WO2012127915A1 - Transparent conductive film, substrate having transparent conductive film, and organic electroluminescent element using same and manufacturing method for same - Google Patents

Transparent conductive film, substrate having transparent conductive film, and organic electroluminescent element using same and manufacturing method for same Download PDF

Info

Publication number
WO2012127915A1
WO2012127915A1 PCT/JP2012/052693 JP2012052693W WO2012127915A1 WO 2012127915 A1 WO2012127915 A1 WO 2012127915A1 JP 2012052693 W JP2012052693 W JP 2012052693W WO 2012127915 A1 WO2012127915 A1 WO 2012127915A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
substrate
transparent
photocatalyst
Prior art date
Application number
PCT/JP2012/052693
Other languages
French (fr)
Japanese (ja)
Inventor
横川 弘
太祐 松井
辻本 光
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012127915A1 publication Critical patent/WO2012127915A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/465Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific shape
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/479Metals

Definitions

  • the present invention relates to a transparent conductive film used for various optical devices, a substrate with a transparent conductive film, an organic electroluminescence element using the same, and a method for producing the same.
  • organic EL element is an organic light emitting layer sandwiched between a pair of electrodes formed on a transparent substrate. It passes through the electrode and is taken out from the substrate side.
  • organic EL element a material having conductivity and transparency is used as an electrode material on the substrate side, and indium tin oxide (hereinafter referred to as ITO) is widely used.
  • ITO indium tin oxide
  • electrodes using ITO as a material are vulnerable to bending and physical stress and are fragile.
  • high vapor deposition temperature and / or high annealing temperature are needed, and there exists a possibility that it may become high cost in manufacture of the device using an organic EL element.
  • Such a substrate 101 with a transparent conductive film is subjected to a patterning process on the transparent conductive film 103 so that power can be efficiently supplied to a functional layer such as an organic light emitting layer formed on the substrate 101. May be.
  • a method such as photoetching, transfer, or pattern printing is generally used.
  • the above-described photoetching includes a photoresist coating process, an exposure process, a developing process, an etching process of the transparent conductive film 103, and the like.
  • the transfer includes a step of forming the transparent conductive film 103 in a predetermined pattern on another substrate, a step of copying the transparent conductive film 103 from the other substrate onto the substrate 102, and the like.
  • the pattern printing includes a step of providing the transparent conductive film 103 in the concave portion formed in the predetermined pattern of the original plate, a step of pressing the transparent conductive film 103 on the base material 102, and the like.
  • the general patterning process has a large number of processes and complicated processes, and the patterning process of the transparent conductive film 103 cannot be easily performed.
  • the present invention has been made to solve the above-mentioned problems, and a transparent conductive film that can be easily patterned, a substrate with a transparent conductive film, an organic electroluminescence device using the same, and production thereof It aims to provide a method.
  • the photocatalyst containing layer containing the photocatalyst particles is formed on the surface of the transparent resin layer facing the substrate or on the surface opposite to the surface.
  • the transparent resin layer or the photocatalyst containing layer preferably contains an organic resin as a binder.
  • the fine metal wire is preferably a metal nanowire.
  • the photocatalyst particles are preferably titanium oxide.
  • this transparent conductive film is formed on a substrate and configured as a substrate with a transparent conductive film.
  • This substrate with a transparent conductive film is preferably used for an organic electroluminescence element.
  • the method for producing a transparent conductive film of the present invention is a method for producing a transparent conductive film provided on a base material and provided with a transparent resin layer containing fine metal wires, wherein photocatalytic particles having photocatalytic activity are provided on the base material. Forming the transparent conductive film, and irradiating the transparent conductive film with ultraviolet rays in a predetermined pattern to selectively oxidize the fine metal wires adjacent to the photocatalyst particles. .
  • this method for producing a transparent conductive film it is preferable to include a step of immersing and cleaning the transparent conductive film in a liquid phase after the step of irradiating the ultraviolet rays in a predetermined pattern.
  • the photocatalytic action of the photocatalyst particles can oxidize, for example, a fine metal wire contained in the transparent resin layer to form an insulator.
  • the patterning process of the film can be easily performed.
  • the photocatalytic action of the photocatalyst particles is activated by irradiating the transparent conductive film with ultraviolet rays in a predetermined pattern, and the fine metal wires adjacent thereto are selectively used. It can be oxidized to an insulator. Therefore, the transparent conductive film can be patterned by a simple process of irradiating ultraviolet rays in a predetermined pattern.
  • the photocatalytic action of the photocatalyst particles contained in the photocatalyst containing layer on the substrate is activated by irradiating the transparent conductive film with ultraviolet rays in a predetermined pattern.
  • the fine metal wire adjacent to this can be selectively oxidized to form an insulator. Therefore, the transparent conductive film can be patterned by a simple process of irradiating ultraviolet rays in a predetermined pattern.
  • (A) is sectional drawing of the base material with the said transparent conductive film
  • (b) is a top view of the base material with the said transparent conductive film.
  • (A), (b) is process sectional drawing which shows the manufacturing process of the transparent conductive film.
  • (A), (b) is process sectional drawing which shows the manufacturing process of the transparent conductive film.
  • the top view of the transparent conductive film which shows the method of evaluation of patterning property. Sectional drawing of the base material with the conventional transparent conductive film.
  • the transparent conductive film of the present embodiment is formed on a transparent substrate, is configured as a substrate with a transparent conductive film, and is used for, for example, an organic electroluminescence (hereinafter referred to as organic EL) element.
  • FIG. 1 shows a cross-sectional configuration of an organic EL element.
  • the organic EL element 1 includes a base material 2, a transparent conductive film 3, an organic light emitting layer 4, and a conductor layer 5, and the transparent conductive film 3, the organic light emitting layer 4, and the conductor layer 5 are provided on the base material 2. Are sequentially stacked.
  • the base material 2 and the transparent conductive film 3 constitute a base material 6 with a transparent conductive film.
  • the transparent conductive film 3 functions as an anode of the organic EL element 1 and injects holes into the organic light emitting layer 4.
  • the conductor layer 5 functions as a cathode of the organic EL element 1 and injects electrons into the organic light emitting layer 4.
  • a hole injection layer that promotes injection of holes from the transparent conductive film 3 is provided between the organic light emitting layer 4 and the transparent conductive film 3, and promotes injection of electrons from the conductor layer 5.
  • An electron injection layer is preferably provided between the conductor layer 5.
  • a hole transport layer that efficiently transports holes or an electron transport layer that efficiently transports electrons may be provided.
  • the organic EL element 1 configured as described above, when a voltage is applied between the transparent conductive film 3 and the conductor layer 5 with the transparent conductive film 3 side as a positive potential, holes are emitted from the transparent conductive film 3 to organic light emission. Electrons are injected into the layer 4 and electrons are injected from the conductor layer 5 into the organic light emitting layer 4. Then, the holes and electrons injected into the organic light emitting layer 4 are recombined in the organic light emitting layer 4 so that the organic light emitting layer 4 emits light. The light emitted from the organic light emitting layer 4 passes through the substrate 6 with the transparent conductive film (the transparent conductive film 3 and the substrate 2), and is taken out of the organic EL element 1. The light irradiated on the conductor layer 5 is reflected on the surface of the conductor layer 5, passes through the substrate 6 with a transparent conductive film, and is taken out of the organic EL element 1.
  • the material of the base material 2 is not particularly limited as long as it has transparency.
  • a rigid transparent glass plate such as soda glass or non-alkali glass, or a flexible transparent plastic plate such as polycarbonate or ethylene terephthalate is used. Can be used.
  • a rigid transparent glass plate is used as the substrate 2
  • the strength of the substrate 2 is excellent, and the formation of the transparent conductive film 3 on the substrate 2 can be facilitated.
  • a flexible transparent plastic plate is used as the base material 2
  • the device using the base material 2 can be reduced in weight. Moreover, it can be set as the device which has a softness
  • a compound or a polymer is used.
  • a light-emitting material such as an iridium complex, an osmium complex, a platinum complex, or a europium complex, or a phosphorescent light-emitting material such as a compound or polymer having these in a molecule can be used. These materials can be appropriately selected and used as necessary.
  • a material of the conductor layer 5 aluminum etc. can be used, for example.
  • a laminated structure may be formed by combining aluminum and another material. Examples of such combinations include a laminate of an alkali metal and aluminum, a laminate of an alkali metal and silver, a laminate of an alkali metal halide and aluminum, a laminate of an alkali metal oxide and aluminum, and an alkali.
  • a laminate of an earth metal or a rare earth metal and aluminum, or an alloy of these metal species with another metal can be used.
  • the plurality of fine metal wires 7 are filled in the transparent resin layer 8 and are in contact or close to each other in three dimensions. These thin metal wires 7 form an electrical network, whereby the conductivity of the transparent conductive film 3 is maintained. Moreover, since the metal fine wire 7 is adhered on the base material 2 in a state of protruding from the action surface of the transparent resin layer 8, the action surface of the transparent resin layer 8 is uneven. The fine metal wires 7 protruding from the working surface of the transparent resin layer 8 come into contact with the organic light emitting layer when the substrate 6 with a transparent conductive film is used as a substrate of an organic EL element. When a voltage is applied to the organic EL element, holes are injected from the thin metal wire 7 into the organic light emitting layer.
  • the photocatalyst particles 9 are arranged so as to fill between the plurality of fine metal wires 7. That is, since the photocatalyst particles 9 are present, the portion where the fine metal wires 7 protrude from the working surface of the transparent resin layer 8 is buried, and the unevenness of the working surface of the transparent resin layer 8 is reduced.
  • the photocatalytic particles 9 exhibit photocatalytic activity when irradiated with ultraviolet rays. Therefore, when the transparent conductive film 3 is irradiated with ultraviolet rays, the photocatalyst particles 9 irradiated with the ultraviolet rays can oxidize and insulate the fine metal wires 7 adjacent to the photocatalyst particles 9.
  • the transparent conductive film 3 is irradiated with ultraviolet rays in a predetermined pattern, and the patterning process of the transparent conductive film 3 is performed by utilizing the photocatalytic activity of the photocatalyst particles 9.
  • the fine metal wires 7 are made of a fibrous metal, metal, or metal fine particles having a line width of several nanometers to several tens of micrometers.
  • the fiber diameter of the fine metal wire 7 is preferably 100 nm or less from the viewpoint of maintaining the transparency of the transparent conductive film 3 and reducing the unevenness of the working surface of the transparent resin layer 8.
  • the length of the fine metal wire 7 is sufficiently longer than the fiber diameter of the fine metal wire 7.
  • the amount of the fine metal wire 7 bonded onto the substrate 2 is preferably 0.1 mg / m 2 or more and 1000 mg / m 2 or less, and more preferably 1 mg / m 2 or more and 100 mg / m 2 or less.
  • the average aspect ratio of the fine metal wires 7 is preferably 10 or more and 10,000 or less. The amount of the fine metal wires 7 and the average aspect ratio are appropriately set in consideration of the specific gravity of the fine metal wires 7 and the photocatalyst particles 9.
  • the material of the metal thin wire 7 for example, a metal mesh, a metal nanowire, or an aggregate of metal fine particles can be used.
  • metal nanowires it is preferable to use metal nanowires as the thin metal wires 7. Since the metal nanowire generally has high conductivity inherent to the material, it is easy to maintain the conductivity of the transparent conductive film 3 and is easily oxidized by the photocatalyst particles 9. Therefore, by using this metal nanowire as the thin metal wire 7, the patterning process of the transparent conductive film 3 is simplified.
  • gold, silver, copper, aluminum, zinc, cobalt, nickel, tungsten etc. can be used, for example.
  • gold, silver, or copper having high conductivity is preferably used, and silver having the highest conductivity is more preferably used.
  • the fiber diameter of the metal nanowires may be 100 nm or less from the viewpoint of maintaining the transparency of the transparent conductive film 3 and reducing the unevenness of the surface of the transparent conductive film 3. preferable.
  • the length of the metal nanowire is preferably 3 ⁇ m or more, more preferably 3 ⁇ m or more and 500 ⁇ m or less, and further preferably 3 ⁇ m or more and 300 ⁇ m or less from the viewpoint of maintaining the conductivity of the transparent conductive film 3. preferable.
  • the manufacturing method of metal nanowire is not specifically limited, For example, well-known methods, such as a liquid phase method or a gaseous-phase method, can be used.
  • the transparent resin layer 8 is configured to have a strength that allows the organic light emitting layer 4 to be formed on the transparent conductive film 3. From the viewpoint of maintaining the conductivity of the transparent conductive film 3, the thickness of the transparent resin layer 8 is preferably not less than the fiber diameter of the metal thin wire 7 (for example, 100 nm described above) and not more than 500 nm.
  • the transparent resin layer 8 preferably contains an organic resin as a binder.
  • the organic resin contained in the transparent resin layer 8 is broken by the organic substance decomposition action of the photocatalyst particles 9. Therefore, by performing a cleaning process on the transparent conductive film 3, it is possible to remove the portion of the transparent conductive film 3 irradiated with ultraviolet rays, that is, an unnecessary portion, and leave only a necessary portion as the transparent conductive film 3. Can do.
  • the cleaning treatment is not particularly limited, and for example, the transparent conductive film 3 can be immersed in a liquid phase such as water, acid, alkali, or alcohol. In the cleaning process, a surfactant, ultrasonic waves, or the like may be used.
  • the particle diameter of the photocatalyst particles 9 is preferably 100 nm or less from the viewpoint of maintaining the transparency of the transparent conductive film 3 and reducing the unevenness of the working surface of the transparent resin layer 8.
  • Examples of the material of the photocatalyst particles 9 include titanium oxide, zinc oxide, tin oxide, iron oxide, zirconium oxide, tungsten oxide, chromium oxide, molybdenum oxide, ruthenium oxide, germanium oxide, lead oxide, cadmium oxide, copper oxide, and vanadium oxide.
  • titanium oxide has a high photocatalytic activity, so that the metal fine wire 7 can be oxidized efficiently by using this. Therefore, it is preferable to use titanium oxide as the material of the photocatalyst particles 9.
  • the light source for irradiating the transparent conductive film 3 with ultraviolet rays is not particularly limited as long as it can irradiate light containing ultraviolet rays having an energy level that can activate the photocatalytic action of the photocatalyst particles 9. It may be capable of irradiating light further including visible light or the like.
  • various light sources such as a mercury lamp, a metal halide lamp, a xenon lamp, or an excimer lamp can be used.
  • the coating method of the transparent conductive film 3 is not particularly limited, and a known coating method such as spin coating, screen printing, dip coating, die coating, casting, spray coating, or gravure coating can be used.
  • a pressurizing process using, for example, a roller press may be performed.
  • distributed cellulose resin with water can be used, for example.
  • a photocatalyst material the solution which disperse
  • the transparent conductive ink applied on the substrate 2 is heated.
  • the heating temperature can be set to 100 ° C., for example, and the heating time can be set to 5 minutes, for example.
  • the transparent conductive film 3 can be formed on the substrate 2 as shown in FIG.
  • ultraviolet irradiation masks (hereinafter abbreviated as “masks”) 10 are arranged on the transparent conductive film 3 at a predetermined interval.
  • the mask 10 a flat plate material is cut out in a predetermined pattern, and the cutout portion serves as the ultraviolet ray transmitting portion 11, and the other portion serves as the ultraviolet ray shielding portion 12. That is, in the transparent conductive film 3, the region corresponding to the ultraviolet transmissive part 11 is irradiated with ultraviolet rays, and the photocatalytic action of the photocatalytic particles 9 existing in this region is activated.
  • the fine metal wires 7 adjacent to the activated photocatalyst particles 9 are oxidized and insulated by photocatalysis.
  • This insulated portion corresponds to the second upper surface region 3b of the transparent conductive film 3 in FIG. 2B described above.
  • the region corresponding to the ultraviolet shielding part 12 is not irradiated with ultraviolet rays, so that the photocatalytic action of the photocatalyst particles 9 existing in this region is not activated, and the photocatalyst particles 9 are not activated.
  • the adjacent fine metal wires 7 have conductivity. Note that this conductive portion corresponds to the first upper surface region 3a of the transparent conductive film 3 in FIG.
  • the insulating portion (3b) of the transparent conductive film 3 and A portion (3a) having conductivity can be formed. Further, as shown in FIG. 2A, they can be formed in a predetermined pattern on the substrate 2.
  • strength of an ultraviolet-ray it can set to 1000 mJ / cm ⁇ 2 >, for example.
  • this part of the transparent conductive film 3 is, for example with respect to the organic light emitting layer formed on the transparent conductive film 3, No electrical action is performed.
  • the transparent conductive film 3 subjected to the patterning process can be obtained. It is not always necessary to insulate all the thin metal wires 7 below the second upper surface region 3b of the transparent conductive film 3, and at least the fine metal wires 7 in the second upper surface region 3b of the transparent conductive film 3 are insulated. It only has to be done.
  • the transparent conductive film 3 can be supplied to the market in a state of being provided on the base material 2 as shown in FIG. That is, when a user manufactures a device using the device, the transparent conductive film 3 can be appropriately patterned according to an electrode pattern required for the device. Moreover, at this time, when the transparent resin layer 8 of the transparent conductive film 3 contains an organic resin as a binder, an unnecessary portion of the transparent conductive film 3 is formed on the substrate 2 after irradiating the transparent conductive film 3 with ultraviolet rays. In order to remove and leave only necessary portions, it is preferable to perform a cleaning process on the transparent conductive film 3.
  • the photocatalytic action of the photocatalyst particles 9 can oxidize the thin metal wires 7 contained in the transparent resin layer 8 of the transparent conductive film 3 to form an insulator, which is selected. By performing this process, the patterning process of the transparent conductive film 3 can be easily performed.
  • the transparent conductive film 3 on the base material and forming the transparent conductive film-attached base material 6, it is possible to provide a highly versatile substrate that can be easily patterned.
  • the photocatalytic action of the photocatalyst particles 9 is activated by irradiating the transparent conductive film 3 with ultraviolet rays in a predetermined pattern, and the fine metal wires adjacent thereto are activated. 7 can be selectively oxidized to form an insulator. Therefore, the transparent conductive film can be patterned by a simple process of irradiating ultraviolet rays in a predetermined pattern.
  • the photocatalyst particles 9 are not included in the transparent resin layer 8 and are provided between the substrate 2 and the transparent resin layer 8.
  • the photocatalyst-containing layer 13 is included.
  • the photocatalyst particles 9 are uniformly dispersed in the photocatalyst containing layer 13.
  • the photocatalyst containing layer 13 contains an organic resin as a binder.
  • the organic resin contained in the photocatalyst containing layer 13 is broken by the organic substance decomposition action of the photocatalyst particles 9. Is done. Thereby, the organic resin loses the holding power between the photocatalyst-containing layer 13 itself and the transparent conductive film 3 and the substrate 2 formed thereon. In this state, the substrate 6 with a transparent conductive film is subjected to a cleaning process, whereby the portion of the photocatalyst containing layer 13 irradiated with ultraviolet rays is removed from the substrate 2 and formed on the photocatalyst containing layer 13.
  • the same effect as the above embodiment can be obtained, and the photocatalytic action of the photocatalyst particles 9 uniformly dispersed in the photocatalyst containing layer 13 below the transparent conductive film 3 is selectively activated. By doing so, the fine metal wires 7 under the second upper surface region 3b can be reliably oxidized.
  • the mask 10 is formed in a rectangular shape, and includes an ultraviolet transmitting portion 11 and four rectangular ultraviolet shielding portions 12.
  • the dimensions of the mask 10 are 100 mm in length and 100 mm in width.
  • the dimension of the ultraviolet shielding part 12 is 50 mm in length and 10 mm.
  • Such an ultraviolet shielding part 12 is provided in the mask 10 at a position as shown in FIG.
  • Example 3 A photocatalyst layer material was prepared by mixing 3 parts by mass of the photocatalyst material and 2 parts by mass of the transparent resin material A. Next, the alkali-free glass plate similar to Example 1 was prepared as a base material. Next, the photocatalyst layer material was applied on the base material by spin coating so as to have a thickness of 200 nm. Subsequently, the photocatalyst-containing layer was formed on the substrate by heating the substrate coated with the photocatalyst layer material at 100 ° C. for 5 minutes. Next, 3.75 parts by mass of the fine metal wire material and 1.25 parts by mass of the transparent resin material A were mixed to prepare a transparent conductive ink.
  • a transparent conductive ink was applied on the photocatalyst-containing layer by spin coating so as to have a thickness of 100 nm. Then, the transparent conductive film was formed on the photocatalyst content layer by heating the base material with which the transparent conductive ink was applied at 100 ° C for 5 minutes. Next, ultraviolet rays were irradiated onto the transparent conductive film through the mask 10 with an intensity of 1000 mJ / cm 2 . As a result, the fine metal wire in the region irradiated with ultraviolet rays was insulated.
  • Example 4 A sample of Example 4 was produced in the same manner as in Example 3 except that ultrasonic cleaning was performed in water for 1 minute after irradiation with ultraviolet rays.
  • Example 5 When producing the photocatalytic material, a sample of Example 5 was produced in the same manner as in Example 3 except that the transparent resin material B was used instead of the transparent resin material A.
  • Table 1 shows the configurations of the samples of Examples 1 to 6 and Comparative Examples 1 to 4 described above.
  • the haze value of the transparent conductive film of the sample of each Example in the UV shielding part of Example 1 and Example 2, the haze value is 0.8%, and in the UV shielding part of Examples 3 to 6, the haze value is Was 1%. Moreover, in the UV irradiation part of Example 1, the haze value is 0.8%, and in the UV irradiation part of Example 2 and Example 4, the haze value is 0.2%.
  • Table 3 shows the patterning evaluation results.
  • “ ⁇ ” indicating the evaluation of patterning property indicates that patterning has been performed, and “x” indicates that patterning has not been performed.
  • “1” shown in the measurement in the same first upper surface region means that the 1-1 measurement terminal portion 3c and the 1-2 measurement terminal portion 3c were used.
  • “2” indicates that the measurement terminal unit 3c of 2-1 and the measurement terminal unit 3c of 2-2 were used. The same applies to “3” and “4”.
  • the transparent conductive film 3 can be used as a transparent electrode such as a liquid crystal display, a plasma display, or a solar organic battery. Further, carbon nanotubes may be used as the material for the fine metal wires 7, and conductive polymers may be used as the material for the transparent resin layer 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A transparent conductive film (3) is provided with a plurality of conductive fine metal wires (7) and a transparent resin layer (8) which acts as a binder. Photocatalyst particles (9) having photocatalytic activity are dispersed in the transparent resin layer (8). Due to this structure, if ultraviolet rays are irradiated on the transparent conductive film (3), the fine metal wires (7) in the transparent conductive film (3) are oxidised and can be made into an insulator due to the photocatalytic effect of the photocatalyst particles (9) which have been irradiated by the ultraviolet rays. Patterning treatment can be carried out on the transparent conductive film (3) by selectively carrying out said process. Thus, patterning treatment of the transparent conductive film (3) can be carried out by means of a simple process in which ultraviolet rays are irradiated in a specific pattern on the transparent conductive film (3).

