WO2012120798A1 - 化合物半導体基板及び化合物半導体基板の製造方法並びに発光素子 - Google Patents

化合物半導体基板及び化合物半導体基板の製造方法並びに発光素子 Download PDF

Info

Publication number
WO2012120798A1
WO2012120798A1 PCT/JP2012/001097 JP2012001097W WO2012120798A1 WO 2012120798 A1 WO2012120798 A1 WO 2012120798A1 JP 2012001097 W JP2012001097 W JP 2012001097W WO 2012120798 A1 WO2012120798 A1 WO 2012120798A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
compound semiconductor
light emitting
semiconductor substrate
Prior art date
Application number
PCT/JP2012/001097
Other languages
English (en)
French (fr)
Inventor
高橋 雅宣
健滋 酒井
池田 淳
篠原 政幸
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2012120798A1 publication Critical patent/WO2012120798A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table

Definitions

  • the present invention relates to a compound semiconductor substrate, a method of manufacturing a compound semiconductor substrate, and a light emitting element, and more specifically, to stably supply a light emitting element that can suppress an increase in forward voltage due to energization and can realize high luminance.
  • the present invention relates to a compound semiconductor substrate, a method for manufacturing the compound semiconductor substrate, and a light emitting element.
  • a light-emitting element in which a light-emitting layer and a current diffusion layer are formed on a GaAs substrate is conventionally known.
  • a light emitting device is known in which a light emitting layer composed of four elements of AlGaInP and a current diffusion layer composed of GaP are formed on a GaAs substrate.
  • a relatively thin current diffusion layer (hereinafter referred to as a thin film current diffusion layer) was formed on the light-emitting layer side by metal organic vapor phase epitaxy (Metal Organic Vapor Phase Epitaxy, hereinafter simply referred to as MOVPE).
  • MOVPE Metal Organic Vapor Phase Epitaxy
  • the GaP current diffusion layer may be grown to a thickness of about 200 ⁇ m as a whole.
  • the light-absorbing GaAs substrate is removed and a light-transmitting GaP substrate is bonded instead.
  • a light-emitting element that can sufficiently reduce the element series resistance at the junction interface and has good switching response has been known (Patent Literature). 1).
  • the above-described direct-junction light-emitting element has a concentration of impurities such as oxygen and carbon at the junction interface between the quaternary light-emitting layer and the GaP substrate that is not constant for each production batch. It was found that it was not stable. Further, such an impurity such as oxygen and carbon at the junction interface diffuses to the quaternary light emitting layer side when energized and compensates for carriers. As a result, it has been found that the forward voltage is increased, and the lifetime characteristics of the manufactured light emitting device with respect to the forward voltage are deteriorated.
  • the present invention has been made in view of the above problems, and even when impurities such as oxygen and carbon are generated at the junction interface between the quaternary light emitting layer and the GaP substrate, the forward voltage increases when energized.
  • Compound semiconductor substrate capable of suppressing deterioration of lifetime characteristics with respect to forward voltage of a light emitting device manufactured thereby, and a method for manufacturing the same, and a light emitting device manufactured from such a compound semiconductor substrate are provided. .
  • At least (Al x Ga 1-x ) y In 1-y P (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) is formed on the n-type GaP window layer.
  • a compound semiconductor substrate in which a p-type GaP layer as a current diffusion layer is stacked on a main surface (first main surface) opposite to the main surface (second main surface) on the n-type GaP window layer side
  • the Al composition is lower between the n-type GaP
  • the range of the value of x that determines the composition of the n-type cladding layer made of (Al x Ga 1-x ) y In 1-y P is 0.7 ⁇ x ⁇ 1.0
  • the range of the value of x ′′ that determines the composition of the impurity diffusion suppression layer made of Al x ′′ Ga 1-x ′′ ) y ′′ In 1-y ′′ P is preferably 0.5 ⁇ x ′′ ⁇ 0.7.
  • the impurity diffusion suppression layer preferably has a thickness of 0.01 ⁇ m or more.
  • the impurity diffusion suppression layer is formed in this way, it is possible to more reliably suppress an increase in forward voltage after energization.
  • the present invention also provides a light emitting device manufactured from the compound semiconductor substrate of the present invention.
  • the light emitting device manufactured in this way has a very good lifetime characteristic with respect to the forward voltage, and can be used for a long time in a high luminance state.
  • At least an n - type cladding layer made of (Al x Ga 1-x ) y In 1-y P (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) on an n-type GaAs substrate, (Al x ′ Ga 1 -X ′ ) y ′ In 1-y ′ P (where 0 ⁇ x ′ ⁇ 1, 0 ⁇ y ′ ⁇ 1) and (Al x Ga 1-x ) y In 1-y P (where , A step of epitaxially growing a quaternary light emitting layer in which p-type cladding layers of 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) are sequentially laminated, and a side opposite to the n-type GaAs substrate side of the quaternary light emitting layer A step of epitaxially growing a p-type GaP layer as a current diffusion layer on the main surface (first main surface), a step of removing the n-type GaAs substrate from the
  • the quaternary light emitting layer is epitaxially grown, or the impurity diffusion suppression layer is laminated on the second main surface side of the quaternary light emitting layer before the n-type GaP window layer is bonded. Bonding the impurity diffusion suppression layer and the n-type GaP window layer to manufacture a compound semiconductor substrate in which the impurity diffusion suppression layer is formed between the n-type GaP window layer and the quaternary light emitting layer.
  • a method for producing a compound semiconductor substrate is provided.
  • the impurity diffusion suppression layer can be surely formed between the n-type GaP window layer and the quaternary light emitting layer. Thereby, an increase in the forward voltage when energized is suppressed, and a compound semiconductor substrate serving as a raw material for a light-emitting element having good lifetime characteristics with respect to the forward voltage can be manufactured.
  • an impurity diffusion suppression layer having an Al composition lower than that of the n-type cladding layer is formed between the n-type GaP window layer and the quaternary light emitting layer. Even when impurities such as oxygen and carbon diffuse at the junction interface between the n-type GaP window layer and the quaternary light-emitting layer when a light-emitting element manufactured from such a compound semiconductor substrate is energized, the impurity diffusion Since it is captured by the suppression layer, an increase in forward voltage can be suppressed.
  • the impurity diffusion suppressing layer is laminated on the n-type GaAs substrate before epitaxially growing the quaternary light emitting layer, and then the quaternary light emitting layer is epitaxially grown on the impurity diffusion suppressing layer, or the quaternary light emitting layer is formed. If the impurity diffusion suppression layer is laminated on the two main surfaces before the n-type GaP window layer is bonded, the impurity diffusion suppression layer is surely interposed between the n-type GaP window layer and the quaternary light emitting layer. It is possible to manufacture a high-quality compound semiconductor substrate on which is formed. Furthermore, a light-emitting element manufactured from such a compound semiconductor substrate has good lifetime characteristics with respect to a forward voltage, and thus can be used for a long time in a high luminance state.
  • FIG. 1 is a schematic view showing an example of a compound semiconductor substrate of the present invention.
  • the compound semiconductor substrate 1 of the present invention shown in FIG. 1 suppresses n-type impurity diffusion consisting of (Alx ′′ Ga1 -x ′′ ) y ′′ In1 -y ′′ P on an n-type GaP window layer (GaP substrate) 2.
  • a layer 3 is formed, and a light emitting layer 4 is formed on the impurity diffusion suppression layer 3.
  • a p-type GaP thin film current diffusion layer 5 is formed on the light emitting layer 4 by the MOVPE method, and a p-type GaP thick film current diffusion layer 6 is formed thereon by the HVPE method.
  • Examples of the light emitting layer 4 include an n-type cladding layer 41 made of (Al x Ga 1-x ) y In 1-y P (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), non-doped (Al x ′ Ga 1-x ′ ) y ′ In 1-y ′ P (where 0 ⁇ x ′ ⁇ 1, 0 ⁇ y ′ ⁇ 1) active layer 42, (Al x Ga 1-x ) y In 1-y A quaternary light-emitting layer 4 in which p-type cladding layers 43 of P (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) are sequentially stacked can be formed.
  • non-doped means “not to add dopants positively”, and includes a dopant component inevitably mixed in the manufacturing process of the compound semiconductor substrate (for example, 1.0 ⁇ 10 13). (About 1.0 ⁇ 10 16 atoms / cm 3 ) is not excluded.
  • the Al composition of the impurity diffusion suppression layer 3 made of (Al x ′′ Ga 1-x ′′ ) y ′′ In 1-y ′′ P is (Al x Ga 1-x ) y In 1-y P
  • the n-type cladding layer 41 is formed so as to be smaller than the Al composition. That is, the value x ′′ that determines the composition of the impurity diffusion suppression layer 3 only needs to be smaller than the value x that determines the composition of the n-type cladding layer 41.
  • the value range of x ′′ is 0.5 ⁇ x. ′′ ⁇ 0.7, and the value range of x can be 0.7 ⁇ x ⁇ 1.0.
  • the film thickness of the impurity diffusion suppression layer 3 is 0.01 ⁇ m or more because an increase in forward voltage after energization can be more reliably suppressed.
  • the film thickness is preferably 4 ⁇ m or less. If the film thickness is 4 ⁇ m or less, it is possible to suppress the deterioration of quality characteristics due to the stress and dislocation affecting the active layer.
  • impurities such as oxygen and carbon at the junction interface between the n-type GaP window layer 2 and the quaternary light emitting layer 4 are quaternary light emitting layers. 4, the carrier voltage is compensated to increase the forward voltage, and the life characteristics with respect to the forward voltage may be deteriorated.
  • the impurity diffusion suppression layer 3 is formed between the n-type GaP window layer 2 and the quaternary light emitting layer 4 in the present invention, even if the impurities diffuse, It is not captured and reaches the quaternary light emitting layer 4. For this reason, it can suppress that a forward voltage rises and can make a lifetime characteristic favorable.
  • the light emitting element 10 as shown in FIG. 2 can be manufactured using such a compound semiconductor substrate 1.
  • a first electrode 11 for applying a light emission driving voltage to the quaternary light emitting layer 4 is formed at substantially the center on the thick film current diffusion layer 6 of the compound semiconductor substrate 1 shown in FIG.
  • a region around the first electrode 11 is a light extraction region from the quaternary light emitting layer 4.
  • the second electrode 12 is formed on the entire surface of the n-type GaP window layer 2 on the second main surface side.
  • a bonding pad 13 made of Au or the like for bonding an electrode wire is disposed at the center of the first electrode 11.
  • the light-emitting element 10 manufactured in this way has a good lifetime characteristic with respect to a forward voltage, and can be used for a long time in a high luminance state.
  • various layers may be inserted between the above layers of the compound semiconductor substrate 1 in the present invention as necessary.
  • Step 1 an n-type GaAs substrate is prepared as a growth substrate, cleaned, and then placed in a MOVPE reactor, and an n-type GaAs buffer layer is epitaxially grown on the n-type GaAs substrate by 0.1 to 1.0 ⁇ m.
  • an n-type impurity diffusion suppression layer 3 made of (Al x ′′ Ga 1-x ′′ ) y ′′ In 1-y ′′ P is formed on the n-type GaAs buffer layer to a thickness of 0.01 ⁇ m. It forms so that it may become the above.
  • the quaternary light emitting layer 4 is made of (Al x Ga 1-x ) y In 1-y P and has a thickness of 0.8 to 4.0 ⁇ m.
  • the value of x ′′ that determines the Al composition of the impurity diffusion suppression layer 3 is made smaller than the value of x that determines the Al composition of the n-type cladding layer 41.
  • the range of the value of x ′′ Can be 0.5 ⁇ x ′′ ⁇ 0.7, and the range of the value of x can be 0.7 ⁇ x ⁇ 1.0.
  • each layer is performed by a known MOVPE method.
  • source gas used as each component source of Al, Ga, In, and P
  • Al source gas trimethylaluminum (TMAl), triethylaluminum (TEAl), etc.
  • Ga source gas trimethylgallium (TMGa), triethylgallium (TEGa), etc.
  • In source gas trimethylindium (TMIn), triethylindium (TEIn), etc.
  • P source gas trimethyl phosphorus (TMP), triethyl phosphorus (TEP), phosphine (PH 3 ), etc.
  • dopant gas trimethyl phosphorus (TMP), triethyl phosphorus (TEP), phosphine (PH 3 ), etc.
  • P-type dopant Mg source biscyclopentadienyl magnesium (Cp 2 Mg), etc.
  • Zn source dimethyl zinc (DMZn), diethyl zinc (DEZn), etc.
  • N-type dopant Si source silicon hydride such as monosilane.
  • step 4 the process proceeds to step 4, and the p-type GaP thin film current diffusion layer 5 having a thickness of 0.5 to 10 ⁇ m is heteroepitaxially grown on the p-type cladding layer 43 by the MOVPE method to obtain an MO epitaxial wafer. Further, a p-type GaP thick film current diffusion layer 6 having a thickness of 5 ⁇ m to 200 ⁇ m is vapor-phase grown on the MO epitaxial wafer by the HVPE method.
  • the reaction of the following formula (1) is performed by introducing hydrogen chloride onto the metal Ga while heating and maintaining the metal Ga, which is a group III element, at a predetermined temperature in the container. Then, GaCl is generated and supplied onto the substrate together with H 2 gas which is a carrier gas. Ga (liquid) + HCl (gas) ⁇ GaCl (gas) + 1 / 2H 2 (gas) (1)
  • the growth temperature is set to, for example, 640 ° C. or more and 860 ° C. or less.
  • P which is a group V element, supplies, for example, phosphine (PH 3 ) together with H 2 as a carrier gas onto the substrate.
  • Zn which is a p-type dopant is supplied in the form of dimethylzinc (DMZn), and forms a p-type GaP epitaxial layer by a reaction represented by the following formula (2).
  • DMZn dimethylzinc
  • the n-type GaAs substrate and the n-type GaAs buffer layer are removed by etching or the like.
  • the n-type GaP window layer (GaP substrate) 2 is bonded to the impurity diffusion suppression layer 3 exposed by the removal of the n-type GaAs substrate, and the compound semiconductor substrate 1 is manufactured.
  • the impurity diffusion suppression layer 3 is not laminated between the n-type GaAs substrate and the quaternary light emitting layer 4 as described above, but the second main surface side of the quaternary light emitting layer 4 is removed after the GaAs substrate is removed. Further, after the impurity diffusion suppression layer 3 is laminated before the n-type GaP window layer 2 is bonded, the compound semiconductor substrate 1 can be manufactured by bonding the impurity diffusion suppression layer 3 and the n-type GaP window layer 2 together. . An n-type GaInP layer may be sandwiched between the second main surface side of the quaternary light emitting layer and the n-type GaP substrate.
  • the light emitting device 10 can be manufactured as follows after the above steps are completed.
  • the first electrode 11 and the second electrode 12 are formed by vacuum vapor deposition, and the bonding pad 13 is further disposed on the first electrode 11, and baking for electrode fixing is performed at an appropriate temperature.
  • the chip is formed by dicing, and the second electrode 12 is fixed to a terminal electrode (not shown) that also serves as a support by using a conductive paste such as an Ag paste, while Au Au is bonded to the bonding pad 13 and another terminal electrode.
  • a light-emitting element 10 as shown in FIG. 2 can be manufactured from the compound semiconductor substrate 1 by bonding a manufactured wire and further forming a resin mold.
  • a compound semiconductor substrate as shown in FIG. 1 was manufactured as follows.
  • MOVPE Metal Organic Chemical Vapor Deposition
  • an n-type GaAs buffer layer of 0.5 ⁇ m, a quaternary light emitting layer of 3.0 ⁇ m, and a p-type GaP thin film current diffusion layer of 2.5 ⁇ m are sequentially epitaxially grown on a 280 ⁇ m thick n-type GaAs substrate.
  • the n-type GaP window having a thickness of 200 ⁇ m is formed on the second main surface side of the quaternary light emitting layer from which the n-type GaAs substrate has been removed, that is, on the main surface opposite to the n-type cladding layer of the impurity diffusion suppression layer. Bond the layers.
  • TMGa trimethylgallium
  • TIn trimethylindium
  • TMAl trimethylaluminum
  • PH 3 phosphine
  • AsH 3 arsine
  • the film thickness of the impurity diffusion suppression layer is (1) 0 ⁇ m (that is, no impurity diffusion suppression layer is formed), (2) 0.01 ⁇ m, (3) 0.3 ⁇ m, and (4) 1.5 ⁇ m.
  • Standard level compound semiconductor substrates were manufactured, and first and second electrodes were formed on these four level compound semiconductor substrates to produce LED lamps.
  • a 50 mA current was passed through the LED lamp thus manufactured at a temperature of 85 ° C. for 100 hours. The results at this time are shown in Table 1 below.
  • FIG. 3 shows the relationship between the energization time and the forward voltage change rate in each LED lamp at this time.
  • the forward voltage increased only by 0.3% in (2), and by 0.1% in (3), and did not increase at all in (4). That is, an increase in the forward voltage was suppressed, and a stable forward voltage value could be obtained for a long time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 本発明は、少なくとも、n型GaP窓層上に(AlGa1-xIn1-yPからなるn型クラッド層と、活性層及びp型クラッド層が順次積層された4元発光層を有し、4元発光層の、n型GaP窓層側の主表面(第二主面)の反対側となる主表面(第一主面)上に、電流拡散層であるp型GaP層が積層された化合物半導体基板であって、n型GaP窓層と4元発光層との間に、n型クラッド層よりもAl組成の低い、(Alx"Ga1-x"y"In1-y"P(ただし、0<x"<x<1,0<y"<1)からなる不純物拡散抑制層が形成されたものであることを特徴とする化合物半導体基板である。これにより、4元発光層とGaP基板との接合界面において酸素、炭素等の不純物が発生し、通電した際に順方向電圧が上昇することを抑制し、これによって順方向電圧に対する寿命特性の悪化を抑制することができる化合物半導体基板を提供する。

Description

化合物半導体基板及び化合物半導体基板の製造方法並びに発光素子
 本発明は化合物半導体基板及び化合物半導体基板の製造方法並びに発光素子に関し、具体的には、通電による順方向電圧の上昇を抑制し、かつ高輝度を実現できる発光素子を安定して供給するための化合物半導体基板及び化合物半導体基板の製造方法並びに発光素子に関する。
 
 GaAs基板上に、発光層と電流拡散層とを形成した発光素子が従来知られている。
 例えばGaAs基板上に、AlGaInPの4元からなる発光層とGaPからなる電流拡散層とを形成した発光素子が知られている。このGaP電流拡散層は、発光層側に有機金属気相成長法(Metal Organic Vapor Phase Epitaxy法、以下単にMOVPE法という)により比較的薄い電流拡散層(以下、薄膜電流拡散層という)を形成した後に、ハイドライド気相成長法(Hydride Vapor Phase Epitaxy法、以下単にHVPE法という)により比較的厚い電流拡散層(以下、厚膜電流拡散層という)を形成することによって作製することができる。例えば、全体として200μm程度の厚さにまでGaP電流拡散層が成長されることがある。
 さらに、AlGaInPからなる発光素子の更なる高輝度化を実現するために、光吸収性のGaAs基板を除去して、代わりに光透過性のGaP基板を接合する。その接合界面に高濃度にドーピングされたInGaP中間層を形成することにより、接合界面における素子直列抵抗を十分に低減でき、またそのスイッチング応答性も良好な発光素子が従来知られている(特許文献1)。
 
特開2007-324551号公報
 本発明者らが鋭意研究を重ねた結果、上記のような直接接合型発光素子は、4元発光層とGaP基板の接合界面における酸素、炭素等の不純物濃度が製造バッチ毎に一定とならずに安定していないことが判った。
 また、このような接合界面の酸素、炭素等の不純物は、通電を行うと4元発光層側へ拡散しキャリアを補償してしまう。これによって順方向電圧を上昇させ、製造された発光素子の順方向電圧に対する寿命特性を悪化させることが判った。
 本発明は、上記課題に鑑みてなされたものであり、4元発光層とGaP基板との接合界面において酸素、炭素等の不純物が発生したとしても、通電した際に順方向電圧が上昇することを抑制し、これによって製造された発光素子の順方向電圧に対する寿命特性の悪化を抑制することができる化合物半導体基板及びその製造方法、並びにこのような化合物半導体基板から製造された発光素子を提供する。
 上記目的を達成するために、本発明では、少なくとも、n型GaP窓層上に(AlGa1-xIn1-yP(ただし、0<x<1,0<y<1)からなるn型クラッド層、(Alx′Ga1-x′y′In1-y′P(ただし、0<x′<1,0<y′<1)からなる活性層及び(AlGa1-xIn1-yP(ただし、0<x<1,0<y<1)からなるp型クラッド層が順次積層された4元発光層を有し、該4元発光層の、前記n型GaP窓層側の主表面(第二主面)の反対側となる主表面(第一主面)上に、電流拡散層であるp型GaP層が積層された化合物半導体基板であって、前記n型GaP窓層と前記4元発光層との間に、前記n型クラッド層よりもAl組成の低い、(Alx″Ga1-x″y″In1-y″P(ただし、0<x″<x<1,0<y″<1)からなる不純物拡散抑制層が形成されたものであることを特徴とする化合物半導体基板を提供する。
 このように、n型GaP窓層と4元発光層との間に不純物拡散抑制層が形成された化合物半導体基板であれば、このような化合物半導体基板から製造された発光素子に通電した際に、n型GaP窓層と4元発光層との間にある接合界面における酸素、炭素等の不純物が拡散したとしても、不純物拡散抑制層により捕獲され、4元発光層まで到達してしまうことはない。このため、順方向電圧が上昇することを抑制し、これによって製造された発光素子の順方向電圧に対する寿命特性が悪化することを抑制することができる。
 またこのとき、前記(AlGa1-xIn1-yPからなるn型クラッド層の組成を決定するxの値の範囲が0.7≦x<1.0であり、前記(Alx″Ga1-x″y″In1-y″Pからなる不純物拡散抑制層の組成を決定するx″の値の範囲が0.5≦x″<0.7であることが好ましい。
 また、前記不純物拡散抑制層は、膜厚が0.01μm以上であることが好ましい。
 このように不純物拡散抑制層が形成されれば、より確実に通電後の順方向電圧の上昇を抑制することができる。
 また本発明は、本発明の化合物半導体基板から製造されたことを特徴とする発光素子を提供する。
 このように製造された発光素子であれば、順方向電圧に対する寿命特性が非常に良好であるため、高輝度な状態で長期間使用することができる。
 少なくとも、n型GaAs基板上に(AlGa1-xIn1-yP(ただし、0<x<1,0<y<1)からなるn型クラッド層、(Alx′Ga1-x′y′In1-y′P(ただし、0<x′<1,0<y′<1)からなる活性層及び(AlGa1-xIn1-yP(ただし、0<x<1,0<y<1)からなるp型クラッド層を順次積層した4元発光層をエピタキシャル成長させる工程と、前記4元発光層の、前記n型GaAs基板側と反対側となる主表面(第一主面)上に、電流拡散層としてp型GaP層をエピタキシャル成長させる工程と、前記4元発光層からn型GaAs基板を除去する工程と、該n型GaAs基板が除去された側の前記4元発光層の主表面(第二主面)側にn型GaP窓層を貼り合わせる工程とを有する化合物半導体基板の製造方法において、前記n型GaAs基板上に、前記4元発光層をエピタキシャル成長させる前に前記n型クラッド層よりもAl組成の低い、(Alx″Ga1-x″y″In1-y″P(ただし、0<x″<x<1,0<y″<1)からなる不純物拡散抑制層を積層し、その後該不純物拡散抑制層上に前記4元発光層をエピタキシャル成長させるか、または前記4元発光層の第二主面側に、前記n型GaP窓層を貼り合わせる前に前記不純物拡散抑制層を積層することによって、前記貼り合わせ工程において、前記不純物拡散抑制層とn型GaP窓層を貼り合わせ、前記n型GaP窓層と前記4元発光層との間に前記不純物拡散抑制層が形成された化合物半導体基板を製造することを特徴とする化合物半導体基板の製造方法を提供する。
 このような製造方法であれば、n型GaP窓層と4元発光層との間に確実に前記不純物拡散抑制層を形成することができる。これによって、通電した際の順方向電圧の上昇が抑制され、順方向電圧に対する寿命特性の良好な発光素子の原料となる化合物半導体基板を製造することができる。
 以上説明したように、本発明の化合物半導体基板は、n型GaP窓層と4元発光層との間に、n型クラッド層よりもAl組成の低い不純物拡散抑制層が形成されているため、このような化合物半導体基板から製造された発光素子に通電した際に、n型GaP窓層と4元発光層との間にある接合界面における酸素、炭素等の不純物が拡散したとしても、不純物拡散抑制層で捕獲されるため、順方向電圧の上昇を抑制することができる。
 またn型GaAs基板上に、4元発光層をエピタキシャル成長させる前に前記不純物拡散抑制層を積層し、その後該不純物拡散抑制層上に4元発光層をエピタキシャル成長させるか、または4元発光層の第二主面側に、n型GaP窓層を貼り合わせる前に前記不純物拡散抑制層を積層することとすれば、確実にn型GaP窓層と4元発光層との間に前記不純物拡散抑制層が形成された高品質の化合物半導体基板を製造することができる。
 さらにこのような化合物半導体基板から製造された発光素子は、順方向電圧に対する寿命特性が良好であるため、高輝度の状態で長期間使用することができる。
 
本発明の化合物半導体基板の概略断面図の一例を示した図である。 本発明の発光素子の概略断面図の一例を示した図である。 実験例において、不純物拡散抑制層の厚さを変えた4水準のLEDランプにおける通電時間と順方向電圧の変化率の関係を示した図である。 本発明の化合物半導体基板の製造方法の工程フローの一例を示した図である。
 以下に本発明の実施の形態を、図面を参照しながら具体的に説明するが、本発明はこれらのみに限定されるものではない。
 図1は、本発明の化合物半導体基板の一例を示す概略図である。図1に示す本発明の化合物半導体基板1は、n型GaP窓層(GaP基板)2上に(Alx″Ga1-x″y″In1-y″Pからなるn型不純物拡散抑制層3が形成され、該不純物拡散抑制層3の上に発光層4が形成されている。
 そして該発光層4上に、MOVPE法によりp型GaP薄膜電流拡散層5が形成され、さらにその上にHVPE法によりp型GaP厚膜電流拡散層6が形成されている。
 前記発光層4としては、例えば(AlGa1-xIn1-yP(ただし、0<x<1,0<y<1)からなるn型クラッド層41、ノンドープ(Alx′Ga1-x′y′In1-y′P(ただし、0<x′<1,0<y′<1)からなる活性層42、(AlGa1-xIn1-yP(ただし、0<x<1,0<y<1)からなるp型クラッド層43が順次積層された4元発光層4とすることができる。
 なお、ここでいう「ノンドープ」とは、「ドーパントの積極添加を行わない」という意味であり、化合物半導体基板の製造工程上、不可避的に混入するドーパント成分の含有(例えば1.0×1013~1.0×1016atoms/cm程度)をも排除するものではない。
 また、ここで前記(Alx″Ga1-x″y″In1-y″Pからなる不純物拡散抑制層3のAl組成は、前記(AlGa1-xIn1-yPからなるn型クラッド層41のAl組成より小さくなるように形成される。すなわち、前記不純物拡散抑制層3の組成を決定するx″の値が前記n型クラッド層41の組成を決定するxの値より小さければ良く、例えばx″の値の範囲を0.5≦x″<0.7とし、xの値の範囲を0.7≦x<1.0とすることができる。
 さらに、前記不純物拡散抑制層3の膜厚を0.01μm以上とすれば、より確実に通電後の順方向電圧の上昇を抑制することができるため好ましい。また、膜厚は4μm以下が好ましい。膜厚が4μm以下であれば応力及び転位が活性層に影響して品質特性が悪化してしまうことを抑止できる。
 このような化合物半導体基板1から製造された発光素子に通電した際に、n型GaP窓層2と4元発光層4との間にある接合界面における酸素、炭素等の不純物が4元発光層4へ拡散し、キャリアを補償して順方向電圧を上昇させ、順方向電圧に対する寿命特性を悪化させる可能性がある。
 しかし、本発明ではn型GaP窓層2と4元発光層4との間に、前記不純物拡散抑制層3が形成されているので、前記不純物は、拡散したとしても前記不純物拡散抑制層3により捕獲され、4元発光層4まで到達してしまうことはない。このため、順方向電圧が上昇することを抑制し、寿命特性を良好なものとすることができる。
 また、このような化合物半導体基板1を用いて、図2に示すような発光素子10を製造することができる。
 この発光素子10においては、図1に示した化合物半導体基板1の厚膜電流拡散層6上の略中央に、4元発光層4に発光駆動電圧を印加するための第一電極11が形成され、該第一電極11の周囲の領域が4元発光層4からの光取出領域とされている。また、n型GaP窓層2の第二主面側には第二電極12が全面に形成されている。また、第一電極11の中央部に電極ワイヤを接合するためのAu等にて構成されたボンディングパッド13が配置されている。
 このように製造された発光素子10は、順方向電圧に対する寿命特性が良好であり、高輝度の状態で長期間使用することができる。
 尚、本発明における化合物半導体基板1の上記各層の間に、必要に応じて種々の層が挿入されても良い。
 以下、図1に示した化合物半導体基板1の製造方法について、図4に示したフロー図を参照しながら説明する。
 まず工程1に示すように、成長用基板としてn型GaAs基板を準備し、洗浄した後、MOVPEリアクターに入れ、前記n型GaAs基板上にn型GaAsバッファ層を0.1~1.0μmエピタキシャル成長させる。
 次いで、工程2に示すようにn型GaAsバッファ層上に(Alx″Ga1-x″y″In1-y″Pからなるn型不純物拡散抑制層3を、膜厚が0.01μm以上となるように形成する。
 次に工程3に示すように前記不純物拡散抑制層3上に、4元発光層4として(AlGa1-xIn1-yPからなる厚さ0.8~4.0μmのn型クラッド層41、(Alx′Ga1-x′y′In1-y′Pからなる厚さ0.4~2.0μmの活性層42及び(AlGa1-xIn1-yPからなる厚さ0.8~4.0μmのp型クラッド層43を、この順序にてエピタキシャル成長させる。
 尚、このとき不純物拡散抑制層3のAl組成を決定するx″の値を、n型クラッド層41のAl組成を決定するxの値よりも小さくなるようにする。例えばx″の値の範囲を0.5≦x″<0.7とし、xの値の範囲を0.7≦x<1.0とすることができる。
 尚、上記各層のエピタキシャル成長は、公知のMOVPE法により行なわれる。Al、Ga、In、Pの各成分源となる原料ガスとしては、これらに限定されるわけではないが、例えば以下のようなものを使用できる。
・Al源ガス:トリメチルアルミニウム(TMAl)、トリエチルアルミニウム(TEAl)など。
・Ga源ガス:トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)など。
・In源ガス:トリメチルインジウム(TMIn)、トリエチルインジウム(TEIn)など。
・P源ガス:トリメチルリン(TMP)、トリエチルリン(TEP)、ホスフィン(PH)など。
 また、ドーパントガスとしては、以下のようなものを使用できる。
(p型ドーパント)
・Mg源:ビスシクロペンタジエニルマグネシウム(CpMg)など。
・Zn源:ジメチル亜鉛(DMZn)、ジエチル亜鉛(DEZn)など。
(n型ドーパント)
・Si源:モノシランなどのシリコン水素化物など。
 次に工程4に進み、p型クラッド層43上に厚さ0.5~10μmのp型GaP薄膜電流拡散層5をMOVPE法によりヘテロエピタキシャル成長させ、MOエピタキシャルウエーハを得る。更に、前記MOエピタキシャルウエーハ上に厚さ5μm~200μmのp型GaP厚膜電流拡散層6を、HVPE法で気相成長する。
 HVPE法は、具体的には、容器内にてIII族元素である金属Gaを所定の温度に加熱保持しながら、その金属Ga上に塩化水素を導入することにより、下記(1)式の反応によりGaClを生成させ、キャリアガスであるHガスとともに基板上に供給する。
Ga(液体)+HCl(気体)  →  GaCl(気体)+1/2H(気体)‥‥(1)
 成長温度は例えば640℃以上860℃以下に設定する。また、V族元素であるPは、例えばホスフィン(PH)をキャリアガスであるHともに基板上に供給する。さらに、p型ドーパントであるZnは、ジメチル亜鉛(DMZn)の形で供給して、下記(2)式のような反応によってp型GaPエピタキシャル層を形成するものである。
GaCl(気体)+PH3(気体)
→GaP(固体)+HCl(気体)+H2(気体)‥‥(2)
 次に、工程5に示すようにエッチング等によりn型GaAs基板及びn型GaAsバッファ層を除去する。そして工程6に示すように、n型GaAs基板除去によって露出した不純物拡散抑制層3にn型GaP窓層(GaP基板)2を貼り合せ、化合物半導体基板1を製造する。
 また、上記のようにn型GaAs基板と4元発光層4との間に不純物拡散抑制層3を積層するのではなく、GaAs基板を除去した後、4元発光層4の第二主面側に、n型GaP窓層2を貼り合わせる前に不純物拡散抑制層3を積層した後に、不純物拡散抑制層3とn型GaP窓層2とを貼り合わせて化合物半導体基板1を製造することもできる。
 また、4元発光層の第二主面側とn型GaP基板との間にn型GaInP層を挟んでも良い。
 また、これに限定されるわけではないが、以上の工程が終了した後に以下のようにして発光素子10を製造することができる。
 真空蒸着法により第一電極11及び第二電極12を形成し、更に第一電極11上にボンディングパッド13を配置して、適当な温度で電極定着用のベーキングを施す。その後、ダイシングによりチップ化し、第二電極12をAgペースト等の導電性ペーストを用いて支持体を兼ねた図示しない端子電極に固着する一方、ボンディングパッド13と別の端子電極とにまたがる形態でAu製のワイヤをボンディングし、更に樹脂モールドを形成することによって、上記化合物半導体基板1から、図2に示したような発光素子10を製造することができる。
 
 以下、実験例を示して本発明をより具体的に説明するが、本発明はこれに限定されるものではない。
 
(実験例)
 まず、以下のようにして図1に示すような化合物半導体基板を製造した。
 MOVPE法により、厚さ280μmのn型GaAs基板上にn型GaAsバッファ層0.5μm、4元発光層3.0μm、p型GaP薄膜電流拡散層2.5μmを順次エピタキシャル成長させる。前記4元発光層は、(Al0.85Ga0.150.45In0.55P(すなわち、x=0.85)からなるn型クラッド層0.8μm、(Al0.1Ga0.90.45In0.55Pからなる活性層0.6μm、(Al0.85Ga0.150.45In0.55Pからなるp型クラッド層1.6μmを順次エピタキシャル成長させることにより構成される。
 このとき、前記n型GaAsバッファ層と4元発光層(n型クラッド層)との間に、(Al0.5Ga0.50.45In0.55P(すなわち、x″=0.5)からなるn型不純物拡散抑制層を積層する。その後、HVPE法により厚さ150μmのp型GaP厚膜電流拡散層を前記p型GaP薄膜電流拡散層上にエピタキシャル成長させ、n型GaAs基板の除去を行い、該n型GaAs基板が除去された4元発光層の第二主面側、すなわち不純物拡散抑制層のn型クラッド層と反対側の主表面に厚さ200μmのn型GaP窓層を接合させる。
 尚、上記エピタキシャル成長の原料ガスとしては、トリメチルガリウム(TMGa)、トリメチルインジウム(TMIn)、トリメチルアルミニウム(TMAl)、ホスフィン(PH)及びアルシン(AsH)を使用した。
 このとき、不純物拡散抑制層の膜厚が(1)0μm(すなわち、不純物拡散抑制層を形成しない)、(2)0.01μm、(3)0.3μm、(4)1.5μmである4水準の化合物半導体基板を製造し、これら4水準の化合物半導体基板に第一及び第二電極を形成して、LEDランプを作成した。
 このように製造されたLEDランプに温度85℃で100時間、50mAの電流を流した。このときの結果を下記表1に示す。また、このときの前記各LEDランプにおける通電時間と順方向電圧の変化率との関係を図3に示す。
Figure JPOXMLDOC01-appb-T000001
 このように、(1)のように不純物拡散抑制層の無い化合物半導体基板から製造されたLEDランプに通電すると、接合界面の不純物が4元発光層へ拡散してしまい、これら不純物がキャリアを補償してしまう。このため、通電時間が長ければ長いほど順方向電圧が上昇してしまい、100時間通電した場合には約6%も順方向電圧が上昇してしまった。
 しかし、(2)~(4)のように不純物拡散抑制層が形成された化合物半導体基板から製造されたLEDランプに通電した場合は、接合界面における酸素、炭素等の不純物が拡散したとしても不純物拡散抑制層に捕獲されるため、4元発光層へと到達してしまうことはほとんどない。このため、100時間通電した場合であっても、(2)では0.3%、(3)では0.1%しか順方向電圧は上昇せず、(4)では全く上昇しなかった。すなわち、順方向電圧の上昇が抑制され長時間に渡って安定した順方向電圧値を得ることができた。
 なお、本発明は上述した実施の形態に限定されるものではない。上述の実施の形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様の効果を奏するものはいかなるものであっても、本発明の技術的範囲に包含されることは無論である。

Claims (5)

  1.  少なくとも、n型GaP窓層上に(AlGa1-xIn1-yP(ただし、0<x<1,0<y<1)からなるn型クラッド層、(Alx′Ga1-x′y′In1-y′P(ただし、0<x′<1,0<y′<1)からなる活性層及び(AlGa1-xIn1-yP(ただし、0<x<1,0<y<1)からなるp型クラッド層が順次積層された4元発光層を有し、該4元発光層の、前記n型GaP窓層側の主表面(第二主面)の反対側となる主表面(第一主面)上に、電流拡散層であるp型GaP層が積層された化合物半導体基板であって、
     前記n型GaP窓層と前記4元発光層との間に、前記n型クラッド層よりもAl組成の低い、(Alx″Ga1-x″y″In1-y″P(ただし、0<x″<x<1,0<y″<1)からなる不純物拡散抑制層が形成されたものであることを特徴とする化合物半導体基板。
     
  2.  前記(AlGa1-xIn1-yPからなるn型クラッド層の組成を決定するxの値の範囲が0.7≦x<1.0であり、前記(Alx″Ga1-x″y″In1-y″Pからなる不純物拡散抑制層の組成を決定するx″の値の範囲が0.5≦x″<0.7であることを特徴とする請求項1に記載の化合物半導体基板。
     
  3.  前記不純物拡散抑制層は、膜厚が0.01μm以上であることを特徴とする請求項1または請求項2に記載の化合物半導体基板。
     
  4.  前記請求項1乃至請求項3のいずれか1項に記載の化合物半導体基板から製造されたことを特徴とする発光素子。
     
  5.  少なくとも、n型GaAs基板上に(AlGa1-xIn1-yP(ただし、0<x<1,0<y<1)からなるn型クラッド層、(Alx′Ga1-x′y′In1-y′P(ただし、0<x′<1,0<y′<1)からなる活性層及び(AlGa1-xIn1-yP(ただし、0<x<1,0<y<1)からなるp型クラッド層を順次積層した4元発光層をエピタキシャル成長させる工程と、
     前記4元発光層の、前記n型GaAs基板側と反対側となる主表面(第一主面)上に、電流拡散層としてp型GaP層をエピタキシャル成長させる工程と、
     前記4元発光層からn型GaAs基板を除去する工程と、
     該n型GaAs基板が除去された側の前記4元発光層の主表面(第二主面)側にn型GaP窓層を貼り合わせる工程とを有する化合物半導体基板の製造方法において、
     前記n型GaAs基板上に、前記4元発光層をエピタキシャル成長させる前に前記n型クラッド層よりもAl組成の低い、(Alx″Ga1-x″y″In1-y″P(ただし、0<x″<x<1,0<y″<1)からなる不純物拡散抑制層を積層し、その後該不純物拡散抑制層上に前記4元発光層をエピタキシャル成長させるか、または前記4元発光層の第二主面側に、前記n型GaP窓層を貼り合わせる前に前記不純物拡散抑制層を積層することによって、前記貼り合わせ工程において、前記不純物拡散抑制層とn型GaP窓層を貼り合わせ、前記n型GaP窓層と前記4元発光層との間に前記不純物拡散抑制層が形成された化合物半導体基板を製造することを特徴とする化合物半導体基板の製造方法。
PCT/JP2012/001097 2011-03-09 2012-02-20 化合物半導体基板及び化合物半導体基板の製造方法並びに発光素子 WO2012120798A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-052079 2011-03-09
JP2011052079 2011-03-09

Publications (1)

Publication Number Publication Date
WO2012120798A1 true WO2012120798A1 (ja) 2012-09-13

Family

ID=46797774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001097 WO2012120798A1 (ja) 2011-03-09 2012-02-20 化合物半導体基板及び化合物半導体基板の製造方法並びに発光素子

Country Status (2)

Country Link
TW (1) TW201240106A (ja)
WO (1) WO2012120798A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6512369B1 (ja) * 2017-09-21 2019-05-15 住友電気工業株式会社 半絶縁性化合物半導体基板および半絶縁性化合物半導体単結晶

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190052A (ja) * 1996-12-20 1998-07-21 Sharp Corp 半導体発光素子
JP2004153241A (ja) * 2002-10-11 2004-05-27 Sharp Corp 半導体発光素子及びその製造方法
JP2009177027A (ja) * 2008-01-25 2009-08-06 Shin Etsu Handotai Co Ltd 化合物半導体基板の製造方法および化合物半導体基板並びに発光素子
WO2009116232A1 (ja) * 2008-03-17 2009-09-24 信越半導体株式会社 化合物半導体基板及びそれを用いた発光素子並びに化合物半導体基板の製造方法
JP2010087270A (ja) * 2008-09-30 2010-04-15 Shin Etsu Handotai Co Ltd 発光素子
JP2010153496A (ja) * 2008-12-24 2010-07-08 Shin Etsu Handotai Co Ltd 発光素子
JP2010171272A (ja) * 2009-01-23 2010-08-05 Shin Etsu Handotai Co Ltd 発光素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190052A (ja) * 1996-12-20 1998-07-21 Sharp Corp 半導体発光素子
JP2004153241A (ja) * 2002-10-11 2004-05-27 Sharp Corp 半導体発光素子及びその製造方法
JP2009177027A (ja) * 2008-01-25 2009-08-06 Shin Etsu Handotai Co Ltd 化合物半導体基板の製造方法および化合物半導体基板並びに発光素子
WO2009116232A1 (ja) * 2008-03-17 2009-09-24 信越半導体株式会社 化合物半導体基板及びそれを用いた発光素子並びに化合物半導体基板の製造方法
JP2010087270A (ja) * 2008-09-30 2010-04-15 Shin Etsu Handotai Co Ltd 発光素子
JP2010153496A (ja) * 2008-12-24 2010-07-08 Shin Etsu Handotai Co Ltd 発光素子
JP2010171272A (ja) * 2009-01-23 2010-08-05 Shin Etsu Handotai Co Ltd 発光素子

Also Published As

Publication number Publication date
TW201240106A (en) 2012-10-01

Similar Documents

Publication Publication Date Title
JP4962840B2 (ja) 発光素子及びその製造方法
JP3598591B2 (ja) 3−5族化合物半導体の製造方法
TWI389338B (zh) A light-emitting element manufacturing method, a compound semiconductor wafer, and a light-emitting element
JP2008244074A (ja) 窒化物半導体発光素子の製造方法
JP4978577B2 (ja) 発光素子の製造方法
WO2012120798A1 (ja) 化合物半導体基板及び化合物半導体基板の製造方法並びに発光素子
JP5640896B2 (ja) 気相成長方法及び発光素子用基板の製造方法
JP2006128653A (ja) 3−5族化合物半導体、その製造方法及びその用途
JP5277646B2 (ja) 化合物半導体基板の製造方法
JP2011254015A (ja) 化合物半導体膜気相成長用サセプタおよび化合物半導体膜の形成方法
JP5582066B2 (ja) 化合物半導体基板及び化合物半導体基板の製造方法並びに発光素子
JP5251185B2 (ja) 化合物半導体基板及びそれを用いた発光素子並びに化合物半導体基板の製造方法
JP4998396B2 (ja) 発光素子の製造方法
JP2008108964A (ja) 半導体発光装置およびその製造方法
WO2020209014A1 (ja) 発光素子および発光素子の製造方法
JP2004207549A (ja) 発光ダイオードの製造方法
JP2010278262A (ja) 発光ダイオード用エピタキシャルウェハの製造方法
JP5464057B2 (ja) エピタキシャルウエーハの製造方法
JP5387509B2 (ja) エピタキシャルウエーハの製造方法
JP5240658B2 (ja) 化合物半導体エピタキシャルウェーハの製造方法、化合物半導体エピタキシャルウェーハ及び発光素子
JP2010232638A (ja) 発光素子用エピタキシャルウェハおよび発光素子
JP2019004098A (ja) エピタキシャルウェーハ及びその製造方法
JP2010287818A (ja) 半導体発光素子用エピタキシャルウェハの製造方法
JP2011198807A (ja) 化合物半導体基板および発光素子ならびに化合物半導体基板の製造方法および発光素子の製造方法
JP2011253893A (ja) 化合物半導体基板の製造方法及び化合物半導体基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP