That is, since the portion that can be damaged is a portion that is eventually removed, the damage is not a problem. Therefore, also in the second embodiment of the method for manufacturing the photoelectric conversion element 10, the power generation characteristics of the photoelectric conversion element 10 can be improved as in the first embodiment of the method for manufacturing the photoelectric conversion element 10.
  • FIG. 16 is a flowchart showing the procedure of the third embodiment of the method for manufacturing the photoelectric conversion element 10.
  • the manufacturing method of the photoelectric conversion element 10 is not limited to the manufacturing method shown in each process. In each step, for example, a sputtering method, a plasma CVD method, a screen printing method, a plating method, or the like can be used as appropriate.
  • steps of the third embodiment of the method for manufacturing the photoelectric conversion element 10 and the first embodiment of the method for manufacturing the photoelectric conversion element 10 are the same in steps S1 to S4 and S8 to S17, and are between S4 to S8. Since only the process is different, the difference will be mainly described.
  • S1 to S4 are performed as in the first embodiment of the method for manufacturing the photoelectric conversion element 10.
  • the photoresist 20a is exposed based on a pattern prepared in advance (S5b).
  • a portion irradiated with light when exposed is in a state of being dissolved in an alkaline developer.
  • a texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18 using an alkaline anisotropic etching solution such as an aqueous potassium hydroxide solution (KOH aqueous solution), and the same anisotropic etching solution is used.
  • the photoresist 20a is developed (S6b). As a result, a pyramidal concavo-convex shape can be formed on the light receiving surface of the n-type single crystal silicon substrate 18, and a photoresist 20 which is a mask for patterning the insulating layer 24 is formed.
  • the power generation characteristics of the photoelectric conversion element 10 can be improved as in the first embodiment of the method for manufacturing the photoelectric conversion element 10.
  • a part of the photoresist 20a is removed using the same alkaline anisotropic etching solution, and a texture is formed on the light receiving surface of the n-type single crystal silicon substrate 18. Forming a structure. Therefore, the number of steps of the method for manufacturing the photoelectric conversion element 10 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a method for producing a photoelectric conversion element (10). According to this method, an amorphous semiconductor layer part is formed on the rear surface of an n-type single-crystal silicon substrate (18), an insulating layer (24a) is formed on the amorphous semiconductor layer part, a photoresist (20a) is formed on the insulating layer (24a), and the light-receiving surface on the opposite side of the n-type single-crystal silicon substrate (18) to the rear surface is etched in a state in which the photoresist (20a) is formed on the insulating layer (24a).

Description

光電変換素子の製造方法Method for manufacturing photoelectric conversion element
 本発明は、光電変換素子の製造方法に関する。 The present invention relates to a method for manufacturing a photoelectric conversion element.
 特許文献1には、受光面と、受光面の反対側に設けられる裏面とを有する半導体基板と、裏面上において所定の方向に沿って形成される第1半導体層と、裏面上において所定の方向に沿って形成され、第1半導体層の両隣に配設される一対の第2半導体層と、一対の第2半導体層のうち一方の第2半導体層上から第1半導体層上まで跨って形成される第1絶縁層と、一対の第2半導体層のうち他方の第2半導体層上から第1半導体層上まで跨って形成される第2絶縁層と、第1半導体層及び第2半導体層を覆う透明電極層と、透明電極層上に形成される収集電極層と、を備える光電変換素子が開示されている。 Patent Document 1 discloses a semiconductor substrate having a light receiving surface and a back surface provided on the opposite side of the light receiving surface, a first semiconductor layer formed along a predetermined direction on the back surface, and a predetermined direction on the back surface. And a pair of second semiconductor layers disposed on both sides of the first semiconductor layer, and formed from one second semiconductor layer to the first semiconductor layer of the pair of second semiconductor layers. A first insulating layer to be formed; a second insulating layer formed from the other second semiconductor layer to the first semiconductor layer of the pair of second semiconductor layers; a first semiconductor layer and a second semiconductor layer; The photoelectric conversion element provided with the transparent electrode layer which covers and the collection electrode layer formed on a transparent electrode layer is disclosed.
特開2009-200267号公報JP 2009-200277 A
 ところで、半導体基板上に形成される半導体層上に絶縁層等が積層されることがある。当該絶縁層等の成膜の際に、成膜装置内の塵等が原因で絶縁層等にピンホールが形成されることがある。このような絶縁層等に対してパターンニング処理を行うと、上記ピンホールを通して半導体層がエッチングされる等、膜質にも悪影響を及ぼす可能性がある。 By the way, an insulating layer or the like may be stacked on a semiconductor layer formed on a semiconductor substrate. When forming the insulating layer or the like, pinholes may be formed in the insulating layer or the like due to dust or the like in the film forming apparatus. When patterning treatment is performed on such an insulating layer, the film quality may be adversely affected, for example, the semiconductor layer may be etched through the pinhole.
 本発明に係る光電変換素子の製造方法は、半導体基板の裏面上に非晶質系半導体層を形成し、前記非晶質系半導体層上に絶縁層を形成し、前記絶縁層上にフォトレジスト層を形成し、前記絶縁層上に前記フォトレジスト層が形成されている状態で前記半導体基板の前記裏面の反対側の受光面をエッチング加工する。 In the method of manufacturing a photoelectric conversion element according to the present invention, an amorphous semiconductor layer is formed on the back surface of a semiconductor substrate, an insulating layer is formed on the amorphous semiconductor layer, and a photoresist is formed on the insulating layer. Forming a layer, and etching the light-receiving surface opposite to the back surface of the semiconductor substrate in a state where the photoresist layer is formed on the insulating layer.
 上記発明によれば、光電変換素子の発電特性を向上させることができる。 According to the above invention, the power generation characteristics of the photoelectric conversion element can be improved.
本発明に係る実施の形態において、光電変換素子の断面図である。In embodiment which concerns on this invention, it is sectional drawing of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を示すフローチャートである。In embodiment concerning this invention, it is a flowchart which shows the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を説明するための断面図である。In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を説明するための断面図である。In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を説明するための断面図である。In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を説明するための断面図である。In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を説明するための断面図である。In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を説明するための断面図である。In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を説明するための断面図である。In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を説明するための断面図である。In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を説明するための断面図である。In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を説明するための断面図である。In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を説明するための断面図である。In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を説明するための断面図である。In embodiment which concerns on this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を示すフローチャートである。In embodiment concerning this invention, it is a flowchart which shows the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を示すフローチャートである。In embodiment concerning this invention, it is a flowchart which shows the procedure of the manufacturing method of a photoelectric conversion element.
 以下に図面を用いて、本発明に係る実施の形態を詳細に説明する。以下では、全ての図面において、同様の要素には同一の符号を付し、重複する説明を省略する。本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。 Embodiments according to the present invention will be described below in detail with reference to the drawings. Hereinafter, in all the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In the description in the text, the symbols described before are used as necessary.
 図1は、光電変換素子10の断面図である。光電変換素子10は、反射防止層12と、n型非晶質シリコン層14と、i型非晶質シリコン層16と、n型単結晶シリコン基板18と、i-n積層部21と、i-p積層部31と、絶縁層24と、n側電極部25と、p側電極部35とを備える。ここで、図1に示される矢印Aは、光電変換素子10に対して太陽光等の光が入射される方向を示している。なお、「受光面」とは、太陽光等の光が主に入射される面を意味する。また、「裏面」とは、受光面と反対側の面を意味する。 FIG. 1 is a cross-sectional view of the photoelectric conversion element 10. The photoelectric conversion element 10 includes an antireflection layer 12, an n-type amorphous silicon layer 14, an i-type amorphous silicon layer 16, an n-type single crystal silicon substrate 18, an i-n stacked portion 21, and i. A p-layer portion 31, an insulating layer 24, an n-side electrode portion 25, and a p-side electrode portion 35; Here, an arrow A shown in FIG. 1 indicates a direction in which light such as sunlight enters the photoelectric conversion element 10. The “light receiving surface” means a surface on which light such as sunlight is mainly incident. The “back surface” means a surface opposite to the light receiving surface.
 n型単結晶シリコン基板18は、受光面から入射された光を受けてキャリアを生成する発電層である。なお、本実施の形態では、n型単結晶シリコン基板18としたが、これに限定されるものではなく、n型又はp型の導電型の結晶系半導体基板とすることができる。単結晶シリコン基板の他にも、例えば、多結晶シリコン基板、砒化ガリウム基板(GaAs)、インジウム燐基板(InP)等を適用することができる。 The n-type single crystal silicon substrate 18 is a power generation layer that receives carriers incident from the light receiving surface and generates carriers. In this embodiment, the n-type single crystal silicon substrate 18 is used. However, the present invention is not limited to this, and an n-type or p-type conductive crystal semiconductor substrate can be used. In addition to the single crystal silicon substrate, for example, a polycrystalline silicon substrate, a gallium arsenide substrate (GaAs), an indium phosphorus substrate (InP), or the like can be used.
 i型非晶質シリコン層16は、n型単結晶シリコン基板18の受光面上に形成されるパッシベーション層である。n型非晶質シリコン層14は、i型非晶質シリコン層16上に形成される。i型非晶質シリコン層16及びn型非晶質シリコン層14は、受光面に形成される非晶質系半導体層部を構成する。i型非晶質シリコン層16は、真性な非晶質半導体膜からなる層である。i型非晶質シリコン層16は、n型非晶質シリコン層14よりも膜中のドーパント濃度が低くされる。例えば、i型非晶質シリコン層16は、n型又はp型の導電率を10-11s/cm以下とすることが好適である。n型非晶質シリコン層14は、n型の導電型のドーパントを含む非晶質半導体膜からなる層である。n型非晶質シリコン層14は、i型非晶質シリコン層16よりも膜中のドーパント濃度が高くされる。例えば、n型非晶質シリコン層14は、n型の導電率を10-3s/cm以上とすることが好適である。 The i-type amorphous silicon layer 16 is a passivation layer formed on the light-receiving surface of the n-type single crystal silicon substrate 18. The n-type amorphous silicon layer 14 is formed on the i-type amorphous silicon layer 16. The i-type amorphous silicon layer 16 and the n-type amorphous silicon layer 14 constitute an amorphous semiconductor layer portion formed on the light receiving surface. The i-type amorphous silicon layer 16 is a layer made of an intrinsic amorphous semiconductor film. The i-type amorphous silicon layer 16 has a lower dopant concentration in the film than the n-type amorphous silicon layer 14. For example, the i-type amorphous silicon layer 16 preferably has an n-type or p-type conductivity of 10 −11 s / cm or less. The n-type amorphous silicon layer 14 is a layer made of an amorphous semiconductor film containing an n-type conductive dopant. The n-type amorphous silicon layer 14 has a higher dopant concentration in the film than the i-type amorphous silicon layer 16. For example, the n-type amorphous silicon layer 14 preferably has an n-type conductivity of 10 −3 s / cm or more.
 なお、本実施の形態において非晶質シリコン層は、微結晶半導体膜を含む。微結晶半導体膜は、非晶質半導体中に結晶粒が析出している膜である。結晶粒の平均粒径は、これに限定されるものではないが、1nm以上80nm以下程度であると推定されている。 Note that in this embodiment mode, the amorphous silicon layer includes a microcrystalline semiconductor film. A microcrystalline semiconductor film is a film in which crystal grains are precipitated in an amorphous semiconductor. The average grain size of the crystal grains is not limited to this, but is estimated to be about 1 nm to 80 nm.
 反射防止層12は、n型非晶質シリコン層14上に形成され、光電変換素子10の受光面から入射される光の反射を低減させる。反射防止層12は、n型非晶質シリコン層14の表面を保護する保護層としても機能する。反射防止層12は、透明な材料で構成され、反射防止層12によって覆われる層の屈折率との関係で光電変換素子10の受光面から入射される光の反射を低減させる屈折率を有する材料及び膜厚とすることが好適である。反射防止層12は、例えば、窒化アルミニウム、窒化ケイ素及び酸化ケイ素等を含んで構成される。 The antireflection layer 12 is formed on the n-type amorphous silicon layer 14 and reduces reflection of light incident from the light receiving surface of the photoelectric conversion element 10. The antireflection layer 12 also functions as a protective layer that protects the surface of the n-type amorphous silicon layer 14. The antireflection layer 12 is made of a transparent material and has a refractive index that reduces reflection of light incident from the light receiving surface of the photoelectric conversion element 10 in relation to the refractive index of the layer covered by the antireflection layer 12. And a film thickness is preferred. The antireflection layer 12 includes, for example, aluminum nitride, silicon nitride, silicon oxide, and the like.
 i-n積層部21は、n型単結晶シリコン基板18の裏面上に形成される。i-n積層部21は、後述するn側電極部25において、光電変換素子10の面内からまんべんなく集電可能なように配置することが好適である。i-n積層部21は、例えば、複数のフィンガー部が平行に延伸する櫛歯形状とすることが好適である。i-n積層部21は、i型非晶質シリコン層22と、n型非晶質シリコン層23と、を備える。 The i-n laminated portion 21 is formed on the back surface of the n-type single crystal silicon substrate 18. It is preferable that the i-n stacked unit 21 is arranged so that current can be collected evenly from the surface of the photoelectric conversion element 10 in an n-side electrode unit 25 described later. For example, the i-n stacked portion 21 preferably has a comb-teeth shape in which a plurality of finger portions extend in parallel. The i-n stacked unit 21 includes an i-type amorphous silicon layer 22 and an n-type amorphous silicon layer 23.
 i型非晶質シリコン層22は、n型単結晶シリコン基板18の裏面上に形成されるパッシベーション層である。n型非晶質シリコン層23は、i型非晶質シリコン層22上に形成される。i型非晶質シリコン層22及びn型非晶質シリコン層23は、裏面に形成される第1の非晶質系半導体層部を構成する。i型非晶質シリコン層22は、真性な非晶質半導体膜からなる層である。i型非晶質シリコン層22は、n型非晶質シリコン層23よりも膜中のドーパント濃度が低くされる。例えば、i型非晶質シリコン層22は、n型又はp型の導電率を10-11s/cm以下とすることが好適である。n型非晶質シリコン層23は、n型の導電型のドーパントを含む非晶質半導体膜からなる層である。n型非晶質シリコン層23は、i型非晶質シリコン層22よりも膜中のドーパント濃度が高くされる。例えば、n型非晶質シリコン層23は、n型の導電率を10-3s/cm以上とすることが好適である。 The i-type amorphous silicon layer 22 is a passivation layer formed on the back surface of the n-type single crystal silicon substrate 18. The n-type amorphous silicon layer 23 is formed on the i-type amorphous silicon layer 22. The i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23 constitute a first amorphous semiconductor layer portion formed on the back surface. The i-type amorphous silicon layer 22 is a layer made of an intrinsic amorphous semiconductor film. The i-type amorphous silicon layer 22 has a lower dopant concentration in the film than the n-type amorphous silicon layer 23. For example, the i-type amorphous silicon layer 22 preferably has an n-type or p-type conductivity of 10 −11 s / cm or less. The n-type amorphous silicon layer 23 is a layer made of an amorphous semiconductor film containing an n-type conductive dopant. The n-type amorphous silicon layer 23 has a higher dopant concentration in the film than the i-type amorphous silicon layer 22. For example, the n-type amorphous silicon layer 23 preferably has an n-type conductivity of 10 −3 s / cm or more.
 絶縁層24は、i-n積層部21とi-p積層部31とを電気的に絶縁するために形成される。絶縁層24は、n型非晶質シリコン層23上に形成される保護層としても機能する。絶縁層24は、電気的な絶縁性を有する材料であればよいが、例えば、窒化アルミニウム、窒化ケイ素及び酸化ケイ素等を含んで構成することが好適である。 The insulating layer 24 is formed to electrically insulate the i-n laminated portion 21 and the ip laminated portion 31. The insulating layer 24 also functions as a protective layer formed on the n-type amorphous silicon layer 23. The insulating layer 24 may be any material having electrical insulation properties, but preferably includes, for example, aluminum nitride, silicon nitride, silicon oxide, and the like.
 n側電極部25は、光電変換素子10において発電された電気を集電して取り出すために設けられる電極部材である。n側電極部25は、透明導電層26と、金属層27と、第1電極部28と、第2電極部29とを備える。透明導電層26は、n型非晶質シリコン層23上に形成される。透明導電層26は、酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化錫(SnO2)、酸化チタン(TiO2)及びインジウム錫酸化物(ITO)等の金属酸化物のうちの少なくとも1つを含んで構成される。ここでは、透明導電層26はインジウム錫酸化物(ITO)を用いて形成されているものとして説明する。金属層27は、透明導電層26上に形成される。金属層27は、例えば、銅(Cu)等の金属や合金を含んで構成されるシード層である。ここで、「シード層」とは、めっき成長の起点となる層のことをいう。第1電極部28は、めっき成長によって金属層27上に形成される電極である。第1電極部28は、例えば、銅(Cu)を含んで構成される。第2電極部29は、めっき成長によって第1電極部28上に形成される電極である。第2電極部29は、例えば、錫(Sn)を含んで構成される。 The n-side electrode portion 25 is an electrode member provided for collecting and taking out the electricity generated in the photoelectric conversion element 10. The n-side electrode unit 25 includes a transparent conductive layer 26, a metal layer 27, a first electrode unit 28, and a second electrode unit 29. The transparent conductive layer 26 is formed on the n-type amorphous silicon layer 23. The transparent conductive layer 26 is made of a metal oxide such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), titanium oxide (TiO 2 ), and indium tin oxide (ITO). It is configured to include at least one. Here, the transparent conductive layer 26 is described as being formed using indium tin oxide (ITO). The metal layer 27 is formed on the transparent conductive layer 26. The metal layer 27 is a seed layer including a metal such as copper (Cu) or an alloy, for example. Here, the “seed layer” refers to a layer that is a starting point for plating growth. The first electrode portion 28 is an electrode formed on the metal layer 27 by plating growth. The 1st electrode part 28 is comprised including copper (Cu), for example. The second electrode part 29 is an electrode formed on the first electrode part 28 by plating growth. For example, the second electrode unit 29 includes tin (Sn).
 i-p積層部31は、n型単結晶シリコン基板18の裏面上にi-n積層部21と間挿し合うように形成される。i-p積層部31は、後述するp側電極部35において、光電変換素子10の面内からまんべんなく集電可能なように配置することが好適である。i-p積層部31は、例えば、複数のフィンガー部が平行に延伸する櫛歯形状とすることが好適である。i-p積層部31は、i型非晶質シリコン層32と、p型非晶質シリコン層33と、を備える。i型非晶質シリコン層32は、n型単結晶シリコン基板18の裏面上に形成されるパッシベーション層である。p型非晶質シリコン層33は、i型非晶質シリコン層32上に形成される。i型非晶質シリコン層32及びp型非晶質シリコン層33は、裏面に形成される第2の非晶質系半導体層部を構成する。i型非晶質シリコン層32は、真性な非晶質半導体膜からなる層である。i型非晶質シリコン層32は、p型非晶質シリコン層33よりも膜中のドーパント濃度が低くされる。例えば、i型非晶質シリコン層32は、n型又はp型の導電率を10-11s/cm以下とすることが好適である。p型非晶質シリコン層33は、p型の導電型のドーパントを含む非晶質半導体膜からなる層である。p型非晶質シリコン層33は、i型非晶質シリコン層32よりも膜中のドーパント濃度が高くされる。例えば、p型非晶質シリコン層33は、p型の導電率を10-5s/cm以上とすることが好適である。 The ip laminated portion 31 is formed on the back surface of the n-type single crystal silicon substrate 18 so as to be inserted into the i-n laminated portion 21. The ip laminated portion 31 is preferably arranged so that current can be collected evenly from within the surface of the photoelectric conversion element 10 in the p-side electrode portion 35 described later. The ip laminated portion 31 is preferably, for example, in a comb-teeth shape in which a plurality of finger portions extend in parallel. The ip laminated portion 31 includes an i-type amorphous silicon layer 32 and a p-type amorphous silicon layer 33. The i-type amorphous silicon layer 32 is a passivation layer formed on the back surface of the n-type single crystal silicon substrate 18. The p-type amorphous silicon layer 33 is formed on the i-type amorphous silicon layer 32. The i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 constitute a second amorphous semiconductor layer portion formed on the back surface. The i-type amorphous silicon layer 32 is a layer made of an intrinsic amorphous semiconductor film. The i-type amorphous silicon layer 32 has a lower dopant concentration in the film than the p-type amorphous silicon layer 33. For example, the i-type amorphous silicon layer 32 preferably has an n-type or p-type conductivity of 10 −11 s / cm or less. The p-type amorphous silicon layer 33 is a layer made of an amorphous semiconductor film containing a p-type conductive dopant. The p-type amorphous silicon layer 33 has a higher dopant concentration in the film than the i-type amorphous silicon layer 32. For example, the p-type amorphous silicon layer 33 preferably has a p-type conductivity of 10 −5 s / cm or more.
 p側電極部35は、光電変換素子10において発電された電気を集電して取り出すために設けられる電極部材である。p側電極部35は、透明導電層36と、金属層37と、第1電極部38と、第2電極部39とを備える。透明導電層36は、p型非晶質シリコン層33上に形成される。金属層37は、透明導電層36上に形成される。第1電極部38は、めっき成長によって金属層37上に形成される。第2電極部39は、めっき成長によって第1電極部38上に形成される。 The p-side electrode portion 35 is an electrode member provided for collecting and taking out the electricity generated in the photoelectric conversion element 10. The p-side electrode part 35 includes a transparent conductive layer 36, a metal layer 37, a first electrode part 38, and a second electrode part 39. The transparent conductive layer 36 is formed on the p-type amorphous silicon layer 33. The metal layer 37 is formed on the transparent conductive layer 36. The first electrode portion 38 is formed on the metal layer 37 by plating growth. The second electrode portion 39 is formed on the first electrode portion 38 by plating growth.
 次に、光電変換素子10の製造方法の第1実施例を説明する。図2は、光電変換素子10の製造方法の第1実施例の手順を示すフローチャートである。なお、光電変換素子10の製造方法は、各工程において示す製造方法に限定されない。各工程において、例えば、スパッタリング法、プラズマCVD法、スクリーン印刷法或いはめっき法等を適宜用いることができる。 Next, a first embodiment of the method for manufacturing the photoelectric conversion element 10 will be described. FIG. 2 is a flowchart showing the procedure of the first embodiment of the method for manufacturing the photoelectric conversion element 10. In addition, the manufacturing method of the photoelectric conversion element 10 is not limited to the manufacturing method shown in each process. In each step, for example, a sputtering method, a plasma CVD method, a screen printing method, a plating method, or the like can be used as appropriate.
 まず、n型単結晶シリコン基板18を用意して、n型単結晶シリコン基板18の受光面及び裏面の洗浄を行う(S1)。ここで、n型単結晶シリコン基板18の洗浄は、例えば、HF水溶液等を用いて行うことができる。そして、図3に示されるように、n型単結晶シリコン基板18の裏面上に、i型非晶質シリコン層22aとn型非晶質シリコン層23aを形成する(S2)。ここで、i型非晶質シリコン層22a及びn型非晶質シリコン層23aのそれぞれは、例えば、プラズマCVD法等により形成することができる。 First, an n-type single crystal silicon substrate 18 is prepared, and the light-receiving surface and the back surface of the n-type single crystal silicon substrate 18 are cleaned (S1). Here, the n-type single crystal silicon substrate 18 can be cleaned using, for example, an HF aqueous solution. Then, as shown in FIG. 3, an i-type amorphous silicon layer 22a and an n-type amorphous silicon layer 23a are formed on the back surface of the n-type single crystal silicon substrate 18 (S2). Here, each of the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a can be formed by, for example, a plasma CVD method or the like.
 続いて、図4に示されるように、n型非晶質シリコン層23a上に絶縁層24aを形成する(S3)。絶縁層24aは、例えば、スパッタリング法やプラズマCVD法等の薄膜形成法等により形成することができる。 Subsequently, as shown in FIG. 4, an insulating layer 24a is formed on the n-type amorphous silicon layer 23a (S3). The insulating layer 24a can be formed by, for example, a thin film forming method such as a sputtering method or a plasma CVD method.
 その後、図5に示されるように、絶縁層24a上にフォトレジスト20aを形成する(S4)。ここで、フォトレジスト20aは、例えば、スピンコーターやスリットコーター等で薄膜状に塗布すること等により形成することができる。また、未露光の状態のフォトレジスト20aは、耐アルカリ性に優れている。 Thereafter, as shown in FIG. 5, a photoresist 20a is formed on the insulating layer 24a (S4). Here, the photoresist 20a can be formed, for example, by applying a thin film with a spin coater or a slit coater. The unexposed photoresist 20a is excellent in alkali resistance.
 次に、n型単結晶シリコン基板18の受光面上にテクスチャ構造を形成する(S5)。ここで、テクスチャ構造の形成には、水酸化カリウム水溶液(KOH水溶液)等のアルカリ性の異方性エッチング液を用いることで、n型単結晶シリコン基板18の受光面上にピラミッド状の凹凸形状を形成することができる。 Next, a texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18 (S5). Here, for the formation of the texture structure, a pyramidal uneven shape is formed on the light-receiving surface of the n-type single crystal silicon substrate 18 by using an alkaline anisotropic etching solution such as a potassium hydroxide aqueous solution (KOH aqueous solution). Can be formed.
 そして、フォトレジスト20aに対し、予め用意されたパターンに基づいて露光する(S6)。これにより、フォトレジスト20aにおいて、露光された際に光が照射された部分がアルカリ性の現像液に溶ける状態となる。 Then, the photoresist 20a is exposed based on a previously prepared pattern (S6). Thereby, in the photoresist 20a, a portion irradiated with light when exposed is in a state of being dissolved in an alkaline developer.
 続いて、フォトレジスト20aにアルカリ性の現像液を与えて、図6に示されるように、フォトレジスト20aにおいて、光が照射された部分を除去する(S7)。これにより、絶縁層24をパターン処理するためのマスクであるフォトレジスト20が形成される。 Subsequently, an alkaline developer is applied to the photoresist 20a, and the portion irradiated with light is removed from the photoresist 20a as shown in FIG. 6 (S7). Thereby, a photoresist 20 which is a mask for patterning the insulating layer 24 is formed.
 その後、図7に示されるように、フォトレジスト20をマスクとして、絶縁層24aをエッチングすることにより、絶縁層24aの一部分を除去して、その後にフォトレジスト20を剥離する(S8)。これにより、絶縁層24aのうち、後工程でn型単結晶シリコン基板18にi-p積層部31を接合させるための領域の上に位置する部分を除去して絶縁層24bを形成する。ここで、絶縁層24aのエッチングには、例えば、HF水溶液等の酸性のエッチング液を用いる。 Then, as shown in FIG. 7, by using the photoresist 20 as a mask, the insulating layer 24a is etched to remove a part of the insulating layer 24a, and then the photoresist 20 is peeled off (S8). As a result, the insulating layer 24b is formed by removing a portion of the insulating layer 24a located on a region for bonding the ip stacked portion 31 to the n-type single crystal silicon substrate 18 in a later step. Here, for the etching of the insulating layer 24a, for example, an acidic etching solution such as an HF aqueous solution is used.
 次に、n型単結晶シリコン基板18の受光面上に、i型非晶質シリコン層16とn型非晶質シリコン層14を形成する(S9)。ここで、i型非晶質シリコン層16、n型非晶質シリコン層14のそれぞれは、例えば、プラズマCVD法等により形成することができる。 Next, the i-type amorphous silicon layer 16 and the n-type amorphous silicon layer 14 are formed on the light receiving surface of the n-type single crystal silicon substrate 18 (S9). Here, each of the i-type amorphous silicon layer 16 and the n-type amorphous silicon layer 14 can be formed by, for example, a plasma CVD method or the like.
 そして、図8に示されるように、n型非晶質シリコン層14上に反射防止層12を形成する(S10)。反射防止層12は、例えば、スパッタリング法やCVD法等の薄膜形成法等により形成することができる。 Then, as shown in FIG. 8, the antireflection layer 12 is formed on the n-type amorphous silicon layer 14 (S10). The antireflection layer 12 can be formed, for example, by a thin film forming method such as a sputtering method or a CVD method.
 続いて、図9に示されるように、S8においてパターンニングされた絶縁層24bをマスクとして用い、i型非晶質シリコン層22aとn型非晶質シリコン層23aをエッチングする(S11)。具体的には、i型非晶質シリコン層22aとn型非晶質シリコン層23aのうち、絶縁層24bによって覆われている部分以外の部分を除去する。これにより、n型単結晶シリコン基板18の裏面のうち、上方に絶縁層24bが位置していない部分を露出させて、i型非晶質シリコン層22とn型非晶質シリコン層23を形成する。ここで、i型非晶質シリコン層22aとn型非晶質シリコン層23aのエッチングは、例えば、水酸化ナトリウム(NaOH)を含む水溶液等のアルカリ性のエッチング液を用いる。 Subsequently, as shown in FIG. 9, the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a are etched using the insulating layer 24b patterned in S8 as a mask (S11). Specifically, portions of the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a other than the portion covered with the insulating layer 24b are removed. Thus, the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23 are formed by exposing a portion of the back surface of the n-type single crystal silicon substrate 18 where the insulating layer 24b is not located above. To do. Here, for etching the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a, for example, an alkaline etching solution such as an aqueous solution containing sodium hydroxide (NaOH) is used.
 その後、図10に示されるように、絶縁層24b、i型非晶質シリコン層22、n型非晶質シリコン層23及び露出されたn型単結晶シリコン基板18の裏面を覆うように、i型非晶質シリコン層32aとp型非晶質シリコン層33aを形成する(S12)。i型非晶質シリコン層32a及びp型非晶質シリコン層33aは、例えば、プラズマCVD法等により形成することができる。 Thereafter, as shown in FIG. 10, the insulating layer 24 b, the i-type amorphous silicon layer 22, the n-type amorphous silicon layer 23 and the exposed back surface of the n-type single crystal silicon substrate 18 are covered with i A type amorphous silicon layer 32a and a p type amorphous silicon layer 33a are formed (S12). The i-type amorphous silicon layer 32a and the p-type amorphous silicon layer 33a can be formed by, for example, a plasma CVD method or the like.
 次に、図11に示されるように、i型非晶質シリコン層32a及びp型非晶質シリコン層33aのうち、絶縁層24bの上に位置している部分の一部分をエッチングする(S13)。これにより、i型非晶質シリコン層32及びp型非晶質シリコン層33を形成する。ここで、i型非晶質シリコン層32aとp型非晶質シリコン層33aのエッチングは、例えば、水酸化ナトリウム(NaOH)を含む水溶液等のアルカリ性のエッチング液を用いる。 Next, as shown in FIG. 11, in the i-type amorphous silicon layer 32a and the p-type amorphous silicon layer 33a, a part of the portion located on the insulating layer 24b is etched (S13). . Thereby, the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 are formed. Here, for etching the i-type amorphous silicon layer 32a and the p-type amorphous silicon layer 33a, for example, an alkaline etching solution such as an aqueous solution containing sodium hydroxide (NaOH) is used.
 そして、図12に示されるように、絶縁層24bをエッチングすることにより、絶縁層24bの一部分をさらに除去する(S14)。具体的には、i型非晶質シリコン層32及びp型非晶質シリコン層33をマスクとして用い、絶縁層24bの露出部分をエッチングにより除去することで絶縁層24を形成する。ここで、絶縁層24bのエッチングには、例えば、HF水溶液等の酸性のエッチング液を用いる。 Then, as shown in FIG. 12, the insulating layer 24b is etched to further remove a part of the insulating layer 24b (S14). Specifically, the insulating layer 24 is formed by removing the exposed portion of the insulating layer 24b by etching using the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 as a mask. Here, for the etching of the insulating layer 24b, for example, an acidic etching solution such as an HF aqueous solution is used.
 続いて、透明導電層26a、金属層27aを形成する(S15)。具体的には、プラズマCVD法やスパッタリング法等の薄膜形成法により形成する。 Subsequently, a transparent conductive layer 26a and a metal layer 27a are formed (S15). Specifically, it is formed by a thin film forming method such as a plasma CVD method or a sputtering method.
 その後、図13に示されるように、透明導電層26a及び金属層27aのうち、絶縁層24の上に位置する部分を分断することにより、透明導電層26,36及び金属層27,37を形成する(S16)。ここで、透明導電層26a及び金属層27aは、例えば、リソグラフィー法等によって分断する。 Thereafter, as shown in FIG. 13, the transparent conductive layers 26 and 36 and the metal layers 27 and 37 are formed by dividing a portion of the transparent conductive layer 26 a and the metal layer 27 a located on the insulating layer 24. (S16). Here, the transparent conductive layer 26a and the metal layer 27a are divided by, for example, a lithography method.
 次に、図14に示されるように、電解めっきにより、金属層27の上に第1電極部28と第2電極部29を順次形成し、金属層37の上に第1電極部38と第2電極部39を順次形成する(S17)。これにより、n側電極部25とp側電極部35とが形成がされる。 Next, as shown in FIG. 14, the first electrode portion 28 and the second electrode portion 29 are sequentially formed on the metal layer 27 by electrolytic plating, and the first electrode portion 38 and the second electrode portion 29 are formed on the metal layer 37. Two electrode portions 39 are sequentially formed (S17). Thereby, the n-side electrode part 25 and the p-side electrode part 35 are formed.
 絶縁層24aを成膜した際に、成膜装置内の塵等の存在が原因で、絶縁層24aにピンホールが形成されることがある。このため、絶縁層24aを成膜した後に、水酸化カリウム水溶液(KOH水溶液)等のアルカリ性の異方性エッチング液を用いてn型単結晶シリコン基板18の受光面上にテクスチャ構造を形成する場合には、当該アルカリ性の異方性エッチング液が当該ピンホールを通って、i型非晶質シリコン層22a及びn型非晶質シリコン層23aに付着して損傷を与える可能性がある。しかし、上記光電変換素子10の製造方法の第1実施例によれば、n型単結晶シリコン基板18の受光面上にテクスチャ構造を形成する際に、絶縁層24bの略全面が耐アルカリ性に優れたフォトレジスト20aによって覆われている。これにより、仮に絶縁層24bにピンホールが存在している場合であっても、当該ピンホールは絶縁層24bによって塞がれているため、アルカリ性の異方性エッチング液が当該ピンホールを通って、i型非晶質シリコン層22a及びn型非晶質シリコン層23aに付着してしまうことを防止することができる。したがって、上記光電変換素子10の製造方法の第1実施例によれば、光電変換素子10の発電特性を向上させることができる。 When the insulating layer 24a is formed, pinholes may be formed in the insulating layer 24a due to the presence of dust or the like in the film forming apparatus. Therefore, after forming the insulating layer 24a, a texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18 using an alkaline anisotropic etching solution such as an aqueous potassium hydroxide solution (KOH aqueous solution). There is a possibility that the alkaline anisotropic etching solution passes through the pinhole and adheres to the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a to cause damage. However, according to the first embodiment of the method for manufacturing the photoelectric conversion element 10, when the texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18, the substantially entire surface of the insulating layer 24b is excellent in alkali resistance. Covered with a photoresist 20a. As a result, even if a pinhole exists in the insulating layer 24b, since the pinhole is blocked by the insulating layer 24b, the alkaline anisotropic etching solution passes through the pinhole. Thus, it is possible to prevent adhesion to the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a. Therefore, according to the first embodiment of the method for manufacturing the photoelectric conversion element 10, the power generation characteristics of the photoelectric conversion element 10 can be improved.
 n型単結晶シリコン基板18の受光面のみにテクスチャ構造を形成し、裏面にテクスチャ構造を形成しない場合は、一旦、裏面を耐アルカリ性に優れた犠牲層で覆って受光面のみにテクスチャ構造を形成した後で、当該犠牲層を剥離する工程が別途必要となる。しかし、上記光電変換素子10の製造方法の第1実施例によれば、耐アルカリ性に優れており、かつ、絶縁層24aのパターンニングを行う際に用いられるフォトレジスト20aが形成された後で、n型単結晶シリコン基板18の受光面にテクスチャ構造を形成しているため、上記のように裏面側に特別な犠牲層を設ける等の別工程が必要ない。このように、絶縁層24aをパターンニングするためのフォトレジスト20aに、上記犠牲層の役割も担わせているため、光電変換素子10の製造の工程数を削減することができる。 When the texture structure is formed only on the light receiving surface of the n-type single crystal silicon substrate 18 and the texture structure is not formed on the back surface, the texture structure is formed only on the light receiving surface by temporarily covering the back surface with a sacrificial layer having excellent alkali resistance. After that, a separate step of peeling the sacrificial layer is required. However, according to the first embodiment of the method for manufacturing the photoelectric conversion element 10, the alkali resistance is excellent, and after the photoresist 20a used for patterning the insulating layer 24a is formed, Since the texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18, a separate process such as providing a special sacrificial layer on the back surface side as described above is not necessary. Thus, since the photoresist 20a for patterning the insulating layer 24a also serves as the sacrificial layer, the number of steps for manufacturing the photoelectric conversion element 10 can be reduced.
 次に、光電変換素子10の製造方法の第2実施例を説明する。図15は、光電変換素子10の製造方法の第2実施例の手順を示すフローチャートである。なお、光電変換素子10の製造方法は、各工程において示す製造方法に限定されない。各工程において、例えば、スパッタリング法、プラズマCVD法、スクリーン印刷法或いはめっき法等を適宜用いることができる。 Next, a second embodiment of the method for manufacturing the photoelectric conversion element 10 will be described. FIG. 15 is a flowchart showing the procedure of the second embodiment of the method for manufacturing the photoelectric conversion element 10. In addition, the manufacturing method of the photoelectric conversion element 10 is not limited to the manufacturing method shown in each process. In each step, for example, a sputtering method, a plasma CVD method, a screen printing method, a plating method, or the like can be used as appropriate.
 光電変換素子10の製造方法の第2実施例と、上記光電変換素子10の製造方法の第1実施例の各工程は、S1~S4及びS8~S17工程が同じであり、S4~S8の間の工程のみが相違するため、その相違点を中心に説明する。 The steps of the second embodiment of the method for manufacturing the photoelectric conversion element 10 and the first embodiment of the method for manufacturing the photoelectric conversion element 10 are the same in steps S1 to S4 and S8 to S17, and between S4 to S8. Since only the process is different, the difference will be mainly described.
 最初に、光電変換素子10の製造方法の第1実施例と同じように、S1~S4を実施する。 First, S1 to S4 are performed as in the first embodiment of the method for manufacturing the photoelectric conversion element 10.
 そして、フォトレジスト20aに対して予め用意されたパターンに基づいて露光する(S5a)。また、フォトレジスト20aにおいて、露光された際に光が照射された部分がアルカリ性の現像液に溶ける状態となる。 Then, the photoresist 20a is exposed based on a pattern prepared in advance (S5a). In addition, in the photoresist 20a, a portion irradiated with light when exposed is in a state of being dissolved in an alkaline developer.
 続いて、フォトレジスト20aにアルカリ性の現像液を与えて、フォトレジスト20aにおいて、光が照射された部分を除去する(S6a)。これにより、絶縁層24をパターン処理するためのマスクであるフォトレジスト20が形成される。 Subsequently, an alkaline developer is applied to the photoresist 20a to remove the portion irradiated with light in the photoresist 20a (S6a). Thereby, a photoresist 20 which is a mask for patterning the insulating layer 24 is formed.
 その後、n型単結晶シリコン基板18の受光面上にテクスチャ構造を形成する(S7a)。ここで、テクスチャ構造の形成には、水酸化カリウム水溶液(KOH水溶液)等のアルカリ性の異方性エッチング液を用いることで、n型単結晶シリコン基板18の受光面上にピラミッド状の凹凸形状を形成することができる。 Thereafter, a texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18 (S7a). Here, for the formation of the texture structure, a pyramidal uneven shape is formed on the light-receiving surface of the n-type single crystal silicon substrate 18 by using an alkaline anisotropic etching solution such as a potassium hydroxide aqueous solution (KOH aqueous solution). Can be formed.
 次に、光電変換素子10の製造方法の第1実施例と同じように、S8~S17を実施する。 Next, S8 to S17 are performed as in the first embodiment of the method for manufacturing the photoelectric conversion element 10.
 光電変換素子10の製造方法の第2実施例では、n型単結晶シリコン基板18の受光面上にテクスチャ構造を形成する前に、フォトレジスト20aの一部分を除去している。このため、フォトレジスト20によって覆われている部分の下方に位置するi型非晶質シリコン層22a及びp型非晶質シリコン層23aの損傷を防止することはできるが、この取り除かれた部分の下方に位置するi型非晶質シリコン層22a及びp型非晶質シリコン層23aは損傷する可能性がある。しかし、当該損傷する可能性のある部分は、後の工程であるS11においてエッチングされる領域である。つまり、当該損傷する可能性のある部分は、結果的に取り除かれる部分であるため、当該損傷は問題とならない。したがって、光電変換素子10の製造方法の第2実施例においても、光電変換素子10の製造方法の第1実施例と同様に、光電変換素子10の発電特性を向上させることができる。 In the second embodiment of the method for manufacturing the photoelectric conversion element 10, a part of the photoresist 20a is removed before the texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18. Therefore, it is possible to prevent damage to the i-type amorphous silicon layer 22a and the p-type amorphous silicon layer 23a located below the portion covered with the photoresist 20, but the removed portion The i-type amorphous silicon layer 22a and the p-type amorphous silicon layer 23a located below may be damaged. However, the portion that may be damaged is a region that is etched in the subsequent step S11. That is, since the portion that can be damaged is a portion that is eventually removed, the damage is not a problem. Therefore, also in the second embodiment of the method for manufacturing the photoelectric conversion element 10, the power generation characteristics of the photoelectric conversion element 10 can be improved as in the first embodiment of the method for manufacturing the photoelectric conversion element 10.
 次に、光電変換素子10の製造方法の第3実施例を説明する。図16は、光電変換素子10の製造方法の第3実施例の手順を示すフローチャートである。なお、光電変換素子10の製造方法は、各工程において示す製造方法に限定されない。各工程において、例えば、スパッタリング法、プラズマCVD法、スクリーン印刷法或いはめっき法等を適宜用いることができる。 Next, a third embodiment of the method for manufacturing the photoelectric conversion element 10 will be described. FIG. 16 is a flowchart showing the procedure of the third embodiment of the method for manufacturing the photoelectric conversion element 10. In addition, the manufacturing method of the photoelectric conversion element 10 is not limited to the manufacturing method shown in each process. In each step, for example, a sputtering method, a plasma CVD method, a screen printing method, a plating method, or the like can be used as appropriate.
 光電変換素子10の製造方法の第3実施例と、光電変換素子10の製造方法の第1実施例の各工程は、S1~S4及びS8~S17工程が同じであり、S4~S8の間の工程のみが相違するため、その相違点を中心に説明する。 The steps of the third embodiment of the method for manufacturing the photoelectric conversion element 10 and the first embodiment of the method for manufacturing the photoelectric conversion element 10 are the same in steps S1 to S4 and S8 to S17, and are between S4 to S8. Since only the process is different, the difference will be mainly described.
 最初に、光電変換素子10の製造方法の第1実施例と同じように、S1~S4を実施する。 First, S1 to S4 are performed as in the first embodiment of the method for manufacturing the photoelectric conversion element 10.
 そして、フォトレジスト20aに対して予め用意されたパターンに基づいて露光する(S5b)。また、フォトレジスト20aにおいて、露光された際に光が照射された部分がアルカリ性の現像液に溶ける状態となる。 Then, the photoresist 20a is exposed based on a pattern prepared in advance (S5b). In addition, in the photoresist 20a, a portion irradiated with light when exposed is in a state of being dissolved in an alkaline developer.
 その後、水酸化カリウム水溶液(KOH水溶液)等のアルカリ性の異方性エッチング液を用いてn型単結晶シリコン基板18の受光面上にテクスチャ構造を形成するとともに、同じ異方性エッチング液を用いて、フォトレジスト20aを現像する(S6b)。これにより、n型単結晶シリコン基板18の受光面上にピラミッド状の凹凸形状を形成することができるとともに、絶縁層24をパターン処理するためのマスクであるフォトレジスト20が形成される。 Thereafter, a texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18 using an alkaline anisotropic etching solution such as an aqueous potassium hydroxide solution (KOH aqueous solution), and the same anisotropic etching solution is used. The photoresist 20a is developed (S6b). As a result, a pyramidal concavo-convex shape can be formed on the light receiving surface of the n-type single crystal silicon substrate 18, and a photoresist 20 which is a mask for patterning the insulating layer 24 is formed.
 続いて、光電変換素子10の製造方法の第1実施例と同じように、S8~S17を実施する。 Subsequently, S8 to S17 are performed in the same manner as in the first embodiment of the method for manufacturing the photoelectric conversion element 10.
 光電変換素子10の製造方法の第3実施例では、光電変換素子10の製造方法の第2実施例と同様に、フォトレジスト20において、アルカリ性の異方性エッチング液によって取り除かれた部分の下方に位置するi型非晶質シリコン層22a及びp型非晶質シリコン層23aを損傷する可能性があるが、これらは結果的に取り除かれる部分であるため、当該損傷は問題とならない。したがって、光電変換素子10の製造方法の第3実施例においても、光電変換素子10の製造方法の第1実施例と同様に光電変換素子10の発電特性を向上させることができる。 In the third embodiment of the method for manufacturing the photoelectric conversion element 10, as in the second embodiment of the method for manufacturing the photoelectric conversion element 10, below the portion of the photoresist 20 that has been removed by the alkaline anisotropic etching solution. Although there is a possibility that the i-type amorphous silicon layer 22a and the p-type amorphous silicon layer 23a which are located may be damaged, since these are parts that are removed as a result, the damage is not a problem. Therefore, also in the third embodiment of the method for manufacturing the photoelectric conversion element 10, the power generation characteristics of the photoelectric conversion element 10 can be improved as in the first embodiment of the method for manufacturing the photoelectric conversion element 10.
 さらに、光電変換素子10の製造方法の第3実施例では、同じアルカリ性の異方性エッチング液を用いてフォトレジスト20aの一部分を除去するとともに、n型単結晶シリコン基板18の受光面上にテクスチャ構造を形成している。したがって、光電変換素子10の製造方法の工程数を削減することができる。 Furthermore, in the third embodiment of the manufacturing method of the photoelectric conversion element 10, a part of the photoresist 20a is removed using the same alkaline anisotropic etching solution, and a texture is formed on the light receiving surface of the n-type single crystal silicon substrate 18. Forming a structure. Therefore, the number of steps of the method for manufacturing the photoelectric conversion element 10 can be reduced.
 10 光電変換素子、12 反射防止層、14 n型非晶質シリコン層、16 i型非晶質シリコン層、18 n型単結晶シリコン基板、20,20a フォトレジスト、21 i-n積層部、22,22a i型非晶質シリコン層、23,23a n型非晶質シリコン層、24,24a,24b 絶縁層、25 n側電極部、26,26a,36 透明導電層、27,27a,37 金属層、28,38 第1電極部、29,39 第2電極部、31 i-p積層部、32,32a i型非晶質シリコン層、33,33a p型非晶質シリコン層、35 p側電極部。 10 photoelectric conversion element, 12 antireflection layer, 14 n-type amorphous silicon layer, 16 i-type amorphous silicon layer, 18 n-type single crystal silicon substrate, 20, 20a photoresist, 21 in laminated layer, 22 , 22a i-type amorphous silicon layer, 23, 23a n-type amorphous silicon layer, 24, 24a, 24b insulating layer, 25 n-side electrode part, 26, 26a, 36 transparent conductive layer, 27, 27a, 37 metal Layer, 28, 38 1st electrode part, 29, 39 2nd electrode part, 31 ip stacked part, 32, 32a i-type amorphous silicon layer, 33, 33a p-type amorphous silicon layer, 35 p side Electrode part.

Claims (4)

  1.  半導体基板の裏面上に非晶質系半導体層を形成し、
     前記非晶質系半導体層上に絶縁層を形成し、
     前記絶縁層上にフォトレジスト層を形成し、
     前記絶縁層上に前記フォトレジスト層が形成されている状態で前記半導体基板の前記裏面の反対側の受光面をエッチング加工する光電変換素子の製造方法。
    Forming an amorphous semiconductor layer on the back surface of the semiconductor substrate;
    Forming an insulating layer on the amorphous semiconductor layer;
    Forming a photoresist layer on the insulating layer;
    A method for manufacturing a photoelectric conversion element, comprising etching a light receiving surface opposite to the back surface of the semiconductor substrate in a state where the photoresist layer is formed on the insulating layer.
  2.  請求項1に記載の光電変換素子の製造方法において、
     前記エッチング加工を終えた後で、前記フォトレジスト層を現像し、前記絶縁層をパターニングする光電変換素子の製造方法。
    In the manufacturing method of the photoelectric conversion element of Claim 1,
    The manufacturing method of the photoelectric conversion element which develops the said photoresist layer and patterns the said insulating layer after finishing the said etching process.
  3.  請求項1または請求項2に記載の光電変換素子の製造方法において、
     前記結晶系半導体基板は、n型であり、
     前記非晶質系半導体層部は、
     前記結晶系半導体基板の裏面上に形成されるi型の非晶質系半導体層と、
     前記i型の非晶質系半導体層上に形成されるn型の非晶質系半導体層と、
     を有する光電変換素子の製造方法。
    In the manufacturing method of the photoelectric conversion element of Claim 1 or Claim 2,
    The crystalline semiconductor substrate is n-type,
    The amorphous semiconductor layer portion is
    An i-type amorphous semiconductor layer formed on the back surface of the crystalline semiconductor substrate;
    An n-type amorphous semiconductor layer formed on the i-type amorphous semiconductor layer;
    The manufacturing method of the photoelectric conversion element which has.
  4.  請求項1から請求項3のいずれか1に記載の光電変換素子の製造方法において、
     前記絶縁層は、窒化アルミニウム、窒化ケイ素及び酸化ケイ素のいずれか1つを含む光電変換素子の製造方法。
    In the manufacturing method of the photoelectric conversion element of any one of Claims 1-3,
    The method for manufacturing a photoelectric conversion element, wherein the insulating layer includes any one of aluminum nitride, silicon nitride, and silicon oxide.
PCT/JP2012/053851 2011-03-25 2012-02-17 Method for producing photoelectric conversion element WO2012132616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011068126 2011-03-25
JP2011-068126 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012132616A1 true WO2012132616A1 (en) 2012-10-04

Family

ID=46930378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053851 WO2012132616A1 (en) 2011-03-25 2012-02-17 Method for producing photoelectric conversion element

Country Status (1)

Country Link
WO (1) WO2012132616A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147565A1 (en) * 2015-03-16 2016-09-22 パナソニックIpマネジメント株式会社 Solar battery cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504636A (en) * 2006-09-26 2010-02-12 コミサリア、ア、レネルジ、アトミク Back heterojunction solar cell manufacturing method
WO2010113750A1 (en) * 2009-03-30 2010-10-07 三洋電機株式会社 Solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504636A (en) * 2006-09-26 2010-02-12 コミサリア、ア、レネルジ、アトミク Back heterojunction solar cell manufacturing method
WO2010113750A1 (en) * 2009-03-30 2010-10-07 三洋電機株式会社 Solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147565A1 (en) * 2015-03-16 2016-09-22 パナソニックIpマネジメント株式会社 Solar battery cell
JPWO2016147565A1 (en) * 2015-03-16 2017-12-07 パナソニックIpマネジメント株式会社 Solar cells

Similar Documents

Publication Publication Date Title
JP5891382B2 (en) Method for manufacturing photoelectric conversion element
JP5705968B2 (en) Photoelectric conversion device and manufacturing method thereof
KR101863294B1 (en) Solar cell and method for fabricating the same
US9006564B2 (en) Method of manufacturing solar cell and solar cell
JP6817764B2 (en) Solar cell and manufacturing method of solar cell
WO2012132655A1 (en) Back-junction photoelectric conversion element and method for manufacturing back-junction photoelectric conversion element
JP2013219065A (en) Solar cell and method for manufacturing the same
JP6677801B2 (en) Crystalline silicon-based solar cell, method of manufacturing the same, and solar cell module
JP2013120863A (en) Method for manufacturing solar cell
JPWO2010064549A1 (en) Method for manufacturing thin film photoelectric conversion device
US20140024168A1 (en) Method for producing photoelectric conversion device
JP2013131586A (en) Manufacturing method for back electrode type solar cell
TWI587540B (en) Method of performing plating process on transparent conductive film for solar cells
JP5820989B2 (en) Method for manufacturing photoelectric conversion element
JP2014072209A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
WO2012132616A1 (en) Method for producing photoelectric conversion element
EP3576160A1 (en) Solar cell and preparation method thereof
WO2012132613A1 (en) Method for producing photoelectric conversion element
JP2013168605A (en) Manufacturing method of solar cell
JP2014183073A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
JP7146786B2 (en) Solar cell manufacturing method, solar cell and solar cell module
WO2020149128A1 (en) Method for producing solar cells
WO2017203751A1 (en) Solar cell and method for manufacturing same, and solar cell panel
WO2012132064A1 (en) Photovoltaic element
JPWO2015145886A1 (en) Electrode pattern forming method and solar cell manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP