WO2012128592A2 - Method for coating a metal substrate with ceramic, metal substrate coated with ceramic, method for producing a substrate coated with a catalyst layer, substrate coated with a catalyst layer, and catalyst structure - Google Patents

Method for coating a metal substrate with ceramic, metal substrate coated with ceramic, method for producing a substrate coated with a catalyst layer, substrate coated with a catalyst layer, and catalyst structure Download PDF

Info

Publication number
WO2012128592A2
WO2012128592A2 PCT/KR2012/002152 KR2012002152W WO2012128592A2 WO 2012128592 A2 WO2012128592 A2 WO 2012128592A2 KR 2012002152 W KR2012002152 W KR 2012002152W WO 2012128592 A2 WO2012128592 A2 WO 2012128592A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ceramic
metal substrate
catalyst
catalyst layer
Prior art date
Application number
PCT/KR2012/002152
Other languages
French (fr)
Korean (ko)
Other versions
WO2012128592A3 (en
Inventor
최준환
박동수
류정호
최종진
윤운하
한병동
김종우
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120029587A external-priority patent/KR101409295B1/en
Priority claimed from KR1020120029586A external-priority patent/KR101361015B1/en
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2012128592A2 publication Critical patent/WO2012128592A2/en
Publication of WO2012128592A3 publication Critical patent/WO2012128592A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/045Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions

Definitions

  • the present invention relates to a technique for coating a dissimilar material on a metal substrate, and more particularly to a technique for forming a ceramic coating layer having a high adhesion on the metal substrate.
  • the present invention relates to a technique for forming a catalyst layer on one or both sides of the substrate, and more particularly, a method of forming a substrate coated with a catalyst layer on a metal substrate, a catalyst layer coated substrate prepared by such a method and the same It is about a catalyst structure.
  • a dissimilar material on a metal substrate By coating a dissimilar material on a metal substrate, new functions can be given. For example, by coating a ceramic material having heterogeneous properties on a metal substrate, it is possible to exert a new function mechanically and chemically. For example, wear resistance may be improved by forming a ceramic coating layer having a high hardness on a metal substrate requiring wear resistance.
  • the present invention can be applied to various devices requiring a catalytic reaction by forming a ceramic coating layer having specific chemical properties, for example, catalytic properties, on a metal substrate. As such a catalytic reaction, a catalyst structure for harmful gas reduction or a fuel reformer for a fuel cell may be mentioned.
  • the exhaust gases generated from engines, power plants, incinerators, etc. of automobiles, transportation equipment, ships, etc. are harmful pollutants such as NOx (NO, NO 2 ), CO, unburned hydrocarbons, SOx, and CO 2. It contains a large amount of greenhouse gases. These harmful gases are converted into harmless gases, such as N 2 , H 2 O through various reactions and discharged to the outside, and this reaction occurs through a catalyst structure made of a catalyst material.
  • the selective catalytic reduction apparatus is equipped with a catalyst structure mainly consisting of a carrier and a catalyst material for reducing NOx contained on the carrier.
  • hydrocarbons such as methane (CH 4 ) used as fuel in a fuel cell are reformed to hydrogen through a fuel reformer, wherein the fuel reformer is packed with a bead coated with a ceramic layer carrying a catalyst material. It includes a structure).
  • a reforming reaction to hydrogen occurs.
  • a problem may occur in that the back pressure of the gas increases as the hydrocarbon passes through the beads.
  • a fuel reformer using a catalyst structure coated with a catalyst layer supporting a catalyst material on a carrier has been studied.
  • Carriers which occupy most of the volume of such catalyst structures, should have good vibration resistance and low engine back pressure, and should be as small as possible.
  • a ceramic material is mainly used as such a carrier
  • a carrier made of such a ceramic material is weak in thermal shock resistance and vibration resistance due to high brittleness, and has a limitation in reducing the volume of the carrier in consideration of the volume of the catalyst to be dispersed.
  • the degree of freedom of molding is not high and the heat transfer characteristics are not excellent.
  • Such a ceramic coating layer is a slurry coating method in which a ceramic powder is immersed in a suspended solution and then dried and coated, and a sol in which colloids or inorganic single molecules are heat-treated and coated with a sol having a low viscosity gel.
  • the gel method or the ceramic powder may be formed by a spray coating method of making a semi-melt state in a high-temperature plasma and spraying the same on a substrate for coating.
  • the present invention has been made to solve the above problems, and in coating the ceramic layer on the metal substrate, the ceramic coating method and the coating method which can improve the adhesion between the metal substrate and the ceramic layer and further improve the oxidation resistance
  • An object of the present invention is to provide a ceramic coated metal substrate prepared by the present invention. Furthermore, the present invention has been made to solve such a problem, and in coating a catalyst layer made of a metal substrate and a ceramic material, it is possible to improve the adhesion between the metal substrate and the catalyst layer and further improve the oxidation resistance of the catalyst layer coated substrate.
  • An object of the present invention is to provide a production method, a catalyst layer coated substrate prepared by the method and a catalyst structure including the same.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • providing a metal substrate Forming an underlayer on at least one surface of the metal substrate by using an aerosol deposition method; And forming a ceramic layer on the base layer.
  • the ceramic coating method of the metal substrate is provided.
  • the base layer may be formed of a ceramic material.
  • the base layer and the ceramic layer may be formed to include ceramic materials of the same series.
  • the ceramic layer may be formed by any one of a slurry coating method, a sol-gel coating method and a spray coating method.
  • a method for coating a ceramic layer on a metal substrate wherein a base layer containing a ceramic material is formed between the metal substrate and the ceramic layer by an aerosol film forming method between the metal substrate and the ceramic layer.
  • a metal substrate coating method for improving adhesion is provided.
  • the base layer may be formed to include a ceramic material of the same series as the ceramic material constituting the ceramic layer.
  • a metal substrate An underlayer formed on at least one surface of the metal substrate; And a ceramic layer formed on the underlayer, wherein the underlayer is formed by an aerosol deposition method.
  • the base layer may be made of a ceramic material, and the base layer may include a ceramic material of the same series as the ceramic material included in the ceramic layer.
  • the base layer may have a thickness in the range of 100 ⁇ to 10 ⁇ m.
  • the base layer may include at least one of Al 2 O 3 , TiO 2 , zeolite, SiO 2 , ZrO 2 , and CeO 2 .
  • the metal substrate may have irregularities formed on its surface.
  • the ceramic coated metal substrate may exhibit higher adhesive force than the base layer is not formed.
  • the ceramic coating metal substrate may exhibit higher oxidation resistance than the base layer is not formed.
  • providing a metal substrate Forming an underlayer on at least one surface of the metal substrate by using an aerosol deposition method; And forming a catalyst layer made of a ceramic material supporting a catalyst material on the base layer.
  • the base layer may be formed of a ceramic material, and further, the base layer and the catalyst layer may be formed to include ceramic materials of the same series.
  • the base layer may be formed of any one or more of Al 2 O 3 based, TiO 2 based, zeolite based, SiO 2 based, ZrO 2 based and CeO 2 based.
  • the catalyst layer can be formed using a mixture of V 2 O 5 particles and TiO 2 particles, for example.
  • the catalyst layer may be formed to contain at least one catalyst material in a washcoat layer made of Al 2 O 3 particles.
  • the catalyst layer may be formed of zeolite particles, some of which are ion-substituted with one or more catalyst elements.
  • a method for producing a catalyst layer coated substrate which improves adhesion between the metal substrate and the catalyst layer by forming an underlayer comprising a ceramic material between the metal substrate and the catalyst layer by an aerosol film formation method.
  • the base layer may be formed to include a ceramic material of the same series as the ceramic material constituting the catalyst layer.
  • a metal substrate An underlayer formed on at least one surface of the metal substrate; And a catalyst layer formed on the underlayer, wherein the underlayer is formed by an aerosol deposition method.
  • the base layer may be made of a ceramic material, and further, the base layer may include a ceramic material of the same series as the ceramic material included in the catalyst layer.
  • the catalyst layer may be, for example, a catalyst layer for reducing harmful exhaust gas.
  • the catalyst layer may be a catalyst reforming catalyst layer for reforming hydrocarbons to hydrogen.
  • the base layer may include at least one of Al 2 O 3 , TiO 2 , zeolite, SiO 2 , ZrO 2 , and CeO 2 .
  • the catalyst layer may include, for example, a mixture of V 2 O 5 particles and TiO 2 particles.
  • one or more catalyst materials may be included in the washcoat layer made of Al 2 O 3 particles.
  • the catalyst layer may include zeolite in which a portion of the catalyst layer is ion-substituted with one or more catalyst elements.
  • a catalyst structure prepared by using any one of the catalyst layer coated substrate described above.
  • the adhesion between the metal substrate and the ceramic layer coated on the metal substrate may be significantly improved.
  • the effects of the present invention are not limited to those mentioned above, and other effects, which are not mentioned above, will be clearly understood by those skilled in the art from the following description.
  • FIG. 1 is a cross-sectional view of a ceramic coated metal substrate according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of an aerosol film-forming apparatus.
  • Figure 3 shows an example of a method for producing a catalyst structure using a metal plate coated with a catalyst layer.
  • FIG. 4 is a perspective view of a cylindrical structure manufactured by the manufacturing method of FIG.
  • 9 (a) and 9 (b) show the results of observing the surfaces of the specimens coated with zeolite on an STS430 substrate and an STS444 substrate by an aerosol deposition method.
  • 10 (a) and 10 (b) show the results of observing the surface state when SiO 2 was coated on the STS430 substrate and the STS444 substrate, respectively.
  • FIG. 11 (a) and (b) are the results of observing the surface of the specimen coated with TiO 2 on the STS430 substrate by an aerosol deposition method, using a scanning electron microscope
  • Figure 11 (c) is a surface of the uncoated STS430 substrate This is the result of observing with a scanning electron microscope.
  • 12 (a) to 12 (c) show the results of observing the surface of a specimen coated with zeolite on an STS430 substrate by an aerosol deposition method using a scanning electron microscope.
  • FIG. 13 shows the results of observing the multi-sided surfaces of the specimens coated with zeolite on the STS444 substrate by aerosol deposition.
  • 15A and 15B show the results of observing the surface of the specimen coated with the catalyst layer on the STS444 substrate by the aerosol deposition method on the STS444 substrate with a scanning electron microscope.
  • 16 is a photograph of a metal carrier having an underlayer formed on the surface of an STS444 substrate by an aerosol deposition method.
  • 17 is a graph showing the reduction reaction characteristics of NO x with temperature in a selective catalyst reduction apparatus including a zeolite catalyst layer coated substrate according to an experimental example of the present invention.
  • the ceramic coated metal substrate means a structure coated with ceramic on at least one surface of the metal substrate.
  • the ceramic coated metal substrate 100 includes a metal substrate 110, an underlayer 120 formed on one surface of the metal substrate 110, and a ceramic layer 130 formed on the underlayer 120. It includes.
  • the base layer 120 is formed only on one surface of the metal substrate 110 in FIG. 1, the present invention is not limited thereto, and the base layer 120 and the ceramic layer 130 are formed on both surfaces of the metal substrate 110. It also includes.
  • the metal substrate 110 may include all pure metals or alloys, and irregularities such as embossing may be formed on the surface to increase the surface area.
  • the metal substrate 110 is shown in a plate shape in FIG. 1, the shape of the metal substrate 110 is not limited thereto, and the metal substrate 110 may have any shape as long as it has a surface on which the base layer 120 may be formed.
  • the base layer 120 may be formed by aerosol deposition.
  • the aerosol deposition method is a method of coating by spraying the fine particles in the form of powder at a high speed toward the coating object, the aerosol film deposition apparatus 200 is shown in FIG.
  • the aerosol deposition apparatus 200 includes a carrier gas storage tank 210, an aerosol chamber 220 forming an aerosol 221 in which a coating material having a fine particle form is suspended by a carrier gas,
  • the aerosol 221 supplied from the aerosol chamber 220 is sprayed onto the coating object 231 is composed of a film forming chamber 230 is coated on the surface of the coating object 231.
  • the coating chamber 230 maintains a vacuum state during the operation, for this purpose, the vacuum pump 240 is connected.
  • the carrier gas air, oxygen, nitrogen, helium, or the like may be used, but the type is not limited.
  • the carrier gas is supplied from the carrier gas storage tank 210 to the aerosol chamber 220 through the pipe 211. At this time, the flow rate may be adjusted by the flow regulator 250.
  • the fine particles previously charged in the aerosol chamber 220 are suspended to form the aerosol 221.
  • the deposition chamber 230 maintains a vacuum state of several to several tens of torr, a pressure difference is formed between the deposition chamber 230 and the aerosol chamber 220. Due to this pressure difference, the aerosol 221 in the aerosol chamber 220 is supplied at high speed to the deposition chamber 230 in the direction of the arrow through the pipe 222, and through the nozzle 232 inside the deposition chamber 230. It is sprayed to the surface of the coating object 231.
  • the aerosol sprayed through the nozzle 232 has a velocity that is, for example, in the range of about 100 to 600 m / sec.
  • the aerosol sprayed at such a high speed has particles of extremely fine size while impinging on the surface of the coating object 231. It is ground and coated with.
  • the fine particles constituting the aerosol may be a ceramic material, and thus, the base layer 120 of FIG. 1 may have a structure in which very fine ceramic particles are tightly coupled.
  • the base layer 120 may include at least one of Al 2 O 3 , TiO 2 , zeolite, SiO 2 , ZrO 2 , and CeO 2 .
  • the base layer 120 formed by the aerosol film formation method has a significantly lower density of defects such as pores, cracks, and the like than the ceramic layer formed by the conventional ceramic coating method, and may exhibit excellent adhesion.
  • one or more coatings may be performed by moving any one or more of the nozzle 232 or the coating object 231, and the base layer 120 may be controlled by controlling an aerosol injection amount, a spraying speed, a reciprocating speed, or a reciprocating frequency in the nozzle.
  • Thickness can be adjusted. Such thickness may, for example, range from 100 microns to 10 microns.
  • the ceramic layer 130 formed on the base layer 120 may be formed by a method suitable for implementing a desired function. For example, it may be formed by a slurry coating method, a sol-gel method or a spray coating method. As the ceramic layer 130 is coated on the base layer 120 formed by the aerosol deposition method, the adhesive force of the ceramic layer 130 may be greatly improved.
  • the underlayer 120 made of a ceramic material when the underlayer 120 made of a ceramic material is formed by using an aerosol deposition method, the underlayer 120 exhibits excellent adhesion to the metal substrate 110.
  • the ceramic layer 130 is formed on the underlayer 120, since the underlayer 120 and the ceramic layer 130 are bonded to each other by similar ceramic materials, the underlayer 120 and the ceramic layer 130 are formed. Adhesion between) also shows excellent properties.
  • the underlayer 120 exhibits excellent adhesion to the metal substrate 110, and the underlayer 120 and the ceramic layer 130 have improved adhesion due to the bonding between the ceramic materials, and as a result, the ceramic layer ( Compared to the case where 130 is directly coated on the metal substrate 110, it is possible to secure excellent adhesion.
  • the base layer 120 may serve as an adhesive layer to improve adhesion between the metal substrate 110 and the ceramic layer 130 made of a ceramic material.
  • the base layer 120 and the ceramic layer 130 may include ceramic materials of the same series as each other.
  • the same series' means not only having the same chemical composition, but also the main constituent of the ceramic material even if it is not completely stoichiometrically, or if some atoms are substituted with other atoms or some other elements or compounds are added. This includes all cases where the elements are identical.
  • the ground layer 120 can be done by including Al 2 O 3 days if the ceramic layer 130 is Al 2 O 3 or La 2 O 3 with other elements or compounds are added to Al 2 O such as a 3, and
  • the ceramic layer 130 may be a zeolite-based ceramic in which a weight ratio of several percent of the elements constituting the zeolite is replaced with an element such as Fe or Cu. have.
  • the present invention is not limited to the case where the base layer 120 and the ceramic layer 130 are the same series, and in the case of heterogeneous ceramic materials, for example, the base layer 120 is made of TiO 2 and the ceramic layer ( It is obvious that 130) also includes a case made of zeolite.
  • the ceramic layer 130 may be a catalyst layer. Therefore, the above description of the ceramic layer 130 may be applied to the catalyst layer, and the structure shown in FIG. 1 may correspond to a cross section of the catalyst layer coated substrate 100. That is, the catalyst layer coating substrate 100 includes a metal substrate 110, an underlayer 120 formed on one surface of the metal substrate 110, and a catalyst layer 130 formed on the underlayer 120.
  • the metal substrate 110 may include both a pure metal or an alloy as a carrier of the catalyst structure. For example, it may be stainless steel or FeCrAl-based alloy, and the surface may have irregularities such as embossing to increase the surface area.
  • the catalyst layer 130 formed on the base layer 120 may be made of a ceramic material supporting a catalyst material.
  • the catalyst layer 130 may include a washcoat layer made of ceramic particles and at least one catalyst material contained in the washcoat layer.
  • the washcoat layer serves as a support layer (support layer) for supporting the catalyst material in the form of fine particles.
  • the washcoat layer constituting the catalyst layer 130 is advantageously to have as large a surface area as possible for effective dispersion of the catalyst material, and thus may be formed to include many fine pores between the particles constituting the washcoat layer.
  • the catalyst layer 130 may be formed by applying a solution in which ceramic particles are suspended in a solvent on a base layer 120 and then heat-treating the same.
  • the catalyst material may be suspended together with the solution and then applied to the upper layer 120.
  • the catalyst material may be impregnated in the washcoat layer to disperse the catalyst material in the washcoat layer.
  • a V 2 O 5 / TiO 2 based catalyst an alumina (Al 2 O 3 ) based catalyst, a zeolite based catalyst, or the like may be formed.
  • the V 2 O 5 / TiO 2 series catalyst is a mixture of V 2 O 5 particles and TiO 2 particles, which are catalysts for NOx reduction, wherein the catalyst material V 2 O 5 is dispersed on or between TiO 2 particles forming a washcoat layer. A distributed structure is achieved. At this time, the V 2 O 5 particles may occupy a few percent of the total particle weight, the TiO 2 particles may occupy more than 90%.
  • the alumina-based catalyst has a structure in which at least one noble metal catalyst such as Pt, Rh, Pd, etc. having a fine size is attached as a catalyst material in the washcoat layer made of alumina particles.
  • alumina-based catalyst may be used as a catalyst layer for NOx reduction or as a catalyst layer for fuel reforming of a fuel cell.
  • the zeolite-based catalyst layer has a structure in which some of the zeolite constituting the washcoat layer is ion exchanged with a catalyst material such as Fe and Cu.
  • the catalyst material may comprise a weight ratio of about several percent in the zeolite.
  • Each catalyst layer may be added with elements or particles of different components to improve the catalytic performance.
  • the adhesion of the catalyst layer 130 can be greatly improved.
  • the underlayer 120 made of a ceramic material when the underlayer 120 made of a ceramic material is formed by using an aerosol deposition method, the underlayer 120 exhibits excellent adhesion to the metal substrate 110.
  • a majority of the volume of the catalyst layer 130 is occupied by a washcoat layer made of ceramic particles. Therefore, when the base layer 120 is formed of a ceramic material, a bond is formed between the base layer 120 and the catalyst layer 130 with a ceramic material having similar physical and chemical properties, and thus, between the base layer 120 and the catalyst layer 130. It can exhibit excellent adhesive strength.
  • the underlayer 120 exhibits excellent adhesion to the metal substrate 110, and the underlayer 120 and the catalyst layer 130 have improved adhesion due to the bonding between the ceramic materials, and as a result, the catalyst layer 130.
  • the base layer 120 may serve as an adhesive layer to improve adhesion between the metal substrate 110 and the catalyst layer 130 made of a ceramic material.
  • the base layer 120 may be formed using a ceramic material of the same series as the washcoat layer of the catalyst layer 130.
  • the same series' means not only having the same chemical composition, but also including all cases in which the main elements constituting the ceramic material are the same even if they are not completely stoichiometrically or some atoms are replaced with other atoms.
  • the base layer 120 is Al 2 O 3 il catalyst layer 130 may be achieved by including Al 2 O 3 or La 2 O 3 and the other element or compound added to the Al 2 O 3, such as,
  • the catalyst layer 130 may be a zeolite-based ceramic in which a weight ratio of several percent of the elements constituting the zeolite is replaced with an element such as Fe or Cu.
  • the catalyst layer 130 when the catalyst layer 130 is formed of a V 2 O 5 / TiO 2 based ceramic, the base layer 120 may be formed of a TiO 2 layer correspondingly.
  • the present invention is not limited to the case where the base layer 120 and the catalyst layer 130 are the same series, and in the case of heterogeneous ceramic materials, for example, the base layer 120 is made of TiO 2 and the catalyst layer 130. It is obvious to include the case made of silver zeolite.
  • the adhesion between the catalyst layer 130 and the underlayer 120 is formed by forming the washcoat layer and the underlayer 120, which occupy most of the volume of the catalyst layer 130, with the same series of ceramic materials, thereby inducing bonding between the same series of ceramic materials. Can be further improved.
  • a catalyst structure to be applied to various apparatuses using a catalytic reaction may be manufactured.
  • a cylindrical catalyst structure having a catalyst layer formed therein may be formed using a thin metal substrate having a concave-convex shape (hereinafter, referred to as a metal thin plate) as a carrier.
  • the metal plate may be stainless steel or FeCrAl-based alloy.
  • FIG. 3 illustrates a method of making such a cylindrical catalyst structure
  • FIG. 4 shows a perspective view of the catalyst structure 300 produced by this method.
  • the metal thin plates 301 and 302 are formed.
  • a cylindrical structure in which a through passage 303 periodically extending from one end of the cylinder to the other end thereof is formed periodically.
  • the base layer is formed on the inner wall of the through passage 303.
  • the catalyst structure 300 may be manufactured by supplying a solution in which the ceramic particles forming the catalyst layer are suspended into the through passage 303 of the cylindrical structure and applying the solution to the upper layer, followed by heat treatment to form the catalyst layer (FIG. 4). ).
  • a cylindrical structure may be dipped into the solution or the solution may be directly injected into the through passage 303.
  • a method of sucking the solution into the through passage 303 using a vacuum may be used.
  • FIG. 5 is a cross-sectional view perpendicular to the longitudinal direction of the cylindrical catalyst structure 300, the base layer 120 and the surface of the first metal plate 301 and the second metal plate 302 forming the inner wall of the through passage 303 It shows that the catalyst layer 130 is formed by sequentially stacked.
  • the carrier is a metal material
  • the catalyst structure 300 is free of forming such as winding, and the base layer is strongly adhered to the metal substrate, so that the base layer and the catalyst layer on top thereof are peeled off or cracked from the metal substrate in the forming process. The phenomenon can be prevented.
  • the catalyst structure according to the embodiment of the present invention can be used for reducing the exhaust gas or the fuel reformer of the fuel cell.
  • the vibration resistance and heat transfer characteristics are superior to the catalyst structure using the conventional ceramic carrier, and the volume can be reduced, so that it is used not only for automobiles and transportation equipment but also especially for ships with severe space constraints and mechanical and thermal shocks from the outside. It can be effectively applied to the apparatus for reducing exhaust gas.
  • a stainless steel thin plate was used as the metal substrate 110, and an underlayer was formed on one surface by an aerosol film formation method.
  • STS430 and STS444 were used as stainless steels.
  • STS444 was used to form the irregularities (embossing) using a rolling roll to increase the surface area.
  • a TiO 2 layer and a zeolite layer were formed as base layers.
  • the TiO 2 layer prepared for adhesion evaluation was formed on STS444 and had a thickness of about 1.7 ⁇ m from cross-sectional observation and component profile analysis.
  • FIG. 6 (a) shows an STS444 substrate coated with a TiO 2 layer before the Ericsson test
  • FIG. 6 (b) shows that the STS444 substrate is broken after molding by the Ericsson test.
  • FIGS. 7A and 7B show the results of observing the TiO 2 layer before and after molding with a scanning electron microscope, respectively.
  • FIGS. 8A and 8B show the coating layers of the molded part before and after molding, respectively. The results of analysis of the components by energy disperse spectroscopy (EDS) are shown. Referring to FIGS. 7 and 8, even when the steel sheet undergoes severe plastic processing leading to fracture, the TiO 2 layer formed thereon is not peeled off and maintains the TiO 2 coating layer as it is before firing.
  • EDS energy disperse spectroscopy
  • the base layer formed on the metal substrate by the aerosol deposition method has a very good adhesion even though it is made of a ceramic material.
  • 9 (a) and 9 (b) show the results of observing the surface state when the zeolite is coated on the STS430 substrate and the STS444 substrate, respectively. It can be seen that both substrates are uniformly coated with zeolite.
  • 10 (a) and 10 (b) show the results of observing the surface state when SiO 2 was coated on the STS430 substrate and the STS444 substrate, respectively. It can be seen that SiO 2 is uniformly coated on both substrates.
  • FIG. 11 are the results of observing the surface state of the TiO 2 coated on the STS430 substrate by one time and four times, respectively, by scanning electron microscope, and FIG. 11 (c) is not coated.
  • the surface of STS430 was observed by scanning electron microscope. It can be seen that the substrate is uniformly coated by the single round trip coating, and it can be seen that the single round trip and the four round coatings exhibit similar microstructures.
  • a very rough Empty modified surface than before the TiO 2 layer is formed as Fig. Referring to (a) and (b) 11 to form a TiO 2 layer as an aerosol deposition method. That is, many fine TiO 2 particles were distributed in the uppermost layer, and the surface roughness became very rough. As the surface is rougher, the surface area increases, and the mechanical coupling effect at the interface with the ceramic layer formed thereon is increased, thereby improving adhesion and durability with the ceramic layer.
  • 12 (a) to 12 (c) show the results of observing the surface state when the zeolite was coated on the STS430 substrate once, twice and four times, respectively, with a scanning electron microscope. It can be seen that the substrate is uniformly coated even with the reciprocating single coating, and in particular, it can be seen that the surface roughness is very uniform and distinct as a whole. Therefore, when forming the ceramic layer in a subsequent step, the adhesion and durability at the interface can be increased. On the other hand, as the number of coatings increases, although the surface roughness is slightly reduced, it can be seen that it is still maintained in a rough state.
  • FIG. 13 shows the result of observing the cross section of the zeolite once on the STS444 substrate by scanning electron microscope. It can be seen that a zeolite layer (arrow) of about 0.5 to 1 ⁇ m on the surface is very well bonded to the substrate.
  • the underlayer formed by the aerosol deposition method has a dense structure with a low density of defects such as pores and cracks, and thus, as the underlayer is formed on the metal substrate, it effectively blocks the diffusion of oxygen from the outside to provide oxidation resistance. Can be improved.
  • FIGS. 14A to 14C zeolite and TiO 2 coated specimens were coated on an STS430 substrate and an STS430 substrate, respectively, at 500 ° C. for 4 hours in the air, and then the surface was observed with an optical microscope. Is shown.
  • the uncoated STS430 substrate can be confirmed that the surface is severely oxidized.
  • the specimen coated with zeolite and TiO 2 is almost oxidized. You can see that did not happen.
  • STS430 and STS444 substrates, zeolite and TiO 2 coated specimens on STS430 and STS444 substrates, and SiO2 coated specimens on STS444 substrates were used at 800 ° C, 850 ° C, and 900 ° C for 40 hours. After the heat treatment in the air for a while the weight increase rate by oxidation was measured and the results are shown in Table 1.
  • the weight increase rate of oxidative heat treatment of STS444 specimen coated with zeolite, TiO 2 and SiO 2 was only about one third.
  • the weight increase rate of oxidative heat treatment of STS430 specimen coated with zeolite and SiO 2 was only about 1/10.
  • the ceramic layer 130 is formed on the base layer 120 coated on one surface of the metal substrate 110.
  • the ceramic layer 130 may be, for example, a catalyst layer. 15A to 15B, after coating the underlayer 120 on the STS444 substrate by aerosol deposition, the surface of the specimen coated with the catalyst layer 130 on the underlayer 120 was observed by scanning electron microscopy. Is shown.
  • the underlying layer 120 was formed of 13X zeolite and the catalyst layer 130 was formed of Fe-BEA-35, which is a beta-zeolite system. At this time, the catalyst layer 130 was formed by slurry coating using 6 wt% of the binder.
  • the substrate was a thin plate of stainless steel, it was difficult to cut the specimen by using brittle fracture.
  • the specimen was prepared by tearing repeatedly by applying a bending load in low temperature liquid nitrogen. 15A to 15B, it can be seen that the catalyst layer 130 having a thickness of about 10 ⁇ m is formed on the underlayer 120.
  • the materials constituting the base layer 120 and the catalyst layer 130 are not limited by the above materials.
  • the base layer 120 may include 4A type low cost zeolite.
  • the catalyst layer 130 includes a zeolite-based ceramic substituted with a catalytic element such as Fe or Cu in a weight ratio of several percent of the elements constituting the zeolite.
  • a catalytic element such as Fe or Cu in a weight ratio of several percent of the elements constituting the zeolite.
  • ZSM-5 substituted with Fe or Cu catalysts Or beta-zeolite (BEA) systems are examples of the zeolite-based ceramic substituted with a catalytic element such as Fe or Cu in a weight ratio of several percent of the elements constituting the zeolite.
  • FIG. 16 is a photograph of a metal carrier having an underlayer formed on the surface of an STS444 substrate by an aerosol film formation, and may form part of the cylindrical catalyst structure shown in FIG. 4.
  • the left side is a metal carrier on which an underlayer is not formed and the right side is a metal carrier on which an underlayer is formed.
  • the metal carrier forms a base layer on one or both surfaces of the first metal plate and the flat second metal plate on which periodic irregularities are formed, and then winds the metal plates alternately.
  • the through passage extending from the other end to corresponds to the cylindrical structure formed periodically. At this time, an underlayer is formed on the inner wall of the through passage. Since the catalyst is a metal material, not only is the molding free of winding, but also the base layer is strongly adhered to the metal substrate, so that the base layer and the upper catalyst layer are peeled off or cracked from the metal substrate during the molding process. It can prevent.
  • FIG. 17 is a graph showing a reduction reaction characteristic, that is, NOx reduction performance test result of NOx according to temperature of a selective reduction catalyst manufactured in the form of FIG. 16 using a zeolite catalyst layer coated substrate according to an experimental example of the present invention.
  • NH3 gas and NOx gas are each about 500 ppm concentration
  • O2 (oxygen) is 10% and balanced with N2 gas as an inlet gas.
  • the total flow rate was added at about 4 liters / min and the gas temperature was measured at room temperature (26 ° C) at about 400 ° C.
  • NOx conversion performance is more than 80% at 250 ° C, it can be seen that the low temperature performance of the catalyst is excellent.
  • FIG. 17 it can be seen that the low temperature performance of the sample produced through the experimental example of the present invention is excellent.
  • the adhesion of the catalyst layer with and without the base layer was evaluated. After forming a base layer with TiO 2 on a 50 ⁇ m thick metal substrate (STS444 thin plate) by aerosol film formation, slurry coating the catalyst layer with zeolite and slurry coating zeolite directly on the metal substrate without coating the base layer. The adhesion test of the specimens was performed. The adhesion test was performed by filling an acetone in the ultrasonic cleaner (500W), placing each specimen coated with a catalyst layer in acetone, and applying ultrasonic waves for 30 minutes.
  • the ultrasonic cleaner 500W
  • the weight of the specimen was dried and the weight change was measured before and after the ultrasonic test, and the degree of separation of the catalyst layer by the ultrasonic test was investigated.
  • the results are shown in Table 2. Referring to Table 2, it can be seen that the weight change rate before and after the ultrasonic test is lower than the specimen coated with the underlayer is coated with the catalyst layer on the metal substrate without coating the underlayer. This is because the separation of the catalyst layer by ultrasonic waves in the case of interposing the base layer between the catalyst layer and the metal substrate is relatively small, from which it can be seen that the bonding layer of the catalyst layer is more excellent.
  • the bonding force of the catalyst layer 130 is superior to that of the base layer 120 without the base layer 120. It was.
  • the bonding layer of the catalyst layer 130 is superior to the case without the base layer 120. It is apparent by the technical spirit of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

According to one aspect of the present invention, provided is a method for coating a metal substrate with ceramic, comprising: a step of providing a metal substrate; a step of forming an underlayer on at least one side of the metal substrate by means of an aerosol deposition method; and a step of forming a ceramic layer on the underlayer. Here, the underlayer may be made of a ceramic material. In addition, the underlayer and the ceramic layer may be formed so as to contain ceramic materials from the same family. According to another aspect of the present invention, provided is a method for producing a substrate coated with a catalyst layer, comprising: a step of providing a metal substrate; a step of forming an underlayer on at least one side of the metal substrate by means of an aerosol deposition method; and a step of forming a catalyst layer made of a catalyst-material-supported ceramic material on the underlayer. Here, the underlayer may be made of a ceramic material, and further, the underlayer and the catalyst layer may be formed so as to contain ceramic materials from the same family.

Description

금속기판의 세라믹 코팅방법, 세라믹 코팅 금속기판, 촉매층 코팅기판의 제조방법, 촉매층 코팅기판 및 촉매 구조체Ceramic coating method of metal substrate, ceramic coating metal substrate, method of manufacturing catalyst layer coating substrate, catalyst layer coating substrate and catalyst structure
본 발명은 금속기판 상에 이종물질을 코팅하는 기술에 대한 것으로서, 더욱 상세하게는 금속기판 상에 높은 접착력을 가지는 세라믹 코팅층을 형성하는 기술에 대한 것이다. 또한, 본 발명은 기판의 일면 또는 양면에 촉매층을 형성하는 기술에 대한 것으로서, 더욱 상세하게는 금속기판 상에 촉매층이 코팅된 기판을 형성하는 방법, 이러한 방법에 의해 제조된 촉매층 코팅기판 및 이를 포함하는 촉매 구조체에 대한 것이다. The present invention relates to a technique for coating a dissimilar material on a metal substrate, and more particularly to a technique for forming a ceramic coating layer having a high adhesion on the metal substrate. In addition, the present invention relates to a technique for forming a catalyst layer on one or both sides of the substrate, and more particularly, a method of forming a substrate coated with a catalyst layer on a metal substrate, a catalyst layer coated substrate prepared by such a method and the same It is about a catalyst structure.
금속기판 상에 이종물질을 코팅함으로써 새로운 기능을 부여할 수 있다. 예를 들어 금속기판 상에 이종의 특성을 가지는 세라믹 재료를 코팅함으로써 기계적, 화학적으로 새로운 기능의 발휘를 가능하게 할 수 있다. 예를 들어, 내마모 특성을 요하는 금속기판 상에 높은 경도를 가지는 세라믹 코팅층을 형성하여 내마모성을 향상시킬 수 있다. 또는 금속기판 상에 특유의 화학적 특성, 예를 들어 촉매특성 등을 가지는 세라믹 코팅층을 형성함으로써 촉매반응을 요구하는 여러 장치 등에 응용될 수 있다. 이러한 촉매반응을 이용하는 것으로서, 유해가스 저감용 촉매 구조체 또는 연료전지용 연료 개질기(fuel reformer) 등을 예를 들 수 있다. By coating a dissimilar material on a metal substrate, new functions can be given. For example, by coating a ceramic material having heterogeneous properties on a metal substrate, it is possible to exert a new function mechanically and chemically. For example, wear resistance may be improved by forming a ceramic coating layer having a high hardness on a metal substrate requiring wear resistance. Alternatively, the present invention can be applied to various devices requiring a catalytic reaction by forming a ceramic coating layer having specific chemical properties, for example, catalytic properties, on a metal substrate. As such a catalytic reaction, a catalyst structure for harmful gas reduction or a fuel reformer for a fuel cell may be mentioned.
일반적으로 자동차, 운송기기, 선박 등의 엔진이나 발전소, 소각장 등으로부터 발생되는 배기가스에는 대기오염 물질인 NOx (NO, NO2), CO, 탄화수소(unburned hydrocarbons), SOx 등의 유해가스 및 CO2 등 다량의 온실가스가 포함되어 있다. 이러한 유해가스들은 여러 반응을 통해 무해한 가스, 예를 들어 N2, H2O 등으로 변환시켜 외부로 배출하게 되며, 이때 이러한 반응은 촉매물질로 이루어진 촉매 구조체를 통해 일어나게 된다. In general, the exhaust gases generated from engines, power plants, incinerators, etc. of automobiles, transportation equipment, ships, etc. are harmful pollutants such as NOx (NO, NO 2 ), CO, unburned hydrocarbons, SOx, and CO 2. It contains a large amount of greenhouse gases. These harmful gases are converted into harmless gases, such as N 2 , H 2 O through various reactions and discharged to the outside, and this reaction occurs through a catalyst structure made of a catalyst material.
예를 들어, 최근 들어 세계적으로 규제가 강화되는 NOx는 선택적촉매환원(selective catalytic reduction, SCR) 장치에서 NH3에 의해 N2 및 H2O로 환원되어 외부로 배출될 수 있다. 이때 선택촉매환원장치에는 주로 담체와 상기 담체 상에 포함되는 NOx 저감용 촉매물질로 이루어진 촉매 구조체가 장착되게 된다. For example, NOx, which has recently been tightened globally, can be reduced to NH 2 and H 2 O by NH 3 in selective catalytic reduction (SCR) devices and released to the outside. At this time, the selective catalytic reduction apparatus is equipped with a catalyst structure mainly consisting of a carrier and a catalyst material for reducing NOx contained on the carrier.
또한 연료전지에 연료로서 사용되는 메탄(CH4) 등과 같은 탄화수소는 연료 개질기를 통해 수소로 개질되게 되며, 이때 이러한 연료 개질기는 촉매물질을 담지한 세라믹층이 코팅된 비드(bead)가 팩킹(packing)된 구조물을 포함한다. 이러한 팩킹된 비드를 탄화수소가 지나가면서 수소로의 개질되는 반응이 일어나게 되는데, 이 경우 탄화수소가 비드를 통과하면서 가스의 배압(back pressure)이 증가하는 문제가 발생할 수 있다. 이에 최근 담체 상에 촉매물질을 담지한 촉매층을 코팅한 촉매 구조체를 이용하는 연료 개질기가 연구되고 있다. In addition, hydrocarbons such as methane (CH 4 ) used as fuel in a fuel cell are reformed to hydrogen through a fuel reformer, wherein the fuel reformer is packed with a bead coated with a ceramic layer carrying a catalyst material. It includes a structure). As the hydrocarbon passes through the packed beads, a reforming reaction to hydrogen occurs. In this case, a problem may occur in that the back pressure of the gas increases as the hydrocarbon passes through the beads. Recently, a fuel reformer using a catalyst structure coated with a catalyst layer supporting a catalyst material on a carrier has been studied.
이러한 촉매 구조체의 대부분의 부피를 차지하는 담체는 우수한 내진동성과 낮은 엔진배압을 가져야 하며, 가능한 차지하는 부피가 작아야 한다. 이러한 담체로서 주로 세라믹 재료가 이용되고 있으나, 이러한 세라믹 재료로 이루어진 담체는 높은 취성으로 인해 내열충격성 및 내진동성이 약하며, 분산되는 촉매의 부피를 고려할 때 담체의 부피를 감소시키기에 한계가 있다. 또한 성형 자유도가 높지 않으며 열전달 특성도 우수하지 못한 문제점이 있다. Carriers, which occupy most of the volume of such catalyst structures, should have good vibration resistance and low engine back pressure, and should be as small as possible. Although a ceramic material is mainly used as such a carrier, a carrier made of such a ceramic material is weak in thermal shock resistance and vibration resistance due to high brittleness, and has a limitation in reducing the volume of the carrier in consideration of the volume of the catalyst to be dispersed. In addition, there is a problem that the degree of freedom of molding is not high and the heat transfer characteristics are not excellent.
이러한 문제점을 해결하기 위해 세라믹 재료에 비해 내열충격성 및 내진동성이 우수하며 성형자유도 및 열전달 특성이 우수한 금속기판을 담체로 이용하고, 이러한 금속담체 상에 촉매물질을 포함하는 세라믹층을 코팅하는 방법을 생각할 수 있다. In order to solve this problem, a method of coating a ceramic layer containing a catalyst material on a metal carrier using a metal substrate having excellent thermal shock resistance and vibration resistance and excellent molding freedom and heat transfer characteristics as a carrier. You can think of
이러한 세라믹 코팅층은 세라믹 분말이 현탁된 용액에 침지시킨 후 건조하여 코팅하는 슬러리 코팅법, 콜로이드나 무기물 단분자들이 현탁된 졸(sol)을 점도가 낮은 겔(gel) 상태에서 열처리하여 코팅하는 졸-겔법 또는 세라믹 분말을 고온의 플라즈마에 반용융 상태로 만든 후 이를 기판에 분사하여 코팅하는 용사코팅법 등에 의해 형성될 수 있다.Such a ceramic coating layer is a slurry coating method in which a ceramic powder is immersed in a suspended solution and then dried and coated, and a sol in which colloids or inorganic single molecules are heat-treated and coated with a sol having a low viscosity gel. The gel method or the ceramic powder may be formed by a spray coating method of making a semi-melt state in a high-temperature plasma and spraying the same on a substrate for coating.
그러나 종래의 코팅방법을 이용하여 금속기판 상에 세라믹층을 코팅하는 경우, 금속과 세라믹 간의 원자결합특성, 열팽창계수 등의 차이로 인해 접착력이 불량하여 코팅된 세라믹이 외부에서 인가되는 응력이나 열충격, 기타 화학적인 원인 등에 의해 박리되는 문제점이 발생할 수 있다. However, in the case of coating a ceramic layer on a metal substrate by using a conventional coating method, due to the difference in atomic bonding properties, thermal expansion coefficient, etc. between the metal and the ceramic, the adhesive strength is poor due to stress, thermal shock, Problems may occur due to other chemical causes, such as peeling.
본 발명을 이러한 문제점을 해결하기 위해 안출된 것으로서, 금속기판 상에 세라믹층을 코팅함에 있어서 금속기판과 세라믹층과의 접착력을 향상시키고, 나아가 내산화성까지 향상시킬 수 있는 세라믹 코팅방법 및 이러한 코팅방법에 의해 제조된 세라믹 코팅 금속기판의 제공을 목적으로 한다. 나아가, 본 발명은 이러한 문제점을 해결하기 위해 안출된 것으로서, 금속기판과 세라믹 재료로 이루어진 촉매층을 코팅함에 있어서 금속기판과 촉매층과의 접착력을 향상시키고, 나아가 내산화성까지 향상시킬 수 있는 촉매층 코팅기판의 제조방법, 이러한 방법에 의해 제조된 촉매층 코팅기판 및 이를 포함하는 촉매 구조체의 제공을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention has been made to solve the above problems, and in coating the ceramic layer on the metal substrate, the ceramic coating method and the coating method which can improve the adhesion between the metal substrate and the ceramic layer and further improve the oxidation resistance An object of the present invention is to provide a ceramic coated metal substrate prepared by the present invention. Furthermore, the present invention has been made to solve such a problem, and in coating a catalyst layer made of a metal substrate and a ceramic material, it is possible to improve the adhesion between the metal substrate and the catalyst layer and further improve the oxidation resistance of the catalyst layer coated substrate. An object of the present invention is to provide a production method, a catalyst layer coated substrate prepared by the method and a catalyst structure including the same. However, these problems are exemplary, and the scope of the present invention is not limited thereby.
본 발명의 일 관점에 의하면, 금속기판을 제공하는 단계; 상기 금속기판의 적어도 일면 상에 에어로졸 성막법을 이용하여 하지층을 형성하는 단계; 및 상기 하지층 상에 세라믹층을 형성하는 단계;를 포함하는, 금속기판의 세라믹 코팅방법이 제공된다.According to an aspect of the invention, providing a metal substrate; Forming an underlayer on at least one surface of the metal substrate by using an aerosol deposition method; And forming a ceramic layer on the base layer. The ceramic coating method of the metal substrate is provided.
이때 상기 하지층은 세라믹 재료로 형성할 수 있다. 또한 상기 하지층 및 세라믹층은 동일한 계열의 세라믹 재료를 포함하도록 형성할 수 있다. At this time, the base layer may be formed of a ceramic material. In addition, the base layer and the ceramic layer may be formed to include ceramic materials of the same series.
이때 상기 세라믹층은 슬러리 코팅법, 졸-겔 코팅법 및 용사코팅법 중 어느 하나의 방법에 의해 형성할 수 있다. In this case, the ceramic layer may be formed by any one of a slurry coating method, a sol-gel coating method and a spray coating method.
본 발명의 다른 관점에 의하면, 금속기판 상에 세라믹층을 코팅하는 방법으로서, 상기 금속기판 및 상기 세라믹층 사이에 세라믹 재료를 포함하는 하지층을 에어로졸 성막법으로 형성하여 상기 금속기판 및 세라믹층간의 접착력을 향상시키는, 금속기판 코팅방법이 제공된다.According to another aspect of the present invention, a method for coating a ceramic layer on a metal substrate, wherein a base layer containing a ceramic material is formed between the metal substrate and the ceramic layer by an aerosol film forming method between the metal substrate and the ceramic layer. Provided is a metal substrate coating method for improving adhesion.
이때 상기 하지층은 상기 세라믹층을 구성하는 세라믹 재료와 동일한 계열의 세라믹 재료를 포함하도록 형성할 수 있다. At this time, the base layer may be formed to include a ceramic material of the same series as the ceramic material constituting the ceramic layer.
본 발명의 또 다른 관점에 의하면, 금속기판; 상기 금속기판의 적어도 일면 상에 형성된 하지층; 및 상기 하지층 상에 형성된 세라믹층을 포함하며, 상기 하지층은 에어로졸 성막법에 의해 형성된, 세라믹 코팅 금속기판이 제공된다. According to another aspect of the invention, a metal substrate; An underlayer formed on at least one surface of the metal substrate; And a ceramic layer formed on the underlayer, wherein the underlayer is formed by an aerosol deposition method.
이때 상기 하지층은 세라믹 재료로 이루어질 수 있으며, 상기 하지층은 상기 세라믹층에 포함된 세라믹 재료와 동일한 계열의 세라믹 재료를 포함할 수 있다.In this case, the base layer may be made of a ceramic material, and the base layer may include a ceramic material of the same series as the ceramic material included in the ceramic layer.
또한 상기 하지층은 100Å 내지 10㎛ 범위의 두께를 가질 수 있다.In addition, the base layer may have a thickness in the range of 100Å to 10㎛.
또한 상기 하지층은 Al2O3계, TiO2계, 제올라이트계, SiO2계, ZrO2계, CeO2계 중 어느 하나 이상을 포함할 수 있다. The base layer may include at least one of Al 2 O 3 , TiO 2 , zeolite, SiO 2 , ZrO 2 , and CeO 2 .
한편 상기 금속기판은 표면에 요철이 형성된 것일 수 있다.Meanwhile, the metal substrate may have irregularities formed on its surface.
이러한 상기 세라믹 코팅 금속기판은 상기 하지층이 형성되지 않은 것에 비해 더 높은 접착력을 나타내는 것일 수 있다.The ceramic coated metal substrate may exhibit higher adhesive force than the base layer is not formed.
또한 상기 세라믹 코팅 금속기판은 상기 하지층이 형성되지 않은 것에 비해 더 높은 내산화성을 나타내는 것일 수 있다. In addition, the ceramic coating metal substrate may exhibit higher oxidation resistance than the base layer is not formed.
본 발명의 또 다른 관점에 의하면, 금속기판을 제공하는 단계; 상기 금속기판의 적어도 일면 상에 에어로졸 성막법을 이용하여 하지층을 형성하는 단계; 및 상기 하지층 상에 촉매물질을 담지한 세라믹 재료로 이루어진 촉매층을 형성하는 단계;를 포함하는, 촉매층 코팅기판 제조방법이 제공된다. According to another aspect of the invention, providing a metal substrate; Forming an underlayer on at least one surface of the metal substrate by using an aerosol deposition method; And forming a catalyst layer made of a ceramic material supporting a catalyst material on the base layer.
이때 상기 하지층은 세라믹 재료로 형성할 수 있으며, 더 나아가 하지층 및 촉매층은 서로 동일한 계열의 세라믹 재료를 포함하도록 형성할 수 있다. In this case, the base layer may be formed of a ceramic material, and further, the base layer and the catalyst layer may be formed to include ceramic materials of the same series.
구체적으로 상기 하지층은 Al2O3계, TiO2계, 제올라이트계, SiO2계, ZrO2계 및 CeO2계 중 어느 하나 이상으로 형성할 수 있다. Specifically, the base layer may be formed of any one or more of Al 2 O 3 based, TiO 2 based, zeolite based, SiO 2 based, ZrO 2 based and CeO 2 based.
한편, 상기 촉매층은 예를 들어 V2O5 입자와 TiO2 입자의 혼합체를 이용하여 형성할 수 있다. 또는 다른 예로서, 상기 촉매층은 Al2O3 입자로 이루어진 워시코트층에 1종 이상의 촉매물질이 함유되도록 형성할 수 있다. 또 다른 예로서, 상기 촉매층은 일부가 하나 이상의 촉매원소로 이온 치환된 제올라이트 입자로 형성할 수 있다.On the other hand, the catalyst layer can be formed using a mixture of V 2 O 5 particles and TiO 2 particles, for example. Alternatively, as another example, the catalyst layer may be formed to contain at least one catalyst material in a washcoat layer made of Al 2 O 3 particles. As another example, the catalyst layer may be formed of zeolite particles, some of which are ion-substituted with one or more catalyst elements.
본 발명의 또 다른 관점에 의하면, 금속기판 및 촉매층 사이에 세라믹 재료를 포함하는 하지층을 에어로졸 성막법으로 형성하여 상기 금속기판 및 촉매층간의 접착력을 향상시키는, 촉매층 코팅기판 제조방법이 제공된다.According to another aspect of the present invention, there is provided a method for producing a catalyst layer coated substrate, which improves adhesion between the metal substrate and the catalyst layer by forming an underlayer comprising a ceramic material between the metal substrate and the catalyst layer by an aerosol film formation method.
이때 상기 하지층은 상기 촉매층을 구성하는 세라믹 재료와 동일한 계열의 세라믹 재료를 포함하도록 형성할 수 있다. In this case, the base layer may be formed to include a ceramic material of the same series as the ceramic material constituting the catalyst layer.
본 발명의 또 다른 관점에 의하면, 금속기판; 상기 금속기판의 적어도 일면 상에 형성된 하지층; 및 상기 하지층 상에 형성된 촉매층을 포함하며, 상기 하지층은 에어로졸 성막법에 의해 형성된, 촉매층 코팅기판이 제공된다. According to another aspect of the invention, a metal substrate; An underlayer formed on at least one surface of the metal substrate; And a catalyst layer formed on the underlayer, wherein the underlayer is formed by an aerosol deposition method.
이때 상기 하지층은 세라믹 재료로 이루어질 수 있으며, 더 나아가 상기 하지층은 상기 촉매층에 포함된 세라믹 재료와 동일한 계열의 세라믹 재료를 포함할 수 있다. In this case, the base layer may be made of a ceramic material, and further, the base layer may include a ceramic material of the same series as the ceramic material included in the catalyst layer.
이때 상기 촉매층은 예를 들어, 유해배기가스 저감용 촉매층일 수 있다. 또 다른 예로서, 상기 촉매층은 탄화수소를 수소로 개질하기 위한 연료개질용 촉매층일 수 있다.In this case, the catalyst layer may be, for example, a catalyst layer for reducing harmful exhaust gas. As another example, the catalyst layer may be a catalyst reforming catalyst layer for reforming hydrocarbons to hydrogen.
한편, 상기 하지층은 Al2O3계, TiO2계, 제올라이트계, SiO2계, ZrO2계 및 CeO2계 중 어느 하나 이상을 포함할 수 있다. The base layer may include at least one of Al 2 O 3 , TiO 2 , zeolite, SiO 2 , ZrO 2 , and CeO 2 .
또한, 상기 촉매층은 예를 들어, V2O5 입자와 TiO2 입자의 혼합체를 포함하는 것일 수 있다. 다른 예로서 Al2O3 입자로 이루어진 워시코트층에 1종 이상의 촉매물질이 포함되는 것일 수 있다. 또 다른 예로서 상기 촉매층은 일부가 하나 이상의 촉매원소로 이온 치환된 제올라이트를 포함하는 것일 수 있다. In addition, the catalyst layer may include, for example, a mixture of V 2 O 5 particles and TiO 2 particles. As another example, one or more catalyst materials may be included in the washcoat layer made of Al 2 O 3 particles. As another example, the catalyst layer may include zeolite in which a portion of the catalyst layer is ion-substituted with one or more catalyst elements.
본 발명의 또 다른 관점에 의하면, 전술한 촉매층 코팅기판 중 어느 하나를 이용하여 제조한 촉매 구조체가 제공된다.According to another aspect of the present invention, there is provided a catalyst structure prepared by using any one of the catalyst layer coated substrate described above.
본 발명의 실시예들에 의할 시, 금속기판과 상기 금속기판 상에 코팅된 세라믹층과의 접착력을 획기적으로 향상시킬 수 있다. 또한, 본 발명의 실시예들에 의할 시, 금속기판과 세라믹 재료로 이루어진 촉매층 간의 접착력 및 내산화성을 획기적으로 향상시킬 수 있다. 본 발명의 효과는 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.According to embodiments of the present invention, the adhesion between the metal substrate and the ceramic layer coated on the metal substrate may be significantly improved. In addition, according to embodiments of the present invention, it is possible to significantly improve the adhesion and oxidation resistance between the metal substrate and the catalyst layer made of a ceramic material. The effects of the present invention are not limited to those mentioned above, and other effects, which are not mentioned above, will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명의 일실시예에 따른 세라믹 코팅 금속기판의 단면도이다. 1 is a cross-sectional view of a ceramic coated metal substrate according to an embodiment of the present invention.
도 2는 에어로졸 성막장치의 개략도이다. 2 is a schematic view of an aerosol film-forming apparatus.
도 3은 촉매층이 코팅된 금속박판을 이용한 촉매 구조체 제조방법의 일예를 도시한 것이다. Figure 3 shows an example of a method for producing a catalyst structure using a metal plate coated with a catalyst layer.
도 4는 도 3의 제조방법에 의해 제조된 원통형 구조체의 사시도 이다. 4 is a perspective view of a cylindrical structure manufactured by the manufacturing method of FIG.
도 5는 촉매 구조체 내부에 형성된 관통로를 도시한 것이다. 5 illustrates a through passage formed inside the catalyst structure.
도 6은 에릭슨 시험 전후의 TiO2 하지층이 코팅된 STS444 기판을 관찰한 결과이다. 6 is a result of observing the STS444 substrate coated with the TiO 2 base layer before and after the Ericsson test.
도 7은 에릭슨 시험 전후의 TiO2층을 주사전자현미경으로 관찰한 결과이다. 7 shows the results of observing the TiO 2 layers before and after the Ericsson test with a scanning electron microscope.
도 8은 에릭슨 시험 전후의 코팅층의 성분을 EDS로 분석한 결과이다. 8 is a result of analyzing the components of the coating layer before and after the Ericsson test by EDS.
도 9의 (a) 및 (b)는 STS430 기판 및 STS444 기판에 제올라이트를 에어로졸 성막법으로 코팅한 시편의 표면을 관찰한 결과이다. 9 (a) and 9 (b) show the results of observing the surfaces of the specimens coated with zeolite on an STS430 substrate and an STS444 substrate by an aerosol deposition method.
도 10의 (a) 및 (b)에는 각각 STS430 기판 및 STS444 기판에 SiO2를 코팅한 경우의 표면상태를 관찰한 결과가 나타나 있다. 10 (a) and 10 (b) show the results of observing the surface state when SiO 2 was coated on the STS430 substrate and the STS444 substrate, respectively.
도 11의 (a) 및 (b)는 STS430 기판에 TiO2를 에어로졸 성막법으로 코팅한 시편의 표면을 주사전자현미경으로 관찰한 결과이며, 도 11의 (c)는 코팅하지 않은 STS430 기판의 표면을 주사전자현미경으로 관찰한 결과이다. 11 (a) and (b) are the results of observing the surface of the specimen coated with TiO 2 on the STS430 substrate by an aerosol deposition method, using a scanning electron microscope, Figure 11 (c) is a surface of the uncoated STS430 substrate This is the result of observing with a scanning electron microscope.
도 12의 (a) 내지 (c)는 STS430 기판에 제올라이트를 에어로졸 성막법으로 코팅한 시편의 표면을 주사전자현미경으로 관찰한 결과이다. 12 (a) to 12 (c) show the results of observing the surface of a specimen coated with zeolite on an STS430 substrate by an aerosol deposition method using a scanning electron microscope.
도 13은 STS444 기판에 제올라이트를 에어로졸 성막법으로 코팅한 시편의 다면을 주사전자현미경으로 관찰한 결과이다. FIG. 13 shows the results of observing the multi-sided surfaces of the specimens coated with zeolite on the STS444 substrate by aerosol deposition.
도 14는 코팅하지 않은 STS430 기판 및 STS430 기판에 제올라이트를 에어로졸 성막법으로 코팅한 시편의 고온산화 시험 후 표면을 관찰한 결과이다. 14 is a result of observing the surface after the high temperature oxidation test of the uncoated STS430 substrate and the STS430 substrate coated with zeolite by aerosol film formation method.
도 15a 및 도 15b에는 STS444 기판 상에 하지층으로 에어로졸 성막법에 의하여 코팅한 후에, 하지층 상에 촉매층을 코팅한 시편을 주사전자현미경으로 표면을 관찰한 결과가 나타나 있다. 15A and 15B show the results of observing the surface of the specimen coated with the catalyst layer on the STS444 substrate by the aerosol deposition method on the STS444 substrate with a scanning electron microscope.
도 16은 STS444 기판의 표면에 에어로졸 성막법에 의해 하지층을 형성한 금속담체를 촬영한 사진이다.16 is a photograph of a metal carrier having an underlayer formed on the surface of an STS444 substrate by an aerosol deposition method.
도 17은 본 발명의 실험예에 따른 제올라이트 촉매층 코팅기판을 포함하는 선택적촉매환원 장치에서 온도에 따른 NOx의 환원반응특성을 나타낸 그래프이다.17 is a graph showing the reduction reaction characteristics of NO x with temperature in a selective catalyst reduction apparatus including a zeolite catalyst layer coated substrate according to an experimental example of the present invention.
이하, 첨부한 도면을 참조하여 본 발명에 따른 바람직한 실시예를 설명함으로써 본 발명을 상세하게 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면에서 구성 요소들은 설명의 편의를 위하여 그 크기가 과장 또는 축소될 수 있다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you. In the drawings, the components may be exaggerated or reduced in size for convenience of description.
본 명세서에서 세라믹 코팅 금속기판은 금속기판의 적어도 일면 상부에 세라믹이 코팅된 구조물을 의미한다.In the present specification, the ceramic coated metal substrate means a structure coated with ceramic on at least one surface of the metal substrate.
도 1에는 본 발명의 일 실시예에 따른 세라믹 코팅 금속기판(100)의 단면도가 도시되어 있다. 도 1을 참조하면, 세라믹 코팅 금속기판(100)은 금속기판(110), 금속기판(110)의 일면 상에 형성된 하지층(120) 및 상기 하지층(120) 상에 형성된 세라믹층(130)을 포함한다. 1 is a cross-sectional view of a ceramic coated metal substrate 100 according to an embodiment of the present invention. Referring to FIG. 1, the ceramic coated metal substrate 100 includes a metal substrate 110, an underlayer 120 formed on one surface of the metal substrate 110, and a ceramic layer 130 formed on the underlayer 120. It includes.
도 1에는 금속기판(110)의 일면에만 하지층(120)이 형성되어 있으나, 본 발명은 이에 한정되지 않으며 금속기판(110)의 양면에 모두 하지층(120) 및 세라믹층(130)이 형성된 것도 포함한다. Although the base layer 120 is formed only on one surface of the metal substrate 110 in FIG. 1, the present invention is not limited thereto, and the base layer 120 and the ceramic layer 130 are formed on both surfaces of the metal substrate 110. It also includes.
금속기판(110)은 순수한 금속 또는 합금을 모두 포함하며, 표면적을 증가시키기 위하여 표면에 엠보싱과 같은 요철이 형성되어 있을 수 있다. The metal substrate 110 may include all pure metals or alloys, and irregularities such as embossing may be formed on the surface to increase the surface area.
한편 도 1에는 금속기판(110)이 판상으로 도시되어 있으나, 이에 한정되지 않으며 하지층(120)이 형성될 수 있는 표면을 가진 형태를 가진 것이면 어떤 형상이라도 무방하다. Meanwhile, although the metal substrate 110 is shown in a plate shape in FIG. 1, the shape of the metal substrate 110 is not limited thereto, and the metal substrate 110 may have any shape as long as it has a surface on which the base layer 120 may be formed.
하지층(120)은 에어로졸 성막법(aerosol deposition)에 의해 형성될 수 있다. 에어로졸 성막법은 분말 형태의 미세입자를 코팅 대상물을 향해 고속으로 분사시켜 코팅하는 방법으로서, 도 2에는 에어로졸 성막장치(200)가 도시되어 있다.The base layer 120 may be formed by aerosol deposition. The aerosol deposition method is a method of coating by spraying the fine particles in the form of powder at a high speed toward the coating object, the aerosol film deposition apparatus 200 is shown in FIG.
도 2를 참조하면, 에어로졸 성막장치(200)는 캐리어 가스 저장탱크(210), 미세 입자형태를 가진 코팅물질이 캐리어 가스에 의해 부유된 상태인 에어로졸(221)을 형성하는 에어로졸 챔버(220), 에어로졸 챔버(220)로부터 공급된 에어로졸(221)이 코팅 대상물(231)로 분사되어 코팅 대상물(231)의 표면에 코팅되는 성막 챔버(230)로 구성된다. 이때 코팅챔버(230)는 작업 중에 진공상태를 유지하며, 이를 위해 진공펌프(240)가 연결되어 있다.Referring to FIG. 2, the aerosol deposition apparatus 200 includes a carrier gas storage tank 210, an aerosol chamber 220 forming an aerosol 221 in which a coating material having a fine particle form is suspended by a carrier gas, The aerosol 221 supplied from the aerosol chamber 220 is sprayed onto the coating object 231 is composed of a film forming chamber 230 is coated on the surface of the coating object 231. At this time, the coating chamber 230 maintains a vacuum state during the operation, for this purpose, the vacuum pump 240 is connected.
캐리어 가스로는 공기, 산소, 질소, 헬륨 등이 이용될 수 있지만 그 종류에 제한되지는 않는다. 캐리어 가스는 캐리어 가스 저장탱크(210)로부터 파이프(211)를 통해 에어로졸 챔버(220)로 공급된다. 이때 유량조절기(250)에 의해 그 유량이 조절될 수 있다. As the carrier gas, air, oxygen, nitrogen, helium, or the like may be used, but the type is not limited. The carrier gas is supplied from the carrier gas storage tank 210 to the aerosol chamber 220 through the pipe 211. At this time, the flow rate may be adjusted by the flow regulator 250.
이렇게 캐리어 가스가 공급됨에 따라 에어로졸 챔버(220) 내에 미리 장입되어 있던 미세입자가 부유되면서 에어로졸(221)이 된다. 한편, 성막 챔버(230)는 수 내지 수십 Torr의 진공상태를 유지하게 됨에 따라 성막 챔버(230)와 에어로졸 챔버(220) 사이에 압력차가 형성된다. 이러한 압력차에 의해 에어로졸 챔버(220) 내의 에어로졸(221)이 파이프(222)를 통해 화살표 방향을 따라 성막 챔버(230)로 고속으로 공급되며, 성막 챔버(230) 내부의 노즐(232)을 통해 코팅 대상물(231)의 표면으로 분사되게 된다.  As the carrier gas is supplied in this way, the fine particles previously charged in the aerosol chamber 220 are suspended to form the aerosol 221. Meanwhile, as the deposition chamber 230 maintains a vacuum state of several to several tens of torr, a pressure difference is formed between the deposition chamber 230 and the aerosol chamber 220. Due to this pressure difference, the aerosol 221 in the aerosol chamber 220 is supplied at high speed to the deposition chamber 230 in the direction of the arrow through the pipe 222, and through the nozzle 232 inside the deposition chamber 230. It is sprayed to the surface of the coating object 231.
노즐(232)을 통해 분사되는 에어로졸은 예를 들어 약 100 내지 600 m/sec의 범위 높을 속도를 가지며, 이렇게 고속으로 분사된 에어로졸은 코팅 대상물(231)의 표면에 충돌하면서 극히 미세한 크기를 가지는 입자로 분쇄되어 코팅된다.The aerosol sprayed through the nozzle 232 has a velocity that is, for example, in the range of about 100 to 600 m / sec. The aerosol sprayed at such a high speed has particles of extremely fine size while impinging on the surface of the coating object 231. It is ground and coated with.
이때 에어로졸을 구성하는 미세입자는 세라믹 재료일 수 있으며, 따라서 도 1의 하지층(120)은 극미세한 세라믹 입자들이 치밀하게 결합된 구조를 가질 수 있다. 예를 들어, 하지층(120)은 Al2O3계, TiO2계, 제올라이트계, SiO2계, ZrO2계, CeO2계 중 어느 하나 이상을 포함할 수 있다. In this case, the fine particles constituting the aerosol may be a ceramic material, and thus, the base layer 120 of FIG. 1 may have a structure in which very fine ceramic particles are tightly coupled. For example, the base layer 120 may include at least one of Al 2 O 3 , TiO 2 , zeolite, SiO 2 , ZrO 2 , and CeO 2 .
이러한 에어로졸 성막법에 의해 형성된 하지층(120)은 종래의 세라믹 코팅법에 의해 형성된 세라믹층에 비해 기공, 균열 등과 같은 결함의 밀도가 현저하게 낮은 수준을 가지며, 더 우수한 접착력을 나타낼 수 있다.The base layer 120 formed by the aerosol film formation method has a significantly lower density of defects such as pores, cracks, and the like than the ceramic layer formed by the conventional ceramic coating method, and may exhibit excellent adhesion.
이때 노즐(232) 또는 코팅 대상물(231) 중 어느 하나 이상의 이동을 통해 1회 이상의 코팅을 수행할 수 있으며, 노즐에서의 에어로졸 분사량, 분사속도, 왕복속도 또는 왕복횟수 등을 제어하여 하지층(120)의 두께를 조절할 수 있다. 이러한 두께는 예를 들어 100Å 내지 10㎛ 범위를 가질 수 있다. In this case, one or more coatings may be performed by moving any one or more of the nozzle 232 or the coating object 231, and the base layer 120 may be controlled by controlling an aerosol injection amount, a spraying speed, a reciprocating speed, or a reciprocating frequency in the nozzle. ) Thickness can be adjusted. Such thickness may, for example, range from 100 microns to 10 microns.
하지층(120) 상에 형성되는 세라믹층(130)은 목적하는 기능을 구현하기에 적합한 방법으로 형성될 수 있다. 예를 들어 슬러리 코팅법, 졸-겔법 또는 용사코팅법등에 의해 형성될 수 있다. 세라믹층(130)을 에어로졸 성막법에 의해 형성한 하지층(120) 상에 코팅함에 따라 세라믹층(130)의 접착력을 크게 향상시킬 수 있다. The ceramic layer 130 formed on the base layer 120 may be formed by a method suitable for implementing a desired function. For example, it may be formed by a slurry coating method, a sol-gel method or a spray coating method. As the ceramic layer 130 is coated on the base layer 120 formed by the aerosol deposition method, the adhesive force of the ceramic layer 130 may be greatly improved.
예를 들어, 에어로졸 성막법을 이용하여 세라믹 재료로 이루어진 하지층(120)을 형성하는 경우, 하지층(120)은 금속기판(110)에 대해 우수한 접착력을 나타내게 된다. 이러한 하지층(120) 상에 세라믹층(130)을 형성하는 경우, 하지층(120)과 세라믹층(130)은 서로 유사한 세라믹 재료간의 결합이 이루어지게 되므로 하지층(120)과 세라믹층(130)간의 접착력도 우수한 특성을 나타내게 된다. For example, when the underlayer 120 made of a ceramic material is formed by using an aerosol deposition method, the underlayer 120 exhibits excellent adhesion to the metal substrate 110. When the ceramic layer 130 is formed on the underlayer 120, since the underlayer 120 and the ceramic layer 130 are bonded to each other by similar ceramic materials, the underlayer 120 and the ceramic layer 130 are formed. Adhesion between) also shows excellent properties.
즉, 하지층(120)은 금속기판(110)에 대해 우수한 접착력을 나타내며, 하지층(120) 및 세라믹층(130)은 세라믹 재료간의 결합에 기인하여 접착력이 향상되므로, 결과적으로, 세라믹층(130)을 직접 금속기판(110)에 코팅하는 경우에 비해, 우수한 접착력을 확보할 수 있게 된다. 이 경우 하지층(120)은 금속기판(110)과 세라믹 재료로 이루어진 세라믹층(130)의 접착력을 향상시키는 접착층으로서의 역할을 수행할 수 있다.That is, the underlayer 120 exhibits excellent adhesion to the metal substrate 110, and the underlayer 120 and the ceramic layer 130 have improved adhesion due to the bonding between the ceramic materials, and as a result, the ceramic layer ( Compared to the case where 130 is directly coated on the metal substrate 110, it is possible to secure excellent adhesion. In this case, the base layer 120 may serve as an adhesive layer to improve adhesion between the metal substrate 110 and the ceramic layer 130 made of a ceramic material.
더 나아가, 하지층(120) 및 세라믹층(130)은 서로 동일한 계열의 세라믹 재료를 포함할 수 있다. 여기서 '동일한 계열'이라 함은 동일한 화학성분을 가지는 것을 의미함은 물론, 화학양론적으로 완전히 일치하지는 않거나 혹은 일부의 원자가 다른 원자로 치환되거나 일부의 다른 원소나 화합물이 첨가되더라도 세라믹 재료를 구성하는 주된 원소가 동일한 경우를 모두 포함한다.Furthermore, the base layer 120 and the ceramic layer 130 may include ceramic materials of the same series as each other. Here, 'the same series' means not only having the same chemical composition, but also the main constituent of the ceramic material even if it is not completely stoichiometrically, or if some atoms are substituted with other atoms or some other elements or compounds are added. This includes all cases where the elements are identical.
예를 들어, 하지층(120)이 Al2O3일 경우 세라믹층(130)은 Al2O3 또는 La2O3와 같은 다른 원소나 화합물이 첨가된 Al2O3 등으로 이루어 질 수 있으며, 다른 예로서 하지층(120)이 제올라이트(zeolite)로 형성된 경우, 세라믹층(130)은 제올라이트를 구성하는 원소 중 수% 정도의 중량비가 Fe, Cu 등과 같은 원소로 치환된 제올라이트 계열 세라믹일 수 있다. For example, the ground layer 120 can be done by including Al 2 O 3 days if the ceramic layer 130 is Al 2 O 3 or La 2 O 3 with other elements or compounds are added to Al 2 O such as a 3, and As another example, when the base layer 120 is formed of zeolite, the ceramic layer 130 may be a zeolite-based ceramic in which a weight ratio of several percent of the elements constituting the zeolite is replaced with an element such as Fe or Cu. have.
물론, 본 발명은 하지층(120)과 세라믹층(130)이 동일한 계열인 경우에 한정되지 않으며, 서로 이종의 세라믹 재료인 경우, 예를 들어 하지층(120)은 TiO2로 이루어지고 세라믹층(130)은 제올라이트로 이루어진 경우도 포함함은 자명하다. Of course, the present invention is not limited to the case where the base layer 120 and the ceramic layer 130 are the same series, and in the case of heterogeneous ceramic materials, for example, the base layer 120 is made of TiO 2 and the ceramic layer ( It is obvious that 130) also includes a case made of zeolite.
본 발명의 다른 실시예에서, 세라믹층(130)은 촉매층일 수 있다. 따라서 세라믹층(130)에 대하여 앞에서 설명한 내용은 상기 촉매층에 적용할 수 있으며, 도 1에 도시된 구조는 촉매층 코팅기판(100)의 단면에 대응될 수도 있다. 즉, 촉매층 코팅기판(100)은 금속기판(110), 금속기판(110)의 일면 상에 형성된 하지층(120) 및 상기 하지층(120) 상에 형성된 촉매층(130)을 포함한다. 이 경우 금속기판(110)은 촉매 구조체의 담체로서, 순수한 금속 또는 합금을 모두 포함할 수 있다. 예를 들어, 예를 들어 스테인레스강 또는 FeCrAl계 합금일 수 있으며, 표면적을 증가시키기 위하여 표면에 엠보싱과 같은 요철이 형성되어 있을 수 있다. In another embodiment of the present invention, the ceramic layer 130 may be a catalyst layer. Therefore, the above description of the ceramic layer 130 may be applied to the catalyst layer, and the structure shown in FIG. 1 may correspond to a cross section of the catalyst layer coated substrate 100. That is, the catalyst layer coating substrate 100 includes a metal substrate 110, an underlayer 120 formed on one surface of the metal substrate 110, and a catalyst layer 130 formed on the underlayer 120. In this case, the metal substrate 110 may include both a pure metal or an alloy as a carrier of the catalyst structure. For example, it may be stainless steel or FeCrAl-based alloy, and the surface may have irregularities such as embossing to increase the surface area.
하지층(120) 상에 형성되는 촉매층(130)은 촉매물질을 담지한 세라믹 재료로 이루어 질 수 있다. 예를 들어, 촉매층(130)은 세라믹 입자로 이루어진 워시코트(washcoat)층과 상기 워시코트층 내에 함유되는 1종 이상의 촉매물질을 포함할 수 있다. 이때 워시코트층은 상기 미세한 입자형태의 촉매물질을 담지하기 위한 담지층(support layer)으로서의 역할을 수행한다.The catalyst layer 130 formed on the base layer 120 may be made of a ceramic material supporting a catalyst material. For example, the catalyst layer 130 may include a washcoat layer made of ceramic particles and at least one catalyst material contained in the washcoat layer. At this time, the washcoat layer serves as a support layer (support layer) for supporting the catalyst material in the form of fine particles.
촉매층(130)을 구성하는 워시코트층은 촉매물질의 효과적인 분산을 위해 가능한 넓은 표면적을 가지는 것이 유리하며, 따라서 워시코트층을 구성하는 입자들 사이에 미세한 기공을 다수 포함하도록 형성할 수 있다. 이를 위해 세라믹 입자를 용매에 현탁시킨 용액을 하지층(120) 상에 도포한 후 이를 열처리하는 과정을 거쳐 촉매층(130)을 형성할 수 있다. The washcoat layer constituting the catalyst layer 130 is advantageously to have as large a surface area as possible for effective dispersion of the catalyst material, and thus may be formed to include many fine pores between the particles constituting the washcoat layer. To this end, the catalyst layer 130 may be formed by applying a solution in which ceramic particles are suspended in a solvent on a base layer 120 and then heat-treating the same.
이때 상기 용액에 촉매물질을 함께 현탁시킨 후 이를 하지층(120) 상부에 도포할 수 있다. 또는 하지층(120) 상에 워시코트층을 형성한 후 상기 워시코트층에 촉매물질을 용해한 용액을 함침시켜 상기 워시코트층 내부에 촉매물질을 분산시킬 수 있다. In this case, the catalyst material may be suspended together with the solution and then applied to the upper layer 120. Alternatively, after the washcoat layer is formed on the underlayer 120, the catalyst material may be impregnated in the washcoat layer to disperse the catalyst material in the washcoat layer.
이러한 촉매층(130)에는 V2O5/TiO2 계열 촉매, 알루미나(Al2O3) 계열 촉매, 제올라이트(zeolite) 계열 촉매 등이 형성될 수 있다. In the catalyst layer 130, a V 2 O 5 / TiO 2 based catalyst, an alumina (Al 2 O 3 ) based catalyst, a zeolite based catalyst, or the like may be formed.
V2O5/TiO2 계열 촉매는 NOx 환원용 촉매인 V2O5 입자 및 TiO2 입자의 혼합체로서, 워시코트층을 이루는 TiO2 입자 위 또는 사이에 촉매물질인 V2O5가 분산되어 분포되는 구조를 이루게 된다. 이때 V2O5 입자는 전체 입자 무게의 수% 정도를 차지할 수 있으며, 나머지 90% 이상을 TiO2 입자가 차지할 수 있다. The V 2 O 5 / TiO 2 series catalyst is a mixture of V 2 O 5 particles and TiO 2 particles, which are catalysts for NOx reduction, wherein the catalyst material V 2 O 5 is dispersed on or between TiO 2 particles forming a washcoat layer. A distributed structure is achieved. At this time, the V 2 O 5 particles may occupy a few percent of the total particle weight, the TiO 2 particles may occupy more than 90%.
알루미나 계열 촉매는 알루미나 입자로 이루어진 워시코트층 내부에 촉매물질로서, 미세한 크기를 가지는 Pt, Rh, Pd 등과 같은 귀금속 촉매가 1종 이상 부착되어 있는 구조를 이룬다. 이러한 알루미나 계열 촉매는 NOx 저감용 촉매층 또는 연료전지의 연료 개질용 촉매층으로 이용될 수 있다. The alumina-based catalyst has a structure in which at least one noble metal catalyst such as Pt, Rh, Pd, etc. having a fine size is attached as a catalyst material in the washcoat layer made of alumina particles. Such an alumina-based catalyst may be used as a catalyst layer for NOx reduction or as a catalyst layer for fuel reforming of a fuel cell.
제올라이트 계열 촉매층은 워시코트층을 이루는 제올라이트 중 일부가 Fe, Cu 등과 같은 촉매물질로 이온 교환된 구조를 이룬다. 이때 상기 촉매물질은 제올라이트 내에 약 수%정도의 중량비를 차지할 수 있다.The zeolite-based catalyst layer has a structure in which some of the zeolite constituting the washcoat layer is ion exchanged with a catalyst material such as Fe and Cu. In this case, the catalyst material may comprise a weight ratio of about several percent in the zeolite.
각 촉매층에는 촉매성능 향상을 위해 다른 성분의 원소나 입자들이 첨가 될 수 있다.Each catalyst layer may be added with elements or particles of different components to improve the catalytic performance.
이러한 촉매층(130)을 에어로졸 성막법에 의해 형성한 하지층(120) 상에 코팅함에 따라 촉매층(130)의 접착력을 크게 향상시킬 수 있다. By coating the catalyst layer 130 on the base layer 120 formed by the aerosol film formation method, the adhesion of the catalyst layer 130 can be greatly improved.
예를 들어, 에어로졸 성막법을 이용하여 세라믹 재료로 이루어진 하지층(120)을 형성하는 경우, 하지층(120)은 금속기판(110)에 대해 우수한 접착력을 나타내게 된다. For example, when the underlayer 120 made of a ceramic material is formed by using an aerosol deposition method, the underlayer 120 exhibits excellent adhesion to the metal substrate 110.
또한 촉매층(130) 부피의 대부분은 대부분 세라믹 입자로 이루어진 워시코트층이 차지한다. 따라서 하지층(120)을 세라믹 재료로 형성하는 경우, 하지층(120)과 촉매층(130)간에는 물리적, 화학적 특성이 유사한 세라믹 재료간의 결합이 형성되므로, 하지층(120)과 촉매층(130)간의 접착력이 우수한 특성을 나타낼 수 있다. In addition, a majority of the volume of the catalyst layer 130 is occupied by a washcoat layer made of ceramic particles. Therefore, when the base layer 120 is formed of a ceramic material, a bond is formed between the base layer 120 and the catalyst layer 130 with a ceramic material having similar physical and chemical properties, and thus, between the base layer 120 and the catalyst layer 130. It can exhibit excellent adhesive strength.
즉, 하지층(120)은 금속기판(110)에 대해 우수한 접착력을 나타내며, 하지층(120) 및 촉매층(130)은 세라믹 재료간의 결합에 기인하여 접착력이 향상되므로, 결과적으로, 촉매층(130)을 종래의 방법으로 직접 금속기판(110)에 직접 코팅하는 경우에 비해, 우수한 접착력을 확보할 수 있게 된다. 이 경우 하지층(120)은 금속기판(110)과 세라믹 재료로 이루어진 촉매층(130)의 접착력을 향상시키는 접착층으로서의 역할을 수행할 수 있다.That is, the underlayer 120 exhibits excellent adhesion to the metal substrate 110, and the underlayer 120 and the catalyst layer 130 have improved adhesion due to the bonding between the ceramic materials, and as a result, the catalyst layer 130. Compared to the case of directly coating the metal substrate 110 by the conventional method, it is possible to ensure excellent adhesion. In this case, the base layer 120 may serve as an adhesive layer to improve adhesion between the metal substrate 110 and the catalyst layer 130 made of a ceramic material.
더 나아가, 하지층(120)은 촉매층(130) 중 워시코트층과 동일한 계열의 세라믹 재료를 이용하여 형성할 수 있다. 여기서 '동일한 계열'이라 함은 동일한 화학성분을 가지는 것을 의미함은 물론, 화학양론적으로 완전히 일치하지는 않거나 혹은 일부의 원자가 다른 원자로 치환되더라도 세라믹 재료를 구성하는 주된 원소가 동일한 경우를 모두 포함한다. Furthermore, the base layer 120 may be formed using a ceramic material of the same series as the washcoat layer of the catalyst layer 130. Herein, 'the same series' means not only having the same chemical composition, but also including all cases in which the main elements constituting the ceramic material are the same even if they are not completely stoichiometrically or some atoms are replaced with other atoms.
예를 들어, 하지층(120)이 Al2O3일 경우 촉매층(130)은 Al2O3 또는 La2O3와 같은 다른 원소나 화합물이 첨가된 Al2O3 등으로 이루어 질 수 있으며, 다른 예로서 하지층(120)이 제올라이트(zeolite)로 형성된 경우, 촉매층(130)은 제올라이트를 구성하는 원소 중 수% 정도의 중량비가 Fe, Cu 등과 같은 원소로 치환된 제올라이트 계열 세라믹일 수 있다. 또 다른 예로서, 촉매층(130)이 V2O5/TiO2 계열 세라믹으로 형성하는 경우, 이에 대응하여 하지층(120)은 TiO2층으로 형성할 수 있다. For example, if the base layer 120 is Al 2 O 3 il catalyst layer 130 may be achieved by including Al 2 O 3 or La 2 O 3 and the other element or compound added to the Al 2 O 3, such as, As another example, when the base layer 120 is formed of zeolite, the catalyst layer 130 may be a zeolite-based ceramic in which a weight ratio of several percent of the elements constituting the zeolite is replaced with an element such as Fe or Cu. As another example, when the catalyst layer 130 is formed of a V 2 O 5 / TiO 2 based ceramic, the base layer 120 may be formed of a TiO 2 layer correspondingly.
물론, 본 발명은 하지층(120)과 촉매층(130)이 동일한 계열인 경우에 한정되지 않으며, 서로 이종의 세라믹 재료인 경우, 예를 들어 하지층(120)은 TiO2로 이루어지고 촉매층(130)은 제올라이트로 이루어진 경우도 포함함은 자명하다. Of course, the present invention is not limited to the case where the base layer 120 and the catalyst layer 130 are the same series, and in the case of heterogeneous ceramic materials, for example, the base layer 120 is made of TiO 2 and the catalyst layer 130. It is obvious to include the case made of silver zeolite.
촉매층(130) 부피의 대부분을 차지하는 워시코트층과 하지층(120)을 동일한 계열의 세라믹 재료로 형성하여 동일한 계열의 세라믹 재료 간의 결합을 유도함으로써 촉매층(130)과 하지층(120)과의 접착력을 더욱 개선할 수 있게 된다. The adhesion between the catalyst layer 130 and the underlayer 120 is formed by forming the washcoat layer and the underlayer 120, which occupy most of the volume of the catalyst layer 130, with the same series of ceramic materials, thereby inducing bonding between the same series of ceramic materials. Can be further improved.
이러한 촉매층 코팅기판(100)을 이용하여 촉매반응을 이용하는 여러 장치에 적용될 촉매 구조체를 제조할 수 있다. 일 예로서 요철을 가진 박판 형상의 금속기판(이하 금속박판)을 담체로 이용하여 내부에 촉매층이 형성된 원통형의 촉매 구조체를 형성할 수 있다. 이때 금속박판은 스테인레스강 또는 FeCrAl계 합금일 수 있다. 도 3은 이러한 원통형 촉매 구조체를 제조하는 방법을 예시한 것이며, 도 4는 이러한 방법에 의해 제조된 촉매 구조체(300)의 사시도를 나타낸 것이다. By using the catalyst layer coated substrate 100, a catalyst structure to be applied to various apparatuses using a catalytic reaction may be manufactured. As an example, a cylindrical catalyst structure having a catalyst layer formed therein may be formed using a thin metal substrate having a concave-convex shape (hereinafter, referred to as a metal thin plate) as a carrier. At this time, the metal plate may be stainless steel or FeCrAl-based alloy. FIG. 3 illustrates a method of making such a cylindrical catalyst structure, and FIG. 4 shows a perspective view of the catalyst structure 300 produced by this method.
도 3을 참조하면, 주기적인 요철을 형성한 제1금속박판(301)과 편평한 제2금속박판(302)의 일면 또는 양면에 상술한 방법으로 하지층을 형성한 후, 금속박판(301, 302)을 서로 번갈아 가면 권취함으로써 내부에 원통형 일단부에서 타단부까지 연장되는 관통로(303)가 주기적으로 형성된 원통형 구조체를 형성할 수 있다. 이때 관통로(303) 내벽 상에는 하지층이 형성되어 있다. Referring to FIG. 3, after the base layer is formed on one or both surfaces of the first metal thin plate 301 and the flat second metal thin plate 302 having periodic irregularities, the metal thin plates 301 and 302 are formed. ) By alternately winding each other), it is possible to form a cylindrical structure in which a through passage 303 periodically extending from one end of the cylinder to the other end thereof is formed periodically. At this time, the base layer is formed on the inner wall of the through passage 303.
다음, 원통형 구조체의 관통로(303) 내부로 촉매층을 이루는 세라믹 입자가 현탁된 용액을 공급하여 하지층 상부에 도포한 후 열처리하여 촉매층을 형성함으로써 촉매 구조체(300)을 제조할 수 있다(도 4). Next, the catalyst structure 300 may be manufactured by supplying a solution in which the ceramic particles forming the catalyst layer are suspended into the through passage 303 of the cylindrical structure and applying the solution to the upper layer, followed by heat treatment to form the catalyst layer (FIG. 4). ).
이때 상기 용액을 관통로(303) 내부로 공급하기 위해서, 원통형 구조체를 상기 용액 내부에 침지시키거나 혹은 상기 용액을 관통로(303)로 직접 주입할 수 있다. 또 다른 예로서 진공을 이용하여 상기 용액을 관통로(303)로 흡입하는 방법을 이용할 수 있다. In this case, in order to supply the solution into the through passage 303, a cylindrical structure may be dipped into the solution or the solution may be directly injected into the through passage 303. As another example, a method of sucking the solution into the through passage 303 using a vacuum may be used.
도 5에는 원통형 촉매 구조체(300)의 길이방향에 수직한 단면도로서, 관통로(303)의 내벽을 이루는 제1금속박판(301) 및 제2금속박판(302) 표면에 하지층(120) 및 촉매층(130)이 순차로 적층되어 형성된 것을 나타낸 것이다. 5 is a cross-sectional view perpendicular to the longitudinal direction of the cylindrical catalyst structure 300, the base layer 120 and the surface of the first metal plate 301 and the second metal plate 302 forming the inner wall of the through passage 303 It shows that the catalyst layer 130 is formed by sequentially stacked.
이러한 촉매 구조체(300)는 담체가 금속재료이므로 권취와 같은 성형이 자유로울 뿐 아니라, 하지층이 금속기판과 강하게 접착하고 있어 성형과정에서 하지층 및 그 상부의 촉매층이 금속기판으로부터 박리되거나 균열이 발생되는 현상을 방지할 수 있다. Since the carrier is a metal material, the catalyst structure 300 is free of forming such as winding, and the base layer is strongly adhered to the metal substrate, so that the base layer and the catalyst layer on top thereof are peeled off or cracked from the metal substrate in the forming process. The phenomenon can be prevented.
이러한 본 발명의 실시예를 따르는 촉매 구조체는 배기가스 저감용 또는 연료전지의 연료 개질기에 이용될 수 있다. 특히 종래의 세라믹 담체를 이용하는 촉매 구조체에 비해 내진동성이나 열전달 특성이 우수하며, 부피를 감소시킬 수 있어 자동차, 운송기기 뿐만 아니라 특히 공간의 제약과 외부로부터의 기계적, 열적 충격이 심한 선박용에 사용되는 배기가스 저감용 장치에 효과적으로 적용될 수 있다.The catalyst structure according to the embodiment of the present invention can be used for reducing the exhaust gas or the fuel reformer of the fuel cell. In particular, the vibration resistance and heat transfer characteristics are superior to the catalyst structure using the conventional ceramic carrier, and the volume can be reduced, so that it is used not only for automobiles and transportation equipment but also especially for ships with severe space constraints and mechanical and thermal shocks from the outside. It can be effectively applied to the apparatus for reducing exhaust gas.
이하, 본 발명의 이해를 돕기 위해서 실험예들을 제공한다. 다만, 하기의 실험예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 아래의 실험예들에 의해서 한정되는 것은 아니다. Hereinafter, experimental examples are provided to help the understanding of the present invention. However, the following experimental examples are only for helping understanding of the present invention, and the present invention is not limited to the following experimental examples.
본 실험예에서는 금속기판(110)으로 스테인레스강 박판을 이용하고, 그 일면에 에어로졸 성막법에 의해 하지층을 형성하였다. 스테인레스강으로는 STS430 및 STS444가 이용되었다. 이때 STS444는 표면적을 증가시키기 위하여 압연롤을 이용하여 요철(엠보싱)을 형성하였다. 또한 하지층으로서 TiO2층 및 제올라이트층을 형성하였다. In the present experimental example, a stainless steel thin plate was used as the metal substrate 110, and an underlayer was formed on one surface by an aerosol film formation method. STS430 and STS444 were used as stainless steels. At this time, STS444 was used to form the irregularities (embossing) using a rolling roll to increase the surface area. Further, a TiO 2 layer and a zeolite layer were formed as base layers.
위 실시예에 따라 제조된 TiO2층의 접착력을 평가하기 위하여 에릭슨 시험(Erichsen Test)을 수행하였다. 접착력 평가를 위해 제조된 TiO2층은 STS444 상에 형성되었으며, 단면 관찰 및 성분 프로파일 분석으로부터 약 1.7㎛의 두께를 가지고 있었다. In order to evaluate the adhesion of the TiO 2 layer prepared according to the above example, an Ericsson test (Erichsen Test) was performed. The TiO 2 layer prepared for adhesion evaluation was formed on STS444 and had a thickness of about 1.7 μm from cross-sectional observation and component profile analysis.
도 6의 (a)에는 에릭슨 시험 전 TiO2층이 코팅된 STS444 기판이 나타나 있으며, 도 6의 (b)에는 상기 STS444 기판이 에릭슨 시험에 의해 성형 후 파괴된 모습이 나타나 있다. FIG. 6 (a) shows an STS444 substrate coated with a TiO 2 layer before the Ericsson test, and FIG. 6 (b) shows that the STS444 substrate is broken after molding by the Ericsson test.
도 6의 (b)에 나타낸 바와 같이, 강판이 펀치에 의해 성형되어 파괴된 후에도 성형부위에서 TiO2층의 박리는 육안으로 관찰되지 않았다. 도 7의 (a) 및 (b)에는 각각 성형전후의 TiO2층을 주사전자현미경으로 관찰한 결과가 나타나 있으며, 도 8의 (a) 및 (b)에는 각각 성형전후의 성형부위의 코팅층의 성분을 EDS(energy disperse spectroscopy)로 분석한 결과가 나타나 있다. 도 7 및 도 8을 참조하면, 강판이 파괴에 이를 정도의 극심한 소성가공을 받더라도 그 위에 형성된 TiO2층은 박리되지 않고 소성 전과 마찬가지로 그대로 TiO2 코팅층을 유지하고 있음을 알 수 있다. As shown in Fig. 6B, even after the steel sheet was molded and broken by a punch, peeling of the TiO 2 layer was not visually observed at the forming site. 7A and 7B show the results of observing the TiO 2 layer before and after molding with a scanning electron microscope, respectively. FIGS. 8A and 8B show the coating layers of the molded part before and after molding, respectively. The results of analysis of the components by energy disperse spectroscopy (EDS) are shown. Referring to FIGS. 7 and 8, even when the steel sheet undergoes severe plastic processing leading to fracture, the TiO 2 layer formed thereon is not peeled off and maintains the TiO 2 coating layer as it is before firing.
이로부터 에어로졸 성막법에 의해 금속기판 상에 형성된 하지층은 세라믹 재료로 이루어져 있음에도 매우 우수한 접착력을 가짐을 알 수 있다. From this, it can be seen that the base layer formed on the metal substrate by the aerosol deposition method has a very good adhesion even though it is made of a ceramic material.
도 9의 (a) 및 (b)에는 각각 STS430 기판 및 STS444 기판에 제올라이트를 코팅한 경우의 표면상태를 관찰한 결과가 나타나 있다. 양 기판에 모두 제올라이트가 전체적으로 균일하게 코팅되어 있음을 볼 수 있다.  9 (a) and 9 (b) show the results of observing the surface state when the zeolite is coated on the STS430 substrate and the STS444 substrate, respectively. It can be seen that both substrates are uniformly coated with zeolite.
도 10의 (a) 및 (b)에는 각각 STS430 기판 및 STS444 기판에 SiO2를 코팅한 경우의 표면상태를 관찰한 결과가 나타나 있다. 양 기판에 모두 SiO2가 전체적으로 균일하게 코팅되어 있음을 볼 수 있다. 10 (a) and 10 (b) show the results of observing the surface state when SiO 2 was coated on the STS430 substrate and the STS444 substrate, respectively. It can be seen that SiO 2 is uniformly coated on both substrates.
도 11의 (a) 및 (b)는 STS430 기판에 TiO2를 각각 왕복 1회 및 4회 코팅한 경우의 표면상태를 주사전자현미경으로 관찰한 결과이며, 도 11의 (c)는 코팅하지 않은 STS430의 표면을 주사전자현미경으로 관찰할 결과이다. 왕복 1회 코팅으로도 기판을 균일하게 코팅하고 있음을 확인할 수 있으며, 왕복 1회와 4회 코팅 모두 비슷한 미세구조를 나타내고 있음을 알 수 있다. (A) and (b) of FIG. 11 are the results of observing the surface state of the TiO 2 coated on the STS430 substrate by one time and four times, respectively, by scanning electron microscope, and FIG. 11 (c) is not coated. The surface of STS430 was observed by scanning electron microscope. It can be seen that the substrate is uniformly coated by the single round trip coating, and it can be seen that the single round trip and the four round coatings exhibit similar microstructures.
또한 도 11의 (a) 및 (b)를 참조하면, 에어로졸 성막법으로 TiO2층을 형성함에 따라 TiO2층이 형성되기 전에 비해 표면이 매우 거칠게 바뀌었음을 알 수 있다. 즉, 다수의 미세한 TiO2 입자가 최상층부에 분포되어 표면의 조도가 매우 거칠게 되었다. 이와 같이 표면이 거칠수록 표면적이 증가하고, 그 상부에 형성되는 세라믹층과의 계면에서의 기계적 결합효과(anchoring effect)가 증가하여 세라믹층과의 접착성 및 내구성이 향상될 수 있다.In addition, it can be seen that a very rough Empty modified surface than before the TiO 2 layer is formed, as Fig. Referring to (a) and (b) 11 to form a TiO 2 layer as an aerosol deposition method. That is, many fine TiO 2 particles were distributed in the uppermost layer, and the surface roughness became very rough. As the surface is rougher, the surface area increases, and the mechanical coupling effect at the interface with the ceramic layer formed thereon is increased, thereby improving adhesion and durability with the ceramic layer.
도 12의 (a) 내지 (c)는 STS430 기판에 제올라이트를 각각 왕복 1회, 2회 및 4회 코팅한 경우의 표면상태를 주사전자현미경으로 관찰한 결과이다. 왕복 1회 코팅으로도 기판을 균일하게 코팅하고 있음을 알 수 있고, 특히 왕복 1회 코팅의 경우 표면 조도가 전체적으로 매우 균일하고 뚜렷한 것을 보이고 있음을 알 수 있다. 따라서 후속하는 단계에서 세라믹층을 형성하는 경우, 계면에서의 접착성 및 내구성이 증가될 수 있다. 한편, 코팅 횟수가 증가함에 따라 표면 조도가 다소 줄어들었지만 여전히 거친 상태로 유지하고 있음을 알 수 있다.12 (a) to 12 (c) show the results of observing the surface state when the zeolite was coated on the STS430 substrate once, twice and four times, respectively, with a scanning electron microscope. It can be seen that the substrate is uniformly coated even with the reciprocating single coating, and in particular, it can be seen that the surface roughness is very uniform and distinct as a whole. Therefore, when forming the ceramic layer in a subsequent step, the adhesion and durability at the interface can be increased. On the other hand, as the number of coatings increases, although the surface roughness is slightly reduced, it can be seen that it is still maintained in a rough state.
도 13은 STS444 기판 상에 제올라이트를 왕복 1회 코팅한 후 그 단면을 주사전자현미경으로 관찰한 결과를 나타낸 것이다. 표면에 약 0.5 내지 1μm 정도의 제올라이트층(화살표)이 기판과 매우 잘 결합되어 형성되어 있음을 확인할 수 있다.FIG. 13 shows the result of observing the cross section of the zeolite once on the STS444 substrate by scanning electron microscope. It can be seen that a zeolite layer (arrow) of about 0.5 to 1 μm on the surface is very well bonded to the substrate.
한편 에어로졸 성막법에 의해 형성된 하지층은 기공, 균열 등과 같은 결함의 밀도가 낮은 치밀한 조직을 가지며, 따라서 이러한 하지층을 금속기판 상에 형성함에 따라 외부로부터의 산소의 확산을 효과적으로 차단하여 내산화성을 향상시킬 수 있다. On the other hand, the underlayer formed by the aerosol deposition method has a dense structure with a low density of defects such as pores and cracks, and thus, as the underlayer is formed on the metal substrate, it effectively blocks the diffusion of oxygen from the outside to provide oxidation resistance. Can be improved.
도 14의 (a) 내지 (c) 에는 각각 코팅되지 않은 STS430 기판과 STS430 기판 상에 제올라이트 및 TiO2를 코팅한 시편을 500℃에서 4시간 동안 대기 중에서 열처리한 후 광학현미경으로 표면을 관찰한 결과가 나타나 있다. In FIGS. 14A to 14C, zeolite and TiO 2 coated specimens were coated on an STS430 substrate and an STS430 substrate, respectively, at 500 ° C. for 4 hours in the air, and then the surface was observed with an optical microscope. Is shown.
도 14의 (a) 를 참조하면, 코팅되지 않은 STS430 기판은 표면이 심하게 산화되었음을 확인할 수 있으나, 도 14의 (b) 및 (c)를 참조하면, 제올라이트와 TiO2로 코팅한 시편은 거의 산화가 일어나지 않았음을 확인할 수 있다. Referring to (a) of FIG. 14, the uncoated STS430 substrate can be confirmed that the surface is severely oxidized. Referring to FIGS. 14 (b) and (c), the specimen coated with zeolite and TiO 2 is almost oxidized. You can see that did not happen.
고온 산화 정도를 보다 정량적으로 조사하기 위해 STS430 및 STS444기판과, STS430 및 STS444기판에 제올라이트 및 TiO2를 코팅한 시편, STS444 기판에 SiO2를 코팅한 시편을 800℃, 850℃ 및 900℃에서 40 시간 동안 대기 중에서 열처리한 후 산화에 의한 무게 증가율을 측정하였고 이 결과를 표 1에 나타내었다.To quantitatively investigate the degree of high temperature oxidation, STS430 and STS444 substrates, zeolite and TiO 2 coated specimens on STS430 and STS444 substrates, and SiO2 coated specimens on STS444 substrates were used at 800 ° C, 850 ° C, and 900 ° C for 40 hours. After the heat treatment in the air for a while the weight increase rate by oxidation was measured and the results are shown in Table 1.
표 1
시편 800℃/40h 열처리 후 무게 증가율 850℃/40h 열처리 후 무게 증가율 900℃/40h 열처리 후 무게 증가율
STS430 기판 0.24% 3.9% 43.5%
STS444 기판 0.16% 0.91% 2.0%
제올라이트 코팅된 STS430 0.17%
제올라이트 코팅된 STS444 0.06% 0.73%
TiO2 코팅된STS430 0.80%
TiO2 코팅된STS444 0.06% 0.89%
SiO2 코팅된STS444 0.26%
Table 1
Psalter Weight increase rate after 800 ℃ / 40h heat treatment Weight increase rate after 850 ℃ / 40h heat treatment Weight increase rate after 900 ℃ / 40h heat treatment
STS430 Board 0.24% 3.9% 43.5%
STS444 Board 0.16% 0.91% 2.0%
Zeolite Coated STS430 0.17%
Zeolite Coated STS444 0.06% 0.73%
TiO 2 Coated STS430 0.80%
TiO 2 Coated STS444 0.06% 0.89%
SiO 2 coated STS444 0.26%
표면이 코팅 되지 않은 STS444에 비해 제올라이트, TiO2 및 SiO2가 코팅된 STS444 시편의 산화열처리에 의한 무게 증가율이 1/3정도에 불과하였다. 또한 표면이 코팅 되지 않은 STS430에 비해 제올라이트 및 SiO2가 코팅된 STS430 시편의 산화열처리에 의한 무게 증가율이 1/10정도에 불과하였다. 이를 통해 제올라이트, TiO2 및 SiO2 등을 에어로졸 성막법에 의해 코팅한 경우에 내산화성이 크게 증가되었음을 알 수 있다. 이는 에어로졸 성막법에 의해 형성된 코팅층이 극히 미세한 입자들이 결합된 매우 치밀한 조직을 가짐에 따라 대기 중의 산소가 기판으로 확산되는 것이 차단되거나 억제되었기 때문으로 판단된다. Compared with STS444 without surface coating, the weight increase rate of oxidative heat treatment of STS444 specimen coated with zeolite, TiO 2 and SiO 2 was only about one third. In addition, compared to STS430 without surface coating, the weight increase rate of oxidative heat treatment of STS430 specimen coated with zeolite and SiO 2 was only about 1/10. Through this, it can be seen that the oxidation resistance was greatly increased when the zeolite, TiO 2 and SiO 2 were coated by the aerosol deposition method. This is considered to be because the coating layer formed by the aerosol deposition method has a very dense structure in which extremely fine particles are bound and the diffusion of atmospheric oxygen into the substrate is blocked or suppressed.
본 발명의 다른 실험예에서, 본 발명의 기술적 사상에 따라, 금속기판(110)의 일면 상에 코팅된 하지층(120) 상에 세라믹층(130)을 형성하였다. 세라믹층(130)은, 예를 들어, 촉매층일 수 있다. 도 15a 내지 15b에는 STS444 기판 상에 하지층(120)을 에어로졸 성막법에 의하여 코팅한 후에, 하지층(120) 상에 촉매층(130)을 코팅한 시편을 주사전자현미경으로 표면을 관찰한 결과가 나타나 있다. 하지층(120)은 13X 타입의 제올라이트로 형성하였고 촉매층(130)은 베타-제올라이트계인 Fe-BEA-35로 형성하였다. 이때 촉매층(130)은 결합제 6 wt%를 사용하여 슬러리 코팅으로 형성하였다. In another experimental example of the present invention, according to the spirit of the present invention, the ceramic layer 130 is formed on the base layer 120 coated on one surface of the metal substrate 110. The ceramic layer 130 may be, for example, a catalyst layer. 15A to 15B, after coating the underlayer 120 on the STS444 substrate by aerosol deposition, the surface of the specimen coated with the catalyst layer 130 on the underlayer 120 was observed by scanning electron microscopy. Is shown. The underlying layer 120 was formed of 13X zeolite and the catalyst layer 130 was formed of Fe-BEA-35, which is a beta-zeolite system. At this time, the catalyst layer 130 was formed by slurry coating using 6 wt% of the binder.
기판이 스테인레스강의 박판임에 따라 취성파괴를 이용하여 시편을 절단하기 어려웠으며, 이에 시편을 저온의 액체 질소 내에서 반복적으로 굽힘하중을 인가하여 찢어서 준비하였다. 도 15a 내지 15b를 참조하면, 하지층(120) 상에 약 10㎛의 두께의 촉매층(130)이 형성되었음을 확인할 수 있다. As the substrate was a thin plate of stainless steel, it was difficult to cut the specimen by using brittle fracture. Thus, the specimen was prepared by tearing repeatedly by applying a bending load in low temperature liquid nitrogen. 15A to 15B, it can be seen that the catalyst layer 130 having a thickness of about 10 μm is formed on the underlayer 120.
본 발명의 기술적 사상에서 하지층(120) 및 촉매층(130)을 구성하는 소재가 상술한 물질에 의하여 한정되지 않음은 자명하다. 예를 들어, 하지층(120)은 4A 타입의 저가 제올라이트를 포함할 수 있다. 또한, 촉매층(130)은 제올라이트를 구성하는 원소 중 수% 정도의 중량비의 Fe나 Cu와 같은 촉매 원소로 치환된 제올라이트 계열 세라믹을 포함하며, 예를 들어, Fe나 Cu 촉매가 치환된 ZSM-5계나 베타-제올라이트(BEA)계 등을 포함할 수 있다. In the technical spirit of the present invention, it is obvious that the materials constituting the base layer 120 and the catalyst layer 130 are not limited by the above materials. For example, the base layer 120 may include 4A type low cost zeolite. In addition, the catalyst layer 130 includes a zeolite-based ceramic substituted with a catalytic element such as Fe or Cu in a weight ratio of several percent of the elements constituting the zeolite. For example, ZSM-5 substituted with Fe or Cu catalysts Or beta-zeolite (BEA) systems.
도 16은 STS444 기판의 표면에 에어로졸 성막법에 의해 하지층을 형성한 금속담체를 촬영한 사진으로서, 도 4에 도시된 원통형 촉매 구조체의 일부를 구성할 수 있다. 도 16을 참조하면, 좌측은 하지층이 형성되지 않은 금속담체이며 우측은 하지층이 형성된 금속담체이다. 이러한 금속담체는 주기적인 요철을 형성한 제1금속박판과 편평한 제2금속박판의 일면 또는 양면에 에어로졸 성막법에 의해 하지층을 형성한 후, 금속박판을 서로 번갈아 가면서 권취함으로써 내부에 원통형 일단부에서 타단부까지 연장되는 관통로가 주기적으로 형성된 원통형 구조체에 대응된다. 이때 관통로 내벽 상에는 하지층이 형성되어 있다. 이러한 촉매 구조체는 담체가 금속재료이므로 권취와 같은 성형이 자유로울 뿐 아니라, 하지층이 금속기판과 강하게 접착하고 있어 성형과정에서 하지층 및 그 상부의 촉매층이 금속기판으로부터 박리되거나 균열이 발생되는 현상을 방지할 수 있다. FIG. 16 is a photograph of a metal carrier having an underlayer formed on the surface of an STS444 substrate by an aerosol film formation, and may form part of the cylindrical catalyst structure shown in FIG. 4. Referring to FIG. 16, the left side is a metal carrier on which an underlayer is not formed and the right side is a metal carrier on which an underlayer is formed. The metal carrier forms a base layer on one or both surfaces of the first metal plate and the flat second metal plate on which periodic irregularities are formed, and then winds the metal plates alternately. The through passage extending from the other end to corresponds to the cylindrical structure formed periodically. At this time, an underlayer is formed on the inner wall of the through passage. Since the catalyst is a metal material, not only is the molding free of winding, but also the base layer is strongly adhered to the metal substrate, so that the base layer and the upper catalyst layer are peeled off or cracked from the metal substrate during the molding process. It can prevent.
도 17은 본 발명의 실험예에 따른 제올라이트 촉매층 코팅기판을 사용하여 도 16의 형태로 제작된 선택적환원촉매의 온도에 따른 NOx의 환원반응특성 즉 NOx 저감성능 테스트 결과를 나타낸 그래프이다. 도 17을 참조하면, 주입 가스(inlet gas)로 NH3 가스와 NOx 가스(NO와 NO2 가스의 혼합 가스)를 각각 약 500 ppm 농도로 하고 O2 (산소)는 10%로 하며 N2 가스로 밸런스를 맞추어 총 유량 약 4 liter/min으로 투입하고 가스 온도는 상온(26℃)에서 약 400℃ 범위에서 측정하였다. 통상적으로 250℃에서 NOx 전환성능이 80% 이상이면 촉매의 저온성능이 우수하다고 볼 수 있는데, 도 17에서 보듯이 본 발명의 실험예를 통해 제작된 샘플의 저온성능이 우수함을 볼 수 있다. FIG. 17 is a graph showing a reduction reaction characteristic, that is, NOx reduction performance test result of NOx according to temperature of a selective reduction catalyst manufactured in the form of FIG. 16 using a zeolite catalyst layer coated substrate according to an experimental example of the present invention. Referring to FIG. 17, NH3 gas and NOx gas (mixed gas of NO and NO2 gas) are each about 500 ppm concentration, O2 (oxygen) is 10% and balanced with N2 gas as an inlet gas. The total flow rate was added at about 4 liters / min and the gas temperature was measured at room temperature (26 ° C) at about 400 ° C. In general, when the NOx conversion performance is more than 80% at 250 ° C, it can be seen that the low temperature performance of the catalyst is excellent. As shown in FIG. 17, it can be seen that the low temperature performance of the sample produced through the experimental example of the present invention is excellent.
하지층의 유무에 따른 촉매층의 접착력을 비교평가하였다. 50㎛두께의 금속기판(STS444 박판) 상에 에어로졸 성막법에 의해 TiO2로 하지층을 형성한 뒤 제올라이트로 촉매층을 슬러리 코팅한 시편과 하지층을 코팅하지 않고 금속기판 위에 직접 제올라이트를 슬러리 코팅한 시편의 부착성 테스트를 실시하였다. 부착성 테스트는 초음파세척기(500W) 내에 아세톤을 채우고 촉매층이 코팅된 각 시편을 아세톤 내에 위치시킨 후 30분 동안 초음파를 인가하는 초음파테스트를 실시하였다. 초음파테스트가 완료된 시편은 건조한 후 무게를 측정하여 초음파 테스트 전후의 무게 변화를 측정하여 초음파테스트에 의한 촉매층 분리 정도를 조사하였고 이 결과를 표 2에 나타내었다. 표 2를 참조하면, 하지층을 코팅한 시편이 하지층을 코팅하지 않고 직접 금속기판 상에 촉매층을 코팅한 시편에 비해 초음파테스트 전후의 무게 변화율이 낮음을 알 수 있다. 이는 촉매층과 금속기판 사이에 하지층을 개재한 경우가 초음파에 의한 촉매층의 분리가 상대적으로 적기 때문이며, 이로부터 하지층을 코팅한 경우에 촉매층의 결합력이 더 우수함을 확인할 수 있다.The adhesion of the catalyst layer with and without the base layer was evaluated. After forming a base layer with TiO 2 on a 50 μm thick metal substrate (STS444 thin plate) by aerosol film formation, slurry coating the catalyst layer with zeolite and slurry coating zeolite directly on the metal substrate without coating the base layer. The adhesion test of the specimens was performed. The adhesion test was performed by filling an acetone in the ultrasonic cleaner (500W), placing each specimen coated with a catalyst layer in acetone, and applying ultrasonic waves for 30 minutes. After the ultrasonic test was completed, the weight of the specimen was dried and the weight change was measured before and after the ultrasonic test, and the degree of separation of the catalyst layer by the ultrasonic test was investigated. The results are shown in Table 2. Referring to Table 2, it can be seen that the weight change rate before and after the ultrasonic test is lower than the specimen coated with the underlayer is coated with the catalyst layer on the metal substrate without coating the underlayer. This is because the separation of the catalyst layer by ultrasonic waves in the case of interposing the base layer between the catalyst layer and the metal substrate is relatively small, from which it can be seen that the bonding layer of the catalyst layer is more excellent.
표 2
기판 하지층유무 초음파 테스트 전 시편무게 (g) 초음파 세척 전후 무게 변화율 (%)
STS444 없음 0.1620 64% 감소
STS444 있음 0.1493 24% 감소
TABLE 2
Board Base layer presence Specimen weight before ultrasound test (g) Weight change rate before and after ultrasonic cleaning (%)
STS444 none 0.1620 64% reduction
STS444 has exist 0.1493 24% reduction
상기 부착성 테스트에서는, 하지층(120)과 촉매층(130)은 각각 TiO2와 제올라이트인 이종 계열의 세라믹 재료로 구성된 경우에 하지층(120)이 없는 경우보다 촉매층(130)의 결합력이 우수함을 확인하였다. 물론, 앞에서 이미 언급한 바와 같이, 하지층(120)과 촉매층(130)이 '동일한 계열'의 재료로 구성되는 경우에 하지층(120)이 없는 경우보다 촉매층(130)의 결합력이 우수하다는 것은 본 발명의 기술적 사상에 의하여 명백하다. In the adhesion test, when the base layer 120 and the catalyst layer 130 is composed of a heterogeneous ceramic material of TiO 2 and zeolite, respectively, it was confirmed that the bonding force of the catalyst layer 130 is superior to that of the base layer 120 without the base layer 120. It was. Of course, as mentioned above, in the case where the base layer 120 and the catalyst layer 130 are made of the same material, the bonding layer of the catalyst layer 130 is superior to the case without the base layer 120. It is apparent by the technical spirit of the present invention.
발명의 특정 실시예들에 대한 이상의 설명은 예시 및 설명을 목적으로 제공되었다. 따라서 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 기술적 사상 내에서 해당 분야에서 통상의 지식을 가진 자에 의하여 상기 실시예들을 조합하여 실시하는 등 여러 가지 많은 수정 및 변경이 가능함은 명백하다.The foregoing description of specific embodiments of the invention has been presented for purposes of illustration and description. Therefore, the present invention is not limited to the above embodiments, and various modifications and changes can be made by those skilled in the art within the technical spirit of the present invention in combination with the above embodiments. Do.

Claims (33)

  1. 금속기판을 제공하는 단계;Providing a metal substrate;
    상기 금속기판의 적어도 일면 상에 에어로졸 성막법을 이용하여 하지층을 형성하는 단계; 및Forming an underlayer on at least one surface of the metal substrate by using an aerosol deposition method; And
    상기 하지층 상에 세라믹층을 형성하는 단계;Forming a ceramic layer on the underlayer;
    를 포함하는, 금속기판의 세라믹 코팅방법.A ceramic coating method of a metal substrate comprising a.
  2. 제1항에 있어서, 상기 하지층은 세라믹 재료로 형성하는, 금속기판의 세라믹 코팅방법.The method of claim 1, wherein the base layer is formed of a ceramic material.
  3. 제2항에 있어서, 상기 하지층 및 세라믹층은 동일한 계열의 세라믹 재료를 포함하도록 형성하는, 금속기판의 세라믹 코팅방법.The method of claim 2, wherein the base layer and the ceramic layer are formed to include ceramic materials of the same series.
  4. 제2항에 있어서, 상기 세라믹층은 슬러리 코팅법, 졸-겔 코팅법 및 용사코팅법 중 어느 하나의 방법에 의해 형성하는, 금속기판의 세라믹 코팅방법.The method of claim 2, wherein the ceramic layer is formed by any one of a slurry coating method, a sol-gel coating method and a spray coating method.
  5. 금속기판 상에 세라믹층을 코팅하는 방법으로서,As a method of coating a ceramic layer on a metal substrate,
    상기 금속기판 및 상기 세라믹층 사이에 세라믹 재료를 포함하는 하지층을 에어로졸 성막법으로 형성하여 상기 금속기판 및 세라믹층간의 접착력을 향상시키는, 금속기판 코팅방법.A metal substrate coating method for improving the adhesion between the metal substrate and the ceramic layer by forming an underlayer containing a ceramic material between the metal substrate and the ceramic layer by an aerosol film formation method.
  6. 제5항에 있어서, 상기 하지층은 상기 세라믹층을 구성하는 세라믹 재료와 동일한 계열의 세라믹 재료를 포함하도록 형성하는, 금속기판 코팅방법.The method of claim 5, wherein the base layer is formed to include a ceramic material of the same series as the ceramic material constituting the ceramic layer.
  7. 금속기판;Metal substrates;
    상기 금속기판의 적어도 일면 상에 형성된 하지층; 및 An underlayer formed on at least one surface of the metal substrate; And
    상기 하지층 상에 형성된 세라믹층을 포함하며,It includes a ceramic layer formed on the base layer,
    상기 하지층은 에어로졸 성막법에 의해 형성된, 세라믹 코팅 금속기판. The base layer is a ceramic coated metal substrate formed by the aerosol deposition method.
  8. 제7항에 있어서, 상기 하지층은 세라믹 재료로 이루어진, 세라믹 코팅 금속기판. 8. The ceramic coated metal substrate according to claim 7, wherein the base layer is made of a ceramic material.
  9. 제8항에 있어서, 상기 하지층은 상기 세라믹층에 포함된 세라믹 재료와 동일한 계열의 세라믹 재료를 포함하는, 세라믹 코팅 금속기판. The ceramic coating metal substrate of claim 8, wherein the base layer comprises a ceramic material of the same series as the ceramic material contained in the ceramic layer.
  10. 제8항에 있어서, 상기 하지층은 100Å 내지 10㎛ 범위의 두께를 가지는, 세라믹 코팅 금속기판.The ceramic coated metal substrate of claim 8, wherein the base layer has a thickness in a range of 100 μs to 10 μm.
  11. 제8항에 있어서, 상기 하지층은 Al2O3계, TiO2계, 제올라이트계, SiO2계, ZrO2계 및 CeO2계 중 어느 하나 이상을 포함하는, 금속기판의 세라믹 코팅방법.The ceramic coating method of claim 8, wherein the base layer comprises at least one of Al 2 O 3 , TiO 2 , zeolite, SiO 2 , ZrO 2 , and CeO 2 .
  12. 제7항에 있어서, 상기 금속기판은 표면에 요철이 형성된 것인, 세라믹 코팅 금속기판.The ceramic coated metal substrate of claim 7, wherein the metal substrate has irregularities formed on a surface thereof.
  13. 제7항에 있어서, 상기 세라믹 코팅 금속기판은 상기 하지층이 형성되지 않은 것에 비해 더 높은 접착력을 나타내는, 세라믹 코팅 금속기판. 8. The ceramic coated metal substrate of claim 7, wherein the ceramic coated metal substrate exhibits a higher adhesion than the base layer is not formed.
  14. 제7항에 있어서, 상기 세라믹 코팅 금속기판은 상기 하지층이 형성되지 않은 것에 비해 더 높은 내산화성을 나타내는, 세라믹 코팅 금속기판. 8. The ceramic coated metal substrate of claim 7, wherein the ceramic coated metal substrate exhibits higher oxidation resistance than the base layer is not formed.
  15. 금속기판을 제공하는 단계;Providing a metal substrate;
    상기 금속기판의 적어도 일면 상에 에어로졸 성막법을 이용하여 하지층을 형성하는 단계; 및Forming an underlayer on at least one surface of the metal substrate by using an aerosol deposition method; And
    상기 하지층 상에 촉매물질을 담지한 세라믹 재료로 이루어진 촉매층을 형성하는 단계;Forming a catalyst layer made of a ceramic material supporting a catalyst material on the underlayer;
    를 포함하는, 촉매층 코팅기판 제조방법. Comprising a catalyst layer coating substrate manufacturing method.
  16. 제15항에 있어서, 상기 하지층은 세라믹 재료로 형성하는, 촉매층 코팅기판 제조방법.The method of claim 15, wherein the base layer is formed of a ceramic material.
  17. 제16항에 있어서, 상기 하지층 및 촉매층은 서로 동일한 계열의 세라믹 재료를 포함하도록 형성하는, 촉매층 코팅기판 제조방법.The method of claim 16, wherein the base layer and the catalyst layer are formed to include ceramic materials of the same series as each other.
  18. 제16항에 있어서, 상기 하지층은 Al2O3계, TiO2계, 제올라이트계, SiO2계, ZrO2계 및 CeO2계 중 어느 하나 이상으로 형성하는, 촉매층 코팅기판 제조방법.The method of claim 16, wherein the base layer is formed of any one or more of Al 2 O 3 , TiO 2 , zeolite, SiO 2 , ZrO 2 , and CeO 2 .
  19. 제18항에 있어서, 상기 촉매층은 V2O5 입자와 TiO2 입자의 혼합체를 이용하여 형성하는, 촉매층 코팅기판 제조방법.The method of claim 18, wherein the catalyst layer is formed using a mixture of V 2 O 5 particles and TiO 2 particles.
  20. 제18항에 있어서, 상기 촉매층은 Al2O3 입자로 이루어진 워시코트층에 1종 이상의 촉매물질이 함유되도록 형성하는, 촉매층 코팅기판 제조방법.19. The method of claim 18, wherein the catalyst layer is formed to contain at least one catalyst material in a washcoat layer made of Al 2 O 3 particles.
  21. 제18항에 있어서, 상기 촉매층은 일부가 하나 이상의 촉매원소로 이온 치환된 제올라이트 입자로 형성하는, 촉매층 코팅기판 제조방법. 19. The method of claim 18, wherein the catalyst layer is formed of zeolite particles, some of which are ion-substituted with one or more catalyst elements.
  22. 금속기판 및 촉매층 사이에 세라믹 재료를 포함하는 하지층을 에어로졸 성막법으로 형성하여 상기 금속기판 및 촉매층간의 접착력을 향상시키는, 촉매층 코팅기판 제조방법. A method for producing a catalyst layer coated substrate, comprising: forming a base layer comprising a ceramic material between a metal substrate and a catalyst layer by an aerosol film formation method to improve adhesion between the metal substrate and the catalyst layer.
  23. 제22항에 있어서, 상기 하지층은 상기 촉매층을 구성하는 세라믹 재료와 동일한 계열의 세라믹 재료를 포함하도록 형성하는, 촉매층 코팅기판 제조방법.23. The method of claim 22, wherein the base layer is formed to include a ceramic material of the same series as the ceramic material constituting the catalyst layer.
  24. 금속기판;Metal substrates;
    상기 금속기판의 적어도 일면 상에 형성된 하지층; 및 An underlayer formed on at least one surface of the metal substrate; And
    상기 하지층 상에 형성된 촉매층을 포함하며,It includes a catalyst layer formed on the base layer,
    상기 하지층은 에어로졸 성막법에 의해 형성된, 촉매층 코팅기판. The underlayer is formed by the aerosol deposition method, the catalyst layer coating substrate.
  25. 제24항에 있어서, 상기 하지층은 세라믹 재료로 이루어진, 촉매층 코팅기판.The catalyst layer coating substrate of claim 24, wherein the base layer is made of a ceramic material.
  26. 제24항에 있어서, 상기 하지층은 상기 촉매층에 포함된 세라믹 재료와 동일한 계열의 세라믹 재료를 포함하는, 촉매층 코팅기판. 25. The catalyst layer coated substrate of claim 24, wherein the base layer comprises a ceramic material of the same series as the ceramic material contained in the catalyst layer.
  27. 제24항에 있어서, 상기 촉매층은 배기가스 저감용 촉매층인, 촉매층 코팅기판. The catalyst layer coating substrate of claim 24, wherein the catalyst layer is an exhaust gas reducing catalyst layer.
  28. 제24항에 있어서, 상기 촉매층은 탄화수소를 수소로 개질하기 위한 연료 개질용 촉매층인, 촉매층 코팅기판. The catalyst layer coating substrate of claim 24, wherein the catalyst layer is a fuel reforming catalyst layer for reforming a hydrocarbon with hydrogen.
  29. 제24항에 있어서, Al2O3계, TiO2계, 제올라이트계, SiO2계, ZrO2계 및 CeO2계 중 어느 하나 이상을 포함하는, 촉매층 코팅기판. 25. The catalyst layer coating substrate of claim 24, comprising any one or more of Al 2 O 3 based, TiO 2 based, zeolite based, SiO 2 based, ZrO 2 based and CeO 2 based.
  30. 제24항에 있어서, 상기 촉매층은 V2O5 입자와 TiO2 입자의 혼합체를 포함하는, 촉매층 코팅기판. The catalyst layer coating substrate of claim 24, wherein the catalyst layer comprises a mixture of V 2 O 5 particles and TiO 2 particles.
  31. 제24항에 있어서, 상기 촉매층은 Al2O3 입자로 이루어진 워시코트층에 1종 이상의 촉매물질이 포함되는, 촉매층 코팅기판. The catalyst layer coating substrate of claim 24, wherein the catalyst layer comprises at least one catalyst material in a washcoat layer made of Al 2 O 3 particles.
  32. 제24항에 있어서, 상기 촉매층은 일부가 하나 이상의 촉매원소로 이온 치환된 제올라이트를 포함하는, 촉매층 코팅기판. 25. The catalyst layer coated substrate of claim 24, wherein the catalyst layer comprises a zeolite in which a portion of the catalyst layer is ion substituted with one or more catalyst elements.
  33. 제24항 내지 제32항 중 어느 하나의 촉매층 코팅기판을 이용하여 제조한 촉매 구조체.A catalyst structure prepared using the catalyst layer coating substrate of any one of claims 24 to 32.
PCT/KR2012/002152 2011-03-24 2012-03-23 Method for coating a metal substrate with ceramic, metal substrate coated with ceramic, method for producing a substrate coated with a catalyst layer, substrate coated with a catalyst layer, and catalyst structure WO2012128592A2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2011-0026162 2011-03-24
KR20110026162 2011-03-24
KR10-2011-0026750 2011-03-25
KR20110026750 2011-03-25
KR10-2012-0029586 2012-03-22
KR10-2012-0029587 2012-03-22
KR1020120029587A KR101409295B1 (en) 2011-03-24 2012-03-22 Coating method for ceramic on metal substrate and ceramic coated metal substrate
KR1020120029586A KR101361015B1 (en) 2011-03-25 2012-03-22 Fabrication method of catalytic layer coated substrate, catalytic layer coated substrate and catalytic system

Publications (2)

Publication Number Publication Date
WO2012128592A2 true WO2012128592A2 (en) 2012-09-27
WO2012128592A3 WO2012128592A3 (en) 2012-12-27

Family

ID=46879928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002152 WO2012128592A2 (en) 2011-03-24 2012-03-23 Method for coating a metal substrate with ceramic, metal substrate coated with ceramic, method for producing a substrate coated with a catalyst layer, substrate coated with a catalyst layer, and catalyst structure

Country Status (1)

Country Link
WO (1) WO2012128592A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101404135B1 (en) * 2012-10-15 2014-06-10 한국기계연구원 Catalytic layer coated substrate, method of Fabricating the same, and catalytic structure having catalytic layer coated substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009295A (en) * 1999-04-28 2001-01-16 Toshiba Lighting & Technology Corp Photocatalyst body, lamp and lighting fixture
JP2003034003A (en) * 2001-04-12 2003-02-04 National Institute Of Advanced Industrial & Technology Composite structure comprising resin and fragile material and method for manufacturing the same
JP2006117975A (en) * 2004-10-19 2006-05-11 Kawasaki Heavy Ind Ltd Structure of thermal barrier coating, and method for manufacturing thermal barrier coating
KR20090101610A (en) * 2008-03-24 2009-09-29 한국기계연구원 A chemical resistance ceramics film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009295A (en) * 1999-04-28 2001-01-16 Toshiba Lighting & Technology Corp Photocatalyst body, lamp and lighting fixture
JP2003034003A (en) * 2001-04-12 2003-02-04 National Institute Of Advanced Industrial & Technology Composite structure comprising resin and fragile material and method for manufacturing the same
JP2006117975A (en) * 2004-10-19 2006-05-11 Kawasaki Heavy Ind Ltd Structure of thermal barrier coating, and method for manufacturing thermal barrier coating
KR20090101610A (en) * 2008-03-24 2009-09-29 한국기계연구원 A chemical resistance ceramics film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101404135B1 (en) * 2012-10-15 2014-06-10 한국기계연구원 Catalytic layer coated substrate, method of Fabricating the same, and catalytic structure having catalytic layer coated substrate

Also Published As

Publication number Publication date
WO2012128592A3 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
EP0804290B1 (en) Thermal spray method for adhering a catalytic material to a metallic substrate
US8323600B2 (en) Method and catalyst for removal of nitrogen oxides in a flue gas
US7510755B2 (en) Honeycomb structure and method for producing same
RU2400301C2 (en) Catalyst carrier substrate coated by first coat composition that comprises fibrous material
US9018130B2 (en) Honeycomb structural body for exhaust gas purification
US8491966B2 (en) Method for introducing a catalytic coating into the pores of a ceramic honeycomb flow body
US20070020155A1 (en) Honeycomb structured body and exhaust gas purifying device
JPH1136853A (en) Coated catalyst converter base and mounting of the same
WO2010098586A2 (en) Catalyst, and method for removing formaldehyde using same
WO2019117382A1 (en) Metal structure-based denitrification catalyst, for selective catalytic reduction, using coating slurry and method for preparing same
US20110311404A1 (en) Thermally Stable Inorganic Fibers For Exhaust Gas Treatment Device Insulating Mat
KR20080028947A (en) Catalyst for emission gas purification
CN101909728A (en) Oxygen-oxygen-ion conducting membrane structure
WO2017222306A1 (en) Denitrification catalyst for ship, using ceramic nanotubes grown on porous metal structure, and manufacturing method therefor
US20070015002A1 (en) Oxygen-donor and catalytic coatings of metal oxides and metals
US5021388A (en) Process for applying a catalyst layer composed of noble metals and/or noble-metal compounds to a carrier made of ceramic material
WO2012128592A2 (en) Method for coating a metal substrate with ceramic, metal substrate coated with ceramic, method for producing a substrate coated with a catalyst layer, substrate coated with a catalyst layer, and catalyst structure
US5234882A (en) Catalyst and preparation thereof
KR101361015B1 (en) Fabrication method of catalytic layer coated substrate, catalytic layer coated substrate and catalytic system
US7553349B2 (en) Composite coatings for thin-walled ceramic honeycomb structures
US6927189B1 (en) Coatings
WO2013141433A1 (en) Catalyst carrier for selective catalytic reduction having three dimensional reaction structure
JP2000042421A (en) Manufacture of catalytic converter
KR20120109376A (en) Coating method for ceramic on metal substrate and ceramic coated metal substrate
JP2006007169A (en) Slurry for supporting powder on metal substrate and catalyst carrier supported on metal substrate obtained by using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760140

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760140

Country of ref document: EP

Kind code of ref document: A2