Description

透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子、並びにその製造方法Transparent conductive film, substrate with transparent conductive film, organic electroluminescence device using the same, and method for producing the same
 本発明は、種々の光学デバイスに用いられる透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子、並びにその製造方法に関する。 The present invention relates to a transparent conductive film used for various optical devices, a substrate with a transparent conductive film, an organic electroluminescence element using the same, and a method for producing the same.
 一般的な有機エレクトロルミネッセンス(以下、有機ELという)素子は、一対の電極で挟持された有機発光層が透明な基材上に形成されたものであり、有機発光層からの光は、一方の電極を透過して基材側から取り出される。この種の有機EL素子において、基材側の電極の材料として、導電性及び透明性を有するものが用いられ、インジウムスズ酸化物(以下、ITOという)が広く用いられる。しかし、ITOを材料として用いた電極は曲げや物理的な応力に対して脆弱で壊れやすい。また、ITOを用いた電極の導電性を向上させるためには、高い蒸着温度及び/又は高いアニール温度が必要となり、有機EL素子を用いたデバイスの製造において、コスト高となる虞がある。 A general organic electroluminescence (hereinafter referred to as “organic EL”) element is an organic light emitting layer sandwiched between a pair of electrodes formed on a transparent substrate. It passes through the electrode and is taken out from the substrate side. In this type of organic EL element, a material having conductivity and transparency is used as an electrode material on the substrate side, and indium tin oxide (hereinafter referred to as ITO) is widely used. However, electrodes using ITO as a material are vulnerable to bending and physical stress and are fragile. Moreover, in order to improve the electroconductivity of the electrode using ITO, high vapor deposition temperature and / or high annealing temperature are needed, and there exists a possibility that it may become high cost in manufacture of the device using an organic EL element.
 そこで、ITOに代えて、複数の金属細線を含む透明導電膜を電極として用いた技術が知られている(例えば、日本国公表特許2009-505358号公報参照)。この種の透明導電膜付き基材の構成例について、図9を参照して説明する。透明導電膜付き基材101は、透明性を有する基材102と、この基材102上に形成される透明導電膜103と、を備える。透明導電膜103は、導電性を有する複数の金属細線104と、バインダとしての透明樹脂層105と、を含む。複数の金属細線104は、透明樹脂層105によって、基材102上に接着されている。 Therefore, a technique using a transparent conductive film including a plurality of fine metal wires as an electrode instead of ITO is known (see, for example, Japanese Patent Publication No. 2009-505358). A configuration example of this type of substrate with a transparent conductive film will be described with reference to FIG. The substrate 101 with a transparent conductive film includes a substrate 102 having transparency and a transparent conductive film 103 formed on the substrate 102. The transparent conductive film 103 includes a plurality of thin metal wires 104 having conductivity and a transparent resin layer 105 as a binder. The plurality of fine metal wires 104 are bonded onto the base material 102 by the transparent resin layer 105.
 このような透明導電膜付き基材101は、この基材101上に形成される有機発光層等の機能層に対して、効率的に給電を行えるように、透明導電膜103にパターニング処理が行われることがある。この種のパターニング処理として、一般的には、フォトエッチング、転写、又はパターン印刷等の方法が用いられる。 Such a substrate 101 with a transparent conductive film is subjected to a patterning process on the transparent conductive film 103 so that power can be efficiently supplied to a functional layer such as an organic light emitting layer formed on the substrate 101. May be. As this type of patterning process, a method such as photoetching, transfer, or pattern printing is generally used.
 ところで、上述したフォトエッチングには、フォトレジストの塗布工程、露光工程、及び現像工程、並びに透明導電膜103のエッチング工程等が含まれる。また、転写には、他の基材上に透明導電膜103を所定パターンに形成する工程、及びその透明導電膜103を他の基材上から基材102上に写す工程等が含まれる。また、パターン印刷には、原版の所定パターンに形成された凹部内に透明導電膜103を設ける工程、及びこの透明導電膜103を基材102上に押しつける工程等が含まれる。このように、一般的なパターニング処理は、工程の数が多く、工程の内容が複雑であり、透明導電膜103のパターニング処理を簡易に行いえるものではなかった。 Incidentally, the above-described photoetching includes a photoresist coating process, an exposure process, a developing process, an etching process of the transparent conductive film 103, and the like. In addition, the transfer includes a step of forming the transparent conductive film 103 in a predetermined pattern on another substrate, a step of copying the transparent conductive film 103 from the other substrate onto the substrate 102, and the like. The pattern printing includes a step of providing the transparent conductive film 103 in the concave portion formed in the predetermined pattern of the original plate, a step of pressing the transparent conductive film 103 on the base material 102, and the like. As described above, the general patterning process has a large number of processes and complicated processes, and the patterning process of the transparent conductive film 103 cannot be easily performed.
 本発明は、上記課題を解決するためになされたものであり、パターニング処理を簡易に行うことができる透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子、並びにその製造方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and a transparent conductive film that can be easily patterned, a substrate with a transparent conductive film, an organic electroluminescence device using the same, and production thereof It aims to provide a method.
 本発明の透明導電膜は、基材上に設けられ、金属細線を含む透明樹脂層を備えた透明導電膜であって、光触媒活性を有する光触媒粒子が、前記透明樹脂層内、又は前記透明樹脂層の前記基材と対向する面若しくはこの面と反対側の面上に存在することを特徴とする。 The transparent conductive film of the present invention is a transparent conductive film provided on a substrate and provided with a transparent resin layer containing a thin metal wire, and the photocatalytic particles having photocatalytic activity are contained in the transparent resin layer or the transparent resin. It exists on the surface on the opposite side to this surface which faces the said base material of a layer, It is characterized by the above-mentioned.
 この透明導電膜において、前記光触媒粒子を含む光触媒含有層が、前記透明樹脂層の前記基材と対向する面、又はこの面と反対側の面上に形成されていることが好ましい。 In this transparent conductive film, it is preferable that the photocatalyst containing layer containing the photocatalyst particles is formed on the surface of the transparent resin layer facing the substrate or on the surface opposite to the surface.
 この透明導電膜において、前記透明樹脂層又は前記光触媒含有層は、有機系樹脂をバインダとして含むことが好ましい。 In this transparent conductive film, the transparent resin layer or the photocatalyst containing layer preferably contains an organic resin as a binder.
 この透明導電膜において、前記金属細線は、金属ナノワイヤであることが好ましい。 In this transparent conductive film, the fine metal wire is preferably a metal nanowire.
 この透明導電膜において、前記光触媒粒子は、酸化チタンであることが好ましい。 In this transparent conductive film, the photocatalyst particles are preferably titanium oxide.
 この透明導電膜が基材上に形成されて、透明導電膜付き基材として構成されることが好ましい。 It is preferable that this transparent conductive film is formed on a substrate and configured as a substrate with a transparent conductive film.
 この透明導電膜付き基材は、有機エレクトロルミネッセンス素子に用いられることが好ましい。 This substrate with a transparent conductive film is preferably used for an organic electroluminescence element.
 本発明の透明導電膜の製造方法は、基材上に設けられ、金属細線を含む透明樹脂層を備えた透明導電膜の製造方法であって、前記基材上に光触媒活性を有する光触媒粒子を含む前記透明導電膜を形成する工程と、前記透明導電膜上に紫外線を所定パターンで照射し、前記光触媒粒子に近接する前記金属細線を選択的に酸化する工程と、を含むことを特徴とする。 The method for producing a transparent conductive film of the present invention is a method for producing a transparent conductive film provided on a base material and provided with a transparent resin layer containing fine metal wires, wherein photocatalytic particles having photocatalytic activity are provided on the base material. Forming the transparent conductive film, and irradiating the transparent conductive film with ultraviolet rays in a predetermined pattern to selectively oxidize the fine metal wires adjacent to the photocatalyst particles. .
 本発明の透明導電膜の製造方法は、基材上に設けられ、金属細線を含む透明樹脂層を備えた透明導電膜の製造方法であって、前記基材上に光触媒活性を有する光触媒粒子を含む光触媒含有層を形成する工程と、前記光触媒含有層上に前記透明導電膜を形成する工程と、前記透明導電膜上に紫外線を所定パターンで照射し、前記光触媒粒子に近接する前記金属細線を選択的に酸化する工程と、を含むことを特徴とする。 The method for producing a transparent conductive film of the present invention is a method for producing a transparent conductive film provided on a base material and provided with a transparent resin layer containing fine metal wires, wherein photocatalytic particles having photocatalytic activity are provided on the base material. A step of forming a photocatalyst-containing layer, a step of forming the transparent conductive film on the photocatalyst-containing layer, and irradiating the transparent conductive film with ultraviolet rays in a predetermined pattern, and the thin metal wire adjacent to the photocatalyst particles. And a step of selectively oxidizing.
 この透明導電膜の製造方法において、前記紫外線を所定パターンで照射する工程の後に、前記透明導電膜を液相内に浸して洗浄する工程を含むことが好ましい。 In this method for producing a transparent conductive film, it is preferable to include a step of immersing and cleaning the transparent conductive film in a liquid phase after the step of irradiating the ultraviolet rays in a predetermined pattern.
 本発明に係る透明導電膜によれば、光触媒粒子の光触媒作用により、例えば透明樹脂層に含まれる金属細線を酸化して絶縁体とすることができ、これを選択的に行うことにより、透明導電膜のパターニング処理を簡易に行うことができる。 According to the transparent conductive film according to the present invention, the photocatalytic action of the photocatalyst particles can oxidize, for example, a fine metal wire contained in the transparent resin layer to form an insulator. The patterning process of the film can be easily performed.
 また、本発明に係る透明導電膜の製造方法によれば、透明導電膜上に紫外線を所定パターンで照射することにより、光触媒粒子の光触媒作用を活性化させ、これに近接する金属細線を選択的に酸化させて絶縁体とすることができる。従って、紫外線を所定パターンで照射する簡易な工程で透明導電膜のパターニング処理を行うことができる。 Further, according to the method for producing a transparent conductive film according to the present invention, the photocatalytic action of the photocatalyst particles is activated by irradiating the transparent conductive film with ultraviolet rays in a predetermined pattern, and the fine metal wires adjacent thereto are selectively used. It can be oxidized to an insulator. Therefore, the transparent conductive film can be patterned by a simple process of irradiating ultraviolet rays in a predetermined pattern.
 また、本発明に係る透明導電膜の製造方法によれば、透明導電膜上に紫外線を所定パターンで照射することにより、基材上の光触媒含有層に含まれる光触媒粒子の光触媒作用を活性化させ、これに近接する金属細線を選択的に酸化させて絶縁体とすることができる。従って、紫外線を所定パターンで照射する簡易な工程で透明導電膜のパターニング処理を行うことができる。 Further, according to the method for producing a transparent conductive film of the present invention, the photocatalytic action of the photocatalyst particles contained in the photocatalyst containing layer on the substrate is activated by irradiating the transparent conductive film with ultraviolet rays in a predetermined pattern. The fine metal wire adjacent to this can be selectively oxidized to form an insulator. Therefore, the transparent conductive film can be patterned by a simple process of irradiating ultraviolet rays in a predetermined pattern.
本発明の第1の実施形態に係る透明導電膜付き基材を備えた有機エレクトロルミネッセンス素子の断面構成図。The cross-sectional block diagram of the organic electroluminescent element provided with the base material with a transparent conductive film which concerns on the 1st Embodiment of this invention. (a)は、同透明導電膜付き基材の断面図、(b)は、同透明導電膜付き基材の上面図。(A) is sectional drawing of the base material with the said transparent conductive film, (b) is a top view of the base material with the said transparent conductive film. (a),(b)は、同透明導電膜の製造工程を示す工程断面図。(A), (b) is process sectional drawing which shows the manufacturing process of the transparent conductive film. (a),(b)は、同透明導電膜の製造工程を示す工程断面図。(A), (b) is process sectional drawing which shows the manufacturing process of the transparent conductive film. 本発明の第2の実施形態に係る透明導電膜付き基材の断面図。Sectional drawing of the base material with a transparent conductive film which concerns on the 2nd Embodiment of this invention. パターニング処理が行われた同透明導電膜付き基材の断面図。Sectional drawing of the base material with the said transparent conductive film in which the patterning process was performed. 図3(a)の紫外線照射工程において用いられる紫外線照射用マスクの上面図。The top view of the mask for ultraviolet irradiation used in the ultraviolet irradiation process of Fig.3 (a). パターニング性の評価の方法を示す透明導電膜の上面図。The top view of the transparent conductive film which shows the method of evaluation of patterning property. 従来の透明導電膜付き基材の断面図。Sectional drawing of the base material with the conventional transparent conductive film.
 以下、本発明の第1の実施形態に係る透明導電膜について、図1乃至図4を参照して説明する。本実施形態の透明導電膜は、透明性を有する基材上に形成され、透明導電膜付き基材として構成され、例えば有機エレクトロルミネッセンス(以下、有機ELという)素子に用いられる。図1は、有機EL素子の断面構成を示す。有機EL素子1は、基材2と、透明導電膜3と、有機発光層4と、導体層5と、を備え、基材2上に透明導電膜3、有機発光層4、及び導体層5が順次積層された構成となっている。基材2と透明導電膜3とが、透明導電膜付き基材6を構成する。透明導電膜3は、有機EL素子1の陽極として機能し、有機発光層4に正孔(ホール)を注入する。一方、導体層5は、有機EL素子1の陰極として機能し、有機発光層4に電子を注入する。 Hereinafter, the transparent conductive film according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4. The transparent conductive film of the present embodiment is formed on a transparent substrate, is configured as a substrate with a transparent conductive film, and is used for, for example, an organic electroluminescence (hereinafter referred to as organic EL) element. FIG. 1 shows a cross-sectional configuration of an organic EL element. The organic EL element 1 includes a base material 2, a transparent conductive film 3, an organic light emitting layer 4, and a conductor layer 5, and the transparent conductive film 3, the organic light emitting layer 4, and the conductor layer 5 are provided on the base material 2. Are sequentially stacked. The base material 2 and the transparent conductive film 3 constitute a base material 6 with a transparent conductive film. The transparent conductive film 3 functions as an anode of the organic EL element 1 and injects holes into the organic light emitting layer 4. On the other hand, the conductor layer 5 functions as a cathode of the organic EL element 1 and injects electrons into the organic light emitting layer 4.
 有機発光層4は、透明導電膜3からの正孔の注入を促進する正孔注入層が、透明導電膜3との間に設けられることが好ましく、導体層5からの電子の注入を促進する電子注入層が導体層5との間に設けられることが好ましい。さらに、正孔を効率的に輸送する正孔輸送層や、電子を効率的に輸送する電子輸送層が設けられてもよい。 In the organic light emitting layer 4, it is preferable that a hole injection layer that promotes injection of holes from the transparent conductive film 3 is provided between the organic light emitting layer 4 and the transparent conductive film 3, and promotes injection of electrons from the conductor layer 5. An electron injection layer is preferably provided between the conductor layer 5. Furthermore, a hole transport layer that efficiently transports holes or an electron transport layer that efficiently transports electrons may be provided.
 このように構成された有機EL素子1において、透明導電膜3と導体層5との間に透明導電膜3側を+電位として電圧が印加されると、正孔が透明導電膜3から有機発光層4に注入され、電子が導体層5から有機発光層4に注入される。そして、有機発光層4に注入された正孔と電子とが、有機発光層4内で再結合することにより、有機発光層4が発光する。有機発光層4から発せられた光は、透明導電膜付き基材6(透明導電膜3及び基材2)を透過して、有機EL素子1の外へ取り出される。なお、導体層5に照射された光は、導体層5の表面で反射され、透明導電膜付き基材6を透過して、有機EL素子1の外へ取り出される。 In the organic EL element 1 configured as described above, when a voltage is applied between the transparent conductive film 3 and the conductor layer 5 with the transparent conductive film 3 side as a positive potential, holes are emitted from the transparent conductive film 3 to organic light emission. Electrons are injected into the layer 4 and electrons are injected from the conductor layer 5 into the organic light emitting layer 4. Then, the holes and electrons injected into the organic light emitting layer 4 are recombined in the organic light emitting layer 4 so that the organic light emitting layer 4 emits light. The light emitted from the organic light emitting layer 4 passes through the substrate 6 with the transparent conductive film (the transparent conductive film 3 and the substrate 2), and is taken out of the organic EL element 1. The light irradiated on the conductor layer 5 is reflected on the surface of the conductor layer 5, passes through the substrate 6 with a transparent conductive film, and is taken out of the organic EL element 1.
 基材2の材料は、透明性を有するものであれば、特に限定されず、例えばソーダガラス若しくは無アルカリガラス等のリジッドな透明ガラス板、又はポリカーボネート若しくはエチレンテレフタレート等のフレキシブルな透明プラスチック板等を用いることができる。基材2としてリジッドな透明ガラス板を用いた場合、基材2の強度が優れる、また、基材2上への透明導電膜3の形成を容易とすることができる。基材2としてフレキシブルな透明プラスチック板を用いた場合、基材2を用いたデバイスを軽量化できる。また、柔軟性を有するデバイスとすることができる。 The material of the base material 2 is not particularly limited as long as it has transparency. For example, a rigid transparent glass plate such as soda glass or non-alkali glass, or a flexible transparent plastic plate such as polycarbonate or ethylene terephthalate is used. Can be used. When a rigid transparent glass plate is used as the substrate 2, the strength of the substrate 2 is excellent, and the formation of the transparent conductive film 3 on the substrate 2 can be facilitated. When a flexible transparent plastic plate is used as the base material 2, the device using the base material 2 can be reduced in weight. Moreover, it can be set as the device which has a softness | flexibility.
 また、有機発光層4の材料としては、例えばアントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、ピラン、キナクリドン、ルブレン、若しくはこれらの誘導体、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ジスチリルベンゼン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、又はこれらの発光性化合物からなる基を分子の一部分に有する化合物若しくは高分子等が用いられる。また、例えばイリジウム錯体、オスミウム錯体、白金錯体若しくはユーロピウム錯体等の発光材料、又はこれらを分子内に有する化合物若しくは高分子等の燐光発光材料を用いることができる。これらの材料は、必要に応じて、適宜選択して用いることができる。 Examples of the material of the organic light emitting layer 4 include anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, and cyclopentadiene. , Coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinato) aluminum complex, tris (4-methyl-8-quinolinato) aluminum complex, tris (5- Phenyl-8-quinolinato) aluminum complex, aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl-4-yl) amine, pyran, quinacridone, rubrene Alternatively, these derivatives, 1-aryl-2,5-di (2-thienyl) pyrrole derivatives, distyrylbenzene derivatives, styrylarylene derivatives, styrylamine derivatives, or groups composed of these luminescent compounds are included in a part of the molecule. A compound or a polymer is used. In addition, for example, a light-emitting material such as an iridium complex, an osmium complex, a platinum complex, or a europium complex, or a phosphorescent light-emitting material such as a compound or polymer having these in a molecule can be used. These materials can be appropriately selected and used as necessary.
 また、導体層5の材料としては、例えばアルミニウム等を用いることができる。また、アルミニウムと他の材料とを組み合わせて積層構造としてもよい。このような組み合わせとしては、アルカリ金属とアルミニウムとの積層体、アルカリ金属と銀との積層体、アルカリ金属のハロゲン化物とアルミニウムとの積層体、アルカリ金属の酸化物とアルミニウムとの積層体、アルカリ土類金属若しくは希土類金属とアルミニウムとの積層体、又はこれらの金属種と他の金属との合金等が挙げられる。具体的には、ナトリウム、ナトリウムとカリウムとの合金、リチウム、若しくはマグネシウム等とアルミニウムとの積層体、マグネシウムと銀との混合物、マグネシウムとインジウムとの混合物、アルミニウムとリチウムとの合金、フッ化リチウムとアルミニウムの混合物との積層体、又はアルミニウムと酸化アルミニウム(Al)の混合物との積層体等が挙げられる。 Moreover, as a material of the conductor layer 5, aluminum etc. can be used, for example. Alternatively, a laminated structure may be formed by combining aluminum and another material. Examples of such combinations include a laminate of an alkali metal and aluminum, a laminate of an alkali metal and silver, a laminate of an alkali metal halide and aluminum, a laminate of an alkali metal oxide and aluminum, and an alkali. A laminate of an earth metal or a rare earth metal and aluminum, or an alloy of these metal species with another metal can be used. Specifically, sodium, an alloy of sodium and potassium, a laminate of lithium or magnesium or the like and aluminum, a mixture of magnesium and silver, a mixture of magnesium and indium, an alloy of aluminum and lithium, lithium fluoride And a laminated body of a mixture of aluminum and aluminum, or a laminated body of a mixture of aluminum and aluminum oxide (Al 2 O 3 ).
 次に、透明導電膜付き基材6の詳細について説明する。図2(a)に示すように、透明導電膜付き基材6は、基材2と、この基材2上に形成されている透明導電膜3と、を備える。透明導電膜3は、導電性を有する複数の金属細線7と、バインダとしての透明樹脂層8と、を備える。本例において、光触媒活性を有する光触媒粒子9は、透明樹脂層8内に分散されている。なお、以下の説明においては、透明樹脂層8の基材2と対向する面と反対側の面は、透明導電膜付き基材6が有機EL素子の基板として用いられた場合、有機発光層に対して正孔を注入する等の作用を行う面であるから、この面を作用面という。 Next, the details of the substrate 6 with a transparent conductive film will be described. As shown in FIG. 2A, the substrate 6 with a transparent conductive film includes a substrate 2 and a transparent conductive film 3 formed on the substrate 2. The transparent conductive film 3 includes a plurality of fine metal wires 7 having conductivity and a transparent resin layer 8 as a binder. In this example, the photocatalyst particles 9 having photocatalytic activity are dispersed in the transparent resin layer 8. In the following description, the surface of the transparent resin layer 8 opposite to the surface facing the substrate 2 is the organic light emitting layer when the substrate 6 with a transparent conductive film is used as a substrate for an organic EL element. On the other hand, it is a surface that performs an operation such as injecting holes, and this surface is referred to as an operation surface.
 複数の金属細線7は、透明樹脂層8内に充填され、三次元的に互いに接触又は近接し合っている。これら金属細線7が電気的なネットワークを構成することにより、透明導電膜3の導電性が保持される。また、金属細線7は、透明樹脂層8の作用面から突出した状態で基材2上に接着されているので、透明樹脂層8の作用面は、凹凸状になっている。透明樹脂層8の作用面から突出した金属細線7は、透明導電膜付き基材6が有機EL素子の基板として用いられた場合、有機発光層と接触する。そして、その有機EL素子に電圧が印加されると、金属細線7から有機発光層へ正孔が注入される。 The plurality of fine metal wires 7 are filled in the transparent resin layer 8 and are in contact or close to each other in three dimensions. These thin metal wires 7 form an electrical network, whereby the conductivity of the transparent conductive film 3 is maintained. Moreover, since the metal fine wire 7 is adhered on the base material 2 in a state of protruding from the action surface of the transparent resin layer 8, the action surface of the transparent resin layer 8 is uneven. The fine metal wires 7 protruding from the working surface of the transparent resin layer 8 come into contact with the organic light emitting layer when the substrate 6 with a transparent conductive film is used as a substrate of an organic EL element. When a voltage is applied to the organic EL element, holes are injected from the thin metal wire 7 into the organic light emitting layer.
 光触媒粒子9は、複数の金属細線7の間を埋めるように配置されている。つまり、光触媒粒子9が存在している分、透明樹脂層8の作用面からの金属細線7が突出している部分が埋没されて、透明樹脂層8の作用面の凹凸が少なくなっている。 The photocatalyst particles 9 are arranged so as to fill between the plurality of fine metal wires 7. That is, since the photocatalyst particles 9 are present, the portion where the fine metal wires 7 protrude from the working surface of the transparent resin layer 8 is buried, and the unevenness of the working surface of the transparent resin layer 8 is reduced.
 また、光触媒粒子9は、紫外線が照射されると、光触媒活性を発揮する。そのため、透明導電膜3上に紫外線が照射されると、紫外線が照射された光触媒粒子9は、これらの光触媒粒子9に近接する金属細線7を酸化し絶縁化することができる。本実施形態において、透明導電膜3上に紫外線が所定パターンで照射され、光触媒粒子9の光触媒活性を利用することにより、透明導電膜3のパターニング処理が行われる。 The photocatalytic particles 9 exhibit photocatalytic activity when irradiated with ultraviolet rays. Therefore, when the transparent conductive film 3 is irradiated with ultraviolet rays, the photocatalyst particles 9 irradiated with the ultraviolet rays can oxidize and insulate the fine metal wires 7 adjacent to the photocatalyst particles 9. In the present embodiment, the transparent conductive film 3 is irradiated with ultraviolet rays in a predetermined pattern, and the patterning process of the transparent conductive film 3 is performed by utilizing the photocatalytic activity of the photocatalyst particles 9.
 図2(b)に示すように、透明導電膜3のパターニング処理は、紫外線が、例えば図に示した矩形状の破線で囲まれた透明導電膜3の第1の上面領域3aには照射されず、この第1の上面領域3aを除く第2の上面領域3bに照射されることにより行われる。つまり、透明導電膜3の第1の上面領域3a下の部分は、酸化されず導電性を保持し、透明導電膜3の第2の上面領域3b下の部分は、酸化されて絶縁体となる。なお、光触媒粒子9は、透明樹脂層8の基材2と対向する面又は作用面上に存在してもよい。この場合においても、光触媒粒子9の光触媒活性を利用して、これに近接する金属細線7を選択的に酸化し絶縁化することにより、透明導電膜3のパターニング処理が行われる。 As shown in FIG. 2B, in the patterning process of the transparent conductive film 3, for example, ultraviolet rays are applied to the first upper surface region 3a of the transparent conductive film 3 surrounded by the rectangular broken line shown in the figure. First, the irradiation is performed by irradiating the second upper surface region 3b excluding the first upper surface region 3a. That is, the portion below the first upper surface region 3a of the transparent conductive film 3 is not oxidized and retains conductivity, and the portion below the second upper surface region 3b of the transparent conductive film 3 is oxidized to become an insulator. . The photocatalyst particles 9 may be present on the surface or the working surface of the transparent resin layer 8 facing the substrate 2. Even in this case, the patterning process of the transparent conductive film 3 is performed by utilizing the photocatalytic activity of the photocatalyst particles 9 to selectively oxidize and insulate the metal thin wires 7 adjacent thereto.
 金属細線7は、数nmから数十μmの線幅を有する繊維状金属、金属、又は金属微粒子から成る。金属細線7の繊維径は、透明導電膜3の透明性の保持、及び透明樹脂層8の作用面の凹凸状の低減の観点から、100nm以下であることが好ましい。金属細線7の長さは、金属細線7の繊維径よりも十分に長い。基材2上に接着される金属細線7の量は、0.1mg/m以上1000mg/m以下であることが好ましく、1mg/m以上100mg/m以下であることがより好ましい。また、金属細線7の平均アスペクト比は、10以上10000以下であることが好ましい。なお、上記の金属細線7の量、及び平均アスペクト比は、金属細線7と光触媒粒子9との比重等を考慮して、適宜設定される。 The fine metal wires 7 are made of a fibrous metal, metal, or metal fine particles having a line width of several nanometers to several tens of micrometers. The fiber diameter of the fine metal wire 7 is preferably 100 nm or less from the viewpoint of maintaining the transparency of the transparent conductive film 3 and reducing the unevenness of the working surface of the transparent resin layer 8. The length of the fine metal wire 7 is sufficiently longer than the fiber diameter of the fine metal wire 7. The amount of the fine metal wire 7 bonded onto the substrate 2 is preferably 0.1 mg / m 2 or more and 1000 mg / m 2 or less, and more preferably 1 mg / m 2 or more and 100 mg / m 2 or less. The average aspect ratio of the fine metal wires 7 is preferably 10 or more and 10,000 or less. The amount of the fine metal wires 7 and the average aspect ratio are appropriately set in consideration of the specific gravity of the fine metal wires 7 and the photocatalyst particles 9.
 金属細線7の材料としては、例えば金属メッシュ、金属ナノワイヤ、又は金属微粒子の集合体等を用いることができる。このような材料の中でも、金属細線7として、金属ナノワイヤを用いることが好ましい。金属ナノワイヤは、一般的に材料固有の導電性が高いので透明導電膜3の導電性を保持し易く、また、光触媒粒子9により酸化され易い。従って、この金属ナノワイヤを金属細線7として用いることにより、透明導電膜3のパターニング処理が簡易となる。なお、金属細線7に用いられる金属として、例えば金、銀、銅、アルミニウム、亜鉛、コバルト、ニッケル、又はタングステン等を用いることができる。このような金属の中でも、導電率が高い金、銀、又は銅を用いることが好ましく、導電率が最も高い銀を用いることがより好ましい。 As the material of the metal thin wire 7, for example, a metal mesh, a metal nanowire, or an aggregate of metal fine particles can be used. Among such materials, it is preferable to use metal nanowires as the thin metal wires 7. Since the metal nanowire generally has high conductivity inherent to the material, it is easy to maintain the conductivity of the transparent conductive film 3 and is easily oxidized by the photocatalyst particles 9. Therefore, by using this metal nanowire as the thin metal wire 7, the patterning process of the transparent conductive film 3 is simplified. In addition, as a metal used for the metal fine wire 7, gold, silver, copper, aluminum, zinc, cobalt, nickel, tungsten etc. can be used, for example. Among such metals, gold, silver, or copper having high conductivity is preferably used, and silver having the highest conductivity is more preferably used.
 金属細線7として金属ナノワイヤを用いた場合、金属ナノワイヤの繊維径は、透明導電膜3の透明性の保持、及び透明導電膜3の表面の凹凸状の低減の観点から、100nm以下であることが好ましい。また、金属ナノワイヤの長さは、透明導電膜3の導電性の保持の観点から、3μm以上であることが好ましく、3μm以上500μm以下であることがより好ましく、3μm以上300μm以下であることが更に好ましい。金属ナノワイヤの製造方法は、特に限定されることなく、例えば液相法又は気相法等の公知の方法を用いることができる。 When metal nanowires are used as the thin metal wires 7, the fiber diameter of the metal nanowires may be 100 nm or less from the viewpoint of maintaining the transparency of the transparent conductive film 3 and reducing the unevenness of the surface of the transparent conductive film 3. preferable. The length of the metal nanowire is preferably 3 μm or more, more preferably 3 μm or more and 500 μm or less, and further preferably 3 μm or more and 300 μm or less from the viewpoint of maintaining the conductivity of the transparent conductive film 3. preferable. The manufacturing method of metal nanowire is not specifically limited, For example, well-known methods, such as a liquid phase method or a gaseous-phase method, can be used.
 透明樹脂層8は、透明導電膜3上に有機発光層4を形成することができる程度の強度を有するように構成されている。透明樹脂層8の厚さは、透明導電膜3の導電性の保持の観点から、金属細線7の繊維径(例えば上述した100nm)以上500nm以下であることが好ましい。透明樹脂層8の材料として、例えばシリコーン樹脂、フッ素樹脂、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリスチレン、ポリエーテルスルホン、ポリアリレート、ポリカーボネート樹脂、ポリウレタン、ポリアクリルニトリル、ポリビニルアセタール、ポリアミド、ポリイミド、ジアクリルフタレート樹脂、セルロース系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、その他の熱可塑性樹脂や、これらの樹脂を構成する単量体の2種以上の共重合体を用いることができる。このような材料の中でも、金属細線7、及び光触媒微粒子9の分散性の観点並びに透明導電膜3の強度、及び密着性の観点から、特に、セルロース樹脂、又はアクリル樹脂を用いることが好ましい。 The transparent resin layer 8 is configured to have a strength that allows the organic light emitting layer 4 to be formed on the transparent conductive film 3. From the viewpoint of maintaining the conductivity of the transparent conductive film 3, the thickness of the transparent resin layer 8 is preferably not less than the fiber diameter of the metal thin wire 7 (for example, 100 nm described above) and not more than 500 nm. Examples of the material of the transparent resin layer 8 include silicone resin, fluororesin, acrylic resin, polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polystyrene, polyethersulfone, polyarylate, polycarbonate resin, polyurethane, polyacrylonitrile, polyvinyl acetal, Polyamide, polyimide, diacryl phthalate resin, cellulosic resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, other thermoplastic resins, and two or more copolymers of monomers constituting these resins Can be used. Among such materials, it is particularly preferable to use a cellulose resin or an acrylic resin from the viewpoint of dispersibility of the fine metal wires 7 and the photocatalyst fine particles 9 and the strength and adhesion of the transparent conductive film 3.
 また、透明樹脂層8は、有機系樹脂をバインダとして含むことが好ましい。そのような透明樹脂層8を含む透明導電膜3上に紫外線が照射された場合、光触媒粒子9の有機物分解作用により、透明樹脂層8に含まれる有機系樹脂の結合が切断される。そのため、その透明導電膜3に洗浄処理を行うことにより、透明導電膜3の紫外線が照射された部分、つまり不要な部分を除去することができ、透明導電膜3として必要な部分のみを残すことができる。洗浄処理は、特に限定されることなく、例えば、水、酸、アルカリ、又はアルコール等の液相内に透明導電膜3を浸すことができる。また、洗浄処理の際、界面活性剤や超音波等を用いてもよい。 The transparent resin layer 8 preferably contains an organic resin as a binder. When the transparent conductive film 3 including such a transparent resin layer 8 is irradiated with ultraviolet rays, the organic resin contained in the transparent resin layer 8 is broken by the organic substance decomposition action of the photocatalyst particles 9. Therefore, by performing a cleaning process on the transparent conductive film 3, it is possible to remove the portion of the transparent conductive film 3 irradiated with ultraviolet rays, that is, an unnecessary portion, and leave only a necessary portion as the transparent conductive film 3. Can do. The cleaning treatment is not particularly limited, and for example, the transparent conductive film 3 can be immersed in a liquid phase such as water, acid, alkali, or alcohol. In the cleaning process, a surfactant, ultrasonic waves, or the like may be used.
 光触媒粒子9の粒径は、透明導電膜3の透明性の保持、及び透明樹脂層8の作用面の凹凸状の低減の観点から、100nm以下であることが好ましい。光触媒粒子9の材料としては、例えば酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ジルコニウム、酸化タングステン、酸化クロム、酸化モリブデン、酸化ルテニウム、酸化ゲルマニウム、酸化鉛、酸化カドミウム、酸化銅、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化マンガン、酸化コバルト、酸化ロジウム、酸化レニウム、酸化ストロンチウム、及びこれらの単独又は2種以上の混合物や金属、色素を担持したものが挙げられる。上記の材料の中でも、酸化チタンは高い光触媒活性を有するので、これを用いることにより効率的に金属細線7を酸化することができる。従って、光触媒粒子9の材料として、酸化チタンを用いることが好ましい。 The particle diameter of the photocatalyst particles 9 is preferably 100 nm or less from the viewpoint of maintaining the transparency of the transparent conductive film 3 and reducing the unevenness of the working surface of the transparent resin layer 8. Examples of the material of the photocatalyst particles 9 include titanium oxide, zinc oxide, tin oxide, iron oxide, zirconium oxide, tungsten oxide, chromium oxide, molybdenum oxide, ruthenium oxide, germanium oxide, lead oxide, cadmium oxide, copper oxide, and vanadium oxide. , Niobium oxide, tantalum oxide, manganese oxide, cobalt oxide, rhodium oxide, rhenium oxide, strontium oxide, and a single or a mixture of two or more of these, a metal, and a pigment. Among the above materials, titanium oxide has a high photocatalytic activity, so that the metal fine wire 7 can be oxidized efficiently by using this. Therefore, it is preferable to use titanium oxide as the material of the photocatalyst particles 9.
 透明導電膜3上に紫外線を照射するための光源としては、光触媒粒子9の光触媒作用を活性化できるエネルギーレベルの紫外線を含む光を照射できるものであれば、特に限定されず、近紫外光及び可視光等を更に含む光を照射できるものであってもよい。このような光源としては、水銀ランプ、メタルハライドランプ、キセノンランプ、又はエキシマランプ等の種々の光源を用いることができる。 The light source for irradiating the transparent conductive film 3 with ultraviolet rays is not particularly limited as long as it can irradiate light containing ultraviolet rays having an energy level that can activate the photocatalytic action of the photocatalyst particles 9. It may be capable of irradiating light further including visible light or the like. As such a light source, various light sources such as a mercury lamp, a metal halide lamp, a xenon lamp, or an excimer lamp can be used.
 透明導電膜3の塗工法としては、特に限定されることなく、例えばスピンコート、スクリーン印刷、ディップコート、ダイコート、キャスト、スプレーコート、又はグラビアコート等の公知の塗工法を用いることができる。また、透明導電膜3の表面を平滑化させ、透明導電膜6の表面抵抗値を安定化させるために、例えばローラープレス等による加圧工程を行ってもよい。 The coating method of the transparent conductive film 3 is not particularly limited, and a known coating method such as spin coating, screen printing, dip coating, die coating, casting, spray coating, or gravure coating can be used. In addition, in order to smooth the surface of the transparent conductive film 3 and stabilize the surface resistance value of the transparent conductive film 6, a pressurizing process using, for example, a roller press may be performed.
 次に、透明導電膜3の製造方法について図3(a),(b)を参照して説明する。まず、図3(a)に示すように、例えば無アルカリガラスから成る基材2を用意する。次に、その基板2上に透明導電膜3の材料である透明導電性インクを、例えばスピンコート法により厚さが100nmとなるように塗布する。透明導電性インクは、金属細線材料と、透明樹脂材料と、光触媒材料と、を混合することにより作製され、予め作製されてもよい。金属細線材料としては、例えば銀ナノワイヤを水で分散した溶液を用いることができる。また、透明樹脂材料としては、例えばセルロース樹脂を水で分散した溶液を用いることができる。また、光触媒材料としては、例えば光触媒粒子ゾルをイソプロピルアルコール(IPA)で分散した溶液を用いることができる。その後、基材2上に塗布された透明導電性インクを加熱する。この場合、加熱温度としては、例えば100℃に設定することができ、加熱時間としては、例えば5分間に設定することができる。この方法により、図3(b)に示すように、基材2上に透明導電膜3を形成することができる。 Next, a method for manufacturing the transparent conductive film 3 will be described with reference to FIGS. First, as shown in FIG. 3A, a base material 2 made of, for example, non-alkali glass is prepared. Next, the transparent conductive ink which is the material of the transparent conductive film 3 is applied on the substrate 2 so as to have a thickness of 100 nm by, for example, a spin coating method. The transparent conductive ink is prepared by mixing a metal fine wire material, a transparent resin material, and a photocatalytic material, and may be prepared in advance. As the fine metal wire material, for example, a solution in which silver nanowires are dispersed in water can be used. Moreover, as a transparent resin material, the solution which disperse | distributed cellulose resin with water can be used, for example. Moreover, as a photocatalyst material, the solution which disperse | distributed photocatalyst particle | grain sol with isopropyl alcohol (IPA) can be used, for example. Thereafter, the transparent conductive ink applied on the substrate 2 is heated. In this case, the heating temperature can be set to 100 ° C., for example, and the heating time can be set to 5 minutes, for example. By this method, the transparent conductive film 3 can be formed on the substrate 2 as shown in FIG.
 次に、透明導電膜3に電極パターンを形成する方法について、図4(a),(b)を参照して説明する。ここでは、図4(a)に示すように、紫外線照射用マスク(以下、マスクと略記する)10を透明導電膜3上に所定間隔を隔てて配置する。マスク10は、平坦な板材が所定パターンに切り欠かれて、この切り欠かれた箇所が紫外線透過部11となり、それ以外の部分が紫外線遮蔽部12となっている。つまり、透明導電膜3において、紫外線透過部11に対応する領域には紫外線が照射されて、この領域に存在する光触媒粒子9の光触媒作用を活性化させる。そして、活性化された光触媒粒子9に近接する金属細線7が光触媒作用により酸化されて絶縁化する。なお、この絶縁化された部分が上述した図2(b)における透明導電膜3の第2の上面領域3bに相当する。 Next, a method for forming an electrode pattern on the transparent conductive film 3 will be described with reference to FIGS. Here, as shown in FIG. 4A, ultraviolet irradiation masks (hereinafter abbreviated as “masks”) 10 are arranged on the transparent conductive film 3 at a predetermined interval. In the mask 10, a flat plate material is cut out in a predetermined pattern, and the cutout portion serves as the ultraviolet ray transmitting portion 11, and the other portion serves as the ultraviolet ray shielding portion 12. That is, in the transparent conductive film 3, the region corresponding to the ultraviolet transmissive part 11 is irradiated with ultraviolet rays, and the photocatalytic action of the photocatalytic particles 9 existing in this region is activated. Then, the fine metal wires 7 adjacent to the activated photocatalyst particles 9 are oxidized and insulated by photocatalysis. This insulated portion corresponds to the second upper surface region 3b of the transparent conductive film 3 in FIG. 2B described above.
 これに対して、透明導電膜3において、紫外線遮蔽部12に対応する領域には紫外線が
照射されないので、この領域に存在する光触媒粒子9の光触媒作用は活性化せず、これらの光触媒粒子9に近接する金属細線7は、導電性を有する。なお、この導電性を有する部分が上述した図2(b)における透明導電膜3の第1の上面領域3aに相当する。
On the other hand, in the transparent conductive film 3, the region corresponding to the ultraviolet shielding part 12 is not irradiated with ultraviolet rays, so that the photocatalytic action of the photocatalyst particles 9 existing in this region is not activated, and the photocatalyst particles 9 are not activated. The adjacent fine metal wires 7 have conductivity. Note that this conductive portion corresponds to the first upper surface region 3a of the transparent conductive film 3 in FIG.
 このように、紫外線が照射された光触媒粒子9に近接する金属細線7を選択的に酸化することにより、図4(b)に示すように、透明導電膜3の絶縁化する部分(3b)と導電性を有する部分(3a)とを形成することができる。また、上記の図2(a)に示したように、それらを基材2上で所定パターンに形成することができる。なお、紫外線の強度としては、例えば1000mJ/cmに設定することができる。また、透明導電膜3の第2の上面領域3b下の部分は絶縁化しているので、透明導電膜3のこの部分は、例えば透明導電膜3上に形成される有機発光層に対しては、電気的な作用を行わない。 In this way, by selectively oxidizing the fine metal wires 7 adjacent to the photocatalyst particles 9 irradiated with ultraviolet rays, as shown in FIG. 4B, the insulating portion (3b) of the transparent conductive film 3 and A portion (3a) having conductivity can be formed. Further, as shown in FIG. 2A, they can be formed in a predetermined pattern on the substrate 2. In addition, as an intensity | strength of an ultraviolet-ray, it can set to 1000 mJ / cm < 2 >, for example. Moreover, since the part under the 2nd upper surface area | region 3b of the transparent conductive film 3 is insulated, this part of the transparent conductive film 3 is, for example with respect to the organic light emitting layer formed on the transparent conductive film 3, No electrical action is performed.
 この方法により、パターニング処理が行われた透明導電膜3を得ることができる。なお、必ずしも透明導電膜3の第2の上面領域3b下の全ての金属細線7が絶縁化されている必要はなく、少なくとも透明導電膜3の第2の上面領域3bにおける金属細線7が絶縁化されていればよい。 By this method, the transparent conductive film 3 subjected to the patterning process can be obtained. It is not always necessary to insulate all the thin metal wires 7 below the second upper surface region 3b of the transparent conductive film 3, and at least the fine metal wires 7 in the second upper surface region 3b of the transparent conductive film 3 are insulated. It only has to be done.
 なお、透明導電膜3は、図3(b)に示したような、基材2上に設けられた状態で、市場に供給されえるものである。つまり、使用者がそれを用いたデバイスを製造する際に、そのデバイスに求められる電極パターン等に応じて、適宜に透明導電膜3にパターニング処理を行うことができる。また、このとき、透明導電膜3の透明樹脂層8が有機系樹脂をバインダとして含む場合、透明導電膜3上に紫外線を照射した後に、基材2上に透明導電膜3の不要な部分を除去して、必要な部分のみを残すために、透明導電膜3に洗浄処理を行うことが好ましい。 In addition, the transparent conductive film 3 can be supplied to the market in a state of being provided on the base material 2 as shown in FIG. That is, when a user manufactures a device using the device, the transparent conductive film 3 can be appropriately patterned according to an electrode pattern required for the device. Moreover, at this time, when the transparent resin layer 8 of the transparent conductive film 3 contains an organic resin as a binder, an unnecessary portion of the transparent conductive film 3 is formed on the substrate 2 after irradiating the transparent conductive film 3 with ultraviolet rays. In order to remove and leave only necessary portions, it is preferable to perform a cleaning process on the transparent conductive film 3.
 本実施形態の透明導電膜3によれば、光触媒粒子9の光触媒作用により、透明導電膜3の透明樹脂層8に含まれる金属細線7を酸化して絶縁体とすることができ、これを選択的に行うことにより透明導電膜3のパターニング処理を簡易に行うことができる。 According to the transparent conductive film 3 of the present embodiment, the photocatalytic action of the photocatalyst particles 9 can oxidize the thin metal wires 7 contained in the transparent resin layer 8 of the transparent conductive film 3 to form an insulator, which is selected. By performing this process, the patterning process of the transparent conductive film 3 can be easily performed.
 また、この透明導電膜3が基材上に形成されて透明導電膜付基材6として構成されることにより、パターニング処理を簡易に行うことができる汎用性の高い基板を提供することができる。 Moreover, by forming the transparent conductive film 3 on the base material and forming the transparent conductive film-attached base material 6, it is possible to provide a highly versatile substrate that can be easily patterned.
 また、この透明導電膜付き基材6が有機EL素子の基板として用いられることにより、
この透明導電膜付き基材6が用いられない場合に比べて、有機EL素子の製造を簡易とすることができる。
Moreover, by using this base material 6 with a transparent conductive film as a board | substrate of an organic EL element,
Compared with the case where this base material 6 with a transparent conductive film is not used, manufacture of an organic EL element can be simplified.
 さらに、本実施形態の透明導電膜3の製造方法によれば、透明導電膜3上に紫外線を所定パターンで照射することにより、光触媒粒子9の光触媒作用を活性化させ、これに近接する金属細線7を選択的に酸化させて絶縁体とすることができる。従って、紫外線を所定パターンで照射する簡易な工程で透明導電膜のパターニング処理を行うことができる。 Furthermore, according to the manufacturing method of the transparent conductive film 3 of this embodiment, the photocatalytic action of the photocatalyst particles 9 is activated by irradiating the transparent conductive film 3 with ultraviolet rays in a predetermined pattern, and the fine metal wires adjacent thereto are activated. 7 can be selectively oxidized to form an insulator. Therefore, the transparent conductive film can be patterned by a simple process of irradiating ultraviolet rays in a predetermined pattern.
 次に、第2の実施形態に係る透明導電膜3について、図5及び図6を参照して説明する。以下の説明においては、本実施形態に係る透明導電膜3及び透明導電膜付き基材6が、上記実施形態と異なる点について説明する。 Next, the transparent conductive film 3 according to the second embodiment will be described with reference to FIGS. In the following description, the difference between the transparent conductive film 3 and the transparent conductive film-coated substrate 6 according to the present embodiment from the above embodiment will be described.
 図5に示すように、本実施形態に係る透明導電膜付き基材6の構成は、光触媒粒子9が、透明樹脂層8には含まれず、基材2と透明樹脂層8との間に設けられている光触媒含有層13に含まれるものである。光触媒粒子9は、光触媒含有層13内に均一に分散している。光触媒含有層13は、有機系樹脂をバインダとして含む。光触媒含有層13の材料としては、上記の透明樹脂層8の材料と同様の材料を用いることができる。 As shown in FIG. 5, in the configuration of the substrate 6 with a transparent conductive film according to the present embodiment, the photocatalyst particles 9 are not included in the transparent resin layer 8 and are provided between the substrate 2 and the transparent resin layer 8. The photocatalyst-containing layer 13 is included. The photocatalyst particles 9 are uniformly dispersed in the photocatalyst containing layer 13. The photocatalyst containing layer 13 contains an organic resin as a binder. As a material of the photocatalyst containing layer 13, the same material as the material of the transparent resin layer 8 can be used.
 また、本実施形態に係る透明導電膜3の製造方法は、基材2上に光触媒含有層13の材料である光触媒層材料を塗布して、光触媒含有層13を形成した後に、金属細線材料と透明樹脂材料とから成る透明導電性インクを光触媒含有層13上に塗布するものである。さらに、本実施形態に係る透明導電膜3に電極パターンを形成する方法は、透明導電膜3上に紫外線を所定パターンで照射した後に、透明導電膜付き基材6の洗浄処理を行うものである。 Moreover, the manufacturing method of the transparent conductive film 3 which concerns on this embodiment apply | coats the photocatalyst layer material which is the material of the photocatalyst containing layer 13 on the base material 2, and forms the photocatalyst containing layer 13, Then, metal thin wire material and A transparent conductive ink made of a transparent resin material is applied onto the photocatalyst containing layer 13. Furthermore, the method for forming the electrode pattern on the transparent conductive film 3 according to the present embodiment is to perform the cleaning treatment of the substrate 6 with the transparent conductive film after irradiating the transparent conductive film 3 with ultraviolet rays in a predetermined pattern. .
 電極パターンの形成時に、紫外線が透明導電膜3を透過して光触媒含有層13に照射されると、光触媒粒子9の有機物分解作用により、この光触媒含有層13に含まれる有機系樹脂の結合が切断される。それにより、有機系樹脂は、光触媒含有層13自体及びこの上に形成された透明導電膜3と基材2との保持力を失うことになる。この状態で、透明導電膜付き基材6に洗浄処理が行われることにより、紫外線が照射された光触媒含有層13の部分が基材2上から除去され、また、この光触媒含有層13上に形成されている透明導電膜3の部分も基材2上から除去される。このようにして、図6に示すように、透明導電膜3及び光触媒含有層13の不要な部分(3b)が基材2上から除去されて、必要な部分、すなわち電極パターンとして機能する部分(3a)が基材2上に形成される。 At the time of forming the electrode pattern, when ultraviolet rays pass through the transparent conductive film 3 and are irradiated onto the photocatalyst containing layer 13, the organic resin contained in the photocatalyst containing layer 13 is broken by the organic substance decomposition action of the photocatalyst particles 9. Is done. Thereby, the organic resin loses the holding power between the photocatalyst-containing layer 13 itself and the transparent conductive film 3 and the substrate 2 formed thereon. In this state, the substrate 6 with a transparent conductive film is subjected to a cleaning process, whereby the portion of the photocatalyst containing layer 13 irradiated with ultraviolet rays is removed from the substrate 2 and formed on the photocatalyst containing layer 13. The portion of the transparent conductive film 3 that has been removed is also removed from the substrate 2. Thus, as shown in FIG. 6, the unnecessary part (3b) of the transparent conductive film 3 and the photocatalyst containing layer 13 is removed from the base material 2, and a necessary part, ie, a part functioning as an electrode pattern ( 3a) is formed on the substrate 2.
 なお、光触媒含有層13の代わりに、透明樹脂層8が、有機系樹脂をバインダとして含んでもよい。この場合、透明導電膜3上に紫外線を照射した後に、透明導電膜3に洗浄処理を行うことにより、第2の上面領域3b下の透明導電膜3を除去することができる。この場合、光触媒含有層13は、基材2上に残存するが、光触媒含有層13を構成する有機系樹脂から成るバインダ及び光触媒粒子9は不導体なので、これらが基材2上に残存していても、電極パターンとして機能する部分に悪い影響を及ぼすことはない。 In addition, instead of the photocatalyst containing layer 13, the transparent resin layer 8 may include an organic resin as a binder. In this case, the transparent conductive film 3 under the second upper surface region 3b can be removed by irradiating the transparent conductive film 3 with ultraviolet rays and then performing a cleaning process on the transparent conductive film 3. In this case, the photocatalyst-containing layer 13 remains on the substrate 2, but the binder made of an organic resin and the photocatalyst particles 9 constituting the photocatalyst-containing layer 13 are non-conductive, so they remain on the substrate 2. However, it does not adversely affect the portion functioning as the electrode pattern.
 この透明導電膜3によれば、上記実施形態と同様の効果が得られ、また、透明導電膜3下の光触媒含有層13内に均一に分散する光触媒粒子9の光触媒作用を選択的に活性化させることにより、第2の上面領域3b下の金属細線7を確実に酸化することができる。 According to this transparent conductive film 3, the same effect as the above embodiment can be obtained, and the photocatalytic action of the photocatalyst particles 9 uniformly dispersed in the photocatalyst containing layer 13 below the transparent conductive film 3 is selectively activated. By doing so, the fine metal wires 7 under the second upper surface region 3b can be reliably oxidized.
 また、この透明導電膜3の製造方法によれば、上記実施形態と同様の効果が得られ、また、透明導電膜3上に紫外線を所定パターンで照射する簡易な工程により、選択された金属細線7を確実に酸化することができる。 Moreover, according to the manufacturing method of this transparent conductive film 3, the same effect as the said embodiment is acquired, and the metal fine wire selected by the simple process of irradiating the transparent conductive film 3 with a predetermined pattern of ultraviolet rays. 7 can be reliably oxidized.
 次に、実施例1乃至6及び比較例1乃至4について説明する。 Next, Examples 1 to 6 and Comparative Examples 1 to 4 will be described.
 以下に示すように、金属細線材料、光触媒材料、透明樹脂材料A、及び透明樹脂材料Bを作製した後、実施例1乃至6及び比較例1乃至4のサンプルを作製した。以下、金属細線材料、光触媒材料、透明樹脂材料A、及び透明樹脂材料B、並びにマスク(紫外線照射用マスク)10について説明した後に、実施例1乃至6及び比較例1乃至4のサンプルについて説明する。 As shown below, after producing a metal fine wire material, a photocatalyst material, a transparent resin material A, and a transparent resin material B, samples of Examples 1 to 6 and Comparative Examples 1 to 4 were produced. Hereinafter, after describing the metal thin wire material, the photocatalyst material, the transparent resin material A, the transparent resin material B, and the mask (mask for ultraviolet irradiation) 10, the samples of Examples 1 to 6 and Comparative Examples 1 to 4 will be described. .
 (金属細線材料)
 金属細線として、公知論文「Materials Chemistry and Physics vol.114 p333-338 “Preparation of Ag nanorods with high yield by polyol process”」に準じて銀ナノワイヤを作製した。この場合、銀ナノワイヤの平均繊維径を50nmとし、銀ナノワイヤの平均長さを5μmとした。次に、この銀ナノワイヤを水で分散することにより、固形分5.0質量%の金属細線材料を作製した。
(Metallic wire material)
Silver nanowires were produced as thin metal wires according to a known paper “Materials Chemistry and Physics vol. 114 p333-338“ Preparation of Ag nanorods with high yield by polyol process ””. In this case, the average fiber diameter of the silver nanowires was 50 nm, and the average length of the silver nanowires was 5 μm. Next, the silver nanowire was dispersed with water to produce a fine metal wire material having a solid content of 5.0% by mass.
 (光触媒材料)
 固形分30%の石原産業株式会社製酸化チタンゾルSTS-01をイソプロピルアルコール(IPA)で希釈することにより、固形分5.0質量%の光触媒材料を作製した。
(Photocatalytic material)
A photocatalytic material having a solid content of 5.0% by mass was prepared by diluting 30% solid content Titanium oxide sol STS-01 manufactured by Ishihara Sangyo Co., Ltd. with isopropyl alcohol (IPA).
 (透明樹脂材料A)
 セルロース樹脂5質量部と水95質量部とを混合することにより、透明樹脂材料Aを作製した。
(Transparent resin material A)
Transparent resin material A was produced by mixing 5 parts by mass of cellulose resin and 95 parts by mass of water.
 (透明樹脂材料B)
 三菱化学株式会社製シリコーン樹脂MS51(酸化物換算51%)9.8質量部をIPA85.2質量部に混合して溶解した。次に、このシリコーン樹脂とIPAとの混合液に、0.1H硝酸5質量部を混合して溶解した後、これらの混合液を25℃の恒温槽雰囲気下で1時間撹拌混合した。このようにして、固形分5%の透明樹脂材料Bを作製した。
(Transparent resin material B)
9.8 parts by mass of silicone resin MS51 (51% in terms of oxide) manufactured by Mitsubishi Chemical Corporation was mixed and dissolved in 85.2 parts by mass of IPA. Next, 5 parts by mass of 0.1H nitric acid was mixed and dissolved in the mixed solution of the silicone resin and IPA, and then the mixed solution was stirred and mixed in a constant temperature bath atmosphere at 25 ° C. for 1 hour. Thus, a transparent resin material B having a solid content of 5% was produced.
 (紫外線照射用マスク)
 図7に示すように、マスク10は、矩形状に形成されており、紫外線透過部11と、4つの矩形状の紫外線遮蔽部12と、から成る。マスク10の寸法は、縦100mm、及び横100mmである。紫外線遮蔽部12の寸法は、縦50mm、及び10mmである。
このような紫外線遮蔽部12が、マスク10における、図7に示すような位置に設けられている。
(UV irradiation mask)
As shown in FIG. 7, the mask 10 is formed in a rectangular shape, and includes an ultraviolet transmitting portion 11 and four rectangular ultraviolet shielding portions 12. The dimensions of the mask 10 are 100 mm in length and 100 mm in width. The dimension of the ultraviolet shielding part 12 is 50 mm in length and 10 mm.
Such an ultraviolet shielding part 12 is provided in the mask 10 at a position as shown in FIG.
 (実施例1)
 金属細線材料3質量部と、光触媒材料1質量部と、透明樹脂材料A1質量部と、を混合して、透明導電性インクを作製した。次に、基材として、コーニング社製無アルカリガラス板No.1737(波長が500nmの光に対する屈折率が1.50~1.53)を用意した。次に、この基材上に透明導電性インクをスピンコート法により、厚さが100nmとなるように塗布した。続いて、透明導電性インクが塗布された基材を100℃で5分間加熱することにより、基材上に透明導電膜を形成した。次に、この透明導電膜上に上記のマスク10を介して、紫外線を1000mJ/cmの強度で照射した。それにより、紫外線が照射された領域の金属細線が絶縁化された。
Example 1
A transparent conductive ink was prepared by mixing 3 parts by mass of a metal fine wire material, 1 part by mass of a photocatalyst material, and 1 part by mass of a transparent resin material A1. Next, as a base material, a non-alkali glass plate No. 1737 (with a refractive index of 1.50 to 1.53 for light having a wavelength of 500 nm) was prepared. Next, a transparent conductive ink was applied on the base material by a spin coating method so as to have a thickness of 100 nm. Then, the transparent conductive film was formed on the base material by heating the base material with which the transparent conductive ink was apply | coated at 100 degreeC for 5 minute (s). Next, ultraviolet rays were irradiated onto the transparent conductive film through the mask 10 with an intensity of 1000 mJ / cm 2 . As a result, the fine metal wire in the region irradiated with ultraviolet rays was insulated.
 (実施例2)
 紫外線を照射した後、水中で1分間の超音波洗浄を行った点を除いて、上記実施理例1と同様にして、実施例2のサンプルを作製した。
(Example 2)
A sample of Example 2 was prepared in the same manner as in Example 1 except that the ultrasonic cleaning was performed in water for 1 minute after irradiation with ultraviolet rays.
 (実施例3)
 光触媒材料3質量部と透明樹脂材料A2質量部とを混合して、光触媒層材料を作製した。次に、基材として、実施例1と同様の無アルカリガラス板を用意した。次に、その基材上に光触媒層材料をスピンコート法により、厚さが200nmとなるように塗布した。続いて、光触媒層材料が塗布された基材を100℃で5分間加熱することにより、基材上に光触媒含有層を形成した。次に、金属細線材料3.75質量部と透明樹脂材料A1.25質量部と混合して、透明導電性インクを作製した。次に、光触媒含有層上に、透明導電性インクをスピンコート法により、厚さが100nmとなるように塗布した。続いて、透明導電性インクが塗布された基材を、100℃で5分間加熱することにより、光触媒含有層上に透明導電膜を形成した。次に、この透明導電膜上に上記のマスク10を介して、紫外線を1000mJ/cmの強度で照射した。それにより、紫外線が照射された領域の金属細線が絶縁化された。
(Example 3)
A photocatalyst layer material was prepared by mixing 3 parts by mass of the photocatalyst material and 2 parts by mass of the transparent resin material A. Next, the alkali-free glass plate similar to Example 1 was prepared as a base material. Next, the photocatalyst layer material was applied on the base material by spin coating so as to have a thickness of 200 nm. Subsequently, the photocatalyst-containing layer was formed on the substrate by heating the substrate coated with the photocatalyst layer material at 100 ° C. for 5 minutes. Next, 3.75 parts by mass of the fine metal wire material and 1.25 parts by mass of the transparent resin material A were mixed to prepare a transparent conductive ink. Next, a transparent conductive ink was applied on the photocatalyst-containing layer by spin coating so as to have a thickness of 100 nm. Then, the transparent conductive film was formed on the photocatalyst content layer by heating the base material with which the transparent conductive ink was applied at 100 ° C for 5 minutes. Next, ultraviolet rays were irradiated onto the transparent conductive film through the mask 10 with an intensity of 1000 mJ / cm 2 . As a result, the fine metal wire in the region irradiated with ultraviolet rays was insulated.
 (実施例4)
 紫外線を照射した後、水中で1分間の超音波洗浄を行った点を除いて、上記実施理例3と同様にして、実施例4のサンプルを作製した。
Example 4
A sample of Example 4 was produced in the same manner as in Example 3 except that ultrasonic cleaning was performed in water for 1 minute after irradiation with ultraviolet rays.
 (実施例5)
 光触媒材料を作製する際、透明樹脂材料Aの代わりに、透明樹脂材料Bを用いた点を除いて、上記実施例3と同様にして、実施例5のサンプルを作製した。
(Example 5)
When producing the photocatalytic material, a sample of Example 5 was produced in the same manner as in Example 3 except that the transparent resin material B was used instead of the transparent resin material A.
 (実施例6)
 紫外線を照射した後、水中で1分間の超音波洗浄を行った点を除いて、上記実施理例5と同様にして、実施例6のサンプルを作製した。
(Example 6)
A sample of Example 6 was produced in the same manner as in Example 5 except that the ultrasonic cleaning was performed in water for 1 minute after irradiation with ultraviolet rays.
 (比較例1)
 光触媒材料を用いることなく、金属細線材料3.75質量部と透明樹脂材料A1.25質量部とを混合して、透明導電性インクを作製した点を除いて、上記実施例1と同様にして、比較例1のサンプルを作製した。
(Comparative Example 1)
Without using the photocatalyst material, the same procedure as in Example 1 was performed except that 3.75 parts by mass of the fine metal wire material and 1.25 parts by mass of the transparent resin material A were mixed to produce a transparent conductive ink. A sample of Comparative Example 1 was produced.
 (比較例2)
 紫外線を照射した後、水中で1分間の超音波洗浄を行った点を除いて、上記比較例1と同様にして、実施例2のサンプルを作製した。
(Comparative Example 2)
A sample of Example 2 was produced in the same manner as in Comparative Example 1 except that after ultrasonic irradiation, ultrasonic cleaning was performed for 1 minute in water.
 (比較例3)
 光触媒含有層の代わりに、透明樹脂材料Bを基材上に塗布することにより透明樹脂層を形成した点を除いて、上記実施例5と同様にして、比較例3のサンプルを作製した。
(Comparative Example 3)
A sample of Comparative Example 3 was produced in the same manner as in Example 5 except that the transparent resin material B was formed on the base material instead of the photocatalyst-containing layer.
 (比較例4)
 紫外線を照射した後、水中で1分間の超音波洗浄を行った点を除いて、上記比較例3と同様にして、比較例4のサンプルを作製した。
(Comparative Example 4)
A sample of Comparative Example 4 was produced in the same manner as in Comparative Example 3 except that ultrasonic cleaning was performed in water for 1 minute after irradiation with ultraviolet rays.
 上記の実施例1乃至6及び比較例1乃至4のサンプルの構成を表1に示す。 Table 1 shows the configurations of the samples of Examples 1 to 6 and Comparative Examples 1 to 4 described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の実施例1乃至6及び比較例1乃至4のサンプルについて、膜物性の測定、及びパターニング性の評価を行った。以下、これらの評価の方法について説明する。 For the samples of Examples 1 to 6 and Comparative Examples 1 to 4, the film physical properties were measured and the patterning properties were evaluated. Hereinafter, these evaluation methods will be described.
 (膜物性の測定)
 膜物性の測定として、各サンプルの透明導電膜の外観を目視により観察した。また、日本電色工業株式会社製NDH-2000を用いて各サンプルの透明導電膜のヘイズ値、及び全光線透過率の測定を行った。
(Measurement of film properties)
As the measurement of film properties, the appearance of the transparent conductive film of each sample was visually observed. Moreover, the haze value and total light transmittance of the transparent conductive film of each sample were measured using NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
 (パターニング性の評価)
 図8に示すように、各透明導電膜の4つの第1の上面領域3aの両端に銀ペーストにより測定端子部3cを設けた。任意に選択した2つの測定端子部3c間の抵抗値をテスターを用いて測定することにより、パターニング性を評価した。具体的には、同一の第1の上面領域3a内の測定端子部3c間では導電性があり、且つ異なる第1の上面領域3a内の測定端子部3c間では絶縁している場合に、パターニングがされていると評価し、その他の場合は、パターニングがさていないと評価した。以下においては、透明導電膜3の第1の上面領域3a下の部分を、UV遮蔽部といい、透明導電膜3の第2の上面領域3b下の部分を、UV照射部という。
(Evaluation of patterning properties)
As shown in FIG. 8, the measurement terminal part 3c was provided with the silver paste at the both ends of the four 1st upper surface area | regions 3a of each transparent conductive film. Patternability was evaluated by measuring a resistance value between two arbitrarily selected measurement terminal portions 3c using a tester. Specifically, the patterning is performed when there is conductivity between the measurement terminal portions 3c in the same first upper surface region 3a and insulation is provided between the measurement terminal portions 3c in different first upper surface regions 3a. In other cases, it was evaluated that patterning was not performed. Hereinafter, the portion below the first upper surface region 3a of the transparent conductive film 3 is referred to as a UV shielding portion, and the portion below the second upper surface region 3b of the transparent conductive film 3 is referred to as a UV irradiation portion.
 表2に膜物性の測定結果を示す。 Table 2 shows the measurement results of film properties.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、各実施例のサンプルの透明導電膜の外観について、実施例2及び実施例4では、UV照射部が除去されていた。また、実施例6では、シリコーン樹脂を含む光触媒含有層を残存させた状態で、UV照射部が除去されていた。実施例1、実施例3、及び実施例5では、透明導電膜の外観に変化は無かった。 As shown in Table 2, with respect to the appearance of the transparent conductive film of the sample of each example, in Example 2 and Example 4, the UV irradiation part was removed. Moreover, in Example 6, the UV irradiation part was removed in the state in which the photocatalyst containing layer containing the silicone resin remained. In Example 1, Example 3, and Example 5, there was no change in the external appearance of the transparent conductive film.
 各実施例のサンプルの透明導電膜のヘイズ値について、実施例1及び実施例2のUV遮蔽部では、ヘイズ値が0.8%であり、実施例3乃至6のUV遮蔽部では、ヘイズ値が1%であった。また、実施例1のUV照射部では、ヘイズ値が0.8%であり、実施例2及び実施例4のUV照射部では、ヘイズ値が0.2%であり、実施例3及び実施例5のUV照射部では、ヘイズ値が1%であり、実施例6のUV照射部では、ヘイズ値が0.4%であった。 About the haze value of the transparent conductive film of the sample of each Example, in the UV shielding part of Example 1 and Example 2, the haze value is 0.8%, and in the UV shielding part of Examples 3 to 6, the haze value is Was 1%. Moreover, in the UV irradiation part of Example 1, the haze value is 0.8%, and in the UV irradiation part of Example 2 and Example 4, the haze value is 0.2%. Example 3 and Example In the UV irradiation part of No. 5, the haze value was 1%, and in the UV irradiation part of Example 6, the haze value was 0.4%.
 各実施例のサンプルの透明導電膜の全光線透過率について、実施例1及び実施例2のUV遮蔽部では、全光線透過率が91%であり、実施例3乃至6のUV遮蔽部では、全光線透過率が90%であった。また、実施例1及び実施例6のUV照射部では、全光線透過率が91%であり、実施例2及び実施例4のUV照射部では、全光線透過率が92%であり、実施例3及び実施例5のUV照射部では、全光線透過率が90%であった。 About the total light transmittance of the transparent conductive film of the sample of each example, in the UV shielding part of Example 1 and Example 2, the total light transmittance is 91%, and in the UV shielding part of Examples 3 to 6, The total light transmittance was 90%. Moreover, in the UV irradiation part of Example 1 and Example 6, the total light transmittance is 91%, and in the UV irradiation part of Example 2 and Example 4, the total light transmittance is 92%. In the UV irradiation part of 3 and Example 5, the total light transmittance was 90%.
 次に、表3にパターニング性の評価結果を示す。なお、表3中でパターニング性の評価を示す「○」は、パターニングがされていたことを示し、「×」は、パターニングがされていなかったことを示す。また、表3中で、同一の第1の上面領域内での測定において示されている「1」は、1-1の測定端子部3cと1-2の測定端子部3cとを用いたことを示し、「2」は、2-1の測定端子部3cと2-2の測定端子部3cとを用いたことを示す。「3」、及び「4」についても同様である。 Next, Table 3 shows the patterning evaluation results. In Table 3, “◯” indicating the evaluation of patterning property indicates that patterning has been performed, and “x” indicates that patterning has not been performed. Further, in Table 3, “1” shown in the measurement in the same first upper surface region means that the 1-1 measurement terminal portion 3c and the 1-2 measurement terminal portion 3c were used. “2” indicates that the measurement terminal unit 3c of 2-1 and the measurement terminal unit 3c of 2-2 were used. The same applies to “3” and “4”.
 さらに、異なる第1の上面領域間での測定において示されている「1-2」は、1-1の測定端子部3cと2-1の測定端子部3cとを用いたことを示し、「1-3」は、1-1の測定端子部3cと3-1の測定端子部3cと用いたことを示す。つまり、この場合、異なる第1の上面領域内の1側の測定端子部3cを用いた。「1-4」、「2-3」、「2-4」、及び「3-4」についても同様である。 Furthermore, “1-2” shown in the measurement between different first upper surface regions indicates that the 1-1 measurement terminal portion 3c and the 2-1 measurement terminal portion 3c are used, “1-3” indicates that the measurement terminal unit 3c of 1-1 and the measurement terminal unit 3c of 3-1 were used. That is, in this case, the one-side measurement terminal portion 3c in the different first upper surface region was used. The same applies to “1-4”, “2-3”, “2-4”, and “3-4”.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例1乃至6では、同一の第1の上面領域3a内の測定端子部3c間では導電性があり、且つ異なる第1の上面領域3a内の測定端子部3c間では絶縁していた。これに対して、比較例1乃至4では、同一の第1の上面領域3a内の測定端子部3c間、及び異なる第1の上面領域3a間で導電性があった。この結果は、実施例1乃至6では、パターニングがされ、比較例1乃至4では、パターニングがされていなかったことを示す。 As shown in Table 3, in Examples 1 to 6, there is conductivity between measurement terminal portions 3c in the same first upper surface region 3a, and between the measurement terminal portions 3c in different first upper surface regions 3a. Insulated. On the other hand, in Comparative Examples 1 to 4, there was conductivity between the measurement terminal portions 3c in the same first upper surface region 3a and between different first upper surface regions 3a. This result shows that in Examples 1 to 6, patterning was performed, and in Comparative Examples 1 to 4, patterning was not performed.
 本発明は上記実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変更が
可能である。例えば、光触媒含有層13が、基材2と透明導電膜3との間に形成される代わりに、透明導電膜3上に形成されてもよい。この場合においても、透明導電膜3上の光触媒含有層13上に紫外線を照射することにより、透明導電膜3にパターニング処理を簡易に行うことができる。なお、この場合、透明導電膜3にパターニング処理が行われた後、透明導電膜3の導電性を保持するために、光触媒含有層13を透明導電膜3上から除去することが好ましい。
The present invention is not limited to the configuration of the embodiment described above, and various modifications can be made without departing from the spirit of the invention. For example, the photocatalyst containing layer 13 may be formed on the transparent conductive film 3 instead of being formed between the base material 2 and the transparent conductive film 3. Also in this case, the patterning process can be easily performed on the transparent conductive film 3 by irradiating the photocatalyst containing layer 13 on the transparent conductive film 3 with ultraviolet rays. In this case, after the patterning process is performed on the transparent conductive film 3, it is preferable to remove the photocatalyst-containing layer 13 from the transparent conductive film 3 in order to maintain the conductivity of the transparent conductive film 3.
 また、透明導電膜3は、液晶ディスプレイ、プラズマディスプレイ、又は太陽有機電池等の透明電極として用いることができる。また、金属細線7の材料として、カーボンナノチューブを用いてもよく、透明樹脂層8の材料として、導電性を有する高分子を用いてもよい。 Further, the transparent conductive film 3 can be used as a transparent electrode such as a liquid crystal display, a plasma display, or a solar organic battery. Further, carbon nanotubes may be used as the material for the fine metal wires 7, and conductive polymers may be used as the material for the transparent resin layer 8.
 なお、本出願は、日本国特許出願2011-065064号に基づいており、その特許出願の内容は、参照によって本出願に組み込まれる。 Note that this application is based on Japanese Patent Application No. 2011-065064, and the contents of that patent application are incorporated into this application by reference.
 1 有機エレクトロルミネッセンス素子
 2 基材
 3 透明導電膜
 6 透明導電膜付き基材
 7 金属細線(金属ナノワイヤ)
 8 透明樹脂層
 9 光触媒粒子(酸化チタン)
 13 光触媒含有層
DESCRIPTION OF SYMBOLS 1 Organic electroluminescent element 2 Base material 3 Transparent conductive film 6 Base material with a transparent conductive film 7 Metal fine wire (metal nanowire)
8 Transparent resin layer 9 Photocatalyst particles (titanium oxide)
13 Photocatalyst containing layer

Claims (10)

  1.  基材上に設けられ、金属細線を含む透明樹脂層を備えた透明導電膜であって、
     光触媒活性を有する光触媒粒子が、前記透明樹脂層内、又は前記透明樹脂層の前記基材と対向する面若しくはこの面と反対側の面上に存在することを特徴とする透明導電膜。
    A transparent conductive film provided on a substrate and provided with a transparent resin layer containing a thin metal wire,
    A transparent conductive film, wherein photocatalyst particles having photocatalytic activity are present in the transparent resin layer, on the surface of the transparent resin layer facing the substrate, or on the surface opposite to the surface.
  2.  前記光触媒粒子を含む光触媒含有層が、前記透明樹脂層の前記基材と対向する面、又はこの面と反対側の面上に形成されていることを特徴とする請求項1に記載の透明導電膜。 2. The transparent conductive material according to claim 1, wherein the photocatalyst-containing layer including the photocatalyst particles is formed on a surface of the transparent resin layer facing the base material or a surface opposite to the surface. film.
  3.  前記透明樹脂層又は前記光触媒含有層は、有機系樹脂をバインダとして含むことを特徴とする請求項2に記載の透明導電膜。 The transparent conductive film according to claim 2, wherein the transparent resin layer or the photocatalyst-containing layer contains an organic resin as a binder.
  4.  前記金属細線は、金属ナノワイヤであることを特徴とする請求項1乃至請求項3に記載の透明導電膜。 4. The transparent conductive film according to claim 1, wherein the thin metal wire is a metal nanowire.
  5.  前記光触媒粒子は、酸化チタンであることを特徴とする請求項1乃至請求項4に記載の透明導電膜。 The transparent conductive film according to claim 1, wherein the photocatalyst particles are titanium oxide.
  6.  基材上に請求項1乃至請求項5のいずれか一項に記載の透明導電膜が形成されていることを特徴とする透明導電膜付き基材。 A substrate with a transparent conductive film, wherein the transparent conductive film according to any one of claims 1 to 5 is formed on the substrate.
  7.  請求項6に記載の透明導電膜付き基材を用いたことを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence device using the substrate with a transparent conductive film according to claim 6.
  8.  基材上に設けられ、金属細線を含む透明樹脂層を備えた透明導電膜の製造方法であって、
     前記基材上に光触媒活性を有する光触媒粒子を含む前記透明導電膜を形成する工程と、
     前記透明導電膜上に紫外線を所定パターンで照射し、前記光触媒粒子に近接する前記金属細線を選択的に酸化する工程と、を含むことを特徴とする透明導電膜の製造方法。
    A method for producing a transparent conductive film provided on a substrate and provided with a transparent resin layer containing a thin metal wire,
    Forming the transparent conductive film containing photocatalytic particles having photocatalytic activity on the substrate;
    Irradiating the transparent conductive film with ultraviolet rays in a predetermined pattern, and selectively oxidizing the fine metal wires adjacent to the photocatalyst particles.
  9.  基材上に設けられ、金属細線を含む透明樹脂層を備えた透明導電膜の製造方法であって、
     前記基材上に光触媒活性を有する光触媒粒子を含む光触媒含有層を形成する工程と、
     前記光触媒含有層上に前記透明導電膜を形成する工程と、
     前記透明導電膜上に紫外線を所定パターンで照射し、前記光触媒粒子に近接する前記金属細線を選択的に酸化する工程と、を含むことを特徴とする透明導電膜の製造方法。
    A method for producing a transparent conductive film provided on a substrate and provided with a transparent resin layer containing a thin metal wire,
    Forming a photocatalyst-containing layer containing photocatalytic particles having photocatalytic activity on the substrate;
    Forming the transparent conductive film on the photocatalyst-containing layer;
    Irradiating the transparent conductive film with ultraviolet rays in a predetermined pattern, and selectively oxidizing the fine metal wires adjacent to the photocatalyst particles.
  10.  前記紫外線を所定パターンで照射する工程の後に、前記透明導電膜を液相内に浸して洗浄する工程を含むことを特徴とする請求項8又は請求項9に記載の透明導電膜の製造方法。 The method for producing a transparent conductive film according to claim 8 or 9, further comprising a step of immersing and cleaning the transparent conductive film in a liquid phase after the step of irradiating the ultraviolet rays in a predetermined pattern.
PCT/JP2012/052693 2011-03-23 2012-02-07 Transparent conductive film, substrate having transparent conductive film, and organic electroluminescent element using same and manufacturing method for same WO2012127915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011065064A JP2012204023A (en) 2011-03-23 2011-03-23 Transparent conductive film, base material with transparent conductive film, organic electroluminescent element using the same, and manufacturing method thereof
JP2011-065064 2011-03-23

Publications (1)

Publication Number Publication Date
WO2012127915A1 true WO2012127915A1 (en) 2012-09-27

Family

ID=46879083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052693 WO2012127915A1 (en) 2011-03-23 2012-02-07 Transparent conductive film, substrate having transparent conductive film, and organic electroluminescent element using same and manufacturing method for same

Country Status (2)

Country Link
JP (1) JP2012204023A (en)
WO (1) WO2012127915A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094477A1 (en) * 2011-12-19 2013-06-27 パナソニック株式会社 Transparent conductive film, substrate with transparent conductive film, and method for manufacturing same
CN104145313A (en) * 2013-04-05 2014-11-12 苏州诺菲纳米科技有限公司 Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
US20190206586A1 (en) * 2018-01-03 2019-07-04 Boe Technology Group Co., Ltd. Patterned electrode, method for forming patterned electrode and display device
WO2020181940A1 (en) * 2019-03-12 2020-09-17 京东方科技集团股份有限公司 Transparent electrically conductive structure and preparation method thereof, display substrate, touch control substrate
US20220152592A1 (en) * 2020-11-17 2022-05-19 Chongqing Institute Of East China Normal University Glass fiber filter element for visible light photocatalysis and air purification and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140373349A1 (en) * 2013-06-20 2014-12-25 Carestream Health, Inc. Laser diode patterning of transparent conductive films
JP6352085B2 (en) * 2014-07-09 2018-07-04 株式会社クラレ Film and film forming method
JP6580431B2 (en) * 2015-01-27 2019-09-25 日東電工株式会社 Transparent conductive film
WO2016121662A1 (en) * 2015-01-27 2016-08-04 日東電工株式会社 Transparent electroconductive film
JP6580432B2 (en) * 2015-03-16 2019-09-25 日東電工株式会社 Transparent conductive film
JP2020040047A (en) * 2018-09-13 2020-03-19 株式会社東芝 Photocatalyst dispersion liquid, photocatalyst composite material and photocatalyst device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216269A (en) * 2005-02-01 2006-08-17 Seiko Epson Corp Conductive composition, pattern forming method, and electro-optical device
JP2011029037A (en) * 2009-07-27 2011-02-10 Panasonic Electric Works Co Ltd Base material with transparent conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216269A (en) * 2005-02-01 2006-08-17 Seiko Epson Corp Conductive composition, pattern forming method, and electro-optical device
JP2011029037A (en) * 2009-07-27 2011-02-10 Panasonic Electric Works Co Ltd Base material with transparent conductive film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094477A1 (en) * 2011-12-19 2013-06-27 パナソニック株式会社 Transparent conductive film, substrate with transparent conductive film, and method for manufacturing same
JPWO2013094477A1 (en) * 2011-12-19 2015-04-27 パナソニックIpマネジメント株式会社 Transparent conductive film, substrate with transparent conductive film and method for producing the same
CN104145313A (en) * 2013-04-05 2014-11-12 苏州诺菲纳米科技有限公司 Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
CN104285260A (en) * 2013-04-05 2015-01-14 苏州诺菲纳米科技有限公司 Transparent conductive electrodes comprising surface functionalized metal nanowires, their structure design, and method of making such structures
CN108806836A (en) * 2013-04-05 2018-11-13 苏州诺菲纳米科技有限公司 Transparent conductive electrode, their structure design and its manufacturing method with fused metal nano wire
CN108806836B (en) * 2013-04-05 2020-11-13 苏州诺菲纳米科技有限公司 Transparent conductive electrodes with fused metal nanowires, their structural design and methods of making the same
US20190206586A1 (en) * 2018-01-03 2019-07-04 Boe Technology Group Co., Ltd. Patterned electrode, method for forming patterned electrode and display device
WO2020181940A1 (en) * 2019-03-12 2020-09-17 京东方科技集团股份有限公司 Transparent electrically conductive structure and preparation method thereof, display substrate, touch control substrate
US11347337B2 (en) 2019-03-12 2022-05-31 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Transparent conductive structure and preparation method thereof, display substrate and touch substrate
US20220152592A1 (en) * 2020-11-17 2022-05-19 Chongqing Institute Of East China Normal University Glass fiber filter element for visible light photocatalysis and air purification and preparation method thereof
US11944957B2 (en) * 2020-11-17 2024-04-02 Chongqing Institute Of East China Normal University Glass fiber filter element for visible light photocatalysis and air purification and preparation method thereof

Also Published As

Publication number Publication date
JP2012204023A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
WO2012127915A1 (en) Transparent conductive film, substrate having transparent conductive film, and organic electroluminescent element using same and manufacturing method for same
Lee et al. Flexible and stretchable optoelectronic devices using silver nanowires and graphene
JP5997758B2 (en) Method for manufacturing organic electronic device
JP5679565B2 (en) Transparent conductive film, substrate with transparent conductive film, and organic electroluminescence device using the same
JP2015170404A (en) Transparent conductive body and device using it
US9123914B2 (en) Electronic device and method of fabricating the same
TW201242414A (en) Planate light emitting device
KR101682501B1 (en) Transparant electrode containing silver nanowire-patterned layer and graphene layer, and manufacturing method thereof
WO2012127916A1 (en) Transparent conductive film, substrate having transparent conductive film, and organic electroluminescent element using same
JP5656975B2 (en) Photoelectric device and manufacturing method thereof
JP2013516735A (en) Method for maskless manufacturing of organic light emitting diode device
KR20130037925A (en) Substrate for organic electronic device
JP2012190659A (en) Transparent conductive film, base material with transparent conductive film and organic electroluminescent element including the same
TW201218476A (en) Electro-optic device and method for manufacturing the same
JP2018107138A (en) Method for producing transparent conductive body
JP2005174914A (en) Organic el apparatus
JP2014241297A (en) Method for manufacturing transparent electrode laminate
KR20140075502A (en) Method of preparation of complex electrode with multi layered structure
KR101862318B1 (en) The light transmitting substrate and method for manufacturing the same
JP5919821B2 (en) Optical substrate, method for manufacturing the same, and light emitting display device
KR101394967B1 (en) Method of manufacturing a transparent electrode, and method of manufacturing an electronic device having the transparent electrode
US10217941B2 (en) Method for producing an organic light-emitting diode and organic light-emitting diode
JP2012185919A (en) Transparent conductive film, substrate with transparent conductive film, and organic electroluminescent element using the same
KR20170017409A (en) Conductor and method of manufacturing the same
DE102014110271B4 (en) Optoelectronic component and method for producing an optoelectronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760877

Country of ref document: EP

Kind code of ref document: A1