WO2012124208A1 - Light-emitting device, information acquisition device, and object detection device mounted therewith - Google Patents

Light-emitting device, information acquisition device, and object detection device mounted therewith Download PDF

Info

Publication number
WO2012124208A1
WO2012124208A1 PCT/JP2011/075386 JP2011075386W WO2012124208A1 WO 2012124208 A1 WO2012124208 A1 WO 2012124208A1 JP 2011075386 W JP2011075386 W JP 2011075386W WO 2012124208 A1 WO2012124208 A1 WO 2012124208A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
light
emitting device
laser
holder
Prior art date
Application number
PCT/JP2011/075386
Other languages
French (fr)
Japanese (ja)
Inventor
信雄 岩月
楳田 勝美
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012124208A1 publication Critical patent/WO2012124208A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/004Manual alignment, e.g. micromanipulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses

Definitions

  • the present invention relates to an object detection device that detects an object in a target region based on a state of reflected light when light is projected onto the target region, an information acquisition device suitable for use in the object detection device, and the object detection device.
  • the present invention relates to a light emitting device to be mounted on.
  • An object detection device using light has been developed in various fields.
  • An object detection apparatus using a so-called distance image sensor can detect not only a planar image on a two-dimensional plane but also the shape and movement of the detection target object in the depth direction.
  • light in a predetermined wavelength band is projected from a laser light source or LED (Light-Emitting-Diode) onto a target area, and the reflected light is received by a light-receiving element such as a CMOS image sensor.
  • CMOS image sensor Light-Emitting-Diode
  • a distance image sensor of a type that irradiates a target region with laser light having a predetermined dot pattern reflected light from the target region of laser light having a dot pattern is received by a light receiving element. Based on the light receiving position of the dot on the light receiving element, the distance to each part of the detection target object (irradiation position of each dot on the detection target object) is detected using triangulation (for example, non-patent) Reference 1).
  • triangulation for example, non-patent
  • a collimator lens and a diffractive optical element can be used to generate laser light having a dot pattern.
  • the collimator lens when the collimator lens is shifted back and forth from the expected position on the optical axis of the laser light source, the spread angle of the laser light after passing through the collimator lens changes. For this reason, the laser beam does not enter the diffractive optical element at a desired spread angle, and the dot size of the dot pattern does not become the expected size. Further, when the optical axis of the collimator lens is shifted from the optical axis of the laser light source, the traveling direction of the laser light after passing through the collimator lens changes. For this reason, the laser light enters the diffractive optical element from an oblique direction, and the irradiation area of the laser light of the dot pattern is shifted from the appropriate position.
  • the dot pattern is not irradiated in a desired irradiation state, which may adversely affect the measurement accuracy.
  • the present invention has been made to solve such a problem, and includes a light emitting device, an information acquisition device, and a device capable of easily and accurately adjusting the position between a laser light source and a collimator lens.
  • An object of the present invention is to provide an object detection device.
  • the first aspect of the present invention relates to a light emitting device.
  • the light-emitting device includes a laser light source, a collimator lens that converts laser light emitted from the laser light source into parallel light, a diffractive optical element on which the laser light converted into parallel light is incident, and the laser A housing for housing the light source, the collimator lens and the diffractive optical element; a first position adjusting unit for adjusting the position of the laser light source in an in-plane direction perpendicular to the emission optical axis of the laser light source; and the collimator A second position adjusting unit for adjusting the position of the collimator lens in a direction parallel to the optical axis of the lens.
  • a second aspect of the present invention relates to an information acquisition apparatus that acquires information on a target area using light.
  • An information acquisition device includes the light-emitting device according to the first aspect and a light-receiving device that receives reflected light reflected from the target region.
  • the third aspect of the present invention relates to an object detection apparatus.
  • the object detection apparatus according to this aspect includes the information acquisition apparatus according to the second aspect.
  • the present invention it is possible to provide a light-emitting device, an information acquisition device, and an object detection device equipped with the light-emitting device that can easily and accurately adjust the position between the laser light source and the collimator lens. .
  • an information acquisition device of a type that irradiates a target area with laser light having a predetermined dot pattern is exemplified.
  • FIG. 1 shows a schematic configuration of the object detection apparatus according to the present embodiment.
  • the object detection device includes an information acquisition device 1 and an information processing device 2.
  • the television 3 is controlled by a signal from the information processing device 2.
  • the information acquisition device 1 projects infrared light over the entire target area and receives the reflected light with a CMOS image sensor, whereby the distance between each part of the object in the target area (hereinafter referred to as “three-dimensional distance information”). To get.
  • the acquired three-dimensional distance information is sent to the information processing apparatus 2 via the cable 4.
  • the information processing apparatus 2 is, for example, a controller for TV control, a game machine, a personal computer, or the like.
  • the information processing device 2 detects an object in the target area based on the three-dimensional distance information received from the information acquisition device 1, and controls the television 3 based on the detection result.
  • the information processing apparatus 2 detects a person based on the received three-dimensional distance information and detects the movement of the person from the change in the three-dimensional distance information.
  • the information processing device 2 is a television control controller
  • the information processing device 2 detects the person's gesture from the received three-dimensional distance information and outputs a control signal to the television 3 in accordance with the gesture.
  • the application program to be installed is installed.
  • the user can cause the television 3 to execute a predetermined function such as channel switching or volume up / down by making a predetermined gesture while watching the television 3.
  • the information processing device 2 when the information processing device 2 is a game machine, the information processing device 2 detects the person's movement from the received three-dimensional distance information, and displays a character on the television screen according to the detected movement.
  • An application program that operates and changes the game battle situation is installed. In this case, the user can experience a sense of realism in which he / she plays a game as a character on the television screen by making a predetermined movement while watching the television 3.
  • FIG. 2 is a diagram showing the configuration of the information acquisition device 1 and the information processing device 2.
  • XYZ axes orthogonal to each other are attached to indicate directions related to the projection optical system 100 and the light receiving optical system 200.
  • the information acquisition apparatus 1 includes a projection optical system 100 and a light receiving optical system 200 as a configuration of an optical unit.
  • the projection optical system 100 and the light receiving optical system 200 are arranged in the information acquisition apparatus 1 so as to be aligned in the Z-axis direction.
  • the projection optical system 100 includes a laser light source 110, a collimator lens 120, a rising mirror 130, and a diffractive optical element (DOE: Diffractive Optical Element) 140.
  • the light receiving optical system 200 includes a filter 210, an aperture 220, an imaging lens 230, and a CMOS image sensor 240.
  • the information acquisition device 1 includes a CPU (Central Processing Unit) 21, a laser driving circuit 22, an imaging signal processing circuit 23, an input / output circuit 24, and a memory 25 as a circuit unit.
  • CPU Central Processing Unit
  • the laser light source 110 outputs laser light in a narrow wavelength band with a wavelength of about 830 nm in a direction away from the light receiving optical system 200 (Z-axis positive direction).
  • the collimator lens 120 converts the laser light emitted from the laser light source 110 into light slightly spread from parallel light (hereinafter simply referred to as “parallel light”).
  • the raising mirror 130 reflects the laser beam incident from the collimator lens 120 side in the direction toward the DOE 140 (Y-axis positive direction).
  • the DOE 140 has a diffraction pattern on the incident surface. Due to the diffraction effect of the diffraction pattern, the laser light incident on the DOE 140 is converted into a dot pattern laser light and irradiated onto the target region.
  • the diffraction pattern has, for example, a structure in which a step type diffraction hologram is formed in a predetermined pattern. The diffraction hologram is adjusted in pattern and pitch so as to convert the laser light converted into parallel light by the collimator lens 120 into laser light of a dot pattern.
  • the DOE 140 irradiates the target region with the laser beam incident from the rising mirror 130 as a laser beam having a dot pattern that spreads radially.
  • the size of each dot in the dot pattern depends on the beam size of the laser light when entering the DOE 140.
  • Laser light (0th order light) that is not diffracted by the DOE 140 passes through the DOE 140 and travels straight.
  • the laser light reflected from the target area enters the imaging lens 230 via the filter 210 and the aperture 220.
  • the filter 210 is a band-pass filter that transmits light in a wavelength band including the emission wavelength (about 830 nm) of the laser light source 110 and cuts the wavelength band of visible light.
  • the aperture 220 stops the light from the outside so as to match the F number of the imaging lens 230.
  • the imaging lens 230 condenses the light incident through the aperture 220 on the CMOS image sensor 240.
  • the CMOS image sensor 240 receives the light collected by the imaging lens 230 and outputs a signal (charge) corresponding to the amount of received light to the imaging signal processing circuit 23 for each pixel.
  • the output speed of the signal is increased so that the signal (charge) of the pixel can be output to the imaging signal processing circuit 23 with high response from the light reception in each pixel.
  • the CPU 21 controls each unit according to a control program stored in the memory 25.
  • the CPU 21 is provided with the functions of a laser control unit 21a for controlling the laser light source 110 and a distance calculation unit 21b for generating three-dimensional distance information.
  • the laser drive circuit 22 drives the laser light source 110 according to a control signal from the CPU 21.
  • the imaging signal processing circuit 23 controls the CMOS image sensor 240 and sequentially takes in the signal (charge) of each pixel generated by the CMOS image sensor 240 for each line. Then, the captured signals are sequentially output to the CPU 21. Based on the signal (imaging signal) supplied from the imaging signal processing circuit 23, the CPU 21 calculates the distance from the information acquisition device 1 to each part of the detection target by processing by the distance calculation unit 21b.
  • the input / output circuit 24 controls data communication with the information processing apparatus 2.
  • the information processing apparatus 2 includes a CPU 31, an input / output circuit 32, and a memory 33.
  • the information processing apparatus 2 has a configuration for performing communication with the television 3 and for reading information stored in an external memory such as a CD-ROM and installing it in the memory 33.
  • an external memory such as a CD-ROM
  • the configuration of these peripheral circuits is not shown for the sake of convenience.
  • the CPU 31 controls each unit according to a control program (application program) stored in the memory 33.
  • a control program application program
  • the CPU 31 is provided with the function of the object detection unit 31a for detecting an object in the image.
  • a control program is read from a CD-ROM by a drive device (not shown) and installed in the memory 33, for example.
  • the object detection unit 31a detects a person in the image and its movement from the three-dimensional distance information supplied from the information acquisition device 1. Then, a process for operating the character on the television screen according to the detected movement is executed by the control program.
  • the object detection unit 31 a detects a person in the image and its movement (gesture) from the three-dimensional distance information supplied from the information acquisition device 1. To do. Then, processing for controlling functions (channel switching, volume adjustment, etc.) of the television 3 is executed by the control program in accordance with the detected movement (gesture).
  • the input / output circuit 32 controls data communication with the information acquisition device 1.
  • FIG. 3A is a diagram schematically showing the irradiation state of the laser light on the target region
  • FIG. 3B is a diagram schematically showing the light receiving state of the laser light in the CMOS image sensor 240.
  • FIG. 6B shows a light receiving state when a flat surface (screen) exists in the target area.
  • laser light having a dot pattern (hereinafter, the entire laser light having this pattern is referred to as “DP light”) is irradiated onto the target area.
  • DP light laser light having a dot pattern
  • the light flux region of DP light is indicated by a solid line frame.
  • dot regions (hereinafter simply referred to as “dots”) in which the intensity of the laser light is increased by the diffraction action by the DOE 140 are scattered according to the dot pattern by the diffraction action by the DOE 140.
  • the light beam of DP light is divided into a plurality of segment regions arranged in a matrix.
  • dots are scattered in a unique pattern.
  • the dot dot pattern in one segment area is different from the dot dot pattern in all other segment areas.
  • each segment area can be distinguished from all other segment areas with a dot dot pattern.
  • the segment areas of DP light reflected thereby are distributed in a matrix on the CMOS image sensor 240 as shown in FIG.
  • the light in the segment area S0 on the target area shown in FIG. 11A is incident on the segment area Sp shown in FIG.
  • the light flux region of DP light is indicated by a solid frame, and for convenience, the light beam of DP light is divided into a plurality of segment regions arranged in a matrix.
  • the position of each segment area on the CMOS image sensor 240 is detected, and the position corresponding to each segment area of the detection target object is determined based on the triangulation method from the detected position of each segment area.
  • the distance to is detected. Details of such a detection technique are described in, for example, Non-Patent Document 1 (The 19th Annual Conference of the Robotics Society of Japan (September 18-20, 2001), Proceedings, P1279-1280).
  • the laser light source 110 and the collimator lens 120 are arranged so that the optical axes of both coincide.
  • the arrangement of the laser light source 110 and the collimator lens 120 in the optical axis direction is adjusted so that the light emission point of the laser light source 110 is slightly displaced from the focal position of the collimator lens 120 to the collimator lens 120 side.
  • the DOE 140 is arranged such that the incident surface (the surface on which the diffraction pattern is formed) is perpendicular to the Y axis in FIG.
  • the laser light is incident on the DOE 140 such that the light beam slightly spreads from the parallel light and the optical axis is perpendicular to the incident surface of the DOE 140.
  • DP light having a desired dot pattern is irradiated onto a desired range of the target area.
  • the installation positions of the laser light source 110 and the collimator lens 120 are shifted, the optical axes of the laser light source 110 and the collimator lens 120 are shifted, or the light emission point of the laser light source 110 is shifted from the intended position. Accordingly, the irradiation state of the DP light in the target region changes.
  • the spread angle of the laser light after passing through the collimator lens 120 changes. For this reason, the laser beam does not enter the DOE 140 at a desired spread angle, and the size of the DP light dot in the target region does not become the expected size.
  • the dot changes in this way, the dot pattern for the position detection of the segment area is not properly verified.
  • the traveling direction of the laser light after passing through the collimator lens 120 is inclined with respect to the optical axis of the collimator lens 120.
  • the laser light enters the DOE 140 from an oblique direction, and the irradiation range of the DP light in the target area is shifted from the imaging range of the light receiving optical system 200.
  • object detection may not be performed properly.
  • a configuration for easily adjusting the relative positions of the laser light source 110 and the collimator lens 120 along the X-axis, Y-axis, and Z-axis directions during manufacturing Is provided in the light emitting device 10 shown below.
  • FIG. 4 is an exploded perspective view showing a configuration example of the light emitting device 10 according to the present embodiment.
  • the light emitting device 10 is a device in which the projection optical system 100 in FIG. 2 is unitized together with other components.
  • FIG. 4A shows the front, rear, left, right, and up and down directions along with the XYZ axes shown in FIG. The vertical direction is parallel to the Y-axis direction, the horizontal direction is parallel to the X-axis direction, and the front-back direction is parallel to the Z-axis direction.
  • the light emitting device 10 includes a laser holder 111, a lens holder 121, and a DOE holder in addition to the laser light source 110, the collimator lens 120, the rising mirror 130, and the DOE 140 described above. 141, a housing 150, and a pressing spring 160 are provided.
  • the laser light source 110 has a base 110a and a CAN 110b.
  • the base 110a has a circular outline with a part of the outer periphery cut out when viewed from the front.
  • the collimator lens 120 has a large diameter portion 120a having a cylindrical outer peripheral surface and a small diameter portion 120b having a diameter smaller than that of the large diameter portion.
  • the laser holder 111 is a frame member having a square outline in a front view and having a circular opening 111a formed at the center.
  • the opening 111a penetrates the laser holder 111 in the front-rear direction, and has a configuration in which two cylindrical holes having different diameters are arranged on the same axis.
  • the diameter of the hole in front of the opening 111a is larger than the diameter of the hole in the rear, and a ring-shaped step is formed at the boundary where the diameter changes.
  • the diameter of the hole in front of the opening 111a is slightly larger than the diameter of the base 110a of the laser light source 110.
  • the laser light source 110 is positioned with respect to the laser holder 111 by fitting the base 110a into the opening 111a from the front side until the rear surface of the base 110a of the laser light source 110 contacts the step in the opening 111a. In this state, an adhesive is injected into the cutout on the outer periphery of the base 110 a, and the laser light source 110 is bonded and fixed to the laser holder 111.
  • the laser holder 111 is made of a material having high thermal conductivity such as zinc, and is manufactured by general die casting.
  • step portions 111 b that are one step higher than the other portions are formed on the outer peripheral portion of the back surface of the laser holder 111.
  • the four step portions 111b have the same height and the same shape.
  • the end faces in the height direction of the four step portions 111b are all parallel to the XY plane.
  • the position of the laser light source 110 is adjusted by displacing the laser holder 111 in the in-plane direction of the XY plane while the stepped portion 111b is in contact with the outer surface of the housing 150. At this time, since the contact area between the step portion 111b and the outer surface of the housing 150 is small, the laser holder 111 can be displaced smoothly.
  • die for laser holder 111 can be adjusted easily by providing the four step parts 111b in this way can also be show
  • the lens holder 121 is formed of a frame member having a substantially circular outline in a front view and having an opening 121a formed at the center.
  • the opening 121a penetrates the lens holder 121 in the front-rear direction, and has a configuration in which two cylindrical holes having different diameters are arranged on the same axis.
  • the diameter of the hole in front of the opening 121a is larger than the diameter of the hole in the rear, and a ring-shaped step is formed at the boundary where the diameter changes.
  • the diameter of the hole in front of the opening 121a is slightly larger than the diameter of the large diameter portion 120a of the collimator lens 120.
  • the collimator lens 120 is positioned with respect to the lens holder 121 by fitting the large diameter portion 120a into the opening 121a from the front side until the rear surface of the large diameter portion 120a of the collimator lens 120 contacts the step in the opening 121a. In this state, the collimator lens 120 is bonded and fixed to the lens holder 121.
  • a recess 121c extending in the front-rear direction is formed on the upper surface of the lens holder 121.
  • a convex part 121d extending in the front-rear direction is formed in the concave part 121c.
  • two grooves 121 b are formed on the side surfaces of the lens holder 121 for allowing an adhesive to flow in when the collimator lens 120 and the lens holder 121 are bonded and fixed.
  • a rectangular groove 121e extending linearly in the left-right direction (X-axis direction) is formed on the lower surface of the lens holder 121 (see FIG. 5B).
  • the groove 121e is used when the position of the lens holder 121 is adjusted in the front-rear direction (Z-axis direction).
  • the center of the convex part 121d and the center of the groove 121e in the circumferential direction of the lens holder 121 are in a state shifted from each other by 180 degrees. Therefore, when the convex portion 121d faces right above, the groove 121e turns right below.
  • the DOE holder 141 has a step (not shown) for mounting the DOE 140 on the lower surface.
  • an opening 141 a for guiding the laser beam to the target area is formed in the center of the DOE holder 141.
  • the DOE 140 is fitted into the DOE holder 141 from below the DOE holder 141, and is fixed by adhesion.
  • step portions 141 b for fixing the DOE holder 141 to the housing 150 are formed at the left and right ends of the DOE holder 141.
  • the housing 150 is formed of a bottomed frame member having a rectangular outline in a top view.
  • the housing 150 has a symmetrical shape with respect to a plane parallel to the YZ plane, except for the shape of the screw hole 150i.
  • the housing 150 is made of a material having high thermal conductivity such as aluminum, and is manufactured by general die casting.
  • a mirror mounting portion 150a inclined by 45 ° in the in-plane direction of the YZ plane is formed on the inner rear side of the housing 150.
  • the rising mirror 130 is mounted on the mirror mounting portion 150a and fixed by adhesion.
  • a U-shaped opening 150 b is formed on the front side surface of the housing 150.
  • the width of the opening 150b in the left-right direction is larger than the diameter of the CAN 110b of the laser light source 110.
  • 150b since the housing 150 is manufactured by die casting, 150b is movable to remove the housing 150 from the mold when it is U-shaped rather than circular. A piece is not required, and the manufacturing cost can be reduced.
  • a hole 150c for guiding a Z-axis adjusting jig 601 described later to the groove 121e of the lens holder 121 is formed (see FIG. 5B).
  • the diameter of the hole 150c is larger than the width of the groove 121e of the lens holder 121 in the Z-axis direction.
  • Two holes 150e for allowing the UV adhesive to flow into the interior of the housing 150 are formed in the two side surfaces of the housing 150 in the left-right direction.
  • a pair of inclined surfaces 150d facing each other are formed at the lower ends of the two inner side surfaces of the housing 150 in the left-right direction.
  • the two inclined surfaces 150d are inclined at the same angle in the downward direction with respect to the plane parallel to the XZ plane.
  • a step 150f for mounting the DOE holder 141 and four screw holes 150g are formed on the upper surface of the housing 150.
  • the width of the step portion 150f in the Z-axis direction is slightly larger than the width of the left and right step portions 141b of the DOE holder 141.
  • Two flanges 150 h projecting in the outer direction of the housing 150 are formed at the lower ends of the two outer surfaces aligned in the left-right direction of the housing 150.
  • Each of the two flanges 150h is formed with a screw hole 150i for fixing the housing 150 to the base plate 300 described later.
  • the holding spring 160 is a leaf spring having a spring property, and has a step portion 160a that is one step lower in the center.
  • the holding spring 160 has a symmetrical shape.
  • the presser spring 160 is formed with four screw holes 160b for fixing the presser spring 160 to the housing 150 from above.
  • the rising mirror 130 is mounted on the mirror mounting portion 150 a in the housing 150. Accordingly, the rising mirror 130 is installed in the housing 150 so as to have an inclination of 45 degrees in the in-plane direction of the YZ plane with respect to the XZ plane.
  • the lens holder 121 on which the collimator lens 120 is mounted is placed on the pair of inclined surfaces 150d so that the grooves 121e and the holes 150c are aligned, and is accommodated inside the housing 150.
  • the groove 121e and the hole 150c can be aligned by placing the lens holder 121 on the inclined surface 150d so that the convex portion 121d faces right above.
  • the pressing spring 160 is applied to the upper portion of the housing 150 so that the four screw holes 160b of the pressing spring 160 are aligned with the four screw holes 150g of the housing 150.
  • four screws 161 are screwed into the four screw holes 150g from above through the four screw holes 160b.
  • the convex portion 121 d of the lens holder 121 is pressed downward by the step portion 160 a of the pressing spring 160.
  • the lens holder 121 is pressed against the inclined surface 150d of the housing 150 by the urging force of the holding spring 160, and is temporarily fixed so as not to move in the X-axis direction (left-right direction) and the Y-axis direction (up-down direction). .
  • the convex portion 121d When the holding spring 160 is mounted on the housing 150, the convex portion 121d is positioned in the middle of the stepped portion 160a, and the holding spring 160 bends evenly from side to side about the stepped portion 160a. For this reason, the lens holder 121 is less likely to be displaced in the circumferential direction. If the convex portion 121d is displaced from the middle of the step portion 160a, the lens holder 121 can be rotated in the circumferential direction so that the convex portion 121d is positioned in the middle of the step portion 160a with the convex portion 121d as a mark. That's fine. Thereby, the groove
  • the rear surface of the laser holder 111 is brought into contact with the outer surface of the housing 150 so that the CAN 110b of the laser light source 110 is inserted into the U-shaped opening 150b of the housing 150.
  • the three steps 111b excluding the upper step 111b among the steps 111b of the laser holder 111 shown in FIG. A predetermined gap exists between the CAN 110b of the laser light source 110 and the opening 150b of the housing 150 so that the laser light source 110 can move in the XY axis direction (up / down / left / right direction).
  • the positional relationship between the laser holder 111 and the housing 150 will be described later with reference to FIGS.
  • the laser light source 110 is displaced in the XY axis direction (up / down / left / right direction), and the XY axis direction (up / down / left / right direction). ) Is adjusted. As a result, the optical axis of the laser light source 110 and the optical axis of the collimator lens 120 are aligned. Further, a Z-axis adjusting jig (not shown in FIG.
  • the UV adhesive is evenly attached to the boundary between the two left and right side surfaces of the laser holder 111 and the side surface of the housing 150. After the UV adhesive is attached, the deviation of the optical axis of the laser light is confirmed again. If there is no problem, the UV adhesive is irradiated with ultraviolet rays, and the laser holder 111 is bonded and fixed to the housing 150. If there is a problem in confirming the deviation of the optical axis of the laser beam, the laser holder 111 is finely adjusted again, and then the UV adhesive is irradiated with ultraviolet rays, and the laser holder 111 is bonded and fixed to the housing 150. Is done.
  • the UV adhesive is evenly attached to the left and right at the positions where the lens holder 121 and the inclined surface 150d inside the housing 150 are in contact with each other through the holes 150e formed on the left and right side surfaces of the housing 150.
  • the positional relationship between the laser light source 110 and the collimator lens 120 is confirmed again. If there is no problem, the UV adhesive is irradiated with ultraviolet rays, and the lens holder 121 is bonded and fixed to the housing 150. . If there is a problem in confirming the positional relationship between the laser light source 110 and the collimator lens 120, the lens holder 121 is finely adjusted again, and then the UV adhesive is irradiated with ultraviolet rays. Adhered and fixed to.
  • the hole 150e is formed on the side surface of the housing 150, the lens holder 121 housed in the housing 150 can be easily bonded and fixed to the housing 150.
  • FIG. 5A is a perspective view of the light emitting device 10 viewed from above
  • FIG. 5B is a perspective view of the light emitting device 10 viewed from below.
  • FIG. 6 to 8 are perspective views showing an assembling process of the information acquisition device 1. For convenience, the assembly process of the light receiving device 20 and the mounting process of the light receiving device 20 to the base plate 300 are not shown.
  • the light receiving device 20 is a device in which the light receiving optical system 200 in FIG. 2 is unitized with other components.
  • reference numeral 300 denotes a base plate that supports the light emitting device 10 and the light receiving device 20.
  • the light emitting device 10 and the light receiving device 20 are arranged on the base plate 300.
  • the base plate 300 has a rectangular plate shape, and is made of a material having excellent flexibility resistance and high thermal conductivity such as stainless steel.
  • Two screw holes 300 a for fixing the light emitting device 10 to the base plate 300 are formed in the base plate 300.
  • the base plate 300 is formed with a step portion 301 that determines the installation position of the light emitting device 10.
  • the installation position of the light emitting device 10 is set in advance so that the light emitting center of the light emitting device 10 and the light receiving center of the light receiving device 20 are aligned in the Z-axis direction.
  • the installation interval between the light emitting device 10 and the light receiving device 20 is set according to the distance between the information acquisition device 1 and the reference plane of the target area.
  • the distance between the reference plane and the information acquisition apparatus 1 varies depending on how far away the target is to be detected. The closer the distance to the target to be detected is, the narrower the interval between the light emitting device 10 and the light receiving device 20 is. Conversely, as the distance to the target to be detected increases, the installation interval between the light emitting device 10 and the light receiving device 20 increases.
  • the hole 302 for taking out the wiring of the laser light source 110 to the back part of the base plate 300 is formed in the center lower part of the base plate 300.
  • an opening 303 for exposing the connector 202 of the light receiving device 20 to the back portion of the base plate 300 is formed below the installation position of the light receiving device 20 on the base plate 300.
  • a flange 304 is formed in the base plate 300, and a screw hole 304 a for fixing a cover 400 described later to the base plate 300 is formed in the flange 304.
  • the light receiving device 20 includes a filter 210, an aperture 220, an imaging lens 230, and a CMOS image sensor 240 as shown in FIG.
  • the light receiving device 20 is fixed to the base plate 300 by the substrate fixing unit 201.
  • the connector 202 of the light receiving device 20 is exposed on the back surface of the base plate 300 through an opening 303 formed in the base plate 300.
  • the light emitting device 10 is arranged so that the side surface of the housing 150 abuts on the step portion 301 of the base plate 300. In this state, the two screw holes 300a and the two screw holes 150i are combined, and the two screws 305 are screwed into the screw holes 150i and the screw holes 300a, respectively. Thereby, the light emitting device 10 is fixed to the base plate 300.
  • FIG. 8A is a perspective view of the structure viewed from the front
  • FIG. 8B is a perspective view of the structure viewed from the back.
  • a projection window 401 for guiding the light emitted from the light emitting device 10 to the target and a light receiving window 402 for guiding the reflected light from the target to the light receiving device 20 are formed on the front surface of the cover 400.
  • a circuit board 500 is further installed on the back surface of the base plate 300 (not shown).
  • the laser light source 110 is connected to the circuit board 500 through a hole 302 formed in the back portion of the base plate 300.
  • the circuit board 500 is connected to the connector 202 of the light receiving device 20 through an opening 303 formed in the back portion of the base plate 300.
  • the circuit board 500 is mounted with a circuit unit of the information acquisition device 1 such as the CPU 21 and the laser driving circuit 22 shown in FIG.
  • FIG. 9 and FIG. 10 are diagrams for explaining the positional relationship of each member inside the housing 150.
  • 9A is a top view of the light-emitting device 10
  • FIG. 9B is a cross-sectional view taken along the line AA of FIG. 9A.
  • 10A is a side view of the light-emitting device 10
  • FIG. 10B is a cross-sectional view taken along the line BB of FIG. 10A.
  • the lens holder 121 has a predetermined gap between the DOE holder 141 and the mirror mounting portion 150a in the positive Z-axis direction (broken line in the figure).
  • the lens holder 121 has a predetermined gap between the inner surface of the housing 150 that contacts the laser holder 111 in the negative Z-axis direction (broken line in the figure).
  • the step portion 160a of the holding spring 160 has a smaller width than the concave portion 121c of the lens holder 121, and a predetermined gap exists between the step portion 160a and the lens holder 121 (broken line in the figure).
  • the lens holder 121 since the lens holder 121 is in contact with the inclined surface 150d in the negative Y-axis direction and is pressed by the step portion 160a of the pressing spring 160 from the positive Y-axis direction, it does not move in the Y-axis direction. . Since the lens holder 121 has a substantially circular cross section in the XY plane, the contact area between the lens holder 121 and the inclined surface 150d is small, and the frictional force generated between the lens holder 121 and the inclined surface 150d is small.
  • the pressing spring 160 contacts the convex portion 121d on the upper surface of the lens holder 121 and the contact area between the pressing spring 160 and the convex portion 121d is small, the frictional force generated between the pressing spring 160 and the convex portion 121d is small.
  • the pressing spring 160 is urged against the inclined surface 150 d of the housing 150 and is smooth and stable in the Z-axis direction.
  • the lens holder 121 can be moved.
  • the lower step portion 111b of the laser holder 111 is in contact with the outer surface of the housing 150 where the U-shaped opening 150b is formed.
  • the CAN 110b of the laser light source 110 attached to the laser holder 111 has a predetermined gap between the inner surface of the U-shaped opening 150b of the housing 150 in the negative Y-axis direction (in the drawing). Dashed line).
  • the left and right step portions 111b of the laser holder 111 are in contact with the outer surface of the housing 150 where the U-shaped opening 150b is formed.
  • the CAN 110b of the laser light source 110 attached to the laser holder 111 has a predetermined gap between the inner surface of the U-shaped opening 150b of the housing 150 in the X-axis positive direction and the X-axis negative direction. (Dashed line in the figure).
  • FIG. 11 is a schematic diagram for explaining a method of adjusting the lens holder 121 in the Z-axis direction.
  • FIG. 10A is a perspective view of the housing 150 as viewed from the back
  • FIG. 10B is a diagram showing the relationship between the rotation of the eccentric pin 601a and the force applied to the lens holder 121
  • FIG. It is AA sectional drawing in (a). For convenience, hatching is omitted in FIG.
  • FIG. 11A shows a Z-axis adjustment jig 601 for adjusting the lens holder 121 in the Z-axis direction.
  • the Z-axis adjustment jig 601 has a cylindrical shape whose diameter is smaller than that of the hole 150c of the housing 150, and an eccentric pin at a position deviated from the center of rotation of the Z-axis adjustment jig 601 on the front end surface. 601a protrudes.
  • the eccentric pin 601a has a cylindrical shape with a diameter smaller than the width of the groove 121e in the Z-axis direction.
  • the Z-axis adjustment jig 601 inserts the eccentric pin 601a of the Z-axis adjustment jig 601 into the groove 121e of the lens holder 121 through the hole 150c formed in the back portion of the housing 150. And fit.
  • the eccentric pin 601a When the Z-axis adjustment jig 601 is rotated in the direction of the dotted arrow in this state, the eccentric pin 601a is centered on the rotation axis of the Z-axis adjustment jig 601 as shown in FIG. It rotates (dotted line in the figure). As the eccentric pin 601a rotates, the eccentric pin 601a pushes the groove 121e in the Z-axis negative direction, and the lens holder 121 is moved in the Z-axis negative direction. At this time, since the eccentric pin 601a rotates in a circular orbit, a force is also generated in the X-axis direction. As described above, the lens holder 121 moves in the X-axis direction by contacting the inclined surface 150d.
  • the eccentric pin 601a Since it is regulated, it is not moved in the X-axis direction. Since the eccentric pin 601a has a diameter (about half) sufficiently smaller than the width of the groove 121e, a force in the X-axis direction with respect to the lens holder 121 is not greatly applied, and the Z-axis adjustment jig 601 is smoothly rotated. be able to.
  • the groove 121e formed in the lens holder 121 is positioned at the diameter of the hole 150c, and the groove 121e is the hole 150c. It is desirable to face the outside from the hole 150c over the entire length of the diameter.
  • at least the length of the groove 121e in the X-axis direction needs to be larger than the diameter of the circular orbit of the eccentric pin 601a (the middle dotted line in FIG. 5B). is there.
  • the Z-axis adjusting jig 601 is fitted in the groove 121e of the lens holder 121 and rotated in the direction of the dotted arrow, so that the position of the lens holder 121 is changed to the positive / negative of the Z-axis. It is possible to adjust in the direction (arrow direction in the figure). In this way, the distance between the laser light source 110 and the collimator lens 120 can be easily adjusted.
  • FIG. 12 is a schematic diagram for explaining a method of adjusting the laser holder 111 in the X-axis direction and the Y-axis direction.
  • FIG. 4A is a diagram for explaining an adjustment method in the Y-axis direction
  • FIG. 4B is a diagram for explaining an adjustment method in the X-axis direction.
  • 12A is a cross-sectional view taken along the line AA in FIG. 9A
  • FIG. 12B is a cross-sectional view taken along the line BB in FIG. 10A.
  • hatches are omitted from FIGS. 12 (a) and 12 (b).
  • the stepped portion 111b of the laser holder 111 is in contact with the outer surface of the housing 150 where the opening 150b is formed.
  • the laser holder 111 is pressed against the outer surface of the housing 150 from above (Z-axis negative direction) in the figure, while in the Y-axis direction (FIG. (a) arrow direction) and the X-axis direction (arrow direction in FIG. 12B).
  • the optical axis of the laser light source 110 and the collimator lens 120 may be match
  • the XY axis adjustment jig uses a precision stage that can be driven by the XYZ axes, or a combination of a precision stage that can be driven by the XY axes and a mechanism that has a spring property in the Z axis direction. Is used.
  • the position adjustment of the laser light source 110 and the collimator lens 120 is performed, for example, by driving the laser light source 110 and emitting the laser light before the DOE holder 141 is mounted on the housing 150, and then reflected by the mirror 130. This is done by measuring the beam of laser light.
  • the laser holder 111 is adjusted in the X and Y axis directions so that the beam profile of the laser beam is the best.
  • the position adjustment of the collimator lens 120 in the Z-axis direction is performed so that the beam size of the laser beam becomes the best.
  • the DOE holder 141 is attached to the housing 150.
  • the position of the laser light source 110 can be easily adjusted in the X-axis direction and the Y-axis direction, and the collimator lens 120 can be easily adjusted in the Z-axis direction. Thereby, even when the installation positions of the collimator lens 120 and the laser light source 110 are shifted, the position can be adjusted easily with high accuracy.
  • the lens holder 121 has a substantially circular cross section in the XY plane, the contact area between the lens holder 121 and the inclined surface 150d is small, and the frictional force generated between the lens holder 121 and the inclined surface 150d is small. Further, since the step portion 160a of the pressing spring 160 is pressed against the convex portion 121d, the contact area between the convex portion 121d and the step portion 160a is small, and the frictional force generated between the lens holder 121 and the pressing spring 160 is small. Therefore, the lens holder 121 can be moved smoothly and stably in the Z-axis direction while the lens holder 121 is pressed against the inclined surface 150d of the housing 150 by the urging of the holding spring 160.
  • the lens holder 121 is accommodated in the housing 150 so that the convex part 121d extending in the front-rear direction faces upward, and as shown in FIG. 5B, the hole 150c and the groove 121e Can be matched. Further, when the pressing spring 160 is mounted on the housing 150, the pressing spring 160 bends evenly on the left and right with the convex portion 121d as the apex, so that the displacement of the lens holder 121 in the circumferential direction can be suppressed.
  • the step portion 111b is provided on the back surface of the laser holder 111, the contact range between the laser holder 111 and the outer surface of the housing 150 can be limited, and the laser holder 111 in the XY axis direction. Can be adjusted smoothly and stably.
  • the opening 150b of the housing 150 is formed in a U-shape, the housing 150 can be easily detached from the mold in die casting. Therefore, manufacturing cost can be reduced.
  • the position of the collimator lens 120 can be adjusted by a simple operation of engaging the eccentric pin 601a with the groove 121e and rotating it.
  • the optical system of the light emitting device 10 is configured such that the optical path of the laser light emitted from the laser light source 110 is bent by the rising mirror 130, but the laser emitted from the laser light source 110 is shown.
  • the light path may be configured to be directed to the DOE 140 without being bent.
  • the raising mirror 130 becomes unnecessary, and for example, an opening and a DOE are installed at the position of the raising mirror 130.
  • the eccentric pin 601a has a diameter that is about half the width of the groove 121e, but may have a diameter that is about the same as the width of the groove 121e.
  • channel 121e was linear, curved shape, such as a circle
  • the position where the optical axis of the laser light source 110 and the optical axis of the collimator lens 120 coincide with each other is the desired installation position of the laser light source 110 in the XY axis direction.
  • a position where the optical axis is shifted from the optical axis of the collimator lens 120 by a predetermined distance in a predetermined direction may be an intended installation position of the laser light source 110 in the XY axis direction.
  • the number of the step portions 111b is four. However, at least three step portions 111b may be in contact with the outer surface (front surface) of the housing 150, and the number of step portions 111b is three, or five or more. It may be formed. Alternatively, the rear surface of the laser holder 111 and the front surface of the housing 150 may be brought into surface contact without forming the stepped portion 111b. However, in this case, it is necessary to considerably improve the surface accuracy of the rear surface of the laser holder 111 and the front surface of the housing 150.
  • the outer surface of the lens holder 121 is substantially circular over the entire circumference, but only the portion of the lens holder that contacts the inclined surface 150d, such as circular only the bottom of the lens holder 121, is used. May be circular.
  • the portion of the lens holder that contacts the inclined surface 150d does not necessarily have to be circular, and may have a curved shape that is symmetrical in the left-right direction.
  • the pair of inclined surfaces 150d are formed in the housing 150.
  • two or more pairs of inclined surfaces 150d may be formed in the housing 150.
  • the number of surfaces and the number of right inclined surfaces may be different.
  • the inclination angle of the left inclined surface 150d may be different from the inclination angle of the right inclined surface 150d.
  • the inclined surface 150d may have another configuration as long as it can support the lens holder 121 so that the movement of the lens holder 121 in the X-axis direction is restricted.
  • the groove 121e is formed directly below (bottommost part) of the lens holder 121 and the hole 150c is formed at the bottom of the housing 150.
  • the position of the hole 150c is not limited to this.
  • the hole 150c is formed on the left and right side surfaces of the housing 150
  • the groove 121e is formed on the left and right side surfaces of the lens holder 121 so that the groove 121e faces the outside from the hole 150c. You may form in.
  • the hole 150c is circular as shown in FIG. 5 (b), but the hole 150c may have other shapes such as a square or rhombus.
  • the hole 150c is a square, one side of the square is preferably set slightly larger than the diameter of the Z-axis adjusting jig 601.
  • the diameter of the hole 150c is preferably set slightly larger than the diameter of the Z-axis adjusting jig 601. If it carries out like this, since the outer periphery of the Z-axis adjustment jig
  • the CMOS image sensor 240 is used as the light receiving element, but a CCD image sensor can be used instead. Furthermore, the configuration of the light receiving optical system 200 can be changed as appropriate.
  • the information acquisition device 1 and the information processing device 2 may be integrated, or the information acquisition device 1 and the information processing device 2 may be integrated with a television, a game machine, or a personal computer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Provided is a light-emitting device capable of easily and accurately adjusting a position between a laser source and a collimator lens; also provided are an information acquisition device and an object detection device mounted therewith. A light-emitting device (10) is provided with a laser source (110), a collimator lens (120), a DOE (140), and a housing (150). A prescribed gap is provided in the XY axis direction between a CAN (110b) and the aperture (150b) of the housing. A prescribed gap is provided in the Z axis direction between a lens holder (121) and the housing. The position of the laser source is adjusted in the XY axis direction by means of moving said laser source while a step part (111b) of the laser holder (111) is in contact with the outside surface of the housing. The position of the collimator lens is adjusted in the Z axis direction by means of a groove (121e) of the lens holder and a pressing spring (160) while said collimator lens is pressed against an inclined surface (150d) of the housing.

Description

[規則37.2に基づきISAが決定した発明の名称] 発光装置、情報取得装置およびこれを搭載する物体検出装置[Name of invention determined by ISA based on Rule 37.2] Light-emitting device, information acquisition device, and object detection device equipped with the same
 本発明は、目標領域に光を投射したときの反射光の状態に基づいて目標領域内の物体を検出する物体検出装置、当該物体検出装置に用いて好適な情報取得装置、および当該物体検出装置に搭載される発光装置に関する。 The present invention relates to an object detection device that detects an object in a target region based on a state of reflected light when light is projected onto the target region, an information acquisition device suitable for use in the object detection device, and the object detection device. The present invention relates to a light emitting device to be mounted on.
 従来、光を用いた物体検出装置が種々の分野で開発されている。いわゆる距離画像センサを用いた物体検出装置では、2次元平面上の平面的な画像のみならず、検出対象物体の奥行き方向の形状や動きを検出することができる。かかる物体検出装置では、レーザ光源やLED(Light Emitting Diode)から、予め決められた波長帯域の光が目標領域に投射され、その反射光がCMOSイメージセンサ等の受光素子により受光される。距離画像センサとして、種々のタイプのものが知られている。 Conventionally, an object detection device using light has been developed in various fields. An object detection apparatus using a so-called distance image sensor can detect not only a planar image on a two-dimensional plane but also the shape and movement of the detection target object in the depth direction. In such an object detection device, light in a predetermined wavelength band is projected from a laser light source or LED (Light-Emitting-Diode) onto a target area, and the reflected light is received by a light-receiving element such as a CMOS image sensor. Various types of distance image sensors are known.
 所定のドットパターンを持つレーザ光を目標領域に照射するタイプの距離画像センサでは、ドットパターンを持つレーザ光の目標領域からの反射光が受光素子によって受光される。そして、ドットの受光素子上の受光位置に基づいて、三角測量法を用いて、検出対象物体の各部(検出対象物体上の各ドットの照射位置)までの距離が検出される(たとえば、非特許文献1)。 In a distance image sensor of a type that irradiates a target region with laser light having a predetermined dot pattern, reflected light from the target region of laser light having a dot pattern is received by a light receiving element. Based on the light receiving position of the dot on the light receiving element, the distance to each part of the detection target object (irradiation position of each dot on the detection target object) is detected using triangulation (for example, non-patent) Reference 1).
 上記物体検出装置では、ドットパターンを持つレーザ光を生成するために、コリメータレンズと回折光学素子が用いられ得る。 In the object detection apparatus, a collimator lens and a diffractive optical element can be used to generate laser light having a dot pattern.
 この場合、コリメータレンズがレーザ光源の光軸上において所期の位置から前後にずれると、コリメータレンズを透過した後のレーザ光の広がり角が変化する。このため、レーザ光が所望の広がり角で回折光学素子に入射しなくなり、ドットパターンのドットの大きさが所期の大きさにならなくなる。また、コリメータレンズの光軸がレーザ光源の光軸からずれると、コリメータレンズを透過した後のレーザ光の進行方向が変化する。このため、レーザ光が、斜め方向から回折光学素子に入射するようになり、ドットパターンのレーザ光の照射領域が適正位置からずれてしまう。 In this case, when the collimator lens is shifted back and forth from the expected position on the optical axis of the laser light source, the spread angle of the laser light after passing through the collimator lens changes. For this reason, the laser beam does not enter the diffractive optical element at a desired spread angle, and the dot size of the dot pattern does not become the expected size. Further, when the optical axis of the collimator lens is shifted from the optical axis of the laser light source, the traveling direction of the laser light after passing through the collimator lens changes. For this reason, the laser light enters the diffractive optical element from an oblique direction, and the irradiation area of the laser light of the dot pattern is shifted from the appropriate position.
 このように、コリメータレンズとレーザ光源の相対位置が適正位置からずれると、所望の照射状態でドットパターンが照射されなくなり、測定精度に悪影響を及ぼす可能性がある。 As described above, if the relative position of the collimator lens and the laser light source deviates from an appropriate position, the dot pattern is not irradiated in a desired irradiation state, which may adversely affect the measurement accuracy.
 本発明は、このような問題を解消するためになされたものであり、レーザ光源とコリメータレンズとの間の位置調整を精度よく、且つ、容易に行える発光装置、情報取得装置およびこれを搭載する物体検出装置を提供することを目的とする。 The present invention has been made to solve such a problem, and includes a light emitting device, an information acquisition device, and a device capable of easily and accurately adjusting the position between a laser light source and a collimator lens. An object of the present invention is to provide an object detection device.
 本発明の第1の態様は、発光装置に関する。本態様に係る発光装置は、レーザ光源と、前記レーザ光源から出射されたレーザ光を平行光に変換するコリメータレンズと、前記平行光に変換されたレーザ光が入射する回折光学素子と、前記レーザ光源、前記コリメータレンズおよび前記回折光学素子を収容するハウジングと、前記レーザ光源の出射光軸に垂直な面内方向において前記レーザ光源の位置を調整するための第1の位置調整部と、前記コリメータレンズの光軸に平行な方向において前記コリメータレンズの位置を調整するための第2の位置調整部と、を有する。 The first aspect of the present invention relates to a light emitting device. The light-emitting device according to this aspect includes a laser light source, a collimator lens that converts laser light emitted from the laser light source into parallel light, a diffractive optical element on which the laser light converted into parallel light is incident, and the laser A housing for housing the light source, the collimator lens and the diffractive optical element; a first position adjusting unit for adjusting the position of the laser light source in an in-plane direction perpendicular to the emission optical axis of the laser light source; and the collimator A second position adjusting unit for adjusting the position of the collimator lens in a direction parallel to the optical axis of the lens.
 本発明の第2の態様は、光を用いて目標領域の情報取得する情報取得装置に関する。本態様にかかる情報取得装置は、上記第1の態様に係る発光装置と、前記目標領域から反射された反射光を受光する受光装置と、を備える。 A second aspect of the present invention relates to an information acquisition apparatus that acquires information on a target area using light. An information acquisition device according to this aspect includes the light-emitting device according to the first aspect and a light-receiving device that receives reflected light reflected from the target region.
 本発明の第3の態様は、物体検出装置に関する。本態様に係る物体検出装置は、上記第2の態様に係る情報取得装置を備える。 The third aspect of the present invention relates to an object detection apparatus. The object detection apparatus according to this aspect includes the information acquisition apparatus according to the second aspect.
 以上のとおり、本発明によれば、レーザ光源とコリメータレンズとの間の位置調整を精度よく、且つ、容易に行える発光装置、情報取得装置およびこれを搭載する物体検出装置を提供することができる。 As described above, according to the present invention, it is possible to provide a light-emitting device, an information acquisition device, and an object detection device equipped with the light-emitting device that can easily and accurately adjust the position between the laser light source and the collimator lens. .
 本発明の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下に示す実施の形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施の形態により何ら制限されるものではない。 The effect or significance of the present invention will become more apparent from the following description of embodiments. However, the embodiment described below is merely an example when the present invention is implemented, and the present invention is not limited to the following embodiment.
実施の形態に係る物体検出装置の構成を示す図である。It is a figure which shows the structure of the object detection apparatus which concerns on embodiment. 実施の形態に係る情報取得装置と情報処理装置の構成を示す図である。It is a figure which shows the structure of the information acquisition apparatus and information processing apparatus which concern on embodiment. 実施の形態に係る目標領域に対するレーザ光の照射状態とイメージセンサ上のレーザ光の受光状態を示す図である。It is a figure which shows the irradiation state of the laser beam with respect to the target area | region which concerns on embodiment, and the light reception state of the laser beam on an image sensor. 実施の形態に係る発光装置の分解斜視図を示す図である。It is a figure which shows the disassembled perspective view of the light-emitting device which concerns on embodiment. 実施の形態に係る発光装置の構成を示す図である。It is a figure which shows the structure of the light-emitting device which concerns on embodiment. 実施の形態に係る情報取得装置の組立過程を示す図である。It is a figure which shows the assembly process of the information acquisition apparatus which concerns on embodiment. 実施の形態に係る情報取得装置の組立過程を示す図である。It is a figure which shows the assembly process of the information acquisition apparatus which concerns on embodiment. 実施の形態に係る情報取得装置の組立過程を示す図である。It is a figure which shows the assembly process of the information acquisition apparatus which concerns on embodiment. 実施の形態に係る発光装置の断面を示す図である。It is a figure which shows the cross section of the light-emitting device which concerns on embodiment. 実施の形態に係る発光装置の断面を示す図である。It is a figure which shows the cross section of the light-emitting device which concerns on embodiment. 実施の形態に係る発光装置のレンズの位置調整を示す図である。It is a figure which shows the position adjustment of the lens of the light-emitting device which concerns on embodiment. 実施の形態に係る発光装置のレーザ光源の位置調整を示す図である。It is a figure which shows position adjustment of the laser light source of the light-emitting device which concerns on embodiment.
 以下、本発明の実施の形態につき図面を参照して説明する。本実施の形態には、所定のドットパターンを持つレーザ光を目標領域に照射するタイプの情報取得装置が例示されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, an information acquisition device of a type that irradiates a target area with laser light having a predetermined dot pattern is exemplified.
 まず、図1に本実施の形態に係る物体検出装置の概略構成を示す。図示の如く、物体検出装置は、情報取得装置1と、情報処理装置2とを備えている。テレビ3は、情報処理装置2からの信号によって制御される。 First, FIG. 1 shows a schematic configuration of the object detection apparatus according to the present embodiment. As illustrated, the object detection device includes an information acquisition device 1 and an information processing device 2. The television 3 is controlled by a signal from the information processing device 2.
 情報取得装置1は、目標領域全体に赤外光を投射し、その反射光をCMOSイメージセンサにて受光することにより、目標領域にある物体各部の距離(以下、「3次元距離情報」という)を取得する。取得された3次元距離情報は、ケーブル4を介して情報処理装置2に送られる。 The information acquisition device 1 projects infrared light over the entire target area and receives the reflected light with a CMOS image sensor, whereby the distance between each part of the object in the target area (hereinafter referred to as “three-dimensional distance information”). To get. The acquired three-dimensional distance information is sent to the information processing apparatus 2 via the cable 4.
 情報処理装置2は、たとえば、テレビ制御用のコントローラやゲーム機、パーソナルコンピュータ等である。情報処理装置2は、情報取得装置1から受信した3次元距離情報に基づき、目標領域における物体を検出し、検出結果に基づきテレビ3を制御する。 The information processing apparatus 2 is, for example, a controller for TV control, a game machine, a personal computer, or the like. The information processing device 2 detects an object in the target area based on the three-dimensional distance information received from the information acquisition device 1, and controls the television 3 based on the detection result.
 たとえば、情報処理装置2は、受信した3次元距離情報に基づき人を検出するとともに、3次元距離情報の変化から、その人の動きを検出する。たとえば、情報処理装置2がテレビ制御用のコントローラである場合、情報処理装置2には、受信した3次元距離情報からその人のジャスチャを検出するとともに、ジェスチャに応じてテレビ3に制御信号を出力するアプリケーションプログラムがインストールされている。この場合、ユーザは、テレビ3を見ながら所定のジェスチャをすることにより、チャンネル切り替えやボリュームのUp/Down等、所定の機能をテレビ3に実行させることができる。 For example, the information processing apparatus 2 detects a person based on the received three-dimensional distance information and detects the movement of the person from the change in the three-dimensional distance information. For example, when the information processing device 2 is a television control controller, the information processing device 2 detects the person's gesture from the received three-dimensional distance information and outputs a control signal to the television 3 in accordance with the gesture. The application program to be installed is installed. In this case, the user can cause the television 3 to execute a predetermined function such as channel switching or volume up / down by making a predetermined gesture while watching the television 3.
 また、たとえば、情報処理装置2がゲーム機である場合、情報処理装置2には、受信した3次元距離情報からその人の動きを検出するとともに、検出した動きに応じてテレビ画面上のキャラクタを動作させ、ゲームの対戦状況を変化させるアプリケーションプログラムがインストールされている。この場合、ユーザは、テレビ3を見ながら所定の動きをすることにより、自身がテレビ画面上のキャラクタとしてゲームの対戦を行う臨場感を味わうことができる。 Further, for example, when the information processing device 2 is a game machine, the information processing device 2 detects the person's movement from the received three-dimensional distance information, and displays a character on the television screen according to the detected movement. An application program that operates and changes the game battle situation is installed. In this case, the user can experience a sense of realism in which he / she plays a game as a character on the television screen by making a predetermined movement while watching the television 3.
 図2は、情報取得装置1と情報処理装置2の構成を示す図である。図2には、便宜上、投射光学系100と受光光学系200に関する方向を示すために、互いに直交するX-Y-Z軸が付されている。 FIG. 2 is a diagram showing the configuration of the information acquisition device 1 and the information processing device 2. In FIG. 2, for convenience, XYZ axes orthogonal to each other are attached to indicate directions related to the projection optical system 100 and the light receiving optical system 200.
 情報取得装置1は、光学部の構成として、投射光学系100と受光光学系200とを備えている。投射光学系100と受光光学系200は、Z軸方向に並ぶように、情報取得装置1に配置される。 The information acquisition apparatus 1 includes a projection optical system 100 and a light receiving optical system 200 as a configuration of an optical unit. The projection optical system 100 and the light receiving optical system 200 are arranged in the information acquisition apparatus 1 so as to be aligned in the Z-axis direction.
 投射光学系100は、レーザ光源110と、コリメータレンズ120と、立ち上げミラー130と、回折光学素子(DOE:Diffractive Optical Element)140とを備えている。また、受光光学系200は、フィルタ210と、アパーチャ220と、撮像レンズ230と、CMOSイメージセンサ240とを備えている。この他、情報取得装置1は、回路部の構成として、CPU(Central Processing Unit)21と、レーザ駆動回路22と、撮像信号処理回路23と、入出力回路24と、メモリ25を備えている。 The projection optical system 100 includes a laser light source 110, a collimator lens 120, a rising mirror 130, and a diffractive optical element (DOE: Diffractive Optical Element) 140. The light receiving optical system 200 includes a filter 210, an aperture 220, an imaging lens 230, and a CMOS image sensor 240. In addition, the information acquisition device 1 includes a CPU (Central Processing Unit) 21, a laser driving circuit 22, an imaging signal processing circuit 23, an input / output circuit 24, and a memory 25 as a circuit unit.
 レーザ光源110は、受光光学系200から離れる方向(Z軸正方向)に波長830nm程度の狭波長帯域のレーザ光を出力する。コリメータレンズ120は、レーザ光源110から出射されたレーザ光を平行光から僅かに広がった光(以下、単に「平行光」という)に変換する。立ち上げミラー130は、コリメータレンズ120側から入射されたレーザ光をDOE140に向かう方向(Y軸正方向)に反射する。 The laser light source 110 outputs laser light in a narrow wavelength band with a wavelength of about 830 nm in a direction away from the light receiving optical system 200 (Z-axis positive direction). The collimator lens 120 converts the laser light emitted from the laser light source 110 into light slightly spread from parallel light (hereinafter simply referred to as “parallel light”). The raising mirror 130 reflects the laser beam incident from the collimator lens 120 side in the direction toward the DOE 140 (Y-axis positive direction).
 DOE140は、入射面に回折パターンを有する。この回折パターンによる回折作用により、DOE140に入射したレーザ光は、ドットパターンのレーザ光に変換されて、目標領域に照射される。回折パターンは、たとえば、ステップ型の回折ホログラムが所定のパターンで形成された構造とされる。回折ホログラムは、コリメータレンズ120により平行光とされたレーザ光をドットパターンのレーザ光に変換するよう、パターンとピッチが調整されている。 The DOE 140 has a diffraction pattern on the incident surface. Due to the diffraction effect of the diffraction pattern, the laser light incident on the DOE 140 is converted into a dot pattern laser light and irradiated onto the target region. The diffraction pattern has, for example, a structure in which a step type diffraction hologram is formed in a predetermined pattern. The diffraction hologram is adjusted in pattern and pitch so as to convert the laser light converted into parallel light by the collimator lens 120 into laser light of a dot pattern.
 DOE140は、立ち上げミラー130から入射されたレーザ光を、放射状に広がるドットパターンのレーザ光として、目標領域に照射する。ドットパターンの各ドットの大きさは、DOE140に入射する際のレーザ光のビームサイズに応じたものとなる。DOE140にて回折されないレーザ光(0次光)は、DOE140を透過してそのまま直進する。 The DOE 140 irradiates the target region with the laser beam incident from the rising mirror 130 as a laser beam having a dot pattern that spreads radially. The size of each dot in the dot pattern depends on the beam size of the laser light when entering the DOE 140. Laser light (0th order light) that is not diffracted by the DOE 140 passes through the DOE 140 and travels straight.
 なお、投射光学系100の詳細な構成は、追って図4ないし図12を参照して、説明する。 The detailed configuration of the projection optical system 100 will be described later with reference to FIGS.
 目標領域から反射されたレーザ光は、フィルタ210とアパーチャ220を介して撮像レンズ230に入射する。 The laser light reflected from the target area enters the imaging lens 230 via the filter 210 and the aperture 220.
 フィルタ210は、レーザ光源110の出射波長(830nm程度)を含む波長帯域の光を透過し、可視光の波長帯域をカットするバンドパスフィルタである。アパーチャ220は、撮像レンズ230のFナンバーに合うように、外部からの光に絞りを掛ける。撮像レンズ230は、アパーチャ220を介して入射された光をCMOSイメージセンサ240上に集光する。 The filter 210 is a band-pass filter that transmits light in a wavelength band including the emission wavelength (about 830 nm) of the laser light source 110 and cuts the wavelength band of visible light. The aperture 220 stops the light from the outside so as to match the F number of the imaging lens 230. The imaging lens 230 condenses the light incident through the aperture 220 on the CMOS image sensor 240.
 CMOSイメージセンサ240は、撮像レンズ230にて集光された光を受光して、画素毎に、受光光量に応じた信号(電荷)を撮像信号処理回路23に出力する。ここで、CMOSイメージセンサ240は、各画素における受光から高レスポンスでその画素の信号(電荷)を撮像信号処理回路23に出力できるよう、信号の出力速度が高速化されている。 The CMOS image sensor 240 receives the light collected by the imaging lens 230 and outputs a signal (charge) corresponding to the amount of received light to the imaging signal processing circuit 23 for each pixel. Here, in the CMOS image sensor 240, the output speed of the signal is increased so that the signal (charge) of the pixel can be output to the imaging signal processing circuit 23 with high response from the light reception in each pixel.
 CPU21は、メモリ25に格納された制御プログラムに従って各部を制御する。かかる制御プログラムによって、CPU21には、レーザ光源110を制御するためのレーザ制御部21aと、3次元距離情報を生成するための距離演算部21bの機能が付与される。 The CPU 21 controls each unit according to a control program stored in the memory 25. With this control program, the CPU 21 is provided with the functions of a laser control unit 21a for controlling the laser light source 110 and a distance calculation unit 21b for generating three-dimensional distance information.
 レーザ駆動回路22は、CPU21からの制御信号に応じてレーザ光源110を駆動する。撮像信号処理回路23は、CMOSイメージセンサ240を制御して、CMOSイメージセンサ240で生成された各画素の信号(電荷)をライン毎に順次取り込む。そして、取り込んだ信号を順次CPU21に出力する。CPU21は、撮像信号処理回路23から供給される信号(撮像信号)をもとに、情報取得装置1から検出対象物の各部までの距離を、距離演算部21bによる処理によって算出する。入出力回路24は、情報処理装置2とのデータ通信を制御する。 The laser drive circuit 22 drives the laser light source 110 according to a control signal from the CPU 21. The imaging signal processing circuit 23 controls the CMOS image sensor 240 and sequentially takes in the signal (charge) of each pixel generated by the CMOS image sensor 240 for each line. Then, the captured signals are sequentially output to the CPU 21. Based on the signal (imaging signal) supplied from the imaging signal processing circuit 23, the CPU 21 calculates the distance from the information acquisition device 1 to each part of the detection target by processing by the distance calculation unit 21b. The input / output circuit 24 controls data communication with the information processing apparatus 2.
 情報処理装置2は、CPU31と、入出力回路32と、メモリ33を備えている。なお、情報処理装置2には、同図に示す構成の他、テレビ3との通信を行うための構成や、CD-ROM等の外部メモリに格納された情報を読み取ってメモリ33にインストールするためのドライブ装置等が配されるが、便宜上、これら周辺回路の構成は図示省略されている。 The information processing apparatus 2 includes a CPU 31, an input / output circuit 32, and a memory 33. In addition to the configuration shown in the figure, the information processing apparatus 2 has a configuration for performing communication with the television 3 and for reading information stored in an external memory such as a CD-ROM and installing it in the memory 33. However, the configuration of these peripheral circuits is not shown for the sake of convenience.
 CPU31は、メモリ33に格納された制御プログラム(アプリケーションプログラム)に従って各部を制御する。かかる制御プログラムによって、CPU31には、画像中の物体を検出するための物体検出部31aの機能が付与される。かかる制御プログラムは、たとえば、図示しないドライブ装置によってCD-ROMから読み取られ、メモリ33にインストールされる。 The CPU 31 controls each unit according to a control program (application program) stored in the memory 33. With such a control program, the CPU 31 is provided with the function of the object detection unit 31a for detecting an object in the image. Such a control program is read from a CD-ROM by a drive device (not shown) and installed in the memory 33, for example.
 たとえば、制御プログラムがゲームプログラムである場合、物体検出部31aは、情報取得装置1から供給される3次元距離情報から画像中の人およびその動きを検出する。そして、検出された動きに応じてテレビ画面上のキャラクタを動作させるための処理が制御プログラムにより実行される。 For example, when the control program is a game program, the object detection unit 31a detects a person in the image and its movement from the three-dimensional distance information supplied from the information acquisition device 1. Then, a process for operating the character on the television screen according to the detected movement is executed by the control program.
 また、制御プログラムがテレビ3の機能を制御するためのプログラムである場合、物体検出部31aは、情報取得装置1から供給される3次元距離情報から画像中の人およびその動き(ジェスチャ)を検出する。そして、検出された動き(ジェスチャ)に応じて、テレビ3の機能(チャンネル切り替えやボリューム調整、等)を制御するための処理が制御プログラムにより実行される。 When the control program is a program for controlling the function of the television 3, the object detection unit 31 a detects a person in the image and its movement (gesture) from the three-dimensional distance information supplied from the information acquisition device 1. To do. Then, processing for controlling functions (channel switching, volume adjustment, etc.) of the television 3 is executed by the control program in accordance with the detected movement (gesture).
 入出力回路32は、情報取得装置1とのデータ通信を制御する。 The input / output circuit 32 controls data communication with the information acquisition device 1.
 図3(a)は、目標領域に対するレーザ光の照射状態を模式的に示す図、図3(b)は、CMOSイメージセンサ240におけるレーザ光の受光状態を模式的に示す図である。なお、同図(b)には、便宜上、目標領域に平坦な面(スクリーン)が存在するときの受光状態が示されている。 FIG. 3A is a diagram schematically showing the irradiation state of the laser light on the target region, and FIG. 3B is a diagram schematically showing the light receiving state of the laser light in the CMOS image sensor 240. FIG. For the sake of convenience, FIG. 6B shows a light receiving state when a flat surface (screen) exists in the target area.
 投射光学系100からは、ドットパターンを持ったレーザ光(以下、このパターンを持つレーザ光の全体を「DP光」という)が、目標領域に照射される。同図(a)には、DP光の光束領域が実線の枠によって示されている。DP光の光束中には、DOE140による回折作用によってレーザ光の強度が高められたドット領域(以下、単に「ドット」という)が、DOE140による回折作用によるドットパターンに従って点在している。 From the projection optical system 100, laser light having a dot pattern (hereinafter, the entire laser light having this pattern is referred to as “DP light”) is irradiated onto the target area. In FIG. 5A, the light flux region of DP light is indicated by a solid line frame. In the light flux of DP light, dot regions (hereinafter simply referred to as “dots”) in which the intensity of the laser light is increased by the diffraction action by the DOE 140 are scattered according to the dot pattern by the diffraction action by the DOE 140.
 なお、図3(a)では、便宜上、DP光の光束が、マトリックス状に並ぶ複数のセグメント領域に区分されている。各セグメント領域には、ドットが固有のパターンで点在している。一つのセグメント領域におけるドットの点在パターンは、他の全てのセグメント領域におけるドットの点在パターンと相違する。これにより、各セグメント領域は、ドットの点在パターンをもって、他の全てのセグメント領域から区別可能となっている。 In FIG. 3A, for convenience, the light beam of DP light is divided into a plurality of segment regions arranged in a matrix. In each segment area, dots are scattered in a unique pattern. The dot dot pattern in one segment area is different from the dot dot pattern in all other segment areas. As a result, each segment area can be distinguished from all other segment areas with a dot dot pattern.
 目標領域に平坦な面(スクリーン)が存在すると、これにより反射されたDP光の各セグメント領域は、同図(b)のように、CMOSイメージセンサ240上においてマトリックス状に分布する。たとえば、同図(a)に示す目標領域上におけるセグメント領域S0の光は、CMOSイメージセンサ240上では、同図(b)に示すセグメント領域Spに入射する。なお、図3(b)においても、DP光の光束領域が実線の枠によって示され、便宜上、DP光の光束が、マトリックス状に並ぶ複数のセグメント領域に区分されている。 When there is a flat surface (screen) in the target area, the segment areas of DP light reflected thereby are distributed in a matrix on the CMOS image sensor 240 as shown in FIG. For example, the light in the segment area S0 on the target area shown in FIG. 11A is incident on the segment area Sp shown in FIG. In FIG. 3B as well, the light flux region of DP light is indicated by a solid frame, and for convenience, the light beam of DP light is divided into a plurality of segment regions arranged in a matrix.
 上記距離演算部21bでは、CMOSイメージセンサ240上における各セグメント領域の位置が検出され、検出された各セグメント領域の位置から、三角測量法に基づいて、検出対象物体の各セグメント領域に対応する位置までの距離が検出される。かかる検出手法の詳細は、たとえば、上記非特許文献1(第19回日本ロボット学会学術講演会(2001年9月18-20日)予稿集、P1279-1280)に示されている。 In the distance calculation unit 21b, the position of each segment area on the CMOS image sensor 240 is detected, and the position corresponding to each segment area of the detection target object is determined based on the triangulation method from the detected position of each segment area. The distance to is detected. Details of such a detection technique are described in, for example, Non-Patent Document 1 (The 19th Annual Conference of the Robotics Society of Japan (September 18-20, 2001), Proceedings, P1279-1280).
 ところで、本実施の形態において、レーザ光源110とコリメータレンズ120は、両者の光軸が一致するように配置される。また、光軸方向におけるレーザ光源110とコリメータレンズ120の配置は、レーザ光源110の発光点がコリメータレンズ120の焦点位置から僅かにコリメータレンズ120側に変位するように調整される。さらに、DOE140は、入射面(回折パターンが形成された面)が、図2のY軸に垂直となるように配置される。これにより、レーザ光は、平行光から僅かに広がり、且つ、光軸がDOE140の入射面に垂直となるように、DOE140に入射する。こうして、所望のドットパターンのDP光が、目標領域の所望の範囲に照射される。 Incidentally, in the present embodiment, the laser light source 110 and the collimator lens 120 are arranged so that the optical axes of both coincide. The arrangement of the laser light source 110 and the collimator lens 120 in the optical axis direction is adjusted so that the light emission point of the laser light source 110 is slightly displaced from the focal position of the collimator lens 120 to the collimator lens 120 side. Further, the DOE 140 is arranged such that the incident surface (the surface on which the diffraction pattern is formed) is perpendicular to the Y axis in FIG. As a result, the laser light is incident on the DOE 140 such that the light beam slightly spreads from the parallel light and the optical axis is perpendicular to the incident surface of the DOE 140. In this way, DP light having a desired dot pattern is irradiated onto a desired range of the target area.
 しかしながら、レーザ光源110とコリメータレンズ120の設置位置にずれが生じると、レーザ光源110とコリメータレンズ120の光軸にずれが生じ、または、レーザ光源110の発光点が所期の位置からずれてしまい、これに応じて、目標領域におけるDP光の照射状態が変化する。 However, if the installation positions of the laser light source 110 and the collimator lens 120 are shifted, the optical axes of the laser light source 110 and the collimator lens 120 are shifted, or the light emission point of the laser light source 110 is shifted from the intended position. Accordingly, the irradiation state of the DP light in the target region changes.
 たとえば、コリメータレンズ120の位置が、レーザ光源110の光軸上において所期の位置からずれると、コリメータレンズ120を透過した後のレーザ光の広がり角が変化する。このため、レーザ光が所望の広がり角でDOE140に入射しなくなり、目標領域におけるDP光のドットの大きさが所期の大きさにならなくなる。このようにドットが変化すると、セグメント領域の位置検出のためのドットパターンの照合が適正に行われなくなる。 For example, when the position of the collimator lens 120 deviates from an expected position on the optical axis of the laser light source 110, the spread angle of the laser light after passing through the collimator lens 120 changes. For this reason, the laser beam does not enter the DOE 140 at a desired spread angle, and the size of the DP light dot in the target region does not become the expected size. When the dot changes in this way, the dot pattern for the position detection of the segment area is not properly verified.
 また、コリメータレンズ120の光軸がレーザ光源110の光軸からずれると、コリメータレンズ120を透過した後のレーザ光の進行方向が、コリメータレンズ120の光軸に対して傾く。このため、レーザ光が、斜め方向からDOE140に入射するようになり、目標領域におけるDP光の照射範囲が受光光学系200の撮像範囲からずれてしまう。
これにより、物体検出を適正に行えなくなる惧れがある。
Further, when the optical axis of the collimator lens 120 is deviated from the optical axis of the laser light source 110, the traveling direction of the laser light after passing through the collimator lens 120 is inclined with respect to the optical axis of the collimator lens 120. For this reason, the laser light enters the DOE 140 from an oblique direction, and the irradiation range of the DP light in the target area is shifted from the imaging range of the light receiving optical system 200.
As a result, object detection may not be performed properly.
 このような問題を解消するために、本実施の形態では、製造時において、レーザ光源110とコリメータレンズ120の相対位置をX軸、Y軸、Z軸方向に沿って容易に調整するための構成が、以下に示す発光装置10に配備されている。 In order to solve such a problem, in the present embodiment, a configuration for easily adjusting the relative positions of the laser light source 110 and the collimator lens 120 along the X-axis, Y-axis, and Z-axis directions during manufacturing. Is provided in the light emitting device 10 shown below.
 図4は、本実施の形態に係る発光装置10の構成例を示す分解斜視図である。発光装置10は、図2中の投射光学系100が他の部品とともにユニット化された装置である。なお、図4(a)には、図2で示したX-Y-Z軸とともに、前後左右上下の方向が示されている。上下方向はY軸方向に平行、左右方向はX軸方向に平行、前後方向はZ軸方向に平行である。 FIG. 4 is an exploded perspective view showing a configuration example of the light emitting device 10 according to the present embodiment. The light emitting device 10 is a device in which the projection optical system 100 in FIG. 2 is unitized together with other components. FIG. 4A shows the front, rear, left, right, and up and down directions along with the XYZ axes shown in FIG. The vertical direction is parallel to the Y-axis direction, the horizontal direction is parallel to the X-axis direction, and the front-back direction is parallel to the Z-axis direction.
 図4(a)を参照して、発光装置10は、上述のレーザ光源110と、コリメータレンズ120と、立ち上げミラー130と、DOE140の他に、レーザホルダ111と、レンズホルダ121と、DOEホルダ141と、ハウジング150と、押さえバネ160を備えている。 Referring to FIG. 4A, the light emitting device 10 includes a laser holder 111, a lens holder 121, and a DOE holder in addition to the laser light source 110, the collimator lens 120, the rising mirror 130, and the DOE 140 described above. 141, a housing 150, and a pressing spring 160 are provided.
 図示の如く、レーザ光源110は、ベース110aとCAN110bとを有する。ベース110aは、正面視において、外周が一部切り欠かれた円形の輪郭を有する。また、コリメータレンズ120は、円柱状の外周面を有する大径部120aと、大径部よりも径が小さい小径部120bを有する。 As shown, the laser light source 110 has a base 110a and a CAN 110b. The base 110a has a circular outline with a part of the outer periphery cut out when viewed from the front. The collimator lens 120 has a large diameter portion 120a having a cylindrical outer peripheral surface and a small diameter portion 120b having a diameter smaller than that of the large diameter portion.
 レーザホルダ111は、正面視において正方形の輪郭を有し、中央に円形の開口111aが形成された枠部材からなっている。開口111aは、レーザホルダ111を前後方向に貫通しており、径が異なる円柱状の2つの穴が同軸上に並んだ構成となっている。開口111aの前方の穴の径は後方の穴の径よりも大きくなっており、径が変化する境界には、リング状の段差が形成されている。開口111aの前方の穴の径は、レーザ光源110のベース110aの径よりも僅かに大きい。レーザ光源110のベース110aの後面が開口111a内の段差に当接するまで、前側からベース110aを開口111aに嵌め込むことにより、レーザ光源110がレーザホルダ111に対して位置決めされる。この状態で、ベース110a外周の切り欠きに接着材が注入され、レーザ光源110がレーザホルダ111に接着固定される。レーザホルダ111は、亜鉛等の熱伝導性の高い物質からなり、一般的なダイカスト鋳造によって製造される。 The laser holder 111 is a frame member having a square outline in a front view and having a circular opening 111a formed at the center. The opening 111a penetrates the laser holder 111 in the front-rear direction, and has a configuration in which two cylindrical holes having different diameters are arranged on the same axis. The diameter of the hole in front of the opening 111a is larger than the diameter of the hole in the rear, and a ring-shaped step is formed at the boundary where the diameter changes. The diameter of the hole in front of the opening 111a is slightly larger than the diameter of the base 110a of the laser light source 110. The laser light source 110 is positioned with respect to the laser holder 111 by fitting the base 110a into the opening 111a from the front side until the rear surface of the base 110a of the laser light source 110 contacts the step in the opening 111a. In this state, an adhesive is injected into the cutout on the outer periphery of the base 110 a, and the laser light source 110 is bonded and fixed to the laser holder 111. The laser holder 111 is made of a material having high thermal conductivity such as zinc, and is manufactured by general die casting.
 図4(b)に示すように、レーザホルダ111の背面の外周部には、他の部分より1段高くなっている4つの段部111bが形成されている。4つの段部111bは、同じ高さ、同じ形状である。4つの段部111bの高さ方向の端面は、何れも、X-Y平面に平行である。後述するように、段部111bをハウジング150の外側面に当接させた状態で、レーザホルダ111をX-Y平面の面内方向に変位させることにより、レーザ光源110の位置が調整される。このとき、段部111bとハウジング150の外側面との間の接触面積が小さいため、レーザホルダ111の変位がスムーズに行われ得る。 As shown in FIG. 4B, four step portions 111 b that are one step higher than the other portions are formed on the outer peripheral portion of the back surface of the laser holder 111. The four step portions 111b have the same height and the same shape. The end faces in the height direction of the four step portions 111b are all parallel to the XY plane. As will be described later, the position of the laser light source 110 is adjusted by displacing the laser holder 111 in the in-plane direction of the XY plane while the stepped portion 111b is in contact with the outer surface of the housing 150. At this time, since the contact area between the step portion 111b and the outer surface of the housing 150 is small, the laser holder 111 can be displaced smoothly.
 なお、このように4つの段部111bを設けることにより、レーザホルダ111用の金型を容易に調整できるとの効果も奏され得る。すなわち、金型調整時には、Z軸に垂直な基準面に対して4つの段部111bの位置ずれを計測し、修正対象の段部111bに対応する金型部分を調整すればよい。 In addition, the effect that the metal mold | die for laser holder 111 can be adjusted easily by providing the four step parts 111b in this way can also be show | played. That is, at the time of mold adjustment, the positional deviation of the four step portions 111b with respect to the reference plane perpendicular to the Z axis may be measured to adjust the mold portion corresponding to the step portion 111b to be corrected.
 図4(a)に戻り、レンズホルダ121は、正面視において略円形の輪郭を有し、中央に開口121aが形成された枠部材からなっている。開口121aは、レンズホルダ121を前後方向に貫通しており、径が異なる円柱状の2つの穴が同軸上に並んだ構成となっている。開口121aの前方の穴の径は後方の穴の径よりも大きくなっており、径が変化する境界には、リング状の段差が形成されている。開口121aの前方の穴の径は、コリメータレンズ120の大径部120aの径よりも僅かに大きい。コリメータレンズ120の大径部120aの後面が開口121a内の段差に当接するまで、前側から大径部120aを開口121aに嵌め込むことにより、コリメータレンズ120がレンズホルダ121に対して位置決めされる。この状態で、コリメータレンズ120がレンズホルダ121に接着固定される。 Returning to FIG. 4A, the lens holder 121 is formed of a frame member having a substantially circular outline in a front view and having an opening 121a formed at the center. The opening 121a penetrates the lens holder 121 in the front-rear direction, and has a configuration in which two cylindrical holes having different diameters are arranged on the same axis. The diameter of the hole in front of the opening 121a is larger than the diameter of the hole in the rear, and a ring-shaped step is formed at the boundary where the diameter changes. The diameter of the hole in front of the opening 121a is slightly larger than the diameter of the large diameter portion 120a of the collimator lens 120. The collimator lens 120 is positioned with respect to the lens holder 121 by fitting the large diameter portion 120a into the opening 121a from the front side until the rear surface of the large diameter portion 120a of the collimator lens 120 contacts the step in the opening 121a. In this state, the collimator lens 120 is bonded and fixed to the lens holder 121.
 レンズホルダ121の上面には、前後に延びる凹部121cが形成されている。凹部121cには、前後に延びる凸部121dが形成されている。レンズホルダ121の側面には、それぞれ、コリメータレンズ120とレンズホルダ121を接着固定する際に接着剤を流入させるための2つの溝121bが形成されている。 On the upper surface of the lens holder 121, a recess 121c extending in the front-rear direction is formed. A convex part 121d extending in the front-rear direction is formed in the concave part 121c. On the side surfaces of the lens holder 121, two grooves 121 b are formed for allowing an adhesive to flow in when the collimator lens 120 and the lens holder 121 are bonded and fixed.
 レンズホルダ121の下側面には、左右方向(X軸方向)に直線状に延びる矩形状の溝121eが形成されている(図5(b)参照)。この溝121eは、後述のように、レンズホルダ121の位置を前後方向(Z軸方向)に調整する際に用いられる。なお、レンズホルダ121の周方向における凸部121dの中心と溝121eの中心は、互いに180度ずれた状態にある。したがって、凸部121dが真上を向くと、溝121eは真下を向く。 A rectangular groove 121e extending linearly in the left-right direction (X-axis direction) is formed on the lower surface of the lens holder 121 (see FIG. 5B). As will be described later, the groove 121e is used when the position of the lens holder 121 is adjusted in the front-rear direction (Z-axis direction). In addition, the center of the convex part 121d and the center of the groove 121e in the circumferential direction of the lens holder 121 are in a state shifted from each other by 180 degrees. Therefore, when the convex portion 121d faces right above, the groove 121e turns right below.
 DOEホルダ141は、下面に、DOE140を装着するための段部(図示せず)が形成されている。また、DOEホルダ141の中央には、レーザ光を目標領域に導くための開口141aが形成されている。DOE140は、DOEホルダ141の下方向から、DOEホルダ141に嵌め込まれ、接着固定される。また、DOEホルダ141の左右の端部には、DOEホルダ141をハウジング150に固定するための段部141bが形成されている。 The DOE holder 141 has a step (not shown) for mounting the DOE 140 on the lower surface. In addition, an opening 141 a for guiding the laser beam to the target area is formed in the center of the DOE holder 141. The DOE 140 is fitted into the DOE holder 141 from below the DOE holder 141, and is fixed by adhesion. Further, step portions 141 b for fixing the DOE holder 141 to the housing 150 are formed at the left and right ends of the DOE holder 141.
 ハウジング150は、上面視において長方形の輪郭の、有底の枠部材からなっている。ハウジング150は、ネジ孔150iの形状を除いて、Y-Z平面に平行な面に対して左右対称な形状となっている。ハウジング150は、アルミ等の熱伝導性の高い物質からなり、一般的なダイカスト鋳造によって製造される。 The housing 150 is formed of a bottomed frame member having a rectangular outline in a top view. The housing 150 has a symmetrical shape with respect to a plane parallel to the YZ plane, except for the shape of the screw hole 150i. The housing 150 is made of a material having high thermal conductivity such as aluminum, and is manufactured by general die casting.
 ハウジング150の内部後側には、図示のごとく、YZ平面の面内方向に45°の傾いたミラー装着部150aが形成されている。立ち上げミラー130は、ミラー装着部150aに装着され、接着固定される。また、ハウジング150の前方の側面には、U字型の開口150bが形成されている。開口150bの左右方向の幅は、レーザ光源110のCAN110bの径よりも大きい。なお、本実施の形態では、ハウジング150は、ダイカスト鋳造にて製造されるため、150bは、円形の開口とするよりもU字型の開口としたほうが、金型からハウジング150を外すための可動駒が不要となり、製造コストを低減することができる。 As shown in the drawing, a mirror mounting portion 150a inclined by 45 ° in the in-plane direction of the YZ plane is formed on the inner rear side of the housing 150. The rising mirror 130 is mounted on the mirror mounting portion 150a and fixed by adhesion. Further, a U-shaped opening 150 b is formed on the front side surface of the housing 150. The width of the opening 150b in the left-right direction is larger than the diameter of the CAN 110b of the laser light source 110. In the present embodiment, since the housing 150 is manufactured by die casting, 150b is movable to remove the housing 150 from the mold when it is U-shaped rather than circular. A piece is not required, and the manufacturing cost can be reduced.
 ハウジング150の底面には、後述するZ軸調整用治具601をレンズホルダ121の溝121eに案内するための孔150cが形成されている(図5(b)参照)。孔150cの径は、レンズホルダ121の溝121eのZ軸方向の幅よりも大きくなっている。ハウジング150の左右方向にならぶ2つの側面には、それぞれ、ハウジング150の内部にUV接着剤を流入させるための2つの孔150eが形成されている。 On the bottom surface of the housing 150, a hole 150c for guiding a Z-axis adjusting jig 601 described later to the groove 121e of the lens holder 121 is formed (see FIG. 5B). The diameter of the hole 150c is larger than the width of the groove 121e of the lens holder 121 in the Z-axis direction. Two holes 150e for allowing the UV adhesive to flow into the interior of the housing 150 are formed in the two side surfaces of the housing 150 in the left-right direction.
 また、ハウジング150の左右方向にならぶ2つの内側面の下端には、互いに向き合う一対の傾斜面150dが形成されている。2つの傾斜面150dは、それぞれ、X-Z平面に平行な面に対して下方向に同じ角度だけ傾いている。2つの傾斜面150dにレンズホルダ121を載せると、レンズホルダ121は、X軸方向(左右方向)において、変位が規制される。 Also, a pair of inclined surfaces 150d facing each other are formed at the lower ends of the two inner side surfaces of the housing 150 in the left-right direction. The two inclined surfaces 150d are inclined at the same angle in the downward direction with respect to the plane parallel to the XZ plane. When the lens holder 121 is placed on the two inclined surfaces 150d, the displacement of the lens holder 121 is restricted in the X-axis direction (left-right direction).
 ハウジング150の上面には、DOEホルダ141を装着するための段部150fと、4つのネジ穴150gが形成されている。Z軸方向における段部150fの幅は、DOEホルダ141の左右の段部141bの幅よりも僅かに大きい。ハウジング150の左右方向にならぶ2つの外側面の下端には、ハウジング150の外側方向に突出した2つの鍔部150hが形成されている。2つの鍔部150hには、それぞれ、後述するベースプレート300にハウジング150を固定するためのネジ孔150iが形成されている。 On the upper surface of the housing 150, a step 150f for mounting the DOE holder 141 and four screw holes 150g are formed. The width of the step portion 150f in the Z-axis direction is slightly larger than the width of the left and right step portions 141b of the DOE holder 141. Two flanges 150 h projecting in the outer direction of the housing 150 are formed at the lower ends of the two outer surfaces aligned in the left-right direction of the housing 150. Each of the two flanges 150h is formed with a screw hole 150i for fixing the housing 150 to the base plate 300 described later.
 押さえバネ160は、バネ性のある板ばねであり、中央に、一段低い段部160aを有する。押さえバネ160は、左右対称な形状を有する。押さえバネ160には、押さえバネ160をハウジング150に上部から固定するための4つのネジ孔160bが形成されている。 The holding spring 160 is a leaf spring having a spring property, and has a step portion 160a that is one step lower in the center. The holding spring 160 has a symmetrical shape. The presser spring 160 is formed with four screw holes 160b for fixing the presser spring 160 to the housing 150 from above.
 発光装置10の組立時には、まず、立ち上げミラー130が、ハウジング150内のミラー装着部150aに装着される。これにより、立ち上げミラー130が、X-Z平面に対してY-Z平面の面内方向に45度の傾きを持つように、ハウジング150内に設置される。 When assembling the light-emitting device 10, first, the rising mirror 130 is mounted on the mirror mounting portion 150 a in the housing 150. Accordingly, the rising mirror 130 is installed in the housing 150 so as to have an inclination of 45 degrees in the in-plane direction of the YZ plane with respect to the XZ plane.
 次に、コリメータレンズ120が装着されたレンズホルダ121が、溝121eと孔150cが合うように、一対の傾斜面150d上に載せられ、ハウジング150の内部に収容される。このとき、凸部121dが真上を向くようにレンズホルダ121を傾斜面150d上に載せることで、溝121eと孔150cとを整合させることができる。 Next, the lens holder 121 on which the collimator lens 120 is mounted is placed on the pair of inclined surfaces 150d so that the grooves 121e and the holes 150c are aligned, and is accommodated inside the housing 150. At this time, the groove 121e and the hole 150c can be aligned by placing the lens holder 121 on the inclined surface 150d so that the convex portion 121d faces right above.
 そして、押さえバネ160の4つのネジ孔160bがハウジング150の4つのネジ穴150gに合うように、押さえバネ160がハウジング150の上部に当てられる。この状態で、上方から、4つのネジ孔160bを介して、4つのネジ161が4つのネジ穴150gに螺着される。このとき、レンズホルダ121の凸部121dが、押さえバネ160の段部160aによって、下方向に押し付けられる。これにより、レンズホルダ121は、押さえバネ160の付勢によって、ハウジング150の傾斜面150dに押し付けられ、X軸方向(左右方向)、Y軸方向(上下方向)に動かないように仮固定される。 The pressing spring 160 is applied to the upper portion of the housing 150 so that the four screw holes 160b of the pressing spring 160 are aligned with the four screw holes 150g of the housing 150. In this state, four screws 161 are screwed into the four screw holes 150g from above through the four screw holes 160b. At this time, the convex portion 121 d of the lens holder 121 is pressed downward by the step portion 160 a of the pressing spring 160. Thereby, the lens holder 121 is pressed against the inclined surface 150d of the housing 150 by the urging force of the holding spring 160, and is temporarily fixed so as not to move in the X-axis direction (left-right direction) and the Y-axis direction (up-down direction). .
 なお、押さえバネ160がハウジング150に装着されると、凸部121dが段部160aの真中に位置付けられ、押さえバネ160は段部160aを中心として左右均等に撓む。このため、レンズホルダ121は、周方向に位置ずれを起こしにくくなる。また、凸部121dが段部160aの真中からずれている場合は、凸部121dを目印として、凸部121dが段部160aの真中に位置付けられるように、レンズホルダ121を周方向に回転させればよい。これにより、溝121eと孔150cとを整合させることができる(図5(b)参照)。 When the holding spring 160 is mounted on the housing 150, the convex portion 121d is positioned in the middle of the stepped portion 160a, and the holding spring 160 bends evenly from side to side about the stepped portion 160a. For this reason, the lens holder 121 is less likely to be displaced in the circumferential direction. If the convex portion 121d is displaced from the middle of the step portion 160a, the lens holder 121 can be rotated in the circumferential direction so that the convex portion 121d is positioned in the middle of the step portion 160a with the convex portion 121d as a mark. That's fine. Thereby, the groove | channel 121e and the hole 150c can be aligned (refer FIG.5 (b)).
 こうしてレンズホルダ121がハウジング150に仮固定されると、レンズホルダ121と、ハウジング150の内側面の間には、レンズホルダ121がZ軸方向(前後方向)に移動可能なように、所定の隙間が存在する。なお、レンズホルダ121とハウジング150との位置関係については、追って、図9、図10を参照して説明する。 When the lens holder 121 is temporarily fixed to the housing 150 in this way, a predetermined gap is provided between the lens holder 121 and the inner surface of the housing 150 so that the lens holder 121 can move in the Z-axis direction (front-rear direction). Exists. The positional relationship between the lens holder 121 and the housing 150 will be described later with reference to FIGS. 9 and 10.
 次に、レーザ光源110のCAN110bがハウジング150のU字型の開口150bに挿入されるよう、レーザホルダ111の後面がハウジング150に外側面に当てられる。このとき、ハウジング150に当接するのは、同図(b)に示すレーザホルダ111の段部111bのうち、上側の段部111bを除く3つの段部111bである。レーザ光源110のCAN110bとハウジング150の開口150bとの間には、レーザ光源110がXY軸方向(上下左右方向)に移動可能なように、所定の隙間が存在する。なお、レーザホルダ111とハウジング150との位置関係については、追って、図9、図10を参照して説明する。 Next, the rear surface of the laser holder 111 is brought into contact with the outer surface of the housing 150 so that the CAN 110b of the laser light source 110 is inserted into the U-shaped opening 150b of the housing 150. At this time, the three steps 111b excluding the upper step 111b among the steps 111b of the laser holder 111 shown in FIG. A predetermined gap exists between the CAN 110b of the laser light source 110 and the opening 150b of the housing 150 so that the laser light source 110 can move in the XY axis direction (up / down / left / right direction). The positional relationship between the laser holder 111 and the housing 150 will be described later with reference to FIGS.
 この状態で、XY軸調整用治具(図示せず)により、レーザホルダ111をハウジング150に押し付けつつ、レーザ光源110がXY軸方向(上下左右方向)に変位され、XY軸方向(上下左右方向)の位置調整が行われる。これにより、レーザ光源110の光軸とコリメータレンズ120の光軸が整合する。また、ハウジング150の下部に形成された孔150cを介して、レンズホルダ121の溝121eにZ軸調整用治具(図4には図示せず)が係合され、レンズホルダ121のZ軸方向(前後方向)の位置調整が行われる。これにより、コリメータレンズ120の焦点位置がレーザ光源110の発光点に対して適正に位置付けられる。 In this state, while the laser holder 111 is pressed against the housing 150 by an XY axis adjusting jig (not shown), the laser light source 110 is displaced in the XY axis direction (up / down / left / right direction), and the XY axis direction (up / down / left / right direction). ) Is adjusted. As a result, the optical axis of the laser light source 110 and the optical axis of the collimator lens 120 are aligned. Further, a Z-axis adjusting jig (not shown in FIG. 4) is engaged with the groove 121e of the lens holder 121 through a hole 150c formed in the lower portion of the housing 150, so that the lens holder 121 has a Z-axis direction. Position adjustment in the (front-rear direction) is performed. Thereby, the focal position of the collimator lens 120 is appropriately positioned with respect to the light emitting point of the laser light source 110.
 以上の位置調整によって、目標領域において所望のドットパターンが得られるようになる。なお、XYZ軸方向の位置調整については、追って、図11、図12を参照して説明する。 By the above position adjustment, a desired dot pattern can be obtained in the target area. Note that the position adjustment in the XYZ axis directions will be described later with reference to FIGS.
 こうして位置調整がなされた後、レーザホルダ111の左右の2つの側面とハウジング150の側面との境界に、左右均等にUV接着剤が添着される。UV接着剤が添着された後、再度、レーザ光の光軸のずれが確認され、問題なければ、UV接着剤に紫外線が照射されて、レーザホルダ111がハウジング150に接着固定される。なお、レーザ光の光軸のずれの確認において問題があった場合には、再度、レーザホルダ111が微調整された後に、UV接着剤に紫外線が照射され、レーザホルダ111がハウジング150に接着固定される。 After the position adjustment is made in this way, the UV adhesive is evenly attached to the boundary between the two left and right side surfaces of the laser holder 111 and the side surface of the housing 150. After the UV adhesive is attached, the deviation of the optical axis of the laser light is confirmed again. If there is no problem, the UV adhesive is irradiated with ultraviolet rays, and the laser holder 111 is bonded and fixed to the housing 150. If there is a problem in confirming the deviation of the optical axis of the laser beam, the laser holder 111 is finely adjusted again, and then the UV adhesive is irradiated with ultraviolet rays, and the laser holder 111 is bonded and fixed to the housing 150. Is done.
 さらに、ハウジング150の左右の側面に形成された孔150eを介して、レンズホルダ121とハウジング150内部の傾斜面150dとが互いに当接する位置に、左右均等にUV接着剤が添着される。UV接着剤が添着された後、再度、レーザ光源110とコリメータレンズ120の位置関係が確認され、問題なければ、UV接着剤に紫外線が照射されて、レンズホルダ121がハウジング150に接着固定される。なお、レーザ光源110とコリメータレンズ120の位置関係の確認において問題があった場合には、再度、レンズホルダ121が微調整された後に、UV接着剤に紫外線が照射され、レンズホルダ121がハウジング150に接着固定される。このように、本実施の形態では、ハウジング150の側面に孔150eが形成されているため、ハウジング150内部に収容されたレンズホルダ121を容易にハウジング150に接着固定できる。 Further, the UV adhesive is evenly attached to the left and right at the positions where the lens holder 121 and the inclined surface 150d inside the housing 150 are in contact with each other through the holes 150e formed on the left and right side surfaces of the housing 150. After the UV adhesive is attached, the positional relationship between the laser light source 110 and the collimator lens 120 is confirmed again. If there is no problem, the UV adhesive is irradiated with ultraviolet rays, and the lens holder 121 is bonded and fixed to the housing 150. . If there is a problem in confirming the positional relationship between the laser light source 110 and the collimator lens 120, the lens holder 121 is finely adjusted again, and then the UV adhesive is irradiated with ultraviolet rays. Adhered and fixed to. Thus, in this embodiment, since the hole 150e is formed on the side surface of the housing 150, the lens holder 121 housed in the housing 150 can be easily bonded and fixed to the housing 150.
 こうして、ハウジング150に対するレーザ光源110とコリメータレンズ120の設置が完了した後、DOE140が装着されたDOEホルダ141の段部141bがハウジング150の段部150fが嵌め込まれ、DOEホルダ141がハウジング150に固着される。こうして、図5(a)に示すように、発光装置10の組立が完了する。図5(a)は、発光装置10を上方向から見た斜視図、図5(b)は、発光装置10を下方向から見た斜視図である。 Thus, after the installation of the laser light source 110 and the collimator lens 120 to the housing 150 is completed, the step portion 141b of the DOE holder 141 to which the DOE 140 is attached is fitted into the step portion 150f of the housing 150, and the DOE holder 141 is fixed to the housing 150. Is done. In this way, assembling of the light emitting device 10 is completed as shown in FIG. FIG. 5A is a perspective view of the light emitting device 10 viewed from above, and FIG. 5B is a perspective view of the light emitting device 10 viewed from below.
 図6ないし図8は、情報取得装置1の組立過程を示す斜視図である。なお、便宜上、受光装置20の組立過程と受光装置20のベースプレート300への装着過程は図示を省略する。受光装置20は、図2中の受光光学系200が他の部品とともにユニット化された装置である。 6 to 8 are perspective views showing an assembling process of the information acquisition device 1. For convenience, the assembly process of the light receiving device 20 and the mounting process of the light receiving device 20 to the base plate 300 are not shown. The light receiving device 20 is a device in which the light receiving optical system 200 in FIG. 2 is unitized with other components.
 図6において、300は、発光装置10と受光装置20を支持するベースプレートである。 In FIG. 6, reference numeral 300 denotes a base plate that supports the light emitting device 10 and the light receiving device 20.
 ベースプレート300には、発光装置10と受光装置20が配置される。ベースプレート300は、長方形の板状であり、ステンレス等の耐可撓性に優れ、熱伝導性の高い物質からなる。ベースプレート300には、発光装置10をベースプレート300に固定するための2つのネジ穴300aが形成されている。また、ベースプレート300には、発光装置10の設置位置を決める段部301が形成されている。発光装置10の設置位置は、あらかじめ、発光装置10の発光中心と受光装置20の受光中心が、互いにZ軸方向に並ぶように設定される。 The light emitting device 10 and the light receiving device 20 are arranged on the base plate 300. The base plate 300 has a rectangular plate shape, and is made of a material having excellent flexibility resistance and high thermal conductivity such as stainless steel. Two screw holes 300 a for fixing the light emitting device 10 to the base plate 300 are formed in the base plate 300. Further, the base plate 300 is formed with a step portion 301 that determines the installation position of the light emitting device 10. The installation position of the light emitting device 10 is set in advance so that the light emitting center of the light emitting device 10 and the light receiving center of the light receiving device 20 are aligned in the Z-axis direction.
 また、発光装置10と受光装置20の設置間隔は、情報取得装置1と目標領域の基準面との距離に応じて、設定される。基準面は、どの程度離れた目標物を検出対象とするかによって、情報取得装置1との距離が変わる。検出対象の目標物までの距離が近くなるほど、発光装置10と受光装置20の設置間隔は狭くなる。逆に、検出対象の目標物までの距離が遠くなるほど、発光装置10と受光装置20の設置間隔は広くなる。 Also, the installation interval between the light emitting device 10 and the light receiving device 20 is set according to the distance between the information acquisition device 1 and the reference plane of the target area. The distance between the reference plane and the information acquisition apparatus 1 varies depending on how far away the target is to be detected. The closer the distance to the target to be detected is, the narrower the interval between the light emitting device 10 and the light receiving device 20 is. Conversely, as the distance to the target to be detected increases, the installation interval between the light emitting device 10 and the light receiving device 20 increases.
 ベースプレート300の中央下部には、レーザ光源110の配線をベースプレート300の背部に取り出すための孔302が形成されている。また、ベースプレート300の受光装置20の設置位置の下部には、受光装置20のコネクタ202をベースプレート300の背部に露出させるための開口303が形成されている。さらに、ベースプレート300には、図示のごとく、鍔部304が形成されており、鍔部304には、後述するカバー400をベースプレート300に固定するためのネジ穴304aが形成されている。 The hole 302 for taking out the wiring of the laser light source 110 to the back part of the base plate 300 is formed in the center lower part of the base plate 300. In addition, an opening 303 for exposing the connector 202 of the light receiving device 20 to the back portion of the base plate 300 is formed below the installation position of the light receiving device 20 on the base plate 300. Further, as shown in the figure, a flange 304 is formed in the base plate 300, and a screw hole 304 a for fixing a cover 400 described later to the base plate 300 is formed in the flange 304.
 受光装置20は、図2で示したように、フィルタ210と、アパーチャ220と、撮像レンズ230と、CMOSイメージセンサ240とを備えている。受光装置20は、基板固定部201により、ベースプレート300に固定されている。ベースプレート300の背面には、ベースプレート300に形成された開口303を介して、受光装置20のコネクタ202が露出している。 The light receiving device 20 includes a filter 210, an aperture 220, an imaging lens 230, and a CMOS image sensor 240 as shown in FIG. The light receiving device 20 is fixed to the base plate 300 by the substrate fixing unit 201. The connector 202 of the light receiving device 20 is exposed on the back surface of the base plate 300 through an opening 303 formed in the base plate 300.
 発光装置10は、ハウジング150の側面がベースプレート300の段部301に当接するように、配置される。この状態で、2つのネジ穴300aと2つのネジ孔150iとが合わされ、2つのネジ305がそれぞれネジ孔150iとネジ穴300aに螺着される。これにより、発光装置10が、ベースプレート300に固着される。 The light emitting device 10 is arranged so that the side surface of the housing 150 abuts on the step portion 301 of the base plate 300. In this state, the two screw holes 300a and the two screw holes 150i are combined, and the two screws 305 are screwed into the screw holes 150i and the screw holes 300a, respectively. Thereby, the light emitting device 10 is fixed to the base plate 300.
 こうして、図7に示す構成体が組み立てられる。その後、この構成体にカバー400が装着される(図8)。このとき、ベースプレート300のネジ穴304aと、カバー400のネジ孔400aが合わされ、カバー400がベースプレート300にネジ止めされる。これにより、図8に示す構成体の組立が完了する。図8(a)は、この構成体を前面から見た斜視図であり、図8(b)は、この構成体を背面から見た斜視図である。 Thus, the structure shown in FIG. 7 is assembled. Thereafter, the cover 400 is attached to the structure (FIG. 8). At this time, the screw hole 304 a of the base plate 300 and the screw hole 400 a of the cover 400 are combined, and the cover 400 is screwed to the base plate 300. Thereby, the assembly of the structure shown in FIG. 8 is completed. FIG. 8A is a perspective view of the structure viewed from the front, and FIG. 8B is a perspective view of the structure viewed from the back.
 カバー400の前面には、発光装置10から出射された光を目標物に導くための投射窓401と、目標物からの反射光を受光装置20に導くための受光窓402が形成されている。ベースプレート300の背面には、さらに、回路基板500が設置される(図示せず)。この回路基板500に対し、ベースプレート300の背部に形成された孔302を介して、レーザ光源110が接続される。また、回路基板500は、ベースプレート300の背部に形成された開口303を介して、受光装置20のコネクタ202と接続される。回路基板500には、図2に示すCPU21やレーザ駆動回路22等の情報取得装置1の回路部が実装されている。 A projection window 401 for guiding the light emitted from the light emitting device 10 to the target and a light receiving window 402 for guiding the reflected light from the target to the light receiving device 20 are formed on the front surface of the cover 400. A circuit board 500 is further installed on the back surface of the base plate 300 (not shown). The laser light source 110 is connected to the circuit board 500 through a hole 302 formed in the back portion of the base plate 300. In addition, the circuit board 500 is connected to the connector 202 of the light receiving device 20 through an opening 303 formed in the back portion of the base plate 300. The circuit board 500 is mounted with a circuit unit of the information acquisition device 1 such as the CPU 21 and the laser driving circuit 22 shown in FIG.
 図9、図10は、ハウジング150内部の各部材の位置関係を説明する図である。図9(a)は、発光装置10の上面図、図9(b)は、図9(a)のA-A断面図である。図10(a)は、発光装置10の側面図、図10(b)は、図10(a)のB-B断面図である。 FIG. 9 and FIG. 10 are diagrams for explaining the positional relationship of each member inside the housing 150. 9A is a top view of the light-emitting device 10, and FIG. 9B is a cross-sectional view taken along the line AA of FIG. 9A. 10A is a side view of the light-emitting device 10, and FIG. 10B is a cross-sectional view taken along the line BB of FIG. 10A.
 図9(b)を参照して、レンズホルダ121は、Z軸正方向において、DOEホルダ141およびミラー装着部150aとの間に所定の隙間を有している(図中破線)。また、レンズホルダ121は、Z軸負方向において、ハウジング150のレーザホルダ111と当接する内側面との間に所定の隙間を有している(図中破線)。さらに、押さえバネ160の段部160aは、レンズホルダ121の凹部121cよりも小さい幅であり、段部160aと、レンズホルダ121との間に所定の隙間が存在している(図中破線)。 Referring to FIG. 9B, the lens holder 121 has a predetermined gap between the DOE holder 141 and the mirror mounting portion 150a in the positive Z-axis direction (broken line in the figure). In addition, the lens holder 121 has a predetermined gap between the inner surface of the housing 150 that contacts the laser holder 111 in the negative Z-axis direction (broken line in the figure). Further, the step portion 160a of the holding spring 160 has a smaller width than the concave portion 121c of the lens holder 121, and a predetermined gap exists between the step portion 160a and the lens holder 121 (broken line in the figure).
 また、レンズホルダ121は、Y軸負方向において、傾斜面150dに当接しており、Y軸正方向から、押さえバネ160の段部160aによって、押し付けられているため、Y軸方向には移動しない。なお、レンズホルダ121は、XY平面における断面が略円形であるため、レンズホルダ121と傾斜面150dとの接触面積は小さく、レンズホルダ121と傾斜面150dとの間に発生する摩擦力は小さい。また、押さえバネ160は、レンズホルダ121上面の凸部121dに接触し、押さえバネ160と凸部121dとの接触面積は小さいため、押さえバネ160と凸部121dとの間に発生する摩擦力は小さい。 Further, since the lens holder 121 is in contact with the inclined surface 150d in the negative Y-axis direction and is pressed by the step portion 160a of the pressing spring 160 from the positive Y-axis direction, it does not move in the Y-axis direction. . Since the lens holder 121 has a substantially circular cross section in the XY plane, the contact area between the lens holder 121 and the inclined surface 150d is small, and the frictional force generated between the lens holder 121 and the inclined surface 150d is small. In addition, since the pressing spring 160 contacts the convex portion 121d on the upper surface of the lens holder 121 and the contact area between the pressing spring 160 and the convex portion 121d is small, the frictional force generated between the pressing spring 160 and the convex portion 121d is small.
 したがって、図11で後述する方法によって、レンズホルダ121にZ軸方向に力を加えると、押さえバネ160の付勢により、ハウジング150の傾斜面150dに押し付けられながら、Z軸方向に滑らか、かつ安定的にレンズホルダ121を可動させることができる。 Accordingly, when a force is applied to the lens holder 121 in the Z-axis direction by a method described later with reference to FIG. 11, the pressing spring 160 is urged against the inclined surface 150 d of the housing 150 and is smooth and stable in the Z-axis direction. In particular, the lens holder 121 can be moved.
 また、レーザホルダ111の下側の段部111bがハウジング150のU字型の開口150bが形成された外側面と当接している。また、レーザホルダ111に装着されたレーザ光源110のCAN110bは、Y軸負方向において、ハウジング150のU字型の開口150bの内側面との間に、所定の隙間を有している(図中破線)。 Also, the lower step portion 111b of the laser holder 111 is in contact with the outer surface of the housing 150 where the U-shaped opening 150b is formed. The CAN 110b of the laser light source 110 attached to the laser holder 111 has a predetermined gap between the inner surface of the U-shaped opening 150b of the housing 150 in the negative Y-axis direction (in the drawing). Dashed line).
 図10(b)を参照して、レーザホルダ111の左右の段部111bがハウジング150のU字型の開口150bが形成された外側面と当接している。また、レーザホルダ111に装着されたレーザ光源110のCAN110bは、X軸正方向とX軸負方向において、ハウジング150のU字型の開口150bの内側面との間に、所定の隙間を有している(図中破線)。 Referring to FIG. 10 (b), the left and right step portions 111b of the laser holder 111 are in contact with the outer surface of the housing 150 where the U-shaped opening 150b is formed. The CAN 110b of the laser light source 110 attached to the laser holder 111 has a predetermined gap between the inner surface of the U-shaped opening 150b of the housing 150 in the X-axis positive direction and the X-axis negative direction. (Dashed line in the figure).
 したがって、図12で後述する方法によって、レーザホルダ111の3つの段部111bをハウジング150の外側面に押し付けながら、X軸方向、Y軸方向に力を加えると、これらの隙間においてレーザホルダ111をX軸方向、およびY軸方向に移動させることができる。 Accordingly, when a force is applied in the X-axis direction and the Y-axis direction while pressing the three step portions 111b of the laser holder 111 against the outer surface of the housing 150 by the method described later in FIG. It can be moved in the X-axis direction and the Y-axis direction.
 図11は、レンズホルダ121をZ軸方向に調整する方法を説明する模式図である。同図(a)は、ハウジング150を背面からみた斜視図、同図(b)は、偏心ピン601aの回転とレンズホルダ121への力の関係を示す図、同図(c)は、図9(a)におけるA-A断面図である。便宜上、同図(c)にはハッチが省略されている。 FIG. 11 is a schematic diagram for explaining a method of adjusting the lens holder 121 in the Z-axis direction. FIG. 10A is a perspective view of the housing 150 as viewed from the back, FIG. 10B is a diagram showing the relationship between the rotation of the eccentric pin 601a and the force applied to the lens holder 121, and FIG. It is AA sectional drawing in (a). For convenience, hatching is omitted in FIG.
 図11(a)には、レンズホルダ121をZ軸方向に調整するためのZ軸調整用治具601が示されている。Z軸調整用治具601は、ハウジング150の孔150cよりも径が小さい円筒状の形状をしており、先端面において、Z軸調整用治具601の回転の中心から偏った位置に偏心ピン601aが突設されている。偏心ピン601aは、溝121eのZ軸方向の幅よりも小さい径の円筒状である。 FIG. 11A shows a Z-axis adjustment jig 601 for adjusting the lens holder 121 in the Z-axis direction. The Z-axis adjustment jig 601 has a cylindrical shape whose diameter is smaller than that of the hole 150c of the housing 150, and an eccentric pin at a position deviated from the center of rotation of the Z-axis adjustment jig 601 on the front end surface. 601a protrudes. The eccentric pin 601a has a cylindrical shape with a diameter smaller than the width of the groove 121e in the Z-axis direction.
 調整時には、まず、Z軸調整用治具601は、ハウジング150の背部に形成された孔150cを介して、レンズホルダ121の溝121eに、Z軸調整用治具601の偏心ピン601aを差し込むようにして嵌合させる。 At the time of adjustment, first, the Z-axis adjustment jig 601 inserts the eccentric pin 601a of the Z-axis adjustment jig 601 into the groove 121e of the lens holder 121 through the hole 150c formed in the back portion of the housing 150. And fit.
 この状態で、Z軸調整用治具601を点線矢印の方向に回転させると、同図(b)に示すように、偏心ピン601aは、Z軸調整用治具601の回転軸を中心として、回動する(図中点線)。偏心ピン601aの回動に伴い、偏心ピン601aが溝121eをZ軸負方向に押し、レンズホルダ121がZ軸負方向に移動される。このとき、偏心ピン601aは、円軌道で回動するため、X軸方向にも力が発生するが、前述のとおり、レンズホルダ121は、傾斜面150dに当接することによってX軸方向の移動が規制されているため、X軸方向には移動されない。偏心ピン601aは、溝121eの幅よりも十分小さい径(半分程度)であるため、レンズホルダ121に対するX軸方向への力が大きく掛からず、円滑にZ軸調整用治具601を回動させることができる。 When the Z-axis adjustment jig 601 is rotated in the direction of the dotted arrow in this state, the eccentric pin 601a is centered on the rotation axis of the Z-axis adjustment jig 601 as shown in FIG. It rotates (dotted line in the figure). As the eccentric pin 601a rotates, the eccentric pin 601a pushes the groove 121e in the Z-axis negative direction, and the lens holder 121 is moved in the Z-axis negative direction. At this time, since the eccentric pin 601a rotates in a circular orbit, a force is also generated in the X-axis direction. As described above, the lens holder 121 moves in the X-axis direction by contacting the inclined surface 150d. Since it is regulated, it is not moved in the X-axis direction. Since the eccentric pin 601a has a diameter (about half) sufficiently smaller than the width of the groove 121e, a force in the X-axis direction with respect to the lens holder 121 is not greatly applied, and the Z-axis adjustment jig 601 is smoothly rotated. be able to.
 なお、偏心ピン601aにて、レンズホルダ121をZ軸方向に円滑に移動させるためには、レンズホルダ121に形成された溝121eが孔150cの直径の位置にあり、且つ、溝121eが孔150cの直径の全長に亘って孔150cから外部に臨むのが望ましい。調整時に偏心ピン601aを半周させる必要がある場合には、少なくとも、溝121eのX軸方向の長さが、偏心ピン601aの円軌道(同図(b)中点線)の直径よりも大きい必要がある。 In order to smoothly move the lens holder 121 in the Z-axis direction with the eccentric pin 601a, the groove 121e formed in the lens holder 121 is positioned at the diameter of the hole 150c, and the groove 121e is the hole 150c. It is desirable to face the outside from the hole 150c over the entire length of the diameter. When it is necessary to make the eccentric pin 601a half-round at the time of adjustment, at least the length of the groove 121e in the X-axis direction needs to be larger than the diameter of the circular orbit of the eccentric pin 601a (the middle dotted line in FIG. 5B). is there.
 図11(c)を参照して、Z軸調整用治具601をレンズホルダ121の溝121eに嵌合させて、点線矢印の方向に回転させることで、レンズホルダ121の位置を、Z軸正負の方向(図中矢印方向)に調整することができる。こうして、レーザ光源110とコリメータレンズ120との間の距離を、容易に調整することができる。 Referring to FIG. 11C, the Z-axis adjusting jig 601 is fitted in the groove 121e of the lens holder 121 and rotated in the direction of the dotted arrow, so that the position of the lens holder 121 is changed to the positive / negative of the Z-axis. It is possible to adjust in the direction (arrow direction in the figure). In this way, the distance between the laser light source 110 and the collimator lens 120 can be easily adjusted.
 図12は、レーザホルダ111をX軸方向、Y軸方向に調整する方法を説明する模式図である。同図(a)は、Y軸方向の調整方法を説明する図、同図(b)は、X軸方向の調整方法を説明する図である。図12(a)は、図9(a)におけるA-A断面図、図12(b)は、図10(a)におけるB-B断面図である。便宜上、図12(a)、(b)にはハッチが省略されている。 FIG. 12 is a schematic diagram for explaining a method of adjusting the laser holder 111 in the X-axis direction and the Y-axis direction. FIG. 4A is a diagram for explaining an adjustment method in the Y-axis direction, and FIG. 4B is a diagram for explaining an adjustment method in the X-axis direction. 12A is a cross-sectional view taken along the line AA in FIG. 9A, and FIG. 12B is a cross-sectional view taken along the line BB in FIG. 10A. For convenience, hatches are omitted from FIGS. 12 (a) and 12 (b).
 図12(a)、(b)を参照して、前述のとおり、レーザ光源110のCAN110bとハウジング150の開口150bの内側面には、所定の隙間が存在する(図中破線)。また、レーザホルダ111の段部111bは、ハウジング150の開口150bが形成された外側面と当接している。 Referring to FIGS. 12A and 12B, as described above, there is a predetermined gap between the CAN 110b of the laser light source 110 and the inner surface of the opening 150b of the housing 150 (broken line in the figure). Further, the stepped portion 111b of the laser holder 111 is in contact with the outer surface of the housing 150 where the opening 150b is formed.
 この状態で、XY軸調整用治具(図示せず)を用いて、図中上方(Z軸負方向)からレーザホルダ111を、ハウジング150の外側面に押しつけつつ、Y軸方向(図12(a)の矢印方向)およびX軸方向(図12(b)の矢印方向)に移動させる。これにより、容易に、レーザ光源110とコリメータレンズ120の光軸を合わせるよう調整することができる。 In this state, using an XY-axis adjustment jig (not shown), the laser holder 111 is pressed against the outer surface of the housing 150 from above (Z-axis negative direction) in the figure, while in the Y-axis direction (FIG. (a) arrow direction) and the X-axis direction (arrow direction in FIG. 12B). Thereby, it can adjust easily so that the optical axis of the laser light source 110 and the collimator lens 120 may be match | combined.
 なお、XY軸調整用治具には、XYZ軸にて駆動可能な精密ステージを用いたものや、XY軸に駆動可能な精密ステージとZ軸方向にばね性をもつ機構とを組み合わせたものなどが用いられる。 Note that the XY axis adjustment jig uses a precision stage that can be driven by the XYZ axes, or a combination of a precision stage that can be driven by the XY axes and a mechanism that has a spring property in the Z axis direction. Is used.
 レーザ光源110とコリメータレンズ120の位置調整は、たとえば、DOEホルダ141をハウジング150に装着する前の状態において、レーザ光源110を駆動してレーザ光を出射させ、そのときにミラー130によって反射されたレーザ光のビームを測定することによって行われる。この場合、まず、レーザ光のビームプロファイルが最良となるように、レーザホルダ111のXY軸方向の調整が行われる。次に、レーザ光のビームサイズが最良となるように、コリメータレンズ120のZ軸方向の位置調整が行われる。かかる調整の後、DOEホルダ141がハウジング150に装着される。 The position adjustment of the laser light source 110 and the collimator lens 120 is performed, for example, by driving the laser light source 110 and emitting the laser light before the DOE holder 141 is mounted on the housing 150, and then reflected by the mirror 130. This is done by measuring the beam of laser light. In this case, first, the laser holder 111 is adjusted in the X and Y axis directions so that the beam profile of the laser beam is the best. Next, the position adjustment of the collimator lens 120 in the Z-axis direction is performed so that the beam size of the laser beam becomes the best. After such adjustment, the DOE holder 141 is attached to the housing 150.
 以上、本実施の形態によれば、レーザ光源110をX軸方向、Y軸方向に容易に位置調整することができ、また、コリメータレンズ120をZ軸方向に容易に位置調整することができる。これにより、コリメータレンズ120やレーザ光源110の設置位置がずれた場合においても、精度よく容易に位置調整を行うことができる。 As described above, according to the present embodiment, the position of the laser light source 110 can be easily adjusted in the X-axis direction and the Y-axis direction, and the collimator lens 120 can be easily adjusted in the Z-axis direction. Thereby, even when the installation positions of the collimator lens 120 and the laser light source 110 are shifted, the position can be adjusted easily with high accuracy.
 また、レンズホルダ121は、XY平面における断面が略円形であるため、レンズホルダ121と傾斜面150dとの接触面積は小さく、レンズホルダ121と傾斜面150dとの間に発生する摩擦力は小さい。また、凸部121dに押さえバネ160の段部160aが押しつけられるため、凸部121dと段部160aとの接触面積は小さく、レンズホルダ121と押さえバネ160との間に発生する摩擦力は小さい。よって、押さえバネ160の付勢により、ハウジング150の傾斜面150dにレンズホルダ121を押し付けられながら、Z軸方向に滑らかに、かつ安定的に、レンズホルダ121を移動させることができる。 Further, since the lens holder 121 has a substantially circular cross section in the XY plane, the contact area between the lens holder 121 and the inclined surface 150d is small, and the frictional force generated between the lens holder 121 and the inclined surface 150d is small. Further, since the step portion 160a of the pressing spring 160 is pressed against the convex portion 121d, the contact area between the convex portion 121d and the step portion 160a is small, and the frictional force generated between the lens holder 121 and the pressing spring 160 is small. Therefore, the lens holder 121 can be moved smoothly and stably in the Z-axis direction while the lens holder 121 is pressed against the inclined surface 150d of the housing 150 by the urging of the holding spring 160.
 また、本実施の形態によれば、前後に延びる凸部121dが真上を向くようにレンズホルダ121をハウジング150に収容することで、図5(b)のように、孔150cと溝121eとを整合させることができる。また、押さえバネ160をハウジング150に装着すると、凸部121dを頂点として押さえバネ160が左右均等に撓むため、周方向におけるレンズホルダ121のずれを抑制することができる。 In addition, according to the present embodiment, the lens holder 121 is accommodated in the housing 150 so that the convex part 121d extending in the front-rear direction faces upward, and as shown in FIG. 5B, the hole 150c and the groove 121e Can be matched. Further, when the pressing spring 160 is mounted on the housing 150, the pressing spring 160 bends evenly on the left and right with the convex portion 121d as the apex, so that the displacement of the lens holder 121 in the circumferential direction can be suppressed.
 また、本実施の形態によれば、レーザホルダ111の背面に段部111bが設けられているため、レーザホルダ111とハウジング150の外側面の当接範囲を制限でき、XY軸方向におけるレーザホルダ111の位置調整を円滑かつ安定的に行うことができる。 In addition, according to the present embodiment, since the step portion 111b is provided on the back surface of the laser holder 111, the contact range between the laser holder 111 and the outer surface of the housing 150 can be limited, and the laser holder 111 in the XY axis direction. Can be adjusted smoothly and stably.
 また、本実施の形態によれば、ハウジング150の開口150bがU字型に形成されているため、ダイカスト鋳造において、金型からハウジング150を容易に取り外すことができる。よって、製造コストを削減することができる。 Further, according to the present embodiment, since the opening 150b of the housing 150 is formed in a U-shape, the housing 150 can be easily detached from the mold in die casting. Therefore, manufacturing cost can be reduced.
 さらに、本実施の形態によれば、偏心ピン601aを溝121eに係合させて回転させるといった簡易な作業により、コリメータレンズ120の位置調整を行うことができる。 Furthermore, according to the present embodiment, the position of the collimator lens 120 can be adjusted by a simple operation of engaging the eccentric pin 601a with the groove 121e and rotating it.
 以上、本発明の実施の形態について説明したが、本発明は、上記実施の形態に何ら制限されるものではなく、また、本発明の実施の形態も上記の他に種々の変更が可能である。 Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made to the embodiment of the present invention in addition to the above. .
 たとえば、上記実施の形態では、発光装置10の光学系として、レーザ光源110から出射されたレーザ光の光路が立ち上げミラー130によって折り曲げられる構成が示されたが、レーザ光源110から出射されたレーザ光の光路が折り曲げられずに、そのままDOE140へと向かうように構成されても良い。この場合、立ち上げミラー130は不要となり、たとえば、立ち上げミラー130の位置に開口とDOEが設置される。 For example, in the above embodiment, the optical system of the light emitting device 10 is configured such that the optical path of the laser light emitted from the laser light source 110 is bent by the rising mirror 130, but the laser emitted from the laser light source 110 is shown. The light path may be configured to be directed to the DOE 140 without being bent. In this case, the raising mirror 130 becomes unnecessary, and for example, an opening and a DOE are installed at the position of the raising mirror 130.
 また、上記実施の形態では、偏心ピン601aは、溝121eの幅の半分程度の径とされたが、溝121eの幅と同程度の径であってもよい。また、溝121eは直線状であったが、円、楕円等の曲線状でもよい。 In the above embodiment, the eccentric pin 601a has a diameter that is about half the width of the groove 121e, but may have a diameter that is about the same as the width of the groove 121e. Moreover, although the groove | channel 121e was linear, curved shape, such as a circle | round | yen and an ellipse, may be sufficient.
 また、上記実施の形態では、レーザ光源110の光軸とコリメータレンズ120の光軸が互いに一致する位置が、XY軸方向におけるレーザ光源110の所期の設置位置とされたが、レーザ光源110の光軸がコリメータレンズ120の光軸から所定方向に所定距離だけずれた位置が、XY軸方向におけるレーザ光源110の所期の設置位置とされても良い。 Further, in the above embodiment, the position where the optical axis of the laser light source 110 and the optical axis of the collimator lens 120 coincide with each other is the desired installation position of the laser light source 110 in the XY axis direction. A position where the optical axis is shifted from the optical axis of the collimator lens 120 by a predetermined distance in a predetermined direction may be an intended installation position of the laser light source 110 in the XY axis direction.
 また、上記実施の形態では、段部111bが4つとされたが、少なくとも3つの段部111bがハウジング150の外側面(前面)に当接すればよく、段部111bが3つ、または5つ以上形成されても良い。あるいは、段部111bを形成せずに、レーザホルダ111の後面とハウジング150の前面を面接触させても良い。ただし、この場合は、レーザホルダ111の後面とハウジング150の前面の面精度をかなり高める必要がある。 In the above-described embodiment, the number of the step portions 111b is four. However, at least three step portions 111b may be in contact with the outer surface (front surface) of the housing 150, and the number of step portions 111b is three, or five or more. It may be formed. Alternatively, the rear surface of the laser holder 111 and the front surface of the housing 150 may be brought into surface contact without forming the stepped portion 111b. However, in this case, it is necessary to considerably improve the surface accuracy of the rear surface of the laser holder 111 and the front surface of the housing 150.
 また、上記実施の形態では、レンズホルダ121の外側面を、全周に亘って略円形にしたが、レンズホルダ121の底部のみを円形にする等、傾斜面150dに当接するレンズホルダの部分のみを円形にしても良い。また、傾斜面150dに当接するレンズホルダの部分は必ずしも円形でなくても良く、左右方向に対称な曲面形状であっても良い。 Further, in the above embodiment, the outer surface of the lens holder 121 is substantially circular over the entire circumference, but only the portion of the lens holder that contacts the inclined surface 150d, such as circular only the bottom of the lens holder 121, is used. May be circular. In addition, the portion of the lens holder that contacts the inclined surface 150d does not necessarily have to be circular, and may have a curved shape that is symmetrical in the left-right direction.
 また、上記実施の形態では、一対の傾斜面150dをハウジング150に形成したが、二対以上の傾斜面150dをハウジング150に形成してもよく、または、図4(a)において、左側の傾斜面の数と右側の傾斜面の数が異なっていても良い。さらに、左側の傾斜面150dの傾斜角度と右側の傾斜面150dの傾斜角度が異なっていても良い。傾斜面150dは、レンズホルダ121のX軸方向の移動が規制されるように、レンズホルダ121を支持できれば、他の構成であっても良い。 In the above embodiment, the pair of inclined surfaces 150d are formed in the housing 150. However, two or more pairs of inclined surfaces 150d may be formed in the housing 150. Alternatively, in FIG. The number of surfaces and the number of right inclined surfaces may be different. Furthermore, the inclination angle of the left inclined surface 150d may be different from the inclination angle of the right inclined surface 150d. The inclined surface 150d may have another configuration as long as it can support the lens holder 121 so that the movement of the lens holder 121 in the X-axis direction is restricted.
 また、上記実施の形態では、図5(b)に示すように、溝121eがレンズホルダ121の真下(最底部)に形成され、孔150cがハウジング150の底部に形成されたが、溝121eと孔150cの位置は、これに限定されず、たとえば、ハウジング150の左右の側面に孔150cを形成し、この孔150cから溝121eが外部に臨むように、溝121eをレンズホルダ121の左右の側面に形成しても良い。 Further, in the above embodiment, as shown in FIG. 5B, the groove 121e is formed directly below (bottommost part) of the lens holder 121 and the hole 150c is formed at the bottom of the housing 150. The position of the hole 150c is not limited to this. For example, the hole 150c is formed on the left and right side surfaces of the housing 150, and the groove 121e is formed on the left and right side surfaces of the lens holder 121 so that the groove 121e faces the outside from the hole 150c. You may form in.
 また、上記実施の形態では、図5(b)に示すように、孔150cが円形であったが、正方形や菱形等、孔150cを他の形状としても良い。孔150cを正方形とする場合、正方形の一辺は、Z軸調整用治具601の径よりもやや大きく設定されると良い。なお、図5の場合も、孔150cの径は、Z軸調整用治具601の径よりもやや大きく設定されると良い。こうすると、孔150cの内壁によってZ軸調整用治具601の外周が規制されるため、Z軸調整用治具601を回転させ易くなる。 In the above embodiment, the hole 150c is circular as shown in FIG. 5 (b), but the hole 150c may have other shapes such as a square or rhombus. When the hole 150c is a square, one side of the square is preferably set slightly larger than the diameter of the Z-axis adjusting jig 601. In the case of FIG. 5 as well, the diameter of the hole 150c is preferably set slightly larger than the diameter of the Z-axis adjusting jig 601. If it carries out like this, since the outer periphery of the Z-axis adjustment jig | tool 601 is controlled by the inner wall of the hole 150c, it will become easy to rotate the Z-axis adjustment jig | tool 601.
 また、上記実施の形態では、受光素子として、CMOSイメージセンサ240を用いたが、これに替えて、CCDイメージセンサを用いることもできる。さらに、受光光学系200の構成も、適宜変更可能である。また、情報取得装置1と情報処理装置2は一体化されても良いし、情報取得装置1と情報処理装置2がテレビやゲーム機、パーソナルコンピュータと一体化されても良い。 In the above embodiment, the CMOS image sensor 240 is used as the light receiving element, but a CCD image sensor can be used instead. Furthermore, the configuration of the light receiving optical system 200 can be changed as appropriate. The information acquisition device 1 and the information processing device 2 may be integrated, or the information acquisition device 1 and the information processing device 2 may be integrated with a television, a game machine, or a personal computer.
 本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。 The embodiment of the present invention can be appropriately modified in various ways within the scope of the technical idea shown in the claims.
     1 … 情報取得装置
    10 … 発光装置
   110 … レーザ光源
   111 … レーザホルダ
  111b … 段部(突部)
   120 … コリメータレンズ
   121 … レンズホルダ
  121d … 凸部(突起)
  121e … 溝
   140 … DOE(回折光学素子)
   150 … ハウジング
  150b … 開口
  150c … 孔
  150d … 傾斜面
   160 … 押さえバネ(板ばね)
DESCRIPTION OF SYMBOLS 1 ... Information acquisition apparatus 10 ... Light-emitting device 110 ... Laser light source 111 ... Laser holder 111b ... Step part (projection part)
120 ... Collimator lens 121 ... Lens holder 121d ... Convex part (protrusion)
121e: groove 140: DOE (diffractive optical element)
150 ... Housing 150b ... Opening 150c ... Hole 150d ... Inclined surface 160 ... Holding spring (leaf spring)

Claims (9)

  1.  レーザ光源と、
     前記レーザ光源から出射されたレーザ光を平行光に変換するコリメータレンズと、
     前記平行光に変換されたレーザ光が入射する回折光学素子と、
     前記レーザ光源、前記コリメータレンズおよび前記回折光学素子を収容するハウジングと、
     前記レーザ光源の出射光軸に垂直な面内方向において前記レーザ光源の位置を調整するための第1の位置調整部と、
     前記コリメータレンズの光軸に平行な方向において前記コリメータレンズの位置を調整するための第2の位置調整部と、を有する、
    ことを特徴とする発光装置。
    A laser light source;
    A collimator lens for converting laser light emitted from the laser light source into parallel light;
    A diffractive optical element on which the laser beam converted into the parallel light is incident;
    A housing for housing the laser light source, the collimator lens and the diffractive optical element;
    A first position adjusting unit for adjusting the position of the laser light source in an in-plane direction perpendicular to the emission optical axis of the laser light source;
    A second position adjustment unit for adjusting the position of the collimator lens in a direction parallel to the optical axis of the collimator lens,
    A light emitting device characterized by that.
  2.  請求項1に記載の発光装置において、
     前記第1の位置調整部は;
     前記レーザ光源を保持するとともに前記出射光軸に垂直な一つの第1基準面を有するレーザホルダと、
     前記ハウジングに設けられ、前記第1基準面と面接触する第2基準面と、
     前記第1基準面と前記第2基準面とが接触し、且つ、前記レーザホルダが調整位置に位置付けられた状態で、前記レーザホルダと前記ハウジングとを接着固定する接着剤とを備える、
    ことを特徴とする発光装置。
    The light-emitting device according to claim 1.
    The first position adjustment unit;
    A laser holder that holds the laser light source and has a first reference surface perpendicular to the emission optical axis;
    A second reference surface provided in the housing and in surface contact with the first reference surface;
    An adhesive for bonding and fixing the laser holder and the housing in a state where the first reference surface and the second reference surface are in contact with each other and the laser holder is positioned at an adjustment position;
    A light emitting device characterized by that.
  3.  請求項2に記載の発光装置において、
     前記第2基準面は、前記ハウジングの外側面に形成され、
     前記第1基準面は、前記レーザホルダの側面に形成されるとともに前記ハウジングの前記外側面に接触する3つ以上の突部の上端面に形成され、
     前記ハウジングには、前記第1基準面を前記第2基準面に接触させたときに前記レーザ光源から出射されたレーザ光を前記ハウジング内に導くための開口が形成されている、
    ことを特徴とする発光装置。
    The light-emitting device according to claim 2.
    The second reference surface is formed on an outer surface of the housing;
    The first reference surface is formed on the upper surface of three or more protrusions that are formed on a side surface of the laser holder and are in contact with the outer surface of the housing.
    The housing is formed with an opening for guiding laser light emitted from the laser light source into the housing when the first reference surface is brought into contact with the second reference surface.
    A light emitting device characterized by that.
  4.  請求項1ないし3の何れか一項に記載の発光装置において、
     前記第2の位置調整部は;
     前記コリメータレンズを保持するとともに、下面が前記コリメータレンズの光軸に垂直な左右方向に対称な曲面形状となっているレンズホルダと、
     前記ハウジングに配され、前記レンズホルダの前記下面が挟まれるように前記レンズホルダが載置される複数の傾斜面と、
     前記レンズホルダの上部に当接するとともに前記レンズホルダを前記傾斜面に向かう方向に弾性付勢する板ばねと、を有する、
    ことを特徴とする発光装置。
    The light emitting device according to any one of claims 1 to 3,
    The second position adjustment unit;
    A lens holder that holds the collimator lens and whose lower surface has a curved shape symmetrical in the left-right direction perpendicular to the optical axis of the collimator lens;
    A plurality of inclined surfaces on which the lens holder is placed so that the lower surface of the lens holder is sandwiched between the housing and the lower surface of the lens holder;
    A leaf spring that abuts the upper portion of the lens holder and elastically biases the lens holder in a direction toward the inclined surface.
    A light emitting device characterized by that.
  5.  請求項4に記載の発光装置において、
     前記第2の位置調整部は、さらに;
     前記レンズホルダの側面に形成され、前記コリメータレンズの光軸に垂直な方向に延びる溝と、
     前記ハウジングに形成され、前記溝を外部に臨ませる孔と、を有する、
    ことを特徴とする発光装置。
    The light-emitting device according to claim 4.
    The second position adjustment unit further includes:
    A groove formed on a side surface of the lens holder and extending in a direction perpendicular to the optical axis of the collimator lens;
    A hole formed in the housing and facing the groove to the outside,
    A light emitting device characterized by that.
  6.  請求項4または5に記載の発光装置において、
     前記レンズホルダの外側面に、前記コリメータレンズの光軸方向に延びる一定高さの突起が形成され、前記板ばねは前記突起に当接して前記レンズホルダを前記傾斜面に向かう方向に付勢する、
    ことを特徴とする発光装置。
    The light-emitting device according to claim 4 or 5,
    A protrusion having a constant height extending in the optical axis direction of the collimator lens is formed on the outer surface of the lens holder, and the leaf spring abuts on the protrusion to urge the lens holder in a direction toward the inclined surface. ,
    A light emitting device characterized by that.
  7.  請求項6に記載の発光装置において、
     前記板ばねは、前記突起を頂点として長手方向に均等に撓むように、前記ハウジングに装着される、
    ことを特徴とする発光装置。
    The light-emitting device according to claim 6.
    The leaf spring is attached to the housing so as to bend evenly in the longitudinal direction with the protrusion as a vertex.
    A light emitting device characterized by that.
  8.  光を用いて目標領域の情報を取得する情報取得装置において、
     請求項1ないし7の何れか一項に記載の発光装置と、
     前記目標領域から反射された反射光を受光する受光装置と、
    を備えたことを特徴とする情報取得装置。
    In an information acquisition device that acquires information on a target area using light,
    A light emitting device according to any one of claims 1 to 7,
    A light receiving device that receives reflected light reflected from the target area;
    An information acquisition device comprising:
  9.  請求項8に記載の情報取得装置を有する物体検出装置。 An object detection apparatus having the information acquisition apparatus according to claim 8.
PCT/JP2011/075386 2011-03-16 2011-11-04 Light-emitting device, information acquisition device, and object detection device mounted therewith WO2012124208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011058443A JP2014102074A (en) 2011-03-16 2011-03-16 Light emission device, object detection device and information acquisition device
JP2011-058443 2011-03-16

Publications (1)

Publication Number Publication Date
WO2012124208A1 true WO2012124208A1 (en) 2012-09-20

Family

ID=46830309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075386 WO2012124208A1 (en) 2011-03-16 2011-11-04 Light-emitting device, information acquisition device, and object detection device mounted therewith

Country Status (2)

Country Link
JP (1) JP2014102074A (en)
WO (1) WO2012124208A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868872A (en) * 2012-12-12 2014-06-18 北京普源精电科技有限公司 Ultraviolet spectrophotometer and detection system thereof
CN105301670A (en) * 2015-01-08 2016-02-03 上海三达汽车配件有限公司 Flexible anti-neglected loading multi-tube detection device
CN109564275A (en) * 2016-08-10 2019-04-02 三菱电机株式会社 Optical axis regulating mechanism and laser radar apparatus
CN116661163A (en) * 2023-07-28 2023-08-29 成都飞机工业(集团)有限责任公司 Collimation device and method for laser interferometer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7043048B2 (en) * 2017-03-28 2022-03-29 株式会社Qdレーザ Laser module and image projection device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145907A (en) * 1986-12-09 1988-06-18 Fujitsu Ltd Slit light irradiator
JPH01318905A (en) * 1988-06-20 1989-12-25 Omron Tateisi Electron Co Multibeam projector
JPH03180712A (en) * 1989-12-08 1991-08-06 Idec Izumi Corp Displacement gage and position adjusting method for its light emission part
JPH0618653A (en) * 1992-06-30 1994-01-28 Matsushita Electric Works Ltd Light reception element device
JPH07329636A (en) * 1994-06-09 1995-12-19 Yazaki Corp Monitor around vehicle
JPH087294A (en) * 1994-06-24 1996-01-12 Canon Inc Light source device
JPH0843702A (en) * 1994-07-27 1996-02-16 Canon Inc Light source device
JPH0942953A (en) * 1995-07-26 1997-02-14 Matsushita Electric Works Ltd Optical displacement sensor
JP2000314836A (en) * 1999-04-30 2000-11-14 Nidec Copal Corp Optical range-finding device and assembling method thereof
JP2001208536A (en) * 2000-01-26 2001-08-03 Canon Inc Distance measuring equipment
JP2003004416A (en) * 2001-06-26 2003-01-08 Omron Corp Optical displacement sensor
JP2003202206A (en) * 2001-12-28 2003-07-18 Matsushita Electric Works Ltd Photoelectric sensor and its manufacturing method
JP2004101421A (en) * 2002-09-11 2004-04-02 Nidec Copal Corp Optical range finder
JP2006061222A (en) * 2004-08-24 2006-03-09 Sumitomo Osaka Cement Co Ltd Motion detector
JP2009014712A (en) * 2007-06-07 2009-01-22 Univ Of Electro-Communications Object detecting device and gate device using the same
JP2009204991A (en) * 2008-02-28 2009-09-10 Funai Electric Co Ltd Compound-eye imaging apparatus

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145907A (en) * 1986-12-09 1988-06-18 Fujitsu Ltd Slit light irradiator
JPH01318905A (en) * 1988-06-20 1989-12-25 Omron Tateisi Electron Co Multibeam projector
JPH03180712A (en) * 1989-12-08 1991-08-06 Idec Izumi Corp Displacement gage and position adjusting method for its light emission part
JPH0618653A (en) * 1992-06-30 1994-01-28 Matsushita Electric Works Ltd Light reception element device
JPH07329636A (en) * 1994-06-09 1995-12-19 Yazaki Corp Monitor around vehicle
JPH087294A (en) * 1994-06-24 1996-01-12 Canon Inc Light source device
JPH0843702A (en) * 1994-07-27 1996-02-16 Canon Inc Light source device
JPH0942953A (en) * 1995-07-26 1997-02-14 Matsushita Electric Works Ltd Optical displacement sensor
JP2000314836A (en) * 1999-04-30 2000-11-14 Nidec Copal Corp Optical range-finding device and assembling method thereof
JP2001208536A (en) * 2000-01-26 2001-08-03 Canon Inc Distance measuring equipment
JP2003004416A (en) * 2001-06-26 2003-01-08 Omron Corp Optical displacement sensor
JP2003202206A (en) * 2001-12-28 2003-07-18 Matsushita Electric Works Ltd Photoelectric sensor and its manufacturing method
JP2004101421A (en) * 2002-09-11 2004-04-02 Nidec Copal Corp Optical range finder
JP2006061222A (en) * 2004-08-24 2006-03-09 Sumitomo Osaka Cement Co Ltd Motion detector
JP2009014712A (en) * 2007-06-07 2009-01-22 Univ Of Electro-Communications Object detecting device and gate device using the same
JP2009204991A (en) * 2008-02-28 2009-09-10 Funai Electric Co Ltd Compound-eye imaging apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868872A (en) * 2012-12-12 2014-06-18 北京普源精电科技有限公司 Ultraviolet spectrophotometer and detection system thereof
CN105301670A (en) * 2015-01-08 2016-02-03 上海三达汽车配件有限公司 Flexible anti-neglected loading multi-tube detection device
CN109564275A (en) * 2016-08-10 2019-04-02 三菱电机株式会社 Optical axis regulating mechanism and laser radar apparatus
CN109564275B (en) * 2016-08-10 2022-12-09 三菱电机株式会社 Optical axis adjusting mechanism
CN116661163A (en) * 2023-07-28 2023-08-29 成都飞机工业(集团)有限责任公司 Collimation device and method for laser interferometer
CN116661163B (en) * 2023-07-28 2023-12-08 成都飞机工业(集团)有限责任公司 Collimation device and method for laser interferometer

Also Published As

Publication number Publication date
JP2014102074A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
WO2012124208A1 (en) Light-emitting device, information acquisition device, and object detection device mounted therewith
JP5072337B2 (en) Optical displacement sensor and adjustment method thereof
WO2012137674A1 (en) Information acquisition device, projection device, and object detection device
JP5174285B1 (en) Information acquisition device and object detection device equipped with information acquisition device
JP5106710B2 (en) Object detection device and information acquisition device
JP2010097177A (en) Light source unit and image display apparatus
JP3914210B2 (en) Optical displacement sensor and external force detection device
JP6288280B2 (en) Surface shape measuring device
JP2010210708A (en) Beam irradiation device and position detecting device
JP2008203022A (en) Optical interference type gas concentration measuring device
WO2012042933A1 (en) Method for fixing lens section in optical sensor, method for fixing light emitting component, and optical sensor
JP2013011511A (en) Object detection device and information acquisition device
WO2012176623A1 (en) Object-detecting device and information-acquiring device
CN110908131A (en) Projection module, structured light three-dimensional imaging device and electronic equipment
JP2007235439A (en) Optical radio communication apparatus
JP2008082748A (en) Edge sensor, position detection method, and alignment method
JP2014048129A (en) Object detection apparatus and information acquisition device
JP2014048128A (en) Object detection apparatus and information acquisition device
JP3922002B2 (en) Laser marking device
JP6244823B2 (en) Light emitting device and method of manufacturing light emitting device
JP5780278B2 (en) Fixing method of lens part and fixing method of light emitting component in optical sensor
JP2005164649A (en) Optical apparatus and photoelectric sensor
JP2014048124A (en) Information acquiring apparatus and object detecting apparatus
JP2010085434A (en) Beam irradiation device and position sensing device
JP2006194737A (en) Optical inspection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP