WO2012117597A1 - 多段圧復水器およびこれを備えた蒸気タービンプラント - Google Patents

多段圧復水器およびこれを備えた蒸気タービンプラント Download PDF

Info

Publication number
WO2012117597A1
WO2012117597A1 PCT/JP2011/071277 JP2011071277W WO2012117597A1 WO 2012117597 A1 WO2012117597 A1 WO 2012117597A1 JP 2011071277 W JP2011071277 W JP 2011071277W WO 2012117597 A1 WO2012117597 A1 WO 2012117597A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
low
pressure side
condensate
condenser
Prior art date
Application number
PCT/JP2011/071277
Other languages
English (en)
French (fr)
Inventor
一作 藤田
賢 平岡
笠原 二郎
内海 晴輔
谷本 浩一
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11859853.1A priority Critical patent/EP2682701B1/en
Priority to CN201180037157.6A priority patent/CN103038594B/zh
Priority to KR1020137001159A priority patent/KR20130054316A/ko
Publication of WO2012117597A1 publication Critical patent/WO2012117597A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B7/00Combinations of two or more condensers, e.g. provision of reserve condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/02Auxiliary systems, arrangements, or devices for feeding steam or vapour to condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/08Splashing boards or grids, e.g. for converting liquid sprays into liquid films; Elements or beds for increasing the area of the contact surface
    • F28F25/087Vertical or inclined sheets; Supports or spacers

Definitions

  • the present invention relates to a multi-stage pressure condenser used in a steam turbine plant.
  • the steam that drives the steam turbine is exhausted from the turbine and guided to a condenser.
  • the steam led to the condenser is condensed by exchanging heat with the cooling water led to the condenser and condensed.
  • the condensed water condensed in the condenser is heated via the heater and supplied to the boiler.
  • the heated condensate supplied to the boiler is converted into steam and used as a drive source for the steam turbine.
  • FIG. 5 shows a schematic configuration diagram of a two-stage multi-stage pressure condenser including, for example, a high-pressure and a low-pressure condenser.
  • the low-pressure condenser 2 has a porous partition 8 that divides the longitudinal direction of the low-pressure cylinder 3 into an upper part and a lower part. 4, a low-pressure side cooling pipe group 5 provided on the upper side of the low-pressure side cylinder 3 to which the cooling water is guided, and a reheating chamber 6 positioned below the low-pressure side cylinder 3.
  • Exhaust gas (low-pressure side steam) from a steam turbine (not shown) guided to the upper side of the low-pressure side cylinder 3 is condensed by heat exchange with cooling water guided to the low-pressure side cooling pipe group 5, and is recovered. It becomes water and is stored above the pressure bulkhead 4 to form a condensate pool 7. Since the pressure partition wall 4 is provided with a plurality of holes 8, the low-pressure side condensate flows down from the condensate pool 7 to the reheat chamber 6.
  • the reheat chamber 6 is connected to a steam duct 13 that guides the exhaust of the steam turbine above the high pressure side condenser 22 to the reheat chamber 6 of the low pressure side condenser 2. Therefore, the low-pressure side condensate flowing down to the reheating chamber 6 comes into gas-liquid contact with the high-pressure side steam guided from the steam duct 13 and is reheated.
  • the reheat efficiency improves as the time during which the low-pressure condensate to be reheated is in gas-liquid contact with the exhaust of the high-pressure side steam increases.
  • Patent Document 1 discloses providing a tray 9 for storing and overflowing the low-pressure side condensate flowing down from the porous 8 in the reheating chamber 6 as shown in FIG. ing.
  • Patent Document 2 discloses that an angle steel with its apex facing upward or a spiral element is suspended from a pressure bulkhead.
  • Patent Document 3 discloses that a cylindrical liquid film extending in the longitudinal direction of the low-pressure side cylinder is suspended from the pressure partition into the reheat chamber.
  • the pressure partition 4a part 4a of the low pressure side condenser 2 is lowered by, for example, about 50 cm to the reheating chamber 6 side to increase the volume of the condensate reservoir 7, thereby reducing the low pressure side cooling. Measures are taken to prevent the tube group (not shown) from being submerged in the condensate reservoir 7.
  • the part 4a of the pressure partition 4 is lowered to the reheating chamber 6 in this way, the distance from the part 4a of the pressure partition 4 having the perforations 8 to the tray 9 is shortened, and the low pressure side flowing down.
  • the gas-liquid contact time between the condensate and the high-pressure side steam was shortened and the reheating efficiency was lowered.
  • the present invention has been made in view of the above circumstances, and provides a multistage pressure condenser capable of further improving the reheat efficiency without increasing the size, and a steam turbine plant including the same. is there.
  • the multi-stage pressure condenser includes a plurality of chambers having different pressures, a pressure partition having a plurality of holes dividing the low-pressure chamber, which is the low-pressure side chamber, in the vertical direction, and the pressure Cooling provided at the upper part of the low-pressure chamber partitioned by a partition wall, where cooling water is introduced and heat-exchanged with the low-pressure side steam led to the low-pressure chamber to condense the low-pressure side steam into the low-pressure side condensate
  • a high-pressure-side steam introducing means for introducing the high-pressure-side steam into the reheating chamber, and parallel to each other along the flow-down direction of the low-pressure side condensate flowing down from the hole of the pressure partition below the pressure partition.
  • a plurality of plate-like members disposed, each plate-like member having a front The flow-down direction of the low pressure side condensate cross-section and forms at least one concavo-convex shape.
  • the low-pressure side condensate flowing down from the hole in the pressure partition comes into gas-liquid contact with the high-pressure side steam introduced into the reheating chamber when flowing down.
  • a plurality of plate-like members arranged in parallel to each other along the flow-down direction of the low-pressure side condensate flowing down from the holes of the pressure partition walls are provided below the pressure partition walls.
  • the cross section in the flow-down direction of the low-pressure side condensate is designed to form at least one uneven shape.
  • the manufacturing cost is low and installation is easy. Therefore, the increase in the manufacturing cost and manufacturing time of the multistage pressure condenser can be suppressed.
  • the distance between the plate-like members arranged in parallel to each other is variable.
  • the distance between the plate-like members variable, the low-pressure side condensate flowing between the plate-like members is adjusted to flow down and the low-pressure side condensate flowing down is brought into contact with both plate-like members,
  • the flow rate can be controlled. Therefore, the gas-liquid contact time and contact area between the high-pressure side steam and the low-pressure side condensate can be increased. Therefore, the reheat efficiency can be increased without changing the size of the multistage pressure condenser.
  • the plate-like member is porous.
  • a plate-like member having porosity is used.
  • the low-pressure side condensate flowing down along the plate-like member can be dispersed and refined, and the high-pressure side steam can also pass between the plate-like members. Therefore, the gas-liquid contact area between the high-pressure side steam and the low-pressure side condensate can be increased.
  • the manufacturing cost can also be suppressed by utilizing (processing) the existing punching metal material for the plate-like member having the perforations.
  • the plate-like member has a pocket portion that opens toward the low-pressure side condensate flowing down along the plate-like member.
  • the plate-shaped member provided with a pocket part exists as a ready-made product. Therefore, an increase in the manufacturing cost of the multistage pressure condenser can be suppressed.
  • a receiving member for storing and overflowing the low-pressure side condensate flowing down from the plate member is provided below the plate member.
  • a receiving member for storing and overflowing the low-pressure condensate flowing down from the plate-like member is provided below the plate-like member. For this reason, the low-pressure side condensate that has overflowed and flowed down from the receiving member creates a circulating flow in the low-pressure side condensate stored in the reheating chamber, and contacts the high-pressure side steam introduced into the reheating chamber over a wide area. Will be. Therefore, the reheat efficiency can be increased.
  • a part of the pressure partition is provided with a depression in the lower part.
  • a steam turbine plant according to the second aspect of the present invention includes the multi-stage pressure condenser as described above.
  • a plurality of plate-like shapes arranged in parallel to each other along the flow direction of the low-pressure side condensate flowing down from the hole of the pressure partition wall.
  • the member is provided below the pressure partition, and the cross section in the flow direction of the low-pressure side condensate of each of the plate-like members forms at least one uneven shape.
  • the manufacturing cost is low and installation is easy. Therefore, the increase in the manufacturing cost and manufacturing time of the multistage pressure condenser can be suppressed.
  • the steam turbine plant (not shown) having the illustrated multistage pressure condenser 1 mainly includes a steam turbine (not shown), the multistage pressure condenser 1, and a boiler (not shown). It is configured.
  • the steam that has finished the expansion work in the steam turbine is introduced from the steam turbine to the multistage condenser 1 and cooled by the multistage condenser 1 to be condensed and condensate.
  • the condensed water condensed in the multistage condenser 1 is heated by a feed water heater (not shown) and then supplied to the boiler.
  • the condensate supplied to the boiler is converted into steam and used as a drive source for the steam turbine.
  • the multi-stage pressure condenser 1 has a plurality of chambers having different pressures, a high pressure side condenser (high pressure chamber) 22 which is a high pressure side chamber, and a low pressure which is a low pressure side chamber.
  • a side condenser (low pressure chamber) 2 is provided.
  • the high-pressure side condenser 22 has a high-pressure side cylinder 23 which is a high-pressure side chamber, and a high-pressure side cooling pipe group 25 provided in the high-pressure side cylinder 23.
  • the low pressure side condenser 2 has a low pressure side cylinder 3 which is a low pressure side chamber, and a low pressure side cooling pipe group (cooling pipe group) 5 provided in the low pressure side cylinder 3.
  • the low-pressure condenser 2 is divided by a pressure partition 4 that divides the low-pressure condenser 2 in the vertical direction and has a plurality of holes 8.
  • the pressure partition 4 is provided so that the distance between the lower surface of the pressure partition 4 and the bottom surface of the low-pressure side body 3 is, for example, 1000 mm.
  • a low pressure side cooling pipe group 5 is provided on the upper portion of the low pressure side condenser 2 partitioned by the pressure partition 4.
  • a reheating chamber 6 is provided at the lower part of the low pressure side condenser 2 partitioned by the pressure partition 4.
  • Cooling water is introduced into the low-pressure side cooling pipe group 5 provided on the upper side of the low-pressure side condenser 2.
  • the cooling water introduced into the low-pressure side cooling pipe group 5 condenses the low-pressure side steam led to the low-pressure side condenser 2 into condensate (hereinafter referred to as “low-pressure side condensate”).
  • the pressure partition 4 is a perforated plate.
  • the plurality of holes 8 provided in the pressure partition 4 are flow-down holes, and flow down the low-pressure side condensate condensed on the upper side of the low-pressure side condenser 2 to the reheat chamber 6.
  • a corrugated plate (plate-shaped member) is disposed along the flow direction of the low-pressure side condensate flowing down from the hole 8 provided in the pressure partition 4. 10 is provided.
  • a plurality of corrugated plates 10 are provided and arranged in parallel to each other.
  • the corrugated plate 10 has an uneven shape (zigzag shape) in which a cross section in the flow direction of the low-pressure side condensate alternately forms a plurality (at least one) of valleys. That is, it is a shape in which peaks and valleys formed on the left and right are repeated along the vertical direction.
  • the corrugated plate 10 is manufactured to have a thickness of 3 mm by SUS304, for example.
  • the corrugated plates 10 arranged in parallel to each other below the pressure bulkhead 4 to form a corrugated plate group are arranged with an interval of about 5 mm, for example, 100 pieces are provided.
  • a tray (receiving member) 9 is provided below the lower end of the plurality of corrugated plates 10 and in the lower part of the reheating chamber 6.
  • the tray 9 is provided such that its lower surface is at a distance of, for example, about 200 mm from the bottom surface of the low-pressure side barrel 3.
  • the low-pressure side condensate flows down from the corrugated plate 10.
  • the low-pressure side condensate flowing down to the tray 9 is collected (stored) in the tray 9 and overflows from the tray 9 and falls.
  • seawater is supplied as cooling water to the low-pressure side cooling pipe group 5 provided in the low-pressure condenser 2.
  • Seawater supplied to the low-pressure side cooling pipe group 5 is sent from a connecting pipe (not shown) to the high-pressure side cooling pipe group 25 of the high-pressure side condenser 22.
  • Seawater sent to the high-pressure side cooling pipe group 25 is discharged from a discharge pipe (not shown).
  • the low pressure side steam exhausted after finishing the work in the steam turbine is guided to the upper part of the low pressure side condenser 2.
  • the low-pressure side steam led to the upper part of the low-pressure side condenser 2 is condensed by being cooled by the low-pressure side cooling pipe group 5 in which seawater is led into each pipe. It is said.
  • the low-pressure side condensate thus condensed is stored in the upper part of the low-pressure side condenser 2 (above the pressure bulkhead 4 in FIG. 1) to form a condensate pool 7.
  • the distance between the water surface of the condensate pool 7 and the lowest stage of the low pressure side cooling pipe group 5 is a predetermined value. The distance is about 30 cm.
  • the pressure partition 4 Since the pressure partition 4 is provided with a plurality of holes 8, the low-pressure side condensate accumulated in the condensate reservoir 7 flows down from the holes 8.
  • the low-pressure condensate flowing down (passing through) the holes 8 flows along the surfaces of the plurality of corrugated plates 10 provided below the pressure partition 4.
  • the high pressure side steam exhausted after finishing the work in the steam turbine is guided into the high pressure side condenser 22.
  • the high-pressure side steam introduced into the high-pressure side condenser 22 is condensed by being cooled by the high-pressure side cooling pipe group 25 in which seawater is introduced into each pipe (hereinafter referred to as “high-pressure side condensate”). And stored in the high pressure side condenser 22.
  • the high pressure side condenser 22 and the reheating chamber 6 of the low pressure side condenser 2 are connected by a steam duct (high pressure side steam introducing means) 11, the high pressure side steam in the high pressure side condenser 22 is It will be introduced into the reheating chamber 6 from the steam duct 11.
  • the high-pressure side steam introduced into the reheating chamber 6 makes gas-liquid contact with the low-pressure side condensate flowing down from the pressure partition 4 along the surface of the corrugated plate 10.
  • the low-pressure condensate flowing down along the surface of the corrugated sheet 10 is collected on the tray 9 from the lower end of the corrugated sheet 10.
  • the low-pressure side condensate collected in the tray 9 overflows from the tray 9 and falls.
  • the low-pressure side condensate dropped from the tray 9 is accumulated in the reheat chamber 6.
  • a confluence section (not shown) is provided in the lower part of the reheating chamber 6, a confluence section (not shown) is provided.
  • a bypass connecting pipe 12 as a bypass means connects to the lower part of the high pressure side condenser 22 at the junction.
  • the high-pressure side condensate stored in the high-pressure side condenser 22 is led to the merging portion via the bypass connecting pipe 12 and merged with the low-pressure side condensate to be condensed.
  • the condensate merged at the merge section is sent to a feed water heater by a condensate pump (not shown).
  • the high-pressure side condensate led from the bypass connecting pipe 12 to the junction is bypassed the low-pressure side condensate stored in the reheat chamber 6 and led to the junction,
  • the high pressure side condensate can be merged into the condensate while keeping the temperature high. Therefore, high-temperature condensate can be sent out from the condensate pump.
  • the corrugated plate 10 has a plurality of concave and convex shapes.
  • the time for movement (fluidization) increases. Therefore, the time during which the low-pressure side condensate flowing down the surface of the corrugated plate 10 and the high-pressure side steam come into gas-liquid contact increases. Since the time during which the low-pressure condensate flowing down and the high-pressure steam come into gas-liquid contact increases, the temperature of the low-pressure condensate heated by the high-pressure steam is higher than when the corrugated plate 10 is not used. Become.
  • the low-pressure side condensate flowing down from the corrugated plate 10 to the tray 9 is heated to a higher temperature while being in gas-liquid contact with the high-pressure side steam while being collected in the tray 9. Further, the low-pressure side condensate falling from the tray 9 causes a circulation flow in the low-pressure side condensate stored in the reheat chamber 6. Therefore, the surface of the low-pressure side condensate and the high-pressure side steam come into contact with each other over a wide area to cause surface turbulent heat transfer and heat the condensate.
  • the increase in the gas-liquid contact time between the low-pressure side condensate flowing down along the surface of the corrugated plate 10 and the high-pressure side steam, and the gas between the low-pressure side condensate and the high-pressure side steam collected in the tray 9 are as follows.
  • the condensate can be heated sufficiently without changing the distance at which the low-pressure side condensate falls, that is, the distance between the pressure partition 4 and the bottom surface of the low-pressure side barrel 3. Therefore, the reheat efficiency can be further improved without increasing the size of the multistage pressure condenser 1.
  • each corrugated plate 10 disposed in parallel with each other along the flow direction of the low-pressure condensate flowing down from the hole 8 of the pressure partition 4 are provided below the pressure partition 4.
  • the cross section of each corrugated plate 10 in the flow-down direction of the low-pressure condensate forms a plurality (at least one) of uneven shapes.
  • the area where the low pressure side condensate flowing down from the hole 8 of the pressure partition 4 contacts the corrugated plate 10 can be increased. Therefore, the gas-liquid contact time between the high-pressure side steam introduced into the reheating chamber 6 and the low-pressure side condensate can be increased. Therefore, the reheat efficiency can be easily increased without changing the overall size of the multistage pressure condenser 1.
  • the manufacturing cost is low and the installation is easy. Therefore, an increase in manufacturing cost and manufacturing time of the multistage pressure condenser 1 can be suppressed.
  • a tray (receiving member) 9 that stores and overflows the low-pressure condensate flowing down from the corrugated plate 10 is provided below the lower end of the corrugated plate 10. Therefore, the low-pressure side condensate that has overflowed and flowed down from the tray 9 causes a circulation flow in the low-pressure side condensate stored in the reheat chamber 6, and the high-pressure side steam introduced into the reheat chamber 6 and a large area. Will come in contact. Therefore, the reheat efficiency can be increased.
  • the multi-stage pressure condenser 1 has been described using a two-stage condenser having the high-pressure condenser 22 and the low-pressure condenser 2, but the present invention is not limited to this.
  • it may be a condenser having three stages of a high pressure side condenser, an intermediate pressure side condenser, and a low pressure side condenser.
  • the corrugated plate is installed below the pressure partition provided in the intermediate pressure side condenser and the low pressure side condenser.
  • the distance between corrugated plates (plate-like members) provided in parallel to each other is provided so as to be adjustable. For example, by changing the distance between the corrugated plates from about 5 mm described in the first embodiment to about 2 mm, the falling film thickness of the low-pressure condensate flowing down between the corrugated plates can be adjusted. The flow rate of the side condensate can be reduced.
  • the multistage pressure condenser Since the flow speed of the low-pressure side condensate flowing down the surface of the corrugated sheet can be reduced without changing the length of the extension direction between the corrugated sheets (the flow direction of the low-pressure side condensate), the multistage pressure condenser The gas-liquid contact time between the low-pressure side condensate and the high-pressure side steam can be increased without changing the size of.
  • the multistage pressure condenser according to the present embodiment and the steam turbine plant including the multistage pressure condenser have the following operational effects.
  • the distance between the corrugated plates (plate-like members) variable, the low-pressure side condensate flowing between the corrugated plates is adjusted by adjusting the flow thickness of the low-pressure condensate to contact both corrugated plates.
  • the flow rate can be controlled. Therefore, the gas-liquid contact time and contact area between the high-pressure side steam and the low-pressure side condensate can be increased. Therefore, the reheat efficiency can be increased without changing the size of the multistage pressure condenser.
  • the multi-stage pressure condenser of this embodiment and the steam turbine including the same are different from those of the first embodiment in that they have a pocket portion that opens toward the low-pressure side condensate where the corrugated plate flows down, and the others are the same. It is. Therefore, about the same structure, the same code
  • FIG. 2 shows a partially enlarged schematic configuration diagram of the low pressure side condenser of the multistage pressure condenser according to the present embodiment.
  • the corrugated plate 20 has a concavo-convex shape (zigzag shape) in which the cross-section in the flow-down direction of the low-pressure condensate alternately forms a plurality (at least one) of valleys and is as shown in FIG.
  • the concavo-convex convex portion has a pocket portion 21 that opens toward the low-pressure side condensate flowing down along the surface of the corrugated plate 20.
  • the low-pressure side condensate that flows down along the surface of the corrugated plate 20 from the hole 8 provided in the pressure partition 4 reaches the convex portion of the concavo-convex shape. Since the convex portion is provided with the pocket portion 21 that opens toward the flow-down direction of the low-pressure side condensate, the low-pressure side condensate flows into the pocket portion 21.
  • the low-pressure side condensate accumulated in the pocket portion 21 overblows from the pocket portion 21 and flows down along the surface of the concave portion of the corrugated plate 20 below the pocket portion 21.
  • the low-pressure side condensate flowing down from the hole 8 provided in the pressure partition 4 is guided from the surface of the convex portion of the corrugated plate 20 to the pocket portion 21 and overflows from the pocket portion 21 to form a concave portion. It is repeated that it flows down along the surface of the sheet and falls onto the tray (receiving member) 9.
  • the low-pressure side condensate guided to the pocket portion 21 from the surface of the convex portion of the corrugated plate 20 agitates the low-pressure side condensate stored in the pocket portion 21. Therefore, the contact area between the low pressure side condensate and the high pressure side steam increases. As a result, it is possible to efficiently raise the temperature of the low-pressure side condensate flowing down the corrugated plate 20 through good heat transfer.
  • the multistage pressure condenser according to the present embodiment and the steam turbine plant including the multistage pressure condenser have the following operational effects.
  • the corrugated plate (plate-shaped member) 20 provided with the pocket portion 21 opened toward the low-pressure side condensate flowing down is used.
  • the low-pressure side condensate flowing down along the corrugated plate 20 can be temporarily stored in the pocket portion 21. Therefore, the low pressure side condensate can be stirred and flowed down in the pocket portion 21. Therefore, the gas-liquid contact area between the high-pressure side steam and the low-pressure side condensate can be increased.
  • the corrugated sheet 20 provided with the pocket part 21 exists as a ready-made product. Therefore, an increase in the manufacturing cost of a multistage pressure condenser (not shown) can be suppressed.
  • FIG. 34 The partial schematic block diagram of the low voltage
  • a part 34 a where the corrugated plate (plate-like member) 10 is provided is depressed downward to form a condensate reservoir 37.
  • the distance between the pressure partition wall 34 and the bottom surface of the low-pressure side body (not shown) is, for example, 1000 mm
  • a part 34a of the pressure partition wall 34 is formed to be recessed downward, for example, by about 500 mm.
  • the pressure difference between the high pressure side condenser (high pressure chamber) and the low pressure side condenser (low pressure chamber) 2 constituting the multistage pressure condenser (not shown) becomes large (for example, 50 mmHg)
  • the amount of low-pressure condensate collected above the pressure partition 34 increases.
  • the increased low-pressure side condensate accumulates in a part 34 a of the pressure partition wall 34 to form a condensate pool 37. Therefore, the distance between the lowermost stage of the low-pressure side cooling pipe group (cooling pipe group) and the water surface of the condensate pool 37 can be maintained at a predetermined distance (about 30 cm).
  • a plurality of corrugated plates 10 are provided below a part 34 a of the pressure partition 34 forming the condensate pool 37. Therefore, when the corrugated plate 10 is not provided even if the flow length in the extending direction of the corrugated plate 10 (the flow direction of the low-pressure side condensate) is shortened due to the depression 34a of the pressure partition wall 34 being depressed downward. As compared with the above, the gas-liquid contact time between the low-pressure side condensate and the high-pressure side steam can be lengthened to raise the temperature of the low-pressure side condensate.
  • the multistage pressure condenser according to the present embodiment and the steam turbine plant including the multistage pressure condenser have the following operational effects.
  • a part 34a of the pressure partition wall 34 in which the corrugated plate (plate-like member) 10 is provided below the pressure partition wall 34 is recessed downward. Therefore, the volume of the condensate sump 37 in which the low-pressure side condensate stored above the pressure partition 34 is stored can be increased.
  • the portion 34a of the pressure partition 34 is recessed downward, the distance between the portion 34a of the pressure partition 34 and the bottom surface of the reheating chamber 6 is shortened, but provided below the portion 34a of the pressure partition 34.
  • the corrugated sheet 10 has a plurality of (at least one) irregular shapes, the gas-liquid contact time can be maintained. Therefore, when the pressure difference between the high pressure side condenser (high pressure chamber) and the low pressure side condenser (low pressure chamber) 2 is large, the low pressure side cooling pipe group (cooling pipe group) is prevented from being submerged, and the multistage pressure recovery is performed. Reheating efficiency can be maintained without changing the overall size of the water vessel (not shown).
  • FIG. 4 is a perspective view of the corrugated plate of the low pressure side condenser of the multistage pressure condenser according to the present embodiment.
  • the corrugated plate 40 has a concavo-convex shape (zigzag shape) in which the cross section in the flow direction of the low-pressure condensate (shown by the white arrow in FIG. 4) alternately forms a plurality (at least one) of valleys.
  • zigzag shape the cross section in the flow direction of the low-pressure condensate
  • the low-pressure side condensate flowing along the surface of the corrugated plate 40 from a hole (not shown) provided in a part 34a (see FIG. 3) of the pressure partition wall 34 reaches the corrugated plate 40 surface. Since the corrugated plate 40 has a perforation 41 and is open, the low-pressure side condensate flows down the corrugated plate 40 and the perforated 41 and flows into the adjacent corrugated plate 40 surface. It will be a thing.
  • the low-pressure side condensate falls to the tray (receiving member) 9 (see FIG. 3).
  • the low-pressure side condensate flowing down into the perforations 41 of the corrugated plate 40 is dispersed and refined on the adjacent corrugated plate 40 surface.
  • the high-pressure side steam also passes through the perforations 41 as indicated by dotted arrows in FIG. Therefore, the contact area between the low pressure side condensate and the high pressure side steam increases. Thereby, good heat transfer is performed and the low-pressure side condensate flowing down the corrugated plate 40 can be efficiently heated.
  • the multistage pressure condenser according to the present embodiment and the steam turbine plant including the multistage pressure condenser have the following operational effects.
  • the corrugated plate (plate member) 40 provided with the perforations 41 toward the low-pressure side condensate flowing down was used. Thereby, the low-pressure side condensate flowing down along the corrugated plate 40 can be dispersed and refined, and the high-pressure side steam can also pass between the corrugated plates 40. Therefore, the gas-liquid contact area between the high-pressure side steam and the low-pressure side condensate can be increased.
  • the manufacturing cost can be reduced by using (processing) the existing punching metal material.
  • Multi-stage pressure condenser Low pressure condenser (low pressure chamber) 4 Pressure bulkhead 5 Low pressure side cooling pipe group (cooling pipe group) 6 Reheating chamber 8 Hole 9 Tray (receiving member) 10 Corrugated plate (plate-like member) 11 Steam duct (high-pressure side steam introduction means) 22 High pressure condenser (high pressure chamber) 41 porous

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 低圧側の低圧室(2)を上下方向に分割する複数の孔(8)を有する圧力隔壁(4)、圧力隔壁(4)によって仕切られた低圧室(2)の上部に設けられて冷却水が導入されて低圧室(2)に導かれた低圧側蒸気と熱交換することにより低圧側蒸気を低圧側復水に凝縮する冷却管群(5)、圧力隔壁(4)によって仕切られた低圧室(2)の下部であって圧力隔壁(4)の孔(8)から流下する低圧側復水が溜まる再熱室(6)、高圧側の高圧室(22)内の高圧側蒸気を再熱室(6)に導入する高圧側蒸気導入手段(11)、圧力隔壁(4)の下方に圧力隔壁(4)の孔(8)から流下する低圧側復水の流下方向に沿って互いに平行に配設される複数の板状部材(10)を備え、低圧側復水の流下方向の各板状部材(10)の断面が少なくとも1つの凹凸形状を形成する。

Description

多段圧復水器およびこれを備えた蒸気タービンプラント
 本発明は、蒸気タービンプラントに用いられる多段圧復水器に関する。
 一般に、蒸気タービンプラントなどでは、蒸気タービンを駆動した蒸気がタービンから排気されて、復水器に導かれる。復水器に導かれた蒸気は、復水器に導かれた冷却水と熱交換して凝縮されて復水とされる。復水器において凝縮された復水は、加熱器を介して加熱されて、ボイラに供給される。ボイラに供給された加熱された復水は、蒸気とされて蒸気タービンの駆動源として用いられる。
 このような蒸気タービンプラントでは、復水器から加熱器に導かれる復水の温度が高いほどプラント効率が向上するためや、復水器における熱交換の際に用いられる冷却水量を抑制するために多段圧復水器が用いられる。
 図5には、例えば、高圧および低圧の復水器からなる2段の多段圧復水器の概略構成図が示されている。
 高圧および低圧の復水器からなる多段圧復水器1のうち低圧側復水器2は、低圧側胴3の長手方向を上方と下方とに仕切っている多孔8を有している圧力隔壁4と、低圧側胴3の上方側に設けられて冷却水が導かれる低圧側冷却管群5と、低圧側胴3の下方に位置する再熱室6とを主に備えている。
 低圧側胴3の上方に導かれた蒸気タービン(図示せず)からの排気(低圧側蒸気)は、低圧側冷却管群5に導かれる冷却水と熱交換することにより凝縮されて低圧側復水となって圧力隔壁4の上方に貯水されて復水だまり7となる。圧力隔壁4には、複数の孔8が設けられているため復水だまり7から低圧側復水が再熱室6へと流下する。
 再熱室6には、高圧側復水器22上方の蒸気タービンの排気を低圧側復水器2の再熱室6に導く蒸気ダクト13が接続されている。そのため、再熱室6に流下した低圧側復水は、蒸気ダクト13から導かれた高圧側蒸気と気液接触して再加熱される。再加熱される低圧側復水が高圧側蒸気の排気と気液接触する時間が増加するほど再熱効率は向上する。
 気液接触時間の増加のために、特許文献1には、図5のように、再熱室6内に多孔8から流下した低圧側復水を貯めてオーバーフローさせるトレイ9を設けることが開示されている。
 また、特許文献2には、頂点を上に向けた山形鋼や、螺旋状のエレメントを圧力隔壁から吊下げることが開示されている。
 さらに、特許文献3には、低圧側胴の長手方向に延在する円筒形状液膜を圧力隔壁から再熱室内に吊下げることが開示されている。
特許第3706571号公報 特開2009-52867号公報 特開平11-173768号公報
 しかし、近年では、特許文献1から特許文献3に開示されている発明よりも更に気液接触時間を増加させて再熱効率を向上させることが望まれている。
 また、特許文献1から特許文献3に開示されている発明や図5の場合には、高圧側復水器22と低圧側復水器2との胴内圧差が大きくなった場合(例えば、50mmHg)には、低圧側復水器2の復水だまり7の水位が高くなってしまい、圧力隔壁4よりも上方に位置している低圧側冷却管群5が復水だまり7に水没する恐れがある。
 そのため、図6に示すように、低圧側復水器2の圧力隔壁4の一部4aを再熱室6側へと例えば約50cm下げて復水だまり7の容積を増加させて、低圧側冷却管群(図示せず)が復水だまり7に水没することを防止する措置が取られている。しかし、このように圧力隔壁4の一部4aを再熱室6側に下げた場合には、多孔8を有する圧力隔壁4の一部4aからトレイ9までの距離が短くなり、流下する低圧側復水と高圧側蒸気との気液接触時間が短くなり、再熱効率が低下するという問題があった。
 一方、圧力隔壁の一部を再熱室側へ下げることなく低圧側冷却管群を復水だまりから離すように上方に設けた場合には、復水器全体が大型化するという問題があった。
 本発明は、上記の事情に鑑みてなされたものであり、大型化することなく、再熱効率を一層向上させることが可能な多段圧復水器およびこれを備えた蒸気タービンプラントを提供することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明の第一の態様に係る多段圧復水器は、圧力が異なる複数の室と、低圧側の該室である低圧室を上下方向に分割する複数の孔を有する圧力隔壁と、該圧力隔壁によって仕切られた前記低圧室の上部に設けられて、冷却水が導入されて前記低圧室に導かれた低圧側蒸気と熱交換することにより該低圧側蒸気を低圧側復水に凝縮する冷却管群と、前記圧力隔壁によって仕切られた前記低圧室の下部であって、前記圧力隔壁の前記孔から流下する前記低圧側復水が溜まる再熱室と、高圧側の前記室である高圧室内の高圧側蒸気を前記再熱室に導入する高圧側蒸気導入手段と、前記圧力隔壁の下方には、該圧力隔壁の前記孔から流下する前記低圧側復水の流下方向に沿って互いに平行に配設される複数の板状部材と、を備え、各該板状部材は、前記低圧側復水の流下方向の断面が少なくとも1つの凹凸形状を形成するものである。
 圧力隔壁の孔から流下する低圧側復水は、流下する際に再熱室に導入された高圧側蒸気と気液接触する。この気液接触時間が長いほど、低圧側復水が加熱されることとなる。
 そこで、本発明では、圧力隔壁の孔から流下する低圧側復水の流下方向に沿って互いに平行に配設される複数の板状部材を圧力隔壁の下方に設けて、これら各板状部材の低圧側復水の流下方向の断面が少なくとも1つの凹凸形状を形成するようにすることとした。これにより、圧力隔壁の孔から流下する低圧側復水が板状部材に接触する面積を増加させることができる。そのため、再熱室に導入される高圧側蒸気と低圧側復水との気液接触時間を増加させることができる。したがって、多段圧復水器の全体的な大きさを変えることなく、再熱効率を容易に増加させることができる。
 また、板状部材を用いることとしたので、製作コストが安価かつ設置が容易となる。したがって、多段圧復水器の製造コスト、製造時間の増加を抑制することができる。
 本発明の第一の態様に係る多段圧復水器においては、互いに平行に配設される前記板状部材間の距離が可変であることが好ましい。
 板状部材間の距離を可変にするによって、板状部材間に形成される低圧側復水の流下液膜厚さを調整して流下する低圧側復水を両板状部材に接触させると共に、流下速度を制御することができる。そのため、高圧側蒸気と低圧側復水との気液接触時間および接触面積を増加させることができる。したがって、多段圧復水器の大きさを変えることなく、再熱効率を増加させることができる。
 本発明の第一の態様に係る多段圧復水器においては、前記板状部材は、多孔を備えることが好ましい。
 多孔を備えている板状部材を用いることとした。これにより、板状部材に沿って流下した低圧側復水を分散、微細化することができ、高圧側蒸気も板状部材間を通過することができる。そのため、高圧側蒸気と低圧側復水との気液接触面積を増加させることができる。
 また、多孔を備えている板状部材には、既存パンチングメタル材を利用(加工)することで、製造コストも抑えられる。
 本発明の第一の態様に係る多段圧復水器においては、前記板状部材は、該板状部材に沿って流下する前記低圧側復水に向かって開口するポケット部を備えることが好ましい。
 流下する低圧側復水に向かって開口するポケット部を備える板状部材を用いることとした。これにより、板状部材に沿って流下した低圧側復水を一旦ポケット部に溜めることができる。そのため、ポケット部において低圧側復水を攪拌させて流下させることができる。したがって、高圧側蒸気と低圧側復水との接触面積を増加させて再熱効率を増加させることができる。
 また、ポケット部を備える板状部材は、既製品として存在する。したがって、多段圧復水器の製造コストの増加を抑制することができる。
 本発明の第一の態様に係る多段圧復水器においては、前記板状部材の下方には、該板状部材から流下した前記低圧側復水を貯めてオーバーフローさせる受け部材を設けることが好ましい。
 板状部材から流下した低圧側復水を貯めてオーバーフローさせる受け部材を板状部材の下方に設けることとした。そのため、受け部材からオーバーフローして流下した低圧側復水が、再熱室に溜められた低圧側復水に循環流を生じさせて、再熱室に導入される高圧側蒸気と広い面積で接触することとなる。したがって、再熱効率を増加させることができる。
 本発明の第一の態様に係る多段圧復水器においては、前記圧力隔壁は、前記板状部材が設けられる一部が下方に窪んでいることが好ましい。
 高圧室と低圧室との圧力差が大きくなった場合には、低圧室の冷却管群によって凝縮されて圧力隔壁の上方に貯まる低圧側復水の水位が上昇して、冷却管群が水没する恐れが生じる。
 そこで、圧力隔壁のうち板状部材が設けられる圧力隔壁の一部を下方に窪ませることとした。そのため、冷却管群の下段と圧力隔壁の上方に貯まる低圧側復水の水面との距離を維持しつつ、圧力隔壁の上方の低圧側復水が貯まる容積を増加させることができる。また、下方に圧力隔壁が窪むことによって圧力隔壁と再熱室の底面との距離が短くなるが、圧力隔壁に設けられる板状部材が少なくとも1つの凹凸形状を有するため、気液接触時間を維持することが可能となる。したがって、高圧室と低圧室との圧力差が大きい場合における冷却管群の水没を防止すると共に、多段圧復水器の全体的な大きさを変えることなく再熱効率を維持することができる。
 本発明の第二の態様に係る蒸気タービンプラントは、上記のいずれかに記載の多段圧復水器を備えたものである。
 全体的な大きさを変えることなく再熱効率を改善することが可能な多段圧復水器を用いることとした。そのため、蒸気タービンプラントの全体配置や大きさを変えることなくプラント効率を向上させることがきる。
 上述した本発明の多段圧復水器およびこれを備えた蒸気タービンプラントによれば、圧力隔壁の孔から流下する低圧側復水の流下方向に沿って互いに平行に配設される複数の板状部材を圧力隔壁の下方に設けて、これら各板状部材の低圧側復水の流下方向の断面が少なくとも1つの凹凸形状を形成するようにすることとした。これにより、圧力隔壁の孔から流下する低圧側復水が板状部材と接触する面積を増加させることができる。そのため、再熱室に導入される高圧側蒸気と低圧側復水との気液接触時間を増加させることができる。したがって、多段圧復水器の全体的な大きさを変えることなく、再熱効率を容易に増加させることができる。
 また、板状部材を用いることとしたので、製作コストが安価かつ設置が容易となる。したがって、多段圧復水器の製造コスト、製造時間の増加を抑制することができる。
本発明の第1実施形態に係る多段圧復水器の概略構成図である。 本発明の第3実施形態に係る多段圧復水器の低圧側復水器の部分拡大概略構成図である。 本発明の第4実施形態に係る多段圧復水器の低圧側復水器の部分概略構成図である。 本発明の第5実施形態に係る多段圧復水器の低圧側復水器の波板の斜視図である。 従来の多段圧復水器の概略構成図である。 図5に示した多段圧復水器の低圧側復水器の変形例の概略構成図である。
[第1実施形態]
 以下、本発明に係る多段圧復水器について図1に基づいて説明する。
 図1には、本実施形態に係る多段圧復水器の概略構成図が示されている。
 図示の多段圧復水器1を有している蒸気タービンプラント(図示せず)は、蒸気タービン(図示せず)と、多段圧復水器1と、ボイラ(図示せず)とから主に構成されている。
 蒸気タービンプラントでは、蒸気タービンで膨張仕事を終えた蒸気が蒸気タービンから多段復水器1へと導入されて、多段復水器1において冷却されることによって凝縮されて復水とされる。多段復水器1において凝縮された復水は、給水加熱器(図示せず)によって加熱された後、ボイラへと供給される。ボイラに供給された復水は、蒸気とされて蒸気タービンの駆動源として用いられる。
 多段圧復水器1は、図1に示すように、圧力の異なる複数の室を有し、高圧側の室である高圧側復水器(高圧室)22と、低圧側の室である低圧側復水器(低圧室)2とを備えている。
 高圧側復水器22は、高圧側の室である高圧側胴23と、高圧側胴23内に設けられている高圧側冷却管群25とを有している。
 低圧側復水器2は、低圧側の室である低圧側胴3と、低圧側胴3内に設けられている低圧側冷却管群(冷却管群)5とを有している。
 低圧側復水器2は、低圧側復水器2を上下方向に分割し、かつ、複数の孔8を有している圧力隔壁4によって仕切られている。圧力隔壁4の下面と低圧側胴3の底面との距離が、例えば1000mmとなるように、圧力隔壁4は設けられている。圧力隔壁4によって仕切られている低圧側復水器2の上部には、低圧側冷却管群5が設けられている。また、圧力隔壁4によって仕切られている低圧側復水器2の下部には再熱室6が設けられている。
 低圧側復水器2の上部側に設けられている低圧側冷却管群5には、冷却水が導入される。低圧側冷却管群5に導入された冷却水は、低圧側復水器2に導かれた低圧側蒸気を復水(以下、「低圧側復水」という。)に凝縮する。
 圧力隔壁4は、多孔板である。圧力隔壁4に設けられている複数の孔8は、流下孔であり、低圧側復水器2の上部側において凝縮された低圧側復水を再熱室6へと流下するものである。
 圧力隔壁4の下方(再熱室6側)には、圧力隔壁4に設けられている孔8から流下する低圧側復水の流下方向に沿って配設されている波板(板状部材)10が設けられている。波板10は、複数設けられており、互いに平行に配設されている。
 波板10は、図1に示すように、低圧側復水の流下方向の断面が交互に複数(少なくとも1つ)の山谷を形成している凹凸形状(ジグザグ形状)を成している。つまり左右に形成される山谷を鉛直方向に沿って繰り返した形状である。波板10は、例えばSUS304によって厚さが3mmになるように製造されている。圧力隔壁4の下方に互いに平行に配設されて波板群を形成している各波板10は、略5mmの間隔を有して配設されており、例えば、100枚設けられている。
 複数設けられている波板10の下端の下方であり、再熱室6内の下部にはトレイ(受け部材)9が設けられている。トレイ9は、その下面が低圧側胴3の底面から、例えば約200mmの距離になるように設けられている。トレイ9には、低圧側復水が波板10から流下するようになっている。トレイ9に流下した低圧側復水は、トレイ9に捕集(貯めて)されてトレイ9からオーバーフローして落下するようになっている。
 次に、上記のように構成されている多段圧復水器1により蒸気が凝縮されて復水とされる流れについて図1を用いて説明する。
 低圧側復水器2内に設けられている低圧側冷却管群5に冷却水として、例えば、海水が供給される。低圧側冷却管群5に供給された海水は、図示しない連結管から高圧側復水器22の高圧側冷却管群25に送出される。高圧側冷却管群25に送出された海水は、図示しない排出管から排出される。
 低圧側復水器2の上部には、蒸気タービンで仕事を終えて排気された低圧側蒸気が導かれる。低圧側復水器2の上部に導かれた低圧側蒸気は、各管内に海水が導かれた低圧側冷却管群5により冷却されることによって凝縮して、例えば約33℃の低圧側復水とされる。このように凝縮した低圧側復水は、低圧側復水器2の上部(図1において圧力隔壁4の上方)に溜められて復水だまり7を形成する。高圧側復水器22内と低圧側復水器2内との圧力差が例えば18mmHgの場合には、復水だまり7の水面と低圧側冷却管群5の最下段との距離は、所定の距離である約30cmとされる。
 圧力隔壁4には複数の孔8が設けられているので、復水だまり7に溜まっている低圧側復水は、孔8から流下する。孔8を流下(通過)した低圧側復水は、圧力隔壁4の下方に設けられている複数の波板10の表面に沿って流下する。
 一方、高圧側復水器22内には、蒸気タービンで仕事を終えて排気された高圧側蒸気が導かれる。高圧側復水器22内に導かれた高圧側蒸気は、各管内に海水が導かれた高圧側冷却管群25により冷却されることによって凝縮して復水(以下、「高圧側復水」という。)とされて高圧側復水器22内に溜められる。
 高圧側復水器22と低圧側復水器2の再熱室6とは、蒸気ダクト(高圧側蒸気導入手段)11によって接続されているので、高圧側復水器22内の高圧側蒸気が蒸気ダクト11から再熱室6に導入されることとなる。
 再熱室6に導入された高圧側蒸気は、圧力隔壁4から波板10の表面に沿って流下する低圧側復水と気液接触する。波板10の表面に沿って流下した低圧側復水は、波板10の下端からトレイ9上に捕集される。
 トレイ9に捕集された低圧側復水は、トレイ9からオーバーフローして落下する。トレイ9から落下した低圧側復水は、再熱室6内に溜められることとなる。
 再熱室6の下部には、図示しない合流部が設けられている。合流部には、バイパス手段としてのバイパス連結管12が高圧側復水器22の下部との間を接続している。高圧側復水器22内に溜められた高圧側復水は、バイパス連結管12を経て合流部へと導かれて低圧側復水と合流して復水とされる。合流部において合流した復水は、復水ポンプ(図示せず)によって給水加熱器へと送出される。
 バイパス連結管12から合流部へと導かれる高圧側復水は、再熱室6に溜められている低圧側復水をバイパスして合流部へと導かれるようになっているため、合流部では、高圧側復水の温度を高温に保ったまま復水に合流させることができる。したがって、高温の復水を復水ポンプから送出することができる。
 本実施形態の多段圧復水器1では、波板10が複数の凹凸形状を有していることから、圧力隔壁4の複数の孔8から流下する低圧側復水が波板10の表面を移動(流化)する時間が増加する。そのため、波板10の表面を流下する低圧側復水と高圧側蒸気とが気液接触する時間が増加する。流下する低圧側復水と高圧側蒸気とが気液接触する時間が増加するため、高圧側蒸気によって加熱される低圧側復水の温度は、波板10を用いなかった場合に比べて高温となる。
 さらに、波板10からトレイ9に流下した低圧側復水は、トレイ9に捕集されている間に高圧側蒸気と気液接触して更に高温に加熱される。また、トレイ9から落下する低圧側復水は、再熱室6に溜められている低圧側復水に循環流を生じさせる。そのため、低圧側復水の表面と高圧側蒸気とが広い面積で接触して表面乱流熱伝達を起こして復水が加熱される。
 このように、波板10の表面に沿って流下する低圧側復水と高圧側蒸気との気液接触時間の増加と、トレイ9に捕集された低圧側復水と高圧側蒸気との気液接触と、トレイ9からオーバーフローした低圧側復水による高圧側蒸気との表面乱流熱伝達とにより、良好な熱伝達が行われて効率的に昇温された復水とされる。
 そのため、低圧側復水が落下する距離、すなわち、圧力隔壁4と低圧側胴3の底面との距離を変えることなく十分に復水を加熱することができる。したがって、多段圧復水器1を大型化することなく、再熱効率を一層向上させることができる。
 以上説明したように、本実施形態にかかる多段圧復水器1およびこれを備えている蒸気タービンプラントによれば、以下の作用効果を奏する。
 圧力隔壁4の孔8から流下する低圧側復水の流下方向に沿って互いに平行に配設されている100枚(複数)の波板(板状部材)10を圧力隔壁4の下方に設けて、これら各波板10の低圧側復水の流下方向の断面が複数(少なくとも1つ)の凹凸形状を形成するようにすることとした。これにより、圧力隔壁4の孔8から流下する低圧側復水が波板10と接触する面積を増加させることができる。そのため、再熱室6に導入される高圧側蒸気と低圧側復水との気液接触時間を増加させることができる。したがって、多段圧復水器1の全体的な大きさを変えることなく、再熱効率を容易に増加させることができる。
 また、波板10を用いることとしたので、製作コストが安価かつ設置が容易となる。したがって、多段圧復水器1の製造コスト、製造時間の増加を抑制することができる。
 波板10から流下した低圧側復水を貯めてオーバーフローさせるトレイ(受け部材)9を波板10の下端の下方に設けることとした。そのため、トレイ9からオーバーフローして流下した低圧側復水が再熱室6に溜められている低圧側復水に循環流を生じさせて、再熱室6に導入される高圧側蒸気と広い面積で接触することとなる。したがって、再熱効率を増加させることができる。
 全体的な大きさを変えることなく再熱効率を改善することが可能な多段圧復水器1を用いることとした。そのため、蒸気タービンプラント(図示せず)の全体配置や大きさを変えることなく、プラント効率を向上させることがきる。
 なお、本実施形態では、多段圧復水器1として高圧側復水器22と低圧側復水器2とを有する2段の復水器を用いて説明したが、本発明はこれに限定されるものではなく、例えば高圧側復水器、中圧側復水器、低圧側復水器の3段を有する復水器であってもよい。この場合には、中圧側復水器および低圧側復水器に設けられる圧力隔壁の下方に波板を設置することとなる。
[第2実施形態]
 本実施形態の多段圧復水器およびこれを備えている蒸気タービンは、波板間の距離が可変である点で、第1実施形態と相違しその他は同様である。したがって、同一の構成については、同一の符号を付してその説明を省略する。
 互いに平行になるように複数設けられている波板(板状部材)間の距離は、調整可能なように設けられている。例えば、波板間の距離を第1実施形態において説明した略5mmから略2mmへと変えることによって、波板間を流下する低圧側復水の流下液膜厚さを調整することができ、低圧側復水の流下速度を遅くすることができる。
 波板間の延在方向(低圧側復水の流下方向)の長さを変えることなく波板の表面を流下する低圧側復水の流下速度を遅くすることができるので、多段圧復水器の大きさを変えることなく、低圧側復水と高圧側蒸気との気液接触時間を増加させることができる。
 以上説明したように、本実施形態にかかる多段圧復水器およびこれを備えている蒸気タービンプラントによれば、以下の作用効果を奏する。
 波板(板状部材)間の距離を可変にすることによって、波板間に形成される低圧側復水の流下液膜厚さを調整して流下する低圧側復水を両波板に接触させると共に、流下速度を制御することができる。そのため、高圧側蒸気と低圧側復水との気液接触時間および接触面積を増加させることができる。したがって、多段圧復水器の大きさを変えることなく、再熱効率を増加させることができる。
[第3実施形態]
 本実施形態の多段圧復水器およびこれを備えている蒸気タービンは、波板が流下する低圧側復水に向かって開口するポケット部を有する点で、第1実施形態と相違しその他は同様である。したがって、同一の構成については、同一の符号を付してその説明を省略する。
 図2には、本実施形態に係る多段圧復水器の低圧側復水器の部分拡大概略構成図が示されている。
 波板20は、低圧側復水の流下方向の断面が交互に複数(少なくとも1つ)の山谷を形成している凹凸形状(ジグザグ形状)を成しており、かつ、図2に示すように、凹凸形状の凸部には、波板20の表面に沿って流下する低圧側復水に向かって開口しているポケット部21を有している。
 圧力隔壁4に設けられている孔8から波板20の表面に沿って流下する低圧側復水は、凹凸形状の凸状部に到達する。凸状部には、低圧側復水の流下方向に向かって開口しているポケット部21が設けられているため、低圧側復水は、ポケット部21に流入する。
 ポケット部21に溜まった低圧側復水は、ポケット部21からオーバーブローしてポケット部21の下方の波板20の凹状部の表面に沿って流下する。このように、圧力隔壁4に設けられている孔8から流下する低圧側復水は、波板20の凸状部の表面からポケット部21へと導かれ、ポケット部21からオーバーフローして凹状部の表面に沿って流下することを繰り返して、トレイ(受け部材)9に落下する。
 波板20の凸状部の表面からポケット部21に導かれた低圧側復水は、ポケット部21に溜められている低圧側復水を攪拌する。そのため、低圧側復水と高圧側蒸気との接触面積が増加する。これにより、良好な熱伝達が行われて波板20を流下する低圧側復水を効率的に昇温することができる。
 以上説明したように、本実施形態にかかる多段圧復水器およびこれを備えている蒸気タービンプラントによれば、以下の作用効果を奏する。
 流下する低圧側復水に向かって開口しているポケット部21を備えている波板(板状部材)20を用いることとした。これにより、波板20に沿って流下した低圧側復水を一旦ポケット部21に溜めることができる。そのため、ポケット部21において低圧側復水を攪拌させて流下することができる。したがって、高圧側蒸気と低圧側復水との気液接触面積を増加させることができる。
 また、ポケット部21を備えている波板20は、既製品として存在している。したがって、多段圧復水器(図示せず)の製造コストの増加を抑制することができる。
[第4実施形態]
 本実施形態の多段圧復水器およびこれを備えている蒸気タービンは、波板が設けられている圧力隔壁の一部が下方に窪んでいる点で、第1実施形態と相違しその他は同様である。したがって、同一の構成については、同一の符号を付してその説明を省略する。
 図3には、本実施形態に係る多段圧復水器の低圧側復水器の部分概略構成図が示されている。
 圧力隔壁34は、波板(板状部材)10が設けられている一部34aが下方に窪んで復水だまり37を形成している。圧力隔壁34と低圧側胴(図示せず)の底面との距離が例えば1000mmとされているうち、圧力隔壁34の一部34aは、例えば、約500mm下方に窪むように形成されている。
 多段圧復水器(図示せず)を構成している高圧側復水器(高圧室)と低圧側復水器(低圧室)2との圧力差が大きくなった場合(例えば50mmHgになった場合)には、圧力隔壁34の上方に溜まる低圧側復水の水量が増加する。増量した低圧側復水は、圧力隔壁34の一部34aに溜まって復水だまり37を形成する。そのため、低圧側冷却管群(冷却管群)の最下段と復水だまり37の水面との間の距離を所定の距離(約30cm)に維持することができる。
 これにより、高圧側復水器(図示せず)と低圧側復水器2との圧力差が大きくなって低圧側復水が増量することによって、圧力隔壁34の上方に溜まった低圧側復水に低圧側冷却管群(図示せず)が水没することを防止することができる。
 また、復水だまり37を形成している圧力隔壁34の一部34aの下方には、複数の波板10が設けられている。そのため、圧力隔壁34の一部34aが下方に窪むことによって波板10の延在方向(低圧側復水の流下方向)の流下長さが短くなっても、波板10を設けなかった場合と比べて低圧側復水と高圧側蒸気との気液接触時間を長くして低圧側復水を昇温することができる。
 以上説明したように、本実施形態にかかる多段圧復水器およびこれを備えている蒸気タービンプラントによれば、以下の作用効果を奏する。
 圧力隔壁34のうち下方に波板(板状部材)10が設けられている圧力隔壁34の一部34aを下方に窪ませることとした。そのため、圧力隔壁34の上方に貯まる低圧側復水が貯水する復水だまり37の容積を増加させることができる。また、下方に圧力隔壁34の一部34aが窪むことによって、圧力隔壁34の一部34aと再熱室6の底面との距離が短くなるが、圧力隔壁34の一部34aの下方に設けられている波板10が複数(少なくとも1つ)の凹凸形状を有するため、気液接触時間を維持することが可能となる。したがって、高圧側復水器(高圧室)と低圧側復水器(低圧室)2との圧力差が大きい場合における低圧側冷却管郡(冷却管群)の水没を防止すると共に、多段圧復水器(図示せず)の全体的な大きさを変えることなく再熱効率を維持することができる。
[第5実施形態]
 本実施形態の多段圧復水器およびこれを備えている蒸気タービンは、波板に多孔を有する点で、第4実施形態と相違しその他は同様である。したがって、同一の構成については、同一の符号を付してその説明を省略する。
 図4には、本実施形態に係る多段圧復水器の低圧側復水器の波板の斜視図が示されている。
 波板40は、低圧側復水の流下方向(図4の白抜きした矢印で示す)の断面が交互に複数(少なくとも1つ)の山谷を形成している凹凸形状(ジグザグ形状)を成しており、かつ、図4に示すように、凹凸形状面に多孔41を有している。
 圧力隔壁34の一部34a(図3参照)に設けられている孔(図示せず)から波板40の表面に沿って流下する低圧側復水は、波板40面に到達する。波板40面には多孔41を有し開口しているため、低圧側復水は、波板40面を流下するものと、多孔41で分散し、隣接している波板40面に流入するものとなる。
 これを繰り返して低圧側復水は、トレイ(受け部材)9(図3参照)に落下する。
 波板40の多孔41に流下した低圧側復水は、隣接している波板40面で、分散されて微細化される。また高圧側蒸気も図4の点線の矢印で示すように、多孔41を通過する。そのため、低圧側復水と高圧側蒸気との接触面積が増加する。これにより、良好な熱伝達が行われて波板40を流下する低圧側復水を効率的に昇温することができる。
 以上説明したように、本実施形態にかかる多段圧復水器およびこれを備えている蒸気タービンプラントによれば、以下の作用効果を奏する。
 流下する低圧側復水に向かって多孔41を備えている波板(板状部材)40を用いることとした。これにより、波板40に沿って流下した低圧側復水を分散、微細化することができ、高圧側蒸気も波板40間を通過することができる。そのため、高圧側蒸気と低圧側復水との気液接触面積を増加させることができる。
 多孔41を備えている波板40には、既存パンチングメタル材を利用(加工)することで、製造コストも抑えられる。
 なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
 1 多段圧復水器
 2 低圧側復水器(低圧室)
 4 圧力隔壁
 5 低圧側冷却管群(冷却管群)
 6 再熱室
 8 孔
 9 トレイ(受け部材)
 10 波板(板状部材)
 11 蒸気ダクト(高圧側蒸気導入手段)
 22 高圧側復水器(高圧室)
 41 多孔

Claims (7)

  1.  圧力が異なる複数の室と、
     低圧側の該室である低圧室を上下方向に分割する複数の孔を有する圧力隔壁と、
     該圧力隔壁によって仕切られた前記低圧室の上部に設けられて、冷却水が導入されて前記低圧室に導かれた低圧側蒸気と熱交換することにより該低圧側蒸気を低圧側復水に凝縮する冷却管群と、
     前記圧力隔壁によって仕切られた前記低圧室の下部であって、前記圧力隔壁の前記孔から流下する前記低圧側復水が溜まる再熱室と、
     高圧側の前記室である高圧室内の高圧側蒸気を前記再熱室に導入する高圧側蒸気導入手段と、
     前記圧力隔壁の下方には、該圧力隔壁の前記孔から流下する前記低圧側復水の流下方向に沿って互いに平行に配設される複数の板状部材と、を備え、
     各該板状部材は、前記低圧側復水の流下方向の断面が少なくとも1つの凹凸形状を形成する多段圧復水器。
  2.  互いに平行に配設される前記板状部材間の距離が可変である請求項1に記載の多段圧復水器。
  3.  前記板状部材は、多孔を備える請求項1または請求項2に記載の多段圧復水器。
  4.  前記板状部材は、該板状部材に沿って流下する前記低圧側復水に向かって開口するポケット部を備える請求項1から請求項3のいずれかに記載の多段圧復水器。
  5.  前記板状部材の下方には、該板状部材から流下した前記低圧側復水を貯めてオーバーフローさせる受け部材を設ける請求項1から請求項4のいずれかに記載の多段圧復水器。
  6.  前記圧力隔壁は、前記板状部材が設けられる一部が下方に窪んでいる請求項1から請求項5のいずれかに記載の多段圧復水器。
  7.  請求項1から請求項6のいずれかに記載の多段圧復水器を備えた蒸気タービンプラント。
PCT/JP2011/071277 2011-02-28 2011-09-16 多段圧復水器およびこれを備えた蒸気タービンプラント WO2012117597A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11859853.1A EP2682701B1 (en) 2011-02-28 2011-09-16 Multistage pressure condenser and steam turbine plant equipped with same
CN201180037157.6A CN103038594B (zh) 2011-02-28 2011-09-16 多级压力冷凝器及具备该多级压力冷凝器的蒸汽涡轮设备
KR1020137001159A KR20130054316A (ko) 2011-02-28 2011-09-16 다단압 복수기 및 이것을 구비한 증기 터빈 플랜트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-043294 2011-02-28
JP2011043294A JP5721471B2 (ja) 2011-02-28 2011-02-28 多段圧復水器およびこれを備えた蒸気タービンプラント

Publications (1)

Publication Number Publication Date
WO2012117597A1 true WO2012117597A1 (ja) 2012-09-07

Family

ID=46718074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071277 WO2012117597A1 (ja) 2011-02-28 2011-09-16 多段圧復水器およびこれを備えた蒸気タービンプラント

Country Status (6)

Country Link
US (1) US9188393B2 (ja)
EP (1) EP2682701B1 (ja)
JP (1) JP5721471B2 (ja)
KR (1) KR20130054316A (ja)
CN (1) CN103038594B (ja)
WO (1) WO2012117597A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126154A1 (ja) * 2013-02-13 2014-08-21 三菱日立パワーシステムズ株式会社 復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュール
US9726048B2 (en) 2013-03-22 2017-08-08 Mitsubishi Heavy Industries, Ltd. Steam turbine plant

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885990B2 (ja) * 2011-10-13 2016-03-16 三菱重工業株式会社 多段圧復水器及びこれを備えるタービンプラント
US9488416B2 (en) 2011-11-28 2016-11-08 Mitsubishi Hitachi Power Systems, Ltd. Multistage pressure condenser and steam turbine plant having the same
US11369966B2 (en) * 2015-09-18 2022-06-28 Arizona Board Of Regents On Behalf Of Arizona State University Layered structure for improved sealing of microwell arrays
CN109405239A (zh) * 2018-11-15 2019-03-01 大连范特西西科技有限公司 一种热量回收利用装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932002A (ja) * 1972-07-28 1974-03-23
JPH09511322A (ja) * 1994-03-09 1997-11-11 オサケユイチア シパックス リミティド 熱交換器要素
JPH11173768A (ja) * 1997-12-10 1999-07-02 Mitsubishi Heavy Ind Ltd 多段圧復水器
JP3706571B2 (ja) 2001-11-13 2005-10-12 三菱重工業株式会社 多段圧復水器
JP2009052867A (ja) 2007-08-29 2009-03-12 Toshiba Corp 多段圧復水器
JP2009097788A (ja) * 2007-10-16 2009-05-07 Toshiba Corp 複圧式復水器及び復水再熱方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3157229A (en) * 1959-12-23 1964-11-17 Scparator Ab Plate heat exchanger for promoting turbulent flow
US3659623A (en) * 1969-12-02 1972-05-02 Baltimore Aircoil Co Inc Water supply system
US3870485A (en) * 1972-03-06 1975-03-11 Japan Gasoline Cooling tower
DE7717599U1 (de) * 1977-06-03 1977-11-17 Regehr, Ulrich, Dr.-Ing., 5100 Aachen Lamellendeflektor zur abscheidung von in einem fluessigkeit-dampf-gemisch mitgefuehrter fluessigkeit
FR2484071B1 (fr) * 1980-06-05 1985-12-13 Valeo Plaque a trous pour un echangeur de chaleur a tubes de circulation de fluide
EP0128346B1 (de) * 1983-06-09 1986-09-10 BBC Aktiengesellschaft Brown, Boveri & Cie. Mehrdruckkondensator für Dampfturbinen mit Aufwärmungseinrichtungen zur Unterdrückung der Unterkühlung des Kondensators
DE3423736A1 (de) * 1984-06-28 1986-01-02 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg Kreuzstrom-plattenwaermetauscher
NZ219394A (en) * 1986-02-25 1989-05-29 Wlpu Holdings Pty Ltd Expanded metal sheet splash packing for evaporative cooler
FR2649192A1 (fr) * 1989-06-30 1991-01-04 Inst Francais Du Petrole Procede et dispositif de transfert simultane de matiere et de chaleur
US5182925A (en) * 1991-05-13 1993-02-02 Mile High Equipment Company Integrally formed, modular ice cuber having a stainless steel evaporator and microcontroller
JP2858070B2 (ja) * 1993-07-12 1999-02-17 三菱重工業株式会社 融雪設備
JPH0932002A (ja) * 1995-07-17 1997-02-04 Sumitomo Electric Ind Ltd 木造家屋の免振基礎構造
US5925291A (en) * 1997-03-25 1999-07-20 Midwest Research Institute Method and apparatus for high-efficiency direct contact condensation
AU2002331628A1 (en) * 2001-08-20 2003-03-03 Idalex Technologies, Inc. Method of evaporative cooling of a fluid and apparatus therefor
WO2004106649A1 (de) * 2003-05-26 2004-12-09 Logos-Innovationen Gmbh Vorrichtung zur gewinnung von wasser aus atmosphärischer luft
GB0503533D0 (en) * 2005-02-21 2005-03-30 Forstmanis Talivaldis Evaporate for dilute aqueous solutions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932002A (ja) * 1972-07-28 1974-03-23
JPH09511322A (ja) * 1994-03-09 1997-11-11 オサケユイチア シパックス リミティド 熱交換器要素
JPH11173768A (ja) * 1997-12-10 1999-07-02 Mitsubishi Heavy Ind Ltd 多段圧復水器
JP3706571B2 (ja) 2001-11-13 2005-10-12 三菱重工業株式会社 多段圧復水器
JP2009052867A (ja) 2007-08-29 2009-03-12 Toshiba Corp 多段圧復水器
JP2009097788A (ja) * 2007-10-16 2009-05-07 Toshiba Corp 複圧式復水器及び復水再熱方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2682701A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126154A1 (ja) * 2013-02-13 2014-08-21 三菱日立パワーシステムズ株式会社 復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュール
JP2014153039A (ja) * 2013-02-13 2014-08-25 Mitsubishi Heavy Ind Ltd 復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュール
US9638469B2 (en) 2013-02-13 2017-05-02 Mitsubishi Hitachi Power Systems, Ltd. Condenser, multistage pressure condenser provided therewith, and reheating module used in condenser
US9726048B2 (en) 2013-03-22 2017-08-08 Mitsubishi Heavy Industries, Ltd. Steam turbine plant

Also Published As

Publication number Publication date
JP5721471B2 (ja) 2015-05-20
KR20130054316A (ko) 2013-05-24
US9188393B2 (en) 2015-11-17
CN103038594A (zh) 2013-04-10
EP2682701B1 (en) 2016-06-15
EP2682701A1 (en) 2014-01-08
EP2682701A4 (en) 2015-03-25
JP2012180956A (ja) 2012-09-20
US20120216541A1 (en) 2012-08-30
CN103038594B (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5905487B2 (ja) 多段圧復水器およびこれを備えた蒸気タービンプラント
WO2012117597A1 (ja) 多段圧復水器およびこれを備えた蒸気タービンプラント
US7028762B2 (en) Condenser for refrigerating machine
KR100639169B1 (ko) 응축기
KR101100097B1 (ko) 플레이트식 조수장치
EP2282151A3 (en) Multistage pressure condenser
US8881690B2 (en) Steam generator
US9845980B2 (en) Air conditioning system with evaporative cooling system
JP5197602B2 (ja) 復水器
JP5885990B2 (ja) 多段圧復水器及びこれを備えるタービンプラント
RU2303475C1 (ru) Многоступенчатый испаритель мгновенного вскипания
JPS63143486A (ja) 凝縮蒸発器
JP4618432B2 (ja) 多段フラッシュ蒸発型造水装置
RU2296914C1 (ru) Горизонтальный подогреватель
RU2259514C1 (ru) Испаритель мгновенного вскипания
JP2017192926A (ja) 分離装置
RU53282U1 (ru) Многоступенчатый испаритель мгновенного вскипания
SU1762954A1 (ru) Пленочный испаритель
RU53176U1 (ru) Многоступенчатый испаритель мгновенного вскипания
WO2014148517A1 (ja) 蒸気タービンプラント
KR200365775Y1 (ko) 열교환기 및 이를 채용한 스팀/온수 공급시스템
WO2014126154A1 (ja) 復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュール
EA014796B1 (ru) Многоступенчатый испаритель мгновенного вскипания
JP2011043316A (ja) 熱交換器
KR20060014969A (ko) 열교환기 및 이를 채용한 스팀/온수 공급시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037157.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137001159

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011859853

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE