WO2012132614A1 - Photoelectric converter - Google Patents

Photoelectric converter Download PDF

Info

Publication number
WO2012132614A1
WO2012132614A1 PCT/JP2012/053838 JP2012053838W WO2012132614A1 WO 2012132614 A1 WO2012132614 A1 WO 2012132614A1 JP 2012053838 W JP2012053838 W JP 2012053838W WO 2012132614 A1 WO2012132614 A1 WO 2012132614A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
amorphous silicon
region
type amorphous
silicon layer
Prior art date
Application number
PCT/JP2012/053838
Other languages
French (fr)
Japanese (ja)
Inventor
護 有本
大樹 橋口
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012132614A1 publication Critical patent/WO2012132614A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photoelectric conversion device.
  • a so-called back junction type solar cell is proposed in which a p-type semiconductor region and an n-type semiconductor region are formed on the back side of the solar cell, and the p-side electrode and the n-side electrode are electrically separated by a separation groove ( Patent Document 1).
  • Patent Document 1 A so-called back junction type solar cell is proposed in which a p-type semiconductor region and an n-type semiconductor region are formed on the back side of the solar cell, and the p-side electrode and the n-side electrode are electrically separated by a separation groove.
  • the photoelectric conversion device includes a semiconductor substrate, a first amorphous semiconductor layer including a first conductivity type amorphous semiconductor layer formed on one surface of the semiconductor substrate, and one of the semiconductor substrates.
  • the photoelectric conversion device of the present invention it is possible to improve current extraction efficiency while preventing carrier recombination.
  • FIG. 1 is a diagram illustrating a planar shape pattern of an IN amorphous silicon layer and an IP amorphous silicon layer, omitting an n-side electrode and a p-side electrode in FIG.
  • FIG. 3 is an enlarged view of an N region in FIG. 2. It is an enlarged view of P area
  • FIG. 1 is a plan view of the photoelectric conversion device 10 as viewed from the back side.
  • the photoelectric conversion device 10 is formed on the back surface side of the photoelectric conversion unit 20 that generates carriers (electrons and holes) when light such as sunlight enters, and the photoelectric conversion unit 20.
  • An n-side electrode 40 and a p-side electrode 50 are provided. That is, the photoelectric conversion device 10 is a back surface junction type in which no electrode is present on the light receiving surface side.
  • carriers generated by the photoelectric conversion unit 20 are collected by the n-side electrode 40 and the p-side electrode 50, respectively.
  • the wiring material which is not illustrated is electrically connected to the n side electrode 40 and the p side electrode 50, and the photoelectric conversion apparatus 10 is modularized, A carrier is taken out as an electrical energy outside.
  • the “back surface” means a surface opposite to the “light receiving surface” which is a surface on which light is incident from the outside of the apparatus.
  • the surface on which the n-side electrode 40 and the p-side electrode 50 are formed is the back surface.
  • the n-side electrode 40 is an electrode that collects carriers (electrons) from the IN amorphous silicon layer 25 of the photoelectric conversion unit 20.
  • the p-side electrode 50 is an electrode that collects carriers (holes) from the IP amorphous silicon layer 26 of the photoelectric conversion unit 20.
  • Each electrode has a plurality of finger electrode portions 41 and 51 and bus bar electrode portions 42 and 52 connecting the corresponding finger electrode portions.
  • the photoelectric conversion unit 20 has an n-type single crystal silicon substrate 21 as a semiconductor substrate.
  • the semiconductor substrate for example, a crystalline silicon substrate, a gallium arsenide (GaAs) substrate, an indium phosphorus (InP) substrate, or the like can be applied.
  • the crystalline semiconductor substrate may be, for example, an n-type polycrystalline silicon substrate or a p-type single crystal or polycrystalline silicon substrate, but it is preferable to use the n-type single crystal silicon substrate 21 exemplified in this embodiment. It is.
  • the n-type single crystal silicon substrate 21 functions as a power generation layer and has a thickness of 100 to 300 ⁇ m, for example.
  • a texture structure (not shown) is preferably formed on the light receiving surface 11 of the n-type single crystal silicon substrate 21.
  • the “texture structure” is an uneven structure that suppresses surface reflection and increases the light absorption amount of the photoelectric conversion unit 20.
  • a pyramidal (quadrangular pyramid or quadrangular frustum-shaped) uneven structure obtained by performing anisotropic etching on the light receiving surface 11 having a (100) plane can be exemplified.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • an i-type amorphous silicon film 22, an n-type amorphous silicon layer 23, and a protective layer 24 are sequentially formed on the light-receiving surface 11 side of the n-type single crystal silicon substrate 21.
  • the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23 function as a passivation layer.
  • the protective layer 24 protects the passivation layer and has an antireflection function.
  • the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23 are laminated, for example, over the entire region excluding the edge region of the light receiving surface 11 of the n-type single crystal silicon substrate 21.
  • the i-type amorphous silicon layer 22 is a thin film layer of intrinsic amorphous silicon and has a thickness of about 0.5 nm to 50 nm.
  • the n-type amorphous silicon layer 23 is an amorphous silicon thin film layer doped with phosphorus (P) or the like, for example, and has a thickness of about 1 nm to 50 nm.
  • the protective layer 24 is stacked on substantially the entire area on the n-type amorphous silicon layer 23.
  • the protective layer 24 is preferably made of a material having high light transmittance.
  • the protective layer 24 is preferably an insulating layer made of, for example, silicon oxide (SiO 2 ), silicon nitride (SiN), or silicon oxynitride (SiON), and a SiN layer is particularly suitable.
  • the thickness of the protective layer 24 can be appropriately changed in consideration of antireflection characteristics and the like, but for example, about 80 nm to 1 ⁇ m is preferable.
  • an IN amorphous silicon layer 25 (hereinafter referred to as an IN layer 25) and an IP amorphous silicon layer 26 (hereinafter referred to as an IP layer) are formed on the back surface 12 side of the n-type single crystal silicon substrate 21. 26).
  • An insulating layer 31 is provided between the IN layer 25 and the IP layer 26.
  • the IN layer 25 is a thin film layer that forms an n-type amorphous semiconductor region (hereinafter referred to as an N region).
  • the IN layer 25 includes a first i-type amorphous silicon layer 27a and a second i-type amorphous silicon layer 27b stacked on the back surface 12 of the n-type single crystal silicon substrate 21, and an i-type amorphous layer.
  • a first n-type amorphous silicon layer 28a stacked on the silicon layer 27a and a second n-type amorphous silicon layer 28b stacked on the i-type amorphous silicon layer 27b are included.
  • the i-type amorphous silicon layers 27a and 27b can be formed with the same composition as that of the i-type amorphous silicon layer 22, for example.
  • the n-type amorphous silicon layers 28a and 28b can be formed with the same composition as the n-type amorphous silicon layer 23, for example, and have a thickness of about 1 nm to 50 nm.
  • the IP layer 26 is a thin film layer that forms a p-type amorphous semiconductor region (hereinafter referred to as a P region). The P region can have a larger lamination area than the N region.
  • the IP layer 26 includes an i-type amorphous silicon layer 29 stacked on the back surface 12 of the n-type single crystal silicon substrate 21 and a first p-type amorphous silicon stacked on the i-type amorphous silicon layer 29.
  • a p-type amorphous silicon layer 30b stacked on the p-type amorphous silicon layer 30a and the back surface 12 of the n-type single crystal silicon substrate 21.
  • the i-type amorphous silicon layer 29 can be formed with the same composition as the i-type amorphous silicon layer 22 and the i-type amorphous silicon layers 27a and 27b, for example.
  • the p-type amorphous silicon layers 30a and 30b are, for example, amorphous silicon thin films doped with boron (B) or the like, and have a thickness of about 1 nm to 50 nm.
  • the n-side electrode 40 is an electrode electrically connected to the IN layer 25 and is mainly formed on the IN layer 25.
  • the p-side electrode 50 is an electrode formed so as to be separated from the n-side electrode 40 and electrically connected to the IP layer 26, and is formed on the IP layer 26.
  • a separation groove 60 that separates both electrodes is formed between the n-side electrode 40 and the p-side electrode 50.
  • the laminated area of each electrode corresponds to the laminated area of the IN layer 25 and the IP layer 26, and the p-side electrode 50 has a larger laminated area than the n-side electrode 40.
  • the n-side electrode 40 and the p-side electrode 50 are each composed of a laminate of first conductive layers 43 and 53, second conductive layers 44 and 54, third conductive layers 45 and 55, and fourth conductive layers 46 and 56.
  • the first conductive layer 43, the second conductive layer 44, the third conductive layer 45, and the fourth conductive layer 46 are n-side conductive layers.
  • the fourth conductive layer 56 is a p-side conductive layer.
  • the first conductive layers 43 and 53 are constituted by a transparent conductive layer.
  • the second conductive layers 44 and 54 are composed of a metal layer, and for example, copper (Cu) is used from the viewpoint of electrical conductivity and material cost.
  • the first conductive layers 43 and 53 and the second conductive layers 44 and 54 are formed by sputtering.
  • the transparent conductive layer is, for example, at least one of metal oxides such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ) having a polycrystalline structure. It is preferable that it is comprised including seeds.
  • These metal oxides contain dopants such as tin (Sn), zinc (Zn), tungsten (W), antimony (Sb), titanium (Ti), aluminum (Al), cerium (Ce), and gallium (Ga).
  • ITO in which In 2 O 3 is doped with Sn is particularly preferable.
  • the concentration of the dopant can be 0 to 20 wt%.
  • the metal layer is preferably about 50 nm to 1 ⁇ m thick, for example.
  • the metal layer is preferably made of a metal having high conductivity and high light reflectance.
  • a metal such as silver (Ag), aluminum (Al), titanium (Ti), copper (Cu), tin (Sn), or an alloy containing one or more of them can be used.
  • the second conductive layer 14 is preferably a Cu layer.
  • the first conductive layers 43 and 53 and the second conductive layers 44 and 54 function as seed layers serving as starting points when the third conductive layers 45 and 55 and the fourth conductive layers 46 and 56 are formed by plating.
  • the third conductive layers 45 and 55 are formed of a metal layer, and for example, copper (Cu) is used from the viewpoint of electrical conductivity and material cost.
  • the fourth conductive layers 46 and 56 are formed of a metal layer.
  • tin (Sn) is used to prevent corrosion of the first conductive layers 43 and 53, the second conductive layers 44 and 54, and the third conductive layers 45 and 55. ) Is used.
  • the configuration of the IN layer 25 and the IP layer 26 will be described in detail with further reference to FIGS.
  • the current extraction region 33 will be described in detail.
  • FIG. 3 shows a planar shape pattern of the IN layer 25 and the IP layer 26 (the region with cross-hatching is the overlapping region 32 where the insulating layer 31 is provided).
  • 4 is an enlarged view of an N region in FIG. 2
  • FIG. 5 is an enlarged view of a P region in FIG.
  • the IN layer 25 and the IP layer 26 have a comb-teeth shape or a stripe-like laminated form formed so as to mesh with each other.
  • the IN layers 25 and the IP layers 26 are preferably formed alternately along one direction parallel to the back surface 12 from the viewpoint of photoelectric conversion efficiency and the like.
  • the IN layer 25 and the IP layer 26 are preferably formed so as to cover a wide area on the back surface 12 of the n-type single crystal silicon substrate 21. For this reason, the edge region of the IP layer 26 is alternately stacked without a gap while overlapping the edge region of the IN layer 25. A region where the IN layer 25 and the IP layer 26 overlap will be referred to as an “overlapping region 32”.
  • the insulating layer 31 has a function of insulating the N region and the P region, and is provided between the IN layer 25 and the IP layer 26 in the overlapping region 32.
  • the insulating layer 31 for example, it can be formed with the same composition and the same thickness as the protective layer 24, and it is particularly preferable to apply a SiN layer.
  • the insulating layer 31 is not formed on the region where the IP layer 26 is not stacked. Thereby, the IN layer 25 and the n-side electrode 40 can be electrically connected while ensuring good insulation between the IN layer 25 and the IP layer 26.
  • the back surface 12 of the n-type single crystal silicon substrate 21 has a current extraction region 33 from which carriers are extracted by each electrode.
  • the current extraction region 33 is a region where each electrode is formed and a region on the back surface 12 where a layer for blocking carrier movement is not provided between each electrode.
  • the region where the amorphous silicon layer and the electrode are formed along the thickness direction of the n-type single crystal silicon substrate 21 functions as the current extraction region 33.
  • the region where the insulating layer 31 is stacked between the n-type single crystal silicon substrate 21 and the electrode (for example, the overlapping region 32). Does not function as the current extraction region 33.
  • the mobility of carriers in the amorphous silicon layer is small. That is, in the thickness direction of the n-type single crystal silicon substrate 21, the amorphous silicon layer is thin and the moving distance is short, so that carriers can sufficiently pass therethrough, but the surface direction of the amorphous silicon layer (on the back surface 12). This is because the carrier cannot move because it spreads greatly in the parallel direction.
  • a region where the insulating layer 31 is not provided becomes a current extraction region 33n from which carriers are extracted by the n-side electrode 40. That is, a region excluding the overlapping region 32 where the insulating layer 31 is provided between the IN layer 25 and the n-side electrode 40 is a current extraction region 33n.
  • An i-type amorphous silicon layer 27b and an n-type amorphous silicon layer 28b are formed in the current extraction region 33n.
  • an i-type amorphous silicon layer 27a and an n-type amorphous silicon layer 28a are formed.
  • the i-type amorphous silicon layer 27b and the n-type amorphous silicon layer 28b may be formed so as to cover the entire area on the n-type amorphous silicon layer 28a.
  • the total film thickness of the i-type amorphous silicon layer 27b and the n-type amorphous silicon layer 28b formed in the current extraction region 33n is equal to the i-type amorphous silicon layer formed in the overlapping region 32.
  • 27a and the total film thickness of the n-type amorphous silicon layer 28a is preferably made thinner than the i-type amorphous silicon layer 27a.
  • the thickness of the i-type amorphous silicon layer 27a is set from the viewpoint of passivation characteristics, and for example, about 0.5 nm to 50 nm is preferable.
  • the film thickness of the i-type amorphous silicon layer 27b is, for example, 2/3 to 1 / th of the film thickness of the i-type amorphous silicon layer 27a in consideration of passivation characteristics and current extraction efficiency. It is preferable to set it to about 3.
  • the n-type amorphous silicon layers 28 a and 28 b have a film thickness that provides necessary characteristics for the open-circuit voltage of the photoelectric conversion device 10 and the contact resistance with the n-side electrode 40.
  • the film thickness of the n-type amorphous silicon layer 28b is also made thinner than the film thickness of the n-type amorphous silicon layer 28a.
  • a region where the insulating layer 31 is not provided becomes a current extraction region 33p from which carriers are extracted by the p-side electrode 50. That is, a region excluding the overlapping region 32 where the insulating layer 31 is provided between the n-type single crystal silicon substrate 21 and the IP layer 26 becomes the current extraction region 33p.
  • a p-type amorphous silicon layer 30b is formed in the current extraction region 33p.
  • an i-type amorphous silicon layer 29 and a p-type amorphous silicon layer 30a are formed.
  • an i-type amorphous silicon layer 29, a p-type amorphous silicon layer 30a, and a p-type amorphous silicon layer 30b are sequentially stacked in part of the current extraction region 33p.
  • the p-type amorphous silicon layer 30b may be formed so as to cover the entire area on the p-type amorphous silicon layer 30a.
  • the current extraction region 33p is provided with a region where the p-type amorphous silicon layer 30b is directly stacked on the back surface 12 and the i-type amorphous silicon layer is not stacked.
  • the p-type amorphous silicon layers 30a and 30b can be formed with the same thickness, for example.
  • the film thickness of the amorphous silicon layer (p-type amorphous silicon layer 30b) in the current extraction region 33p becomes the same as that of the amorphous silicon layer (i-type amorphous silicon layer 29 and 29) formed in the overlapping region 32. It is thinner than the thickness of the p-type amorphous silicon layer 30a).
  • the film thickness of the amorphous silicon layer can be confirmed by, for example, cross-sectional observation with a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the film thickness of the amorphous silicon layer may be adjusted based on the maximum film thickness, for example, but is preferably adjusted based on the average film thickness.
  • FIG. 6 to 14 are diagrams showing manufacturing steps of the photoelectric conversion unit 20.
  • an i-type amorphous silicon layer 22 and an n-type amorphous silicon are formed on the light-receiving surface 11 of the n-type single crystal silicon substrate 21 by plasma enhanced chemical vapor deposition (PECVD) or sputtering.
  • PECVD plasma enhanced chemical vapor deposition
  • the layer 23 and the protective layer 24 are sequentially stacked, and the i-type amorphous silicon layer 27 a and the n-type amorphous silicon layer 28 a are sequentially stacked on the back surface 12.
  • a silane gas (SiH 4 ) diluted with hydrogen (H 2 ) can be used as a source gas.
  • phosphine (PH 3 ) added to silane (SiH 4 ) and diluted with hydrogen (H 2 ) can be used as a source gas.
  • the film quality of the i-type amorphous silicon films 22 and 27a and the n-type amorphous silicon films 23 and 28a can be changed by changing the hydrogen dilution rate of the silane gas.
  • the doping concentration of the n-type amorphous silicon films 23 and 28a can be changed by changing the mixed concentration of phosphine (PH 3 ).
  • the “texture structure” is an uneven structure that suppresses surface reflection and increases the light absorption amount of the photoelectric conversion unit 20.
  • a pyramidal (quadrangular pyramid or quadrangular pyramid-shaped) uneven structure obtained by performing anisotropic etching on the light receiving surface 11 having a (100) plane can be exemplified.
  • the texture structure can be formed, for example, by anisotropically etching the (100) plane using a potassium hydroxide (KOH) aqueous solution.
  • KOH potassium hydroxide
  • the i-type amorphous silicon layer 27a and the n-type amorphous silicon layer 28a are partially etched and removed.
  • the region to be etched is a region that becomes the current extraction region 33n and the current extraction region 33p.
  • a resist film formed by a screen printing or ink jet coating process, a photolithography process or the like is used as a mask.
  • an etchant for example, a sodium hydroxide (NaOH) aqueous solution (for example, 1 wt% NaOH aqueous solution) or the like is used.
  • the i-type amorphous silicon layer 27 b, the n-type amorphous silicon layer 28 b, and the insulating layer 31 are formed over the entire region excluding the edge region on the back surface 12 by, for example, PECVD.
  • PECVD plasma chemical vapor deposition
  • the i-type amorphous silicon layer 27b, the n-type amorphous silicon layer 28b, and the insulating layer 31 are stacked also on the n-type amorphous silicon layer 28a.
  • an i-type amorphous silicon layer 27b thinner than the i-type amorphous silicon layer 27a is formed in a region that becomes the current extraction region 33n.
  • the post-process is advanced so that the region where the i-type amorphous silicon layer 27b is directly formed on the back surface 12 becomes the current extraction region 33n.
  • the insulating layer 31, the i-type amorphous silicon layer 27b, and the n-type amorphous silicon layer 28b are partially etched and removed using the resist film 100 as a mask.
  • the region to be etched is a region that becomes the current extraction region 33p of the P region.
  • the edge layer 31 is etched using the resist film 100 as a mask.
  • the insulating layer 31 is silicon oxide (SiO 2 ), silicon nitride (SiN), or silicon oxynitride (SiON), for example, etching can be performed using an aqueous hydrogen fluoride (HF) solution.
  • HF aqueous hydrogen fluoride
  • the i-type amorphous silicon layer 27b and the n-type amorphous silicon layer 28b are etched using the patterned insulating layer 31 as a mask. By this step, patterning of the N region constituted by the IN layer 25 is completed.
  • an i-type amorphous silicon layer 29 and a p-type amorphous silicon layer 30 a are sequentially stacked over the entire region excluding the edge region on the back surface 12. That is, the i-type amorphous silicon layer 29 and the p-type amorphous silicon layer 30a are also stacked on the patterned N region via the insulating layer 31.
  • the i-type amorphous silicon layer 29 and the p-type amorphous silicon layer 30a are sequentially formed from the i-type amorphous silicon layer 29 and the p-type amorphous silicon layer 30a by PECVD or the like. It can be formed by film formation.
  • diborane (B 2 H 6 ) is used as a doping gas instead of phosphine (PH 3 ).
  • the i-type amorphous silicon layer 29 and the p-type amorphous silicon layer 30a are partially removed by etching using a resist film formed by screen printing or the like as a mask.
  • the region to be etched is, for example, a part of the region that becomes the current extraction region 33p, and the etching range can be adjusted as appropriate.
  • the IP layer 26 Since the IP layer 26 is usually harder to etch than the IN layer 25, the IP layer 26 has a higher concentration than the NaOH aqueous solution used for etching the IN layer 25 (for example, 10 wt% NaOH aqueous solution) or hydrofluoric acid (HF, HNO 3 ) (For example, 30 wt% each) is preferably used. Alternatively, it is also preferable to use an aqueous NaOH solution heated to about 70 to 90 ° C. (thermal alkali treatment).
  • the NaOH aqueous solution used for etching the IN layer 25 for example, 10 wt% NaOH aqueous solution
  • hydrofluoric acid HF, HNO 3
  • the p-type amorphous silicon layer 30 b is laminated over the entire region excluding the edge region on the back surface 12 by, for example, PECVD.
  • PECVD plasma-organic chemical vapor deposition
  • the IP layer 26 and the insulating layer 31 are partially removed by etching using a resist film formed by screen printing or the like as a mask to expose the IN layer 25.
  • the region of the IP layer 26 and the insulating layer 31 to be etched is a region on the region where the i-type amorphous silicon layer 27 b is directly formed on the back surface 12.
  • FIGS. 15 to 17 are diagrams showing the steps of forming the n-side electrode 40 and the p-side electrode 50.
  • a process of forming the third conductive layers 45 and 55 and the fourth conductive layers 46 and 56 of the respective electrodes by electrolytic plating using the second conductive layers 44 and 54 of the respective electrodes as a seed layer will be described.
  • the first conductive layer 13 and the second conductive layer 14 are sequentially formed on the IN layer 25 and the IP layer 26 by, for example, sputtering.
  • the first conductive layer 13 is stacked on substantially the entire area on the IN layer 25 and the IP layer 26.
  • the first conductive layer 13 is a layer that is patterned in a later step to become the first conductive layers 43 and 53 of each electrode.
  • the second conductive layer 14 is a layer that is patterned in a later step to become the second conductive layers 44 and 45 of each electrode.
  • the first conductive layer 13 and the second conductive layer 14 are partially etched to divide each layer, and the first conductive layers 43 and 53 and the first conductive layers 43 and 53 of each electrode separated from each other.
  • Two conductive layers 44 and 45 are formed.
  • Etching of the first conductive layer 13 and the second conductive layer 14 uses, for example, a resist film formed by screen printing or the like as a mask, and an aqueous solution containing ferric chloride (FeCl 3 ) and hydrochloric acid (HCl). To do.
  • the region to be etched is preferably a region on the overlapping region 32, for example.
  • the third conductive layers 45 and 55 are formed by electrolytic plating using the second conductive layers 44 and 45 as seed layers, respectively.
  • the fourth conductive layers 46 and 56 are formed on the third conductive layers 45 and 55 by electrolytic plating, so that the photoelectric conversion unit 20 is provided with the n-side electrode 40 and the p-side electrode 50 on the back surface side.
  • the conversion device 10 (see FIG. 2) is obtained.
  • the electroplating can be performed, for example, by flowing a current of the same magnitude through the second conductive layer 44 constituting the n-side electrode 40 and the second conductive layer 54 constituting the p-side electrode 50. In this case, a metal plating layer having the same mass is formed on the second conductive layers 44 and 54.
  • the thickness of the third conductive layer is increased. That is, the thickness of the n-side electrode 40 can be made thicker than the thickness of the p-side electrode 50 by carrying out electrolytic plating while flowing the same current.
  • the film thickness of the amorphous silicon layer formed in the current extraction region 33 is larger than the film thickness of the amorphous silicon layer formed in another region of the current extraction region 33. It is getting thinner. For this reason, in the current extraction region 33, the contact resistance can be reduced and the current extraction efficiency can be increased. In the other region of the current extraction region 33, the film thickness of the amorphous silicon layer is set to a film thickness that is suitable from the viewpoint of passivation characteristics, and carrier recombination is sufficiently prevented, and the lifetime of the carrier is reduced. Can be stretched.
  • the film thickness of the i-type amorphous silicon layer 27b in the current extraction region 33n is smaller than the film thickness of the i-type amorphous silicon layer 27a in other regions of the current extraction region 33n. . Therefore, in the current extraction region 33n, the contact resistance can be further reduced while exhibiting the passivation characteristics, and the current extraction efficiency can be further increased.
  • the photoelectric conversion device 10 can optimize the balance between the passivation characteristics and the current extraction efficiency.
  • the photoelectric conversion device 10 can increase photoelectric conversion efficiency by improving current extraction efficiency while preventing carrier recombination.
  • the film thickness of the amorphous silicon layer in the current extraction region is smaller than the film thickness of the amorphous silicon layer in other regions of the current extraction region in both the N region and the P region.
  • only one of the regions may have such a configuration.
  • the film thickness of the amorphous silicon layer in the current extraction region and other regions may be set to the same level.
  • the IP layer 26 is stacked after the IN layer 25 is stacked, but the IP layer 26 may be stacked first. In this case, a region where the i-type amorphous semiconductor layer is not provided may be formed in a part of the current extraction region 33n.

Abstract

A photoelectric converter (10) is provided with an n-type monocrystalline silicon substrate (21), an IN layer (25) and an IP layer (26) formed on the rear surface (12) of the n-type monocrystalline silicon substrate (21), an n-side electrode (40) electrically connected to the IN layer (25), and a p-side electrode (50) formed so as to be separate from the n-side electrode (40) and so as to be electrically connected to the IP layer (26). The thickness of at least a portion of the IN layer (25) and the IP layer (26) formed on a current isolation region (33) is thinner than the thickness of the corresponding IN layer (25) and IP layer (26) formed on another region.

Description

光電変換装置Photoelectric conversion device
 本発明は、光電変換装置に関する。 The present invention relates to a photoelectric conversion device.
 太陽電池の裏面側にp型半導体領域及びn型半導体領域が形成され、p側電極とn側電極とが分離溝によって電気的に分離された所謂裏面接合型の太陽電池が提案されている(特許文献1参照)。この裏面接合型の太陽電池によれば、受光面側に電極が存在しないため、光の受光効率を高めて発電効率を向上させることができる。 A so-called back junction type solar cell is proposed in which a p-type semiconductor region and an n-type semiconductor region are formed on the back side of the solar cell, and the p-side electrode and the n-side electrode are electrically separated by a separation groove ( Patent Document 1). According to this back junction solar cell, since no electrode is present on the light receiving surface side, the light receiving efficiency can be increased and the power generation efficiency can be improved.
特開2009-200267号公報JP 2009-200277 A
 裏面接合型の太陽電池では、キャリアの再結合を防止しながら、電流の取り出し効率を向上させることが重要である。 In a back junction solar cell, it is important to improve current extraction efficiency while preventing carrier recombination.
 本発明に係る光電変換装置は、半導体基板と、半導体基板の一方の面上に形成された第1導電型の非晶質半導体層を含む第1非晶質半導体層と、半導体基板の一方の面上の第1非晶質半導体層が形成されていない領域に形成された第2導電型の非晶質半導体層を含む第2非晶質半導体層と、第1非晶質半導体層と電気的に接続された第1電極と、第1電極から離間して第2非晶質半導体層と電気的に接続されるように形成された第2電極とを備え、第1及び第2電極によりキャリアが取り出される電流取り出し領域に形成された第1及び第2非晶質半導体層のうち少なくとも一部の膜厚が、他の領域に形成された対応する第1及び第2非晶質半導体層の膜厚よりも薄いことを特徴とする。 The photoelectric conversion device according to the present invention includes a semiconductor substrate, a first amorphous semiconductor layer including a first conductivity type amorphous semiconductor layer formed on one surface of the semiconductor substrate, and one of the semiconductor substrates. A second amorphous semiconductor layer including a second conductive type amorphous semiconductor layer formed in a region where the first amorphous semiconductor layer is not formed on the surface; First electrodes connected to each other and a second electrode formed so as to be electrically connected to the second amorphous semiconductor layer apart from the first electrodes, and the first and second electrodes Corresponding first and second amorphous semiconductor layers in which at least a part of the first and second amorphous semiconductor layers formed in the current extraction region from which carriers are extracted are formed in other regions. It is characterized by being thinner than the film thickness.
 本発明の光電変換装置によれば、キャリアの再結合を防止しながら、電流の取り出し効率を向上させることが可能である。 According to the photoelectric conversion device of the present invention, it is possible to improve current extraction efficiency while preventing carrier recombination.
本発明の実施形態である光電変換装置を裏面側から見た平面図である。It is the top view which looked at the photoelectric conversion apparatus which is embodiment of this invention from the back surface side. 図1のA‐A線断面図である。It is the sectional view on the AA line of FIG. 図1において、n側電極及びp側電極を省略し、IN非晶質シリコン層及びIP非晶質シリコン層の平面形状パターンを示す図である。FIG. 1 is a diagram illustrating a planar shape pattern of an IN amorphous silicon layer and an IP amorphous silicon layer, omitting an n-side electrode and a p-side electrode in FIG. 図2のN領域の拡大図である。FIG. 3 is an enlarged view of an N region in FIG. 2. 図2のP領域の拡大図である。It is an enlarged view of P area | region of FIG. 本発明の実施形態である光電変換装置の製造方法を説明するための断面図であって、光電変換部の製造工程を示す図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus which is embodiment of this invention, Comprising: It is a figure which shows the manufacturing process of a photoelectric conversion part. 本発明の実施形態である光電変換装置の製造方法を説明するための断面図であって、光電変換部の製造工程を示す図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus which is embodiment of this invention, Comprising: It is a figure which shows the manufacturing process of a photoelectric conversion part. 本発明の実施形態である光電変換装置の製造方法を説明するための断面図であって、光電変換部の製造工程を示す図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus which is embodiment of this invention, Comprising: It is a figure which shows the manufacturing process of a photoelectric conversion part. 本発明の実施形態である光電変換装置の製造方法を説明するための断面図であって、光電変換部の製造工程を示す図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus which is embodiment of this invention, Comprising: It is a figure which shows the manufacturing process of a photoelectric conversion part. 本発明の実施形態である光電変換装置の製造方法を説明するための断面図であって、光電変換部の製造工程を示す図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus which is embodiment of this invention, Comprising: It is a figure which shows the manufacturing process of a photoelectric conversion part. 本発明の実施形態である光電変換装置の製造方法を説明するための断面図であって、光電変換部の製造工程を示す図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus which is embodiment of this invention, Comprising: It is a figure which shows the manufacturing process of a photoelectric conversion part. 本発明の実施形態である光電変換装置の製造方法を説明するための断面図であって、光電変換部の製造工程を示す図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus which is embodiment of this invention, Comprising: It is a figure which shows the manufacturing process of a photoelectric conversion part. 本発明の実施形態である光電変換装置の製造方法を説明するための断面図であって、光電変換部の製造工程を示す図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus which is embodiment of this invention, Comprising: It is a figure which shows the manufacturing process of a photoelectric conversion part. 本発明の実施形態である光電変換装置の製造方法を説明するための断面図であって、光電変換部の製造工程を示す図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus which is embodiment of this invention, Comprising: It is a figure which shows the manufacturing process of a photoelectric conversion part. 本発明の他の実施形態である光電変換装置の製造方法を説明するための断面図であって、n側電極及びp側電極の形成工程を示す図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus which is other embodiment of this invention, Comprising: It is a figure which shows the formation process of an n side electrode and a p side electrode. 本発明の他の実施形態である光電変換装置の製造方法を説明するための断面図であって、n側電極及びp側電極の形成工程を示す図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus which is other embodiment of this invention, Comprising: It is a figure which shows the formation process of an n side electrode and a p side electrode. 本発明の他の実施形態である光電変換装置の製造方法を説明するための断面図であって、n側電極及びp側電極の形成工程を示す図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus which is other embodiment of this invention, Comprising: It is a figure which shows the formation process of an n side electrode and a p side electrode.
 以下、図面を用いて、本発明の実施形態を詳細に説明する。
 以下の実施形態は、単なる例示である。本発明は、以下の実施形態に限定されない。実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法比率などは、現実の物体の寸法比率などとは異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The following embodiments are merely illustrative. The present invention is not limited to the following embodiments. The drawings referred to in the embodiments are schematically described, and the dimensional ratios of objects drawn in the drawings may be different from the dimensional ratios of actual objects. The specific dimensional ratio of the object should be determined in consideration of the following description.
 まず初めに、図1~図5を参照して、光電変換装置10の構成を詳細に説明する。 First, the configuration of the photoelectric conversion device 10 will be described in detail with reference to FIGS. 1 to 5.
 図1は、光電変換装置10を裏面側から見た平面図である。図1に示すように、光電変換装置10は、太陽光等の光が入射することでキャリア(電子及び正孔)を生成する光電変換部20と、光電変換部20の裏面側に形成されたn側電極40及びp側電極50とを備える。即ち、光電変換装置10は、受光面側に電極が存在しない裏面接合型である。光電変換装置10では、光電変換部20で生成されたキャリアがn側電極40及びp側電極50によりそれぞれ収集される。そして、n側電極40及びp側電極50に図示しない配線材を電気的に接続して光電変換装置10をモジュール化することで、キャリアが電気エネルギーとして外部に取り出される。ここで、「裏面」とは、装置の外部から光が入射する面である「受光面」と反対側の面を意味する。換言すれば、n側電極40及びp側電極50が形成される面が裏面である。また、n側電極40とは、光電変換部20のIN非晶質シリコン層25からキャリア(電子)を収集する電極である。p側電極50とは、光電変換部20のIP非晶質シリコン層26からキャリア(正孔)を収集する電極である。各電極は、複数のフィンガー電極部41,51と、対応する各フィンガー電極部を繋ぐバスバー電極部42,52とをそれぞれ有する。 FIG. 1 is a plan view of the photoelectric conversion device 10 as viewed from the back side. As shown in FIG. 1, the photoelectric conversion device 10 is formed on the back surface side of the photoelectric conversion unit 20 that generates carriers (electrons and holes) when light such as sunlight enters, and the photoelectric conversion unit 20. An n-side electrode 40 and a p-side electrode 50 are provided. That is, the photoelectric conversion device 10 is a back surface junction type in which no electrode is present on the light receiving surface side. In the photoelectric conversion device 10, carriers generated by the photoelectric conversion unit 20 are collected by the n-side electrode 40 and the p-side electrode 50, respectively. And the wiring material which is not illustrated is electrically connected to the n side electrode 40 and the p side electrode 50, and the photoelectric conversion apparatus 10 is modularized, A carrier is taken out as an electrical energy outside. Here, the “back surface” means a surface opposite to the “light receiving surface” which is a surface on which light is incident from the outside of the apparatus. In other words, the surface on which the n-side electrode 40 and the p-side electrode 50 are formed is the back surface. The n-side electrode 40 is an electrode that collects carriers (electrons) from the IN amorphous silicon layer 25 of the photoelectric conversion unit 20. The p-side electrode 50 is an electrode that collects carriers (holes) from the IP amorphous silicon layer 26 of the photoelectric conversion unit 20. Each electrode has a plurality of finger electrode portions 41 and 51 and bus bar electrode portions 42 and 52 connecting the corresponding finger electrode portions.
 光電変換部20は、半導体基板としてn型単結晶シリコン基板21を有する。半導体基板としては、例えば、結晶系シリコン基板、ガリウム砒素(GaAs)基板、インジウム燐(InP)基板等が適用できる。結晶系半導体基板は、例えば、n型多結晶シリコン基板やp型の単結晶又は多結晶シリコン基板であってもよいが、本実施形態で例示するn型単結晶シリコン基板21を用いることが好適である。n型単結晶シリコン基板21は、発電層として機能し、例えば、100~300μmの厚みを有する。n型単結晶シリコン基板21の受光面11には、テクスチャ構造(図示せず)を形成することが好適である。ここで、「テクスチャ構造」とは、表面反射を抑制し、光電変換部20の光吸収量を増大させる凹凸構造である。テクスチャ構造の具体例としては、(100)面を有する受光面11に異方性エッチングを施すことによって得られるピラミッド状(四角錐状や四角錐台状)の凹凸構造が例示できる。 The photoelectric conversion unit 20 has an n-type single crystal silicon substrate 21 as a semiconductor substrate. As the semiconductor substrate, for example, a crystalline silicon substrate, a gallium arsenide (GaAs) substrate, an indium phosphorus (InP) substrate, or the like can be applied. The crystalline semiconductor substrate may be, for example, an n-type polycrystalline silicon substrate or a p-type single crystal or polycrystalline silicon substrate, but it is preferable to use the n-type single crystal silicon substrate 21 exemplified in this embodiment. It is. The n-type single crystal silicon substrate 21 functions as a power generation layer and has a thickness of 100 to 300 μm, for example. A texture structure (not shown) is preferably formed on the light receiving surface 11 of the n-type single crystal silicon substrate 21. Here, the “texture structure” is an uneven structure that suppresses surface reflection and increases the light absorption amount of the photoelectric conversion unit 20. As a specific example of the texture structure, a pyramidal (quadrangular pyramid or quadrangular frustum-shaped) uneven structure obtained by performing anisotropic etching on the light receiving surface 11 having a (100) plane can be exemplified.
 図2は、図1のA‐A線断面図である。図2に示すように、n型単結晶シリコン基板21の受光面11側には、i型非晶質シリコン膜22と、n型非晶質シリコン層23と、保護層24とが順に形成される。ここで、i型非晶質シリコン層22及びn型非晶質シリコン層23は、パッシベーション層として機能する。保護層24は、パッシベーション層を保護すると共に、反射防止機能を有する。 FIG. 2 is a cross-sectional view taken along line AA in FIG. As shown in FIG. 2, an i-type amorphous silicon film 22, an n-type amorphous silicon layer 23, and a protective layer 24 are sequentially formed on the light-receiving surface 11 side of the n-type single crystal silicon substrate 21. The Here, the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23 function as a passivation layer. The protective layer 24 protects the passivation layer and has an antireflection function.
 i型非晶質シリコン層22及びn型非晶質シリコン層23は、例えば、n型単結晶シリコン基板21の受光面11の端縁領域を除く全域に積層される。i型非晶質シリコン層22は、真性非晶質シリコンの薄膜層であって、0.5nm~50nm程度の厚みを有する。n型非晶質シリコン層23は、例えば、リン(P)等がドープされた非晶質シリコンの薄膜層であって、1nm~50nm程度の厚みを有する。 The i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23 are laminated, for example, over the entire region excluding the edge region of the light receiving surface 11 of the n-type single crystal silicon substrate 21. The i-type amorphous silicon layer 22 is a thin film layer of intrinsic amorphous silicon and has a thickness of about 0.5 nm to 50 nm. The n-type amorphous silicon layer 23 is an amorphous silicon thin film layer doped with phosphorus (P) or the like, for example, and has a thickness of about 1 nm to 50 nm.
 保護層24は、n型非晶質シリコン層23上の略全域に積層される。保護層24は、光透過性が高い材料から構成されることが好ましい。保護層24としては、例えば、酸化ケイ素(SiO2)、窒化ケイ素(SiN)、又は酸窒化ケイ素(SiON)等からなる絶縁層であることが好ましく、SiN層が特に好適である。保護層24の厚みは、反射防止特性等を考慮して適宜変更できるが、例えば、80nm~1μm程度が好適である。 The protective layer 24 is stacked on substantially the entire area on the n-type amorphous silicon layer 23. The protective layer 24 is preferably made of a material having high light transmittance. The protective layer 24 is preferably an insulating layer made of, for example, silicon oxide (SiO 2 ), silicon nitride (SiN), or silicon oxynitride (SiON), and a SiN layer is particularly suitable. The thickness of the protective layer 24 can be appropriately changed in consideration of antireflection characteristics and the like, but for example, about 80 nm to 1 μm is preferable.
 光電変換部20において、n型単結晶シリコン基板21の裏面12側には、IN非晶質シリコン層25(以下、IN層25とする)と、IP非晶質シリコン層26(以下、IP層26とする)とがそれぞれ積層される。IN層25とIP層26との間には、絶縁層31が設けられている。IN層25は、n型非晶質半導体領域(以下、N領域とする)を形成する薄膜層である。IN層25は、n型単結晶シリコン基板21の裏面12上に積層される第1のi型非晶質シリコン層27a及び第2のi型非晶質シリコン層27bと、i型非晶質シリコン層27a上に積層された第1のn型非晶質シリコン層28aと、i型非晶質シリコン層27b上に積層された第2のn型非晶質シリコン層28bとを含む。i型非晶質シリコン層27a,27bは、例えば、i型非晶質シリコン層22と同様の組成で形成できる。また、n型非晶質シリコン層28a,28bは、例えば、n型非晶質シリコン層23と同様の組成で形成でき、1nm~50nm程度の厚みを有する。IP層26は、p型非晶質半導体領域(以下、P領域とする)を形成する薄膜層である。P領域は、N領域よりも積層面積を大きくすることができる。IP層26は、n型単結晶シリコン基板21の裏面12上に積層されるi型非晶質シリコン層29と、i型非晶質シリコン層29上に積層される第1のp型非晶質シリコン層30aと、p型非晶質シリコン層30a上及びn型単結晶シリコン基板21の裏面12上に積層されるp型非晶質シリコン層30bとを含む。i型非晶質シリコン層29は、例えば、i型非晶質シリコン層22、i型非晶質シリコン層27a,27bと同様の組成で形成できる。また、p型非晶質シリコン層30a,30bは、例えば、ボロン(B)等がドープされた非晶質シリコンの薄膜層であって、1nm~50nm程度の厚みを有する。 In the photoelectric conversion unit 20, an IN amorphous silicon layer 25 (hereinafter referred to as an IN layer 25) and an IP amorphous silicon layer 26 (hereinafter referred to as an IP layer) are formed on the back surface 12 side of the n-type single crystal silicon substrate 21. 26). An insulating layer 31 is provided between the IN layer 25 and the IP layer 26. The IN layer 25 is a thin film layer that forms an n-type amorphous semiconductor region (hereinafter referred to as an N region). The IN layer 25 includes a first i-type amorphous silicon layer 27a and a second i-type amorphous silicon layer 27b stacked on the back surface 12 of the n-type single crystal silicon substrate 21, and an i-type amorphous layer. A first n-type amorphous silicon layer 28a stacked on the silicon layer 27a and a second n-type amorphous silicon layer 28b stacked on the i-type amorphous silicon layer 27b are included. The i-type amorphous silicon layers 27a and 27b can be formed with the same composition as that of the i-type amorphous silicon layer 22, for example. The n-type amorphous silicon layers 28a and 28b can be formed with the same composition as the n-type amorphous silicon layer 23, for example, and have a thickness of about 1 nm to 50 nm. The IP layer 26 is a thin film layer that forms a p-type amorphous semiconductor region (hereinafter referred to as a P region). The P region can have a larger lamination area than the N region. The IP layer 26 includes an i-type amorphous silicon layer 29 stacked on the back surface 12 of the n-type single crystal silicon substrate 21 and a first p-type amorphous silicon stacked on the i-type amorphous silicon layer 29. And a p-type amorphous silicon layer 30b stacked on the p-type amorphous silicon layer 30a and the back surface 12 of the n-type single crystal silicon substrate 21. The i-type amorphous silicon layer 29 can be formed with the same composition as the i-type amorphous silicon layer 22 and the i-type amorphous silicon layers 27a and 27b, for example. The p-type amorphous silicon layers 30a and 30b are, for example, amorphous silicon thin films doped with boron (B) or the like, and have a thickness of about 1 nm to 50 nm.
 n側電極40は、IN層25と電気的に接続される電極であって、主としてIN層25上に形成される。p側電極50は、n側電極40から離間して、IP層26と電気的に接続されるように形成された電極であって、IP層26上に形成される。n側電極40とp側電極50との間には、両電極を分離する分離溝60が形成されている。各電極の積層面積は、IN層25及びIP層26の積層面積に対応して、p側電極50の方がn側電極40よりも積層面積が大きくなっている。n側電極40及びp側電極50はそれぞれ、第1導電層43,53、第2導電層44,54、第3導電層45,55、及び第4導電層46,56の積層体で構成される。第1導電層43、第2導電層44、第3導電層45、及び第4導電層46はn側の導電層となり、第1導電層53、第2導電層54、第3導電層55、及び第4導電層56はp側の導電層となる。第1導電層43,53は、透明導電層によって構成される。第2導電層44,54は、金属層によって構成され、例えば、電気伝導率と材料費用の観点から銅(Cu)が用いられる。第1導電層43,53及び第2導電層44,54は、スパッタリングによって形成される。透明導電層は、例えば、多結晶構造を有する酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化錫(SnO2)、及び酸化チタン(TiO2)等の金属酸化物のうち少なくとも1種を含んで構成されることが好ましい。これらの金属酸化物に、錫(Sn)、亜鉛(Zn)、タングステン(W)、アンチモン(Sb)、チタン(Ti)、アルミニウム(Al)、セリウム(Ce)、ガリウム(Ga)などのドーパントがドープされていてもよく、例えば、In23にSnがドープされたITOが特に好ましい。ドーパントの濃度は、0~20wt%とすることができる。金属層は、例えば、50nm~1μm程度の厚みとすることが好適である。金属層は、高い導電性を有し、且つ光の反射率が高い金属から構成されることが好ましい。金属層を構成する金属としては、銀(Ag)、アルミニウム(Al)、チタン(Ti)、銅(Cu)、錫(Sn)などの金属又はそれらの1種以上を含む合金を用いることができる。例えば、第2導電層14は、Cu層であることが好ましい。第1導電層43,53及び第2導電層44,54は、第3導電層45,55及び第4導電層46,56をめっきによって形成する際の起点となるシード層として機能する。めっきによる第3導電層45,55及び第4導電層46,56の形成方法については、後に詳述する。第3導電層45,55は、金属層によって構成され、例えば、電気伝導率と材料費用の観点から銅(Cu)が用いられる。第4導電層46,56は、金属層によって構成され、例えば、第1導電層43,53、第2導電層44,54、及び第3導電層45,55の腐食を防ぐ観点から錫(Sn)が用いられる。 The n-side electrode 40 is an electrode electrically connected to the IN layer 25 and is mainly formed on the IN layer 25. The p-side electrode 50 is an electrode formed so as to be separated from the n-side electrode 40 and electrically connected to the IP layer 26, and is formed on the IP layer 26. A separation groove 60 that separates both electrodes is formed between the n-side electrode 40 and the p-side electrode 50. The laminated area of each electrode corresponds to the laminated area of the IN layer 25 and the IP layer 26, and the p-side electrode 50 has a larger laminated area than the n-side electrode 40. The n-side electrode 40 and the p-side electrode 50 are each composed of a laminate of first conductive layers 43 and 53, second conductive layers 44 and 54, third conductive layers 45 and 55, and fourth conductive layers 46 and 56. The The first conductive layer 43, the second conductive layer 44, the third conductive layer 45, and the fourth conductive layer 46 are n-side conductive layers. The first conductive layer 53, the second conductive layer 54, the third conductive layer 55, The fourth conductive layer 56 is a p-side conductive layer. The first conductive layers 43 and 53 are constituted by a transparent conductive layer. The second conductive layers 44 and 54 are composed of a metal layer, and for example, copper (Cu) is used from the viewpoint of electrical conductivity and material cost. The first conductive layers 43 and 53 and the second conductive layers 44 and 54 are formed by sputtering. The transparent conductive layer is, for example, at least one of metal oxides such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ) having a polycrystalline structure. It is preferable that it is comprised including seeds. These metal oxides contain dopants such as tin (Sn), zinc (Zn), tungsten (W), antimony (Sb), titanium (Ti), aluminum (Al), cerium (Ce), and gallium (Ga). For example, ITO in which In 2 O 3 is doped with Sn is particularly preferable. The concentration of the dopant can be 0 to 20 wt%. The metal layer is preferably about 50 nm to 1 μm thick, for example. The metal layer is preferably made of a metal having high conductivity and high light reflectance. As a metal constituting the metal layer, a metal such as silver (Ag), aluminum (Al), titanium (Ti), copper (Cu), tin (Sn), or an alloy containing one or more of them can be used. . For example, the second conductive layer 14 is preferably a Cu layer. The first conductive layers 43 and 53 and the second conductive layers 44 and 54 function as seed layers serving as starting points when the third conductive layers 45 and 55 and the fourth conductive layers 46 and 56 are formed by plating. A method of forming the third conductive layers 45 and 55 and the fourth conductive layers 46 and 56 by plating will be described in detail later. The third conductive layers 45 and 55 are formed of a metal layer, and for example, copper (Cu) is used from the viewpoint of electrical conductivity and material cost. The fourth conductive layers 46 and 56 are formed of a metal layer. For example, tin (Sn) is used to prevent corrosion of the first conductive layers 43 and 53, the second conductive layers 44 and 54, and the third conductive layers 45 and 55. ) Is used.
 ここで、図3~図5をさらに参照し、IN層25及びIP層26の構成を詳説する。特に、電流取り出し領域33について詳しく説明する。 Here, the configuration of the IN layer 25 and the IP layer 26 will be described in detail with further reference to FIGS. In particular, the current extraction region 33 will be described in detail.
 図3~図5では、n側電極40及びp側電極50を省略する。図3は、IN層25及びIP層26の平面形状パターンを示す(クロスハッチングを付した領域が、絶縁層31が設けられる重なり領域32である)。図4は、図2のN領域の拡大図であり、図5は、図2のP領域の拡大図である。 3 to 5, the n-side electrode 40 and the p-side electrode 50 are omitted. FIG. 3 shows a planar shape pattern of the IN layer 25 and the IP layer 26 (the region with cross-hatching is the overlapping region 32 where the insulating layer 31 is provided). 4 is an enlarged view of an N region in FIG. 2, and FIG. 5 is an enlarged view of a P region in FIG.
 図3に示すように、IN層25及びIP層26は、互いに噛み合うように形成された櫛歯状、或いはストライプ状の積層形態を有する。IN層25及びIP層26は、光電変換効率等の観点から、裏面12に平行な一方向に沿って、交互に形成されることが好適である。また、IN層25及びIP層26は、n型単結晶シリコン基板21の裏面12上の広範囲を覆うように形成されることが好ましい。このため、IP層26の端縁領域がIN層25の端縁領域上にオーバーラップしながら交互に隙間なく積層される。IN層25とIP層26とが重なり合う領域を「重なり領域32」と称して説明する。 As shown in FIG. 3, the IN layer 25 and the IP layer 26 have a comb-teeth shape or a stripe-like laminated form formed so as to mesh with each other. The IN layers 25 and the IP layers 26 are preferably formed alternately along one direction parallel to the back surface 12 from the viewpoint of photoelectric conversion efficiency and the like. The IN layer 25 and the IP layer 26 are preferably formed so as to cover a wide area on the back surface 12 of the n-type single crystal silicon substrate 21. For this reason, the edge region of the IP layer 26 is alternately stacked without a gap while overlapping the edge region of the IN layer 25. A region where the IN layer 25 and the IP layer 26 overlap will be referred to as an “overlapping region 32”.
 絶縁層31は、N領域とP領域とを絶縁する機能を有し、重なり領域32において、IN層25とIP層26との間に設けられる。絶縁層31としては、例えば、保護層24と同様の組成、同様の厚みで形成でき、SiN層を適用することが特に好適である。IN層25の表面において、IP層26が積層されない領域上には、絶縁層31が形成されない。これにより、IN層25とIP層26との良好な絶縁性を確保しながら、IN層25とn側電極40との電気的な接続が可能になる。 The insulating layer 31 has a function of insulating the N region and the P region, and is provided between the IN layer 25 and the IP layer 26 in the overlapping region 32. As the insulating layer 31, for example, it can be formed with the same composition and the same thickness as the protective layer 24, and it is particularly preferable to apply a SiN layer. On the surface of the IN layer 25, the insulating layer 31 is not formed on the region where the IP layer 26 is not stacked. Thereby, the IN layer 25 and the n-side electrode 40 can be electrically connected while ensuring good insulation between the IN layer 25 and the IP layer 26.
 図3~図5に示すように、n型単結晶シリコン基板21の裏面12には、各電極によりキャリアが取り出される電流取り出し領域33が存在する。電流取り出し領域33とは、各電極が形成される領域であり、且つ各電極との間にキャリアの移動を遮断する層が設けられない裏面12上の領域を意味する。例えば、n型単結晶シリコン基板21の厚み方向に沿って非晶質シリコン層及び電極が形成された領域は、電流取り出し領域33として機能する。これに対して、非晶質シリコン層及び電極が形成された領域であっても、n型単結晶シリコン基板21と電極との間に絶縁層31が積層された領域(例えば、重なり領域32)は、電流取り出し領域33として機能しない。これは、非晶質シリコン層におけるキャリアの移動度が小さいことに起因する。つまり、n型単結晶シリコン基板21の厚み方向へは、非晶質シリコン層の膜厚が薄く移動距離が短いためキャリアが十分に通過できるが、非晶質シリコン層の面方向(裏面12に平行な方向)へは大きく広がってキャリアが移動できないからである。 As shown in FIGS. 3 to 5, the back surface 12 of the n-type single crystal silicon substrate 21 has a current extraction region 33 from which carriers are extracted by each electrode. The current extraction region 33 is a region where each electrode is formed and a region on the back surface 12 where a layer for blocking carrier movement is not provided between each electrode. For example, the region where the amorphous silicon layer and the electrode are formed along the thickness direction of the n-type single crystal silicon substrate 21 functions as the current extraction region 33. On the other hand, even in the region where the amorphous silicon layer and the electrode are formed, the region where the insulating layer 31 is stacked between the n-type single crystal silicon substrate 21 and the electrode (for example, the overlapping region 32). Does not function as the current extraction region 33. This is because the mobility of carriers in the amorphous silicon layer is small. That is, in the thickness direction of the n-type single crystal silicon substrate 21, the amorphous silicon layer is thin and the moving distance is short, so that carriers can sufficiently pass therethrough, but the surface direction of the amorphous silicon layer (on the back surface 12). This is because the carrier cannot move because it spreads greatly in the parallel direction.
 本実施の形態では、IN層25が形成されたN領域において、絶縁層31が設けられていない領域が、n側電極40によりキャリアが取り出される電流取り出し領域33nとなる。即ち、IN層25とn側電極40との間に絶縁層31が設けられた重なり領域32を除く領域が、電流取り出し領域33nとなる。電流取り出し領域33nには、i型非晶質シリコン層27b及びn型非晶質シリコン層28bが形成されている。また、重なり領域32には、i型非晶質シリコン層27a及びn型非晶質シリコン層28aが形成されている。i型非晶質シリコン層27b及びn型非晶質シリコン層28bは、n型非晶質シリコン層28a上の全域を覆うように形成されてもよい。N領域では、電流取り出し領域33nに形成されたi型非晶質シリコン層27b及びn型非晶質シリコン層28bのトータルの膜厚が、重なり領域32に形成されたi型非晶質シリコン層27a及びn型非晶質シリコン層28aのトータルの膜厚よりも薄くなっている。特に、i型非晶質シリコン層27bの膜厚を、i型非晶質シリコン層27aの膜厚よりも薄くすることが好ましい。i型非晶質シリコン層27aは、パッシベーション特性の観点から膜厚が設定され、例えば、0.5nm~50nm程度が好適である。これに対し、i型非晶質シリコン層27bの膜厚は、パッシベーション特性と電流の取り出し効率とを考慮して、例えば、i型非晶質シリコン層27aの膜厚の2/3~1/3程度とすることが好適である。n型非晶質シリコン層28a,28bは、光電変換装置10の開放電圧及びn側電極40とのコンタクト抵抗において必要な特性が得られる膜厚とされる。好ましくは、n型非晶質シリコン層28bの膜厚も、n型非晶質シリコン層28aの膜厚より薄くする。 In the present embodiment, in the N region where the IN layer 25 is formed, a region where the insulating layer 31 is not provided becomes a current extraction region 33n from which carriers are extracted by the n-side electrode 40. That is, a region excluding the overlapping region 32 where the insulating layer 31 is provided between the IN layer 25 and the n-side electrode 40 is a current extraction region 33n. An i-type amorphous silicon layer 27b and an n-type amorphous silicon layer 28b are formed in the current extraction region 33n. In the overlapping region 32, an i-type amorphous silicon layer 27a and an n-type amorphous silicon layer 28a are formed. The i-type amorphous silicon layer 27b and the n-type amorphous silicon layer 28b may be formed so as to cover the entire area on the n-type amorphous silicon layer 28a. In the N region, the total film thickness of the i-type amorphous silicon layer 27b and the n-type amorphous silicon layer 28b formed in the current extraction region 33n is equal to the i-type amorphous silicon layer formed in the overlapping region 32. 27a and the total film thickness of the n-type amorphous silicon layer 28a. In particular, the i-type amorphous silicon layer 27b is preferably made thinner than the i-type amorphous silicon layer 27a. The thickness of the i-type amorphous silicon layer 27a is set from the viewpoint of passivation characteristics, and for example, about 0.5 nm to 50 nm is preferable. In contrast, the film thickness of the i-type amorphous silicon layer 27b is, for example, 2/3 to 1 / th of the film thickness of the i-type amorphous silicon layer 27a in consideration of passivation characteristics and current extraction efficiency. It is preferable to set it to about 3. The n-type amorphous silicon layers 28 a and 28 b have a film thickness that provides necessary characteristics for the open-circuit voltage of the photoelectric conversion device 10 and the contact resistance with the n-side electrode 40. Preferably, the film thickness of the n-type amorphous silicon layer 28b is also made thinner than the film thickness of the n-type amorphous silicon layer 28a.
 本実施の形態では、IP層26が形成されたP領域において、絶縁層31が設けられていない領域が、p側電極50によりキャリアが取り出される電流取り出し領域33pとなる。即ち、n型単結晶シリコン基板21とIP層26との間に絶縁層31が設けられた重なり領域32を除く領域が、電流取り出し領域33pとなる。電流取り出し領域33pには、p型非晶質シリコン層30bが形成されている。重なり領域32には、i型非晶質シリコン層29及びp型非晶質シリコン層30aが形成されている。また、電流取り出し領域33pの一部には、i型非晶質シリコン層29と、p型非晶質シリコン層30aと、p型非晶質シリコン層30bとが順に積層されている。p型非晶質シリコン層30bは、p型非晶質シリコン層30a上の全域を覆うように形成されてもよい。電流取り出し領域33pには、p型非晶質シリコン層30bが裏面12上に直接積層され、i型非晶質シリコン層が積層されない領域が設けられている。なお、p型非晶質シリコン層30a,30bは、例えば、互いに同等の厚みで形成できる。これにより、電流取り出し領域33pにおける非晶質シリコン層(p型非晶質シリコン層30b)の膜厚が、重なり領域32に形成された非晶質シリコン層(i型非晶質シリコン層29及びp型非晶質シリコン層30a)の膜厚よりも薄くなっている。 In the present embodiment, in the P region where the IP layer 26 is formed, a region where the insulating layer 31 is not provided becomes a current extraction region 33p from which carriers are extracted by the p-side electrode 50. That is, a region excluding the overlapping region 32 where the insulating layer 31 is provided between the n-type single crystal silicon substrate 21 and the IP layer 26 becomes the current extraction region 33p. A p-type amorphous silicon layer 30b is formed in the current extraction region 33p. In the overlapping region 32, an i-type amorphous silicon layer 29 and a p-type amorphous silicon layer 30a are formed. In addition, an i-type amorphous silicon layer 29, a p-type amorphous silicon layer 30a, and a p-type amorphous silicon layer 30b are sequentially stacked in part of the current extraction region 33p. The p-type amorphous silicon layer 30b may be formed so as to cover the entire area on the p-type amorphous silicon layer 30a. The current extraction region 33p is provided with a region where the p-type amorphous silicon layer 30b is directly stacked on the back surface 12 and the i-type amorphous silicon layer is not stacked. The p-type amorphous silicon layers 30a and 30b can be formed with the same thickness, for example. As a result, the film thickness of the amorphous silicon layer (p-type amorphous silicon layer 30b) in the current extraction region 33p becomes the same as that of the amorphous silicon layer (i-type amorphous silicon layer 29 and 29) formed in the overlapping region 32. It is thinner than the thickness of the p-type amorphous silicon layer 30a).
 非晶質シリコン層の膜厚は、例えば、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)による断面観察によって確認することができる。非晶質シリコン層の膜厚は、例えば、最大膜厚に基づいて調整してもよいが、平均膜厚に基づいて調整することが好ましい。 The film thickness of the amorphous silicon layer can be confirmed by, for example, cross-sectional observation with a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The film thickness of the amorphous silicon layer may be adjusted based on the maximum film thickness, for example, but is preferably adjusted based on the average film thickness.
 次に、図6~図17を参照して、光電変換装置10の製造方法の一例を説明する。 Next, an example of a method for manufacturing the photoelectric conversion device 10 will be described with reference to FIGS.
 図6~図14は、光電変換部20の製造工程を示す図である。
 まず、図6に示すように、プラズマ化学気相成長(PECVD)やスパッタリングにより、n型単結晶シリコン基板21の受光面11上に、i型非晶質シリコン層22、n型非晶質シリコン層23、及び保護層24を順に積層し、裏面12上に、i型非晶質シリコン層27a及びn型非晶質シリコン層28aを順に積層する。PECVDによるi型非晶質シリコン膜22,27aの積層工程では、例えば、シランガス(SiH4)を水素(H2)で希釈したものを原料ガスとして使用できる。また、n型非晶質シリコン膜23,28aの積層工程では、例えば、シラン(SiH4)にホスフィン(PH3)を添加し、水素(H2)で希釈したものを原料ガスとして使用できる。シランガスの水素希釈率を変化させることにより、i型非晶質シリコン膜22,27a及びn型非晶質シリコン膜23,28aの膜質を変化させることができる。また、ホスフィン(PH3)の混合濃度を変化させることによって、n型非晶質シリコン膜23,28aのドーピング濃度を変化させることができる。なお、i型非晶質シリコン層22等を積層する前において、n型単結晶シリコン基板21の受光面11にテクスチャ構造を形成しておくことが好適である。ここで、「テクスチャ構造」とは、表面反射を抑制し、光電変換部20の光吸収量を増大させる凹凸構造である。テクスチャ構造の具体例としては、(100)面を有する受光面11に異方性エッチングを施すことによって得られるピラミッド状(四角錐状や四角錐台状)の凹凸構造が例示できる。テクスチャ構造は、例えば、水酸化カリウム(KOH)水溶液を用いて、(100)面を異方性エッチングすることで形成できる。
6 to 14 are diagrams showing manufacturing steps of the photoelectric conversion unit 20.
First, as shown in FIG. 6, an i-type amorphous silicon layer 22 and an n-type amorphous silicon are formed on the light-receiving surface 11 of the n-type single crystal silicon substrate 21 by plasma enhanced chemical vapor deposition (PECVD) or sputtering. The layer 23 and the protective layer 24 are sequentially stacked, and the i-type amorphous silicon layer 27 a and the n-type amorphous silicon layer 28 a are sequentially stacked on the back surface 12. In the lamination process of the i-type amorphous silicon films 22 and 27a by PECVD, for example, a silane gas (SiH 4 ) diluted with hydrogen (H 2 ) can be used as a source gas. In the stacking process of the n-type amorphous silicon films 23 and 28a, for example, phosphine (PH 3 ) added to silane (SiH 4 ) and diluted with hydrogen (H 2 ) can be used as a source gas. The film quality of the i-type amorphous silicon films 22 and 27a and the n-type amorphous silicon films 23 and 28a can be changed by changing the hydrogen dilution rate of the silane gas. Further, the doping concentration of the n-type amorphous silicon films 23 and 28a can be changed by changing the mixed concentration of phosphine (PH 3 ). Note that it is preferable to form a texture structure on the light-receiving surface 11 of the n-type single crystal silicon substrate 21 before the i-type amorphous silicon layer 22 and the like are stacked. Here, the “texture structure” is an uneven structure that suppresses surface reflection and increases the light absorption amount of the photoelectric conversion unit 20. As a specific example of the texture structure, a pyramidal (quadrangular pyramid or quadrangular pyramid-shaped) uneven structure obtained by performing anisotropic etching on the light receiving surface 11 having a (100) plane can be exemplified. The texture structure can be formed, for example, by anisotropically etching the (100) plane using a potassium hydroxide (KOH) aqueous solution.
 続いて、図7に示すように、i型非晶質シリコン層27a及びn型非晶質シリコン層28aを部分的にエッチングして除去する。エッチングする領域は、電流取り出し領域33n及び電流取り出し領域33pとなる領域である。このエッチング工程では、例えば、スクリーン印刷やインクジェットによる塗工プロセス、又はフォトリソプロセス等により形成されたレジスト膜をマスクとして使用する。エッチング液としては、例えば、水酸化ナトリウム(NaOH)水溶液(例えば、1wt% NaOH水溶液)等を用いる。 Subsequently, as shown in FIG. 7, the i-type amorphous silicon layer 27a and the n-type amorphous silicon layer 28a are partially etched and removed. The region to be etched is a region that becomes the current extraction region 33n and the current extraction region 33p. In this etching step, for example, a resist film formed by a screen printing or ink jet coating process, a photolithography process or the like is used as a mask. As an etchant, for example, a sodium hydroxide (NaOH) aqueous solution (for example, 1 wt% NaOH aqueous solution) or the like is used.
 続いて、図8に示すように、例えば、PECVD等により、裏面12上の端縁領域を除く全域に、i型非晶質シリコン層27b、n型非晶質シリコン層28b、及び絶縁層31を順に積層する。つまり、n型非晶質シリコン層28a上にも、i型非晶質シリコン層27b、n型非晶質シリコン層28b、及び絶縁層31が積層される。この工程により、電流取り出し領域33nとなる領域に、i型非晶質シリコン層27aよりも薄いi型非晶質シリコン層27bが形成される。換言すると、i型非晶質シリコン層27bが裏面12上に直接形成された領域を、電流取り出し領域33nとするように後工程を進める。 Subsequently, as shown in FIG. 8, the i-type amorphous silicon layer 27 b, the n-type amorphous silicon layer 28 b, and the insulating layer 31 are formed over the entire region excluding the edge region on the back surface 12 by, for example, PECVD. Are sequentially stacked. That is, the i-type amorphous silicon layer 27b, the n-type amorphous silicon layer 28b, and the insulating layer 31 are stacked also on the n-type amorphous silicon layer 28a. By this step, an i-type amorphous silicon layer 27b thinner than the i-type amorphous silicon layer 27a is formed in a region that becomes the current extraction region 33n. In other words, the post-process is advanced so that the region where the i-type amorphous silicon layer 27b is directly formed on the back surface 12 becomes the current extraction region 33n.
 続いて、図9及び図10に示すように、レジスト膜100をマスクとして、絶縁層31、i型非晶質シリコン層27b、及びn型非晶質シリコン層28bを部分的にエッチングして除去する。エッチングする領域は、P領域の電流取り出し領域33pとなる領域である。この工程では、まず、レジスト膜100をマスクとして、縁層31をエッチングする。絶縁層31が、酸化ケイ素(SiO2)、窒化ケイ素(SiN)、又は酸窒化ケイ素(SiON)である場合は、例えば、フッ化水素(HF)水溶液を用いてエッチングできる。次に、パターニングされた絶縁層31をマスクとして、i型非晶質シリコン層27b及びn型非晶質シリコン層28bをエッチングする。この工程により、IN層25により構成されるN領域のパターニングが完了する。 Subsequently, as shown in FIGS. 9 and 10, the insulating layer 31, the i-type amorphous silicon layer 27b, and the n-type amorphous silicon layer 28b are partially etched and removed using the resist film 100 as a mask. To do. The region to be etched is a region that becomes the current extraction region 33p of the P region. In this step, first, the edge layer 31 is etched using the resist film 100 as a mask. When the insulating layer 31 is silicon oxide (SiO 2 ), silicon nitride (SiN), or silicon oxynitride (SiON), for example, etching can be performed using an aqueous hydrogen fluoride (HF) solution. Next, the i-type amorphous silicon layer 27b and the n-type amorphous silicon layer 28b are etched using the patterned insulating layer 31 as a mask. By this step, patterning of the N region constituted by the IN layer 25 is completed.
 続いて、図11に示すように、例えば、裏面12上の端縁領域を除く全域に、i型非晶質シリコン層29及びp型非晶質シリコン層30aを順に積層する。つまり、パターニングされたN領域上にも絶縁層31を介してi型非晶質シリコン層29及びp型非晶質シリコン層30aが積層される。i型非晶質シリコン層29及びp型非晶質シリコン層30aは、IN層25の場合と同様に、PECVD等によってi型非晶質シリコン層29及びp型非晶質シリコン層30aを順に成膜することで形成できる。ただし、PECVDによるp型非晶質シリコン層30aの積層工程では、例えば、ホスフィン(PH3)の代わりに、ジボラン(B26)をドーピングガスとして使用する。 Subsequently, as illustrated in FIG. 11, for example, an i-type amorphous silicon layer 29 and a p-type amorphous silicon layer 30 a are sequentially stacked over the entire region excluding the edge region on the back surface 12. That is, the i-type amorphous silicon layer 29 and the p-type amorphous silicon layer 30a are also stacked on the patterned N region via the insulating layer 31. As in the case of the IN layer 25, the i-type amorphous silicon layer 29 and the p-type amorphous silicon layer 30a are sequentially formed from the i-type amorphous silicon layer 29 and the p-type amorphous silicon layer 30a by PECVD or the like. It can be formed by film formation. However, in the lamination process of the p-type amorphous silicon layer 30a by PECVD, for example, diborane (B 2 H 6 ) is used as a doping gas instead of phosphine (PH 3 ).
 続いて、図12に示すように、例えば、スクリーン印刷等により形成されるレジスト膜をマスクとして、i型非晶質シリコン層29及びp型非晶質シリコン層30aを部分的にエッチングして除去する。エッチングする領域は、例えば、電流取り出し領域33pとなる領域の一部であり、エッチング範囲は適宜調整できる。IP層26は、通常、IN層25よりもエッチングされ難いため、IN層25のエッチングに用いたNaOH水溶液よりも高濃度のもの(例えば、10wt% NaOH水溶液)、又はフッ硝酸(HF,HNO3)(例えば、各々30wt%)を用いることが好ましい。或いは、NaOH水溶液を70~90℃程度に加熱して用いること(熱アルカリ処理)も好ましい。 Subsequently, as shown in FIG. 12, for example, the i-type amorphous silicon layer 29 and the p-type amorphous silicon layer 30a are partially removed by etching using a resist film formed by screen printing or the like as a mask. To do. The region to be etched is, for example, a part of the region that becomes the current extraction region 33p, and the etching range can be adjusted as appropriate. Since the IP layer 26 is usually harder to etch than the IN layer 25, the IP layer 26 has a higher concentration than the NaOH aqueous solution used for etching the IN layer 25 (for example, 10 wt% NaOH aqueous solution) or hydrofluoric acid (HF, HNO 3 ) (For example, 30 wt% each) is preferably used. Alternatively, it is also preferable to use an aqueous NaOH solution heated to about 70 to 90 ° C. (thermal alkali treatment).
 続いて、図13に示すように、例えば、PECVDによって、裏面12上の端縁領域を除く全域に、p型非晶質シリコン層30bを積層する。この工程により、電流取り出し領域33pとなる領域の一部に、p型非晶質シリコン層30bの単層構造が形成される。 Subsequently, as shown in FIG. 13, the p-type amorphous silicon layer 30 b is laminated over the entire region excluding the edge region on the back surface 12 by, for example, PECVD. By this step, a single layer structure of the p-type amorphous silicon layer 30b is formed in a part of the region that becomes the current extraction region 33p.
 続いて、図14に示すように、例えば、スクリーン印刷等により形成されるレジスト膜をマスクとして、IP層26及び絶縁層31を部分的にエッチングして除去し、IN層25を露出させる。エッチングするIP層26及び絶縁層31の領域は、i型非晶質シリコン層27bが裏面12上に直接形成された領域上の領域である。 Subsequently, as shown in FIG. 14, for example, the IP layer 26 and the insulating layer 31 are partially removed by etching using a resist film formed by screen printing or the like as a mask to expose the IN layer 25. The region of the IP layer 26 and the insulating layer 31 to be etched is a region on the region where the i-type amorphous silicon layer 27 b is directly formed on the back surface 12.
 図15~図17は、n側電極40及びp側電極50の形成工程を示す図である。
 以下では、各電極の第2導電層44,54をシード層として、電解めっきにより、各電極の第3導電層45,55及び第4導電層46,56を形成する工程を説明する。
FIGS. 15 to 17 are diagrams showing the steps of forming the n-side electrode 40 and the p-side electrode 50.
Hereinafter, a process of forming the third conductive layers 45 and 55 and the fourth conductive layers 46 and 56 of the respective electrodes by electrolytic plating using the second conductive layers 44 and 54 of the respective electrodes as a seed layer will be described.
 まず、図15に示すように、例えば、スパッタリング等により、IN層25上及びIP層26上に、第1導電層13及び第2導電層14を順に形成する。第1導電層13は、例えば、IN層25上及びIP層26上の略全域に積層される。ここで、第1導電層13は、後工程でパターニングされて各電極の第1導電層43,53となる層である。第2導電層14は、後工程でパターニングされて各電極の第2導電層44,45となる層である。 First, as shown in FIG. 15, the first conductive layer 13 and the second conductive layer 14 are sequentially formed on the IN layer 25 and the IP layer 26 by, for example, sputtering. For example, the first conductive layer 13 is stacked on substantially the entire area on the IN layer 25 and the IP layer 26. Here, the first conductive layer 13 is a layer that is patterned in a later step to become the first conductive layers 43 and 53 of each electrode. The second conductive layer 14 is a layer that is patterned in a later step to become the second conductive layers 44 and 45 of each electrode.
 続いて、図16に示すように、第1導電層13及び第2導電層14を部分的にエッチングして、各層を分断し、互いに分離された各電極の第1導電層43,53及び第2導電層44,45を形成する。第1導電層13及び第2導電層14のエッチングは、例えば、スクリーン印刷等によって形成されるレジスト膜をマスクとして使用し、塩化第二鉄(FeCl3)及び塩酸(HCl)を含有する水溶液を用いて行う。エッチングする領域は、例えば、重なり領域32上の領域とすることが好適である。 Subsequently, as shown in FIG. 16, the first conductive layer 13 and the second conductive layer 14 are partially etched to divide each layer, and the first conductive layers 43 and 53 and the first conductive layers 43 and 53 of each electrode separated from each other. Two conductive layers 44 and 45 are formed. Etching of the first conductive layer 13 and the second conductive layer 14 uses, for example, a resist film formed by screen printing or the like as a mask, and an aqueous solution containing ferric chloride (FeCl 3 ) and hydrochloric acid (HCl). To do. The region to be etched is preferably a region on the overlapping region 32, for example.
 続いて、図17に示すように、第2導電層44,45をシード層として、それぞれ第3導電層45,55を電解めっきにより形成する。次いで、第3導電層45,55上に、第4導電層46,56を電解めっきにより形成することにより、光電変換部20の裏面側に、n側電極40及びp側電極50を備えた光電変換装置10(図2参照)が得られる。電解めっきは、例えば、n側電極40を構成する第2導電層44と、p側電極50を構成する第2導電層54とに同じ大きさの電流を流して行うことができる。この場合、第2導電層44,54上には、同じ質量の金属めっき層が形成される。ゆえに、p側電極50より積層面積が小さなn側電極40において、第3導電層の厚みが厚くなる。つまり、同じ大きさの電流を流して電解めっきを行うことにより、n側電極40の厚みをp側電極50の厚みよりも厚くすることができる。 Subsequently, as shown in FIG. 17, the third conductive layers 45 and 55 are formed by electrolytic plating using the second conductive layers 44 and 45 as seed layers, respectively. Next, the fourth conductive layers 46 and 56 are formed on the third conductive layers 45 and 55 by electrolytic plating, so that the photoelectric conversion unit 20 is provided with the n-side electrode 40 and the p-side electrode 50 on the back surface side. The conversion device 10 (see FIG. 2) is obtained. The electroplating can be performed, for example, by flowing a current of the same magnitude through the second conductive layer 44 constituting the n-side electrode 40 and the second conductive layer 54 constituting the p-side electrode 50. In this case, a metal plating layer having the same mass is formed on the second conductive layers 44 and 54. Therefore, in the n-side electrode 40 having a smaller lamination area than the p-side electrode 50, the thickness of the third conductive layer is increased. That is, the thickness of the n-side electrode 40 can be made thicker than the thickness of the p-side electrode 50 by carrying out electrolytic plating while flowing the same current.
 以上のように、光電変換装置10では、電流取り出し領域33に形成された非晶質シリコン層の膜厚が、電流取り出し領域33の他の領域に形成された非晶質シリコン層の膜厚より薄くなっている。このため、電流取り出し領域33では、コンタクト抵抗が低減して、電流の取り出し効率を高めることができる。また、電流取り出し領域33の他の領域では、非晶質シリコン層の膜厚をパッシベーション特性の観点から好適な膜厚に設定して、キャリアの再結合を十分に防止し、キャリアのライフタイムを伸ばすことができる。 As described above, in the photoelectric conversion device 10, the film thickness of the amorphous silicon layer formed in the current extraction region 33 is larger than the film thickness of the amorphous silicon layer formed in another region of the current extraction region 33. It is getting thinner. For this reason, in the current extraction region 33, the contact resistance can be reduced and the current extraction efficiency can be increased. In the other region of the current extraction region 33, the film thickness of the amorphous silicon layer is set to a film thickness that is suitable from the viewpoint of passivation characteristics, and carrier recombination is sufficiently prevented, and the lifetime of the carrier is reduced. Can be stretched.
 光電変換装置10では、電流取り出し領域33nにおけるi型非晶質シリコン層27bの膜厚が、電流取り出し領域33nの他の領域におけるi型非晶質シリコン層27aの膜厚よりも薄くなっている。このため、電流取り出し領域33nでは、パッシベーション特性を発現しながら、コンタクト抵抗をさらに低減させることができ、電流の取り出し効率をさらに高めることができる。 In the photoelectric conversion device 10, the film thickness of the i-type amorphous silicon layer 27b in the current extraction region 33n is smaller than the film thickness of the i-type amorphous silicon layer 27a in other regions of the current extraction region 33n. . Therefore, in the current extraction region 33n, the contact resistance can be further reduced while exhibiting the passivation characteristics, and the current extraction efficiency can be further increased.
 光電変換装置10によれば、パッシベーション特性と、電流の取り出し効率とのバランスを最適化できる。光電変換装置10は、キャリアの再結合を防止しながら、電流の取り出し効率を向上させることにより、光電変換効率を高めることができる。 The photoelectric conversion device 10 can optimize the balance between the passivation characteristics and the current extraction efficiency. The photoelectric conversion device 10 can increase photoelectric conversion efficiency by improving current extraction efficiency while preventing carrier recombination.
 本実施形態は、本発明の目的を損なわない範囲で設計変更することができる。 The design of this embodiment can be changed within a range that does not impair the object of the present invention.
 本実施形態では、N領域及びP領域の両方において、電流取り出し領域における非晶質シリコン層の膜厚が、電流取り出し領域の他の領域における非晶質シリコン層の膜厚より薄いものとして説明したが、いずれか一方の領域のみをそのような構成としてもよい。例えば、P領域では、電流取り出し領域及びその他の領域における非晶質シリコン層の膜厚を同程度に設定してもよい。 In the present embodiment, it has been described that the film thickness of the amorphous silicon layer in the current extraction region is smaller than the film thickness of the amorphous silicon layer in other regions of the current extraction region in both the N region and the P region. However, only one of the regions may have such a configuration. For example, in the P region, the film thickness of the amorphous silicon layer in the current extraction region and other regions may be set to the same level.
 本実施形態では、IN層25を積層してからIP層26を積層するものとして説明したが、IP層26を先に積層してもよい。この場合、電流取り出し領域33nの一部に、i型非晶質半導体層が設けられていない領域を形成してもよい。 In the present embodiment, the IP layer 26 is stacked after the IN layer 25 is stacked, but the IP layer 26 may be stacked first. In this case, a region where the i-type amorphous semiconductor layer is not provided may be formed in a part of the current extraction region 33n.
 10 光電変換装置、11 受光面、12 裏面、13 第1導電層、14 第2導電層、20 光電変換部、21 n型単結晶シリコン基板、22,27a,27b,29 i型非晶質シリコン層、23,28a,28b n型非晶質シリコン層、24 保護層、25 IN非晶質シリコン層(IN層)、26 IP非晶質シリコン層(IP層)、30a,30b p型非晶質シリコン層、31 絶縁層、32,32n,32p 重なり領域、33,33n,33p 電流取り出し領域、40 n側電極、41,51 フィンガー電極部、42,52 バスバー電極部、43,53 第1導電層、44,54 第2導電層、45,55 第3導電層、46,56 第4導電層、50 p側電極、60 分離溝。 10 photoelectric conversion device, 11 light receiving surface, 12 back surface, 13 first conductive layer, 14 second conductive layer, 20 photoelectric conversion unit, 21 n-type single crystal silicon substrate, 22, 27a, 27b, 29 i-type amorphous silicon Layer, 23, 28a, 28b n-type amorphous silicon layer, 24 protective layer, 25 IN amorphous silicon layer (IN layer), 26 IP amorphous silicon layer (IP layer), 30a, 30b p-type amorphous Silicon layer, 31 insulating layer, 32, 32n, 32p overlap region, 33, 33n, 33p current extraction region, 40 n side electrode, 41, 51 finger electrode portion, 42, 52 bus bar electrode portion, 43, 53 first conductivity Layer, 44, 54, second conductive layer, 45, 55, third conductive layer, 46, 56, fourth conductive layer, 50 p-side electrode, 60 separation groove.

Claims (3)

  1.  半導体基板と、
     前記半導体基板の一方の面上に形成された第1導電型の非晶質半導体層を含む第1非晶質半導体層と、
     前記半導体基板の前記一方の面上の前記第1非晶質半導体層が形成されていない領域に形成された第2導電型の非晶質半導体層を含む第2非晶質半導体層と、
     前記第1非晶質半導体層と電気的に接続された第1電極と、
     前記第1電極から離間して、前記第2非晶質半導体層と電気的に接続されるように形成された第2電極と、
     を備え、
     前記第1及び第2電極によりキャリアが取り出される電流取り出し領域に形成された前記第1及び第2非晶質半導体層のうち少なくとも一部の膜厚が、他の領域に形成された対応する前記第1及び第2非晶質半導体層の膜厚よりも薄い光電変換装置。
    A semiconductor substrate;
    A first amorphous semiconductor layer including an amorphous semiconductor layer of a first conductivity type formed on one surface of the semiconductor substrate;
    A second amorphous semiconductor layer including a second conductive type amorphous semiconductor layer formed in a region where the first amorphous semiconductor layer is not formed on the one surface of the semiconductor substrate;
    A first electrode electrically connected to the first amorphous semiconductor layer;
    A second electrode formed apart from the first electrode and electrically connected to the second amorphous semiconductor layer;
    With
    The film thickness of at least a part of the first and second amorphous semiconductor layers formed in the current extraction region from which carriers are extracted by the first and second electrodes corresponds to the corresponding one formed in another region. A photoelectric conversion device thinner than the film thickness of the first and second amorphous semiconductor layers.
  2.  請求項1に記載の光電変換装置において、
     前記第1及び第2非晶質半導体層は、i型非晶質半導体層をそれぞれ含み、
     前記電流取り出し領域に形成された前記各i型非晶質半導体層のうち少なくとも一部の膜厚が、他の領域に形成された対応する前記各i型非晶質半導体層の膜厚よりも薄い光電変換装置。
    The photoelectric conversion device according to claim 1,
    The first and second amorphous semiconductor layers each include an i-type amorphous semiconductor layer,
    The film thickness of at least a part of each i-type amorphous semiconductor layer formed in the current extraction region is larger than the film thickness of each corresponding i-type amorphous semiconductor layer formed in another region. Thin photoelectric conversion device.
  3.  請求項1に記載の光電変換装置において、
     前記第1及び第2非晶質半導体層は、i型非晶質半導体層をそれぞれ含み、
     前記電流取り出し領域の少なくとも一部に、前記各i型非晶質半導体層が設けられていない領域を有する光電変換装置。
    The photoelectric conversion device according to claim 1,
    The first and second amorphous semiconductor layers each include an i-type amorphous semiconductor layer,
    A photoelectric conversion device having a region in which each i-type amorphous semiconductor layer is not provided in at least a part of the current extraction region.
PCT/JP2012/053838 2011-03-25 2012-02-17 Photoelectric converter WO2012132614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-068441 2011-03-25
JP2011068441 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012132614A1 true WO2012132614A1 (en) 2012-10-04

Family

ID=46930376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053838 WO2012132614A1 (en) 2011-03-25 2012-02-17 Photoelectric converter

Country Status (1)

Country Link
WO (1) WO2012132614A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141232A1 (en) * 2012-03-23 2013-09-26 三洋電機株式会社 Solar cell and method for manufacturing same
JPWO2015189878A1 (en) * 2014-06-13 2017-04-20 国立大学法人福島大学 Solar cell and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613639A (en) * 1992-06-24 1994-01-21 Sanyo Electric Co Ltd Photovoltaic device
JP2003031831A (en) * 2001-07-13 2003-01-31 Sanyo Electric Co Ltd Photovoltaic element and its manufacturing method
WO2009096539A1 (en) * 2008-01-30 2009-08-06 Kyocera Corporation Solar battery element and solar battery element manufacturing method
WO2010104098A1 (en) * 2009-03-10 2010-09-16 三洋電機株式会社 Process for producing solar battery, and solar battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613639A (en) * 1992-06-24 1994-01-21 Sanyo Electric Co Ltd Photovoltaic device
JP2003031831A (en) * 2001-07-13 2003-01-31 Sanyo Electric Co Ltd Photovoltaic element and its manufacturing method
WO2009096539A1 (en) * 2008-01-30 2009-08-06 Kyocera Corporation Solar battery element and solar battery element manufacturing method
WO2010104098A1 (en) * 2009-03-10 2010-09-16 三洋電機株式会社 Process for producing solar battery, and solar battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141232A1 (en) * 2012-03-23 2013-09-26 三洋電機株式会社 Solar cell and method for manufacturing same
JPWO2015189878A1 (en) * 2014-06-13 2017-04-20 国立大学法人福島大学 Solar cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5879538B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5820988B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5705968B2 (en) Photoelectric conversion device and manufacturing method thereof
US10134940B2 (en) Method of manufacturing solar cell
JP5891382B2 (en) Method for manufacturing photoelectric conversion element
US8877545B2 (en) Method of manufacturing solar cell
JP6179900B2 (en) Solar cell and manufacturing method thereof
WO2012090643A1 (en) Method for manufacturing solar cell and solar cell
JP5884030B2 (en) Method for manufacturing photoelectric conversion device
US20140027875A1 (en) Photoelectric conversion device and method for producing photoelectric conversion device
JPWO2012132766A1 (en) Photoelectric conversion device and method of manufacturing photoelectric conversion device
WO2012132614A1 (en) Photoelectric converter
US20190207052A1 (en) Method of manufacturing solar cell, and solar cell
WO2012090650A1 (en) Solar cell
US20170012164A1 (en) Method of forming electrode pattern and method of manufacturing solar cell
US10930810B2 (en) Solar cell and method of manufacturing solar cell
WO2012132834A1 (en) Solar cell and method for producing solar cell
US8852982B2 (en) Photoelectric device and manufacturing method thereof
JP2015185658A (en) Method of manufacturing solar battery
WO2012132932A1 (en) Solar cell and method for producing solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP