WO2012127953A1 - Coil module, electricity-receiving device of non-contact electricity supply device provided with same, and non-contact electricity supply device provided with same - Google Patents

Coil module, electricity-receiving device of non-contact electricity supply device provided with same, and non-contact electricity supply device provided with same Download PDF

Info

Publication number
WO2012127953A1
WO2012127953A1 PCT/JP2012/053857 JP2012053857W WO2012127953A1 WO 2012127953 A1 WO2012127953 A1 WO 2012127953A1 JP 2012053857 W JP2012053857 W JP 2012053857W WO 2012127953 A1 WO2012127953 A1 WO 2012127953A1
Authority
WO
WIPO (PCT)
Prior art keywords
planar coil
coil
peripheral end
planar
double
Prior art date
Application number
PCT/JP2012/053857
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 加田
鈴木 一敬
宇宙 松元
智史 山本
Original Assignee
パナソニック 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック 株式会社 filed Critical パナソニック 株式会社
Publication of WO2012127953A1 publication Critical patent/WO2012127953A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • H01F27/2828Construction of conductive connections, of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention relates to a coil module, a power receiving device of a non-contact power feeding device including the same, and a non-contact power feeding device including the power receiving device.
  • the coil module described in this document uses a double-row conductive wire composed of a plurality of parallel conductive wires.
  • the coil module includes a first planar coil portion in which a double-row conductive wire is wound in one direction, and a second planar coil portion in which the double-row conductive wire is wound in a direction opposite to the one direction. Yes.
  • the first planar coil portion and the second planar coil portion are stacked and are continuous at the continuous portion.
  • the continuous portion is provided in a portion where the first planar coil portion and the second planar coil portion face each other. Further, the continuous portion is bent so that the loop current is reduced.
  • Coil modules are required to reduce loop current in order to increase power transmission efficiency.
  • the thickness of the first planar coil portion, the thickness of the second planar coil portion, and the thickness of the continuous portion is the thickness of the coil module. For this reason, thickness becomes large compared with the coil module which laminated
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a coil module capable of reducing a loop current. A further object is to provide a coil module that can suppress an increase in the thickness of the coil module while reducing the loop current. Furthermore, this invention is providing the power receiving apparatus of the non-contact-type electric power feeder provided with such a coil module, and the non-contact-type electric power feeder provided with such a coil module.
  • One embodiment of the present invention is a coil module including a double-row conductive wire including a plurality of parallel conductive wires.
  • the coil module includes a first planar coil portion formed by winding the double-row conductive wire in one direction, and is laminated on the first planar coil portion, and the double-row conductive wire is wound in a direction opposite to the one direction.
  • a second planar coil portion that is rotated, and a continuous portion that is provided on the inner peripheral side or the outer peripheral side of the first and second planar coil portions and that connects the first planar coil portion and the second planar coil portion.
  • a folded portion formed by folding the double-row conductive line, and in the plan view of the continuous portion, the extending direction of the double-row conductive line is defined as a “wiring direction”, and in the wiring direction,
  • the direction from the first planar coil portion toward the second planar coil portion is defined as “first wiring direction”, and the direction from the second planar coil portion toward the first planar coil portion in the wiring direction is defined as “second wiring. ”,
  • One side in the width direction of the double-row conductive line with respect to the first wiring direction as“ first width side ”
  • one side in the width direction of the double-row conductive line with respect to the first wiring direction is defined as “second wiring.
  • the other side is the “second width side”, the direction in which the double row conductive lines are folded at the folded portion is the “folded direction”, and the wiring direction and the folded direction are different from each other, and the folded direction is A direction from the first wiring direction toward the second width side, wherein the plurality of conductive lines are folded at different positions in the wiring direction in the folded portion, and the plurality of conductive lines are folded at the folded portion.
  • Each folded point is defined as a “folding point”, and each folding point of the plurality of conductive lines is arranged in the first wiring direction in the order of the first width side conductive line to the second width side conductive line.
  • the coil module includes a first planar coil portion formed by winding the double-row conductive wire in one direction, and is laminated on the first planar coil portion, and the double-row conductive wire is wound in a direction opposite to the one direction.
  • a second planar coil portion that is rotated, and a continuous portion that is provided on the inner peripheral side or the outer peripheral side of the first and second planar coil portions and that connects the first planar coil portion and the second planar coil portion.
  • a folded portion formed by folding the double-row conductive wire, and the thickness of the portion where the first planar coil portion and the second planar coil portion are laminated is expressed as “stacked portion thickness”. The folded portion is formed in the continuous portion so that the thickness of the continuous portion is the same as the thickness of the laminated portion.
  • FIG. 2A is a perspective view showing the structure of the secondary coil module of the first embodiment
  • FIG. 2B is a side view of the secondary coil module of FIG. 2A
  • FIG.2 (d) is sectional drawing which follows the XA-XA line
  • FIG. 4A is a schematic diagram modeling the secondary coil module of the first embodiment
  • FIG. 4B is a cross-sectional view of the secondary coil module of FIG. 4A taken along line XB-XB.
  • FIG. 6A is a perspective view showing the structure of the secondary coil module provided in the non-contact power feeding device according to the second embodiment of the present invention
  • FIG. 6B is the secondary side of FIG. 6C is a side view of the coil module
  • FIG. 6C is a plan view showing the structure of the secondary coil of the second embodiment
  • FIG. 6D is an XC-XC line of the secondary coil of FIG. 6C.
  • FIG. 8A is a perspective view showing the structure of another connection member
  • FIG. 8B is a perspective view showing the connection structure between the continuous portion of the secondary coil module and the connection member of FIG.
  • the contactless power supply device 1 includes a power receiving device 20 having a secondary battery 22 and a power transmitting device 10 that transmits power to the power receiving device 20.
  • the power receiving device 20 is provided as a mobile phone.
  • the power transmission device 10 includes a primary coil module 30 that transmits power and signals to the power receiving device 20 and a housing 11 that houses various components including the primary coil module 30.
  • a mounting surface 11 ⁇ / b> A for mounting the power receiving device 20 is formed on the housing 11.
  • the primary side coil module 30 includes a primary side coil 31 that generates a magnetic flux when electric power is supplied, and a magnetic body 32 that suppresses leakage of magnetic flux from the primary side coil 31.
  • a planar coil in which a conductive wire is wound in the planar direction is used.
  • a litz wire constituted by a bundle of copper wires constituted by a plurality of copper wires and an insulator covering the outer periphery of the bundle of copper wires is used.
  • the magnetic body 32 a cylindrical body made of an amorphous material is used.
  • the magnetic body 32 is provided with a bottom wall portion facing the bottom surface of the primary side coil 31 and a peripheral wall portion surrounding the outer periphery of the primary side coil 31.
  • the power receiving device 20 includes a secondary coil module 40 that receives power and signals transmitted from the power transmitting device 10, and a housing 21 that houses various components including the secondary coil module 40 and the secondary battery 22. Is provided.
  • the secondary coil module 40 corresponds to a “power receiving coil module”.
  • the secondary coil module 40 includes a secondary coil 41 that generates a current by interlinking with the magnetic flux generated in the primary coil 31, and a magnetic body 42 that suppresses leakage of magnetic flux from the secondary coil 41.
  • the secondary coil 41 a planar coil in which a conductive wire is wound in the planar direction is used.
  • a litz wire constituted by a bundle of copper wires constituted by a plurality of copper wires and an insulator covering the outer periphery of the bundle of copper wires is used.
  • the magnetic body 42 a sheet-like material formed of an amorphous material is used.
  • the magnetic body 42 is provided with a contact surface with which the bottom surface (upper surface in FIG. 1) of the secondary coil 41 contacts.
  • the outer diameter of the magnetic body 42 is set larger than the outer diameter of the secondary coil 41.
  • the primary coil module 30 of the power transmission device 10 and the secondary coil module 40 of the power reception device 20 face each other.
  • an alternating current is supplied to the primary side coil 31
  • a high-frequency alternating magnetic flux is generated in the primary side coil 31.
  • the alternating magnetic flux is linked to the secondary coil 41 to generate alternating power in the secondary coil 41.
  • the alternating power is smoothed and rectified by a rectifier circuit (not shown) and supplied to the secondary battery 22.
  • a direction orthogonal to the center line C of the secondary coil module 40 is referred to as a “radial direction”.
  • the direction toward the center line C in the radial direction of the secondary coil module 40 is “inward”, and the direction away from the center line C in the radial direction is “outward”.
  • the secondary coil 41 is composed of a single double-row conductive wire 43.
  • the double-row conductive line 43 includes four thin conductive lines, that is, a first conductive line 43A, a second conductive line 43B, a third conductive line 43C, and a fourth conductive line 43D.
  • the conductive lines 43A to 43D are provided in parallel with each other.
  • Each of the conductive lines 43A to 43D is covered with a covering. Adjacent ones of the conductive wires 43A to 43D are welded to each other.
  • the secondary coil 41 includes a first planar coil portion 50 formed by winding a part of the double row conductive wire 43 and a second planar coil portion formed by winding the other portion of the double row conductive wire 43. 60.
  • the first planar coil portion 50 and the second planar coil portion 60 are stacked in the direction of the center line C of the secondary coil 41.
  • the first planar coil portion 50 includes a first winding portion 51 formed by winding the double-row conductive wires 43 counterclockwise (counterclockwise), and a hollow formed on the inner peripheral side of the first winding portion 51.
  • a portion 54, a first inner peripheral end portion 52 provided on the inner peripheral side of the first winding portion 51, and a first outer peripheral end portion 53 provided on the outer peripheral side of the first winding portion 51 are included.
  • the first inner peripheral end 52 corresponds to the inner peripheral end of the first planar coil portion 50
  • the first outer peripheral end 53 corresponds to the outer peripheral end of the first planar coil portion 50.
  • the second planar coil portion 60 includes a second winding portion 61 in which the double-row conductive wire 43 is wound clockwise (clockwise), and a hollow portion formed on the inner peripheral side of the second winding portion 61. 64, a second inner peripheral end portion 62 provided on the inner peripheral side of the second winding portion 61, and a second outer peripheral end portion 63 provided on the outer peripheral side of the second winding portion 61.
  • the second inner peripheral end 62 corresponds to the inner peripheral end of the second planar coil portion 60
  • the second outer peripheral end 63 corresponds to the outer peripheral end of the second planar coil portion 60.
  • the secondary coil 41 the first planar coil portion 50 and the second planar coil portion 60 are laminated, and the winding direction of the double-row conductive wire 43 of the first planar coil portion 50 and the second planar coil.
  • the winding direction of the double-row conductive wire 43 of the portion 60 is set to be opposite to each other. That is, the secondary coil 41 is configured as a coil having an alpha winding structure.
  • the secondary coil 41 is divided into a first winding portion 51 and a second winding portion 61, and a continuous portion 45 that connects the first and second winding portions 51 and 61 to each other.
  • the continuous portion 45 includes a first inner peripheral end portion 52 and a second inner peripheral end portion 62.
  • a folded portion 46 in which the double-row conductive wire 43 is folded is formed in the continuous portion 45.
  • the folded portion 46 can be said to be a twisted portion in which the double row conductive wire 43 of the first planar coil portion 50 is twisted.
  • the secondary side coil 41 is comprised by one double row conductive wire 43 as mentioned above, the boundary between the 1st winding part 51 and the continuous part 45, and the 2nd winding part 61 and the continuous part There is no break of the double-row conductive wire 43 at the boundary with 45.
  • the continuous portion 45 is provided in the hollow portion 44 of the secondary coil 41 constituted by the hollow portion 54 of the first planar coil portion 50 and the hollow portion 64 of the second planar coil portion 60.
  • the dimension of the coil 41 in the direction along the center line C of the secondary coil 41 is “thickness H”
  • the thickness H of the first winding portion 51 is “first thickness H1”
  • the thickness H of the two-winding portion 61 is defined as “second thickness H2”.
  • the thickness H of the portion where the first winding portion 51 and the second winding portion 61 are laminated is referred to as “lamination portion thickness H3”.
  • the thickness H of the folded portion 46 is defined as “folded thickness H4”.
  • the folded thickness H4 corresponds to “the thickness of the continuous portion”.
  • each thickness H is shown below.
  • the first thickness H1 is equal to the diameter of the double-row conductive wire 43 (each conductive wire 43A to 43D).
  • the second thickness H2 is equal to the diameter of the double row conductive wire 43 (each conductive wire 43A to 43D).
  • the laminated portion thickness H3 is equal to the total thickness of the first thickness H1 and the second thickness H2.
  • the folded thickness H4 is equal to the combined thickness of the first thickness H1 and the second thickness H2.
  • winding surface 51A two annular conductive surfaces 43 are adjacent to each other in the radial direction, so that two annularly-shaped uneven surfaces (hereinafter referred to as “winding surface 51A”) are formed.
  • winding surface 61A two annular conductive surfaces 43 are adjacent to each other in the radial direction, so that two ring-shaped uneven surfaces (hereinafter “winding surface 61 ⁇ / b> A”) are formed.
  • the first winding part 51 and the second winding part 61 are laminated, so that one of the two winding surfaces 51A of the first winding part 51 and One of the two winding surfaces 61A of the two winding part 61 is opposed to each other.
  • the other of the two winding surfaces 51A is regarded as a virtual plane orthogonal to the center line C, and the virtual plane is referred to as a “first reference plane P1”.
  • the other of the two winding surfaces 61A is regarded as a virtual plane orthogonal to the center line C, and the virtual plane is referred to as a “second reference plane P2.”
  • a cross section of the secondary coil 41 that passes through the center line C and is orthogonal to the first reference plane P1 and the second reference plane P2 is referred to as a “reference cross section”.
  • the folded portion 46 is provided between the first reference plane P1 and the second reference plane P2 on the reference cross section. For this reason, the distance from the first reference plane P1 to the second reference plane P2 on the reference section is the thickness H of the secondary side coil 41 as a whole, that is, the laminated portion thickness H3.
  • the relationship of the double row conductive wires 43 in the first planar coil portion 50 is shown below.
  • the first conductive wire 43A is provided on the outermost side in the radial direction.
  • the second conductive wire 43B is adjacent to the first conductive wire 43A inward in the radial direction.
  • the third conductive wire 43C is adjacent to the second conductive wire 43B inward in the radial direction.
  • the fourth conductive line 43D is adjacent to the third conductive line 43C inward in the radial direction.
  • the relationship of the double row conductive wires 43 in the second planar coil portion 60 is shown below.
  • the first conductive wire 43A is provided on the innermost side in the radial direction.
  • the second conductive wire 43B is adjacent to the first conductive wire 43A on the outer side in the radial direction.
  • the third conductive wire 43C is adjacent to the second conductive wire 43B on the outer side in the radial direction.
  • the fourth conductive wire 43D is adjacent to the third conductive wire 43C on the outer side in the radial direction.
  • the extending direction of the double-row conductive wire 43 is referred to as “wiring direction”.
  • the direction from the first planar coil portion 50 to the second planar coil portion 60 in this wiring direction is referred to as a “first wiring direction”, and the direction from the second planar coil portion 60 to the first planar coil portion 50 in the wiring direction. Is the “second wiring direction”.
  • one side of the double-row conductive line 43 in the width direction with respect to the first wiring direction is referred to as a “first width side 43P”, and the other side of the double-row conductive line 43 in the width direction with respect to the first wiring direction. Is “second width side 43Q”.
  • the continuous portion 45 includes the folded portion 46 described above, the “first continuous portion 45A” as the portion closer to the first planar coil portion 50 than the folded portion 46, and the second planar coil portion 60 side relative to the folded portion 46. And “second continuous portion 45B” as a portion. That is, the folded portion 46 is provided between the first and second continuous portions 45A and 45B.
  • folding direction the direction in which the double-row conductive wire 43 is folded at the folded portion 46 is referred to as “folding direction”.
  • the folded portion of the first conductive line 43A is referred to as a “first folding point 46A”.
  • the folded portion of the second conductive line 43B is defined as a “second folding point 46B”.
  • the folded portion of the third conductive line 43C is referred to as a “third folding point 46C”.
  • the folded portion of the fourth conductive line 43D is referred to as a “fourth folding point 46D”.
  • the relationship between the turning points 46A to 46D is shown below.
  • the first turning point 46A is formed closest to the first wiring direction.
  • the second turning point 46B is formed closer to the second wiring direction than the first turning point 46A.
  • the third turning point 46C is formed closer to the second wiring direction than the second turning point 46B.
  • the fourth turning point 46D is formed closer to the second wiring direction than the third turning point 46C.
  • the formation positions of the folding points 46A to 46D proceed in the first wiring direction in order from the conductive line on the first width side 43P to the conductive line on the second width side 43Q.
  • the folding direction is set in a direction from the first wiring direction toward the second width side 43Q. That is, the wiring direction and the folding direction are different from each other.
  • the conductive lines 43A to 43D are laminated as follows.
  • the fourth conductive line 43D passes over the third conductive line 43C, the second conductive line 43B, and the first conductive line 43A on the second continuous portion 45B side from the fourth turning point 46D.
  • the third conductive line 43C passes over the second conductive line 43B and the first conductive line 43A on the second continuous portion 45B side from the third turning point 46C.
  • the second conductive line 43B passes over the first conductive line 43A on the second continuous portion 45B side with respect to the second turning point 46B.
  • the arrangement relationship of the conductive lines 43A to 43D in the first continuous portion 45A is shown below.
  • the first conductive wire 43A is provided on the outermost side in the radial direction.
  • the second conductive wire 43B is adjacent to the first conductive wire 43A inward in the radial direction.
  • the third conductive wire 43C is adjacent to the second conductive wire 43B inward in the radial direction.
  • the fourth conductive line 43D is adjacent to the third conductive line 43C inward in the radial direction.
  • the arrangement relationship of the conductive lines 43A to 43D in the second continuous portion 45B is shown below.
  • the first conductive wire 43A is provided on the innermost side in the radial direction.
  • the second conductive wire 43B is adjacent to the first conductive wire 43A on the outer side in the radial direction.
  • the third conductive wire 43C is adjacent to the second conductive wire 43B on the outer side in the radial direction.
  • the fourth conductive wire 43D is adjacent to the third conductive wire 43C on the outer side in the radial direction.
  • the configuration of the secondary coil 41 of the first embodiment will be described in a simplified manner as follows. That is, the number of conductive lines constituting the double-row conductive line 43 is changed from four to two. Further, the number of turns of the double row conductive wire 43 is changed from 2 turns to 1 turn.
  • the first planar coil portion is formed by the alternating magnetic flux from the primary coil 31 of FIG.
  • the induced current in the same direction flows through 50 and the second planar coil portion 60.
  • an induced current flows from the first planar coil portion 50 toward the second planar coil portion 60, as shown in FIG. 4B, the magnetic flux from the secondary coil 41 toward the primary coil 31 in FIG. MA and a magnetic flux MB that loops around the double row conductive wire 43 of the secondary coil 41 are formed.
  • the second planar coil portion 60 has a magnetic flux MA. And an induced current indicated by a broken line flows so as to prevent the change of the magnetic flux MB. That is, in the second planar coil portion 60, an induced current flows from the second outer peripheral end portion 63 toward the first outer peripheral end portion 53 of the first planar coil portion 50.
  • the flow of induced current flowing between the first and second planar coil portions 50 and 60 so as to prevent the change of the magnetic flux MA and the magnetic flux MB is shown below.
  • the boundary portion 43 ⁇ / b> X with the continuous portion 45 in the second conductive wire 43 ⁇ / b> B of the first planar coil portion 50 is the starting point of the current flow of the coil portion 50.
  • the boundary portion 43Y of the second conductive wire 43B of the second planar coil portion 60 and the continuous portion 45 is the starting point of the current flow of the coil portion 60.
  • an induced current flows as follows.
  • the second conductive line 43B flows counterclockwise from the boundary portion 43X.
  • the first outer peripheral end portion 53 flows from the second conductive line 43B to the first conductive line 43A.
  • the fold portion 46 tends to flow to the second planar coil portion 60.
  • the outer peripheral end of the first conductive wire 43A and the outer peripheral end of the second conductive wire 43B are connected to each other. For this reason, the induced current of the second conductive wire 43B flows through the first outer peripheral end portion 53 and flows to the first conductive wire 43A.
  • the direction of the magnetic flux of the inner peripheral side conductive line, that is, the second conductive line 43B, and the direction of the outer peripheral side conductive line, ie, the magnetic flux of the first conductive line 43A, are opposite to each other. Become. For this reason, the induced current of the second conductive line 43B flows counterclockwise, and the induced current of the first conductive line 43A flows clockwise.
  • an induced current flows as follows.
  • the first conductive line 43A flows in the counterclockwise direction toward the boundary portion 43Y.
  • the second outer peripheral end 63 flows from the second conductive line 43B to the first conductive line 43A.
  • It flows in the clockwise direction in the second conductive line 43B.
  • the folded portion 46 tends to flow to the first planar coil portion 50.
  • the outer peripheral end of the first conductive wire 43A and the outer peripheral end of the second conductive wire 43B are connected to each other. For this reason, the induced current of the second conductive wire 43B passes through the second outer peripheral end 63 and flows into the first conductive wire 43A.
  • the direction of the magnetic flux of the inner peripheral side conductive line, that is, the first conductive line 43A, and the direction of the outer peripheral side conductive line, that is, the magnetic flux of the second conductive line 43B are opposite to each other. Become. For this reason, the induced current of the first conductive line 43A flows counterclockwise, and the induced current of the second conductive line 43B flows clockwise.
  • the folded portion 46 is formed in the secondary coil 41, the radial position of the first conductive wire 43 ⁇ / b> A in the first planar coil portion 50 and the first conductive wire in the second planar coil portion 60.
  • the positions in the radial direction of 43A are different from each other.
  • the first conductive wire 43A is located on the outer peripheral side of the second conductive wire 43B, and in the second planar coil, the first conductive wire 43A is on the inner periphery of the second conductive wire 43B. Located on the side.
  • the comparison coil 41X has a configuration in which the folded portion 46 of the continuous portion 45 is omitted from the secondary side coil 41 of the first embodiment. Note that, in the following description of the comparison coil 41X, the same reference numerals are given to configurations that are common to the secondary coil 41 of the first embodiment.
  • an induced current flows as follows.
  • the second conductive line 43B flows in the counterclockwise direction from the boundary portion 43X.
  • the first outer peripheral end portion 53 flows from the second conductive line 43B to the first conductive line 43A.
  • It flows in the clockwise direction in the first conductive line 43A.
  • the continuous portion 45 flows to the boundary portion 43Y of the second planar coil portion 60.
  • an induced current flows as follows.
  • the first conductive line 43A flows in a clockwise direction from the boundary portion 43Y.
  • the second outer peripheral end 63 flows from the first conductive line 43A to the second conductive line 43B.
  • It flows in the counterclockwise direction on the second conductive line 43B.
  • the continuous portion 45 flows to the boundary portion 43X of the first planar coil portion 50.
  • an induced current flows again from the boundary portion 43X of the first planar coil portion 50 to the boundary portion 43X via the boundary portion 43Y of the second planar coil portion 60. That is, the induced current flows as a loop current in the comparison coil 41X.
  • the alternating magnetic flux from the primary side coil 31 of FIG. 1 is linked to the comparison coil 41X, so that, for example, the first planar coil portion 50 and the second planar coil portion 60 are guided in the direction of the arrow LX. Current flows.
  • the induced current (loop current) flowing in the first conductive wire 43A hinders the flow of the induced current based on the magnetic flux from the primary side coil 31.
  • the magnitude of the induced current generated based on the magnetic flux from the primary coil 31 is compared with a configuration in which a coil that does not generate a loop current or a coil that has a smaller loop current than the comparison coil 41X is used. Becomes smaller. Therefore, the amount of current taken out from the secondary coil 41 and supplied to the secondary battery 22 in FIG. 1 is reduced.
  • the contactless power supply device 1 of the first embodiment has the following advantages.
  • the folded portion 46 is formed in the continuous portion 45 of the secondary coil module 40. According to this configuration, the loop current generated in the first planar coil portion 50 and the second planar coil portion 60 can be reduced. Moreover, the fall of the transmission efficiency of the electric power between the primary side coil module 30 and the secondary side coil module 40 can be suppressed.
  • the continuous portion 45 is provided in the hollow portion 44 of the secondary coil 41. According to this configuration, since the folded portion 46 of the continuous portion 45 is not overlapped with the first winding portion 51 and the second winding portion 61, the continuous portion 45 has the first winding portion 51 and the second winding portion. Compared with the structure provided between the parts 61, the thickness of the secondary side coil 41 (secondary side coil module 40) becomes thin.
  • the secondary coil module 40 is provided with a magnetic body 42. According to this configuration, the leakage magnetic flux from the secondary coil module 40 can be reduced.
  • the first planar coil portion 50 and the second planar coil portion 60 are configured by one double row conductive wire 43. .
  • the 1st plane coil 80 and the 2nd plane coil 90 are each comprised by the separate double row conductive wire.
  • the secondary coil module 70 corresponds to a “power receiving coil module”.
  • the secondary coil module 70 of the second embodiment includes a secondary side that generates a current by interlinking with the magnetic flux generated in the primary coil 31 of FIG.
  • a coil 74 and a magnetic body 73 that suppresses leakage of magnetic flux from the secondary coil 74 are provided.
  • the “double row conductive wire” of the secondary coil 74 includes two double row conductive wires. That is, the secondary coil 74 is constituted by the first double-row conductive line 71 and the second double-row conductive line 72.
  • the first double-row conductive line 71 includes four thin conductive lines, that is, a first conductive line 71A, a second conductive line 71B, a third conductive line 71C, and a fourth conductive line 71D.
  • the conductive lines 71A to 71D are provided in parallel with each other. Each of the conductive lines 71A to 71D is covered with a covering. Adjacent ones of the conductive lines 71A to 71D are welded to each other.
  • the second double-row conductive line 72 includes four thin conductive lines, that is, a first conductive line 72A, a second conductive line 72B, a third conductive line 72C, and a fourth conductive line 72D.
  • the conductive lines 72A to 72D are provided in parallel with each other.
  • Each of the conductive lines 72A to 72D is covered with a covering. Adjacent ones of the conductive lines 72A to 72D are welded to each other.
  • Secondary coil 74 includes a first planar coil 80 formed by winding first double-row conductive wire 71 and a second planar coil 90 formed by winding second double-row conductive wire 72. .
  • the first planar coil 80 and the second planar coil 90 are laminated in the direction of the center line C of the secondary coil 74.
  • the first planar coil 80 is formed on a first winding portion 81 in which the first double-row conductive wire 71 is wound counterclockwise (counterclockwise), and on the inner peripheral side of the first winding portion 81. It includes a hollow portion 84, a first inner peripheral end portion 82 provided on the inner peripheral side of the first winding portion 81, and a first outer peripheral end portion 83 provided on the outer peripheral side of the first winding portion 81. .
  • the first inner peripheral end portion 82 corresponds to the inner peripheral end portion of the first planar coil 80
  • the first outer peripheral end portion 88 corresponds to the outer peripheral end portion of the first planar coil 80.
  • the second planar coil 90 includes a second winding portion 91 formed by winding the second double-row conductive wire 72 clockwise (clockwise), and a hollow formed on the inner peripheral side of the second winding portion 91.
  • the portion 94 includes a second inner peripheral end portion 92 provided on the inner peripheral side of the second winding portion 91, and a second outer peripheral end portion 93 provided on the outer peripheral side of the second winding portion 91.
  • the second inner peripheral end 92 corresponds to the inner peripheral end of the second planar coil 90
  • the second outer peripheral end 93 corresponds to the outer peripheral end of the second planar coil 90.
  • the first inner peripheral end portion 82 and the second inner peripheral end portion 92 are connected to each other by solder 78.
  • the secondary coil 74 is divided into a first winding portion 81 and a second winding portion 91 and a continuous portion 76 that connects the first and second winding portions 81 and 91 to each other.
  • the continuous portion 76 includes a first inner peripheral end portion 82 and a second inner peripheral end portion 92.
  • the continuous portion 76 is formed with a folded portion 77 in which the first double-row conductive line 71 is folded.
  • the continuous portion 76 is formed in the hollow portion 75 of the secondary coil 74 constituted by the hollow portion 84 of the first planar coil 80 and the hollow portion 94 of the second planar coil 90. Is provided.
  • the secondary coil 74 the first planar coil 80 and the second planar coil 90 that are separately formed are stacked, and the winding direction of the first double-row conductive wire 71 of the first planar coil 80 is
  • the winding direction of the second double-row conductive wire 72 of the second planar coil 90 is set in a direction opposite to each other. Therefore, as in the first embodiment, the secondary coil 74 of the second embodiment is also configured as a coil having an alpha winding structure.
  • the dimension of the coil 74 in the direction along the center line C of the secondary coil 74 is “thickness H”
  • the thickness H of the first winding portion 81 is “first thickness H1”
  • the thickness H of the second winding portion 91 is defined as “second thickness H2”.
  • the thickness H of the portion where the first winding portion 81 and the second winding portion 91 are laminated is referred to as “lamination portion thickness H3”.
  • the thickness H of the folded portion 77 is defined as “folded thickness H4”.
  • each thickness H is shown below.
  • the first thickness H1 is equal to the diameter of the first double-row conductive line 71.
  • the second thickness H2 is equal to the diameter of the second double-row conductive line 72.
  • the laminated portion thickness H3 is equal to the total thickness of the first thickness H1 and the second thickness H2.
  • the folded thickness H4 is equal to the combined thickness of the first thickness H1 and the second thickness H2.
  • the first double-row conductive wires 71 are adjacent to each other in the radial direction, so that two ring-shaped uneven surfaces (hereinafter referred to as “winding surface 81A”) are formed.
  • the second double-row conductive wires 72 are adjacent to each other in the radial direction, thereby forming two ring-shaped uneven surfaces (hereinafter referred to as “winding surface 91A”). .
  • the first winding portion 81 and the second winding portion 91 are laminated, so that one of the two winding surfaces 81A of the first winding portion 81 and One of the two winding surfaces 91 ⁇ / b> A of the two winding portions 91 faces each other.
  • the other of the two winding surfaces 81A is regarded as a virtual plane orthogonal to the center line C, and the virtual plane is referred to as a “first reference plane P1”.
  • the other of the two winding surfaces 91A is regarded as a virtual plane orthogonal to the center line C, and the virtual plane is referred to as a “second reference plane P2.”
  • a section of the secondary coil 74 that passes through the center line C and is orthogonal to the first reference plane P1 and the second reference plane P2 is referred to as a “reference section”.
  • the folded portion 77 is provided between the first reference plane P1 and the second reference plane P2 on the reference cross section. For this reason, the distance from the first reference plane P1 to the second reference plane P2 on the reference cross section becomes the thickness H as the entire secondary coil 74, that is, the laminated portion thickness H3.
  • the relationship between the conductive wires 71A to 71D in the first planar coil 80 is shown below.
  • the first conductive wire 71A is provided on the outermost side in the radial direction.
  • the second conductive line 71B is adjacent to the first conductive line 71A inward in the radial direction.
  • the third conductive line 71C is adjacent to the second conductive line 71B inward in the radial direction.
  • the fourth conductive wire 71D is adjacent to the third conductive wire 71C inward in the radial direction.
  • the relationship between the conductive lines 72A to 72D in the second planar coil 90 is shown below.
  • the first conductive wire 72A is provided on the outermost side in the radial direction.
  • the second conductive line 72B is adjacent to the first conductive line 72A inward in the radial direction.
  • the third conductive line 72C is adjacent to the second conductive line 72B inward in the radial direction.
  • the fourth conductive line 72D is adjacent to the third conductive line 72C inward in the radial direction.
  • the direction in which the first double-row conductive line 71 extends in the plan view of the continuous portion 76 is referred to as a “wiring direction”.
  • the direction from the first planar coil 80 to the second planar coil 90 in this wiring direction is referred to as a “first wiring direction”, and the direction from the second planar coil 90 to the first planar coil 80 in the wiring direction is referred to as “second wiring direction”.
  • one side of the first double-row conductive line 71 in the width direction with respect to the first wiring direction is referred to as a “first width side 71P”, and in the width direction of the first double-row conductive line 71, with respect to the first wiring direction.
  • the other side is referred to as a “second width side 71Q”.
  • the continuous portion 76 includes the folded portion 77 described above, the “first continuous portion 76A” as the portion closer to the first planar coil 80 than the folded portion 77, and the portion closer to the second planar coil 90 than the folded portion 77. "Second continuous portion 76B”. That is, the folded portion 77 is provided between the first and second continuous portions 76A and 76B.
  • first folding point 77A The folded portion of the first conductive wire 71A is referred to as a “first folding point 77A”.
  • second folding point 77B The folded portion of the second conductive line 71B is referred to as a “second folding point 77B”.
  • third folding point 77C The folded portion of the third conductive line 71C is referred to as a “third folding point 77C”.
  • fourth conductive line 71D is referred to as a “fourth folding point 77D”.
  • the relationship between the turning points 77A to 77D is shown below.
  • the first turning point 77A is formed on the side closest to the first wiring direction.
  • the second turning point 77B is formed closer to the second wiring direction than the first turning point 77A.
  • the third turning point 77C is formed closer to the second wiring direction than the second turning point 77B.
  • the fourth turning point 77D is formed closer to the second wiring direction than the third turning point 77C.
  • the formation positions of the turning points 77A to 77D proceed in the first wiring direction in order from the conductive line on the first width side 71P to the conductive line on the second width side 71Q.
  • the folding direction is set to a direction from the first wiring direction toward the second width side 71Q. That is, the wiring direction and the folding direction are different from each other.
  • the conductive lines 71A to 71D are laminated as follows.
  • the fourth conductive line 71D passes over the third conductive line 71C, the second conductive line 71B, and the first conductive line 71A on the second continuous portion 76B side from the fourth turning point 77D.
  • the third conductive line 71C passes over the second conductive line 71B and the first conductive line 71A on the second continuous portion 76B side from the third turning point 77C.
  • the second conductive line 71B passes over the first conductive line 71A on the second continuous portion 76B side from the second turning point 77B.
  • the arrangement relationship of the first double-row conductive lines 71 in the first continuous portion 76A is shown below.
  • the first conductive wire 71A is provided on the outermost side in the radial direction.
  • the second conductive line 71B is adjacent to the first conductive line 71A inward in the radial direction.
  • the third conductive line 71C is adjacent to the second conductive line 71B inward in the radial direction.
  • the fourth conductive wire 71D is adjacent to the third conductive wire 71C inward in the radial direction.
  • the arrangement relationship of the first double-row conductive lines 71 in the second continuous portion 76B is shown below.
  • the first conductive wire 71A is provided at the innermost position in the radial direction.
  • the second conductive wire 71B is adjacent to the first conductive wire 71A on the outer side in the radial direction.
  • the third conductive wire 71C is adjacent to the second conductive wire 71B on the outer side in the radial direction.
  • the fourth conductive line 71D is adjacent to the third conductive line 71C on the outer side in the radial direction.
  • the connection relationship between the first double-row conductive line 71 and the second double-row conductive line 72 is shown below.
  • the first conductive line 71A and the fourth conductive line 72D are connected to each other.
  • the second conductive line 71B and the third conductive line 72C are connected to each other.
  • the third conductive line 71C and the second conductive line 72B are connected to each other.
  • the fourth conductive line 71D and the first conductive line 72A are connected to each other.
  • the non-contact power feeding device 1 of the second embodiment has the following advantage (4) in addition to the advantages according to the advantages (1) to (3) of the first embodiment.
  • the first planar coil 80 and the second planar coil 90 are configured by separate double-row conductive wires 71 and 72. According to this configuration, a flyer type winding machine can be used as an apparatus for manufacturing the planar coils 80 and 90. Therefore, it is possible to manufacture the secondary coil module 70 having the alpha winding structure without using a winding machine dedicated to alpha winding.
  • the embodiment of the present invention is not limited to the contents of the first and second embodiments, and can be modified as follows, for example. Further, the following modifications are not applied only to the corresponding embodiments, and different modifications can be combined with each other.
  • one folded portion 46 is formed in the continuous portion 45, but a plurality of folded portions 46 may be provided in the continuous portion 45.
  • the double-row conductive wire 43 constituted by four conductive wires is used, but the double row constituted by two, three, or five or more conductive wires Conductive wires can also be used.
  • the continuous portion 45 is provided at the first inner peripheral end portion 52 of the first planar coil portion 50 and the second inner peripheral end portion 62 of the second planar coil portion 60.
  • the continuous portion 45 may be provided at the first outer peripheral end portion 53 of the first planar coil portion 50 and the second outer peripheral end portion 63 of the second planar coil portion 60.
  • the folded portion 46 is formed toward the first width side 43P with respect to the second wiring direction, but is directed toward the second width side 43Q with respect to the second wiring direction.
  • the folded portion 46 can be formed.
  • the first planar coil portion 50 is configured as a left-handed portion and the second planar coil portion 60 is configured as a right-handed portion.
  • the winding directions of 50 and 60 can also be changed to opposite directions.
  • one folded portion 77 is formed in the continuous portion 76, but a plurality of folded portions 77 may be provided in the continuous portion 76.
  • the first double-row conductive line 71 composed of four conductive lines is used, but instead of the double-row conductive line 71, two, three, Alternatively, a double-row conductive line composed of five or more conductive lines can be used. The same change can be applied to the second double-row conductive line 72.
  • the continuous portion 76 is formed by connecting the first inner peripheral end portion 82 of the first planar coil 80 and the second inner peripheral end portion 92 of the second planar coil 90 with the solder 78.
  • the continuous portion 76 can be formed by connecting the first outer peripheral end portion 83 of the first planar coil 80 and the second outer peripheral end portion 93 of the second planar coil 90 with solder 78.
  • the folded portion 77 is formed toward the first width side 71P with respect to the second wiring direction, but is directed toward the second width side 71Q with respect to the second wiring direction.
  • the folded portion 77 can be formed.
  • the folded portion 77 is provided at the first inner peripheral end 82 of the first planar coil 80, but the folded portion 77 is folded at the second inner circumferential end 92 of the second planar coil 90.
  • a portion 77 can also be provided.
  • the folded portion 77 can be provided at the second inner peripheral end portion 92.
  • a left-handed coil is used as the first planar coil 80, and a right-handed coil is used as the second planar coil 90. It is also possible to change the winding direction of each to the opposite direction.
  • first inner peripheral end 82 of the first planar coil 80 and the second inner peripheral end 92 of the second planar coil 90 are connected by soldering, but FIG. It is also possible to connect the first inner peripheral end portion 82 and the second inner peripheral end portion 92 by the coil connecting member 100 shown in a) and (b).
  • the coil connection member 100 includes four conductive cables, that is, a first cable 110, a second cable 120, a third cable 130, and a fourth cable 140.
  • a copper wire 101 is wired in each of the cables 110-140.
  • a flexible circuit board is used as the coil connection member 100.
  • a flexible flat cable may be used instead of the flexible circuit board.
  • the coil connection member 100 includes a folded portion 150, and includes a first inner peripheral end portion 82 of the first planar coil 80 and a second inner peripheral end portion 92 of the second planar coil 90. These are connected by soldering.
  • the connection relationship between the coil connection member 100 and the first planar coil 80 is shown below.
  • the first conductive wire 71 ⁇ / b> A is connected to the first end 110 ⁇ / b> A of the first cable 110.
  • the second conductive wire 71B is connected to the first end 120A of the second cable 120.
  • the third conductive wire 71 ⁇ / b> C is connected to the first end portion 130 ⁇ / b> A of the third cable 130.
  • the fourth conductive line 71 ⁇ / b> D is connected to the first end 140 ⁇ / b> A of the fourth cable 140.
  • the connection relationship between the coil connection member 100 and the second planar coil 90 is shown below.
  • the fourth conductive line 72 ⁇ / b> D is connected to the second end 110 ⁇ / b> B of the first cable 110.
  • the third conductive wire 72 ⁇ / b> C is connected to the second end 120 ⁇ / b> B of the second cable 120.
  • the second conductive wire 72 ⁇ / b> B is connected to the second end 130 ⁇ / b> B of the third cable 130.
  • the first conductive line 72 ⁇ / b> A is connected to the second end 140 ⁇ / b> B of the fourth cable 140.
  • the folded portion of the first cable 110 is defined as “first folding point 150A”.
  • the folded portion of the second cable 120 is referred to as a “second folding point 150B”.
  • the folded portion of the third cable 130 is defined as a “third folding point 150C”.
  • the folded portion of the fourth cable 140 is referred to as a “fourth folding point 150D”.
  • one side with respect to the first wiring direction is defined as “first width side 100 ⁇ / b> P”
  • the other side with respect to the first wiring direction in the width direction of the coil connection member 100 is defined as “ The second width side 100Q ”.
  • the relationship between the turning points 150A to 150D is shown below.
  • the first turning point 150A is located closest to the first wiring direction.
  • the second turning point 150B is located closer to the first wiring direction than the first turning point 150A.
  • the third turning point 150C is located closer to the first wiring direction than the second turning point 150B.
  • the fourth turning point 150D is located closer to the first wiring direction than the third turning point 150C.
  • the formation positions of the turning points 150A to 150D progress in the first wiring direction in order from the conductive line on the second width side 100Q to the conductive line on the first width side 100P.
  • the folding direction is set to a direction from the first wiring direction toward the first width side 100P. That is, the wiring direction and the folding direction are different from each other.
  • each cable is laminated as follows.
  • the first cable 110 passes over the second cable 120, the third cable 130, and the fourth cable 140 on the second planar coil 90 side from the first turning point 150 ⁇ / b> A.
  • the second cable 120 passes over the third cable 130 and the fourth cable 140 on the second planar coil 90 side from the second turning point 150B.
  • the third cable 130 passes over the fourth cable 140 on the second planar coil 90 side with respect to the third turning point 150C.
  • the coil connecting member 100 causes the first inner peripheral end portion 82 of the first planar coil 80 and the second inner peripheral end portion 92 of the second planar coil 90 to be Are connected to each other, but the first outer peripheral end 83 and the second outer peripheral end 93 can also be connected to each other by the coil connecting member 100.
  • litz wires are used as the double row conductive wires 43, the first double row conductive wires 71, and the second double row conductive wires 72. It can replace with this and can also use the conductive wire comprised with the coating body which coat
  • the double-row conductive wire 43, the first double-row conductive wire 71, and the second double-row conductive wire 72 are conductive wires having a round cross section.
  • a conductive wire having a rectangular cross section may be used.
  • FIG. 1 Although the flat thing is used as the magnetic bodies 42 and 73 of the secondary side coil modules 40 and 70, the magnetic body 32 of the primary side coil module 30 is used. It is also possible to use a magnetic body having the same shape as the above.
  • the structure which receives the electric power and signal which were transmitted from the primary side coil module 30 by the secondary side coil module 40 (70) is used. It can also be changed as follows. That is, a first secondary coil module 40 (70) for receiving electric power and a second secondary coil module 40 (70) for receiving signals can be provided. In this case, in the power transmission device 10, the first and second primary coil modules 30 corresponding to the first and second secondary coil modules 40 (70), respectively, are provided.
  • At least one of a smartphone, a portable information terminal, a portable audio player, an IC recorder, a digital camera, an electric toothbrush, and a shaver can be used as the power receiving device 20.
  • the size of the power transmission device 10 is changed to a size corresponding to these power reception devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

This coil module (40) contains: a first planar coil section (50) formed by winding a multiple conductor wire (43) clockwise; a second planar coil section (60) layered on the first planar coil section (50) and formed by winding the multiple conductor wire (43) counterclockwise; and a continuation section (45) that causes the first planar coil section (50) and the second planar coil section (60) to be continuous with each other. The continuation section (45) is provided with a fold-back section (46) formed by folding back the multiple conductor wire (43). The fold-back section (46) is formed at the continuation section (45) in a manner so that the thickness of the continuation section (45) is the same as the thickness of the layered section of the first and second planar coil sections.

Description

コイルモジュール、およびこれを備える非接触式給電装置の受電装置、およびこれを備える非接触式給電装置Coil module, power receiving device of non-contact power supply device including the same, and non-contact power supply device including the same
 本発明は、コイルモジュール、およびこれを備える非接触式給電装置の受電装置、およびこれを備える非接触式給電装置に関する。 The present invention relates to a coil module, a power receiving device of a non-contact power feeding device including the same, and a non-contact power feeding device including the power receiving device.
 従来、非接触式給電装置に備えられるコイルモジュールの一つとして、特許文献1に記載のものが知られている。同文献に記載のコイルモジュールは、並行する複数の導電線よりなる複列導電線を用いている。このコイルモジュールは、複列導電線が一方向に巻き回された第1平面コイル部分と、複列導電線が一方向とは反対の方向に巻き回された第2平面コイル部分とを含んでいる。第1平面コイル部分と第2平面コイル部分とは積層され、連続部分において連続している。 Conventionally, the thing of patent document 1 is known as one of the coil modules with which a non-contact-type electric power feeder is equipped. The coil module described in this document uses a double-row conductive wire composed of a plurality of parallel conductive wires. The coil module includes a first planar coil portion in which a double-row conductive wire is wound in one direction, and a second planar coil portion in which the double-row conductive wire is wound in a direction opposite to the one direction. Yes. The first planar coil portion and the second planar coil portion are stacked and are continuous at the continuous portion.
 特許文献1に記載のコイルモジュールにおいては、連続部分は、第1平面コイル部分と第2平面コイル部分とが互いに対向する部分に設けられている。また、ループ電流が低減されるように連続部分が折り曲げられている。 In the coil module described in Patent Document 1, the continuous portion is provided in a portion where the first planar coil portion and the second planar coil portion face each other. Further, the continuous portion is bent so that the loop current is reduced.
特開2010―16235号公報JP 2010-16235 A
 コイルモジュールにおいては、電力電送効率を高めるために、ループ電流の低減が求められている。また、上記コイルモジュールにおいては、第1平面コイル部分の厚さと第2平面コイル部分の厚さと連続部分の厚さとを合わせたものがコイルモジュールの厚さとなる。このため、例えば個別に形成された2つの平面コイルを積層したコイルモジュールと比較して厚さが大きくなる。 Coil modules are required to reduce loop current in order to increase power transmission efficiency. In the coil module, the thickness of the first planar coil portion, the thickness of the second planar coil portion, and the thickness of the continuous portion is the thickness of the coil module. For this reason, thickness becomes large compared with the coil module which laminated | stacked the two planar coils formed separately, for example.
 本発明は上記課題を解決するためになされたものであり、その目的は、ループ電流を低減することのできるコイルモジュールを提供することにある。また、さらなる目的は、ループ電流の低減を図りつつ、コイルモジュールの厚さが大きくなることを抑制することが可能なコイルモジュールを提供することにある。さらに、本発明は、そのようなコイルモジュールを備える非接触式給電装置の受電装置、およびそのようなコイルモジュールを備える非接触式給電装置を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a coil module capable of reducing a loop current. A further object is to provide a coil module that can suppress an increase in the thickness of the coil module while reducing the loop current. Furthermore, this invention is providing the power receiving apparatus of the non-contact-type electric power feeder provided with such a coil module, and the non-contact-type electric power feeder provided with such a coil module.
 本発明の一態様は、並行する複数の導電線よりなる複列導電線を備えたコイルモジュールである。コイルモジュールは、前記複列導電線を一方向に巻回してなる第1平面コイル部分と、前記第1平面コイル部分に積層され、前記複列導電線を前記一方向とは反対の方向に巻回してなる第2平面コイル部分と、前記第1及び第2平面コイル部分の内周側または外周側に設けられ、前記第1平面コイル部分と前記第2平面コイル部分とを連続させる連続部分と、前記連続部分に設けられ、前記複列導電線を折り返してなる折返部分とを備え、前記連続部分の平面視において、前記複列導電線の延びる方向を「配線方向」とし、前記配線方向において前記第1平面コイル部分から前記第2平面コイル部分に向かう方向を「第1配線方向」とし、前記配線方向において前記第2平面コイル部分から前記第1平面コイル部分に向かう方向を「第2配線方向」とし、前記第1配線方向に対して前記複列導電線の幅方向における一方の側を「第1幅側」とし、前記第1配線方向に対して前記複列導電線の幅方向における他方の側を「第2幅側」とし、前記折返部分において前記複列導電線を折り返す方向を「折返方向」として、前記配線方向と前記折返方向とが互いに異なる方向であり、前記折返方向が前記第1配線方向から前記第2幅側に向かう方向であり、前記折返部分において前記複数の導電線が前記配線方向の互いに異なる位置で折り返されており、前記折返部分において前記複数の導電線の各々が折り返されている部分を「折返点」として、前記複数の導電線の各々の折返点が、前記第1幅側の導電線から前記第2幅側の導電線の順に前記第1配線方向に沿って位置する。 One embodiment of the present invention is a coil module including a double-row conductive wire including a plurality of parallel conductive wires. The coil module includes a first planar coil portion formed by winding the double-row conductive wire in one direction, and is laminated on the first planar coil portion, and the double-row conductive wire is wound in a direction opposite to the one direction. A second planar coil portion that is rotated, and a continuous portion that is provided on the inner peripheral side or the outer peripheral side of the first and second planar coil portions and that connects the first planar coil portion and the second planar coil portion. And a folded portion formed by folding the double-row conductive line, and in the plan view of the continuous portion, the extending direction of the double-row conductive line is defined as a “wiring direction”, and in the wiring direction, The direction from the first planar coil portion toward the second planar coil portion is defined as “first wiring direction”, and the direction from the second planar coil portion toward the first planar coil portion in the wiring direction is defined as “second wiring. ”, One side in the width direction of the double-row conductive line with respect to the first wiring direction as“ first width side ”, and one side in the width direction of the double-row conductive line with respect to the first wiring direction. The other side is the “second width side”, the direction in which the double row conductive lines are folded at the folded portion is the “folded direction”, and the wiring direction and the folded direction are different from each other, and the folded direction is A direction from the first wiring direction toward the second width side, wherein the plurality of conductive lines are folded at different positions in the wiring direction in the folded portion, and the plurality of conductive lines are folded at the folded portion. Each folded point is defined as a “folding point”, and each folding point of the plurality of conductive lines is arranged in the first wiring direction in the order of the first width side conductive line to the second width side conductive line. Located along.
 本発明の他の態様は、並行する複数の導電線よりなる複列導電線を備えたコイルモジュールである。コイルモジュールは、前記複列導電線を一方向に巻回してなる第1平面コイル部分と、前記第1平面コイル部分に積層され、前記複列導電線を前記一方向とは反対の方向に巻回してなる第2平面コイル部分と、前記第1及び第2平面コイル部分の内周側または外周側に設けられ、前記第1平面コイル部分と前記第2平面コイル部分とを連続させる連続部分と、前記連続部分に設けられ、前記複列導電線を折り返してなる折返部分と、を備え、前記第1平面コイル部分および前記第2平面コイル部分が積層された部分の厚さを「積層部分厚さ」として、前記連続部分の厚さが前記積層部分厚さと同じ大きさとなるように前記連続部分において前記折返部分が形成されている。 Another aspect of the present invention is a coil module including a double-row conductive line including a plurality of parallel conductive lines. The coil module includes a first planar coil portion formed by winding the double-row conductive wire in one direction, and is laminated on the first planar coil portion, and the double-row conductive wire is wound in a direction opposite to the one direction. A second planar coil portion that is rotated, and a continuous portion that is provided on the inner peripheral side or the outer peripheral side of the first and second planar coil portions and that connects the first planar coil portion and the second planar coil portion. A folded portion formed by folding the double-row conductive wire, and the thickness of the portion where the first planar coil portion and the second planar coil portion are laminated is expressed as “stacked portion thickness”. The folded portion is formed in the continuous portion so that the thickness of the continuous portion is the same as the thickness of the laminated portion.
本発明の第1実施形態の非接触式給電装置の構造を示す断面図。Sectional drawing which shows the structure of the non-contact-type electric power feeder of 1st Embodiment of this invention. 図2(a)は第1実施形態の2次側コイルモジュールの構造を示す斜視図、図2(b)は図2(a)の2次側コイルモジュールの側面図、図2(c)は第1実施形態の2次側コイルの構造を示す平面図、図2(d)は図2(c)の2次側コイルのXA-XA線に沿う断面図。2A is a perspective view showing the structure of the secondary coil module of the first embodiment, FIG. 2B is a side view of the secondary coil module of FIG. 2A, and FIG. The top view which shows the structure of the secondary side coil of 1st Embodiment, FIG.2 (d) is sectional drawing which follows the XA-XA line | wire of the secondary side coil of FIG.2 (c). 第1実施形態の2次側コイルモジュールの連続部分の構造を示す斜視図。The perspective view which shows the structure of the continuous part of the secondary side coil module of 1st Embodiment. 図4(a)は第1実施形態の2次側コイルモジュールをモデル化した模式図、図4(b)は図4(a)の2次側コイルモジュールのXB-XB線に沿う断面図。FIG. 4A is a schematic diagram modeling the secondary coil module of the first embodiment, and FIG. 4B is a cross-sectional view of the secondary coil module of FIG. 4A taken along line XB-XB. 比較例の2次側コイルモジュールをモデル化した模式図。The schematic diagram which modeled the secondary side coil module of the comparative example. 図6(a)は本発明の第2実施形態の非接触式給電装置に設けられた2次側コイルモジュールの構造を示す斜視図、図6(b)は図6(a)の2次側コイルモジュールの側面図、図6(c)は第2実施形態の2次側コイルの構造を示す平面図、図6(d)は図6(c)の2次側コイルのXC-XC線に沿う断面図。FIG. 6A is a perspective view showing the structure of the secondary coil module provided in the non-contact power feeding device according to the second embodiment of the present invention, and FIG. 6B is the secondary side of FIG. 6C is a side view of the coil module, FIG. 6C is a plan view showing the structure of the secondary coil of the second embodiment, and FIG. 6D is an XC-XC line of the secondary coil of FIG. 6C. FIG. 第2実施形態の2次側コイルモジュールの連続部分の構造を示す斜視図。The perspective view which shows the structure of the continuous part of the secondary side coil module of 2nd Embodiment. 図8(a)は他の接続部材の構造を示す斜視図、図8(b)は2次側コイルモジュールの連続部分と図8(a)の接続部材との接続構造を示す斜視図。FIG. 8A is a perspective view showing the structure of another connection member, and FIG. 8B is a perspective view showing the connection structure between the continuous portion of the secondary coil module and the connection member of FIG.
 (第1実施形態)
 図1~図5を参照して、本発明の第1実施形態について説明する。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS.
 図1に示されるように、非接触式給電装置1は、2次電池22を有する受電装置20と、受電装置20に電力を電送する送電装置10とを備える。第1実施形態では、受電装置20は携帯電話として設けられている。 As shown in FIG. 1, the contactless power supply device 1 includes a power receiving device 20 having a secondary battery 22 and a power transmitting device 10 that transmits power to the power receiving device 20. In the first embodiment, the power receiving device 20 is provided as a mobile phone.
 送電装置10は、受電装置20に電力および信号を伝送する1次側コイルモジュール30と、1次側コイルモジュール30をはじめとする各種の構成要素を収容するハウジング11とを備える。ハウジング11には、受電装置20を載せるための搭載面11Aが形成されている。 The power transmission device 10 includes a primary coil module 30 that transmits power and signals to the power receiving device 20 and a housing 11 that houses various components including the primary coil module 30. A mounting surface 11 </ b> A for mounting the power receiving device 20 is formed on the housing 11.
 1次側コイルモジュール30は、電力が供給されることにより磁束を発生する1次側コイル31と、1次側コイル31からの磁束の漏れを抑制する磁性体32とを備える。 The primary side coil module 30 includes a primary side coil 31 that generates a magnetic flux when electric power is supplied, and a magnetic body 32 that suppresses leakage of magnetic flux from the primary side coil 31.
 1次側コイル31としては、平面方向に導電線が巻き回された平面コイルが用いられている。導電線としては、複数の銅線により構成される銅線の束と、この銅線の束の外周を被覆する絶縁体とにより構成されたリッツ線が用いられている。 As the primary coil 31, a planar coil in which a conductive wire is wound in the planar direction is used. As the conductive wire, a litz wire constituted by a bundle of copper wires constituted by a plurality of copper wires and an insulator covering the outer periphery of the bundle of copper wires is used.
 磁性体32としては、アモルファス材料により形成された円筒形状のものが用いられている。磁性体32には、1次側コイル31の底面に対向する底壁部分と、1次側コイル31の外周を取り囲む周壁部分とが設けられている。 As the magnetic body 32, a cylindrical body made of an amorphous material is used. The magnetic body 32 is provided with a bottom wall portion facing the bottom surface of the primary side coil 31 and a peripheral wall portion surrounding the outer periphery of the primary side coil 31.
 受電装置20は、送電装置10から伝送される電力および信号を受ける2次側コイルモジュール40と、2次側コイルモジュール40および2次電池22をはじめとする各種の構成要素を収容するハウジング21とを備える。なお、2次側コイルモジュール40は「受電コイルモジュール」に相当する。 The power receiving device 20 includes a secondary coil module 40 that receives power and signals transmitted from the power transmitting device 10, and a housing 21 that houses various components including the secondary coil module 40 and the secondary battery 22. Is provided. The secondary coil module 40 corresponds to a “power receiving coil module”.
 2次側コイルモジュール40は、1次側コイル31で発生した磁束と鎖交することにより電流を発生する2次側コイル41と、2次側コイル41からの磁束の漏れを抑制する磁性体42とを備える。 The secondary coil module 40 includes a secondary coil 41 that generates a current by interlinking with the magnetic flux generated in the primary coil 31, and a magnetic body 42 that suppresses leakage of magnetic flux from the secondary coil 41. With.
 2次側コイル41としては、平面方向に導電線が巻き回された平面コイルが用いられている。導電線としては、複数の銅線により構成される銅線の束と、この銅線の束の外周を被覆する絶縁体とにより構成されたリッツ線が用いられている。 As the secondary coil 41, a planar coil in which a conductive wire is wound in the planar direction is used. As the conductive wire, a litz wire constituted by a bundle of copper wires constituted by a plurality of copper wires and an insulator covering the outer periphery of the bundle of copper wires is used.
 磁性体42としては、アモルファス材料により形成されたシート状のものが用いられている。磁性体42には、2次側コイル41の底面(図1では上面)が接触する接触面が設けられている。磁性体42の外径は、2次側コイル41の外径よりも大きく設定されている。 As the magnetic body 42, a sheet-like material formed of an amorphous material is used. The magnetic body 42 is provided with a contact surface with which the bottom surface (upper surface in FIG. 1) of the secondary coil 41 contacts. The outer diameter of the magnetic body 42 is set larger than the outer diameter of the secondary coil 41.
 非接触式給電装置1の給電動作について説明する。 The power feeding operation of the non-contact power feeding device 1 will be described.
 受電装置20が送電装置10の搭載面11Aに搭載されているとき、送電装置10の1次側コイルモジュール30と受電装置20の2次側コイルモジュール40とが互いに対向する。この状態において、1次側コイル31に交流電流が供給されることにより、1次側コイル31に高周波の交番磁束が発生する。そして、この交番磁束が2次側コイル41に鎖交することにより2次側コイル41において交番電力が発生する。この交番電力は、整流回路(図示略)により平滑化および整流されて2次電池22に供給される。 When the power receiving device 20 is mounted on the mounting surface 11A of the power transmission device 10, the primary coil module 30 of the power transmission device 10 and the secondary coil module 40 of the power reception device 20 face each other. In this state, when an alternating current is supplied to the primary side coil 31, a high-frequency alternating magnetic flux is generated in the primary side coil 31. The alternating magnetic flux is linked to the secondary coil 41 to generate alternating power in the secondary coil 41. The alternating power is smoothed and rectified by a rectifier circuit (not shown) and supplied to the secondary battery 22.
 図2(a)~(d)を参照して、2次側コイルモジュール40の詳細な構成について説明する。以下では、2次側コイルモジュール40の中心線Cに直交する方向を「径方向」とする。また、2次側コイルモジュール40の径方向において中心線Cに向かう方向を「内方」とし、径方向において中心線Cから離れる方向を「外方」とする。 A detailed configuration of the secondary coil module 40 will be described with reference to FIGS. 2 (a) to 2 (d). Hereinafter, a direction orthogonal to the center line C of the secondary coil module 40 is referred to as a “radial direction”. The direction toward the center line C in the radial direction of the secondary coil module 40 is “inward”, and the direction away from the center line C in the radial direction is “outward”.
 図2(a)に示されるように、2次側コイル41は1本の複列導電線43により構成されている。この複列導電線43は、4本の細い導電線、すなわち第1導電線43A、第2導電線43B、第3導電線43C、および第4導電線43Dにより構成されている。導電線43A~43Dは、互いに並行して設けられている。各導電線43A~43Dは、被覆体によって被覆されている。導電線43A~43Dのうちの隣り合うもの同士においては、被覆体が互いに溶着されている。 As shown in FIG. 2A, the secondary coil 41 is composed of a single double-row conductive wire 43. The double-row conductive line 43 includes four thin conductive lines, that is, a first conductive line 43A, a second conductive line 43B, a third conductive line 43C, and a fourth conductive line 43D. The conductive lines 43A to 43D are provided in parallel with each other. Each of the conductive lines 43A to 43D is covered with a covering. Adjacent ones of the conductive wires 43A to 43D are welded to each other.
 2次側コイル41は、複列導電線43の一部を巻き回して形成された第1平面コイル部分50と、複列導電線43の他部を巻き回して形成された第2平面コイル部分60とを含む。第1平面コイル部分50および第2平面コイル部分60は、2次側コイル41の中心線Cの方向において積層されている。 The secondary coil 41 includes a first planar coil portion 50 formed by winding a part of the double row conductive wire 43 and a second planar coil portion formed by winding the other portion of the double row conductive wire 43. 60. The first planar coil portion 50 and the second planar coil portion 60 are stacked in the direction of the center line C of the secondary coil 41.
 第1平面コイル部分50は、複列導電線43が左回り(反時計回り)に巻き回されてなる第1巻回部分51と、第1巻回部分51の内周側に形成された中空部分54と、第1巻回部分51の内周側に設けられた第1内周端部52と、第1巻回部分51の外周側に設けられた第1外周端部53とを含む。第1内周端部52は第1平面コイル部分50の内周端部に相当し、第1外周端部53は第1平面コイル部分50の外周端部に相当する。 The first planar coil portion 50 includes a first winding portion 51 formed by winding the double-row conductive wires 43 counterclockwise (counterclockwise), and a hollow formed on the inner peripheral side of the first winding portion 51. A portion 54, a first inner peripheral end portion 52 provided on the inner peripheral side of the first winding portion 51, and a first outer peripheral end portion 53 provided on the outer peripheral side of the first winding portion 51 are included. The first inner peripheral end 52 corresponds to the inner peripheral end of the first planar coil portion 50, and the first outer peripheral end 53 corresponds to the outer peripheral end of the first planar coil portion 50.
 第2平面コイル部分60は、複列導電線43が右回り(時計回り)に巻き回されてなる第2巻回部分61と、第2巻回部分61の内周側に形成された中空部分64と、第2巻回部分61の内周側に設けられた第2内周端部62と、第2巻回部分61の外周側に設けられた第2外周端部63とを含む。第2内周端部62は第2平面コイル部分60の内周端部に相当し、第2外周端部63は第2平面コイル部分60の外周端部に相当する。 The second planar coil portion 60 includes a second winding portion 61 in which the double-row conductive wire 43 is wound clockwise (clockwise), and a hollow portion formed on the inner peripheral side of the second winding portion 61. 64, a second inner peripheral end portion 62 provided on the inner peripheral side of the second winding portion 61, and a second outer peripheral end portion 63 provided on the outer peripheral side of the second winding portion 61. The second inner peripheral end 62 corresponds to the inner peripheral end of the second planar coil portion 60, and the second outer peripheral end 63 corresponds to the outer peripheral end of the second planar coil portion 60.
 このように2次側コイル41においては、第1平面コイル部分50および第2平面コイル部分60が積層され、かつ第1平面コイル部分50の複列導電線43の巻き回し方向と第2平面コイル部分60の複列導電線43の巻き回し方向とが互いに反対の方向に設定されている。すなわち、2次側コイル41はアルファ巻き構造を有するコイルとして構成されている。 Thus, in the secondary coil 41, the first planar coil portion 50 and the second planar coil portion 60 are laminated, and the winding direction of the double-row conductive wire 43 of the first planar coil portion 50 and the second planar coil. The winding direction of the double-row conductive wire 43 of the portion 60 is set to be opposite to each other. That is, the secondary coil 41 is configured as a coil having an alpha winding structure.
 2次側コイル41は、第1巻回部分51および第2巻回部分61と、これら第1及び第2巻回部分51,61を互いに接続する連続部分45とに区分される。本例においては、連続部分45は、第1内周端部52および第2内周端部62により構成されている。連続部分45には、複列導電線43が折り返された折返部分46が形成されている。この折返部分46は、別の言い方をすれば、第1平面コイル部分50の複列導電線43が捻られた捻り部分とも言えるものである。なお、上述のとおり1本の複列導電線43により2次側コイル41が構成されているため、第1巻回部分51と連続部分45との境界、および第2巻回部分61と連続部分45との境界に複列導電線43の切れ目は存在していない。また、連続部分45は、第1平面コイル部分50の中空部分54と第2平面コイル部分60の中空部分64とにより構成された2次側コイル41の中空部分44に設けられている。 The secondary coil 41 is divided into a first winding portion 51 and a second winding portion 61, and a continuous portion 45 that connects the first and second winding portions 51 and 61 to each other. In this example, the continuous portion 45 includes a first inner peripheral end portion 52 and a second inner peripheral end portion 62. In the continuous portion 45, a folded portion 46 in which the double-row conductive wire 43 is folded is formed. In other words, the folded portion 46 can be said to be a twisted portion in which the double row conductive wire 43 of the first planar coil portion 50 is twisted. In addition, since the secondary side coil 41 is comprised by one double row conductive wire 43 as mentioned above, the boundary between the 1st winding part 51 and the continuous part 45, and the 2nd winding part 61 and the continuous part There is no break of the double-row conductive wire 43 at the boundary with 45. In addition, the continuous portion 45 is provided in the hollow portion 44 of the secondary coil 41 constituted by the hollow portion 54 of the first planar coil portion 50 and the hollow portion 64 of the second planar coil portion 60.
 図2(d)を参照して、2次側コイル41の積層構造について説明する。 The laminated structure of the secondary coil 41 will be described with reference to FIG.
 ここで、2次側コイル41の中心線Cに沿う方向の同コイル41の寸法を「厚さH」とし、第1巻回部分51の厚さHを「第1厚さH1」とし、第2巻回部分61の厚さHを「第2厚さH2」とする。また、第1巻回部分51と第2巻回部分61とを積層した部分の厚さHを「積層部分厚さH3」とする。また、折返部分46の厚さHを「折返厚さH4」とする。なお、折返厚さH4は「連続部分の厚さ」に相当する。 Here, the dimension of the coil 41 in the direction along the center line C of the secondary coil 41 is “thickness H”, the thickness H of the first winding portion 51 is “first thickness H1”, The thickness H of the two-winding portion 61 is defined as “second thickness H2”. Further, the thickness H of the portion where the first winding portion 51 and the second winding portion 61 are laminated is referred to as “lamination portion thickness H3”. Further, the thickness H of the folded portion 46 is defined as “folded thickness H4”. The folded thickness H4 corresponds to “the thickness of the continuous portion”.
 上記各厚さHの大きさを以下に示す。
(a)第1厚さH1は複列導電線43(各導電線43A~43D)の直径に等しい。
(b)第2厚さH2は複列導電線43(各導電線43A~43D)の直径に等しい。
(c)積層部分厚さH3は、第1厚さH1と第2厚さH2とを合わせた厚さに等しい。
(d)折返厚さH4は第1厚さH1と第2厚さH2とを合わせた厚さに等しい。
The size of each thickness H is shown below.
(A) The first thickness H1 is equal to the diameter of the double-row conductive wire 43 (each conductive wire 43A to 43D).
(B) The second thickness H2 is equal to the diameter of the double row conductive wire 43 (each conductive wire 43A to 43D).
(C) The laminated portion thickness H3 is equal to the total thickness of the first thickness H1 and the second thickness H2.
(D) The folded thickness H4 is equal to the combined thickness of the first thickness H1 and the second thickness H2.
 第1巻回部分51においては、複列導電線43が径方向に隣り合うことにより円環形状の2つの凹凸面(以下、「巻回面51A」)が形成されている。また第2巻回部分61においても同様に、複列導電線43が径方向に隣り合うことにより2つの円環形状の凹凸面(以下、「巻回面61A」)が形成されている。 In the first winding part 51, two annular conductive surfaces 43 are adjacent to each other in the radial direction, so that two annularly-shaped uneven surfaces (hereinafter referred to as “winding surface 51A”) are formed. Similarly, in the second winding portion 61, two annular conductive surfaces 43 are adjacent to each other in the radial direction, so that two ring-shaped uneven surfaces (hereinafter “winding surface 61 </ b> A”) are formed.
 2次側コイル41においては、第1巻回部分51と第2巻回部分61とが積層されていることにより、第1巻回部分51の2つの巻回面51Aのうちの一方と、第2巻回部分61の2つの巻回面61Aのうちの一方とが互いに対向している。 In the secondary coil 41, the first winding part 51 and the second winding part 61 are laminated, so that one of the two winding surfaces 51A of the first winding part 51 and One of the two winding surfaces 61A of the two winding part 61 is opposed to each other.
 ここで、2つの巻回面51Aのうちの他方を、中心線Cに直交する仮想の平面と見立て、その仮想の平面を「第1基準面P1」とする。また、2つの巻回面61Aのうちの他方を、中心線Cに直交する仮想の平面と見立て、その仮想の平面を「第2基準面P2」とする。また、中心線Cを通過し第1基準面P1および第2基準面P2と直交する2次側コイル41の断面を「基準断面」とする。 Here, the other of the two winding surfaces 51A is regarded as a virtual plane orthogonal to the center line C, and the virtual plane is referred to as a “first reference plane P1”. Further, the other of the two winding surfaces 61A is regarded as a virtual plane orthogonal to the center line C, and the virtual plane is referred to as a “second reference plane P2.” A cross section of the secondary coil 41 that passes through the center line C and is orthogonal to the first reference plane P1 and the second reference plane P2 is referred to as a “reference cross section”.
 折返部分46は、基準断面上において第1基準面P1と第2基準面P2との間に設けられている。このため、基準断面上において第1基準面P1から第2基準面P2までの距離が2次側コイル41全体としての厚さH、すなわち積層部分厚さH3となる。 The folded portion 46 is provided between the first reference plane P1 and the second reference plane P2 on the reference cross section. For this reason, the distance from the first reference plane P1 to the second reference plane P2 on the reference section is the thickness H of the secondary side coil 41 as a whole, that is, the laminated portion thickness H3.
 第1平面コイル部分50においての複列導電線43の関係を以下に示す。
(a)第1導電線43Aは径方向の最も外方に設けられている。
(b)第2導電線43Bは径方向の内方において第1導電線43Aに隣接している。
(c)第3導電線43Cは径方向の内方において第2導電線43Bに隣接している。
(d)第4導電線43Dは径方向の内方において第3導電線43Cに隣接している。
The relationship of the double row conductive wires 43 in the first planar coil portion 50 is shown below.
(A) The first conductive wire 43A is provided on the outermost side in the radial direction.
(B) The second conductive wire 43B is adjacent to the first conductive wire 43A inward in the radial direction.
(C) The third conductive wire 43C is adjacent to the second conductive wire 43B inward in the radial direction.
(D) The fourth conductive line 43D is adjacent to the third conductive line 43C inward in the radial direction.
 第2平面コイル部分60においての複列導電線43の関係を以下に示す。
(a)第1導電線43Aは径方向の最も内方に設けられている。
(b)第2導電線43Bは径方向の外方において第1導電線43Aに隣接している。
(c)第3導電線43Cは径方向の外方において第2導電線43Bに隣接している。
(d)第4導電線43Dは径方向の外方において第3導電線43Cに隣接している。
The relationship of the double row conductive wires 43 in the second planar coil portion 60 is shown below.
(A) The first conductive wire 43A is provided on the innermost side in the radial direction.
(B) The second conductive wire 43B is adjacent to the first conductive wire 43A on the outer side in the radial direction.
(C) The third conductive wire 43C is adjacent to the second conductive wire 43B on the outer side in the radial direction.
(D) The fourth conductive wire 43D is adjacent to the third conductive wire 43C on the outer side in the radial direction.
 図3を参照して、連続部分45の構成について説明する。 The configuration of the continuous portion 45 will be described with reference to FIG.
 以下では、連続部分45の平面視において、複列導電線43の延びる方向を「配線方向」とする。また、この配線方向において第1平面コイル部分50から第2平面コイル部分60に向かう方向を「第1配線方向」とし、配線方向において第2平面コイル部分60から第1平面コイル部分50に向かう方向を「第2配線方向」とする。また、複列導電線43の幅方向において第1配線方向に対して一方の側を「第1幅側43P」とし、複列導電線43の幅方向において第1配線方向に対して他方の側を「第2幅側43Q」とする。 Hereinafter, in the plan view of the continuous portion 45, the extending direction of the double-row conductive wire 43 is referred to as “wiring direction”. The direction from the first planar coil portion 50 to the second planar coil portion 60 in this wiring direction is referred to as a “first wiring direction”, and the direction from the second planar coil portion 60 to the first planar coil portion 50 in the wiring direction. Is the “second wiring direction”. Also, one side of the double-row conductive line 43 in the width direction with respect to the first wiring direction is referred to as a “first width side 43P”, and the other side of the double-row conductive line 43 in the width direction with respect to the first wiring direction. Is “second width side 43Q”.
 連続部分45は、上記した折返部分46と、折返部分46よりも第1平面コイル部分50側の部分としての「第1連続部分45A」と、折返部分46よりも第2平面コイル部分60側の部分としての「第2連続部分45B」とを含む。即ち、折返部分46は、第1及び第2連続部分45A,45Bの間に設けられている。 The continuous portion 45 includes the folded portion 46 described above, the “first continuous portion 45A” as the portion closer to the first planar coil portion 50 than the folded portion 46, and the second planar coil portion 60 side relative to the folded portion 46. And “second continuous portion 45B” as a portion. That is, the folded portion 46 is provided between the first and second continuous portions 45A and 45B.
 以下では、折返部分46において複列導電線43が折り返される方向を「折返方向」とする。また、第1導電線43Aの折り返し部分を「第1折返点46A」とする。また、第2導電線43Bの折り返し部分を「第2折返点46B」とする。また、第3導電線43Cの折り返し部分を「第3折返点46C」とする。また、第4導電線43Dの折り返し部分を「第4折返点46D」とする。 Hereinafter, the direction in which the double-row conductive wire 43 is folded at the folded portion 46 is referred to as “folding direction”. The folded portion of the first conductive line 43A is referred to as a “first folding point 46A”. Further, the folded portion of the second conductive line 43B is defined as a “second folding point 46B”. The folded portion of the third conductive line 43C is referred to as a “third folding point 46C”. The folded portion of the fourth conductive line 43D is referred to as a “fourth folding point 46D”.
 各折返点46A~46Dの関係を以下に示す。
(a)第1折返点46Aは最も第1配線方向側に形成されている。
(b)第2折返点46Bは第1折返点46Aよりも第2配線方向側に形成されている。
(c)第3折返点46Cは第2折返点46Bよりも第2配線方向側に形成されている。
(d)第4折返点46Dは第3折返点46Cよりも第2配線方向側に形成されている。
The relationship between the turning points 46A to 46D is shown below.
(A) The first turning point 46A is formed closest to the first wiring direction.
(B) The second turning point 46B is formed closer to the second wiring direction than the first turning point 46A.
(C) The third turning point 46C is formed closer to the second wiring direction than the second turning point 46B.
(D) The fourth turning point 46D is formed closer to the second wiring direction than the third turning point 46C.
 このように、各折返点46A~46Dの形成位置は、第1幅側43Pの導電線から第2幅側43Qの導電線となるにつれて順に第1配線方向に進行している。また、折返方向が第1配線方向から第2幅側43Qに向かう方向に設定されている。すなわち、配線方向と折返方向とが互いに異なる。 Thus, the formation positions of the folding points 46A to 46D proceed in the first wiring direction in order from the conductive line on the first width side 43P to the conductive line on the second width side 43Q. Further, the folding direction is set in a direction from the first wiring direction toward the second width side 43Q. That is, the wiring direction and the folding direction are different from each other.
 連続部分45においては、各導電線43A~43Dが次のように積層されている。
(a)第4導電線43Dは、第4折返点46Dよりも第2連続部分45B側において第3導電線43C、第2導電線43B、および第1導電線43A上を通過する。
(b)第3導電線43Cは、第3折返点46Cよりも第2連続部分45B側において第2導電線43Bおよび第1導電線43A上を通過する。
(c)第2導電線43Bは、第2折返点46Bよりも第2連続部分45B側において第1導電線43A上を通過する。
In the continuous portion 45, the conductive lines 43A to 43D are laminated as follows.
(A) The fourth conductive line 43D passes over the third conductive line 43C, the second conductive line 43B, and the first conductive line 43A on the second continuous portion 45B side from the fourth turning point 46D.
(B) The third conductive line 43C passes over the second conductive line 43B and the first conductive line 43A on the second continuous portion 45B side from the third turning point 46C.
(C) The second conductive line 43B passes over the first conductive line 43A on the second continuous portion 45B side with respect to the second turning point 46B.
 第1連続部分45Aにおいての各導電線43A~43Dの配列関係を以下に示す。
(a)第1導電線43Aは径方向の最も外方に設けられている。
(b)第2導電線43Bは径方向の内方において第1導電線43Aに隣接している。
(c)第3導電線43Cは径方向の内方において第2導電線43Bに隣接している。
(d)第4導電線43Dは径方向の内方において第3導電線43Cに隣接している。
The arrangement relationship of the conductive lines 43A to 43D in the first continuous portion 45A is shown below.
(A) The first conductive wire 43A is provided on the outermost side in the radial direction.
(B) The second conductive wire 43B is adjacent to the first conductive wire 43A inward in the radial direction.
(C) The third conductive wire 43C is adjacent to the second conductive wire 43B inward in the radial direction.
(D) The fourth conductive line 43D is adjacent to the third conductive line 43C inward in the radial direction.
 第2連続部分45Bにおいての各導電線43A~43Dの配列関係を以下に示す。
(a)第1導電線43Aは径方向の最も内方に設けられている。
(b)第2導電線43Bは径方向の外方において第1導電線43Aに隣接している。
(c)第3導電線43Cは径方向の外方において第2導電線43Bに隣接している。
(d)第4導電線43Dは径方向の外方において第3導電線43Cに隣接している。
The arrangement relationship of the conductive lines 43A to 43D in the second continuous portion 45B is shown below.
(A) The first conductive wire 43A is provided on the innermost side in the radial direction.
(B) The second conductive wire 43B is adjacent to the first conductive wire 43A on the outer side in the radial direction.
(C) The third conductive wire 43C is adjacent to the second conductive wire 43B on the outer side in the radial direction.
(D) The fourth conductive wire 43D is adjacent to the third conductive wire 43C on the outer side in the radial direction.
 図4(a)(b)を参照して、2次側コイル41に流れる誘導電流について説明する。 The induced current flowing through the secondary coil 41 will be described with reference to FIGS.
 ここでは、第1実施形態の2次側コイル41の構成を次のように簡略化して説明を行なう。すなわち、複列導電線43を構成する導電線の本数を4本から2本に変更する。また、複列導電線43のターン数を2ターンから1ターンに変更する。 Here, the configuration of the secondary coil 41 of the first embodiment will be described in a simplified manner as follows. That is, the number of conductive lines constituting the double-row conductive line 43 is changed from four to two. Further, the number of turns of the double row conductive wire 43 is changed from 2 turns to 1 turn.
 図4(a)に示されるように、2次側コイル41においては、同2次側コイル41に図1の1次側コイル31からの交番磁束が鎖交することにより、第1平面コイル部分50および第2平面コイル部分60に同じ方向の誘導電流が流れる。第1平面コイル部分50から第2平面コイル部分60に向けて誘導電流が流れるときには、図4(b)に示されるように、2次側コイル41から図1の1次側コイル31に向かう磁束MAと、2次側コイル41の複列導電線43の周囲でループする磁束MBとが形成される。 As shown in FIG. 4 (a), in the secondary coil 41, the first planar coil portion is formed by the alternating magnetic flux from the primary coil 31 of FIG. The induced current in the same direction flows through 50 and the second planar coil portion 60. When an induced current flows from the first planar coil portion 50 toward the second planar coil portion 60, as shown in FIG. 4B, the magnetic flux from the secondary coil 41 toward the primary coil 31 in FIG. MA and a magnetic flux MB that loops around the double row conductive wire 43 of the secondary coil 41 are formed.
 そして、1次側コイル31の磁束の方向が切り替わるとき、2次側コイル41に流れる誘導電流の方向が反対の方向となる。このとき、第1平面コイル部分50および第2平面コイル部分60には、磁束MAおよび磁束MBの変化を妨げるように誘導電流が流れる。 And when the direction of the magnetic flux of the primary side coil 31 is switched, the direction of the induced current flowing in the secondary side coil 41 is the opposite direction. At this time, an induced current flows through the first planar coil portion 50 and the second planar coil portion 60 so as to prevent changes in the magnetic flux MA and the magnetic flux MB.
 ここで、1次側コイル31からの磁束と鎖交することにより2次側コイル41に矢印Lで示される誘導電流が流れていると仮定したとき、第2平面コイル部分60には、磁束MAおよび磁束MBの変化を妨げるように破線で示される誘導電流が流れる。すなわち、第2平面コイル部分60においては、第2外周端部63から第1平面コイル部分50の第1外周端部53に向けて誘導電流が流れる。 Here, when it is assumed that the induced current indicated by the arrow L flows in the secondary coil 41 by interlinking with the magnetic flux from the primary coil 31, the second planar coil portion 60 has a magnetic flux MA. And an induced current indicated by a broken line flows so as to prevent the change of the magnetic flux MB. That is, in the second planar coil portion 60, an induced current flows from the second outer peripheral end portion 63 toward the first outer peripheral end portion 53 of the first planar coil portion 50.
 第1及び第2平面コイル部分50,60間において磁束MAおよび磁束MBの変化を妨げるように流れる誘導電流の流れを以下に示す。ここでは、第1平面コイル部分50の第2導電線43Bにおいて連続部分45との境界部分43Xを同コイル部分50の電流の流れの起点と仮定している。また、第2平面コイル部分60の第2導電線43Bにおいて連続部分45との境界部分43Yを同コイル部分60の電流の流れの起点と仮定している。 The flow of induced current flowing between the first and second planar coil portions 50 and 60 so as to prevent the change of the magnetic flux MA and the magnetic flux MB is shown below. Here, it is assumed that the boundary portion 43 </ b> X with the continuous portion 45 in the second conductive wire 43 </ b> B of the first planar coil portion 50 is the starting point of the current flow of the coil portion 50. Further, it is assumed that the boundary portion 43Y of the second conductive wire 43B of the second planar coil portion 60 and the continuous portion 45 is the starting point of the current flow of the coil portion 60.
 第1平面コイル部分50においては次のように誘導電流が流れる。
(A1)第2導電線43Bにおいて境界部分43Xから左回りの方向に流れる。
(A2)第1外周端部53において第2導電線43Bから第1導電線43Aに流れる。
(A3)第1導電線43Aにおいて右回りの方向に流れる。
(A4)折返部分46において第2平面コイル部分60に流れようとする。
In the first planar coil portion 50, an induced current flows as follows.
(A1) The second conductive line 43B flows counterclockwise from the boundary portion 43X.
(A2) The first outer peripheral end portion 53 flows from the second conductive line 43B to the first conductive line 43A.
(A3) It flows in the clockwise direction in the first conductive line 43A.
(A4) The fold portion 46 tends to flow to the second planar coil portion 60.
 第1平面コイル部分50の第1外周端部53においては、第1導電線43Aの外周端部と第2導電線43Bの外周端部とが互いに接続されている。このため、第2導電線43Bの誘導電流が第1外周端部53を通過して第1導電線43Aに流れる。 In the first outer peripheral end 53 of the first planar coil portion 50, the outer peripheral end of the first conductive wire 43A and the outer peripheral end of the second conductive wire 43B are connected to each other. For this reason, the induced current of the second conductive wire 43B flows through the first outer peripheral end portion 53 and flows to the first conductive wire 43A.
 また第1平面コイル部分50においては、内周側の導電線すなわち第2導電線43Bの磁束の方向と、外周側の導電線すなわち第1導電線43Aの磁束の方向とが互いに反対の方向となる。このため、第2導電線43Bの誘導電流が左回りに流れ、第1導電線43Aの誘導電流が右回りに流れる。 Further, in the first planar coil portion 50, the direction of the magnetic flux of the inner peripheral side conductive line, that is, the second conductive line 43B, and the direction of the outer peripheral side conductive line, ie, the magnetic flux of the first conductive line 43A, are opposite to each other. Become. For this reason, the induced current of the second conductive line 43B flows counterclockwise, and the induced current of the first conductive line 43A flows clockwise.
 第2平面コイル部分60においては次のように誘導電流が流れる。
(B1)第1導電線43Aにおいて境界部分43Yに向かって左回りの方向に流れる。
(B2)第2外周端部63において第2導電線43Bから第1導電線43Aに流れる。
(B3)第2導電線43Bにおいて右回りの方向に流れる。
(B4)折返部分46において第1平面コイル部分50に流れようとする。
In the second planar coil portion 60, an induced current flows as follows.
(B1) The first conductive line 43A flows in the counterclockwise direction toward the boundary portion 43Y.
(B2) The second outer peripheral end 63 flows from the second conductive line 43B to the first conductive line 43A.
(B3) It flows in the clockwise direction in the second conductive line 43B.
(B4) The folded portion 46 tends to flow to the first planar coil portion 50.
 第2平面コイル部分60の第2外周端部63においては、第1導電線43Aの外周端部と第2導電線43Bの外周端部とが互いに接続されている。このため、第2導電線43Bの誘導電流が第2外周端部63を通過して第1導電線43Aに流れ込む。 In the second outer peripheral end 63 of the second planar coil portion 60, the outer peripheral end of the first conductive wire 43A and the outer peripheral end of the second conductive wire 43B are connected to each other. For this reason, the induced current of the second conductive wire 43B passes through the second outer peripheral end 63 and flows into the first conductive wire 43A.
 また第2平面コイル部分60においては、内周側の導電線すなわち第1導電線43Aの磁束の方向と、外周側の導電線すなわち第2導電線43Bの磁束の方向とが互いに反対の方向となる。このため、第1導電線43Aの誘導電流が左回りに流れ、第2導電線43Bの誘導電流が右回りに流れる。 In the second planar coil portion 60, the direction of the magnetic flux of the inner peripheral side conductive line, that is, the first conductive line 43A, and the direction of the outer peripheral side conductive line, that is, the magnetic flux of the second conductive line 43B are opposite to each other. Become. For this reason, the induced current of the first conductive line 43A flows counterclockwise, and the induced current of the second conductive line 43B flows clockwise.
 そして、第1平面コイル部分50と第2平面コイル部分60との間の連続部分45には、上記(A4)および上記(B4)に示されるように互いに反対方向の誘導電流が流れようとする。このため、上記(A4)の誘導電流と上記(B4)の誘導電流とが互いに打ち消し合う。 Then, in the continuous portion 45 between the first planar coil portion 50 and the second planar coil portion 60, induced currents in opposite directions tend to flow as shown in (A4) and (B4). . For this reason, the induced current (A4) and the induced current (B4) cancel each other.
 このような誘導電流の流れが生じるしくみを以下に示す。 The mechanism by which this induced current flow occurs is shown below.
 2次側コイル41には折返部分46が形成されていることにより、第1平面コイル部分50においての第1導電線43Aの径方向の位置と、第2平面コイル部分60においての第1導電線43Aの径方向の位置とが互いに異なる。 Since the folded portion 46 is formed in the secondary coil 41, the radial position of the first conductive wire 43 </ b> A in the first planar coil portion 50 and the first conductive wire in the second planar coil portion 60. The positions in the radial direction of 43A are different from each other.
 すなわち、第1平面コイル部分50においては第1導電線43Aが第2導電線43Bよりも外周側に位置し、第2平面コイルにおいては第1導電線43Aが第2導電線43Bよりも内周側に位置している。 That is, in the first planar coil portion 50, the first conductive wire 43A is located on the outer peripheral side of the second conductive wire 43B, and in the second planar coil, the first conductive wire 43A is on the inner periphery of the second conductive wire 43B. Located on the side.
 これにより、第1平面コイル部分50の第1導電線43Aの磁束の方向と、第2平面コイル部分60の第1導電線43Aの磁束の方向とが互いに反対の方向となる。このため、各平面コイル部分50,60において第1導電線43Aに流れる誘導電流の方向が上記(A4)および(B4)のとおり互いに反対の方向となる。 Thereby, the direction of the magnetic flux of the first conductive wire 43A of the first planar coil portion 50 and the direction of the magnetic flux of the first conductive wire 43A of the second planar coil portion 60 are opposite to each other. For this reason, the direction of the induced current flowing through the first conductive wire 43A in each planar coil portion 50, 60 is opposite to each other as described in (A4) and (B4).
 このため、同一の導電線(第1導電線43A)上において互いに反対方向の電流が折返部分46に向けて流れることになる。その結果、上記のとおり折返部分46で上記(A4)の誘導電流と上記(B4)の誘導電流とが互いに打ち消しあう。なお、ここで説明した第1導電線43Aの誘導電流の流れは、電流の流れの方向が上記の内容とは反対となる点を除いては第2導電線43Bにおいても同様に生じる。 Therefore, currents in directions opposite to each other flow toward the folded portion 46 on the same conductive line (first conductive line 43A). As a result, as described above, the induced current of (A4) and the induced current of (B4) cancel each other at the folded portion 46. The induced current flow in the first conductive line 43A described here also occurs in the second conductive line 43B in the same manner except that the direction of the current flow is opposite to that described above.
 図5を参照して、「比較コイル41X」における誘導電流の流れについて説明する。比較コイル41Xは、第1実施形態の2次側コイル41から連続部分45の折返部分46が省略された構成である。なお、以下の比較コイル41Xの説明において、第1実施形態の2次側コイル41と共通する構成については同一の符号を付している。 The flow of the induced current in the “comparison coil 41X” will be described with reference to FIG. The comparison coil 41X has a configuration in which the folded portion 46 of the continuous portion 45 is omitted from the secondary side coil 41 of the first embodiment. Note that, in the following description of the comparison coil 41X, the same reference numerals are given to configurations that are common to the secondary coil 41 of the first embodiment.
 第1平面コイル部分50においては次のように誘導電流が流れる。
(A1)第2導電線43Bにおいて境界部分43Xから左回りの方向に流れる。
(A2)第1外周端部53において第2導電線43Bから第1導電線43Aに流れる。
(A3)第1導電線43Aにおいて右回りの方向に流れる。
(A4)連続部分45において第2平面コイル部分60の境界部分43Yに流れる。
In the first planar coil portion 50, an induced current flows as follows.
(A1) The second conductive line 43B flows in the counterclockwise direction from the boundary portion 43X.
(A2) The first outer peripheral end portion 53 flows from the second conductive line 43B to the first conductive line 43A.
(A3) It flows in the clockwise direction in the first conductive line 43A.
(A4) The continuous portion 45 flows to the boundary portion 43Y of the second planar coil portion 60.
 第2平面コイル部分60においては次のように誘導電流が流れる。
(B1)第1導電線43Aにおいて境界部分43Yから右回りの方向に流れる。
(B2)第2外周端部63において第1導電線43Aから第2導電線43Bに流れる。
(B3)第2導電線43Bにおいて左回りの方向に流れる。
(B4)連続部分45において第1平面コイル部分50の境界部分43Xに流れる。
In the second planar coil portion 60, an induced current flows as follows.
(B1) The first conductive line 43A flows in a clockwise direction from the boundary portion 43Y.
(B2) The second outer peripheral end 63 flows from the first conductive line 43A to the second conductive line 43B.
(B3) It flows in the counterclockwise direction on the second conductive line 43B.
(B4) The continuous portion 45 flows to the boundary portion 43X of the first planar coil portion 50.
 このように、比較コイル41Xにおいては、第1平面コイル部分50の境界部分43Xから第2平面コイル部分60の境界部分43Yを介して再び境界部分43Xに誘導電流が流れる。すなわち、誘導電流がループ電流として比較コイル41X内を流れる。 Thus, in the comparison coil 41X, an induced current flows again from the boundary portion 43X of the first planar coil portion 50 to the boundary portion 43X via the boundary portion 43Y of the second planar coil portion 60. That is, the induced current flows as a loop current in the comparison coil 41X.
 比較コイル41Xにおいては、上記のループ電流が流れることに起因して、図1の1次側コイル31と比較コイル41Xとの間の電力の伝送効率が低下する。その理由としては以下に示すものが挙げられる。 In the comparison coil 41X, due to the flow of the loop current, the power transmission efficiency between the primary side coil 31 and the comparison coil 41X in FIG. 1 decreases. The reason is as follows.
 比較コイル41Xにおいては、同比較コイル41Xに図1の1次側コイル31からの交番磁束が鎖交することにより、例えば第1平面コイル部分50および第2平面コイル部分60に矢印LX方向の誘導電流が流れる。 In the comparison coil 41X, the alternating magnetic flux from the primary side coil 31 of FIG. 1 is linked to the comparison coil 41X, so that, for example, the first planar coil portion 50 and the second planar coil portion 60 are guided in the direction of the arrow LX. Current flows.
 このとき、第1導電線43A内を流れる誘導電流(ループ電流)は、1次側コイル31からの磁束に基づく誘導電流の流れを妨げるものとなる。これにより、ループ電流が生じないコイル、またはループ電流の大きさが比較コイル41Xよりも小さいコイルが用いられる構成と比較して、1次側コイル31からの磁束に基づいて生じる誘導電流の大きさが小さくなる。このため、2次側コイル41から取り出されて図1の2次電池22に供給される電流量が小さくなる。 At this time, the induced current (loop current) flowing in the first conductive wire 43A hinders the flow of the induced current based on the magnetic flux from the primary side coil 31. Thereby, the magnitude of the induced current generated based on the magnetic flux from the primary coil 31 is compared with a configuration in which a coil that does not generate a loop current or a coil that has a smaller loop current than the comparison coil 41X is used. Becomes smaller. Therefore, the amount of current taken out from the secondary coil 41 and supplied to the secondary battery 22 in FIG. 1 is reduced.
 (第1実施形態の利点)
 第1実施形態の非接触式給電装置1は以下の利点を有する。
(Advantages of the first embodiment)
The contactless power supply device 1 of the first embodiment has the following advantages.
 (1)非接触式給電装置1においては、2次側コイルモジュール40の連続部分45に折返部分46が形成されている。この構成によれば、第1平面コイル部分50および第2平面コイル部分60に生じるループ電流を小さくすることができる。また、1次側コイルモジュール30および2次側コイルモジュール40の間の電力の伝送効率の低下を抑制することができる。 (1) In the non-contact power supply device 1, the folded portion 46 is formed in the continuous portion 45 of the secondary coil module 40. According to this configuration, the loop current generated in the first planar coil portion 50 and the second planar coil portion 60 can be reduced. Moreover, the fall of the transmission efficiency of the electric power between the primary side coil module 30 and the secondary side coil module 40 can be suppressed.
 (2)非接触式給電装置1においては、2次側コイル41の中空部分44に連続部分45が設けられている。この構成によれば、連続部分45の折返部分46が第1巻回部分51および第2巻回部分61に重ね合わせられていないため、連続部分45が第1巻回部分51と第2巻回部分61との間に設けられる構成と比較して、2次側コイル41(2次側コイルモジュール40)の厚さが薄くなる。 (2) In the non-contact power supply device 1, the continuous portion 45 is provided in the hollow portion 44 of the secondary coil 41. According to this configuration, since the folded portion 46 of the continuous portion 45 is not overlapped with the first winding portion 51 and the second winding portion 61, the continuous portion 45 has the first winding portion 51 and the second winding portion. Compared with the structure provided between the parts 61, the thickness of the secondary side coil 41 (secondary side coil module 40) becomes thin.
 (3)非接触式給電装置1においては、2次側コイルモジュール40に磁性体42が設けられている。この構成によれば、2次側コイルモジュール40からの漏れ磁束を少なくすることができる。 (3) In the non-contact power supply device 1, the secondary coil module 40 is provided with a magnetic body 42. According to this configuration, the leakage magnetic flux from the secondary coil module 40 can be reduced.
 (第2実施形態)
 図6(a)~(d)および図7を参照して、本発明の第2実施形態について説明する。なお、第2実施形態の非接触式給電装置1は、第1実施形態の非接触式給電装置1の一部を変更したものとして構成されている。このため、以下では第1実施形態の非接触式給電装置1と異なる点についての詳細を説明し、第1実施形態と共通する構成については同一の符号を付してその説明の一部または全部を省略する。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS. 6 (a) to 6 (d) and FIG. In addition, the non-contact type electric power feeder 1 of 2nd Embodiment is comprised as what changed a part of the non-contact type electric power feeder 1 of 1st Embodiment. For this reason, below, the detail about a different point from the non-contact-type electric power feeder 1 of 1st Embodiment is demonstrated, About the structure which is common in 1st Embodiment, the same code | symbol is attached | subjected and the part or all of the description Is omitted.
 上記した第1実施形態の非接触式給電装置1の2次側コイルモジュール40においては、第1平面コイル部分50および第2平面コイル部分60が1本の複列導電線43により構成されていた。 In the secondary coil module 40 of the contactless power supply device 1 of the first embodiment described above, the first planar coil portion 50 and the second planar coil portion 60 are configured by one double row conductive wire 43. .
 これに対して、第2実施形態の非接触式給電装置1の2次側コイルモジュール70においては、第1平面コイル80および第2平面コイル90がそれぞれ別々の複列導電線により構成されている。なお、2次側コイルモジュール70は「受電コイルモジュール」に相当する。 On the other hand, in the secondary side coil module 70 of the non-contact type electric power feeder 1 of 2nd Embodiment, the 1st plane coil 80 and the 2nd plane coil 90 are each comprised by the separate double row conductive wire. . The secondary coil module 70 corresponds to a “power receiving coil module”.
 図6(a)に示されるように、第2実施形態の2次側コイルモジュール70には、図1の1次側コイル31で発生した磁束と鎖交することにより電流を発生する2次側コイル74と、2次側コイル74からの磁束の漏れを抑制する磁性体73とが設けられている。 As shown in FIG. 6A, the secondary coil module 70 of the second embodiment includes a secondary side that generates a current by interlinking with the magnetic flux generated in the primary coil 31 of FIG. A coil 74 and a magnetic body 73 that suppresses leakage of magnetic flux from the secondary coil 74 are provided.
 2次側コイルモジュール70において2次側コイル74の「複列導電線」は、2本の複列導電線を含む。すなわち、2次側コイル74は、第1複列導電線71および第2複列導電線72により構成されている。第1複列導電線71は、4本の細い導電線、すなわち第1導電線71A、第2導電線71B、第3導電線71C、および第4導電線71Dにより構成されている。導電線71A~71Dは、互いに並行して設けられている。各導電線71A~71Dは、被覆体によって被覆されている。導電線71A~71Dのうちの隣り合うもの同士においては、被覆体が互いに溶着されている。 In the secondary coil module 70, the “double row conductive wire” of the secondary coil 74 includes two double row conductive wires. That is, the secondary coil 74 is constituted by the first double-row conductive line 71 and the second double-row conductive line 72. The first double-row conductive line 71 includes four thin conductive lines, that is, a first conductive line 71A, a second conductive line 71B, a third conductive line 71C, and a fourth conductive line 71D. The conductive lines 71A to 71D are provided in parallel with each other. Each of the conductive lines 71A to 71D is covered with a covering. Adjacent ones of the conductive lines 71A to 71D are welded to each other.
 第2複列導電線72は、4本の細い導電線、すなわち第1導電線72A、第2導電線72B、第3導電線72C、および第4導電線72Dにより構成されている。導電線72A~72Dは、互いに並行して設けられている。各導電線72A~72Dは、被覆体によって被覆されている。導電線72A~72Dのうちの隣り合うもの同士においては、被覆体が互いに溶着されている。 The second double-row conductive line 72 includes four thin conductive lines, that is, a first conductive line 72A, a second conductive line 72B, a third conductive line 72C, and a fourth conductive line 72D. The conductive lines 72A to 72D are provided in parallel with each other. Each of the conductive lines 72A to 72D is covered with a covering. Adjacent ones of the conductive lines 72A to 72D are welded to each other.
 2次側コイル74は、第1複列導電線71を巻き回して形成された第1平面コイル80と、第2複列導電線72を巻き回して形成された第2平面コイル90とを含む。第1平面コイル80および第2平面コイル90は、2次側コイル74の中心線Cの方向において積層されている。 Secondary coil 74 includes a first planar coil 80 formed by winding first double-row conductive wire 71 and a second planar coil 90 formed by winding second double-row conductive wire 72. . The first planar coil 80 and the second planar coil 90 are laminated in the direction of the center line C of the secondary coil 74.
 第1平面コイル80は、第1複列導電線71が左回り(反時計回り)に巻き回されてなる第1巻回部分81と、第1巻回部分81の内周側に形成された中空部分84と、第1巻回部分81の内周側に設けられた第1内周端部82と、第1巻回部分81の外周側に設けられた第1外周端部83とを含む。第1内周端部82は第1平面コイル80の内周端部に相当し、第1外周端部88は第1平面コイル80の外周端部に相当する。 The first planar coil 80 is formed on a first winding portion 81 in which the first double-row conductive wire 71 is wound counterclockwise (counterclockwise), and on the inner peripheral side of the first winding portion 81. It includes a hollow portion 84, a first inner peripheral end portion 82 provided on the inner peripheral side of the first winding portion 81, and a first outer peripheral end portion 83 provided on the outer peripheral side of the first winding portion 81. . The first inner peripheral end portion 82 corresponds to the inner peripheral end portion of the first planar coil 80, and the first outer peripheral end portion 88 corresponds to the outer peripheral end portion of the first planar coil 80.
 第2平面コイル90は、第2複列導電線72が右回り(時計回り)に巻き回されてなる第2巻回部分91と、第2巻回部分91の内周側に形成された中空部分94と、第2巻回部分91の内周側に設けられた第2内周端部92と、第2巻回部分91の外周側に設けられた第2外周端部93とを含む。第2内周端部92は第2平面コイル90の内周端部に相当し、第2外周端部93は第2平面コイル90の外周端部に相当する。 The second planar coil 90 includes a second winding portion 91 formed by winding the second double-row conductive wire 72 clockwise (clockwise), and a hollow formed on the inner peripheral side of the second winding portion 91. The portion 94 includes a second inner peripheral end portion 92 provided on the inner peripheral side of the second winding portion 91, and a second outer peripheral end portion 93 provided on the outer peripheral side of the second winding portion 91. The second inner peripheral end 92 corresponds to the inner peripheral end of the second planar coil 90, and the second outer peripheral end 93 corresponds to the outer peripheral end of the second planar coil 90.
 図6(c)に示されるように、第1内周端部82と第2内周端部92とは半田78により互いに接続されている。2次側コイル74は、第1巻回部分81および第2巻回部分91と、これら第1及び第2巻回部分81,91を互いに接続する連続部分76とに区分される。本例においては、連続部分76は、第1内周端部82および第2内周端部92により構成されている。連続部分76には、第1複列導電線71が折り返された折返部分77が形成されている。 As shown in FIG. 6 (c), the first inner peripheral end portion 82 and the second inner peripheral end portion 92 are connected to each other by solder 78. The secondary coil 74 is divided into a first winding portion 81 and a second winding portion 91 and a continuous portion 76 that connects the first and second winding portions 81 and 91 to each other. In this example, the continuous portion 76 includes a first inner peripheral end portion 82 and a second inner peripheral end portion 92. The continuous portion 76 is formed with a folded portion 77 in which the first double-row conductive line 71 is folded.
 図6(d)に示されるように、連続部分76は、第1平面コイル80の中空部分84と第2平面コイル90の中空部分94とにより構成された2次側コイル74の中空部分75に設けられている。 As shown in FIG. 6 (d), the continuous portion 76 is formed in the hollow portion 75 of the secondary coil 74 constituted by the hollow portion 84 of the first planar coil 80 and the hollow portion 94 of the second planar coil 90. Is provided.
 このように2次側コイル74においては、別々に形成された第1平面コイル80および第2平面コイル90が積層され、かつ第1平面コイル80の第1複列導電線71の巻き回し方向と第2平面コイル90の第2複列導電線72の巻き回し方向とが互いに反対の方向に設定されている。従って、第1実施形態と同様、第2実施形態の2次側コイル74も、アルファ巻き構造を有するコイルとして構成されている。 Thus, in the secondary coil 74, the first planar coil 80 and the second planar coil 90 that are separately formed are stacked, and the winding direction of the first double-row conductive wire 71 of the first planar coil 80 is The winding direction of the second double-row conductive wire 72 of the second planar coil 90 is set in a direction opposite to each other. Therefore, as in the first embodiment, the secondary coil 74 of the second embodiment is also configured as a coil having an alpha winding structure.
 図6(d)を参照して、2次側コイル74の積層構造について説明する。 A laminated structure of the secondary coil 74 will be described with reference to FIG.
 ここで、2次側コイル74の中心線Cに沿う方向の同コイル74の寸法を「厚さH」とし、第1巻回部分81の厚さHを「第1厚さH1」とし、第2巻回部分91の厚さHを「第2厚さH2」とする。また、第1巻回部分81と第2巻回部分91とが積層された部分の厚さHを「積層部分厚さH3」とする。また、折返部分77の厚さHを「折返厚さH4」とする。 Here, the dimension of the coil 74 in the direction along the center line C of the secondary coil 74 is “thickness H”, the thickness H of the first winding portion 81 is “first thickness H1”, The thickness H of the second winding portion 91 is defined as “second thickness H2”. Further, the thickness H of the portion where the first winding portion 81 and the second winding portion 91 are laminated is referred to as “lamination portion thickness H3”. Further, the thickness H of the folded portion 77 is defined as “folded thickness H4”.
 上記各厚さHの大きさを以下に示す。
(a)第1厚さH1は第1複列導電線71の直径に等しい。
(b)第2厚さH2は第2複列導電線72の直径に等しい。
(c)積層部分厚さH3は、第1厚さH1と第2厚さH2とを合わせた厚さに等しい。
(d)折返厚さH4は第1厚さH1と第2厚さH2とを合わせた厚さに等しい。
The size of each thickness H is shown below.
(A) The first thickness H1 is equal to the diameter of the first double-row conductive line 71.
(B) The second thickness H2 is equal to the diameter of the second double-row conductive line 72.
(C) The laminated portion thickness H3 is equal to the total thickness of the first thickness H1 and the second thickness H2.
(D) The folded thickness H4 is equal to the combined thickness of the first thickness H1 and the second thickness H2.
 第1巻回部分81においては、第1複列導電線71が径方向に隣り合うことにより円環形状の2つの凹凸面(以下、「巻回面81A」)が形成されている。また第2巻回部分91においても同様に、第2複列導電線72が径方向に隣り合うことにより円環形状の2つの凹凸面(以下、「巻回面91A」)が形成されている。 In the first winding portion 81, the first double-row conductive wires 71 are adjacent to each other in the radial direction, so that two ring-shaped uneven surfaces (hereinafter referred to as “winding surface 81A”) are formed. Similarly, in the second winding portion 91, the second double-row conductive wires 72 are adjacent to each other in the radial direction, thereby forming two ring-shaped uneven surfaces (hereinafter referred to as “winding surface 91A”). .
 2次側コイル74においては、第1巻回部分81と第2巻回部分91とが積層されていることにより、第1巻回部分81の2つの巻回面81Aのうちの一方と、第2巻回部分91の2つの巻回面91Aのうちの一方とが互いに対向している。 In the secondary coil 74, the first winding portion 81 and the second winding portion 91 are laminated, so that one of the two winding surfaces 81A of the first winding portion 81 and One of the two winding surfaces 91 </ b> A of the two winding portions 91 faces each other.
 ここで、2つの巻回面81Aのうちの他方を、中心線Cに直交する仮想の平面と見立て、その仮想の平面を「第1基準面P1」とする。また、2つの巻回面91Aのうちの他方を、中心線Cに直交する仮想の平面と見立て、その仮想の平面を「第2基準面P2」とする。また、中心線Cを通過し第1基準面P1および第2基準面P2と直交する2次側コイル74の断面を「基準断面」とする。 Here, the other of the two winding surfaces 81A is regarded as a virtual plane orthogonal to the center line C, and the virtual plane is referred to as a “first reference plane P1”. Further, the other of the two winding surfaces 91A is regarded as a virtual plane orthogonal to the center line C, and the virtual plane is referred to as a “second reference plane P2.” A section of the secondary coil 74 that passes through the center line C and is orthogonal to the first reference plane P1 and the second reference plane P2 is referred to as a “reference section”.
 折返部分77は、基準断面上において第1基準面P1と第2基準面P2との間に設けられている。このため、基準断面上において第1基準面P1から第2基準面P2までの距離が2次側コイル74全体としての厚さH、すなわち積層部分厚さH3となる。 The folded portion 77 is provided between the first reference plane P1 and the second reference plane P2 on the reference cross section. For this reason, the distance from the first reference plane P1 to the second reference plane P2 on the reference cross section becomes the thickness H as the entire secondary coil 74, that is, the laminated portion thickness H3.
 第1平面コイル80においての各導電線71A~71Dの関係を以下に示す。
(a)第1導電線71Aは径方向の最も外方に設けられている。
(b)第2導電線71Bは径方向の内方において第1導電線71Aに隣接している。
(c)第3導電線71Cは径方向の内方において第2導電線71Bに隣接している。
(d)第4導電線71Dは径方向の内方において第3導電線71Cに隣接している。
The relationship between the conductive wires 71A to 71D in the first planar coil 80 is shown below.
(A) The first conductive wire 71A is provided on the outermost side in the radial direction.
(B) The second conductive line 71B is adjacent to the first conductive line 71A inward in the radial direction.
(C) The third conductive line 71C is adjacent to the second conductive line 71B inward in the radial direction.
(D) The fourth conductive wire 71D is adjacent to the third conductive wire 71C inward in the radial direction.
 第2平面コイル90においての各導電線72A~72Dの関係を以下に示す。
(a)第1導電線72Aは径方向の最も外方に設けられている。
(b)第2導電線72Bは径方向の内方において第1導電線72Aに隣接している。
(c)第3導電線72Cは径方向の内方において第2導電線72Bに隣接している。
(d)第4導電線72Dは径方向の内方において第3導電線72Cに隣接している。
The relationship between the conductive lines 72A to 72D in the second planar coil 90 is shown below.
(A) The first conductive wire 72A is provided on the outermost side in the radial direction.
(B) The second conductive line 72B is adjacent to the first conductive line 72A inward in the radial direction.
(C) The third conductive line 72C is adjacent to the second conductive line 72B inward in the radial direction.
(D) The fourth conductive line 72D is adjacent to the third conductive line 72C inward in the radial direction.
 図7を参照して、連続部分76の構成について説明する。 The configuration of the continuous portion 76 will be described with reference to FIG.
 以下では、連続部分76の平面視において、第1複列導電線71の延びる方向を「配線方向」とする。また、この配線方向において第1平面コイル80から第2平面コイル90に向かう方向を「第1配線方向」とし、配線方向において第2平面コイル90から第1平面コイル80に向かう方向を「第2配線方向」とする。また、第1複列導電線71の幅方向において第1配線方向に対して一方の側を「第1幅側71P」とし、第1複列導電線71の幅方向において第1配線方向に対して他方の側を「第2幅側71Q」とする。 Hereinafter, the direction in which the first double-row conductive line 71 extends in the plan view of the continuous portion 76 is referred to as a “wiring direction”. The direction from the first planar coil 80 to the second planar coil 90 in this wiring direction is referred to as a “first wiring direction”, and the direction from the second planar coil 90 to the first planar coil 80 in the wiring direction is referred to as “second wiring direction”. Wiring direction ". Further, one side of the first double-row conductive line 71 in the width direction with respect to the first wiring direction is referred to as a “first width side 71P”, and in the width direction of the first double-row conductive line 71, with respect to the first wiring direction. The other side is referred to as a “second width side 71Q”.
 連続部分76は、上記した折返部分77と、折返部分77よりも第1平面コイル80側の部分としての「第1連続部分76A」と、折返部分77よりも第2平面コイル90側の部分としての「第2連続部分76B」とを含む。即ち、折返部分77は、第1及び第2連続部分76A,76Bの間に設けられている。 The continuous portion 76 includes the folded portion 77 described above, the “first continuous portion 76A” as the portion closer to the first planar coil 80 than the folded portion 77, and the portion closer to the second planar coil 90 than the folded portion 77. "Second continuous portion 76B". That is, the folded portion 77 is provided between the first and second continuous portions 76A and 76B.
 以下では、第1導電線71Aの折り返し部分を「第1折返点77A」とする。また、第2導電線71Bの折り返し部分を「第2折返点77B」とする。また、第3導電線71Cの折り返し部分を「第3折返点77C」とする。また、第4導電線71Dの折り返し部分を「第4折返点77D」とする。 Hereinafter, the folded portion of the first conductive wire 71A is referred to as a “first folding point 77A”. The folded portion of the second conductive line 71B is referred to as a “second folding point 77B”. The folded portion of the third conductive line 71C is referred to as a “third folding point 77C”. The folded portion of the fourth conductive line 71D is referred to as a “fourth folding point 77D”.
 各折返点77A~77Dの関係を以下に示す。
(a)第1折返点77Aは最も第1配線方向側に形成されている。
(b)第2折返点77Bは第1折返点77Aよりも第2配線方向側に形成されている。
(c)第3折返点77Cは第2折返点77Bよりも第2配線方向側に形成されている。
(d)第4折返点77Dは第3折返点77Cよりも第2配線方向側に形成されている。
The relationship between the turning points 77A to 77D is shown below.
(A) The first turning point 77A is formed on the side closest to the first wiring direction.
(B) The second turning point 77B is formed closer to the second wiring direction than the first turning point 77A.
(C) The third turning point 77C is formed closer to the second wiring direction than the second turning point 77B.
(D) The fourth turning point 77D is formed closer to the second wiring direction than the third turning point 77C.
 このように、各折返点77A~77Dの形成位置は、第1幅側71Pの導電線から第2幅側71Qの導電線となるにつれて順に第1配線方向に進行している。また、折返方向が第1配線方向から第2幅側71Qに向かう方向に設定されている。すなわち、配線方向と折返方向とが互いに異なる。 Thus, the formation positions of the turning points 77A to 77D proceed in the first wiring direction in order from the conductive line on the first width side 71P to the conductive line on the second width side 71Q. The folding direction is set to a direction from the first wiring direction toward the second width side 71Q. That is, the wiring direction and the folding direction are different from each other.
 連続部分76においては、各導電線71A~71Dが次のように積層されている。
(a)第4導電線71Dは、第4折返点77Dよりも第2連続部分76B側において第3導電線71C、第2導電線71B、および第1導電線71A上を通過する。
(b)第3導電線71Cは、第3折返点77Cよりも第2連続部分76B側において第2導電線71Bおよび第1導電線71A上を通過する。
(c)第2導電線71Bは、第2折返点77Bよりも第2連続部分76B側において第1導電線71A上を通過する。
In the continuous portion 76, the conductive lines 71A to 71D are laminated as follows.
(A) The fourth conductive line 71D passes over the third conductive line 71C, the second conductive line 71B, and the first conductive line 71A on the second continuous portion 76B side from the fourth turning point 77D.
(B) The third conductive line 71C passes over the second conductive line 71B and the first conductive line 71A on the second continuous portion 76B side from the third turning point 77C.
(C) The second conductive line 71B passes over the first conductive line 71A on the second continuous portion 76B side from the second turning point 77B.
 第1連続部分76Aにおいての第1複列導電線71の配列関係を以下に示す。
(a)第1導電線71Aは径方向の最も外方に設けられている。
(b)第2導電線71Bは径方向の内方において第1導電線71Aに隣接している。
(c)第3導電線71Cは径方向の内方において第2導電線71Bに隣接している。
(d)第4導電線71Dは径方向の内方において第3導電線71Cに隣接している。
The arrangement relationship of the first double-row conductive lines 71 in the first continuous portion 76A is shown below.
(A) The first conductive wire 71A is provided on the outermost side in the radial direction.
(B) The second conductive line 71B is adjacent to the first conductive line 71A inward in the radial direction.
(C) The third conductive line 71C is adjacent to the second conductive line 71B inward in the radial direction.
(D) The fourth conductive wire 71D is adjacent to the third conductive wire 71C inward in the radial direction.
 第2連続部分76Bにおいての第1複列導電線71の配列関係を以下に示す。
(a)第1導電線71Aは径方向の最も内方に設けられている。
(b)第2導電線71Bは径方向の外方において第1導電線71Aに隣接している。
(c)第3導電線71Cは径方向の外方において第2導電線71Bに隣接している。
(d)第4導電線71Dは径方向の外方において第3導電線71Cに隣接している。
The arrangement relationship of the first double-row conductive lines 71 in the second continuous portion 76B is shown below.
(A) The first conductive wire 71A is provided at the innermost position in the radial direction.
(B) The second conductive wire 71B is adjacent to the first conductive wire 71A on the outer side in the radial direction.
(C) The third conductive wire 71C is adjacent to the second conductive wire 71B on the outer side in the radial direction.
(D) The fourth conductive line 71D is adjacent to the third conductive line 71C on the outer side in the radial direction.
 第1複列導電線71と第2複列導電線72との接続関係を以下に示す。
(a)第1導電線71Aと第4導電線72Dとが互いに接続されている。
(b)第2導電線71Bと第3導電線72Cとが互いに接続されている。
(c)第3導電線71Cと第2導電線72Bとが互いに接続されている。
(d)第4導電線71Dと第1導電線72Aとが互いに接続されている。
The connection relationship between the first double-row conductive line 71 and the second double-row conductive line 72 is shown below.
(A) The first conductive line 71A and the fourth conductive line 72D are connected to each other.
(B) The second conductive line 71B and the third conductive line 72C are connected to each other.
(C) The third conductive line 71C and the second conductive line 72B are connected to each other.
(D) The fourth conductive line 71D and the first conductive line 72A are connected to each other.
 (第2実施形態の効果)
 第2実施形態の非接触式給電装置1は、第1実施形態の(1)~(3)の利点に準じた利点に加えて以下の(4)の利点を有する。
(Effect of 2nd Embodiment)
The non-contact power feeding device 1 of the second embodiment has the following advantage (4) in addition to the advantages according to the advantages (1) to (3) of the first embodiment.
 (4)非接触式給電装置1においては、別々の複列導電線71,72により第1平面コイル80および第2平面コイル90が構成されている。この構成によれば、各平面コイル80,90を製造する装置としてフライヤー方式の巻線機を用いることができる。このため、アルファ巻き専用の巻線機を用いなくともアルファ巻き構造を有する2次側コイルモジュール70を製造することが可能となる。 (4) In the non-contact type power feeding device 1, the first planar coil 80 and the second planar coil 90 are configured by separate double-row conductive wires 71 and 72. According to this configuration, a flyer type winding machine can be used as an apparatus for manufacturing the planar coils 80 and 90. Therefore, it is possible to manufacture the secondary coil module 70 having the alpha winding structure without using a winding machine dedicated to alpha winding.
 (その他の実施形態)
 本発明の実施態様は、第1および第2実施形態の内容に限られるものではなく、例えば以下のように変更することもできる。また、以下の変形例は対応する実施形態についてのみ適用されるものではなく、異なる変形例同士を互いに組み合わせて実施することもできる。
(Other embodiments)
The embodiment of the present invention is not limited to the contents of the first and second embodiments, and can be modified as follows, for example. Further, the following modifications are not applied only to the corresponding embodiments, and different modifications can be combined with each other.
 ・第1実施形態(図2)では、連続部分45に1つの折返部分46が形成されているが、連続部分45に複数の折返部分46を設けることもできる。 In the first embodiment (FIG. 2), one folded portion 46 is formed in the continuous portion 45, but a plurality of folded portions 46 may be provided in the continuous portion 45.
 ・第1実施形態(図2)では、4本の導電線により構成される複列導電線43を用いているが、2本、3本、または5本以上の導電線により構成される複列導電線を用いることもできる。 In the first embodiment (FIG. 2), the double-row conductive wire 43 constituted by four conductive wires is used, but the double row constituted by two, three, or five or more conductive wires Conductive wires can also be used.
 ・第1実施形態(図2)では、第1平面コイル部分50の第1内周端部52および第2平面コイル部分60の第2内周端部62に連続部分45が設けられているが、第1平面コイル部分50の第1外周端部53および第2平面コイル部分60の第2外周端部63に連続部分45を設けることもできる。 In the first embodiment (FIG. 2), the continuous portion 45 is provided at the first inner peripheral end portion 52 of the first planar coil portion 50 and the second inner peripheral end portion 62 of the second planar coil portion 60. The continuous portion 45 may be provided at the first outer peripheral end portion 53 of the first planar coil portion 50 and the second outer peripheral end portion 63 of the second planar coil portion 60.
 ・第1実施形態(図3)では、第2配線方向に対して第1幅側43Pに向けて折返部分46が形成されているが、第2配線方向に対して第2幅側43Qに向けて折返部分46を形成することもできる。 In the first embodiment (FIG. 3), the folded portion 46 is formed toward the first width side 43P with respect to the second wiring direction, but is directed toward the second width side 43Q with respect to the second wiring direction. Thus, the folded portion 46 can be formed.
 ・第1実施形態(図2)では、第1平面コイル部分50が左巻きされた部分として構成され、また第2平面コイル部分60が右巻きされた部分として構成されているが、各平面コイル部分50,60の巻き回しの方向をそれぞれ反対の方向に変更することもできる。 In the first embodiment (FIG. 2), the first planar coil portion 50 is configured as a left-handed portion and the second planar coil portion 60 is configured as a right-handed portion. The winding directions of 50 and 60 can also be changed to opposite directions.
 ・第2実施形態(図6)では、連続部分76に1つの折返部分77が形成されているが、連続部分76に複数の折返部分77を設けることもできる。 In the second embodiment (FIG. 6), one folded portion 77 is formed in the continuous portion 76, but a plurality of folded portions 77 may be provided in the continuous portion 76.
 ・第2実施形態(図6)では、4本の導電線により構成される第1複列導電線71が用いられているが、この複列導電線71に代えて、2本、3本、または5本以上の導電線により構成される複列導電線を用いることもできる。また、第2複列導電線72についても同様の変更を適用することができる。 In the second embodiment (FIG. 6), the first double-row conductive line 71 composed of four conductive lines is used, but instead of the double-row conductive line 71, two, three, Alternatively, a double-row conductive line composed of five or more conductive lines can be used. The same change can be applied to the second double-row conductive line 72.
 ・第2実施形態(図6)では、第1平面コイル80の第1内周端部82および第2平面コイル90の第2内周端部92を半田78で接続することにより連続部分76が形成されているが、第1平面コイル80の第1外周端部83および第2平面コイル90の第2外周端部93を半田78で接続することにより連続部分76を形成することもできる。 In the second embodiment (FIG. 6), the continuous portion 76 is formed by connecting the first inner peripheral end portion 82 of the first planar coil 80 and the second inner peripheral end portion 92 of the second planar coil 90 with the solder 78. Although formed, the continuous portion 76 can be formed by connecting the first outer peripheral end portion 83 of the first planar coil 80 and the second outer peripheral end portion 93 of the second planar coil 90 with solder 78.
 ・第2実施形態(図6)では、第2配線方向に対して第1幅側71Pに向けて折返部分77が形成されているが、第2配線方向に対して第2幅側71Qに向けて折返部分77を形成することもできる。 In the second embodiment (FIG. 6), the folded portion 77 is formed toward the first width side 71P with respect to the second wiring direction, but is directed toward the second width side 71Q with respect to the second wiring direction. Thus, the folded portion 77 can be formed.
 ・第2実施形態(図6)では、第1平面コイル80の第1内周端部82に折返部分77が設けられているが、第2平面コイル90の第2内周端部92に折返部分77を設けることもできる。また、第1内周端部82の折返部分77に加えて第2内周端部92に折返部分77を設けることもできる。 In the second embodiment (FIG. 6), the folded portion 77 is provided at the first inner peripheral end 82 of the first planar coil 80, but the folded portion 77 is folded at the second inner circumferential end 92 of the second planar coil 90. A portion 77 can also be provided. In addition to the folded portion 77 of the first inner peripheral end portion 82, the folded portion 77 can be provided at the second inner peripheral end portion 92.
 ・第2実施形態(図6)では、第1平面コイル80として左巻きされたコイルが用いられ、また第2平面コイル90として右巻きされたコイルが用いられているが、各平面コイル80,90の巻き回しの方向をそれぞれ反対の方向に変更することもできる。 In the second embodiment (FIG. 6), a left-handed coil is used as the first planar coil 80, and a right-handed coil is used as the second planar coil 90. It is also possible to change the winding direction of each to the opposite direction.
 ・第2実施形態(図6)では、第1平面コイル80の第1内周端部82および第2平面コイル90の第2内周端部92が半田により接続されているが、図8(a)(b)に示されるコイル接続部材100により第1内周端部82と第2内周端部92とを接続することもできる。 In the second embodiment (FIG. 6), the first inner peripheral end 82 of the first planar coil 80 and the second inner peripheral end 92 of the second planar coil 90 are connected by soldering, but FIG. It is also possible to connect the first inner peripheral end portion 82 and the second inner peripheral end portion 92 by the coil connecting member 100 shown in a) and (b).
 図8(a)に示されるように、コイル接続部材100は、4つの導電ケーブル、すなわち第1ケーブル110、第2ケーブル120、第3ケーブル130、および第4ケーブル140を含む。各ケーブル110~140内には銅線101が配線されている。ここでは、コイル接続部材100としてフレキシブル回路基板が用いられる。なお、フレキシブル回路基板に代えてフレキシブルフラットケーブルを用いることもできる。 As shown in FIG. 8A, the coil connection member 100 includes four conductive cables, that is, a first cable 110, a second cable 120, a third cable 130, and a fourth cable 140. A copper wire 101 is wired in each of the cables 110-140. Here, a flexible circuit board is used as the coil connection member 100. A flexible flat cable may be used instead of the flexible circuit board.
 図8(b)に示されるように、コイル接続部材100は、折返部分150を含み、第1平面コイル80の第1内周端部82および第2平面コイル90の第2内周端部92のそれぞれに対して半田により接続される。 As shown in FIG. 8B, the coil connection member 100 includes a folded portion 150, and includes a first inner peripheral end portion 82 of the first planar coil 80 and a second inner peripheral end portion 92 of the second planar coil 90. These are connected by soldering.
 コイル接続部材100と第1平面コイル80との接続の関係を以下に示す。
(a)第1ケーブル110の第1端部110Aに第1導電線71Aが接続される。
(b)第2ケーブル120の第1端部120Aに第2導電線71Bが接続される。
(c)第3ケーブル130の第1端部130Aに第3導電線71Cが接続される。
(d)第4ケーブル140の第1端部140Aに第4導電線71Dが接続される。
The connection relationship between the coil connection member 100 and the first planar coil 80 is shown below.
(A) The first conductive wire 71 </ b> A is connected to the first end 110 </ b> A of the first cable 110.
(B) The second conductive wire 71B is connected to the first end 120A of the second cable 120.
(C) The third conductive wire 71 </ b> C is connected to the first end portion 130 </ b> A of the third cable 130.
(D) The fourth conductive line 71 </ b> D is connected to the first end 140 </ b> A of the fourth cable 140.
 コイル接続部材100と第2平面コイル90との接続の関係を以下に示す。
(a)第1ケーブル110の第2端部110Bに第4導電線72Dが接続される。
(b)第2ケーブル120の第2端部120Bに第3導電線72Cが接続される。
(c)第3ケーブル130の第2端部130Bに第2導電線72Bが接続される。
(d)第4ケーブル140の第2端部140Bに第1導電線72Aが接続される。
The connection relationship between the coil connection member 100 and the second planar coil 90 is shown below.
(A) The fourth conductive line 72 </ b> D is connected to the second end 110 </ b> B of the first cable 110.
(B) The third conductive wire 72 </ b> C is connected to the second end 120 </ b> B of the second cable 120.
(C) The second conductive wire 72 </ b> B is connected to the second end 130 </ b> B of the third cable 130.
(D) The first conductive line 72 </ b> A is connected to the second end 140 </ b> B of the fourth cable 140.
 ここで、第1ケーブル110の折り返し部分を「第1折返点150A」とする。また、第2ケーブル120の折り返し部分を「第2折返点150B」とする。また、第3ケーブル130の折り返し部分を「第3折返点150C」とする。また、第4ケーブル140の折り返し部分を「第4折返点150D」とする。また、コイル接続部材100の幅方向において第1配線方向に対して一方の側を「第1幅側100P」とし、コイル接続部材100の幅方向において第1配線方向に対して他方の側を「第2幅側100Q」とする。 Here, the folded portion of the first cable 110 is defined as “first folding point 150A”. Further, the folded portion of the second cable 120 is referred to as a “second folding point 150B”. Further, the folded portion of the third cable 130 is defined as a “third folding point 150C”. Further, the folded portion of the fourth cable 140 is referred to as a “fourth folding point 150D”. Further, in the width direction of the coil connection member 100, one side with respect to the first wiring direction is defined as “first width side 100 </ b> P”, and the other side with respect to the first wiring direction in the width direction of the coil connection member 100 is defined as “ The second width side 100Q ”.
 各折返点150A~150Dの関係を以下に示す。
(a)第1折返点150Aは最も第1配線方向側に位置する。
(b)第2折返点150Bは第1折返点150Aよりも第1配線方向側に位置する。
(c)第3折返点150Cは第2折返点150Bよりも第1配線方向側に位置する。
(d)第4折返点150Dは第3折返点150Cよりも第1配線方向側に位置する。
The relationship between the turning points 150A to 150D is shown below.
(A) The first turning point 150A is located closest to the first wiring direction.
(B) The second turning point 150B is located closer to the first wiring direction than the first turning point 150A.
(C) The third turning point 150C is located closer to the first wiring direction than the second turning point 150B.
(D) The fourth turning point 150D is located closer to the first wiring direction than the third turning point 150C.
 このように、各折返点150A~150Dの形成位置は、第2幅側100Qの導電線から第1幅側100Pの導電線となるにつれて順に第1配線方向に進行している。また、折返方向が第1配線方向から第1幅側100Pに向かう方向に設定されている。すなわち、配線方向と折返方向とが互いに異なる。 Thus, the formation positions of the turning points 150A to 150D progress in the first wiring direction in order from the conductive line on the second width side 100Q to the conductive line on the first width side 100P. Further, the folding direction is set to a direction from the first wiring direction toward the first width side 100P. That is, the wiring direction and the folding direction are different from each other.
 コイル接続部材100においては、各ケーブルが次のように積層されている。
(a)第1ケーブル110は、第1折返点150Aよりも第2平面コイル90側において第2ケーブル120、第3ケーブル130、および第4ケーブル140上を通過する。
(b)第2ケーブル120は、第2折返点150Bよりも第2平面コイル90側において第3ケーブル130および第4ケーブル140上を通過する。
(c)第3ケーブル130は、第3折返点150Cよりも第2平面コイル90側において第4ケーブル140上を通過する。
In the coil connection member 100, each cable is laminated as follows.
(A) The first cable 110 passes over the second cable 120, the third cable 130, and the fourth cable 140 on the second planar coil 90 side from the first turning point 150 </ b> A.
(B) The second cable 120 passes over the third cable 130 and the fourth cable 140 on the second planar coil 90 side from the second turning point 150B.
(C) The third cable 130 passes over the fourth cable 140 on the second planar coil 90 side with respect to the third turning point 150C.
 ・図8(a)(b)に示される上記変形例では、コイル接続部材100により第1平面コイル80の第1内周端部82と第2平面コイル90の第2内周端部92とが互いに接続されているが、コイル接続部材100により第1外周端部83と第2外周端部93とを互いに接続することもできる。 8 (a) and 8 (b), the coil connecting member 100 causes the first inner peripheral end portion 82 of the first planar coil 80 and the second inner peripheral end portion 92 of the second planar coil 90 to be Are connected to each other, but the first outer peripheral end 83 and the second outer peripheral end 93 can also be connected to each other by the coil connecting member 100.
 ・第1および第2実施形態(図2および図6)では、複列導電線43、第1複列導電線71、および第2複列導電線72として、リッツ線が用いられているが、これに代えて、単線の銅線およびこの銅線を被覆する被覆体により構成される導電線を用いることもできる。 In the first and second embodiments (FIGS. 2 and 6), litz wires are used as the double row conductive wires 43, the first double row conductive wires 71, and the second double row conductive wires 72. It can replace with this and can also use the conductive wire comprised with the coating body which coat | covers a single-wire copper wire and this copper wire.
 ・第1および第2実施形態(図2および図6)では、複列導電線43、第1複列導電線71、および第2複列導電線72として、断面丸型の導電線が用いられているが、これに代えて、断面矩形状の導電線を用いることもできる。 In the first and second embodiments (FIGS. 2 and 6), the double-row conductive wire 43, the first double-row conductive wire 71, and the second double-row conductive wire 72 are conductive wires having a round cross section. However, instead of this, a conductive wire having a rectangular cross section may be used.
 ・第1および第2実施形態(図1)では、2次側コイルモジュール40,70の磁性体42,73として平板状のものが用いられているが、1次側コイルモジュール30の磁性体32と同じ形状の磁性体を用いることもできる。 -In 1st and 2nd embodiment (FIG. 1), although the flat thing is used as the magnetic bodies 42 and 73 of the secondary side coil modules 40 and 70, the magnetic body 32 of the primary side coil module 30 is used. It is also possible to use a magnetic body having the same shape as the above.
 ・第1および第2実施形態(図1)では、1次側コイルモジュール30から送信された電力および信号を2次側コイルモジュール40(70)により受ける構成が用いられているが、これを次のように変更することもできる。すなわち、電力を受けるための第1の2次側コイルモジュール40(70)と、信号を受けるための第2の2次側コイルモジュール40(70)とを設けることもできる。この場合、送電装置10においては、第1及び第2の2次側コイルモジュール40(70)にそれぞれ対応する第1及び第2の1次側コイルモジュール30が設けられる。 -In 1st and 2nd embodiment (FIG. 1), the structure which receives the electric power and signal which were transmitted from the primary side coil module 30 by the secondary side coil module 40 (70) is used. It can also be changed as follows. That is, a first secondary coil module 40 (70) for receiving electric power and a second secondary coil module 40 (70) for receiving signals can be provided. In this case, in the power transmission device 10, the first and second primary coil modules 30 corresponding to the first and second secondary coil modules 40 (70), respectively, are provided.
 ・第1および第2実施形態(図1)において、スマートフォン、携帯情報端末、ポータブルオーディオプレーヤー、ICレコーダー、デジタルカメラ、電動歯ブラシ、およびシェーバーの少なくとも1つを受電装置20として用いることもできる。この場合には、送電装置10の大きさがこれらの受電装置に対応した大きさに変更される。 In the first and second embodiments (FIG. 1), at least one of a smartphone, a portable information terminal, a portable audio player, an IC recorder, a digital camera, an electric toothbrush, and a shaver can be used as the power receiving device 20. In this case, the size of the power transmission device 10 is changed to a size corresponding to these power reception devices.

Claims (8)

  1.  並行する複数の導電線により構成される複列導電線を備えたコイルモジュールであって、
     前記複列導電線を一方向に巻回してなる第1平面コイル部分と、
     前記第1平面コイル部分に積層され、前記複列導電線を前記一方向とは反対の方向に巻回してなる第2平面コイル部分と、
     前記第1及び第2平面コイル部分の内周側または外周側に設けられ、前記第1平面コイル部分と前記第2平面コイル部分とを連続させる連続部分と、
     前記連続部分に設けられ、前記複列導電線を折り返してなる折返部分と、を備え、
     前記連続部分の平面視において、前記複列導電線の延びる方向を「配線方向」とし、前記配線方向において前記第1平面コイル部分から前記第2平面コイル部分に向かう方向を「第1配線方向」とし、前記配線方向において前記第2平面コイル部分から前記第1平面コイル部分に向かう方向を「第2配線方向」とし、前記第1配線方向に対して前記複列導電線の幅方向における一方の側を「第1幅側」とし、前記第1配線方向に対して前記複列導電線の幅方向における他方の側を「第2幅側」とし、前記折返部分において前記複列導電線が折り返される方向を「折返方向」として、前記配線方向と前記折返方向とが互いに異なる方向であり、
     前記折返方向が前記第1配線方向から前記第2幅側に向かう方向であり、
     前記折返部分において前記複数の導電線が前記配線方向の互いに異なる位置で折り返されており、
     前記折返部分において前記複数の導電線の各々が折り返されている部分を「折返点」として、前記複数の導電線の各々の折返点が、前記第1幅側の導電線から前記第2幅側の導電線の順に前記第1配線方向に沿って位置することを特徴とするコイルモジュール。
    A coil module having a double row conductive wire composed of a plurality of parallel conductive wires,
    A first planar coil portion formed by winding the double row conductive wires in one direction;
    A second planar coil portion that is laminated on the first planar coil portion and is formed by winding the double-row conductive wire in a direction opposite to the one direction;
    A continuous portion that is provided on an inner peripheral side or an outer peripheral side of the first and second planar coil portions and that connects the first planar coil portion and the second planar coil portion;
    A folded portion provided on the continuous portion and formed by folding the double-row conductive line;
    In the plan view of the continuous portion, the extending direction of the double-row conductive lines is defined as a “wiring direction”, and the direction from the first planar coil portion to the second planar coil portion in the wiring direction is referred to as a “first wiring direction”. The direction from the second planar coil portion to the first planar coil portion in the wiring direction is referred to as a “second wiring direction”, and one direction in the width direction of the double row conductive lines with respect to the first wiring direction The other side in the width direction of the double-row conductive line with respect to the first wiring direction is the second width side with respect to the first wiring direction, and the double-row conductive line is folded at the folded portion. The direction in which the wiring direction is the “folding direction”, the wiring direction and the folding direction are different from each other,
    The folding direction is a direction from the first wiring direction toward the second width side;
    In the folded portion, the plurality of conductive lines are folded at different positions in the wiring direction,
    A portion where each of the plurality of conductive lines is folded at the folded portion is referred to as a “folding point”, and each folding point of the plurality of conductive lines extends from the conductive line on the first width side to the second width side. The coil module is located along the first wiring direction in the order of the conductive wires.
  2.  並行する複数の導電線により構成される複列導電線を備えたコイルモジュールであって、
     前記複列導電線を一方向に巻回してなる第1平面コイル部分と、
     前記第1平面コイル部分に積層され、前記複列導電線を前記一方向とは反対の方向に巻回してなる第2平面コイル部分と、
     前記第1及び第2平面コイル部分の内周側または外周側に設けられ、前記第1平面コイル部分と前記第2平面コイル部分とを連続させる連続部分と、
     前記連続部分に設けられ、前記複列導電線を折り返してなる折返部分と、を備え、
     前記第1平面コイル部分および前記第2平面コイル部分が積層された部分の厚さを「積層部分厚さ」として、前記連続部分の厚さが前記積層部分厚さと同じ大きさとなるように前記連続部分において前記折返部分が形成されていることを特徴とするコイルモジュール。
    A coil module having a double row conductive wire composed of a plurality of parallel conductive wires,
    A first planar coil portion formed by winding the double row conductive wires in one direction;
    A second planar coil portion that is laminated on the first planar coil portion and is formed by winding the double-row conductive wire in a direction opposite to the one direction;
    A continuous portion that is provided on an inner peripheral side or an outer peripheral side of the first and second planar coil portions and that connects the first planar coil portion and the second planar coil portion;
    A folded portion provided on the continuous portion and formed by folding the double-row conductive line;
    The thickness of the portion where the first planar coil portion and the second planar coil portion are laminated is defined as the “laminate portion thickness”, and the continuous portion has the same thickness as the laminated portion thickness. The coil module, wherein the folded portion is formed in the portion.
  3.  請求項1または2に記載のコイルモジュールにおいて、
     前記連続部分が前記第1及び第2平面コイル部分の内周側に設けられていることを特徴とするコイルモジュール。
    The coil module according to claim 1 or 2,
    The coil module, wherein the continuous portion is provided on an inner peripheral side of the first and second planar coil portions.
  4.  請求項1または2に記載のコイルモジュールにおいて、
     前記第1平面コイル部分および前記第2平面コイル部分は個別の平面コイルを用いて構成されており、
     前記第1平面コイル部分は第1内周端部と第1外周端部とを含み、
     前記第2平面コイル部分は第2内周端部と第2外周端部とを含み、
     前記連続部分は、前記第1内周端部と前記第2内周端部とが接続される部分、または前記第1外周端部と前記第2外周端部とが接続される部分により構成されることを特徴とするコイルモジュール。
    The coil module according to claim 1 or 2,
    The first planar coil portion and the second planar coil portion are configured using individual planar coils,
    The first planar coil portion includes a first inner peripheral end and a first outer peripheral end,
    The second planar coil portion includes a second inner peripheral end and a second outer peripheral end,
    The continuous portion is constituted by a portion where the first inner peripheral end portion and the second inner peripheral end portion are connected, or a portion where the first outer peripheral end portion and the second outer peripheral end portion are connected. The coil module characterized by the above-mentioned.
  5.  請求項1または2に記載のコイルモジュールにおいて、
     前記第1平面コイル部分および前記第2平面コイル部分は個別の平面コイルを用いて構成されており、
     前記コイルモジュールは、前記第1平面コイル部分と前記第2平面コイル部分とを接続するコイル接続部材を更に備えており、
     前記第1平面コイル部分は第1内周端部と第1外周端部とを含み、
     前記第2平面コイル部分は第2内周端部と第2外周端部とを含み、
     前記コイル接続部材により前記第1内周端部と前記第2内周端部とが接続される、または前記コイル接続部材により前記第1外周端部と前記第2外周端部とが接続されることを特徴とするコイルモジュール。
    The coil module according to claim 1 or 2,
    The first planar coil portion and the second planar coil portion are configured using individual planar coils,
    The coil module further includes a coil connection member that connects the first planar coil portion and the second planar coil portion,
    The first planar coil portion includes a first inner peripheral end and a first outer peripheral end,
    The second planar coil portion includes a second inner peripheral end and a second outer peripheral end,
    The first inner peripheral end and the second inner peripheral end are connected by the coil connecting member, or the first outer peripheral end and the second outer peripheral end are connected by the coil connecting member. A coil module characterized by that.
  6.  請求項1または2に記載のコイルモジュールはさらに、
     前記第1平面コイル部分において前記第2平面コイル部分が積層される側とは反対側に設けられた磁性体を備えることを特徴とするコイルモジュール。
    The coil module according to claim 1 or 2, further
    A coil module comprising a magnetic body provided on a side opposite to a side on which the second planar coil portion is laminated in the first planar coil portion.
  7.  送電装置を備える非接触式給電装置の受電装置であって、
     前記送電装置から伝送される電力を受け取る受電コイルモジュールを備え、前記受電コイルモジュールが請求項1または2に記載のコイルモジュールによって構成されていることを特徴とする非接触式給電装置の受電装置。
    A power receiving device of a non-contact power feeding device including a power transmitting device,
    A power receiving device for a non-contact power feeding device, comprising: a power receiving coil module that receives power transmitted from the power transmitting device, wherein the power receiving coil module is configured by the coil module according to claim 1.
  8.  非接触式給電装置であって、
     送電装置と、
     前記送電装置から伝送される電力を受け取る受電装置とを備え、
     前記受電装置が請求項7に記載の受電装置によって構成されていることを特徴とする非接触式給電装置。
    A non-contact power feeding device,
    A power transmission device;
    A power receiving device that receives power transmitted from the power transmitting device,
    A non-contact power feeding device, wherein the power receiving device is configured by the power receiving device according to claim 7.
PCT/JP2012/053857 2011-03-22 2012-02-17 Coil module, electricity-receiving device of non-contact electricity supply device provided with same, and non-contact electricity supply device provided with same WO2012127953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011063306A JP2012199432A (en) 2011-03-22 2011-03-22 Coil module, power reception device for non-contact type power supply device having the same, and non-contact type power supply device
JP2011-063306 2011-03-22

Publications (1)

Publication Number Publication Date
WO2012127953A1 true WO2012127953A1 (en) 2012-09-27

Family

ID=46879116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053857 WO2012127953A1 (en) 2011-03-22 2012-02-17 Coil module, electricity-receiving device of non-contact electricity supply device provided with same, and non-contact electricity supply device provided with same

Country Status (3)

Country Link
JP (1) JP2012199432A (en)
TW (1) TW201246743A (en)
WO (1) WO2012127953A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014062577A3 (en) * 2012-10-19 2014-11-27 Qualcomm Incorporated System and method for inductance compensation in wireless power transfer
JP2017103335A (en) * 2015-12-01 2017-06-08 株式会社Ihi Coil device
WO2019141709A1 (en) * 2018-01-22 2019-07-25 Robert Bosch Gmbh Device for wirelessly transmitting electric energy, and production method
JP2020053522A (en) * 2018-09-26 2020-04-02 矢崎総業株式会社 Power transmission unit
CN112292741A (en) * 2018-06-27 2021-01-29 三星电子株式会社 Stacked coil structure and electronic device comprising same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9973023B2 (en) 2012-11-29 2018-05-15 Provenance Asset Group Llc Inductive energy transfer coil structure
KR101581934B1 (en) * 2015-05-27 2015-12-31 주식회사 태창이노베이션 Coil for cordless charging with multiple layer
EP3118867A1 (en) * 2015-07-17 2017-01-18 ABB Technology AG Inductive power transfer system
JP6971062B2 (en) * 2017-06-09 2021-11-24 昭和電線ケーブルシステム株式会社 Manufacturing method of coil for non-contact power supply device and coil for non-contact power supply device
CN109326424B (en) * 2018-10-08 2021-08-13 上海安费诺永亿通讯电子有限公司 Coil, wireless power transmitter and receiver, near field communicator, and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123510U (en) * 1991-03-07 1992-11-09 古河電気工業株式会社 Thin coil for high frequency, inductor and thin transformer using it
WO1993016444A1 (en) * 1992-02-18 1993-08-19 Citizen Watch Co., Ltd. Data carrier system
JP2001135532A (en) * 1999-08-26 2001-05-18 Fdk Corp Multichannel uniform output type transformer
JP2003510806A (en) * 1999-09-17 2003-03-18 インフィネオン テクノロジース アクチエンゲゼルシャフト Monolithic integrated transformer
JP2010016235A (en) * 2008-07-04 2010-01-21 Panasonic Electric Works Co Ltd Plane coil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123510U (en) * 1991-03-07 1992-11-09 古河電気工業株式会社 Thin coil for high frequency, inductor and thin transformer using it
WO1993016444A1 (en) * 1992-02-18 1993-08-19 Citizen Watch Co., Ltd. Data carrier system
JP2001135532A (en) * 1999-08-26 2001-05-18 Fdk Corp Multichannel uniform output type transformer
JP2003510806A (en) * 1999-09-17 2003-03-18 インフィネオン テクノロジース アクチエンゲゼルシャフト Monolithic integrated transformer
JP2010016235A (en) * 2008-07-04 2010-01-21 Panasonic Electric Works Co Ltd Plane coil

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014062577A3 (en) * 2012-10-19 2014-11-27 Qualcomm Incorporated System and method for inductance compensation in wireless power transfer
CN104755312A (en) * 2012-10-19 2015-07-01 高通股份有限公司 System and method for inductance compensation in wireless power transfer
US9376026B2 (en) 2012-10-19 2016-06-28 Qualcomm Incorporated System and method for inductance compensation in wireless power transfer
CN104755312B (en) * 2012-10-19 2017-03-08 高通股份有限公司 System and method for the inductance compensation in wireless power transmission
CN108140478A (en) * 2015-12-01 2018-06-08 株式会社Ihi Coil device
WO2017094367A1 (en) * 2015-12-01 2017-06-08 株式会社Ihi Coil device
JP2017103335A (en) * 2015-12-01 2017-06-08 株式会社Ihi Coil device
EP3385963A4 (en) * 2015-12-01 2019-07-31 IHI Corporation Coil device
US10726989B2 (en) 2015-12-01 2020-07-28 Ihi Corporation Coil device
CN108140478B (en) * 2015-12-01 2020-11-03 株式会社Ihi Coil device
WO2019141709A1 (en) * 2018-01-22 2019-07-25 Robert Bosch Gmbh Device for wirelessly transmitting electric energy, and production method
CN111602316A (en) * 2018-01-22 2020-08-28 罗伯特·博世有限公司 Apparatus for wireless transmission of electrical energy, method of manufacture
CN112292741A (en) * 2018-06-27 2021-01-29 三星电子株式会社 Stacked coil structure and electronic device comprising same
CN112292741B (en) * 2018-06-27 2023-02-17 三星电子株式会社 Stacked coil structure and electronic device comprising same
JP2020053522A (en) * 2018-09-26 2020-04-02 矢崎総業株式会社 Power transmission unit

Also Published As

Publication number Publication date
JP2012199432A (en) 2012-10-18
TW201246743A (en) 2012-11-16

Similar Documents

Publication Publication Date Title
WO2012127953A1 (en) Coil module, electricity-receiving device of non-contact electricity supply device provided with same, and non-contact electricity supply device provided with same
WO2013046533A1 (en) Planar coil and coil module, power reception apparatus, and contactless power transmission apparatus provided with same
US20180175645A1 (en) Wireless charging module having a wireless charging coil and a magnetic sheet
US8207807B2 (en) Coil
JP4835786B1 (en) Non-contact charging module and non-contact charging device
JP6017700B2 (en) Inductive energy transfer coil structure
WO2009081934A1 (en) Plane coil, and non-contact power transmission device using the same
WO2010001749A1 (en) Plane coil
KR20130110397A (en) Thin film coil and electronic device having the same
US20110285492A1 (en) Ferrite core coil
JP6361367B2 (en) Power receiving device and power feeding device
JP4705989B2 (en) Non-contact power transmission and non-contact data transmission method and apparatus
CN108257772A (en) Transformer with the shielded layer for reducing common-mode noise
JP6056100B2 (en) Spiral coil
JP4835800B1 (en) Non-contact charging module and non-contact charging device
JP2016192489A (en) Coil device and manufacturing method for coil device
CN104376955B (en) Lattice coil and method, inductor, transformer, wireless charger, relay
US20160268037A1 (en) Stationary Induction Electric Apparatus and Method for Making the Same
JP2008078194A (en) Coil component
EP3609051B1 (en) Power transmission unit
WO2012127936A1 (en) Coil module, power receiving device of non-contact power supply device provided with same, and non-contact power supply device provided with same
JP2012114222A (en) Coil module and coil unit including the same
JP2007305820A (en) Laminated flat coil
JP4900524B1 (en) Non-contact charging module and non-contact charging device
CN112216481A (en) Magnetic induction coil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761096

Country of ref document: EP

Kind code of ref document: A1