WO2012114787A1 - Hydrogen production device and hydrogen production method - Google Patents

Hydrogen production device and hydrogen production method Download PDF

Info

Publication number
WO2012114787A1
WO2012114787A1 PCT/JP2012/050386 JP2012050386W WO2012114787A1 WO 2012114787 A1 WO2012114787 A1 WO 2012114787A1 JP 2012050386 W JP2012050386 W JP 2012050386W WO 2012114787 A1 WO2012114787 A1 WO 2012114787A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
hydrogen production
gas
conversion unit
electrolysis
Prior art date
Application number
PCT/JP2012/050386
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 章人
正樹 加賀
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011040639A external-priority patent/JP5802403B2/en
Priority claimed from JP2011040628A external-priority patent/JP5785736B2/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012114787A1 publication Critical patent/WO2012114787A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen production apparatus and a hydrogen production method.
  • renewable energy In recent years, the use of renewable energy is desired from the viewpoint of depletion of fossil fuel resources and the suppression of global warming gas emissions.
  • renewable energy sources such as sunlight, hydropower, wind power, geothermal power, tidal power, and biomass.
  • sunlight has a large amount of available energy, and there are geographical restrictions on other renewable energy sources. Because of the relatively small amount, early development and popularization of technology that can efficiently use energy from sunlight is desired.
  • Possible forms of energy generated from sunlight include electrical energy produced using solar cells and solar thermal turbines, thermal energy by collecting solar energy in a heat medium, and other types of sunlight.
  • Examples include storable fuel energy such as liquid fuel and hydrogen by substance reduction.
  • Many solar cell technologies and solar heat utilization technologies have already been put into practical use, but the energy utilization efficiency is still low, and the cost of producing electricity and heat is still high. Technology development is underway.
  • these forms of electricity and heat can be used to supplement short-term energy fluctuations, it is extremely difficult to supplement long-term fluctuations such as seasonal fluctuations, It is a problem that there is a possibility that the operating rate of the power generation equipment may be reduced due to the increase in power generation.
  • storing energy as a substance, such as liquid fuel and hydrogen is extremely effective as a technology that efficiently supplements long-term fluctuations and increases the operating rate of power generation facilities. It is an indispensable technology to raise and reduce carbon dioxide emissions thoroughly.
  • liquid fuels such as hydrocarbons
  • gaseous fuels such as biogas and hydrogen
  • solid pellets such as biomass-derived wood pellets and metals reduced by sunlight. It can.
  • liquid fuel, gaseous fuel including hydrogen in terms of total utilization efficiency improvement with fuel cells, etc. solid fuel in terms of storability and energy density
  • a hydrogen production technique by decomposing water with sunlight has attracted particular attention from the viewpoint that water that can be easily obtained as a raw material can be used.
  • platinum is supported on a photocatalyst such as titanium oxide, and this substance is put in water to perform light separation in a semiconductor, and an electrolytic solution.
  • the water is decomposed directly at high temperature using the photolysis method by reducing protons and oxidizing water, or by using thermal energy such as a high-temperature gas furnace, or indirectly by coupling with redox of metals, etc.
  • Pyrolysis method that uses the metabolism of microorganisms that use light such as algae, water electrolysis method that combines electricity generated by solar cells and water electrolysis hydrogen production equipment, photoelectric conversion used in solar cells
  • the method include a photovoltaic method in which electrons and holes obtained by photoelectric conversion are used in a reaction by a hydrogen generation catalyst and an oxygen generation catalyst by supporting a hydrogen generation catalyst and an oxygen generation catalyst on the material.
  • the one that has the possibility of producing a small hydrogen production device by integrating the photoelectric conversion unit and the hydrogen generation unit is considered to be a photolysis method, a biological method, a photovoltaic method, From the viewpoint of the conversion efficiency of solar energy, the photovoltaic method is considered to be one of the technologies closest to practical use. So far, a hydrogen production apparatus in which photoelectric conversion and hydrogen generation are integrated has been disclosed (for example, Patent Document 1). By using such a hydrogen production apparatus, solar energy can be efficiently stored as hydrogen.
  • the hydrogen production device when the movement of the sun is tracked so that the amount of incident light to be photoelectrically converted is increased in a hydrogen production device that integrates photoelectric conversion and hydrogen generation, depending on the inclination angle of the hydrogen production device, the hydrogen production device May not be discharged and the hydrogen generation efficiency may be reduced.
  • the present invention has been made in view of such circumstances, and provides a hydrogen production apparatus that can increase the amount of incident light that undergoes photoelectric conversion and that does not reduce hydrogen generation efficiency.
  • the present invention includes a photoelectric conversion unit having a light receiving surface and a back surface thereof, a first electrolysis electrode and a second electrolysis electrode provided on the back surface side of the photoelectric conversion unit, and an engagement unit that supports the photoelectric conversion unit.
  • a photoelectric conversion unit having a light receiving surface and a back surface thereof, a first electrolysis electrode and a second electrolysis electrode provided on the back surface side of the photoelectric conversion unit, and an engagement unit that supports the photoelectric conversion unit.
  • the electrolysis solution is generated by electrolysis, and the electrolytic solution is electrolyzed to generate the first gas and the second gas, respectively.
  • One of the first gas and the second gas is hydrogen and the other is Is an oxygen, and the engaging portion is provided so that the direction of the light receiving surface of the photoelectric conversion portion with respect to sunlight can be adjusted.
  • the first and second electrolysis electrodes are configured to electrolyze the electrolytic solution using the electromotive force generated by the light received by the photoelectric conversion unit to generate the first gas and the second gas, respectively. Since it is provided, the first gas can be generated on the surface of the first electrolysis electrode, and the second gas can be generated on the surface of the second electrolysis electrode. Moreover, since one of the first gas and the second gas is hydrogen, hydrogen can be produced. According to the present invention, since the first electrolysis electrode and the second electrolysis electrode are provided on the back side of the photoelectric conversion unit, light can be incident on the light receiving surface of the photoelectric conversion unit without using the electrolyte solution. It is possible to prevent absorption of incident light and scattering of incident light.
  • the amount of incident light to the photoelectric conversion unit can be increased, and the light use efficiency can be increased.
  • the first electrolysis electrode and the second electrolysis electrode are provided on the back surface side of the photoelectric conversion unit, light incident on the light receiving surface is generated from the first and second electrolysis electrodes, respectively. It is not absorbed or scattered by the first gas and the second gas. As a result, the amount of light incident on the photoelectric conversion unit can be increased, and the light utilization efficiency can be increased.
  • the engaging portion that supports the photoelectric conversion unit is provided so that the direction of the light receiving surface of the photoelectric conversion unit with respect to sunlight can be adjusted. Adjustment can be made in accordance with the movement, and the amount of light incident on the photoelectric conversion unit can be increased.
  • the engagement portion is provided so that the direction of the light receiving surface of the photoelectric conversion unit can be adjusted, thereby increasing the amount of light incident on the photoelectric conversion unit, and the first gas and the second gas. Since it is possible to optimize the direction of the light receiving surface of the photoelectric conversion unit so as to balance that it can be discharged without staying in the hydrogen production apparatus, hydrogen can be generated without reducing the water electrolysis efficiency. .
  • FIG. 22 is a schematic cross-sectional view of the hydrogen production apparatus taken along dotted line AA in FIG. 1 or a schematic cross-sectional view of the hydrogen production module taken along dotted line AA in FIG.
  • FIG. 2 is a schematic cross-sectional view of a hydrogen production apparatus taken along dotted line BB in FIG. It is a schematic sectional drawing of the hydrogen production apparatus of one Embodiment of this invention. It is a schematic sectional drawing of the hydrogen production apparatus of one Embodiment of this invention, or a schematic sectional drawing of the hydrogen production module contained in the hydrogen production apparatus of one Embodiment of this invention.
  • FIG. 1 It is a schematic plan view in the 1st form of the hydrogen production apparatus of one Embodiment of this invention.
  • (A) is a schematic plan view in the 2nd form of the hydrogen production apparatus of one Embodiment of this invention
  • (b) is the schematic side view.
  • It is a schematic plan view of the hydrogen production module contained in the hydrogen production apparatus of one embodiment of the present invention.
  • FIG. 1 It is a schematic plan view in the 1st form of the hydrogen production apparatus of one Embodiment of this invention.
  • (A) is a schematic plan view in the 2nd form of the hydrogen production apparatus of one Embodiment of this invention,
  • (b) is the schematic side view.
  • (A) is a schematic side view in the 2nd form of the hydrogen production apparatus of one Embodiment of this invention,
  • (b) is the schematic top view. It is a schematic back view of the hydrogen production module contained in the hydrogen production apparatus of one embodiment of the present invention.
  • the hydrogen production apparatus of this embodiment includes a photoelectric conversion unit having a light receiving surface and a back surface thereof, a first electrolysis electrode and a second electrolysis electrode provided on the back surface side of the photoelectric conversion unit, and the photoelectric conversion unit.
  • the electrolysis solution generated by receiving light from the conversion unit is used to electrolyze the electrolytic solution to generate the first gas and the second gas, respectively, one of the first gas and the second gas.
  • Is hydrogen and the other is oxygen, and the engaging portion is provided so that the direction of the light receiving surface of the photoelectric conversion portion relative to sunlight can be adjusted.
  • the hydrogen production apparatus of the present embodiment further includes an inclination angle limiting means, a first gas discharge port, and a second gas discharge port, wherein the first and second gas discharge ports are the end portion of the first electrolysis electrode and the second gas discharge port.
  • the inclination angle limiting means is provided close to each end of the electrolysis electrode. It is preferable to limit the inclination angles of the first and second electrolysis electrodes so that the first gas and the second gas move in the electrolytic solution to the first gas outlet and the second gas outlet, respectively, by buoyancy.
  • the first and second tilt angle limiting means move the first gas and the second gas so that the first gas and the second gas move through the electrolyte to the first gas outlet and the second gas outlet, respectively, by buoyancy. Since the inclination angle of the electrode for electrolysis is limited, it is possible to prevent the first gas or the second gas from staying in the apparatus without being discharged from the hydrogen production apparatus, and to prevent a decrease in hydrogen generation efficiency. it can.
  • the engaging portion is rotatable or deformable. According to such a configuration, the direction of the light receiving surface of the photoelectric conversion unit can be adjusted by rotating or deforming the engaging unit.
  • the hydrogen production apparatus preferably further includes a control unit that controls the direction of the light receiving surface of the photoelectric conversion unit with respect to sunlight or the movement of the first and second electrolysis electrodes. According to such a configuration, the movement of the hydrogen production apparatus can be automatically controlled.
  • the control unit controls the direction of the light receiving surface of the photoelectric conversion unit with respect to sunlight based on the elevation angle and direction of the sun. According to such a configuration, the amount of light incident on the photoelectric conversion unit can be increased.
  • the control unit controls the movement of the first and second electrolysis electrodes so that the first and second electrolysis electrodes vibrate. According to such a configuration, the discharge of the first gas on the surface of the first electrolysis electrode and the second gas on the surface of the second electrolysis electrode to the outside of the apparatus can be promoted.
  • the control unit includes an input unit for inputting information, a direction of a light receiving surface of the photoelectric conversion unit based on information input from the input unit, or first and second electrolysis.
  • the control unit includes a tilt angle limiting unit that limits a tilt angle of the first and second electrolysis electrodes. According to such a configuration, the inclination angle of the first and second electrolysis electrodes can be restricted without using physical means, and therefore the restriction by the inclination angle restriction means can be easily released.
  • the hydrogen production apparatus of the present embodiment further includes a switching unit that can be electrically connected to the first external circuit, and the switching unit outputs an electromotive force generated when the photoelectric conversion unit receives light to the first external circuit. It is preferable to be able to switch between a circuit and a circuit that outputs an electromotive force generated when the photoelectric conversion unit receives light to the first and second electrolysis electrodes. According to such a configuration, the electromotive force of the photoelectric conversion unit can be output to the first external circuit or the first or second electrolysis electrode as necessary, and the electromotive force of the photoelectric conversion unit is effectively utilized. be able to.
  • the switching unit can be electrically connected to the second external circuit, and the electromotive force input from the second external circuit is converted to the first electrolysis electrode and the second electrolysis. It is preferable that the circuit can be switched to a circuit that outputs to the working electrode and generates the first gas and the second gas from the electrolyte. According to such a configuration, the first and second electrolysis electrodes can be effectively utilized.
  • the control unit includes an input unit for inputting information, a setting unit for setting a circuit to be switched by the switching unit based on information input from the input unit, and the setting unit It is preferable that an output unit for outputting the information set by the above to the switching unit. According to such a configuration, the control unit can control the circuit that the switching unit switches based on the input information.
  • the hydrogen production apparatus of the present embodiment further includes an inclination sensor, an orientation sensor, a position sensor, an illuminance sensor, or a clock, and the input means includes the inclination sensor, the azimuth sensor, the position sensor, the illuminance sensor, or the clock. It is preferable to input information. According to such a configuration, information on the state of the hydrogen production apparatus, information on the position of the sun, information on movement, and information on solar radiation can be detected.
  • the input means inputs information from an electric power company, power sale information, Web information, and solution server information.
  • the hydrogen production apparatus can be controlled based on power demand information and the like.
  • the hydrogen production apparatus according to the present embodiment further includes a base, and the engaging portion is provided such that the photoelectric conversion unit, the first electrolysis electrode, and the second electrolysis electrode move relative to the base. It is preferable. According to such a structure, a base part can be fixed and a photoelectric conversion part etc. can be moved with respect to a base part.
  • the engaging portion includes a first engaging portion that adjusts an inclination angle of a light receiving surface of the photoelectric conversion portion, and a second that adjusts an orientation in which the light receiving surface of the photoelectric conversion portion faces. It is preferable that an engagement part is included. According to such a configuration, the direction in which the light receiving surface of the photoelectric conversion unit faces can be easily adjusted to the sun. In the hydrogen production apparatus of the present embodiment, it is preferable that the second engagement portion is provided so that the photoelectric conversion portion moves relative to the first electrolysis electrode and the second electrolysis electrode.
  • the direction of the light receiving surface of the photoelectric conversion unit can be moved without changing the inclination angles of the first and second electrolysis electrodes, and the first gas and the second gas can be stably supplied. Can be discharged.
  • the engaging portion is provided so that the photoelectric conversion portion moves relative to the first electrolysis electrode and the second electrolysis electrode. According to such a configuration, the direction of the light receiving surface of the photoelectric conversion unit can be moved without changing the inclination angles of the first and second electrolysis electrodes, and the first gas and the second gas can be stably supplied. Can be discharged.
  • the present invention is a hydrogen production apparatus that can be modified from the first form to the second form or from the second form to the first form, comprising at least one hydrogen production module that is deformably provided,
  • the hydrogen production module includes a photoelectric conversion unit having a light receiving surface and a back surface, and a first electrolysis electrode and a second electrolysis electrode provided on the back surface side of the photoelectric conversion unit, and the first and second electrolysis electrodes.
  • the electrolysis solution is electrolyzed using the electromotive force generated by the photoelectric conversion unit receiving light.
  • the first gas and the second gas are provided so as to be decomposed to generate a first gas and a second gas, respectively.
  • One of the first gas and the second gas is hydrogen and the other is oxygen.
  • the light reception included in the apparatus The second form is the same or different on the same or different hydrogen production module on the light receiving surface side or the back surface side of the photoelectric conversion part included in one hydrogen production module.
  • a conventional hydrogen production apparatus using solar energy a large installation area is required in order to use as much solar energy as possible.
  • conventional hydrogen production equipment is generally fixedly installed, the installation location can be used for other purposes even at night when sunlight cannot be received or when the installation location is to be used temporarily for other purposes. Can not.
  • This invention is made
  • the first and second electrolysis electrodes are configured to electrolyze the electrolytic solution using the electromotive force generated by the light received by the photoelectric conversion unit to generate the first gas and the second gas, respectively. Since it is provided, the first gas can be generated on the surface of the first electrolysis electrode, and the second gas can be generated on the surface of the second electrolysis electrode. Moreover, since one of the first gas and the second gas is hydrogen, hydrogen can be produced. According to the present invention, since the first electrolysis electrode and the second electrolysis electrode are provided on the back side of the photoelectric conversion unit, light can be incident on the light receiving surface of the photoelectric conversion unit without using the electrolyte solution. It is possible to prevent absorption of incident light and scattering of incident light.
  • the amount of incident light to the photoelectric conversion unit can be increased, and the light use efficiency can be increased.
  • the first electrolysis electrode and the second electrolysis electrode are provided on the back surface side of the photoelectric conversion unit, light incident on the light receiving surface is generated from the first and second electrolysis electrodes, respectively. It is not absorbed or scattered by the first gas and the second gas. As a result, the amount of light incident on the photoelectric conversion unit can be increased, and the light utilization efficiency can be increased.
  • the hydrogen production apparatus from the first mode in which substantially the entire light receiving surface included in the hydrogen production apparatus can directly receive sunlight, the light receiving surface side of the photoelectric conversion unit included in one hydrogen production module or It is possible to transform the hydrogen production apparatus into the second form in which the photoelectric conversion unit included in the same or different hydrogen production module is located on the back side, and transform the hydrogen production apparatus from the second form to the first form Therefore, by setting the hydrogen production apparatus to the first configuration when there is solar radiation, the amount of light incident on the light receiving surface of the photoelectric conversion unit can be increased and hydrogen can be produced efficiently, and there is no solar radiation. By setting the hydrogen production apparatus to the second form when it is desired to use the installation place of the hydrogen production apparatus for other purposes, the hydrogen production apparatus can be made compact and the installation area can be reduced.
  • the hydrogen production apparatus can be made compact, the vacant space can be used for other purposes, and the installation location of the hydrogen production apparatus can be used effectively.
  • the hydrogen production apparatus can be made compact, the hydrogen production apparatus can be easily accommodated, and the installation location of the hydrogen production apparatus can be easily changed.
  • the hydrogen production apparatus when a hydrogen production apparatus is installed in a cold region, it is considered that the hydrogen production apparatus may be damaged due to freezing of the electrolyte. It becomes possible to protect the manufacturing apparatus from cold.
  • the hydrogen production apparatus can be easily protected when there is a risk of damage to the hydrogen production apparatus, such as during high temperatures or strong winds.
  • the hydrogen production apparatus of the present invention is used as a water electrolysis apparatus using external electric power, hydrogen generated by using the compact second embodiment can be efficiently recovered.
  • the first mode is a mode in which the hydrogen production modules are arranged so that sunlight can enter the light receiving surface of the photoelectric conversion unit of each hydrogen production module.
  • the second form is preferably a form in which the hydrogen production modules are stacked. According to such a configuration, when the hydrogen production apparatus is in the first form, the amount of light incident on the photoelectric conversion unit of each hydrogen production module can be increased, and when the hydrogen production apparatus is in the second form, The manufacturing apparatus can be made compact and the installation area can be reduced.
  • the hydrogen production apparatus further includes a connecting portion that connects a plurality of hydrogen production modules. According to such a structure, a some hydrogen production module can be connected by a connection part, and the form of a hydrogen production apparatus can be changed by changing arrangement
  • the connecting portion has a structure including a rotating shaft. According to such a structure, a connection part becomes rotatable with a rotating shaft, and each hydrogen production module can be made movable. Thus, the hydrogen production apparatus can be transformed from the first form to the second form or from the second form to the first form.
  • the connecting portion has a guide groove, and at least one hydrogen production module slides along the guide groove. According to such a configuration, the hydrogen production module can be changed from the first form to the second form or from the second form to the first form by sliding the hydrogen production module along the guide groove. .
  • the respective hydrogen production modules are separable and are connected by the first connection part in the first form and are connected by the second connection part in the second form.
  • the hydrogen production apparatus can be in the first form by connecting the hydrogen production modules with the first connection part, and the hydrogen production module can be connected with the hydrogen by connecting the hydrogen production modules with the second connection part.
  • a manufacturing apparatus can be made into the 2nd form.
  • the first and second connecting portions are separable from each hydrogen production module. According to such a structure, the 1st connection part and the 2nd connection part can be replaced with the 1st form and the 2nd form, and the connection part suitable for the form can be used.
  • the connecting portion includes a magnet.
  • each hydrogen production module can be connected by the attractive force of a magnet. This also makes it possible to easily separate the hydrogen production modules.
  • the connecting portion includes a water supply pipe that supplies an electrolytic solution to each hydrogen production module, a first gas exhaust pipe that discharges a first gas from each hydrogen production module, or a first gas discharge pipe from each hydrogen production module. It is preferable that it is the 2nd gas exhaust pipe which discharges 2 gas.
  • a connection part can be made into a water supply pipe, a 1st gas exhaust pipe, or a 2nd gas exhaust pipe, and can reduce the number of parts.
  • each hydrogen production module includes a water supply port for supplying the electrolyte into the hydrogen production module, a first gas exhaust port for discharging the first gas, and a second gas for discharging the second gas. It is preferable that a water leakage prevention mechanism is provided in the water supply port, the first gas discharge port, or the second gas discharge port. According to such a configuration, when the water supply pipe, the first gas discharge pipe, or the second gas discharge pipe is removed from the hydrogen production module, the electrolyte can be prevented from flowing out.
  • the hydrogen production module has a flexible and rollable sheet shape
  • the first form is an expanded form of the sheet-like hydrogen production module
  • the second form is The sheet-like hydrogen production module is preferably rolled up.
  • the hydrogen production apparatus further includes a switching unit that can be electrically connected to the first external circuit, and the switching unit outputs an electromotive force generated when the photoelectric conversion unit receives light to the first external circuit. It is preferable that the circuit that outputs the electromotive force generated when the photoelectric conversion unit receives light to the first and second electrolysis electrodes can be switched. According to such a configuration, the electromotive force of the photoelectric conversion unit can be output to the first external circuit or the first or second electrolysis electrode as necessary, and the electromotive force of the photoelectric conversion unit is effectively utilized. can do.
  • the switching unit can be electrically connected to the second external circuit, and the electromotive force input from the second external circuit is used as the first electrolysis electrode and the second electrolysis electrode. It is preferable that the circuit can be switched to a circuit that outputs to the electrode and generates the first gas and the second gas from the electrolyte. According to such a configuration, the first and second electrolysis electrodes can be effectively utilized. Further, when the hydrogen production apparatus is in the second form, the hydrogen production apparatus can be used as a compact water electrolysis apparatus.
  • the photoelectric conversion unit receives light to generate an electromotive force between the light receiving surface and the back surface
  • the first electrolysis electrode is electrically connected to the back surface of the photoelectric conversion unit.
  • the second electrolysis electrode is provided so as to be connectable, and is provided so as to be electrically connected to the light receiving surface of the photoelectric conversion unit. According to such a configuration, an electromotive force generated when the photoelectric conversion unit receives light can be output to the first electrolysis electrode and the second electrolysis electrode.
  • the hydrogen producing apparatus further includes an insulating portion provided between the second electrolysis electrode and the back surface of the photoelectric conversion portion.
  • the 2nd electrode for electrolysis and the back surface of a photoelectric conversion part can be electrically isolate
  • the hydrogen production apparatus of this embodiment it is preferable to further include a first conductive portion that electrically connects the first electrode and the second electrolysis electrode.
  • a first conductive portion that electrically connects the first electrode and the second electrolysis electrode.
  • the first conductive portion is provided in a contact hole that penetrates the photoelectric conversion portion. According to such a structure, the wiring distance between the light-receiving surface of a photoelectric conversion part and the 2nd electrode for electrolysis can be shortened.
  • the insulating part is provided so as to cover the side surface of the photoelectric conversion unit, and the first conductive unit is a part of the insulating unit and covers the side surface of the photoelectric conversion unit. It is preferable to be provided on the top. According to such a configuration, the light receiving surface of the photoelectric conversion unit and the first conductive unit can be easily electrically connected.
  • the insulating unit is provided so as to cover a side surface of the photoelectric conversion unit, and the second electrolysis electrode is a part of the insulating unit and covers the side surface of the photoelectric conversion unit. It is preferable that it is provided on the part and is in contact with the first electrode. According to such a configuration, the light receiving surface of the photoelectric conversion unit and the first conductive unit can be easily electrically connected.
  • the photoelectric conversion unit preferably includes a photoelectric conversion layer including a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer. According to such a configuration, an electromotive force can be generated when the photoelectric conversion unit receives light.
  • the photoelectric conversion unit receives light to generate a potential difference between the first and second areas on the back surface of the photoelectric conversion unit, and the first area is electrically connected to the first electrolysis electrode.
  • the second section is provided so as to be electrically connected to the second electrolysis electrode. According to such a configuration, an electromotive force generated when the photoelectric conversion unit receives light can be easily output to the first electrolysis electrode and the second electrolysis electrode.
  • an insulating unit provided between the first and second electrolysis electrodes and the back surface of the photoelectric conversion unit and having openings on the first area and the second area is further provided. It is preferable to provide. According to such a structure, the electron and the hole which arise when a photoelectric conversion part receives light can be isolate
  • the photoelectric conversion part is made of at least one semiconductor material having an n-type semiconductor part and a p-type semiconductor part, and one of the first and second areas is the n-type semiconductor part. It is preferable that the other is a part of the p-type semiconductor part. According to such a structure, the electron and the hole which arise when a photoelectric conversion part receives light can be isolate
  • the photoelectric conversion unit includes a plurality of photoelectric conversion layers connected in series, and the plurality of photoelectric conversion layers generate an electromotive force generated by receiving light from the first electrolysis electrode and the second electrolysis electrode. It is preferably provided so as to be supplied to the electrode for electrolysis. According to such a configuration, the voltage of the electromotive force generated when the photoelectric conversion unit receives light can be increased.
  • one of the first electrolysis electrode and the second electrolysis electrode is a hydrogen generation unit that generates H 2 from the electrolytic solution, and the other is oxygen that generates O 2 from the electrolytic solution.
  • the hydrogen generation part and the oxygen generation part are a hydrogen generation catalyst that is a catalyst for the reaction that generates H 2 from the electrolytic solution and an oxygen generation catalyst that is a catalyst for the reaction that generates O 2 from the electrolytic solution, respectively. It is preferable to contain. According to such a configuration, hydrogen and oxygen can be efficiently produced from the electrolytic solution.
  • At least one of the hydrogen generation unit and the oxygen generation unit has a catalyst surface area larger than an area of a light receiving surface of the photoelectric conversion unit. According to such a configuration, hydrogen and oxygen can be efficiently produced from the electrolytic solution.
  • the hydrogen generation unit and the oxygen generation unit is a porous conductor carrying a catalyst. According to such a configuration, the surface area of the catalyst can be increased.
  • the hydrogen generation catalyst preferably includes at least one of Pt, Ir, Ru, Pd, Rh, Au, Fe, Ni, and Se. According to such a configuration, hydrogen can be produced efficiently.
  • the oxygen generation catalyst contains at least one of Mn, Ca, Zn, Co, and Ir. According to such a configuration, oxygen can be produced efficiently.
  • the hydrogen production apparatus of the present embodiment further includes a translucent substrate and an electrolytic solution chamber, the photoelectric conversion unit is provided on the translucent substrate, and the first electrolysis electrode and the second electrolysis electrode It is preferable that a back substrate is further provided, and the electrolyte chamber is provided between the first and second electrolysis electrodes and the back substrate. According to such a configuration, the electrolytic solution can be introduced into the electrolytic solution chamber, and the electrolytic solution can be brought into contact with the first and second electrolysis electrodes.
  • the hydrogen production apparatus of the present embodiment further includes a partition that partitions the electrolyte chamber between the first electrolysis electrode and the back substrate and the electrolyte chamber between the second electrolysis electrode and the back substrate.
  • a partition that partitions the electrolyte chamber between the first electrolysis electrode and the back substrate and the electrolyte chamber between the second electrolysis electrode and the back substrate.
  • the first gas and the second gas can be separated by the partition wall.
  • the partition preferably includes an ion exchanger. According to such a configuration, it is possible to eliminate the uneven proton concentration in the electrolyte chamber.
  • the hydrogen production apparatus of the present embodiment is installed so that the light receiving surface of the photoelectric conversion unit is inclined with respect to a horizontal plane, the electrolyte is introduced into the hydrogen production apparatus from the lower part of the hydrogen production apparatus, The first gas and the second gas are generated from the first electrolysis electrode and the second electrolysis electrode by causing sunlight to enter the light receiving surface of the photoelectric conversion unit, respectively, and the first gas and A method for producing hydrogen that exhausts the second gas is also provided.
  • hydrogen can be produced by making sunlight enter the photoelectric conversion unit.
  • Diagram 1 of the hydrogen production apparatus of the first embodiment is a schematic diagram seen from the light receiving surface side of the hydrogen production apparatus of the present embodiment, FIGS. 2 and 3, the dotted line A-A, respectively, hydrogen in dotted line B-B It is a schematic sectional drawing of a manufacturing apparatus.
  • 4 to 12 are schematic cross-sectional views of the hydrogen production apparatus of the present embodiment, FIG. 4 is a schematic cross-sectional view of the hydrogen production apparatus corresponding to FIG. 3, and FIGS. It is a schematic sectional drawing of a corresponding hydrogen production apparatus.
  • the hydrogen production apparatus 45 of the first embodiment includes a photoelectric conversion unit 2 having a light receiving surface and a back surface thereof, a first electrolysis electrode 8 and a second electrolysis electrode 7 provided on the back surface side of the photoelectric conversion unit 2, and Engaging portions 22 and 23 that support the photoelectric conversion unit 2, and when sunlight enters the light receiving surface of the photoelectric conversion unit 2 and the first and second electrolysis electrodes 8 and 7 come into contact with the electrolytic solution,
  • the first and second electrolysis electrodes 8 and 7 are capable of electrolyzing the electrolytic solution 46 using the electromotive force generated by the photoelectric conversion unit 2 receiving light to generate the first gas and the second gas, respectively.
  • One of the first gas and the second gas is hydrogen and the other is oxygen so that the engaging portions 22 and 23 can adjust the direction of the light receiving surface of the photoelectric conversion portion 2. It is provided.
  • the hydrogen production apparatus of the first embodiment will be described.
  • the translucent substrate 1 may be provided in the hydrogen production apparatus 45 of the present embodiment.
  • the photoelectric conversion part 2 may be provided on the translucent board
  • substrate 1 can be abbreviate
  • the photoelectric conversion part 2 can be formed on a flexible material such as a resin film, the translucent substrate 1 can be omitted.
  • the translucent substrate 1 is preferably transparent and has high light transmittance. However, it is possible to efficiently enter light into the photoelectric conversion unit 2. If it is a simple structure, there is no restriction
  • a substrate material having a high light transmittance for example, a transparent rigid material such as soda glass, quartz glass, Pyrex (registered trademark), or a synthetic quartz plate, or a transparent resin plate or film material is preferably used. In view of chemical and physical stability, it is preferable to use a glass substrate.
  • a fine uneven structure can be formed so that incident light is effectively irregularly reflected on the surface of the photoelectric conversion unit 2.
  • This fine concavo-convex structure can be formed by a known method such as reactive ion etching (RIE) treatment or blast treatment.
  • the 1st electrode 4 can be provided on the translucent board
  • the first electrode 4 can be electrically connected to the second electrolysis electrode 7. By providing the first electrode 4, the current flowing between the light receiving surface of the photoelectric conversion unit 2 and the second electrolysis electrode 7 can be increased.
  • the 1st electrode 4 is unnecessary.
  • the first electrode 4 may be electrically connected to the second electrolysis electrode 7 via the first conductive portion 9 as shown in FIGS. 2, 6 and 9, and the second electrolysis electrode 7 as shown in FIG. You may contact with.
  • the 1st electrode 4 can be electrically connected with the electrode 7 for 2nd electrolysis via the switch part 10 and the wiring 52 in the case like FIG.
  • the first electrode 4 may be made of a transparent conductive film such as ITO or SnO 2, or may be made of a metal finger electrode such as Ag or Au.
  • the transparent conductive film can be used to facilitate contact between the light receiving surface of the photoelectric conversion unit 2 and the second electrolysis electrode 7. What is generally used as a transparent electrode can be used. Specifically, In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, SnO 2 and the like can be given.
  • the transparent conductive film preferably has a sunlight transmittance of 85% or more, particularly 90% or more, and particularly 92% or more. This is because the photoelectric conversion unit 2 can absorb light efficiently.
  • a known method can be used, and examples thereof include sputtering, vacuum deposition, sol-gel method, cluster beam deposition method, and PLD (Pulse Laser Deposition) method.
  • the photoelectric conversion unit 2 has a light receiving surface and a back surface thereof, and a first electrolysis electrode 8 and a second electrolysis electrode 7 are provided on the back surface side of the photoelectric conversion unit 2.
  • the light receiving surface is a surface that receives light for photoelectric conversion
  • the back surface is the back surface of the light receiving surface.
  • the photoelectric conversion part 2 can be provided on the translucent substrate 1 provided with the first electrode 4 with the light receiving surface facing down.
  • the photoelectric conversion unit 2 may generate an electromotive force between the light receiving surface and the back surface as shown in FIGS. 2 and 5 to 10. An electromotive force may be generated between the first area and the second area.
  • the photoelectric conversion part 2 as shown in FIGS.
  • the photoelectric conversion part 2 can be formed by a semiconductor substrate on which the n-type semiconductor region 37 and the p-type semiconductor region 36 are formed.
  • the shape of the photoelectric conversion part 2 is not specifically limited, For example, it can be set as a square shape.
  • the photoelectric conversion unit 2 is not particularly limited as long as it can separate charges by incident light and generates an electromotive force.
  • the photoelectric conversion unit using a silicon-based semiconductor or the photoelectric conversion unit using a compound semiconductor A photoelectric conversion part using a dye sensitizer, a photoelectric conversion part using an organic thin film, and the like.
  • the photoelectric conversion unit 2 receives light in the first electrolysis electrode 8 and the second electrolysis electrode 7. It is necessary to use a material that generates an electromotive force necessary for generating hydrogen and oxygen.
  • the potential difference between the first electrolysis electrode 8 and the second electrolysis electrode 7 needs to be larger than the theoretical voltage (1.23 V) for water decomposition, and for this purpose, a sufficiently large potential difference needs to be generated in the photoelectric conversion unit 2. There is. Therefore, it is preferable that the photoelectric conversion unit 2 connects two or more junctions in series such as a pn junction to generate an electromotive force.
  • the photoelectric conversion layers arranged side by side as shown in FIGS. 9 and 12 can be connected in series by the third conductive portion 33.
  • Examples of materials that perform photoelectric conversion include silicon-based semiconductors, compound semiconductors, and materials based on organic materials, and any photoelectric conversion material can be used.
  • these photoelectric conversion materials can be stacked. In the case of stacking, it is possible to form a multi-junction structure with the same material, but stacking multiple photoelectric conversion layers with different optical band gaps and complementing the low sensitivity wavelength region of each photoelectric conversion layer mutually By doing so, incident light can be efficiently absorbed over a wide wavelength region.
  • the plurality of photoelectric conversion layers preferably have different band gaps. According to such a configuration, the electromotive force generated in the photoelectric conversion unit 2 can be increased, and the electrolytic solution can be electrolyzed more efficiently.
  • the photoelectric conversion unit 2 may be a combination of these.
  • the example of the following photoelectric conversion parts 2 can also be made into a photoelectric converting layer.
  • Photoelectric conversion part using a silicon-based semiconductor examples include a single crystal type, a polycrystalline type, an amorphous type, a spherical silicon type, and combinations thereof. Any of them can have a pn junction in which a p-type semiconductor and an n-type semiconductor are joined. Further, a pin junction in which an i-type semiconductor is provided between a p-type semiconductor and an n-type semiconductor may be provided. Further, it may have a plurality of pn junctions, a plurality of pin junctions, or a pn junction and a pin junction.
  • the silicon-based semiconductor is a semiconductor containing silicon, such as silicon, silicon carbide, or silicon germanium.
  • the photoelectric conversion unit 2 using a silicon-based semiconductor may be a thin film or a thick photoelectric conversion layer formed on the translucent substrate 1, or a pn junction or a wafer such as a silicon wafer.
  • a pin junction may be formed, or a thin film photoelectric conversion layer may be formed on a wafer having a pn junction or a pin junction.
  • a first conductivity type semiconductor layer is formed on the first electrode 4 laminated on the translucent substrate 1 by a method such as a plasma CVD method.
  • a method such as a plasma CVD method.
  • As the first conductive type semiconductor layer a p + type or n + type amorphous Si thin film doped with a conductivity type determining impurity atom concentration of about 1 ⁇ 10 18 to 5 ⁇ 10 21 / cm 3 , A crystalline or microcrystalline Si thin film is used.
  • the material of the first conductivity type semiconductor layer is not limited to Si, and it is also possible to use a compound such as SiC, SiGe, or Si x O 1-x .
  • a polycrystalline or microcrystalline crystalline Si thin film is formed as a crystalline Si photoactive layer by a method such as plasma CVD.
  • the conductivity type is the first conductivity type having a lower doping concentration than the first conductivity type semiconductor, or the i conductivity type.
  • the material for the crystalline Si-based photoactive layer is not limited to Si, and it is also possible to use a compound such as SiC, SiGe, or Si x O 1-x .
  • a second conductivity type semiconductor layer having a conductivity type opposite to the first conductivity type semiconductor layer is formed by a method such as plasma CVD.
  • a method such as plasma CVD.
  • the material of the second conductivity type semiconductor layer is not limited to Si, and it is also possible to use a compound such as SiC, SiGe, or Si x O 1-x .
  • the second photoelectric conversion layer includes a first conductive semiconductor layer, a crystalline Si-based photoactive layer, and a second conductive semiconductor layer, and each layer corresponds to the first photoelectric conversion layer.
  • the first conductive type semiconductor layer, the crystalline Si-based photoactive layer, and the second conductive type semiconductor layer are formed.
  • the volume crystallization fraction of the crystalline Si photoactive layer of the second photoelectric conversion layer is preferably higher than that of the first crystalline Si photoactive layer.
  • the volume crystallization fraction is preferably increased as compared with the lower layer.
  • the silicon substrate a single crystal silicon substrate, a polycrystalline silicon substrate, or the like can be used, and may be p-type, n-type, or i-type.
  • An n-type semiconductor portion 37 is formed by doping an n-type impurity such as P into a part of the silicon substrate by thermal diffusion or ion implantation, and a p-type impurity such as B is heated on the other part of the silicon substrate.
  • the p-type semiconductor portion 36 can be formed by doping by diffusion or ion implantation.
  • pn junction in the silicon substrate, pin junction can be formed and npp + junction or pnn + junction, it is possible to form a photoelectric conversion unit 2.
  • Each of the n-type semiconductor portion 37 and the p-type semiconductor portion 36 can form one region on the silicon substrate as shown in FIGS. 11 and 12, and either of the n-type semiconductor region 37 and the p-type semiconductor region 36 can be formed. A plurality of these can be formed.
  • the photoelectric conversion unit 2 can be formed by arranging the silicon substrates on which the n-type semiconductor region 37 and the p-type semiconductor region 36 are arranged side by side and connecting them in series by the third conductive unit 33. Note that, although described with reference to a silicon substrate, pn junction, pin junction, may use other semiconductor substrate or the like can be formed npp + junction or pnn + junction. Further, as long as the n-type semiconductor portion 37 and the p-type semiconductor portion 36 can be formed, the semiconductor layer is not limited to the semiconductor substrate, and may be a semiconductor layer formed on the substrate.
  • Photoelectric conversion part using a compound semiconductor is, for example, GaP, GaAs, InP, InAs, or IId-VI elements composed of group III-V elements, CdTe / CdS, Examples thereof include those in which a pn junction is formed using CIGS (Copper Indium Gallium DiSelenide) composed of the I-III-VI group.
  • CIGS Copper Indium Gallium DiSelenide
  • a method for manufacturing a photoelectric conversion unit using a compound semiconductor is shown below.
  • MOCVD metal organic chemical vapor deposition
  • a group III element material for example, an organic metal such as trimethylgallium, trimethylaluminum, or trimethylindium is supplied to the growth apparatus using hydrogen as a carrier gas.
  • a gas such as arsine (AsH 3 ), phosphine (PH 3 ), and stibine (SbH 3 ) is used as the material of the group V element.
  • a dopant of p-type impurities or n-type impurities for example, diethyl zinc for p-type conversion, monosilane (SiH 4 ), disilane (Si 2 H 6 ), hydrogen selenide (H 2 Se) for n-type conversion, for example. Etc. are used.
  • These source gases can be thermally decomposed by supplying them onto a substrate heated to, for example, 700 ° C., and a desired compound semiconductor material film can be epitaxially grown.
  • the composition of these growth layers can be controlled by the gas composition to be introduced, and the film thickness can be controlled by the gas introduction time.
  • a known window layer on the light receiving surface side or a known electric field layer on the non-light receiving surface side may be provided to improve carrier collection efficiency.
  • a buffer layer for preventing diffusion of impurities may be provided.
  • the photoelectric conversion part using a dye sensitizer is mainly composed of, for example, a porous semiconductor, a dye sensitizer, an electrolyte, a solvent, and the like.
  • a material constituting the porous semiconductor for example, one or more kinds of known semiconductors such as titanium oxide, tungsten oxide, zinc oxide, barium titanate, strontium titanate, cadmium sulfide can be selected.
  • a paste containing semiconductor particles is applied by a screen printing method, an ink jet method and the like, dried or baked, a method of forming a film by a CVD method using a raw material gas, etc. , PVD method, vapor deposition method, sputtering method, sol-gel method, method using electrochemical oxidation-reduction reaction, and the like.
  • the dye sensitizer adsorbed on the porous semiconductor various dyes having absorption in the visible light region and the infrared light region can be used.
  • the carboxylic acid group, carboxylic anhydride group, alkoxy group, sulfonic acid group, hydroxyl group, hydroxylalkyl group, ester group, mercapto group, phosphonyl in the dye molecule It is preferable that a group or the like is present.
  • These functional groups provide an electrical bond that facilitates electron transfer between the excited state dye and the conduction band of the porous semiconductor.
  • dyes containing these functional groups include ruthenium bipyridine dyes, quinone dyes, quinone imine dyes, azo dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, and triphenylmethane dyes.
  • ruthenium bipyridine dyes quinone dyes, quinone imine dyes, azo dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, and triphenylmethane dyes.
  • Xanthene dyes porphyrin dyes, phthalocyanine dyes, berylene dyes, indigo dyes, naphthalocyanine dyes, and the like.
  • Examples of the method of adsorbing the dye to the porous semiconductor include a method of immersing the porous semiconductor in a solution in which the dye is dissolved (dye adsorption solution).
  • the solvent used in the dye adsorption solution is not particularly limited as long as it dissolves the dye, and specifically, alcohols such as ethanol and methanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran.
  • Nitrogen compounds such as acetonitrile, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, esters such as ethyl acetate, water, and the like.
  • the electrolyte is composed of a redox pair and a solid medium such as a liquid or polymer gel holding the redox pair.
  • a redox pair iron- and cobalt-based metals and halogen substances such as chlorine, bromine, and iodine are preferably used as the redox pair, and metal iodides such as lithium iodide, sodium iodide, and potassium iodide and iodine are used.
  • the combination of is preferably used.
  • imidazole salts such as dimethylpropylimidazole iodide can also be mixed.
  • the solvent examples include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol and methanol, water, aprotic polar substances, and the like. Of these, carbonate compounds and nitrile compounds are preferred. Used.
  • Photoelectric conversion part using organic thin film Photoelectric conversion part 2 using an organic thin film is an electron hole transport layer composed of an organic semiconductor material having electron donating properties and electron accepting properties, or an electron transport layer having electron accepting properties. And a hole transport layer having an electron donating property may be laminated.
  • the electron-donating organic semiconductor material is not particularly limited as long as it has a function as an electron donor, but it is preferable that a film can be formed by a coating method, and among them, an electron-donating conductive polymer is preferably used.
  • the conductive polymer refers to a ⁇ -conjugated polymer, which is composed of a ⁇ -conjugated system in which double bonds or triple bonds containing carbon-carbon or hetero atoms are alternately connected to single bonds, and exhibits semiconducting properties. Point.
  • Examples of the electron-donating conductive polymer material include polyphenylene, polyphenylene vinylene, polythiophene, polycarbazole, polyvinyl carbazole, polysilane, polyacetylene, polypyrrole, polyaniline, polyfluorene, polyvinyl pyrene, polyvinyl anthracene, and derivatives, Examples thereof include a polymer, a phthalocyanine-containing polymer, a carbazole-containing polymer, and an organometallic polymer.
  • thiophene-fluorene copolymer polyalkylthiophene, phenylene ethynylene-phenylene vinylene copolymer, fluorene-phenylene vinylene copolymer, thiophene-phenylene vinylene copolymer and the like are preferably used.
  • the electron-accepting organic semiconductor material is not particularly limited as long as it has a function as an electron acceptor. However, it is preferable that a film can be formed by a coating method, and among them, an electron-donating conductive polymer is preferably used.
  • the electron-accepting conductive polymer include polyphenylene vinylene, polyfluorene, and derivatives and copolymers thereof, or carbon nanotubes, fullerene and derivatives thereof, CN group or CF 3 group-containing polymers, and —CF Examples thereof include 3- substituted polymers.
  • an electron-accepting organic semiconductor material doped with an electron-donating compound an electron-donating organic semiconductor material doped with an electron-accepting compound, or the like can be used.
  • the electron-accepting conductive polymer material doped with the electron-donating compound include the above-described electron-accepting conductive polymer material.
  • a Lewis base such as an alkali metal such as Li, K, Ca, or Cs or an alkaline earth metal can be used. The Lewis base acts as an electron donor.
  • the electron-donating conductive polymer material doped with the electron-accepting compound include the above-described electron-donating conductive polymer material.
  • a Lewis acid such as FeCl 3 , AlCl 3 , AlBr 3 , AsF 6 or a halogen compound can be used.
  • Lewis acid acts as an electron acceptor.
  • photoelectric conversion unit 2 In the photoelectric conversion unit 2 shown above, it is assumed that sunlight is received and photoelectric conversion is primarily performed. However, it is emitted from a fluorescent lamp, an incandescent lamp, an LED, or a specific heat source depending on the application. It is also possible to perform photoelectric conversion by irradiating artificial light such as light.
  • the second electrode 5 can be provided on the back surface of the photoelectric conversion unit 2.
  • the second electrode 5 can also be provided between the back surface of the photoelectric conversion unit 2 and the first electrolysis electrode 8 and between the back surface of the photoelectric conversion unit 2 and the insulating unit 11.
  • the second electrode 5 can be electrically connected to the first electrolysis electrode 8.
  • the second electrode 5 may be in contact with the first electrolysis electrode 8. Further, the second electrode 5 may be electrically connected to the first electrolysis electrode 8 via the switching unit 10 and the wiring 52.
  • the 2nd electrode 5 has the corrosion resistance with respect to electrolyte solution, and the liquid shielding property with respect to electrolyte solution. Thereby, corrosion of the photoelectric conversion part 2 by electrolyte solution can be prevented.
  • the 2nd electrode 5 has electroconductivity
  • it is a metal thin film, for example, is thin films, such as Al, Ag, Au. These can be formed by, for example, sputtering.
  • a transparent conductive film such as In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, and SnO 2 is used.
  • Engaging unit, base, power unit The engaging units 22 and 23 are provided so as to support the photoelectric conversion unit 2 and to adjust the direction of the light receiving surface of the photoelectric conversion unit 2.
  • the engaging portions 22 and 23 may be rotatable or may be deformable. The direction of the light receiving surface of the photoelectric conversion unit 2 can be adjusted by rotating or deforming the engaging units 22 and 23.
  • the engaging portions 22 and 23 can be provided, for example, between the back substrate 14 and the base portions 27 and 26 as shown in FIG. 3, and the photoelectric conversion portion 2 and the first and second electrolysis as shown in FIG. It can be provided between the electrodes 8 and 7 for use.
  • the engaging portions 22 and 23 may have, for example, a rotation shaft, a gear, or a bearing.
  • the engaging portions 22 and 23 can be freely rotated.
  • the engaging parts 22 and 23 may have a ball joint. Thereby, the engaging portions 22 and 23 can be freely rotated.
  • the engaging portions 22 and 23 may be made of a deformable material such as rubber or a spring. Thereby, the engaging portions 22 and 23 can be deformed.
  • the engaging portions 22 and 23 include a first engaging portion 22 that adjusts the inclination angle of the light receiving surface of the photoelectric conversion portion 2 and a second engaging portion 23 that adjusts the direction in which the light receiving surface of the photoelectric conversion portion 2 faces. be able to. Thereby, the direction of the light receiving surface of the photoelectric conversion unit 2 can be changed in accordance with the position of the sun that changes depending on the season and time.
  • the first engagement portion 22 can be formed, for example, by engaging the first base portion 26 and the second base portion 27 with a rotation shaft as shown in FIG. As a result, the second base 27 connected to the photoelectric conversion unit 2 rotates relative to the first base 26, whereby the orientation of the light receiving surface of the photoelectric conversion unit 2 can be changed.
  • the second engaging portion 23 can be formed, for example, by providing a rotation shaft between the second base portion 27 and the back substrate 14 as shown in FIG. This makes it possible to change the elevation angle in the direction in which the light receiving surface of the photoelectric conversion unit 2 faces the second base 27.
  • the 2nd engaging part 23 can be provided in hinge shape so that the photoelectric conversion part 2 may move relatively with respect to the 1st and 2nd electrodes 8 and 7, for example, as shown in FIG.
  • the hydrogen production apparatus 45 includes a substrate 51a provided on the back surface of the photoelectric conversion unit 2, and a substrate 51b provided on the photoelectric conversion unit 2 side of the first and second electrolysis electrodes 8 and 7. The substrate 51a and the substrate 51b can be moved like a hinged door.
  • the photoelectric conversion unit 2 or the first and second electrolysis electrodes 8 and 7 that are movable by the engagement units 22 and 23 may be provided so as to be manually movable.
  • the amount of light incident on the light receiving surface of the photoelectric conversion unit 2 can be increased by manually changing the direction of the light receiving surface of the photoelectric conversion unit 2 according to the season and time zone.
  • manual operation can reduce manufacturing cost, installation cost, maintenance cost, and the like.
  • the photoelectric conversion unit 2 or the first and second electrolysis electrodes 8 and 7 that are movable by the engagement units 22 and 23 may be provided so as to be moved by the power units 24 and 25.
  • the power units 24 and 25 can be provided so that the photoelectric conversion unit 2 or the first and second electrolysis electrodes 8 and 7 that are movable by the engagement units 22 and 23 can be moved.
  • the power units 24 and 25 are, for example, motors connected to the rotation shafts included in the engagement units 22 and 23.
  • the orientation of the light receiving surface of the photoelectric conversion unit 2 can be changed by the power of the motor. As a result, the amount of light incident on the light receiving surface of the photoelectric conversion unit 2 can be increased.
  • FIG. 3 shows that the photoelectric conversion unit 2 or the first and second electrolysis electrodes 8 and 7 that are movable by the engagement units 22 and 23 can be moved.
  • the power units 24 and 25 are, for example, motors connected to the rotation shafts included in the engagement units 22 and 23.
  • FIG. 3 by connecting a motor that is the first power unit 24 to the rotation shaft included in the first engagement portion 22 provided between the first base portion 26 and the second base portion 27,
  • the outputs of the power units 24 and 25 can be controlled by the control unit 12.
  • the direction in which the light receiving surface of the photoelectric conversion unit 2 faces can be controlled by the control unit 12, and the first and second electrolysis electrodes 8 and 7 can be controlled to vibrate.
  • the control unit 12 controls the direction and magnitude of the current flowing through the motors and the time during which the current flows, so that the photoelectric conversion unit 2 or the first and second electrolysis electrodes Can control the movement.
  • limiting means The 1st gas exhaust port 20 and the 2nd gas exhaust port 19 are the edge part of the electrode 8 for 1st electrolysis, and the edge part of the electrode 7 for 2nd electrolysis Are provided close to each other.
  • the first gas can be recovered from the first gas discharge port 20 and the second gas can be recovered from the second gas discharge port 19.
  • the first gas discharge port 20 is a surface that can contact the electrolyte of the first electrolysis electrode 8 when the hydrogen production device 45 is installed so that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane. It can be provided close to the upper end.
  • the second gas discharge port 19 is a surface that can contact the electrolyte solution of the second electrolysis electrode 7 when the hydrogen production device 45 is installed so that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane. It can be provided close to the upper end.
  • the first gas can be raised as bubbles in the electrolyte solution and recovered from the first gas discharge port 20, and the second gas generated at the second electrolysis electrode 7 can be raised as bubbles in the electrolyte solution to be second. It can be recovered from the gas outlet 19.
  • the 1st gas exhaust port 20 and the 2nd gas exhaust port 19 can be formed by providing opening in the sealing material 16, for example.
  • An inflow prevention valve may be provided so that the electrolyte does not flow into the first gas outlet 20 and the second gas outlet 19.
  • first gas discharge port 20 can be connected to the first gas discharge passage 48, and the second gas discharge port 19 can be connected to the second gas discharge passage 48.
  • first gas discharge path 48 can be electrically connected to the plurality of first gas discharge ports 20, and the second gas exhaust path can be electrically connected to the plurality of second gas discharge ports 19.
  • first gas discharge path 48 or the second gas discharge path can be connected to the hydrogen storage device 45.
  • hydrogen generated in the hydrogen production device 45 can be stored in the hydrogen storage device.
  • the tilt angle limiting means 21 can be provided.
  • the tilt angle limiting means 21 tilts the first and second electrolysis electrodes so that the first gas and the second gas move to the first gas discharge port 20 and the second gas discharge port 19 by buoyancy in the electrolytic solution, respectively. Limit the corners. Thereby, it is possible to prevent the first gas and the second gas from staying on the surfaces of the first and second electrolysis electrodes 8 and 7, and to prevent a reduction in hydrogen production efficiency.
  • the inclination angle limiting means 21 performs first and second electrolysis so that the first gas and the second gas float as bubbles in the electrolyte and move to the first gas outlet 20 and the second gas outlet 19, respectively. The inclination angle of the working electrode can be limited.
  • the tilt angle limiting means 21 may be a means for physically limiting the movable range generated by the second engaging portion 23 as shown in FIG. 3, for example, and the first and second electrolysis electrodes as shown in FIG. A means for fixing the inclination angles of 8 and 7 may be used, and a program included in the control unit 12 to limit the movable range generated by the second engagement unit 23 may be used.
  • a gas or liquid such as a check valve structure in the vicinity of the gas outlet so that no gas is generated or the electrolyte does not flow out when the hydrogen production apparatus exceeds a certain inclination. It may be a known means for restricting the flow.
  • the first conductive part 9 can be provided in contact with the first electrode 4 and the second electrolysis electrode 7.
  • the first electrode 4 and the second electrolysis electrode 7 that are in contact with the light receiving surface of the photoelectric conversion portion 2 can be easily electrically connected.
  • the 1st electroconductive part 9 may be provided in the contact hole which penetrates the photoelectric conversion part 2 like FIG.
  • the contact hole provided with the first conductive portion 9 may be one or plural, and may have a circular cross section.
  • the 1st electroconductive part 9 may be provided so that the side surface of the photoelectric conversion part 2 may be covered like FIG.
  • the material of the first conductive portion 9 is not particularly limited as long as it has conductivity.
  • a paste containing conductive particles for example, a carbon paste, an Ag paste or the like applied by screen printing, an inkjet method, etc., dried or baked, a method of forming a film by a CVD method using a raw material gas, a PVD method, Examples thereof include a vapor deposition method, a sputtering method, a sol-gel method, and a method using an electrochemical redox reaction.
  • Insulating part The insulating part 11 can be provided in order to prevent the occurrence of leakage current.
  • the insulating part 11 can be provided in the side wall of a contact hole. Further, the insulating part 11 can be provided between the second electrolysis electrode 7 and the back surface of the photoelectric conversion part 2 as shown in FIGS. This can prevent a leak current from being generated between the second electrolysis electrode 7 and the back surface of the photoelectric conversion unit 2.
  • the photoelectric conversion unit 2 receives light as shown in FIGS.
  • the insulation part 11 has the corrosion resistance with respect to electrolyte solution, and the liquid shielding property with respect to electrolyte solution. Thereby, generation
  • the insulating part 11 can be used regardless of an organic material or an inorganic material.
  • organic polymers and inorganic materials include metal oxides such as Al 2 O 3 , SiO 2 such as porous silica films, fluorine-added silicon oxide films (FSG), SiOC, HSQ (Hydrogen Silsesquioxane) films, SiN x , It is possible to use a method of forming a film by dissolving silanol (Si (OH) 4 ) in a solvent such as alcohol and applying and heating.
  • a film containing a paste containing an insulating material is applied by a screen printing method, an ink jet method, a spin coating method, etc., dried or baked, or a CVD method using a source gas is used. And a method using a PVD method, a vapor deposition method, a sputtering method, a sol-gel method, and the like.
  • the second conductive part 29 can be provided between the insulating part 11 and the second electrolysis electrode 7 or between the insulating part 11 and the first electrolysis electrode 8. .
  • the second conductive portion 29 can be provided, for example, as shown in FIGS.
  • the second conductive portion 29 preferably has corrosion resistance to the electrolytic solution and liquid shielding properties to the electrolytic solution. Thereby, an increase in ohmic resistance can be prevented, and corrosion of the photoelectric conversion unit 2 due to the electrolytic solution can be prevented.
  • the 3rd electroconductive part 33 can be provided so that a photoelectric converting layer may be connected in series like FIG.
  • the second conductive portion 29 or the third conductive portion 33 is not particularly limited as long as it has conductivity.
  • the second conductive portion 29 or the third conductive portion 33 is a metal thin film, for example, a thin film such as Al, Ag, or Au. These can be formed by, for example, sputtering.
  • a transparent conductive film such as In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, and SnO 2 is used.
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 are provided on the back side of the photoelectric conversion unit 2, respectively. As shown in FIG. 2, the first and second electrolysis electrodes 8 and 7 may be provided on the back surface of the photoelectric conversion unit 2, and a substrate or a space between the back surface of the photoelectric conversion unit as shown in FIG. It may be provided across. Moreover, the electrode 8 for 1st electrolysis and the electrode 7 for 2nd electrolysis can each have the surface of the back surface side of the photoelectric conversion part 2, and the surface which is the back surface and can contact electrolyte solution. Thus, the first electrolysis electrode 8 and the second electrolysis electrode 7 do not block light incident on the photoelectric conversion unit 2.
  • the electrolysis solution is electrolyzed by using the electromotive force generated by the photoelectric conversion unit 2 receiving light, and the first gas is obtained.
  • the second gas can be generated.
  • the first electrolysis electrode 8 is electrically connected to the back surface of the photoelectric conversion unit 2 as shown in FIGS.
  • the second electrolysis electrode 7 can be electrically connected to the light receiving surface of the photoelectric conversion unit 2.
  • the first electrolysis electrode 8 is connected to the first area and the second area as shown in FIGS.
  • the second electrolysis electrode 7 can be electrically connected to the other of the first area and the second area.
  • the first electrolysis electrode 8 when the first electrolysis electrode 8 is not in contact with the back surface of the photoelectric conversion unit 2 or the second electrode 5, the first electrolysis electrode 8 is photoelectrically converted via the switching unit 10. It can be electrically connected to the back surface of the portion 2. 4, 5, 7, and 10, the second electrolysis electrode 7 can be electrically connected to the light receiving surface of the photoelectric conversion unit 2 via the switching unit 10.
  • At least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 may be plural, and each may have a surface that can contact the strip-shaped electrolyte solution, and the long sides of the surfaces are adjacent to each other. Alternatively, they may be provided alternately. In this way, by providing the first electrolysis electrode 8 and the second electrolysis electrode 7, the distance between the portion where the reaction generating the first gas occurs and the portion where the reaction generating the second gas occurs is increased. It can be shortened, and the ion concentration imbalance generated in the electrolyte can be reduced. Moreover, the 1st gas and 2nd gas can be collect
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 preferably have corrosion resistance to the electrolytic solution and liquid shielding properties to the electrolytic solution. Thereby, the first gas and the second gas can be stably generated, and corrosion of the photoelectric conversion unit 2 due to the electrolytic solution can be prevented.
  • a metal plate or a metal film having corrosion resistance against the electrolytic solution can be used for the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • At least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 has a catalyst surface area larger than the area of the light receiving surface of the photoelectric conversion unit 2. According to such a configuration, the first gas or the second gas can be generated more efficiently by the electromotive force generated in the photoelectric conversion unit 2.
  • at least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 is preferably a porous conductor carrying a catalyst. According to such a configuration, the surface area of at least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 can be increased, and the first gas or the second gas can be generated more efficiently. Can do.
  • the first electrolysis electrode 8 or the second electrolysis electrode 7 can also have a two-layer structure of a portion having a liquid shielding property against the electrolytic solution and a porous portion.
  • One of the first electrolysis electrode 8 and the second electrolysis electrode 7 may be a hydrogen generation unit, and the other may be an oxygen generation unit.
  • one of the first gas and the second gas is hydrogen, and the other is oxygen.
  • the first and second electrolysis electrodes 8 and 7 may be controlled so as to vibrate by the control unit 12 within a movable range generated by the engagement unit 22.
  • the first gas generated on the surface of the first electrolysis electrode 8 or the second gas generated on the surface of the second electrolysis electrode 7 can be easily made into bubbles in the electrolytic solution.
  • the gas can be recovered from the first gas outlet 20, and the second gas can be recovered from the second gas outlet 19.
  • the hydrogen generating part is a part for generating H 2 from the electrolytic solution, and is one of the first electrolysis electrode 8 and the second electrolysis electrode 7. Further, the hydrogen generation unit may include a catalyst for a reaction in which H 2 is generated from the electrolytic solution. Thereby, the reaction rate of the reaction in which H 2 is generated from the electrolytic solution can be increased.
  • the hydrogen generation part may consist only of a catalyst for the reaction in which H 2 is generated from the electrolytic solution, or this catalyst may be supported on a support. Further, the hydrogen generation unit may have a catalyst surface area larger than the area of the light receiving surface of the photoelectric conversion unit 2. Thereby, the reaction in which H 2 is generated from the electrolytic solution can be set to a faster reaction rate.
  • the hydrogen generation part may be a porous conductor carrying a catalyst. This can increase the catalyst surface area. In addition, a change in potential due to a current flowing between the light receiving surface or the back surface of the photoelectric conversion unit 2 and the catalyst included in the hydrogen generation unit can be suppressed. Furthermore, the hydrogen generation unit may include a hydrogen generation catalyst, and the hydrogen generation catalyst may include at least one of Pt, Ir, Ru, Pd, Rh, Au, Fe, Ni, and Se. According to such a configuration, hydrogen can be generated at a higher reaction rate by the electromotive force generated in the photoelectric conversion unit 2.
  • the catalyst for the reaction of generating H 2 from the electrolyte is a catalyst that promotes the conversion of two protons and two electrons into one molecule of hydrogen, is chemically stable, and generates hydrogen overvoltage.
  • platinum group metals such as Pt, Ir, Ru, Pd, Rh, and Au, which have catalytic activity for hydrogen, and alloys or compounds thereof, Fe, Ni, and Se that constitute the active center of hydrogenase that is a hydrogen-producing enzyme.
  • An alloy or a compound, a combination thereof, or the like can be preferably used.
  • a nanostructure containing Pt and Pt has a small hydrogen generation overvoltage and can be suitably used.
  • Materials such as CdS, CdSe, ZnS, and ZrO 2 whose hydrogen generation reaction is confirmed by light irradiation can also be used.
  • the metal material contains at least one element selected from the group consisting of Pt, Ti, Au, Ag, Cu, Ni, and W from the viewpoint that there are few other chemical side reactions.
  • These metal materials have a relatively small electric resistance, and can suppress a decrease in voltage even when a current is extracted in the surface direction.
  • a metal material having poor corrosion resistance in an acidic atmosphere such as Cu, Ag, Zn, etc.
  • noble metals and metals having corrosion resistance such as Au, Pt, Pd, carbon, graphite, glassy carbon
  • a metal surface having poor corrosion resistance may be coated with a conductive polymer, a conductive nitride, a conductive carbide, a conductive oxide, or the like.
  • the carbonaceous material a chemically stable and conductive material is preferable.
  • examples thereof include carbon powders and carbon fibers such as acetylene black, vulcan, ketjen black, furnace black, VGCF, carbon nanotube, carbon nanohorn, and fullerene.
  • Examples of the inorganic material having conductivity include In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, SnO 2 , and antimony oxide-doped tin oxide. .
  • examples of the conductive polymer include polyacetylene, polythiophene, polyaniline, polypyrrole, polyparaphenylene, polyparaphenylene vinylene, and the like
  • examples of the conductive nitride include carbon nitride, silicon nitride, gallium nitride, indium nitride, and nitride. Germanium, titanium nitride, zirconium nitride, thallium nitride, etc.
  • conductive carbides include tantalum carbide, silicon carbide, zirconium carbide, titanium carbide, molybdenum carbide, niobium carbide, iron carbide, nickel carbide, hafnium carbide, tungsten carbide. , Vanadium carbide, chromium carbide, and the like.
  • conductive oxide include tin oxide, indium tin oxide (ITO), and antimony oxide-doped tin oxide.
  • the structure of the conductor supporting the hydrogen generation catalyst includes a plate shape, a foil shape, a rod shape, a mesh shape, a lath plate shape, a porous plate shape, a porous rod shape, a woven fabric shape, a nonwoven fabric shape, a fiber shape, and a felt shape. It can be used suitably. Further, a grooved conductor in which the surface of the felt-like electrode is pressure-bonded in a groove shape is preferable because the electric resistance and the flow resistance of the electrode liquid can be reduced.
  • the oxygen generating portion is a portion that generates O 2 from the electrolytic solution, and is one of the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the oxygen generation unit may include a catalyst for a reaction in which O 2 is generated from the electrolytic solution. Thereby, the reaction rate of the reaction in which O 2 is generated from the electrolytic solution can be increased.
  • the oxygen generation part may consist only of a catalyst for the reaction that generates O 2 from the electrolytic solution, or the catalyst may be supported on a carrier.
  • the oxygen generation unit may have a catalyst surface area larger than the area of the light receiving surface of the photoelectric conversion unit 2. Thereby, the reaction in which O 2 is generated from the electrolytic solution can be set to a faster reaction rate.
  • the oxygen generation part may be a porous conductor carrying a catalyst. This can increase the catalyst surface area. In addition, a change in potential due to a current flowing between the light receiving surface or the back surface of the photoelectric conversion unit 2 and the catalyst included in the oxygen generation unit can be suppressed. Furthermore, the oxygen generation unit may include an oxygen generation catalyst, and the oxygen generation catalyst may include at least one of Mn, Ca, Zn, Co, and Ir. According to such a configuration, oxygen can be generated at a higher reaction rate by the electromotive force generated in the photoelectric conversion unit.
  • the catalyst for the reaction of generating O 2 from the electrolyte is a catalyst that promotes the conversion of two water molecules into one molecule of oxygen, four protons, and four electrons, and is chemically stable.
  • a material having a small oxygen generation overvoltage can be used.
  • oxides or compounds containing Mn, Ca, Zn, Co, which are active centers of Photosystem II, which is an enzyme that catalyzes the reaction of generating oxygen from water using light and platinum such as Pt, RuO 2 , IrO 2
  • compounds containing group metals, oxides or compounds containing transition metals such as Ti, Zr, Nb, Ta, W, Ce, Fe, Ni, and combinations of the above materials.
  • iridium oxide, manganese oxide, cobalt oxide, and cobalt phosphate can be suitably used because they have low overvoltage and high oxygen generation efficiency.
  • the oxygen generating catalyst can be supported on the conductor.
  • the conductor carrying the catalyst include metal materials, carbonaceous materials, and conductive inorganic materials. These explanations apply as long as there is no contradiction in the explanation of the hydrogen generation catalyst described in “8. Hydrogen generation part”.
  • a promoter can be used. Examples thereof include oxides or compounds of Ni, Cr, Rh, Mo, Co, and Se.
  • the method for supporting the hydrogen generating catalyst and the oxygen generating catalyst can be applied directly to a conductor or semiconductor, PVD methods such as vacuum deposition, sputtering, and ion plating, dry coating methods such as CVD,
  • the method can be appropriately changed depending on the material such as an analysis method.
  • a conductive material can be appropriately supported between the photoelectric conversion unit and the catalyst.
  • the reaction surface area is increased by supporting it on porous materials such as metals and carbon, fibrous materials, nanoparticles, etc., and the hydrogen and oxygen generation rates are improved. It is possible to make it.
  • the back substrate 14 can be provided on the first electrolysis electrode 8 and the second electrolysis electrode 7 so as to face the translucent substrate 1. Further, as shown in FIG. 4, when the photoelectric conversion unit 2 and the first and second electrolysis electrodes 8 and 7 are separated, the back substrate 14 faces the first and second electrolysis electrodes 8 and 7. Can be provided.
  • the back substrate 14 can be provided such that a space is provided between the first electrolysis electrode 8 and the second electrolysis electrode 7 and the back substrate 14. This space can be used as the electrolytic solution chamber 15, and the first electrolytic electrode 8 and the second electrolytic electrode 7 can be brought into contact with the electrolytic solution by introducing the electrolytic solution into the electrolytic solution chamber 15.
  • the back substrate 14 may be the bottom part of a box.
  • the back substrate 14 is a material that constitutes the electrolytic solution chamber 15 and confines the generated first gas and second gas, and a highly confidential substance is required. It is not particularly limited whether it is transparent or opaque, but it is preferably a transparent material in that it can be visually confirmed that the first gas and the second gas are generated. .
  • the transparent back substrate is not particularly limited, and examples thereof include a transparent rigid material such as quartz glass, Pyrex (registered trademark), and a synthetic quartz plate, a transparent resin plate, and a transparent resin film. Among them, it is preferable to use a glass material because it is a gas that is not chemically permeable and is chemically and physically stable.
  • the partition wall 13 includes an electrolyte chamber 15 that is a space between the first electrolysis electrode 8 and the back substrate 14 and an electrolyte chamber 15 that is a space between the second electrolysis electrode 7 and the back substrate 14. It can be provided so as to partition.
  • the partition wall 13 can also be provided between the first electrolysis electrode 8 and the second electrolysis electrode 7 as shown in FIG. As a result, the first gas and the second gas generated by the first electrolysis electrode 8 and the second electrolysis electrode 7 can be prevented from mixing, and the first gas and the second gas can be separated. It can be recovered.
  • the partition wall 13 may include an ion exchanger.
  • the ion concentration that is unbalanced by the electrolytic solution in the space between the first electrolysis electrode 8 and the back substrate 14 and the electrolytic solution in the space between the second electrolysis electrode 7 and the back substrate 14 is reduced. Can be kept constant.
  • an inorganic film such as porous glass, porous zirconia, or porous alumina or an ion exchanger
  • an ion exchanger any ion exchanger known in the art can be used, and a proton conductive membrane, a cation exchange membrane, an anion exchange membrane, or the like can be used.
  • the material of the proton conductive film is not particularly limited as long as it is a material having proton conductivity and electrical insulation, and a polymer film, an inorganic film, or a composite film can be used.
  • polymer membrane examples include Nafion (registered trademark) manufactured by DuPont, Aciplex (registered trademark) manufactured by Asahi Kasei Co., and Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., which are perfluorosulfonic acid electrolyte membranes.
  • membranes and hydrocarbon electrolyte membranes such as polystyrene sulfonic acid and sulfonated polyether ether ketone.
  • Examples of the inorganic film include films made of phosphate glass, cesium hydrogen sulfate, polytungstophosphoric acid, ammonium polyphosphate, and the like.
  • Examples of the composite membrane include a membrane made of a sulfonated polyimide polymer, a composite of an inorganic material such as tungstic acid and an organic material such as polyimide, and specifically, Gore Select membrane (registered trademark) or pores manufactured by Gore. Examples thereof include a filling electrolyte membrane.
  • a high temperature environment for example, 100 ° C.
  • sulfonated polyimide 2-acrylamido-2-methylpropanesulfonic acid (AMPS)
  • APMS 2-acrylamido-2-methylpropanesulfonic acid
  • sulfonated polybenzimidazole phosphonated polybenzimidazole
  • sulfuric acid examples include cesium hydrogen and ammonium polyphosphate.
  • the cation exchange membrane may be any solid polymer electrolyte that can move cations.
  • fluorine ion exchange membranes such as perfluorocarbon sulfonic acid membranes and perfluorocarbon carboxylic acid membranes, polybenzimidazole membranes impregnated with phosphoric acid, polystyrene sulfonic acid membranes, sulfonated styrene / vinylbenzene copolymers Examples include membranes.
  • an anion exchange membrane a solid polymer electrolyte capable of transferring anions can be used.
  • a polyorthophenylenediamine film, a fluorine-based ion exchange film having an ammonium salt derivative group, a vinylbenzene polymer film having an ammonium salt derivative group, a film obtained by aminating a chloromethylstyrene / vinylbenzene copolymer, etc. can be mentioned.
  • the sealing material 16 is a material for adhering the translucent substrate 1 and the back substrate 14 and sealing the electrolyte in the hydrogen production apparatus 45 and the first gas and the second gas generated in the hydrogen production apparatus 45. It is. When a box-shaped substrate is used for the back substrate 14, a sealing material 16 is used for bonding the box body and the translucent substrate 1.
  • an ultraviolet curable adhesive, a thermosetting adhesive, or the like is preferably used, but the type thereof is not limited.
  • UV curable adhesives are resins that undergo polymerization when irradiated with light having a wavelength of 200 to 400 nm and undergo a curing reaction within a few seconds after light irradiation, and are classified into radical polymerization type and cationic polymerization type.
  • the polymerization type resin include acrylates, unsaturated polyesters, and examples of the cationic polymerization type include epoxy, oxetane, and vinyl ether.
  • thermosetting polymer adhesive include organic resins such as phenol resin, epoxy resin, melamine resin, urea resin, and thermosetting polyimide.
  • thermosetting polymer adhesive is heated and polymerized in a state where pressure is applied at the time of thermocompression bonding, and then cooled to room temperature while being pressurized. I don't need it.
  • a hybrid material having high adhesion to the glass substrate can be used. By using a hybrid material, mechanical properties such as elastic modulus and hardness are improved, and heat resistance and chemical resistance are dramatically improved.
  • the hybrid material is composed of inorganic colloidal particles and an organic binder resin. For example, what is comprised from inorganic colloidal particles, such as a silica, and organic binder resin, such as an epoxy resin, a polyurethane acrylate resin, and a polyester acrylate resin, is mentioned.
  • the sealing material 16 is described.
  • the sealing material 16 is not limited as long as it has a function of adhering the translucent substrate 1 and the back substrate 14, and a member such as a screw is externally used using a resin or metal gasket. It is also possible to appropriately use a method of applying pressure physically to increase confidentiality.
  • Electrolyte Chamber 15 can be a space between the first electrolysis electrode 8 and the back substrate 14 and a space between the second electrolysis electrode 7 and the back substrate 14. Further, the electrolyte chamber 15 can be partitioned by the partition wall 13.
  • the water supply port 18 can be provided by making an opening in a part of the sealing material 16 included in the hydrogen production apparatus 45 or a part of the back substrate 14.
  • the water supply port 18 is arranged to replenish the electrolytic solution that has been decomposed into the first gas and the second gas, and the arrangement location and shape of the water supply port 18 are such that the electrolytic solution as a raw material can be efficiently supplied to the hydrogen production device 45. If it does, it will not be limited in particular.
  • Electrolytic Solution is not particularly limited as long as it is a raw material for the first gas and the second gas.
  • the electrolytic solution is an aqueous solution containing an electrolyte, for example, an electrolytic solution containing 0.1 M H 2 SO 4 , 0.1M potassium phosphate buffer.
  • hydrogen and oxygen can be produced from the electrolytic solution as the first gas and the second gas.
  • the hydrogen production apparatus 45 may include a sensor unit 17.
  • FIG. 13 is a conceptual diagram of a control unit, a sensor unit, and the like included in the hydrogen production apparatus of the present embodiment.
  • the sensor unit 17 can include, for example, an inclination sensor, an orientation sensor, a position sensor, an illuminance sensor, a clock, and the like. Further, these sensors can output information obtained by the sensors to the control unit 12.
  • the plurality of sensors and the timepiece included in the sensor unit 17 may be installed at different locations of the hydrogen production apparatus 45.
  • the sensor unit 17 By providing the sensor unit 17 with an inclination sensor and an orientation sensor, it is possible to detect the orientation, elevation angle, and the like in the direction in which the light receiving surface of the photoelectric conversion unit 2 faces, and the first electrolysis electrode 8 and the second electrolysis electrode. The inclination angle of the electrode 7 can be detected.
  • the control unit 12 inputs these pieces of information, the control unit 12 can accurately control the orientation of the light receiving surface of the photoelectric conversion unit 2 and the movement of the first and second electrolysis electrodes 7.
  • the position and movement of the sun can be calculated.
  • the control unit 12 can control the direction of the light receiving surface of the photoelectric conversion unit 2 so as to track the sun.
  • the position sensor is, for example, a GPS.
  • the sensor unit 17 includes an illuminance sensor, the sunshine condition can be detected.
  • the control unit 12 inputs this information, the amount of solar radiation can be detected, and whether or not there is solar radiation can be detected.
  • the control unit 12 inputs this information, when there is solar radiation, the light receiving surface of the photoelectric conversion unit 2 is controlled to track the sun, and when there is no solar radiation, the light receiving surface of the photoelectric conversion unit 2 is fixed. Can be controlled. When there is no solar radiation, even if the light receiving surface of the photoelectric conversion unit 2 is controlled to track the sun, the amount of light incident on the photoelectric conversion unit 2 does not change significantly. The energy required to move the part 2 can be saved.
  • the switching unit 10 includes a circuit that outputs an electromotive force generated when the photoelectric conversion unit 2 receives light to the first external circuit, and an electromotive force generated when the photoelectric conversion unit 2 receives light. It is possible to switch between the circuits that output to the second electrolysis electrode 7 and generate the first gas and the second gas from the electrolyte, respectively. As a result, the electromotive force generated when the photoelectric conversion unit 2 receives light can be supplied as power to the first external circuit, and the first gas and the second gas are generated using the electromotive force generated when the photoelectric conversion unit 2 receives light. A gas can be produced.
  • the method for electrically connecting the switching unit 10 to the first external circuit is not particularly limited. For example, even if the switching unit 10 includes an output terminal and is electrically connected to the first external circuit via the output terminal. Good.
  • the switching unit 10 can be electrically connected to the second external circuit, and outputs an electromotive force input from the second external circuit to the first electrolysis electrode 8 and the second electrolysis electrode 7. It can switch to the circuit which produces
  • the method for electrically connecting the switching unit 10 to the second external circuit is not particularly limited.
  • the switching unit 10 may include an input terminal and be electrically connected to the second external circuit via the input terminal. .
  • FIGS. 4 and 7 are schematic circuit diagrams of the hydrogen production apparatus of the present embodiment.
  • SW switch
  • SW3 When SW4 is in the OFF state, the electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit.
  • SW1, SW2, SW5, and SW6 are in the OFF state and SW3 and SW4 are in the ON state, the electromotive force generated when the photoelectric conversion unit 2 receives light is used as the first electrolysis electrode 8 and the second electrolysis electrode. 7 can be output.
  • the hydrogen production apparatus 45 of this embodiment has a cross section as shown in FIGS. 5 and 10 and an electric circuit as shown in FIG. 15, for example, SW1 and SW2 are in an ON state, and SW3 and SW4 are in an OFF state. In the state, the electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit. Further, when SW1, SW2, SW3, and SW5 are in the OFF state and SW4 is in the ON state, the electromotive force generated when the photoelectric conversion unit 2 receives light is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output.
  • the hydrogen production apparatus 45 of this embodiment has a cross section as shown in FIG. 6 and an electric circuit as shown in FIG. 16, for example, SW1 and SW2 are in the ON state, and SW3 and SW4 are in the OFF state.
  • an electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit.
  • SW1, SW2, SW3, and SW5 are in the OFF state and SW4 is in the ON state, the electromotive force generated when the photoelectric conversion unit 2 receives light is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output.
  • the hydrogen production apparatus 45 of this embodiment has a cross section as shown in FIGS. 2, 8, 9, 11, and 12 and an electric circuit as shown in FIG. 17, for example, SW1 and SW2 are in an ON state. , SW3, SW4 are in the OFF state, and when the electromotive force generated by the photoelectric conversion unit receiving light does not reach the electrolytic voltage of the electrolyte, the electromotive force generated by the photoelectric conversion unit 2 receiving the light is first 1 It is possible to output to an external circuit.
  • SW1, SW2, SW3, and SW4 are in the OFF state, and the electromotive force generated by the photoelectric conversion unit receiving light reaches the electrolytic voltage of the electrolytic solution, the photoelectric conversion unit 2 receives the light.
  • the electromotive force can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7. Accordingly, even when the electric circuit as shown in FIG. 17 is provided, the switching unit 10 causes the photoelectric conversion unit 2 to receive the electromotive force generated by the photoelectric conversion unit 2 receiving light and the photoelectric conversion unit 2 to receive light. It is possible to switch between the circuit that outputs the electromotive force generated by the above to the first electrolysis electrode 8 and the second electrolysis electrode 7. When SW3 and SW4 are in the ON state and SW1 and SW2 are in the OFF state, the electromotive force input from the second external circuit or the electromotive force input from the second external circuit and the photoelectric conversion unit 2 receive light. Both the electromotive forces generated by this can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the switching unit 10 can input information from the control unit 12 and can switch circuits based on the input information. Thereby, the switching unit 10 can switch to the circuit selected by the control unit 12.
  • the switching unit 10 can also switch circuits based on the magnitude of the electromotive force generated when the photoelectric conversion unit 2 receives light. As a result, when the electric power output to the first external circuit is generated in the photoelectric conversion unit 2, the electromotive force generated in the photoelectric conversion unit 2 can be output to the first external circuit and output to the first external circuit. When the power to be generated is not generated in the photoelectric conversion unit 2, the electromotive force generated in the photoelectric conversion unit 2 can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the switching unit 10 can also switch circuits based on the magnitude of the electromotive force of the second external circuit. Thereby, when the electric power supplied from the second external circuit is larger than the electric demand, the first gas and the second gas can be produced using the electric power supplied from the second external circuit.
  • Control Unit The control unit 12 can control the direction of the light receiving surface of the photoelectric conversion unit 2. Accordingly, the light receiving surface of the photoelectric conversion unit 2 can be moved so as to track the sun, and the amount of incident light of the photoelectric conversion unit 2 can be increased. As a result, the power generation amount of the photoelectric conversion unit 2 can be increased. Further, the control unit 12 can control the first and second electrolysis electrodes 8 and 7 to vibrate. Accordingly, the first and second electrolysis electrodes 8 and 7 can be vibrated, and the discharge of the first gas or the second gas can be promoted. Further, the control unit 12 can set a circuit to be switched by the switching unit 10 and output the set information to the switching unit 10. Thereby, the circuit which the switching part 10 switches can be controlled, and the energy which the photoelectric conversion part 2 generates can be utilized effectively. Further, the first and second electrolysis electrodes 8 and 7 can be used effectively.
  • the control part 12 can be comprised from a semiconductor device and a program, for example.
  • the control unit 12 sets input means for inputting information, and the direction of the light receiving surface of the photoelectric conversion unit 2 or the movement of the first and second electrolysis electrodes 8 and 7 based on the information input from the input means.
  • a setting unit, an output unit for outputting information set by the setting unit, and power units 24 and 25 for moving at least the photoelectric conversion unit 2 based on the information output by the output unit can be provided.
  • the control unit 12 can control the movement of the photoelectric conversion unit 2 or the first and second electrolysis electrodes 8 and 7.
  • the control unit 12 also includes an input unit for inputting information, a setting unit for setting a circuit to be switched by the switching unit 10 based on the information input from the input unit, and the information set by the setting unit. Output means for outputting to the output.
  • the control unit 12 can control the circuit that the switching unit 10 switches.
  • the control unit 12 can be connected to the switching unit 10, the power units 24 and 25, the sensor unit 17, and the information wiring as shown in FIG.
  • the input means included in the control unit 12 can input information from information wiring or wirelessly.
  • the input means included in the control unit 12 can input information from an electric power company, power sale information, Web information, solution server information, and the like via information wiring or wireless.
  • the control unit 12 can control the movement of the photoelectric conversion unit 2 or the first and second electrolysis electrodes 8 and 7. Further, based on this information, the control unit 12 can control the circuit that the switching unit 10 switches. Further, the control unit 12 can include a program that serves as the tilt angle limiting means 21.
  • FIG. 18 is an example of a control flowchart of the control unit 12.
  • the hydrogen production apparatus 45 By controlling the hydrogen production apparatus 45 as in this flowchart, the amount of light incident on the photoelectric conversion unit 2 can be increased, and the electric power generated by the photoelectric conversion unit 2 can be used effectively.
  • FIG. 19 is a schematic plan view of the first form of the hydrogen production apparatus of one embodiment of the present invention
  • FIG. 20A is a hydrogen production of one embodiment of the present invention. It is a schematic plan view in the 2nd form of an apparatus, (b) is the schematic side view.
  • FIG. 21 is a schematic plan view of a hydrogen production module included in the hydrogen production apparatus of one embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the hydrogen production module taken along a dotted line AA in FIG. 22 and 29 are schematic back views of the hydrogen production module included in the hydrogen production apparatus according to the embodiment of the present invention.
  • FIG. 21 is a schematic plan view of a hydrogen production module included in the hydrogen production apparatus of one embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the hydrogen production module taken along a dotted line AA in FIG. 22 and 29 are schematic back views of the hydrogen production module included in the hydrogen production apparatus according to the embodiment of the present invention.
  • FIG. 19 is a schematic
  • FIG. 23 is a schematic plan view of the first embodiment of the hydrogen production apparatus according to one embodiment of the present invention
  • FIG. 24 is a schematic top view of the hydrogen production apparatus shown in FIG.
  • FIG. 25 is a schematic plan view of the first embodiment of the hydrogen production apparatus according to one embodiment of the present invention
  • FIG. 26A is a schematic view of the second embodiment of the hydrogen production apparatus according to one embodiment of the present invention. It is a top view and FIG.26 (b) is the schematic side view.
  • FIG. 27 is a schematic plan view of the first embodiment of the hydrogen production apparatus according to one embodiment of the present invention.
  • FIG. 28A is a schematic diagram of the second embodiment of the hydrogen production apparatus according to one embodiment of the present invention.
  • FIG. 28B is a side view
  • FIG. 28B is a schematic top view thereof.
  • the hydrogen production apparatus 121 of the second embodiment is a hydrogen production apparatus 121 that can be deformed from the first form to the second form or from the second form to the first form, and is at least one hydrogen that can be deformed.
  • the hydrogen production module 6 includes a photoelectric conversion unit 2 having a light receiving surface and a back surface, and a first electrolysis electrode 8 and a second electrolysis electrode 7 provided on the back surface side of the photoelectric conversion unit 2.
  • the first and second electrolysis electrodes 8 and 7 are arranged such that when light enters the light receiving surface of the photoelectric conversion unit 2 and the first and second electrolysis electrodes 8 and 7 come into contact with the electrolytic solution, the photoelectric conversion unit 2 Is provided so that the electrolysis solution can be electrolyzed using the electromotive force generated by receiving light to generate the first gas and the second gas, respectively, and one of the first gas and the second gas is hydrogen. And the other is oxygen, the first form
  • the substantially entire light receiving surface included in the hydrogen production apparatus 121 is capable of directly receiving sunlight, and the second mode is the light receiving surface side or the back surface of the photoelectric conversion unit 2 included in one hydrogen production module 6. It is the form which the photoelectric conversion part 2 contained in the same or different hydrogen production module 6 is located in the side.
  • the hydrogen production apparatus according to the second embodiment will be described.
  • the hydrogen production apparatus 121 of the present embodiment can be modified from the first form to the second form, or from the second form to the first form.
  • a 1st form is a form which the hydrogen production apparatus 121 can take, and the whole light receiving surface of the photoelectric conversion part 2 contained in the hydrogen production apparatus 121 is a form which can receive sunlight directly.
  • the first form may be a form in which 60, 70, 80, 90, 95 or 99% or more of the light receiving surface of the photoelectric conversion unit 2 included in the hydrogen production apparatus 121 can directly receive sunlight, This directly receivable range may be between two of the above numerical values.
  • the first form may be a form in which the hydrogen production module 6 is spread laterally or may be a form in which the hydrogen production module 6 is spread vertically, as compared with the second form, and is spread obliquely or randomly. Form may be sufficient.
  • the second form is a form that the hydrogen production apparatus 121 can take, and is included in the same or different hydrogen production module 6 on the light receiving surface side or the back side of the photoelectric conversion unit 2 contained in one hydrogen production module 6. In this configuration, the photoelectric conversion unit is located. In the second embodiment, a part of the light receiving surface of the photoelectric conversion unit 2 included in one hydrogen production module 6 and a part of the light receiving surface of the photoelectric conversion unit 2 included in the same or different hydrogen production module 6 are provided. The form which overlaps may be sufficient.
  • 50, 60, 70, 80, 90, or 99% or more of the light receiving surface of the photoelectric conversion unit 2 included in the hydrogen production module 6 is the same or different in the photoelectric conversion unit 2 included in the hydrogen production module 6.
  • the light-receiving surface may be overlapped, and the overlapping range may be between two numerical values among the above numerical values. Further, among the light receiving surfaces of the photoelectric conversion unit 2 included in the hydrogen production apparatus 121, 50, 60, 70, 80, 90, or 99% or more of the light reception surface of the photoelectric conversion unit 2 included in the same or different hydrogen production module 6
  • the form which overlapped may be sufficient and this overlapping range may be between two numerical values among the said numerical values.
  • the hydrogen production apparatus 121 may be provided so that it can be automatically deformed between the first form and the second form by a power unit such as a motor, and manually between the first form and the second form. It may be provided so that it can be modified. Further, when the hydrogen production apparatus 121 is provided so as to be automatically deformable, it may be controlled by the control unit so as to be automatically deformed according to the time zone, weather, season, or the like.
  • the hydrogen production apparatus 121 of the present embodiment may consist of one hydrogen production module 6 or a plurality of hydrogen production modules 6. For example, it may consist of a plurality of hydrogen production modules 6 as shown in FIGS. 19, 20, 23 to 26, or may consist of one hydrogen production module 6 as shown in FIGS.
  • the at least one hydrogen production module provided in a deformable manner may be one in which one hydrogen production module 6 is deformed, and a plurality of hydrogen production modules 6 change their positional relationship. It may be something that deforms.
  • each hydrogen production module 6 can be connected by the connecting portion 112.
  • the connecting part 112 is a member that enables the hydrogen production apparatus 121 of the present embodiment to take both the first form and the second form.
  • the connecting portion 112 may have a structure including a rotating shaft such as the hinge member 126 shown in FIGS. 19 and 20, for example, the guide groove 55 and the rail portion 54 shown in FIGS.
  • the at least one hydrogen production module 6 may have a structure that slides along the guide groove.
  • the hydrogen production module 6 may have a magnet such as the magnet portion 57 shown in FIGS. May be.
  • the connection part 112 is piping which connects each hydrogen production modules like the 1st gas exhaust pipe 122, the 2nd gas exhaust pipe 123, or the water supply pipe 124 which were shown in FIG. It may be.
  • the hinge member 126 (connecting portion 112) is provided between two adjacent hydrogen production modules 6, and a plurality of hydrogen The production modules 6 can be connected in a row.
  • the two adjacent hydrogen production modules 6 can be opened and closed with the hinge member 126 as a rotation axis.
  • the hydrogen production apparatus 121 can be folded into a bellows fold. For example, as shown in FIG.
  • the hydrogen production apparatus 121 is converted into the photoelectric conversion unit 2 included in the hydrogen production apparatus 121. It is possible to adopt a first configuration in which substantially the entire light receiving surface of the first light can directly receive sunlight. As a result, the amount of light incident on the light receiving surface of the photoelectric conversion unit 2 of the hydrogen production modules 6a to 6d can be increased, and the amount of hydrogen generation can be increased.
  • the first embodiment of the hydrogen production apparatus 121 as shown in FIG. 19 is modified so that the light receiving surface of the photoelectric conversion unit 2 included in the first hydrogen production module 6a as shown in FIG. It can be set as the form with which the light-receiving surface of the photoelectric conversion part 2 contained in the module 6b overlapped.
  • the hydrogen production apparatus 121 is configured so that the photoelectric conversion unit 2 included in the hydrogen production modules 6b, 6c, and 6d is positioned on the back side of the photoelectric conversion unit 2 included in the hydrogen production module 6a. can do.
  • the hydrogen production modules 6a to 6d connected by the hinge member 126 shown in FIG. 19 can be folded into a bellows fold to be deformed into the second form as shown in FIG.
  • the hydrogen production apparatus 121 can be made compact, and the installation area of the hydrogen production apparatus 121 can be reduced.
  • the 1st gas exhaust pipe 122, the 2nd gas exhaust pipe 123, or the water supply pipe 124 which connected each hydrogen production module 6 in the 1st form shown in FIG. Can be provided.
  • the 1st gas exhaust pipe 122, the 2nd gas exhaust pipe 123, or the water supply pipe 124 is isolate
  • the liquid leakage prevention mechanism 125 can be provided in the first gas discharge port 20, the second gas discharge port 19, the water supply port 18, or the water supply pipe 124 of the hydrogen production module 6.
  • the liquid leakage prevention mechanism 125 may be composed of, for example, a backflow prevention valve including a spring and a valve body, or may be composed of a marble check valve.
  • the 1st gas exhaust pipe 122, the 2nd gas exhaust pipe 123, or the water supply pipe 124 may consist of a member with a different form by the case where the hydrogen production apparatus 121 is a 1st form, and the case of a 2nd form. Accordingly, for example, the first gas exhaust pipe 122, the second gas exhaust pipe 123, or the water supply pipe 124 shown in FIG. 19, and the first gas exhaust pipe 122, the second gas exhaust pipe 123 shown in FIG. Or like the water supply pipe
  • the piping distance for recovering hydrogen can be shortened, and when hydrogen is generated by electrolyzing the electrolyte using external power in the hydrogen production apparatus 121 of the second embodiment, Hydrogen can be recovered efficiently.
  • the 1st gas exhaust pipe 122, the 2nd gas exhaust pipe 123, or the water supply pipe 124 may consist of a pipe
  • the connecting portion 112 has the guide groove 55 and the at least one hydrogen production module 6 slides along the guide groove 55, more specifically, as shown in FIGS.
  • the hydrogen production modules 6b, c, d are connected so as to slide along the guide groove 55.
  • the part 112 can be provided, and the hydrogen production modules can be connected in a row by the connecting part 112.
  • the hydrogen production modules 121 b, c, d slide along the guide groove 55 provided on the back surface of the adjacent hydrogen production module 6, so that the hydrogen production apparatus 121 is
  • the first form can be changed to the second form, and the second form can be changed to the first form.
  • the hydrogen production apparatus 121 is fitted with the end of the guide groove 55 provided in the hydrogen production module 6a and the end of the rail portion 54 provided in the hydrogen production module 6b.
  • the end of the guide groove 55 of the hydrogen production module 6b and the end of the rail portion 54 of the hydrogen production module 6c are fitted, and the end of the guide groove 55 of the hydrogen production module 6c and the end of the rail portion 54 of the hydrogen production module 6d are fitted.
  • the hydrogen producing apparatus 121 can be changed to a first form in which substantially the entire light receiving surface of the photoelectric conversion unit 2 included in the hydrogen producing apparatus 121 can directly receive sunlight. .
  • the amount of light incident on the light receiving surface of the photoelectric conversion unit 2 of the hydrogen production modules 6a to 6d can be increased, and the amount of hydrogen generation can be increased.
  • the hydrogen production modules 6a to 6d can be stacked, and the hydrogen production apparatus 121 can be placed on the back side of the photoelectric conversion unit 2 included in the hydrogen production module 6a on the photoelectric contained in the hydrogen production modules 6b, 6c, and 6d. It can be set as the 2nd form in which the conversion part 2 is located.
  • the hydrogen production apparatus 121 can be deformed so that the light receiving surface of the photoelectric conversion unit 2 of the hydrogen production module 6b and the light reception surface of the photoelectric conversion unit 2 of the hydrogen production module 6a overlap. As a result, the hydrogen production apparatus 121 can be made compact, and the installation area of the hydrogen production apparatus 121 can be reduced.
  • the guide groove is provided on the back surface of the hydrogen production module 6.
  • the guide groove may be provided on the light receiving surface of the hydrogen production module 6, or may be provided on the upper part. It may be provided in the lower part.
  • the guide groove may be provided in the connecting portion 112 which is a separate member from the hydrogen production module 6, and may be in the form of a groove for standing a door or a shoji, for example.
  • connection part 112 may be such that each hydrogen production module can be separated.
  • each hydrogen production apparatus module may be connected by the magnetic force of a magnet, or each hydrogen production module may be connected by a built-in structure.
  • Each hydrogen production module may be connected by a combination of a structure and a female screw structure.
  • the connecting portion 112 is connected to the first gas exhaust pipe 122, the second gas exhaust pipe 123, or the water supply. It may be a tube 124.
  • the hydrogen production modules 6 may be connected by different connection parts 112 depending on whether the hydrogen production apparatus 121 takes the first form or the second form.
  • each hydrogen production module 6 is connected by a connecting part including a magnet
  • the connecting part 112 has a fitting structure, a screw structure, a pipe structure, and the like. This is the case as long as there is no contradiction when the description of the part 112 is replaced.
  • each hydrogen production module 6 when the connecting portion 112 includes the magnet portion 57 and each hydrogen production module 6 has the magnet portion 57 (first connecting portion 112) on its side surface, the magnet portion is provided between the side surfaces of each hydrogen production module 6. 57 can be connected.
  • the hydrogen production apparatus 121 can be in a first form in which substantially the entire light receiving surface of the photoelectric conversion unit 2 included in the hydrogen production apparatus 121 can directly receive sunlight.
  • the amount of light incident on the light receiving surface of the photoelectric conversion unit 2 of the hydrogen production modules 6a to 6d can be increased, and the amount of hydrogen generation can be increased.
  • each hydrogen production module in which the first gas exhaust pipe 122, the second gas exhaust pipe 123, and the water supply pipe 124 are removed from each hydrogen production module 6 and connected by each magnet unit 57. By separating 6, each hydrogen production module 6 can be separated.
  • the connecting portion 112 is composed of the magnet portion 57 and each hydrogen production module 6 has the magnet portion 57 (second connecting portion 112) on the light receiving surface side and the back surface side, two adjacent hydrogen producing units are produced.
  • the light receiving surface and the back surface of the module 6 can be connected.
  • the hydrogen production apparatus 121 is set to the second configuration in which the photoelectric conversion unit 2 included in the hydrogen production modules 6b, 6c, and 6d is positioned on the back side of the photoelectric conversion unit 2 included in the hydrogen production module 6a. Can do.
  • the hydrogen production apparatus 121 can be configured such that the light receiving surface of the photoelectric conversion unit 2 included in the hydrogen production module 6b and the light reception surface of the photoelectric conversion unit 2 included in the hydrogen production module 6a overlap. As a result, the hydrogen production apparatus 121 can be made compact, and the installation area of the hydrogen production apparatus 121 can be reduced.
  • the example in case the hydrogen production apparatus 121 mentioned above consists of the several hydrogen production module 6 can also be combined, respectively.
  • the 2nd form may be the form which combined the some hydrogen production apparatus 121 by the connection part. Thereby, the installation place of the hydrogen production apparatus 121 can be used more effectively.
  • the hydrogen production apparatus 121 of this embodiment consists of one hydrogen production module 6
  • the hydrogen production module 6 can be formed into a flexible sheet.
  • a hydrogen production module 6 can be produced, for example, by forming the photoelectric conversion unit 2 and the first and second electrolysis electrodes on a flexible sheet.
  • the hydrogen production module 6 included in the hydrogen production apparatus 121 has a flexible sheet shape, the hydrogen production module 6 is deformed, so that the hydrogen production apparatus 121 changes from the first form to the second form or the second form. It can deform
  • the flexible sheet-like hydrogen production module 6 may be rollable.
  • the hydrogen production apparatus 121 is configured so that substantially the entire light receiving surface of the photoelectric conversion unit 2 included in the hydrogen production apparatus 121 is included. It can be set as the 1st form which can receive sunlight directly.
  • the hydrogen production apparatus 121 can be in the first configuration. As a result, the amount of light incident on the light receiving surface of the photoelectric conversion unit 2 of the hydrogen production module 6 can be increased, and the amount of hydrogen generated can be increased.
  • the hydrogen production apparatus 121 can receive light from a part of the photoelectric conversion unit 2 included in the hydrogen production module 6. It can be set as the 2nd form by which the other one part photoelectric conversion part 2 contained in the same hydrogen production module 6 is located in the surface side or a back surface side.
  • the hydrogen production apparatus 121 is connected to a part of the light receiving surface of the photoelectric conversion unit 2 included in the hydrogen production module 6 and the other light receiving surface of the photoelectric conversion unit 2 included in the same hydrogen production module 6. It can be set as the form which a part overlaps. For example, when the hydrogen production module 6 is rolled up as shown in FIG.
  • the hydrogen production apparatus 121 can be in the second form. As a result, the hydrogen production apparatus 121 can be made compact, and the installation area of the hydrogen production apparatus 121 can be reduced.
  • the form of the hydrogen production apparatus in the second form is not limited to the form in which the hydrogen production module 6 is wound up.
  • the form in which the hydrogen production module 6 is folded in a bellows may be used. It may be a folded form.
  • the example in which the hydrogen production apparatus 121 includes one hydrogen production module 6 may be combined with the example in which the hydrogen production apparatus 121 includes a plurality of hydrogen production modules 6.
  • the 2nd form may be the form which combined the some hydrogen production apparatus 121 by the connection part. Thereby, the installation place of the hydrogen production apparatus 121 can be used more effectively.
  • the hydrogen production module 6 includes a photoelectric conversion unit 2 having a light receiving surface and a back surface thereof, a first electrolysis electrode 8 and a second electrolysis electrode 7 provided on the back surface side of the photoelectric conversion unit 2, When light is incident on the light receiving surface of the photoelectric conversion unit 2 and the first and second electrolysis electrodes 8 and 7 are in contact with the electrolytic solution, the first and second electrolysis electrodes 8 and 7 are received by the photoelectric conversion unit 2.
  • the electrolytic solution is electrolyzed using the electromotive force generated by the generation, and the first gas and the second gas can be generated, respectively.
  • the hydrogen production apparatus 121 may include one hydrogen production module 6 or a plurality of hydrogen production modules 6. 5 to 12 are schematic cross-sectional views of the hydrogen production module 6 included in the hydrogen production apparatus according to the embodiment of the present invention, and correspond to the schematic cross-sectional view of the hydrogen production module taken along the dotted line AA in FIG.
  • the translucent substrate 1 may be provided in the hydrogen production module 6 of the present embodiment.
  • the photoelectric conversion part 2 may be provided on the translucent board
  • substrate 1 can be abbreviate
  • the photoelectric conversion part 2 can be formed on a flexible material such as a resin film, the translucent substrate 1 can be omitted.
  • the hydrogen production module 6 can be formed into a flexible sheet, and the hydrogen production module 121 is deformed to deform the hydrogen production device 121. Can be changed from the first form to the second form or from the second form to the first form.
  • the translucent substrate 1 is preferably transparent and has high light transmittance. However, it is possible to efficiently enter light into the photoelectric conversion unit 2. If it is a simple structure, there is no restriction
  • a substrate material having a high light transmittance for example, a transparent rigid material such as soda glass, quartz glass, Pyrex (registered trademark), or a synthetic quartz plate, or a transparent resin plate or film material is preferably used. In view of chemical and physical stability, it is preferable to use a glass substrate.
  • a fine uneven structure can be formed so that incident light is effectively irregularly reflected on the surface of the photoelectric conversion unit 2.
  • This fine concavo-convex structure can be formed by a known method such as reactive ion etching (RIE) treatment or blast treatment.
  • the 1st electrode 4 can be provided on the translucent board
  • the first electrode 4 can be electrically connected to the second electrolysis electrode 7. By providing the first electrode 4, the current flowing between the light receiving surface of the photoelectric conversion unit 2 and the second electrolysis electrode 7 can be increased.
  • the 1st electrode 4 is unnecessary.
  • the first electrode 4 may be electrically connected to the second electrolysis electrode 7 via the first conductive portion 9 as shown in FIGS. 2, 6 and 9, and the second electrolysis electrode 7 as shown in FIG. You may contact with.
  • the 1st electrode 4 can be electrically connected with the electrode 7 for 2nd electrolysis via the switch part 10 and the wiring 52 in the case like FIG.
  • the first electrode 4 may be made of a transparent conductive film such as ITO or SnO 2, or may be made of a metal finger electrode such as Ag or Au.
  • the transparent conductive film can be used to facilitate contact between the light receiving surface of the photoelectric conversion unit 2 and the second electrolysis electrode 7. What is generally used as a transparent electrode can be used. Specifically, In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, SnO 2 and the like can be given.
  • the transparent conductive film preferably has a sunlight transmittance of 85% or more, particularly 90% or more, and particularly 92% or more. This is because the photoelectric conversion unit 2 can absorb light efficiently.
  • a known method can be used, and examples thereof include sputtering, vacuum deposition, sol-gel method, cluster beam deposition method, and PLD (Pulse Laser Deposition) method.
  • the photoelectric conversion unit 2 has a light receiving surface and a back surface thereof, and a first electrolysis electrode 8 and a second electrolysis electrode 7 are provided on the back surface side of the photoelectric conversion unit 2.
  • the light receiving surface is a surface that receives light for photoelectric conversion
  • the back surface is the back surface of the light receiving surface.
  • the light receiving surface of the hydrogen production device 121 is the surface of the hydrogen production device 121 on the same side as the light reception surface of the photoelectric conversion unit 2, and the back surface of the hydrogen production device 121 is the same side as the back surface of the photoelectric conversion unit 2. This is a surface of the hydrogen production apparatus 121 of FIG.
  • the photoelectric conversion part 2 can be provided on the translucent substrate 1 provided with the first electrode 4 with the light receiving surface facing down.
  • the photoelectric conversion unit 2 may generate an electromotive force between the light receiving surface and the back surface as shown in FIGS. 2 and 5 to 10.
  • An electromotive force may be generated between the first area and the second area.
  • the photoelectric conversion part 2 as shown in FIGS. 11 and 12 can be formed by a semiconductor substrate on which the n-type semiconductor region 37 and the p-type semiconductor region 36 are formed.
  • the shape of the photoelectric conversion part 2 is not specifically limited, For example, it can be set as a square shape.
  • the photoelectric conversion unit 2 is not particularly limited as long as it can separate charges by incident light and generates an electromotive force.
  • the photoelectric conversion unit using a silicon-based semiconductor or the photoelectric conversion unit using a compound semiconductor A photoelectric conversion part using a dye sensitizer, a photoelectric conversion part using an organic thin film, and the like.
  • the photoelectric conversion unit 2 receives light in the first electrolysis electrode 8 and the second electrolysis electrode 7. It is necessary to use a material that generates an electromotive force necessary for generating hydrogen and oxygen.
  • the potential difference between the first electrolysis electrode 8 and the second electrolysis electrode 7 needs to be larger than the theoretical voltage (1.23 V) for water decomposition, and for this purpose, a sufficiently large potential difference needs to be generated in the photoelectric conversion unit 2. There is. Therefore, it is preferable that the photoelectric conversion unit 2 connects two or more junctions in series such as a pn junction to generate an electromotive force.
  • the photoelectric conversion layers arranged side by side as shown in FIGS. 9 and 12 can be connected in series by the third conductive portion 33.
  • Examples of materials that perform photoelectric conversion include silicon-based semiconductors, compound semiconductors, and materials based on organic materials, and any photoelectric conversion material can be used.
  • these photoelectric conversion materials can be stacked. In the case of stacking, it is possible to form a multi-junction structure with the same material, but stacking multiple photoelectric conversion layers with different optical band gaps and complementing the low sensitivity wavelength region of each photoelectric conversion layer mutually By doing so, incident light can be efficiently absorbed over a wide wavelength region.
  • the plurality of photoelectric conversion layers preferably have different band gaps. According to such a configuration, the electromotive force generated in the photoelectric conversion unit 2 can be increased, and the electrolytic solution can be electrolyzed more efficiently.
  • the photoelectric conversion unit 2 may be a combination of these.
  • the example of the following photoelectric conversion parts 2 can also be made into a photoelectric converting layer.
  • Photoelectric conversion part using a silicon-based semiconductor examples include a single crystal type, a polycrystalline type, an amorphous type, a spherical silicon type, and combinations thereof.
  • the description in the column of “3-1. Photoelectric conversion unit using silicon-based semiconductor” for the hydrogen production apparatus of the first embodiment is the same as that of the photoelectric conversion unit 2 included in the hydrogen production apparatus of the second embodiment. This also applies to the case of “a photoelectric conversion unit using a semiconductor” as long as there is no contradiction.
  • Photoelectric conversion part using a compound semiconductor is, for example, GaP, GaAs, InP, InAs, or IId-VI elements composed of group III-V elements, CdTe / CdS, Examples thereof include those in which a pn junction is formed using CIGS (Copper Indium Gallium DiSelenide) composed of the I-III-VI group.
  • CIGS Copper Indium Gallium DiSelenide
  • Photoelectric conversion part using a dye sensitizer The photoelectric conversion part using a dye sensitizer is mainly composed of, for example, a porous semiconductor, a dye sensitizer, an electrolyte, a solvent, and the like.
  • Photoelectric conversion unit using a dye sensitizer” for the hydrogen production apparatus of the first embodiment is the same as that of the photoelectric conversion unit 2 included in the hydrogen production apparatus of the second embodiment. This also applies to the case of a “photoelectric conversion unit using a sensitizer” as long as there is no contradiction.
  • Photoelectric conversion part using organic thin film is an electron hole transport layer composed of an organic semiconductor material having electron donating properties and electron accepting properties, or an electron transport layer having electron accepting properties. And a hole transport layer having an electron donating property may be laminated.
  • the description in the column of “3-4. Photoelectric Conversion Unit Using Organic Thin Film” for the hydrogen production apparatus of the first embodiment is the same as that of the photoelectric conversion unit 2 included in the hydrogen production apparatus of the second embodiment. The same applies to the case of “the photoelectric conversion unit used” as long as there is no contradiction.
  • photoelectric conversion unit 2 In the photoelectric conversion unit 2 shown above, it is assumed that sunlight is received and photoelectric conversion is primarily performed. However, it is emitted from a fluorescent lamp, an incandescent lamp, an LED, or a specific heat source depending on the application. It is also possible to perform photoelectric conversion by irradiating artificial light such as light.
  • the second electrode 5 can be provided on the back surface of the photoelectric conversion unit 2.
  • the second electrode 5 can also be provided between the back surface of the photoelectric conversion unit 2 and the first electrolysis electrode 8 and between the back surface of the photoelectric conversion unit 2 and the insulating unit 11.
  • the second electrode 5 can be electrically connected to the first electrolysis electrode 8.
  • the second electrode 5 may be in contact with the first electrolysis electrode 8. Further, the second electrode 5 may be electrically connected to the first electrolysis electrode 8 via the switching unit 10 and the wiring 52.
  • the 2nd electrode 5 has the corrosion resistance with respect to electrolyte solution, and the liquid shielding property with respect to electrolyte solution. Thereby, corrosion of the photoelectric conversion part 2 by electrolyte solution can be prevented.
  • the 2nd electrode 5 has electroconductivity
  • it is a metal thin film, for example, is thin films, such as Al, Ag, Au. These can be formed by, for example, sputtering.
  • a transparent conductive film such as In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, and SnO 2 is used.
  • the first conductive part 9 can be provided in contact with the first electrode 4 and the second electrolysis electrode 7.
  • the first electrode 4 and the second electrolysis electrode 7 that are in contact with the light receiving surface of the photoelectric conversion portion 2 can be easily electrically connected.
  • the 1st electroconductive part 9 may be provided in the contact hole which penetrates the photoelectric conversion part 2 like FIG.
  • the contact hole provided with the first conductive portion 9 may be one or plural, and may have a circular cross section.
  • the 1st electroconductive part 9 may be provided so that the side surface of the photoelectric conversion part 2 may be covered like FIG.
  • the material of the first conductive portion 9 is not particularly limited as long as it has conductivity.
  • a paste containing conductive particles for example, a carbon paste, an Ag paste or the like applied by screen printing, an inkjet method, etc., dried or baked, a method of forming a film by a CVD method using a raw material gas, a PVD method, Examples thereof include a vapor deposition method, a sputtering method, a sol-gel method, and a method using an electrochemical redox reaction.
  • Insulating part The insulating part 11 can be provided in order to prevent the occurrence of leakage current.
  • the insulating part 11 can be provided in the side wall of a contact hole. Further, the insulating part 11 can be provided between the second electrolysis electrode 7 and the back surface of the photoelectric conversion part 2 as shown in FIGS. This can prevent a leak current from being generated between the second electrolysis electrode 7 and the back surface of the photoelectric conversion unit 2.
  • the photoelectric conversion unit 2 receives light as shown in FIGS.
  • the insulation part 11 has the corrosion resistance with respect to electrolyte solution, and the liquid shielding property with respect to electrolyte solution. Thereby, generation
  • the insulating part 11 can be used regardless of an organic material or an inorganic material.
  • organic polymers and inorganic materials include metal oxides such as Al 2 O 3 , SiO 2 such as porous silica films, fluorine-added silicon oxide films (FSG), SiOC, HSQ (Hydrogen Silsesquioxane) films, SiN x , It is possible to use a method of forming a film by dissolving silanol (Si (OH) 4 ) in a solvent such as alcohol and applying and heating.
  • a film containing a paste containing an insulating material is applied by a screen printing method, an ink jet method, a spin coating method, etc., dried or baked, or a CVD method using a source gas is used. And a method using a PVD method, a vapor deposition method, a sputtering method, a sol-gel method, and the like.
  • the second conductive part 29 can be provided between the insulating part 11 and the second electrolysis electrode 7 or between the insulating part 11 and the first electrolysis electrode 8. .
  • the second conductive portion 29 can be provided, for example, as shown in FIGS.
  • the second conductive portion 29 preferably has corrosion resistance to the electrolytic solution and liquid shielding properties to the electrolytic solution. Thereby, an increase in ohmic resistance can be prevented, and corrosion of the photoelectric conversion unit 2 due to the electrolytic solution can be prevented.
  • the 3rd electroconductive part 33 can be provided so that a photoelectric converting layer may be connected in series like FIG.
  • the second conductive portion 29 or the third conductive portion 33 is not particularly limited as long as it has conductivity.
  • the second conductive portion 29 or the third conductive portion 33 is a metal thin film, for example, a thin film such as Al, Ag, or Au. These can be formed by, for example, sputtering.
  • a transparent conductive film such as In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, and SnO 2 is used.
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 are provided on the back side of the photoelectric conversion unit 2, respectively. As shown in FIG. 2, the first and second electrolysis electrodes 8 and 7 may be provided on the back surface of the photoelectric conversion unit 2. Moreover, the electrode 8 for 1st electrolysis and the electrode 7 for 2nd electrolysis can each have the surface of the back surface side of the photoelectric conversion part 2, and the surface which is the back surface and can contact electrolyte solution. Thus, the first electrolysis electrode 8 and the second electrolysis electrode 7 do not block light incident on the photoelectric conversion unit 2.
  • the electrolysis solution is electrolyzed by using the electromotive force generated by the photoelectric conversion unit 2 receiving light, and the first gas is obtained.
  • the second gas can be generated.
  • the first electrolysis electrode 8 is connected to the back surface of the photoelectric conversion unit 2 as shown in FIGS.
  • the second electrolysis electrode 7 can be electrically connected to the light receiving surface of the photoelectric conversion unit 2.
  • the first electrolysis electrode 8 is connected to the first area and the second area as shown in FIGS.
  • the second electrolysis electrode 7 can be electrically connected to the other of the first area and the second area.
  • the first electrolysis electrode 8 when the first electrolysis electrode 8 is not in contact with the back surface of the photoelectric conversion unit 2 or the second electrode 5, the first electrolysis electrode 8 is connected to the photoelectric conversion unit 2 via the switching unit 10. It can be electrically connected to the back surface of. 5, 7, and 10, the second electrolysis electrode 7 can be electrically connected to the light receiving surface of the photoelectric conversion unit 2 via the switching unit 10.
  • At least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 may be plural, and each may have a surface that can contact the strip-shaped electrolyte solution, and the long sides of the surfaces are adjacent to each other. Alternatively, they may be provided alternately. In this way, by providing the first electrolysis electrode 8 and the second electrolysis electrode 7, the distance between the portion where the reaction generating the first gas occurs and the portion where the reaction generating the second gas occurs is increased. It can be shortened, and the ion concentration imbalance generated in the electrolyte can be reduced. Moreover, the 1st gas and 2nd gas can be collect
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 can be provided as shown in FIG.
  • the first electrolysis electrode 8 and the second electrolysis electrode 7 preferably have corrosion resistance to the electrolytic solution and liquid shielding properties to the electrolytic solution.
  • the first gas and the second gas can be stably generated, and corrosion of the photoelectric conversion unit 2 due to the electrolytic solution can be prevented.
  • a metal plate or a metal film having corrosion resistance against the electrolytic solution can be used for the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • At least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 has a catalyst surface area larger than the area of the light receiving surface of the photoelectric conversion unit 2. According to such a configuration, the first gas or the second gas can be generated more efficiently by the electromotive force generated in the photoelectric conversion unit 2.
  • at least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 is preferably a porous conductor carrying a catalyst. According to such a configuration, the surface area of at least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 can be increased, and the first gas or the second gas can be generated more efficiently. Can do.
  • the first electrolysis electrode 8 or the second electrolysis electrode 7 can also have a two-layer structure of a portion having a liquid shielding property against the electrolytic solution and a porous portion.
  • One of the first electrolysis electrode 8 and the second electrolysis electrode 7 may be a hydrogen generation unit, and the other may be an oxygen generation unit.
  • one of the first gas and the second gas is hydrogen, and the other is oxygen.
  • Hydrogen generating part is a part for generating H 2 from the electrolytic solution, and is one of the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the description in the column “11. Hydrogen generation unit” for the hydrogen production apparatus of the first embodiment applies to the “hydrogen generation unit” included in the hydrogen production apparatus of the second embodiment as long as there is no contradiction.
  • Oxygen generating portion is a portion that generates O 2 from the electrolytic solution, and is one of the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the description in the column “12. Oxygen generation section” for the hydrogen production apparatus according to the first embodiment applies to the “oxygen generation section” included in the hydrogen production apparatus according to the second embodiment as long as there is no contradiction.
  • a promoter can be used. Examples thereof include oxides or compounds of Ni, Cr, Rh, Mo, Co, and Se.
  • the method for supporting the hydrogen generating catalyst and the oxygen generating catalyst can be applied directly to a conductor or semiconductor, PVD methods such as vacuum deposition, sputtering, and ion plating, dry coating methods such as CVD, The method can be appropriately changed depending on the material such as an analysis method.
  • a conductive material can be appropriately supported between the photoelectric conversion unit and the catalyst.
  • the reaction surface area is increased by supporting it on porous materials such as metals and carbon, fibrous materials, nanoparticles, etc., and the hydrogen and oxygen generation rates are improved. It is possible to make it.
  • the back substrate 14 can be provided on the first electrolysis electrode 8 and the second electrolysis electrode 7 so as to face the translucent substrate 1.
  • the back substrate 14 can be provided such that a space is provided between the first electrolysis electrode 8 and the second electrolysis electrode 7 and the back substrate 14. This space can be used as the electrolytic solution chamber 15, and the first electrolytic electrode 8 and the second electrolytic electrode 7 can be brought into contact with the electrolytic solution by introducing the electrolytic solution into the electrolytic solution chamber 15.
  • the back substrate 14 may be the bottom part of a box.
  • the back substrate 14 is a material that constitutes the electrolytic solution chamber 15 and confines the generated first gas and second gas, and a highly confidential substance is required. It is not particularly limited whether it is transparent or opaque, but it is preferably a transparent material in that it can be visually confirmed that the first gas and the second gas are generated. .
  • the transparent back substrate is not particularly limited, and examples thereof include a transparent rigid material such as quartz glass, Pyrex (registered trademark), and a synthetic quartz plate, a transparent resin plate, and a transparent resin film. Among them, it is preferable to use a glass material because it is a gas that is not chemically permeable and is chemically and physically stable.
  • the partition wall 13 includes an electrolyte chamber 15 that is a space between the first electrolysis electrode 8 and the back substrate 14 and an electrolyte chamber 15 that is a space between the second electrolysis electrode 7 and the back substrate 14. It can be provided so as to partition.
  • the partition wall 13 can also be provided between the first electrolysis electrode 8 and the second electrolysis electrode 7 as shown in FIG. When at least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 is provided, the partition walls 13 can be provided so as to be arranged in parallel as shown in FIG. As a result, the first gas and the second gas generated by the first electrolysis electrode 8 and the second electrolysis electrode 7 can be prevented from mixing, and the first gas and the second gas can be separated. It can be recovered.
  • Partition wall” for the hydrogen production apparatus of the first embodiment is applicable to the “partition wall” included in the hydrogen production apparatus of the second embodiment as long as there is no contradiction.
  • Seal material 16 is a material for adhering the translucent substrate 1 and the back substrate 14 and sealing the electrolyte in the hydrogen production module 6 and the first gas and the second gas generated in the hydrogen production module 6. It is. When a box-shaped substrate is used for the back substrate 14, a sealing material 16 is used for bonding the box body and the translucent substrate 1.
  • the sealing material 16 for example, an ultraviolet curable adhesive, a thermosetting adhesive, or the like is preferably used, but the type thereof is not limited.
  • UV curable adhesives are resins that undergo polymerization when irradiated with light having a wavelength of 200 to 400 nm and undergo a curing reaction within a few seconds after light irradiation, and are classified into radical polymerization type and cationic polymerization type.
  • the polymerization type resin include acrylates, unsaturated polyesters, and examples of the cationic polymerization type include epoxy, oxetane, and vinyl ether.
  • thermosetting polymer adhesive include organic resins such as phenol resin, epoxy resin, melamine resin, urea resin, and thermosetting polyimide.
  • thermosetting polymer adhesive is heated and polymerized in a state where pressure is applied at the time of thermocompression bonding, and then cooled to room temperature while being pressurized. I don't need it.
  • a hybrid material having high adhesion to the glass substrate can be used. By using a hybrid material, mechanical properties such as elastic modulus and hardness are improved, and heat resistance and chemical resistance are dramatically improved.
  • the hybrid material is composed of inorganic colloidal particles and an organic binder resin. For example, what is comprised from inorganic colloidal particles, such as a silica, and organic binder resin, such as an epoxy resin, a polyurethane acrylate resin, and a polyester acrylate resin, is mentioned.
  • the sealing material 16 is described.
  • the sealing material 16 is not limited as long as it has a function of adhering the translucent substrate 1 and the back substrate 14, and a member such as a screw is externally used using a resin or metal gasket. It is also possible to appropriately use a method of applying pressure physically to increase confidentiality.
  • Electrolyte Chamber 15 can be a space between the first electrolysis electrode 8 and the back substrate 14 and a space between the second electrolysis electrode 7 and the back substrate 14. Further, the electrolyte chamber 15 can be partitioned by the partition wall 13.
  • Water supply port, water supply pipe The water supply port 18 can be provided by making an opening in a part of the sealing material 16 included in the hydrogen production module 6 or a part of the back substrate 14.
  • the water supply port 18 is arranged to replenish the electrolytic solution that has been decomposed into the first gas and the second gas, and the arrangement location and shape of the water supply port 18 are such that the electrolytic solution as a raw material can be efficiently supplied to the hydrogen production module 6. If it does, it will not be limited in particular.
  • the water supply port 18 can be connected to the water supply pipe 124, and the water supply port 18 and the water supply pipe 124 can be conducted.
  • the electrolytic solution can be supplied to the hydrogen production module 6 through the water supply pipe 124.
  • the water supply pipe 124 can be provided so as to be removable from the water supply port 18. Thereby, the water supply pipe 124 can be removed from the hydrogen production module 6 and the hydrogen production apparatus 121 can be transformed from the first configuration to the second configuration.
  • the water supply pipes 124 can be connected to the water supply ports of the respective hydrogen production modules 6, and the water supply pipes 124 can connect the plurality of hydrogen production modules 6.
  • the water supply pipe 124 can be used as the connecting portion 112.
  • the water supply port 18 and the water supply pipe 124 can have a liquid leakage prevention mechanism.
  • the liquid leakage prevention mechanism may be composed of, for example, a backflow prevention valve including a spring and a valve body, or may be composed of a marble check valve.
  • the first gas exhaust port, the second gas exhaust port, the first gas exhaust tube and the second gas exhaust tube are the end portion of the first electrolysis electrode 8 and the second gas exhaust port. It can be provided close to the end of the electrode 7 for electrolysis. Thus, the first gas can be recovered from the first gas discharge port 20 and the second gas can be recovered from the second gas discharge port 19.
  • first gas discharge port 20 contacts the electrolytic solution of the first electrolysis electrode 8 when the hydrogen generator 121 of the first form is installed so that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane. It can be provided close to the upper end of the possible surface.
  • the second gas discharge port 19 is in contact with the electrolytic solution of the second electrolysis electrode 7 when the hydrogen production device 121 of the first form is installed so that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane. It can be provided close to the upper end of the possible surface.
  • the first electrolysis electrode when the hydrogen production apparatus 121 of the first embodiment is installed such that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane, and sunlight is incident on the light receiving surface, the first electrolysis electrode
  • the first gas generated in 8 can be raised as bubbles in the electrolytic solution and recovered from the first gas discharge port 20, and the second gas generated in the second electrolysis electrode 7 can be recovered as bubbles in the electrolytic solution. It can be raised and recovered from the second gas outlet 19.
  • the 1st gas exhaust port 20 and the 2nd gas exhaust port 19 can be formed by providing opening in the sealing material 16, for example.
  • An inflow prevention valve may be provided so that the electrolyte does not flow into the first gas outlet 20 and the second gas outlet 19.
  • first gas discharge port 20 can be connected to and connected to the first gas discharge tube 122
  • second gas discharge port 19 can be connected to and connected to the second gas discharge tube 123.
  • the 1st gas exhaust pipe 122 and the 2nd gas exhaust pipe 123 can be provided so that it can remove from the 1st gas exhaust port 20 and the 2nd gas exhaust port 19, respectively. Thereby, the 1st gas exhaust pipe 122 and the 2nd gas exhaust pipe 123 can be removed from the hydrogen production module 6, and the hydrogen production apparatus 121 can be changed from a 1st form to a 2nd form.
  • the first gas exhaust pipe 122 and the second gas exhaust pipe 123 are respectively connected to the first gas exhaust port 20 and the second gas exhaust pipe of each hydrogen production module 6.
  • the first gas exhaust pipe 122 and the second gas exhaust pipe 123 can be connected to the plurality of hydrogen production modules 6, and the first gas exhaust pipe 122 or the second gas exhaust pipe 123 can be connected to the outlet 19.
  • the connecting portion 112 can also be used.
  • the first gas outlet 20 and the second gas outlet 19 can have a liquid leakage prevention mechanism.
  • the liquid leakage prevention mechanism may be composed of, for example, a backflow prevention valve including a spring and a valve body, or may be composed of a marble check valve.
  • Electrolytic Solution is not particularly limited as long as it is a raw material for the first gas and the second gas.
  • the electrolytic solution is an aqueous solution containing an electrolyte, for example, an electrolytic solution containing 0.1 M H 2 SO 4 , 0.1M potassium phosphate buffer.
  • hydrogen and oxygen can be produced from the electrolytic solution as the first gas and the second gas.
  • the hydrogen production apparatus 121 or the hydrogen production module 6 can have the switching unit 10.
  • the switching unit 10 outputs the electromotive force generated when the photoelectric conversion unit 2 receives light to the first external circuit and the electromotive force generated when the photoelectric conversion unit 2 receives light from the first electrolysis electrode 8 and the second electrode. It is possible to switch between a circuit that outputs to the electrode 7 for electrolysis and generates a first gas and a second gas from the electrolyte.
  • the hydrogen production apparatus 121 is in the first form and light is incident on the photoelectric conversion unit 2 of the hydrogen production module 6, the electromotive force generated by the photoelectric conversion unit 2 receiving light is supplied to the first external circuit.
  • the first gas and the second gas can be produced using the electromotive force generated when the photoelectric conversion unit 2 receives light.
  • the method for electrically connecting the switching unit 10 to the first external circuit is not particularly limited. For example, even if the switching unit 10 includes an output terminal and is electrically connected to the first external circuit via the output terminal. Good.
  • the switching unit 10 can be electrically connected to the second external circuit, and outputs an electromotive force input from the second external circuit to the first electrolysis electrode 8 and the second electrolysis electrode 7. It can switch to the circuit which produces
  • the first gas and the second gas can be produced from the electrolyte using the electromotive force input from the second external circuit.
  • the hydrogen production apparatus 121 is in the first form or the second form, the first gas and the second gas can be produced using the electromotive force input from the second external circuit.
  • the first gas and the second gas are produced by using the electromotive force input from the second external circuit with the hydrogen production device 121 as the second form, thereby reducing the piping distance between the first gas and the second gas.
  • the first gas and the second gas can be efficiently recovered.
  • the method for electrically connecting the switching unit 10 to the second external circuit is not particularly limited.
  • the switching unit 10 may include an input terminal and be electrically connected to the second external circuit via the input terminal. .
  • 14 to 17 are schematic circuit diagrams of the hydrogen production apparatus of the present embodiment.
  • 14 to 17 are schematic circuit diagrams when the hydrogen production apparatus 121 has one hydrogen production module 6.
  • each hydrogen production module 6 The first electrode 4 and the second electrode 5 may be connected in parallel or in series, and the first electrolysis electrode 8 and the second electrolysis electrode 7 of each hydrogen production module 6 may be connected in parallel.
  • the hydrogen production module 6 has a cross section as shown in FIG. 7 and an electric circuit as shown in FIG. 14, for example, SW (switch) 1 and SW2 are in the ON state, and SW3 and SW4 are in the OFF state.
  • an electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit.
  • SW1, SW2, SW5, and SW6 are in the OFF state and SW3 and SW4 are in the ON state
  • the electromotive force generated when the photoelectric conversion unit 2 receives light is used as the first electrolysis electrode 8 and the second electrolysis electrode. 7 can be output.
  • the hydrogen production module 6 has a cross section as shown in FIGS. 5 and 10 and an electric circuit as shown in FIG. 15, for example, SW1 and SW2 are in an ON state, and SW3 and SW4 are in an OFF state.
  • the electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit.
  • SW1, SW2, SW3, and SW5 are in the OFF state and SW4 is in the ON state, the electromotive force generated when the photoelectric conversion unit 2 receives light is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output.
  • the hydrogen production module 6 of this embodiment has a cross section as shown in FIG. 6 and an electric circuit as shown in FIG. 16, for example, SW1 and SW2 are in an ON state, and SW3 and SW4 are in an OFF state.
  • an electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit.
  • SW1, SW2, SW3, and SW5 are in the OFF state and SW4 is in the ON state, the electromotive force generated when the photoelectric conversion unit 2 receives light is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output.
  • the hydrogen production module 6 has a cross section as shown in FIGS. 2, 8, 9, 11, and 12 and an electric circuit as shown in FIG. 17, for example, SW1 and SW2 are in an ON state, and SW3 and SW4
  • the electromotive force generated by the photoelectric conversion unit 2 receiving light is sent to the first external circuit. Can be output.
  • SW1, SW2, SW3, and SW4 are in the OFF state, and the electromotive force generated by the photoelectric conversion unit receiving light reaches the electrolytic voltage of the electrolytic solution, the photoelectric conversion unit 2 receives the light.
  • the electromotive force can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the switching unit 10 causes the photoelectric conversion unit 2 to receive the electromotive force generated by the photoelectric conversion unit 2 receiving light and the photoelectric conversion unit 2 to receive light. It is possible to switch between the circuit that outputs the electromotive force generated by the above to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • SW3 and SW4 are in the ON state and SW1 and SW2 are in the OFF state, the electromotive force input from the second external circuit or the electromotive force input from the second external circuit and the photoelectric conversion unit 2 receive light. Both the electromotive forces generated by this can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the switching unit 10 can input information from the control unit, and can switch circuits based on the input information. Thereby, the switching unit 10 can switch to the circuit selected by the control unit.
  • the switching unit 10 can also switch circuits based on the magnitude of the electromotive force generated when the photoelectric conversion unit 2 receives light. As a result, when the electric power output to the first external circuit is generated in the photoelectric conversion unit 2, the electromotive force generated in the photoelectric conversion unit 2 can be output to the first external circuit and output to the first external circuit. When the power to be generated is not generated in the photoelectric conversion unit 2, the electromotive force generated in the photoelectric conversion unit 2 can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
  • the switching unit 10 can also switch circuits based on the magnitude of the electromotive force of the second external circuit. Thereby, when the electric power supplied from the second external circuit is larger than the electric demand, the first gas and the second gas can be produced using the electric power supplied from the second external circuit.
  • the hydrogen production apparatus 45 (121) is installed so that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane, the electrolyte is introduced into the electrolyte chamber 15, and the solar By making light incident on the light receiving surface of the photoelectric conversion unit 2, the first gas and the second gas are generated from the first electrolysis electrode 8 and the second electrolysis electrode 7, respectively, and the first gas outlet 20 and the second gas are generated. The first gas and the second gas can be discharged from the discharge port 19, respectively. Thus, the first gas and the second gas can be produced, and hydrogen can be produced.

Abstract

The present invention provides a hydrogen production device which is capable of increasing the amount of incident light for photoelectric conversion, and does not suffer a reduction in hydrogen generation efficiency. This hydrogen production device is characterized by being provided with: a photoelectric conversion part having a light-receiving surface and a rear surface thereof; a first electrode for electrolysis and a second electrode for electrolysis, which are disposed on the rear surface side of the photoelectric conversion part; and an engagement part for supporting the photoelectric conversion part. This hydrogen production device is further characterized in that: the first and second electrodes for electrolysis are disposed in such a manner that, when sunlight is incident on the light-receiving surface of the photoelectric conversion part, and the first and second electrodes for electrolysis come into contact with an electrolyte, an electromotive force produced by light being received by the photoelectric conversion part is used to electrolyze the electrolyte, thereby generating a first gas and a second gas, and one of the first gas and the second gas is hydrogen, and the other is oxygen; and the engagement part is disposed in such a manner as to be able to adjust the orientation of the light-receiving surface of the photoelectric conversion part toward sunlight.

Description

水素製造装置および水素製造方法Hydrogen production apparatus and hydrogen production method
 本発明は、水素製造装置および水素製造方法に関する。 The present invention relates to a hydrogen production apparatus and a hydrogen production method.
 近年、化石燃料資源の枯渇および地球温暖化ガス排出抑制などの観点から、再生可能エネルギーの利用が望まれている。再生可能エネルギー源としては太陽光、水力、風力、地熱、潮力、バイオマスなど多岐にわたるが、その中でも、太陽光は利用可能なエネルギー量が大きいこと、他の再生可能エネルギーに対し地理的制約が比較的少ないことから、太陽光から効率よく利用可能なエネルギーを生み出す技術の早期な開発と普及が望まれている。 In recent years, the use of renewable energy is desired from the viewpoint of depletion of fossil fuel resources and the suppression of global warming gas emissions. There are a wide variety of renewable energy sources such as sunlight, hydropower, wind power, geothermal power, tidal power, and biomass. Among them, sunlight has a large amount of available energy, and there are geographical restrictions on other renewable energy sources. Because of the relatively small amount, early development and popularization of technology that can efficiently use energy from sunlight is desired.
 太陽光から生み出される利用可能なエネルギーの形態としては、太陽電池や太陽光熱タービンを用いて製造される電気エネルギー、太陽光エネルギーを熱媒体に集めることによる熱エネルギー、その他にも太陽光を用いた物質還元による液体燃料や水素などの貯蔵可能な燃料エネルギー等が挙げられる。太陽電池技術および太陽熱利用技術については、すでに実用化されている技術が多いものの、エネルギー利用効率が未だ低いことと、電気および熱を作り出す際のコストが依然高いことから、これらの改善に向けた技術開発が行われている。さらに、これら電気や熱というエネルギー形態は、短期のエネルギー変動を補完するような使用法は実現できるものの、例えば季節変動などの長期での変動を補完することは極めて困難であることや、エネルギー量の増加により発電設備の稼働率低下を招く可能性があることが課題である。これに対し、液体燃料や水素など、エネルギーを物質として蓄えておくことは、長期変動を効率よく補完するとともに発電設備の稼働率を高める技術として極めて有力であり、今後エネルギー利用効率を最大限に高め、二酸化炭素の排出量を徹底的に削減するためには必要不可欠な技術である。 Possible forms of energy generated from sunlight include electrical energy produced using solar cells and solar thermal turbines, thermal energy by collecting solar energy in a heat medium, and other types of sunlight. Examples include storable fuel energy such as liquid fuel and hydrogen by substance reduction. Many solar cell technologies and solar heat utilization technologies have already been put into practical use, but the energy utilization efficiency is still low, and the cost of producing electricity and heat is still high. Technology development is underway. Furthermore, while these forms of electricity and heat can be used to supplement short-term energy fluctuations, it is extremely difficult to supplement long-term fluctuations such as seasonal fluctuations, It is a problem that there is a possibility that the operating rate of the power generation equipment may be reduced due to the increase in power generation. On the other hand, storing energy as a substance, such as liquid fuel and hydrogen, is extremely effective as a technology that efficiently supplements long-term fluctuations and increases the operating rate of power generation facilities. It is an indispensable technology to raise and reduce carbon dioxide emissions thoroughly.
 貯蔵可能な燃料の形態としては、炭化水素などの液体燃料や、バイオガス、水素などの気体燃料、バイオマス由来の木材ペレットや太陽光で還元された金属などの固体燃料などに大別することができる。インフラ整備の容易性、エネルギー密度の観点では液体燃料、燃料電池などとのトータルの利用効率向上の観点では水素をはじめとする気体燃料、貯蔵可能性とエネルギー密度の観点では固体燃料というように、各形態において長所短所を有するが、原料として容易に入手可能な水を利用できる観点から、太陽光により水を分解することによる水素製造技術が特に注目されている。 The types of fuel that can be stored are roughly divided into liquid fuels such as hydrocarbons, gaseous fuels such as biogas and hydrogen, solid pellets such as biomass-derived wood pellets and metals reduced by sunlight. it can. In terms of ease of infrastructure development and energy density, liquid fuel, gaseous fuel including hydrogen in terms of total utilization efficiency improvement with fuel cells, etc., solid fuel in terms of storability and energy density, Although each form has advantages and disadvantages, a hydrogen production technique by decomposing water with sunlight has attracted particular attention from the viewpoint that water that can be easily obtained as a raw material can be used.
 水を原料として太陽光エネルギーを利用し水素を製造する方法としては、酸化チタン等の光触媒に白金を担持させ、この物質を水中に入れ光照射することにより半導体中で電荷分離を行い、電解液中のプロトンを還元、水を酸化することによる光分解法や、高温ガス炉などの熱エネルギーを利用して水を高温で直接分解する、あるいは金属等の酸化還元と共役させて間接的に分解する熱分解法、藻類など光を利用する微生物の代謝を利用した生物法、太陽電池で発電した電気と水の電気分解水素製造装置を組み合わせた水電気分解法、太陽電池に使用される光電変換材料に水素発生触媒、酸素発生触媒を担持することにより、光電変換で得られる電子と正孔を水素生成触媒、酸素発生触媒で反応に利用する光起電力法等が挙げられる。この中で、光電変換部と水素生成部を一体化することにより、小型の水素製造装置を作製することの可能性を有するものは光分解法、生物法、光起電力法と考えられるが、太陽光エネルギーの変換効率の観点から、光起電力法は実用化に最も近い技術の一つと考えられる。
 これまでに、光電変換と水素発生を一体化した水素製造装置が開示されている(例えば、特許文献1)。このような水素製造装置を用いることにより、太陽光エネルギーを効率よく水素として貯蔵することができる。
As a method of producing hydrogen using solar energy using water as a raw material, platinum is supported on a photocatalyst such as titanium oxide, and this substance is put in water to perform light separation in a semiconductor, and an electrolytic solution. The water is decomposed directly at high temperature using the photolysis method by reducing protons and oxidizing water, or by using thermal energy such as a high-temperature gas furnace, or indirectly by coupling with redox of metals, etc. Pyrolysis method that uses the metabolism of microorganisms that use light such as algae, water electrolysis method that combines electricity generated by solar cells and water electrolysis hydrogen production equipment, photoelectric conversion used in solar cells Examples of the method include a photovoltaic method in which electrons and holes obtained by photoelectric conversion are used in a reaction by a hydrogen generation catalyst and an oxygen generation catalyst by supporting a hydrogen generation catalyst and an oxygen generation catalyst on the material. Among these, the one that has the possibility of producing a small hydrogen production device by integrating the photoelectric conversion unit and the hydrogen generation unit is considered to be a photolysis method, a biological method, a photovoltaic method, From the viewpoint of the conversion efficiency of solar energy, the photovoltaic method is considered to be one of the technologies closest to practical use.
So far, a hydrogen production apparatus in which photoelectric conversion and hydrogen generation are integrated has been disclosed (for example, Patent Document 1). By using such a hydrogen production apparatus, solar energy can be efficiently stored as hydrogen.
 また、太陽は、日の出から日の入りまで方位および仰角が変化する。また季節により、この方位および仰角は、変化する。このため、太陽電池を固定設置した場合、太陽電池の受光面に効率よく太陽光を入射させることができない。このため、太陽電池の受光面に効率よく入射するように太陽電池を太陽の動きを追尾する追尾型太陽光発電装置が知られている(例えば、特許文献2)。 Also, the azimuth and elevation angle of the sun changes from sunrise to sunset. Moreover, this azimuth | direction and an elevation angle change with seasons. For this reason, when a solar cell is fixedly installed, sunlight cannot be efficiently incident on the light receiving surface of the solar cell. For this reason, a tracking type solar power generation device that tracks the movement of the solar cell so that it efficiently enters the light receiving surface of the solar cell is known (for example, Patent Document 2).
特許第4594438号公報Japanese Patent No. 4559438 特開2010-205764号公報JP 2010-205664 A
 しかし、光電変換と水素発生を一体化した水素製造装置を、光電変換する入射光の量が多くなるように太陽の動きを追尾させると、水素製造装置の傾斜角によっては、水素製造装置から水素が排出できず水素生成効率が低下する場合が生じる。
 本発明は、このような事情に鑑みてなされたものであり、光電変換する入射光の量を多くすることができ、かつ、水素生成効率が低下しない水素製造装置を提供する。
However, when the movement of the sun is tracked so that the amount of incident light to be photoelectrically converted is increased in a hydrogen production device that integrates photoelectric conversion and hydrogen generation, depending on the inclination angle of the hydrogen production device, the hydrogen production device May not be discharged and the hydrogen generation efficiency may be reduced.
The present invention has been made in view of such circumstances, and provides a hydrogen production apparatus that can increase the amount of incident light that undergoes photoelectric conversion and that does not reduce hydrogen generation efficiency.
 本発明は、受光面およびその裏面を有する光電変換部と、前記光電変換部の裏面側に設けられた第1電解用電極および第2電解用電極と、前記光電変換部を支持する係合部とを備え、前記光電変換部の受光面に太陽光が入射し第1および第2電解用電極が電解液と接触するとき、第1および第2電解用電極は、前記光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体を発生させることができるように設けられ、第1気体および第2気体のうち、一方は水素であり他方は酸素であり、前記係合部は、前記光電変換部の受光面の太陽光に対する向きを調整することができるように設けられたことを特徴とする水素製造装置を提供する。 The present invention includes a photoelectric conversion unit having a light receiving surface and a back surface thereof, a first electrolysis electrode and a second electrolysis electrode provided on the back surface side of the photoelectric conversion unit, and an engagement unit that supports the photoelectric conversion unit. When the sunlight enters the light receiving surface of the photoelectric conversion unit and the first and second electrolysis electrodes come into contact with the electrolytic solution, the first and second electrolysis electrodes receive light from the photoelectric conversion unit. The electrolysis solution is generated by electrolysis, and the electrolytic solution is electrolyzed to generate the first gas and the second gas, respectively. One of the first gas and the second gas is hydrogen and the other is Is an oxygen, and the engaging portion is provided so that the direction of the light receiving surface of the photoelectric conversion portion with respect to sunlight can be adjusted.
 本発明によれば、第1および第2電解用電極は、光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体が発生するように設けられているため、第1電解用電極の表面で第1気体を発生させることができ、第2電解用電極の表面で第2気体を発生させることができる。また、第1気体および第2気体のうち一方は水素であるため、水素を製造することができる。
 本発明によれば、光電変換部の裏面側に第1電解用電極および第2電解用電極を設けるため、光電変換部の受光面に電解液を介さず光を入射させることができ、電解液による入射光の吸収や入射光の散乱を防止することができる。このことにより、光電変換部へ入射光の量を多くすることができ、光利用効率を高くすることができる。
 本発明によれば、光電変換部の裏面側に第1電解用電極および第2電解用電極を設けるため、受光面に入射する光が、第1および第2電解用電極、ならびにそこからそれぞれ発生する第1気体及び第2気体により吸収や散乱されることはない。このことにより、光電変換部へ入射する光量を多くすることができ、光利用効率を高くすることができる。
According to the present invention, the first and second electrolysis electrodes are configured to electrolyze the electrolytic solution using the electromotive force generated by the light received by the photoelectric conversion unit to generate the first gas and the second gas, respectively. Since it is provided, the first gas can be generated on the surface of the first electrolysis electrode, and the second gas can be generated on the surface of the second electrolysis electrode. Moreover, since one of the first gas and the second gas is hydrogen, hydrogen can be produced.
According to the present invention, since the first electrolysis electrode and the second electrolysis electrode are provided on the back side of the photoelectric conversion unit, light can be incident on the light receiving surface of the photoelectric conversion unit without using the electrolyte solution. It is possible to prevent absorption of incident light and scattering of incident light. As a result, the amount of incident light to the photoelectric conversion unit can be increased, and the light use efficiency can be increased.
According to the present invention, since the first electrolysis electrode and the second electrolysis electrode are provided on the back surface side of the photoelectric conversion unit, light incident on the light receiving surface is generated from the first and second electrolysis electrodes, respectively. It is not absorbed or scattered by the first gas and the second gas. As a result, the amount of light incident on the photoelectric conversion unit can be increased, and the light utilization efficiency can be increased.
 本発明によれば、光電変換部を支持する係合部が光電変換部の受光面の太陽光に対する向きを調整することができるように設けられるため、光電変換部の受光面の向きを太陽の動きに合わせて調整することができ、光電変換部へ入射する光量を多くすることができる。
 本発明によれば、光電変換部の受光面の向きを調整することができるように係合部を設けることにより、光電変換部へ入射する光量を多くすることと、第1気体および第2気体を水素製造装置内に滞留せず排出できることとを、バランスするように光電変換部の受光面の向きを最適化することができるため、水電解効率を低下させずに水素を生成することができる。
According to the present invention, the engaging portion that supports the photoelectric conversion unit is provided so that the direction of the light receiving surface of the photoelectric conversion unit with respect to sunlight can be adjusted. Adjustment can be made in accordance with the movement, and the amount of light incident on the photoelectric conversion unit can be increased.
According to the present invention, the engagement portion is provided so that the direction of the light receiving surface of the photoelectric conversion unit can be adjusted, thereby increasing the amount of light incident on the photoelectric conversion unit, and the first gas and the second gas. Since it is possible to optimize the direction of the light receiving surface of the photoelectric conversion unit so as to balance that it can be discharged without staying in the hydrogen production apparatus, hydrogen can be generated without reducing the water electrolysis efficiency. .
本発明の一実施形態の水素製造装置の受光面側から見た概略図である。It is the schematic seen from the light-receiving surface side of the hydrogen production apparatus of one Embodiment of this invention. 図1の点線A-Aにおける水素製造装置の概略断面図又は図21の点線A-Aにおける水素製造モジュールの概略断面図である。FIG. 22 is a schematic cross-sectional view of the hydrogen production apparatus taken along dotted line AA in FIG. 1 or a schematic cross-sectional view of the hydrogen production module taken along dotted line AA in FIG. 図1の点線B-Bにおける水素製造装置の概略断面図である。FIG. 2 is a schematic cross-sectional view of a hydrogen production apparatus taken along dotted line BB in FIG. 本発明の一実施形態の水素製造装置の概略断面図である。It is a schematic sectional drawing of the hydrogen production apparatus of one Embodiment of this invention. 本発明の一実施形態の水素製造装置の概略断面図又は本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略断面図である。It is a schematic sectional drawing of the hydrogen production apparatus of one Embodiment of this invention, or a schematic sectional drawing of the hydrogen production module contained in the hydrogen production apparatus of one Embodiment of this invention. 本発明の一実施形態の水素製造装置の概略断面図又は本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略断面図である。It is a schematic sectional drawing of the hydrogen production apparatus of one Embodiment of this invention, or a schematic sectional drawing of the hydrogen production module contained in the hydrogen production apparatus of one Embodiment of this invention. 本発明の一実施形態の水素製造装置の概略断面図又は本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略断面図である。It is a schematic sectional drawing of the hydrogen production apparatus of one Embodiment of this invention, or a schematic sectional drawing of the hydrogen production module contained in the hydrogen production apparatus of one Embodiment of this invention. 本発明の一実施形態の水素製造装置の概略断面図又は本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略断面図である。It is a schematic sectional drawing of the hydrogen production apparatus of one Embodiment of this invention, or a schematic sectional drawing of the hydrogen production module contained in the hydrogen production apparatus of one Embodiment of this invention. 本発明の一実施形態の水素製造装置の概略断面図又は本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略断面図である。It is a schematic sectional drawing of the hydrogen production apparatus of one Embodiment of this invention, or a schematic sectional drawing of the hydrogen production module contained in the hydrogen production apparatus of one Embodiment of this invention. 本発明の一実施形態の水素製造装置の概略断面図又は本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略断面図である。It is a schematic sectional drawing of the hydrogen production apparatus of one Embodiment of this invention, or a schematic sectional drawing of the hydrogen production module contained in the hydrogen production apparatus of one Embodiment of this invention. 本発明の一実施形態の水素製造装置の概略断面図又は本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略断面図である。It is a schematic sectional drawing of the hydrogen production apparatus of one Embodiment of this invention, or a schematic sectional drawing of the hydrogen production module contained in the hydrogen production apparatus of one Embodiment of this invention. 本発明の一実施形態の水素製造装置の概略断面図又は本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略断面図である。It is a schematic sectional drawing of the hydrogen production apparatus of one Embodiment of this invention, or a schematic sectional drawing of the hydrogen production module contained in the hydrogen production apparatus of one Embodiment of this invention. 本発明の実施形態の水素製造装置に含まれる制御部などの概念図である。It is a conceptual diagram of the control part etc. which are contained in the hydrogen production apparatus of the embodiment of the present invention. 本発明の実施形態の水素製造装置の概略回路図である。It is a schematic circuit diagram of the hydrogen production apparatus of the embodiment of the present invention. 本発明の実施形態の水素製造装置の概略回路図である。It is a schematic circuit diagram of the hydrogen production apparatus of the embodiment of the present invention. 本発明の実施形態の水素製造装置の概略回路図である。It is a schematic circuit diagram of the hydrogen production apparatus of the embodiment of the present invention. 本発明の実施形態の水素製造装置の概略回路図である。It is a schematic circuit diagram of the hydrogen production apparatus of the embodiment of the present invention. 本発明の一実施形態の水素製造装置に含まれる制御部の制御方法のフローチャートである。It is a flowchart of the control method of the control part contained in the hydrogen production apparatus of one Embodiment of this invention. 本発明の一実施形態の水素製造装置の第1形態における概略平面図である。It is a schematic plan view in the 1st form of the hydrogen production apparatus of one Embodiment of this invention. (a)は、本発明の一実施形態の水素製造装置の第2形態における概略平面図であり、(b)はその概略側面図である。(A) is a schematic plan view in the 2nd form of the hydrogen production apparatus of one Embodiment of this invention, (b) is the schematic side view. 本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略平面図である。It is a schematic plan view of the hydrogen production module contained in the hydrogen production apparatus of one embodiment of the present invention. 本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略裏面図である。It is a schematic back view of the hydrogen production module contained in the hydrogen production apparatus of one embodiment of the present invention. 本発明の一実施形態の水素製造装置の第1形態における概略平面図である。It is a schematic plan view in the 1st form of the hydrogen production apparatus of one Embodiment of this invention. 本発明の一実施形態の水素製造装置の第1形態における概略上面図である。It is a schematic top view in the 1st form of the hydrogen production apparatus of one embodiment of the present invention. 本発明の一実施形態の水素製造装置の第1形態における概略平面図である。It is a schematic plan view in the 1st form of the hydrogen production apparatus of one Embodiment of this invention. (a)は、本発明の一実施形態の水素製造装置の第2形態における概略平面図であり、(b)はその概略側面図である。(A) is a schematic plan view in the 2nd form of the hydrogen production apparatus of one Embodiment of this invention, (b) is the schematic side view. 本発明の一実施形態の水素製造装置の第1形態における概略平面図である。It is a schematic plan view in the 1st form of the hydrogen production apparatus of one Embodiment of this invention. (a)は、本発明の一実施形態の水素製造装置の第2形態における概略側面図であり、(b)はその概略上面図である。(A) is a schematic side view in the 2nd form of the hydrogen production apparatus of one Embodiment of this invention, (b) is the schematic top view. 本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略裏面図である。It is a schematic back view of the hydrogen production module contained in the hydrogen production apparatus of one embodiment of the present invention.
 本実施形態の水素製造装置は、受光面およびその裏面を有する光電変換部と、前記光電変換部の裏面側に設けられた第1電解用電極および第2電解用電極と、前記光電変換部を支持する係合部とを備え、前記光電変換部の受光面に太陽光が入射し第1および第2電解用電極が電解液と接触するとき、第1および第2電解用電極は、前記光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体を発生させることができるように設けられ、第1気体および第2気体のうち、一方は水素であり他方は酸素であり、前記係合部は、前記光電変換部の受光面の太陽光に対する向きを調整することができるように設けられたことを特徴とする。 The hydrogen production apparatus of this embodiment includes a photoelectric conversion unit having a light receiving surface and a back surface thereof, a first electrolysis electrode and a second electrolysis electrode provided on the back surface side of the photoelectric conversion unit, and the photoelectric conversion unit. An engaging portion to support, and when sunlight enters the light receiving surface of the photoelectric conversion portion and the first and second electrolysis electrodes are in contact with the electrolytic solution, the first and second electrolysis electrodes are The electrolysis solution generated by receiving light from the conversion unit is used to electrolyze the electrolytic solution to generate the first gas and the second gas, respectively, one of the first gas and the second gas. Is hydrogen and the other is oxygen, and the engaging portion is provided so that the direction of the light receiving surface of the photoelectric conversion portion relative to sunlight can be adjusted.
 本実施形態の水素製造装置において、傾斜角制限手段、第1気体排出口および第2気体排出口をさらに備え、第1および第2気体排出口は、第1電解用電極の端部および第2電解用電極の端部にそれぞれ近接して設けられ、前記光電変換部の受光面に太陽光が入射し第1および第2電解用電極が電解液と接触するとき、前記傾斜角制限手段は、第1気体および第2気体が電解液中を浮力により第1気体排出口および第2気体排出口にそれぞれ移動するように第1および第2電解用電極の傾斜角を制限することが好ましい。
 このような構成によれば、傾斜角制限手段が、第1気体および第2気体が電解液中を浮力により第1気体排出口および第2気体排出口にそれぞれ移動するように第1および第2電解用電極の傾斜角を制限するため、水素製造装置から第1気体または第2気体が排出されずに装置内に滞留することを防止することができ、水素生成効率の低下を防止することができる。
 本実施形態の水素製造装置において、前記係合部は、回転自在または変形可能であることが好ましい。
 このような構成によれば、係合部が回転または変形することにより光電変換部の受光面の向きを調整することができる。
The hydrogen production apparatus of the present embodiment further includes an inclination angle limiting means, a first gas discharge port, and a second gas discharge port, wherein the first and second gas discharge ports are the end portion of the first electrolysis electrode and the second gas discharge port. When the sunlight is incident on the light receiving surface of the photoelectric conversion unit and the first and second electrolysis electrodes are in contact with the electrolytic solution, the inclination angle limiting means is provided close to each end of the electrolysis electrode. It is preferable to limit the inclination angles of the first and second electrolysis electrodes so that the first gas and the second gas move in the electrolytic solution to the first gas outlet and the second gas outlet, respectively, by buoyancy.
According to such a configuration, the first and second tilt angle limiting means move the first gas and the second gas so that the first gas and the second gas move through the electrolyte to the first gas outlet and the second gas outlet, respectively, by buoyancy. Since the inclination angle of the electrode for electrolysis is limited, it is possible to prevent the first gas or the second gas from staying in the apparatus without being discharged from the hydrogen production apparatus, and to prevent a decrease in hydrogen generation efficiency. it can.
In the hydrogen production apparatus of the present embodiment, it is preferable that the engaging portion is rotatable or deformable.
According to such a configuration, the direction of the light receiving surface of the photoelectric conversion unit can be adjusted by rotating or deforming the engaging unit.
 本実施形態の水素製造装置において、前記光電変換部の受光面の太陽光に対する向き、または第1および第2電解用電極の動きを制御する制御部をさらに備えることが好ましい。
 このような構成によれば、水素製造装置の動きを自動制御することができる。
 本実施形態の水素製造装置において、前記制御部は、前記光電変換部の受光面の太陽光に対する向きを太陽の仰角と方位に基づき制御することが好ましい。
 このような構成によれば、光電変換部への入射光量を多くすることができる。
The hydrogen production apparatus according to the present embodiment preferably further includes a control unit that controls the direction of the light receiving surface of the photoelectric conversion unit with respect to sunlight or the movement of the first and second electrolysis electrodes.
According to such a configuration, the movement of the hydrogen production apparatus can be automatically controlled.
In the hydrogen production apparatus of the present embodiment, it is preferable that the control unit controls the direction of the light receiving surface of the photoelectric conversion unit with respect to sunlight based on the elevation angle and direction of the sun.
According to such a configuration, the amount of light incident on the photoelectric conversion unit can be increased.
 本実施形態の水素製造装置において、前記制御部は、第1および第2電解用電極が振動するように第1および第2電解用電極の動きを制御することが好ましい。
 このような構成によれば、第1電解用電極の表面の第1気体および第2電解用電極の表面の第2気体の装置外への排出を促進することができる。
 本実施形態の水素製造装置において、前記制御部は、情報を入力するための入力手段と、前記入力手段から入力された情報に基づき前記光電変換部の受光面の向きまたは第1および第2電解用電極の動きを設定する設定手段と、前記設定手段により設定された情報を出力するための出力手段と、前記出力手段により出力された情報に基づき少なくとも前記光電変換部を動かす動力部とを備えることが好ましい。
 このような構成によれば、制御部が水素製造装置の動きを制御することができる。
In the hydrogen production apparatus of the present embodiment, it is preferable that the control unit controls the movement of the first and second electrolysis electrodes so that the first and second electrolysis electrodes vibrate.
According to such a configuration, the discharge of the first gas on the surface of the first electrolysis electrode and the second gas on the surface of the second electrolysis electrode to the outside of the apparatus can be promoted.
In the hydrogen production apparatus of the present embodiment, the control unit includes an input unit for inputting information, a direction of a light receiving surface of the photoelectric conversion unit based on information input from the input unit, or first and second electrolysis. Setting means for setting the movement of the electrode for use, output means for outputting the information set by the setting means, and a power unit for moving at least the photoelectric conversion unit based on the information output by the output means It is preferable.
According to such a configuration, the control unit can control the movement of the hydrogen production apparatus.
 本実施形態の水素製造装置において、前記制御部は、第1および第2電解用電極の傾斜角を制限する傾斜角制限手段を含むことが好ましい。
 このような構成によれば、第1および第2電解用電極の傾斜角を物理的な手段を用いずに制限することができるため、傾斜角制限手段による制限を容易に解除することができる。
 本実施形態の水素製造装置において、第1外部回路と電気的に接続できる切換部をさらに備え、前記切換部は、前記光電変換部が受光することにより生じる起電力を第1外部回路へ出力させる回路と、前記光電変換部が受光することにより生じる起電力を第1および第2電解用電極に出力させる回路とを切り換えることができることが好ましい。
 このような構成によれば、光電変換部の起電力を必要に応じて第1外部回路または第1または第2電解用電極へ出力することができ、光電変換部の起電力を有効に活用することができる。
In the hydrogen production apparatus of the present embodiment, it is preferable that the control unit includes a tilt angle limiting unit that limits a tilt angle of the first and second electrolysis electrodes.
According to such a configuration, the inclination angle of the first and second electrolysis electrodes can be restricted without using physical means, and therefore the restriction by the inclination angle restriction means can be easily released.
The hydrogen production apparatus of the present embodiment further includes a switching unit that can be electrically connected to the first external circuit, and the switching unit outputs an electromotive force generated when the photoelectric conversion unit receives light to the first external circuit. It is preferable to be able to switch between a circuit and a circuit that outputs an electromotive force generated when the photoelectric conversion unit receives light to the first and second electrolysis electrodes.
According to such a configuration, the electromotive force of the photoelectric conversion unit can be output to the first external circuit or the first or second electrolysis electrode as necessary, and the electromotive force of the photoelectric conversion unit is effectively utilized. be able to.
 本実施形態の水素製造装置において、前記切換部は、第2外部回路と電気的に接続することができ、かつ、第2外部回路から入力される起電力を第1電解用電極および第2電解用電極に出力し電解液からそれぞれ第1気体および第2気体を発生させる回路に切り換えることができることが好ましい。
 このような構成によれば、第1および第2電解用電極を有効に活用することができる。
 本実施形態の水素製造装置において、前記切換部が切り換える回路を設定し、設定した情報を前記切換部に出力する制御部をさらに備えることが好ましい。
 このような構成によれば、切換部が切り換える回路を制御部により自動制御することができる。
In the hydrogen production apparatus of the present embodiment, the switching unit can be electrically connected to the second external circuit, and the electromotive force input from the second external circuit is converted to the first electrolysis electrode and the second electrolysis. It is preferable that the circuit can be switched to a circuit that outputs to the working electrode and generates the first gas and the second gas from the electrolyte.
According to such a configuration, the first and second electrolysis electrodes can be effectively utilized.
In the hydrogen production apparatus according to the present embodiment, it is preferable to further include a control unit that sets a circuit to be switched by the switching unit and outputs the set information to the switching unit.
According to such a configuration, the circuit switched by the switching unit can be automatically controlled by the control unit.
 本実施形態の水素製造装置において、前記制御部は、情報を入力するための入力手段と、前記入力手段から入力された情報に基づき前記切換部が切り換える回路を設定する設定手段と、前記設定手段により設定された情報を前記切換部に出力するための出力手段とを備えることが好ましい。
 このような構成によれば、制御部が入力情報に基づき切換部が切り換える回路を制御することができる。
 本実施形態の水素製造装置において、傾斜センサ、方位センサ、位置センサ、照度センサまたは時計をさらに備え、前記入力手段は、前記傾斜センサ、前記方位センサ、前記位置センサ、前記照度センサまたは前記時計から情報を入力することが好ましい。
 このような構成によれば、水素製造装置の状態に関する情報、および太陽の位置、動きに関する情報、日射に関する情報を検出することができる。
In the hydrogen production apparatus of the present embodiment, the control unit includes an input unit for inputting information, a setting unit for setting a circuit to be switched by the switching unit based on information input from the input unit, and the setting unit It is preferable that an output unit for outputting the information set by the above to the switching unit.
According to such a configuration, the control unit can control the circuit that the switching unit switches based on the input information.
The hydrogen production apparatus of the present embodiment further includes an inclination sensor, an orientation sensor, a position sensor, an illuminance sensor, or a clock, and the input means includes the inclination sensor, the azimuth sensor, the position sensor, the illuminance sensor, or the clock. It is preferable to input information.
According to such a configuration, information on the state of the hydrogen production apparatus, information on the position of the sun, information on movement, and information on solar radiation can be detected.
 本実施形態の水素製造装置において、前記入力手段は、電力会社からの情報、売電情報、Web情報、ソリューションサーバー情報を入力することが好ましい。
 このような構成によれば、電力需要情報などに基づき水素製造装置を制御することができる。
 本実施形態の水素製造装置において、基部をさらに備え、前記係合部は、前記基部に対して前記光電変換部、第1電解用電極および第2電解用電極が相対的に動くように設けられたことが好ましい。
 このような構成によれば、基部を固定し、基部に対して光電変換部などを動かすことができる。
In the hydrogen production apparatus of this embodiment, it is preferable that the input means inputs information from an electric power company, power sale information, Web information, and solution server information.
According to such a configuration, the hydrogen production apparatus can be controlled based on power demand information and the like.
The hydrogen production apparatus according to the present embodiment further includes a base, and the engaging portion is provided such that the photoelectric conversion unit, the first electrolysis electrode, and the second electrolysis electrode move relative to the base. It is preferable.
According to such a structure, a base part can be fixed and a photoelectric conversion part etc. can be moved with respect to a base part.
 本実施形態の水素製造装置において、前記係合部は、前記光電変換部の受光面の傾斜角を調整する第1係合部と、前記光電変換部の受光面が向く方位を調整する第2係合部とを含むことが好ましい。
 このような構成によれば、光電変換部の受光面が向く方向を容易に太陽に合わせることができる。
 本実施形態の水素製造装置において、第2係合部は、第1電解用電極および第2電解用電極に対して前記光電変換部が相対的に動くように設けられたことが好ましい。
 このような構成によれば、第1および第2電解用電極の傾斜角を変化させずに、光電変換部の受光面の向きを動かすことができ、安定して第1気体および第2気体を排出することができる。
 本実施形態の水素製造装置において、前記係合部は、第1電解用電極および第2電解用電極に対して前記光電変換部が相対的に動くように設けられたことが好ましい。
 このような構成によれば、第1および第2電解用電極の傾斜角を変化させずに、光電変換部の受光面の向きを動かすことができ、安定して第1気体および第2気体を排出することができる。
In the hydrogen production apparatus according to the present embodiment, the engaging portion includes a first engaging portion that adjusts an inclination angle of a light receiving surface of the photoelectric conversion portion, and a second that adjusts an orientation in which the light receiving surface of the photoelectric conversion portion faces. It is preferable that an engagement part is included.
According to such a configuration, the direction in which the light receiving surface of the photoelectric conversion unit faces can be easily adjusted to the sun.
In the hydrogen production apparatus of the present embodiment, it is preferable that the second engagement portion is provided so that the photoelectric conversion portion moves relative to the first electrolysis electrode and the second electrolysis electrode.
According to such a configuration, the direction of the light receiving surface of the photoelectric conversion unit can be moved without changing the inclination angles of the first and second electrolysis electrodes, and the first gas and the second gas can be stably supplied. Can be discharged.
In the hydrogen production apparatus of the present embodiment, it is preferable that the engaging portion is provided so that the photoelectric conversion portion moves relative to the first electrolysis electrode and the second electrolysis electrode.
According to such a configuration, the direction of the light receiving surface of the photoelectric conversion unit can be moved without changing the inclination angles of the first and second electrolysis electrodes, and the first gas and the second gas can be stably supplied. Can be discharged.
 また、本発明は、第1形態から第2形態に、または第2形態から第1形態に変形可能な水素製造装置であって、変形可能に設けられた少なくとも1つの水素製造モジュールを備え、前記水素製造モジュールは、受光面および裏面を有する光電変換部と、前記光電変換部の裏面側に設けられた第1電解用電極および第2電解用電極とを備え、第1および第2電解用電極は、前記光電変換部の受光面に光が入射し第1および第2電解用電極が電解液と接触するとき、前記光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体を発生させることができるように設けられ、第1気体および第2気体のうち、一方は水素であり他方は酸素であり、第1形態は、前記水素製造装置に含まれる前記受光面の略全体が太陽光を直接受光可能な形態であり、第2形態は、1つの前記水素製造モジュールに含まれる前記光電変換部の受光面側又は裏面側に、同じ又は異なる前記水素製造モジュールに含まれる前記光電変換部が位置する形態であることを特徴とする水素製造装置も提供する。
 従来の太陽光エネルギーを利用した水素製造装置では、できるだけ多くの太陽光エネルギー利用しようとするため、広い設置面積を必要とする。また、従来の水素製造装置は、一般的に固定設置されるために、太陽光を受光できない夜間や、設置場所を他の用途に一時的に利用したい場合でも、設置場所は他の用途に利用できない。
 本発明は、このような事情に鑑みてなされたものであり、設置場所を有効に利用することができる水素製造装置を提供する。
Further, the present invention is a hydrogen production apparatus that can be modified from the first form to the second form or from the second form to the first form, comprising at least one hydrogen production module that is deformably provided, The hydrogen production module includes a photoelectric conversion unit having a light receiving surface and a back surface, and a first electrolysis electrode and a second electrolysis electrode provided on the back surface side of the photoelectric conversion unit, and the first and second electrolysis electrodes. When the light is incident on the light receiving surface of the photoelectric conversion unit and the first and second electrolysis electrodes are in contact with the electrolytic solution, the electrolysis solution is electrolyzed using the electromotive force generated by the photoelectric conversion unit receiving light. The first gas and the second gas are provided so as to be decomposed to generate a first gas and a second gas, respectively. One of the first gas and the second gas is hydrogen and the other is oxygen. The light reception included in the apparatus The second form is the same or different on the same or different hydrogen production module on the light receiving surface side or the back surface side of the photoelectric conversion part included in one hydrogen production module. There is also provided a hydrogen production apparatus characterized in that the photoelectric conversion unit included is located.
In a conventional hydrogen production apparatus using solar energy, a large installation area is required in order to use as much solar energy as possible. In addition, since conventional hydrogen production equipment is generally fixedly installed, the installation location can be used for other purposes even at night when sunlight cannot be received or when the installation location is to be used temporarily for other purposes. Can not.
This invention is made | formed in view of such a situation, and provides the hydrogen production apparatus which can utilize an installation place effectively.
 本発明によれば、第1および第2電解用電極は、光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体が発生するように設けられているため、第1電解用電極の表面で第1気体を発生させることができ、第2電解用電極の表面で第2気体を発生させることができる。また、第1気体および第2気体のうち一方は水素であるため、水素を製造することができる。
 本発明によれば、光電変換部の裏面側に第1電解用電極および第2電解用電極を設けるため、光電変換部の受光面に電解液を介さず光を入射させることができ、電解液による入射光の吸収や入射光の散乱を防止することができる。このことにより、光電変換部へ入射光の量を多くすることができ、光利用効率を高くすることができる。
 本発明によれば、光電変換部の裏面側に第1電解用電極および第2電解用電極を設けるため、受光面に入射する光が、第1および第2電解用電極、ならびにそこからそれぞれ発生する第1気体及び第2気体により吸収や散乱されることはない。このことにより、光電変換部へ入射する光量を多くすることができ、光利用効率を高くすることができる。
According to the present invention, the first and second electrolysis electrodes are configured to electrolyze the electrolytic solution using the electromotive force generated by the light received by the photoelectric conversion unit to generate the first gas and the second gas, respectively. Since it is provided, the first gas can be generated on the surface of the first electrolysis electrode, and the second gas can be generated on the surface of the second electrolysis electrode. Moreover, since one of the first gas and the second gas is hydrogen, hydrogen can be produced.
According to the present invention, since the first electrolysis electrode and the second electrolysis electrode are provided on the back side of the photoelectric conversion unit, light can be incident on the light receiving surface of the photoelectric conversion unit without using the electrolyte solution. It is possible to prevent absorption of incident light and scattering of incident light. As a result, the amount of incident light to the photoelectric conversion unit can be increased, and the light use efficiency can be increased.
According to the present invention, since the first electrolysis electrode and the second electrolysis electrode are provided on the back surface side of the photoelectric conversion unit, light incident on the light receiving surface is generated from the first and second electrolysis electrodes, respectively. It is not absorbed or scattered by the first gas and the second gas. As a result, the amount of light incident on the photoelectric conversion unit can be increased, and the light utilization efficiency can be increased.
 本発明によれば、前記水素製造装置に含まれる前記受光面の略全体が太陽光を直接受光可能な第1形態から、1つの前記水素製造モジュールに含まれる前記光電変換部の受光面側又は裏面側に、同じ又は異なる前記水素製造モジュールに含まれる前記光電変換部が位置する第2形態へ水素製造装置を変形させることが可能であり、第2形態から第1形態へ水素製造装置を変形させることが可能であるため、日射がある時に水素製造装置を第1形態とすることにより、光電変換部の受光面に入射する光量が多くなり水素を効率よく製造することができ、日射がない時や水素製造装置の設置場所を他の用途に利用したい時などに水素製造装置を第2形態とすることにより、水素製造装置がコンパクト化され設置面積を狭くすることができる。水素製造装置をコンパクト化することができるにより、空いたスペースを他の用途に用いることができ、水素製造装置の設置場所を有効に活用することができる。また、水素製造装置をコンパクト化することができることにより、水素製造装置の収納が容易になり、また、水素製造装置の設置場所の変更が容易になる。また、寒冷地に水素製造装置を設置する場合、電解液が凍ることにより水素製造装置が破損する場合があると考えられるが、水素製造装置を第2形態としコンパクト化することにより、容易に水素製造装置を寒気から保護することが可能となる。また、同様に高温時や強風時など水素製造装置が破損するおそれがある場合に水素製造装置を容易に保護することもできる。さらに本発明の水素製造装置を外部電力を利用した水電解装置として利用するとき、コンパクト化された第2形態とすることにより発生させた水素を効率よく回収することができる。 According to the present invention, from the first mode in which substantially the entire light receiving surface included in the hydrogen production apparatus can directly receive sunlight, the light receiving surface side of the photoelectric conversion unit included in one hydrogen production module or It is possible to transform the hydrogen production apparatus into the second form in which the photoelectric conversion unit included in the same or different hydrogen production module is located on the back side, and transform the hydrogen production apparatus from the second form to the first form Therefore, by setting the hydrogen production apparatus to the first configuration when there is solar radiation, the amount of light incident on the light receiving surface of the photoelectric conversion unit can be increased and hydrogen can be produced efficiently, and there is no solar radiation. By setting the hydrogen production apparatus to the second form when it is desired to use the installation place of the hydrogen production apparatus for other purposes, the hydrogen production apparatus can be made compact and the installation area can be reduced. Since the hydrogen production apparatus can be made compact, the vacant space can be used for other purposes, and the installation location of the hydrogen production apparatus can be used effectively. In addition, since the hydrogen production apparatus can be made compact, the hydrogen production apparatus can be easily accommodated, and the installation location of the hydrogen production apparatus can be easily changed. In addition, when a hydrogen production apparatus is installed in a cold region, it is considered that the hydrogen production apparatus may be damaged due to freezing of the electrolyte. It becomes possible to protect the manufacturing apparatus from cold. Similarly, the hydrogen production apparatus can be easily protected when there is a risk of damage to the hydrogen production apparatus, such as during high temperatures or strong winds. Furthermore, when the hydrogen production apparatus of the present invention is used as a water electrolysis apparatus using external electric power, hydrogen generated by using the compact second embodiment can be efficiently recovered.
 本発明の水素製造装置において、前記水素製造モジュールは複数であり、第1形態は、各水素製造モジュールの前記光電変換部の受光面に太陽光が入射できるように各水素製造モジュールが並んだ形態であり、第2形態は、各水素製造モジュールが積重した形態であることが好ましい。
 このような構成によれば、水素製造装置を第1形態としたとき、各水素製造モジュールの光電変換部に入射する光量を多くすることができ、水素製造装置を第2形態としたとき、水素製造装置をコンパクト化することができ、設置面積を狭くすることができる。
 本発明の水素製造装置において、複数の水素製造モジュールを連結する連結部をさらに備えることが好ましい。
 このような構成によれば、複数の水素製造モジュールを連結部により連結することができ、複数の水素製造モジュールの配置を変えることにより水素製造装置の形態を変化させることができる。
In the hydrogen production apparatus of the present invention, there are a plurality of the hydrogen production modules, and the first mode is a mode in which the hydrogen production modules are arranged so that sunlight can enter the light receiving surface of the photoelectric conversion unit of each hydrogen production module. The second form is preferably a form in which the hydrogen production modules are stacked.
According to such a configuration, when the hydrogen production apparatus is in the first form, the amount of light incident on the photoelectric conversion unit of each hydrogen production module can be increased, and when the hydrogen production apparatus is in the second form, The manufacturing apparatus can be made compact and the installation area can be reduced.
In the hydrogen production apparatus of the present invention, it is preferable that the hydrogen production apparatus further includes a connecting portion that connects a plurality of hydrogen production modules.
According to such a structure, a some hydrogen production module can be connected by a connection part, and the form of a hydrogen production apparatus can be changed by changing arrangement | positioning of a some hydrogen production module.
 本発明の水素製造装置において、前記連結部は、回転軸を含む構造を有することが好ましい。
 このような構成によれば、連結部が回転軸により回転自在になり、各水素製造モジュールを可動とすることができる。このことにより、水素製造装置を、第1形態から第2形態へまたは第2形態から第1形態へ変形させることができる。
 本発明の水素製造装置において、前記連結部は、案内溝を有し、少なくとも1つの水素製造モジュールは、前記案内溝に沿って摺動することが好ましい。
 このような構成によれば、水素製造モジュールを案内溝に沿って摺動させることにより、水素製造装置を、第1形態から第2形態へまたは第2形態から第1形態へ変形させることができる。
In the hydrogen production apparatus of the present invention, it is preferable that the connecting portion has a structure including a rotating shaft.
According to such a structure, a connection part becomes rotatable with a rotating shaft, and each hydrogen production module can be made movable. Thus, the hydrogen production apparatus can be transformed from the first form to the second form or from the second form to the first form.
In the hydrogen production apparatus of the present invention, it is preferable that the connecting portion has a guide groove, and at least one hydrogen production module slides along the guide groove.
According to such a configuration, the hydrogen production module can be changed from the first form to the second form or from the second form to the first form by sliding the hydrogen production module along the guide groove. .
 本発明の水素製造装置において、各水素製造モジュールは、それぞれ分離可能であり、かつ、第1形態において第1連結部により連結され、第2形態において第2連結部により連結されることが好ましい。
 このような構成によれば、各水素製造モジュールを第1連結部で連結することにより水素製造装置を第1形態とすることができ、各水素製造モジュールを第2連結部で連結することにより水素製造装置を第2形態とすることができる。
 本発明の水素製造装置において、第1および第2連結部は、各水素製造モジュールから分離可能であることが好ましい。
 このような構成によれば、第1連結部と第2連結部とを第1形態と第2形態とで取り替えることができ、その形態に適した連結部を用いることができる。
In the hydrogen production apparatus of the present invention, it is preferable that the respective hydrogen production modules are separable and are connected by the first connection part in the first form and are connected by the second connection part in the second form.
According to such a configuration, the hydrogen production apparatus can be in the first form by connecting the hydrogen production modules with the first connection part, and the hydrogen production module can be connected with the hydrogen by connecting the hydrogen production modules with the second connection part. A manufacturing apparatus can be made into the 2nd form.
In the hydrogen production apparatus of the present invention, it is preferable that the first and second connecting portions are separable from each hydrogen production module.
According to such a structure, the 1st connection part and the 2nd connection part can be replaced with the 1st form and the 2nd form, and the connection part suitable for the form can be used.
 本発明の水素製造装置において、前記連結部は、磁石を含むことが好ましい。
 このような構成によれば、磁石の引力により各水素製造モジュールを連結することができる。また、このことにより各水素製造モジュールを容易に分離することができる。
 本発明の水素製造装置において、前記連結部は、各水素製造モジュールに電解液を供給する給水管、各水素製造モジュールから第1気体を排出する第1気体排出管、または各水素製造モジュールから第2気体を排出する第2気体排出管であることが好ましい。
 このような構成によれば、連結部を給水管、第1気体排出管または第2気体排出管とすることができ、部品数を低減することができる。
In the hydrogen production apparatus of the present invention, it is preferable that the connecting portion includes a magnet.
According to such a structure, each hydrogen production module can be connected by the attractive force of a magnet. This also makes it possible to easily separate the hydrogen production modules.
In the hydrogen production apparatus of the present invention, the connecting portion includes a water supply pipe that supplies an electrolytic solution to each hydrogen production module, a first gas exhaust pipe that discharges a first gas from each hydrogen production module, or a first gas discharge pipe from each hydrogen production module. It is preferable that it is the 2nd gas exhaust pipe which discharges 2 gas.
According to such a structure, a connection part can be made into a water supply pipe, a 1st gas exhaust pipe, or a 2nd gas exhaust pipe, and can reduce the number of parts.
 本発明の水素製造装置において、各水素製造モジュールは、電解液を水素製造モジュール内に供給する給水口と、第1気体を排出する第1気体排出口と、第2気体を排出する第2気体排出口とを備え、前記給水口、第1気体排出口または第2気体排出口に液漏れ防止機構を備えることが好ましい。
 このような構成によれば、給水管、第1気体排出管または第2気体排出管を水素製造モジュールから取り外した場合、電解液が流出することを防止することができる。
 本発明の水素製造装置において、前記水素製造モジュールは、柔軟性を有し巻き上げ可能なシート状であり、第1形態は、シート状の前記水素製造モジュールを広げた形態であり、第2形態は、シート状の前記水素製造モジュールを巻き上げた形態であることが好ましい。
 このような構成によれば、水素製造装置を第1形態とすることにより、水素製造モジュールの光電変換部に入射する光量を多くすることができ、水素製造装置を第2形態とすることにより、水素製造装置の設置面積を狭くすることができる。また、水素製造装置の設置場所を容易に変更することができる。
In the hydrogen production apparatus of the present invention, each hydrogen production module includes a water supply port for supplying the electrolyte into the hydrogen production module, a first gas exhaust port for discharging the first gas, and a second gas for discharging the second gas. It is preferable that a water leakage prevention mechanism is provided in the water supply port, the first gas discharge port, or the second gas discharge port.
According to such a configuration, when the water supply pipe, the first gas discharge pipe, or the second gas discharge pipe is removed from the hydrogen production module, the electrolyte can be prevented from flowing out.
In the hydrogen production apparatus of the present invention, the hydrogen production module has a flexible and rollable sheet shape, the first form is an expanded form of the sheet-like hydrogen production module, and the second form is The sheet-like hydrogen production module is preferably rolled up.
According to such a configuration, by setting the hydrogen production apparatus to the first form, it is possible to increase the amount of light incident on the photoelectric conversion unit of the hydrogen production module, and by making the hydrogen production apparatus the second form, The installation area of the hydrogen production apparatus can be reduced. Moreover, the installation place of a hydrogen production apparatus can be changed easily.
 本発明の水素製造装置において、第1外部回路と電気的に接続できる切換部をさらに備え、前記切換部は、前記光電変換部が受光することにより生じる起電力を第1外部回路へ出力させる回路と、前記光電変換部が受光することにより生じる起電力を第1および第2電解用電極に出力させる回路とを切り換えることができることが好ましい。
 このような構成によれば、光電変換部の起電力を必要に応じて第1外部回路、または第1または第2電解用電極へ出力することができ、光電変換部の起電力を有効に活用することができる。
 本発明の水素製造装置において、前記切換部は、第2外部回路と電気的に接続することができ、かつ、第2外部回路から入力される起電力を第1電解用電極および第2電解用電極に出力し電解液からそれぞれ第1気体および第2気体を発生させる回路に切り換えることができることが好ましい。
 このような構成によれば、第1および第2電解用電極を有効に活用することができる。また、水素製造装置を第2形態としたとき、水素製造装置をコンパクトな水電解装置として利用することができる。
The hydrogen production apparatus according to the present invention further includes a switching unit that can be electrically connected to the first external circuit, and the switching unit outputs an electromotive force generated when the photoelectric conversion unit receives light to the first external circuit. It is preferable that the circuit that outputs the electromotive force generated when the photoelectric conversion unit receives light to the first and second electrolysis electrodes can be switched.
According to such a configuration, the electromotive force of the photoelectric conversion unit can be output to the first external circuit or the first or second electrolysis electrode as necessary, and the electromotive force of the photoelectric conversion unit is effectively utilized. can do.
In the hydrogen production apparatus of the present invention, the switching unit can be electrically connected to the second external circuit, and the electromotive force input from the second external circuit is used as the first electrolysis electrode and the second electrolysis electrode. It is preferable that the circuit can be switched to a circuit that outputs to the electrode and generates the first gas and the second gas from the electrolyte.
According to such a configuration, the first and second electrolysis electrodes can be effectively utilized. Further, when the hydrogen production apparatus is in the second form, the hydrogen production apparatus can be used as a compact water electrolysis apparatus.
 本実施形態の水素製造装置において、前記光電変換部は、受光することによりその受光面と裏面との間に起電力が生じ、第1電解用電極は、前記光電変換部の裏面と電気的に接続することができるように設けられ、第2電解用電極は、前記光電変換部の受光面と電気的に接続することができるように設けられたことが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる起電力を第1電解用電極および第2電解用電極に出力することができる。
In the hydrogen production apparatus of the present embodiment, the photoelectric conversion unit receives light to generate an electromotive force between the light receiving surface and the back surface, and the first electrolysis electrode is electrically connected to the back surface of the photoelectric conversion unit. It is preferable that the second electrolysis electrode is provided so as to be connectable, and is provided so as to be electrically connected to the light receiving surface of the photoelectric conversion unit.
According to such a configuration, an electromotive force generated when the photoelectric conversion unit receives light can be output to the first electrolysis electrode and the second electrolysis electrode.
 本実施形態の水素製造装置において、第2電解用電極と前記光電変換部の裏面との間に設けられた絶縁部をさらに備えたことが好ましい。
 このような構成によれば、第2電解用電極と光電変換部の裏面とを電気的に分離することができる。
 本実施形態の水素製造装置において、前記光電変換部の受光面に接触する第1電極をさらに備えることが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる起電力を効率よく出力することができる。
In the hydrogen production apparatus according to the present embodiment, it is preferable that the hydrogen producing apparatus further includes an insulating portion provided between the second electrolysis electrode and the back surface of the photoelectric conversion portion.
According to such a structure, the 2nd electrode for electrolysis and the back surface of a photoelectric conversion part can be electrically isolate | separated.
In the hydrogen production apparatus according to the present embodiment, it is preferable to further include a first electrode that contacts the light receiving surface of the photoelectric conversion unit.
According to such a configuration, an electromotive force generated when the photoelectric conversion unit receives light can be output efficiently.
 本実施形態の水素製造装置において、第1電極と第2電解用電極とを電気的に接続する第1導電部をさらに備えることが好ましい。
 このような構成によれば、光電変換部の受光面と第2電解用電極とを電気的に接続することができる。
 本実施形態の水素製造装置において、第1導電部は、前記光電変換部を貫通するコンタクトホールに設けられたことが好ましい。
 このような構成によれば、光電変換部の受光面と第2電解用電極との間の配線距離を短くすることができる。
In the hydrogen production apparatus of this embodiment, it is preferable to further include a first conductive portion that electrically connects the first electrode and the second electrolysis electrode.
According to such a structure, the light-receiving surface of a photoelectric conversion part and the 2nd electrode for electrolysis can be electrically connected.
In the hydrogen production apparatus of the present embodiment, it is preferable that the first conductive portion is provided in a contact hole that penetrates the photoelectric conversion portion.
According to such a structure, the wiring distance between the light-receiving surface of a photoelectric conversion part and the 2nd electrode for electrolysis can be shortened.
 本実施形態の水素製造装置において、前記絶縁部は、前記光電変換部の側面を覆うように設けられ、第1導電部は、前記絶縁部の一部であり前記光電変換部の側面を覆う部分の上に設けられたことが好ましい。
 このような構成によれば、光電変換部の受光面と第1導電部とを容易に電気的に接続することができる。
 本実施形態の水素製造装置において、前記絶縁部は、前記光電変換部の側面を覆うように設けられ、第2電解用電極は、前記絶縁部の一部であり前記光電変換部の側面を覆う部分の上に設けられ、かつ、第1電極と接触することが好ましい。
 このような構成によれば、光電変換部の受光面と第1導電部とを容易に電気的に接続することができる。
In the hydrogen production apparatus of this embodiment, the insulating part is provided so as to cover the side surface of the photoelectric conversion unit, and the first conductive unit is a part of the insulating unit and covers the side surface of the photoelectric conversion unit. It is preferable to be provided on the top.
According to such a configuration, the light receiving surface of the photoelectric conversion unit and the first conductive unit can be easily electrically connected.
In the hydrogen production apparatus of the present embodiment, the insulating unit is provided so as to cover a side surface of the photoelectric conversion unit, and the second electrolysis electrode is a part of the insulating unit and covers the side surface of the photoelectric conversion unit. It is preferable that it is provided on the part and is in contact with the first electrode.
According to such a configuration, the light receiving surface of the photoelectric conversion unit and the first conductive unit can be easily electrically connected.
 本実施形態の水素製造装置において、前記光電変換部は、p型半導体層、i型半導体層およびn型半導体層からなる光電変換層を有することが好ましい。
 このような構成によれば、光電変換部が受光することにより起電力を生じさせることができる。
 本実施形態の水素製造装置において、前記光電変換部は、受光することにより前記光電変換部の裏面の第1および第2区域間に電位差が生じ、第1区域は、第1電解用電極と電気的に接続するように設けられ、第2区域は、第2電解用電極と電気的に接続するように設けられたことが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる起電力を容易に第1電解用電極と第2電解用電極とに出力することができる。
In the hydrogen production apparatus according to this embodiment, the photoelectric conversion unit preferably includes a photoelectric conversion layer including a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer.
According to such a configuration, an electromotive force can be generated when the photoelectric conversion unit receives light.
In the hydrogen production apparatus of the present embodiment, the photoelectric conversion unit receives light to generate a potential difference between the first and second areas on the back surface of the photoelectric conversion unit, and the first area is electrically connected to the first electrolysis electrode. Preferably, the second section is provided so as to be electrically connected to the second electrolysis electrode.
According to such a configuration, an electromotive force generated when the photoelectric conversion unit receives light can be easily output to the first electrolysis electrode and the second electrolysis electrode.
 本実施形態の水素製造装置において、第1および第2電解用電極と前記光電変換部の裏面との間に設けられ、かつ、第1区域上および第2区域上に開口を有する絶縁部をさらに備えることが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる電子および正孔を効率よく分離することができる。
 本実施形態の水素製造装置において、前記光電変換部は、n型半導体部およびp型半導体部を有する少なくとも1つの半導体材料からなり、第1および第2区域のうち、一方は前記n型半導体部の一部であり、他方は前記p型半導体部の一部であることが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる電子および正孔を効率よく分離することができる。
In the hydrogen production apparatus according to the present embodiment, an insulating unit provided between the first and second electrolysis electrodes and the back surface of the photoelectric conversion unit and having openings on the first area and the second area is further provided. It is preferable to provide.
According to such a structure, the electron and the hole which arise when a photoelectric conversion part receives light can be isolate | separated efficiently.
In the hydrogen production apparatus according to the present embodiment, the photoelectric conversion part is made of at least one semiconductor material having an n-type semiconductor part and a p-type semiconductor part, and one of the first and second areas is the n-type semiconductor part. It is preferable that the other is a part of the p-type semiconductor part.
According to such a structure, the electron and the hole which arise when a photoelectric conversion part receives light can be isolate | separated efficiently.
 本実施形態の水素製造装置において、透光性基板をさらに備え、前記光電変換部は、前記透光性基板の上に設けられたことが好ましい。
 このような構成によれば、容易に光電変換部を形成することができる。
 本実施形態の水素製造装置において、前記光電変換部は、直列接続した複数の光電変換層を含み、前記複数の光電変換層は、受光することにより生じる起電力を第1電解用電極および第2電解用電極に供給するように設けられたことが好ましい。
 このような構成によれば、光電変換部が受光することにより生じる起電力の電圧を大きくすることができる。
In the hydrogen production apparatus according to the present embodiment, it is preferable that a translucent substrate is further provided, and the photoelectric conversion unit is provided on the translucent substrate.
According to such a structure, a photoelectric conversion part can be formed easily.
In the hydrogen production apparatus of the present embodiment, the photoelectric conversion unit includes a plurality of photoelectric conversion layers connected in series, and the plurality of photoelectric conversion layers generate an electromotive force generated by receiving light from the first electrolysis electrode and the second electrolysis electrode. It is preferably provided so as to be supplied to the electrode for electrolysis.
According to such a configuration, the voltage of the electromotive force generated when the photoelectric conversion unit receives light can be increased.
 本実施形態の水素製造装置において、第1電解用電極および第2電解用電極のうち、一方は電解液からH2を発生させる水素発生部であり、他方は電解液からO2を発生させる酸素発生部であり、前記水素発生部および前記酸素発生部は、それぞれ電解液からH2が発生する反応の触媒である水素発生触媒および電解液からO2が発生する反応の触媒である酸素発生触媒を含むことが好ましい。
 このような構成によれば、電解液から効率よく水素および酸素を製造することができる。
 本実施形態の水素製造装置において、前記水素発生部および前記酸素発生部のうち少なくとも一方は、前記光電変換部の受光面の面積より大きい触媒表面積を有することが好ましい。
 このような構成によれば、電解液から効率よく水素および酸素を製造することができる。
In the hydrogen production apparatus of the present embodiment, one of the first electrolysis electrode and the second electrolysis electrode is a hydrogen generation unit that generates H 2 from the electrolytic solution, and the other is oxygen that generates O 2 from the electrolytic solution. The hydrogen generation part and the oxygen generation part are a hydrogen generation catalyst that is a catalyst for the reaction that generates H 2 from the electrolytic solution and an oxygen generation catalyst that is a catalyst for the reaction that generates O 2 from the electrolytic solution, respectively. It is preferable to contain.
According to such a configuration, hydrogen and oxygen can be efficiently produced from the electrolytic solution.
In the hydrogen production apparatus of the present embodiment, it is preferable that at least one of the hydrogen generation unit and the oxygen generation unit has a catalyst surface area larger than an area of a light receiving surface of the photoelectric conversion unit.
According to such a configuration, hydrogen and oxygen can be efficiently produced from the electrolytic solution.
 本実施形態の水素製造装置において、前記水素発生部および前記酸素発生部のうち少なくとも一方は、触媒が担持された多孔質の導電体であることが好ましい。
 このような構成によれば、触媒の表面積を大きくすることができる。
 本実施形態の水素製造装置において、前記水素発生触媒は、Pt、Ir、Ru、Pd、Rh、Au、Fe、NiおよびSeのうち少なくとも1つを含むことが好ましい。
 このような構成によれば、水素を効率よく製造することができる。
In the hydrogen production apparatus of this embodiment, it is preferable that at least one of the hydrogen generation unit and the oxygen generation unit is a porous conductor carrying a catalyst.
According to such a configuration, the surface area of the catalyst can be increased.
In the hydrogen production apparatus of the present embodiment, the hydrogen generation catalyst preferably includes at least one of Pt, Ir, Ru, Pd, Rh, Au, Fe, Ni, and Se.
According to such a configuration, hydrogen can be produced efficiently.
 本実施形態の水素製造装置において、前記酸素発生触媒は、Mn、Ca、Zn、CoおよびIrのうち少なくとも1つを含むことが好ましい。
 このような構成によれば、酸素を効率よく製造することができる。
 本実施形態の水素製造装置において、透光性基板と電解液室とをさらに備え、前記光電変換部は、前記透光性基板の上に設けられ、第1電解用電極および第2電解用電極の上に背面基板をさらに備え、前記電解液室は、第1電解用電極および第2電解用電極と前記背面基板との間に設けられたことが好ましい。
 このような構成によれば、電解液室に電解液を導入することができ、第1および第2電解用電極に電解液を接触させることができる。
In the hydrogen production apparatus of this embodiment, it is preferable that the oxygen generation catalyst contains at least one of Mn, Ca, Zn, Co, and Ir.
According to such a configuration, oxygen can be produced efficiently.
The hydrogen production apparatus of the present embodiment further includes a translucent substrate and an electrolytic solution chamber, the photoelectric conversion unit is provided on the translucent substrate, and the first electrolysis electrode and the second electrolysis electrode It is preferable that a back substrate is further provided, and the electrolyte chamber is provided between the first and second electrolysis electrodes and the back substrate.
According to such a configuration, the electrolytic solution can be introduced into the electrolytic solution chamber, and the electrolytic solution can be brought into contact with the first and second electrolysis electrodes.
 本実施形態の水素製造装置において、第1電解用電極と前記背面基板との間の電解液室および第2電解用電極と前記背面基板との間の電解液室とを仕切る隔壁をさらに備えることが好ましい。
 このような構成によれば、第1気体と第2気体を隔壁により分離することができる。
 本実施形態の水素製造装置において、前記隔壁は、イオン交換体を含むことが好ましい。
 このような構成によれば、電解液室のプロトン濃度の偏りを解消することができる。
The hydrogen production apparatus of the present embodiment further includes a partition that partitions the electrolyte chamber between the first electrolysis electrode and the back substrate and the electrolyte chamber between the second electrolysis electrode and the back substrate. Is preferred.
According to such a configuration, the first gas and the second gas can be separated by the partition wall.
In the hydrogen production apparatus according to this embodiment, the partition preferably includes an ion exchanger.
According to such a configuration, it is possible to eliminate the uneven proton concentration in the electrolyte chamber.
 また、本発明は、本実施形態の水素製造装置を前記光電変換部の受光面が水平面に対し傾斜するように設置し、前記水素製造装置の下部から前記水素製造装置に電解液を導入し、太陽光を前記光電変換部の受光面に入射させることにより第1電解用電極および第2電解用電極からそれぞれ第1気体および第2気体を発生させ、前記水素製造装置の上部から第1気体および第2気体を排出する水素製造方法も提供する。
 本発明の水素製造方法によれば、光電変換部に太陽光を入射させることにより水素を製造することができる。
 以下、本発明の実施形態を図面を用いて説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。
Further, the present invention, the hydrogen production apparatus of the present embodiment is installed so that the light receiving surface of the photoelectric conversion unit is inclined with respect to a horizontal plane, the electrolyte is introduced into the hydrogen production apparatus from the lower part of the hydrogen production apparatus, The first gas and the second gas are generated from the first electrolysis electrode and the second electrolysis electrode by causing sunlight to enter the light receiving surface of the photoelectric conversion unit, respectively, and the first gas and A method for producing hydrogen that exhausts the second gas is also provided.
According to the hydrogen production method of the present invention, hydrogen can be produced by making sunlight enter the photoelectric conversion unit.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The configurations shown in the drawings and the following description are merely examples, and the scope of the present invention is not limited to those shown in the drawings and the following description.
第1実施形態の水素製造装置の構成
 図1は本実施形態の水素製造装置の受光面側から見た概略図であり、図2、3は、それぞれ点線A-A、点線B-Bにおける水素製造装置の概略断面図である。また、図4~12は、本実施形態の水素製造装置の概略断面図であり、図4は、図3に対応する水素製造装置の概略断面図であり、図5~12は、図2に対応する水素製造装置の概略断面図である。
 第1実施形態の水素製造装置45は、受光面およびその裏面を有する光電変換部2と、光電変換部2の裏面側に設けられた第1電解用電極8および第2電解用電極7と、光電変換部2を支持する係合部22,23とを備え、光電変換部2の受光面に太陽光が入射し第1および第2電解用電極8,7が電解液と接触するとき、第1および第2電解用電極8,7は、光電変換部2が受光することより生じる起電力を利用して電解液46を電気分解しそれぞれ第1気体および第2気体を発生させることができるように設けられ、第1気体および第2気体のうち、一方は水素であり他方は酸素であり、係合部22,23は、光電変換部2の受光面の向きを調整することができるように設けられたことを特徴とする。
 以下、第1実施形態の水素製造装置について説明する。
Diagram 1 of the hydrogen production apparatus of the first embodiment is a schematic diagram seen from the light receiving surface side of the hydrogen production apparatus of the present embodiment, FIGS. 2 and 3, the dotted line A-A, respectively, hydrogen in dotted line B-B It is a schematic sectional drawing of a manufacturing apparatus. 4 to 12 are schematic cross-sectional views of the hydrogen production apparatus of the present embodiment, FIG. 4 is a schematic cross-sectional view of the hydrogen production apparatus corresponding to FIG. 3, and FIGS. It is a schematic sectional drawing of a corresponding hydrogen production apparatus.
The hydrogen production apparatus 45 of the first embodiment includes a photoelectric conversion unit 2 having a light receiving surface and a back surface thereof, a first electrolysis electrode 8 and a second electrolysis electrode 7 provided on the back surface side of the photoelectric conversion unit 2, and Engaging portions 22 and 23 that support the photoelectric conversion unit 2, and when sunlight enters the light receiving surface of the photoelectric conversion unit 2 and the first and second electrolysis electrodes 8 and 7 come into contact with the electrolytic solution, The first and second electrolysis electrodes 8 and 7 are capable of electrolyzing the electrolytic solution 46 using the electromotive force generated by the photoelectric conversion unit 2 receiving light to generate the first gas and the second gas, respectively. One of the first gas and the second gas is hydrogen and the other is oxygen so that the engaging portions 22 and 23 can adjust the direction of the light receiving surface of the photoelectric conversion portion 2. It is provided.
Hereinafter, the hydrogen production apparatus of the first embodiment will be described.
1.透光性基板
 透光性基板1は、本実施形態の水素製造装置45が備えてもよい。また、光電変換部2は、受光面が透光性基板1側となるように透光性基板1の上に設けられてもよい。なお、光電変換部2が、半導体基板などからなり一定の強度を有する場合、透光性基板1は省略することが可能である。また、光電変換部2が樹脂フィルムなど柔軟性を有する材料の上に形成可能な場合、透光性基板1は省略することができる。
1. Translucent substrate The translucent substrate 1 may be provided in the hydrogen production apparatus 45 of the present embodiment. Moreover, the photoelectric conversion part 2 may be provided on the translucent board | substrate 1 so that a light-receiving surface may become the translucent board | substrate 1 side. In addition, when the photoelectric conversion part 2 consists of semiconductor substrates etc. and has fixed intensity | strength, the translucent board | substrate 1 can be abbreviate | omitted. Moreover, when the photoelectric conversion part 2 can be formed on a flexible material such as a resin film, the translucent substrate 1 can be omitted.
 また、太陽光を光電変換部2の受光面で受光するため、透光性基板1は、透明であり光透過率が高いことが好ましいが、光電変換部2へ効率的な光の入射が可能な構造であれば、光透過率に制限はない。
 光透過率が高い基板材料として、例えば、ソーダガラス、石英ガラス、パイレックス(登録商標)、合成石英板等の透明なリジッド材、あるいは透明樹脂板やフィルム材等が好適に用いられる。化学的および物理的安定性を備える点より、ガラス基板を用いることが好ましい。
 透光性基板1の光電変換部2側の表面には、入射した光が光電変換部2の表面で有効に乱反射されるように、微細な凹凸構造に形成することができる。この微細な凹凸構造は、例えば反応性イオンエッチング(RIE)処理もしくはブラスト処理等の公知の方法により形成することが可能である。
In addition, since the sunlight is received by the light receiving surface of the photoelectric conversion unit 2, the translucent substrate 1 is preferably transparent and has high light transmittance. However, it is possible to efficiently enter light into the photoelectric conversion unit 2. If it is a simple structure, there is no restriction | limiting in the light transmittance.
As a substrate material having a high light transmittance, for example, a transparent rigid material such as soda glass, quartz glass, Pyrex (registered trademark), or a synthetic quartz plate, or a transparent resin plate or film material is preferably used. In view of chemical and physical stability, it is preferable to use a glass substrate.
On the surface of the translucent substrate 1 on the photoelectric conversion unit 2 side, a fine uneven structure can be formed so that incident light is effectively irregularly reflected on the surface of the photoelectric conversion unit 2. This fine concavo-convex structure can be formed by a known method such as reactive ion etching (RIE) treatment or blast treatment.
2.第1電極
 第1電極4は、透光性基板1の上に設けることができ、光電変換部2の受光面と接触するように設けることができる。また、第1電極4は透光性を有してもよい。また、第1電極4は、透光性基板1を省略可能の場合、光電変換部2の受光面に直接設けられてもよい。第1電極4は、第2電解用電極7と電気的に接続することができる。第1電極4を設けることにより、光電変換部2の受光面と第2電解用電極7との間に流れる電流を大きくすることができる。また、光電変換部2が図11、12のように光電変換部2の裏面の第1区域と第2区域との間に起電力が生じるものである場合、第1電極4は不要である。
 第1電極4は、図2、6、9のように第1導電部9を介して第2電解用電極7と電気的に接続してもよく、図8のように第2電解用電極7と接触してもよい。また、第1電極4は、図5、7、10のような場合、切換部10および配線52を介して第2電解用電極7と電気的に接続することができる。
 第1電極4は、例えば、ITO、SnO2などの透明導電膜からなってもよく、Ag、Auなどの金属のフィンガー電極からなってもよい。
2. 1st electrode The 1st electrode 4 can be provided on the translucent board | substrate 1, and can be provided so that the light-receiving surface of the photoelectric conversion part 2 may be contacted. Moreover, the 1st electrode 4 may have translucency. Moreover, the 1st electrode 4 may be directly provided in the light-receiving surface of the photoelectric conversion part 2, when the translucent board | substrate 1 can be abbreviate | omitted. The first electrode 4 can be electrically connected to the second electrolysis electrode 7. By providing the first electrode 4, the current flowing between the light receiving surface of the photoelectric conversion unit 2 and the second electrolysis electrode 7 can be increased. Moreover, when the photoelectric conversion part 2 produces an electromotive force between the 1st area and the 2nd area of the back surface of the photoelectric conversion part 2 like FIG. 11, 12, the 1st electrode 4 is unnecessary.
The first electrode 4 may be electrically connected to the second electrolysis electrode 7 via the first conductive portion 9 as shown in FIGS. 2, 6 and 9, and the second electrolysis electrode 7 as shown in FIG. You may contact with. Moreover, the 1st electrode 4 can be electrically connected with the electrode 7 for 2nd electrolysis via the switch part 10 and the wiring 52 in the case like FIG.
The first electrode 4 may be made of a transparent conductive film such as ITO or SnO 2, or may be made of a metal finger electrode such as Ag or Au.
 以下に第1電極4を透明導電膜とした場合について説明する。
 透明導電膜は、光電変換部2の受光面と第2電解用電極7とのコンタクトを取りやすくするために用いることができる。
 一般に透明電極として使用されているものを用いることが可能である。具体的にはIn-Zn-O(IZO)、In-Sn-O(ITO)、ZnO-Al、Zn-Sn-O、SnO2等を挙げることができる。なお本透明導電膜は、太陽光の光線透過率が85%以上、中でも90%以上、特に92%以上であることが好ましい。このことにより光電変換部2が光を効率的に吸収することができるためである。
 透明導電膜の作成方法としては公知の方法を用いることができ、スパッタリング、真空蒸着、ゾルゲル法、クラスタービーム蒸着法、PLD(Pulse Laser Deposition)法などが挙げられる。
A case where the first electrode 4 is a transparent conductive film will be described below.
The transparent conductive film can be used to facilitate contact between the light receiving surface of the photoelectric conversion unit 2 and the second electrolysis electrode 7.
What is generally used as a transparent electrode can be used. Specifically, In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, SnO 2 and the like can be given. The transparent conductive film preferably has a sunlight transmittance of 85% or more, particularly 90% or more, and particularly 92% or more. This is because the photoelectric conversion unit 2 can absorb light efficiently.
As a method for producing the transparent conductive film, a known method can be used, and examples thereof include sputtering, vacuum deposition, sol-gel method, cluster beam deposition method, and PLD (Pulse Laser Deposition) method.
3.光電変換部
 光電変換部2は、受光面およびその裏面を有し、光電変換部2の裏面側に第1電解用電極8と第2電解用電極7が設けられる。なお、受光面とは、光電変換するための光を受光する面であり、裏面とは、受光面の裏の面である。また、光電変換部2は、第1電極4が設けられた透光性基板1の上に受光面を下にして設けることができる。光電変換部2は、例えば、図2、5~10のように受光面と裏面との間に起電力が生じるものであってもよく、図11、12のように光電変換部2の裏面の第1区域と第2区域との間に起電力が生じるものであってもよい。図11、12のような光電変換部2は、n型半導体領域37とp型半導体領域36を形成した半導体基板などにより形成することができる。
 光電変換部2の形は、特に限定されないが、例えば、方形状とすることができる。
 光電変換部2は、入射光により電荷分離することができ、起電力が生じるものであれば、特に限定されないが、例えば、シリコン系半導体を用いた光電変換部、化合物半導体を用いた光電変換部、色素増感剤を利用した光電変換部、有機薄膜を用いた光電変換部などである。
3. Photoelectric Conversion Unit The photoelectric conversion unit 2 has a light receiving surface and a back surface thereof, and a first electrolysis electrode 8 and a second electrolysis electrode 7 are provided on the back surface side of the photoelectric conversion unit 2. The light receiving surface is a surface that receives light for photoelectric conversion, and the back surface is the back surface of the light receiving surface. Moreover, the photoelectric conversion part 2 can be provided on the translucent substrate 1 provided with the first electrode 4 with the light receiving surface facing down. For example, the photoelectric conversion unit 2 may generate an electromotive force between the light receiving surface and the back surface as shown in FIGS. 2 and 5 to 10. An electromotive force may be generated between the first area and the second area. The photoelectric conversion part 2 as shown in FIGS. 11 and 12 can be formed by a semiconductor substrate on which the n-type semiconductor region 37 and the p-type semiconductor region 36 are formed.
Although the shape of the photoelectric conversion part 2 is not specifically limited, For example, it can be set as a square shape.
The photoelectric conversion unit 2 is not particularly limited as long as it can separate charges by incident light and generates an electromotive force. For example, the photoelectric conversion unit using a silicon-based semiconductor or the photoelectric conversion unit using a compound semiconductor A photoelectric conversion part using a dye sensitizer, a photoelectric conversion part using an organic thin film, and the like.
 第1気体および第2気体のうちどちらか一方が水素であり、他方が酸素の場合、光電変換部2は、光を受光することにより、第1電解用電極8および第2電解用電極7において水素と酸素が発生するために必要な起電力が生じる材料を使用する必要がある。第1電解用電極8と第2電解用電極7の電位差は、水分解のための理論電圧(1.23V)より大きくする必要があり、そのためには光電変換部2で十分大きな電位差を生み出す必要がある。そのため光電変換部2は、pn接合など起電力を生じさせる部分を二接合以上直列に接続することが好ましい。例えば、図9、12のように並べて設けられた光電変換層を第3導電部33により直列接続した構造を有することができる。 When either one of the first gas and the second gas is hydrogen and the other is oxygen, the photoelectric conversion unit 2 receives light in the first electrolysis electrode 8 and the second electrolysis electrode 7. It is necessary to use a material that generates an electromotive force necessary for generating hydrogen and oxygen. The potential difference between the first electrolysis electrode 8 and the second electrolysis electrode 7 needs to be larger than the theoretical voltage (1.23 V) for water decomposition, and for this purpose, a sufficiently large potential difference needs to be generated in the photoelectric conversion unit 2. There is. Therefore, it is preferable that the photoelectric conversion unit 2 connects two or more junctions in series such as a pn junction to generate an electromotive force. For example, the photoelectric conversion layers arranged side by side as shown in FIGS. 9 and 12 can be connected in series by the third conductive portion 33.
 光電変換を行う材料は、シリコン系半導体、化合物半導体、有機材料をベースとしたものなどが挙げられるが、いずれの光電変換材料も使用することが可能である。また、起電力を大きくするために、これらの光電変換材料を積層することが可能である。積層する場合には同一材料で多接合構造を形成することが可能であるが、光学的バンドギャップの異なる複数の光電変換層を積層し、各々の光電変換層の低感度波長領域を相互に補完することにより、広い波長領域にわたり入射光を効率よく吸収することが可能となる。これらの複数の光電変換層は、それぞれ異なるバンドギャップを有することが好ましい。このような構成によれば、光電変換部2で生じる起電力をより大きくすることができ、電解液をより効率的に電気分解することができる。 Examples of materials that perform photoelectric conversion include silicon-based semiconductors, compound semiconductors, and materials based on organic materials, and any photoelectric conversion material can be used. In order to increase the electromotive force, these photoelectric conversion materials can be stacked. In the case of stacking, it is possible to form a multi-junction structure with the same material, but stacking multiple photoelectric conversion layers with different optical band gaps and complementing the low sensitivity wavelength region of each photoelectric conversion layer mutually By doing so, incident light can be efficiently absorbed over a wide wavelength region. The plurality of photoelectric conversion layers preferably have different band gaps. According to such a configuration, the electromotive force generated in the photoelectric conversion unit 2 can be increased, and the electrolytic solution can be electrolyzed more efficiently.
 また、光電変換層間の直列接続特性の改善や、光電変換部2で発生する光電流の整合のために、層間に透明導電膜等の導電体を介在させることが可能である。これにより光電変換部2の劣化を抑制することが可能となる。
 光電変換部2の例を以下に具体的に説明する。また、光電変換部2は、これらを組み合わせたものでもよい。また、以下の光電変換部2の例は、矛盾しない限り光電変換層とすることもできる。
Moreover, it is possible to interpose a conductor such as a transparent conductive film between the layers in order to improve the serial connection characteristics between the photoelectric conversion layers and to match the photocurrent generated in the photoelectric conversion unit 2. Thereby, it becomes possible to suppress deterioration of the photoelectric conversion unit 2.
An example of the photoelectric conversion unit 2 will be specifically described below. The photoelectric conversion unit 2 may be a combination of these. Moreover, as long as there is no contradiction, the example of the following photoelectric conversion parts 2 can also be made into a photoelectric converting layer.
3-1.シリコン系半導体を用いた光電変換部
 シリコン系半導体を用いた光電変換部2は、例えば、単結晶型、多結晶型、アモルファス型、球状シリコン型、及びこれらを組み合わせたもの等が挙げられる。いずれもp型半導体とn型半導体が接合したpn接合を有することができる。また、p型半導体とn型半導体との間にi型半導体を設けたpin接合を有するものとすることもできる。また、pn接合を複数有するもの、pin接合を複数有するもの、pn接合とpin接合を有するものとすることもできる。
 シリコン系半導体とは、シリコンを含む半導体であり、例えば、シリコン、シリコンカーバイド、シリコンゲルマニウムなどである。また、シリコンなどにn型不純物またはp型不純物が添加されたものも含み、また、結晶質、非晶質、微結晶のものも含む。
 また、シリコン系半導体を用いた光電変換部2は、透光性基板1の上に形成された薄膜または厚膜の光電変換層であってもよく、また、シリコンウェハなどのウェハにpn接合またはpin接合を形成したものでもよく、また、pn接合またはpin接合を形成したウェハの上に薄膜の光電変換層を形成したものでもよい。
3-1. Photoelectric conversion part using a silicon-based semiconductor Examples of the photoelectric conversion part 2 using a silicon-based semiconductor include a single crystal type, a polycrystalline type, an amorphous type, a spherical silicon type, and combinations thereof. Any of them can have a pn junction in which a p-type semiconductor and an n-type semiconductor are joined. Further, a pin junction in which an i-type semiconductor is provided between a p-type semiconductor and an n-type semiconductor may be provided. Further, it may have a plurality of pn junctions, a plurality of pin junctions, or a pn junction and a pin junction.
The silicon-based semiconductor is a semiconductor containing silicon, such as silicon, silicon carbide, or silicon germanium. In addition, silicon or the like in which n-type impurities or p-type impurities are added is included, and crystalline, amorphous, or microcrystalline silicon is also included.
In addition, the photoelectric conversion unit 2 using a silicon-based semiconductor may be a thin film or a thick photoelectric conversion layer formed on the translucent substrate 1, or a pn junction or a wafer such as a silicon wafer. A pin junction may be formed, or a thin film photoelectric conversion layer may be formed on a wafer having a pn junction or a pin junction.
 シリコン系半導体を用いた光電変換部2の形成例を以下に示す。
 透光性基板1上に積層した第1電極4上に、第1導電型半導体層をプラズマCVD法等の方法で形成する。この第1導電型半導体層としては、導電型決定不純物原子濃度が1×1018~5×1021/cm3程度ドープされた、p+型またはn+型の非晶質Si薄膜、または多結晶あるいは微結晶Si薄膜とする。第1導電型半導体層の材料としては、Siに限らず、SiCあるいはSiGe,Six1-x等の化合物を用いることも可能である。
An example of forming the photoelectric conversion unit 2 using a silicon-based semiconductor is shown below.
A first conductivity type semiconductor layer is formed on the first electrode 4 laminated on the translucent substrate 1 by a method such as a plasma CVD method. As the first conductive type semiconductor layer, a p + type or n + type amorphous Si thin film doped with a conductivity type determining impurity atom concentration of about 1 × 10 18 to 5 × 10 21 / cm 3 , A crystalline or microcrystalline Si thin film is used. The material of the first conductivity type semiconductor layer is not limited to Si, and it is also possible to use a compound such as SiC, SiGe, or Si x O 1-x .
 このように形成された第1導電型半導体層上に、結晶質Si系光活性層として多結晶あるいは微結晶の結晶質Si薄膜をプラズマCVD法等の方法で形成する。なお、導電型は第1導電型半導体よりドーピング濃度が低い第1導電型とするか、あるいはi型とする。結晶質Si系光活性層の材料としては、Siに限らず、SiCあるいはSiGe,Six1-x等の化合物を用いることも可能である。 On the first conductivity type semiconductor layer thus formed, a polycrystalline or microcrystalline crystalline Si thin film is formed as a crystalline Si photoactive layer by a method such as plasma CVD. The conductivity type is the first conductivity type having a lower doping concentration than the first conductivity type semiconductor, or the i conductivity type. The material for the crystalline Si-based photoactive layer is not limited to Si, and it is also possible to use a compound such as SiC, SiGe, or Si x O 1-x .
 次に、結晶質Si系光活性層上に半導体接合を形成するため、第1導電型半導体層とは反対導電型である第2導電型半導体層をプラズマCVD等の方法で形成する。この第2導電型半導体層としては、導電型決定不純物原子が1×1018~5×1021/cm3程度ドープされた、n+型またはp+型の非晶質Si薄膜、または多結晶あるいは微結晶Si薄膜とする。第2導電型半導体層の材料としては、Siに限らず、SiCあるいはSiGe,Six1-x等の化合物を用いることも可能である。また接合特性をより改善するために、結晶質Si系光活性層と第2導電型半導体層との間に、実質的にi型の非単結晶Si系薄膜を挿入することも可能である。このようにして、受光面に最も近い光電変換層を一層積層することができる。 Next, in order to form a semiconductor junction on the crystalline Si-based photoactive layer, a second conductivity type semiconductor layer having a conductivity type opposite to the first conductivity type semiconductor layer is formed by a method such as plasma CVD. As the second conductivity type semiconductor layer, an n + type or p + type amorphous Si thin film doped with about 1 × 10 18 to 5 × 10 21 / cm 3 of conductivity type determining impurity atoms, or polycrystalline Alternatively, a microcrystalline Si thin film is used. The material of the second conductivity type semiconductor layer is not limited to Si, and it is also possible to use a compound such as SiC, SiGe, or Si x O 1-x . In order to further improve the bonding characteristics, it is possible to insert a substantially i-type non-single-crystal Si-based thin film between the crystalline Si-based photoactive layer and the second conductive type semiconductor layer. In this manner, one photoelectric conversion layer closest to the light receiving surface can be stacked.
 続けて第二層目の光電変換層を形成する。第二層目の光電変換層は、第1導電型半導体層、結晶質Si系光活性層、第2導電型半導体層からなり、それぞれの層は、第一層目の光電変換層中の対応する第1導電型半導体層、結晶質Si系光活性層、第2導電型半導体層と同様に形成する。二層のタンデムで水分解に十分な電位を得ることができない場合は、三層あるいはそれ以上の層状構造を取ることが好ましい。ただし第二層目の光電変換層の結晶質Si系光活性層の体積結晶化分率は、第一層目の結晶質Si系光活性層と比較すると高くすることが好ましい。三層以上積層する場合も同様に下層と比較すると体積結晶化分率を高くすることが好ましい。これは、長波長域での吸収が大きくなり、分光感度が長波長側にシフトし、同じSi材料を用いて光活性層を構成した場合においても、広い波長域で感度を向上させることが可能となるためである。すなわち、結晶化率の異なるSiでタンデム構造にすることにより、分光感度が広くなり、光の高効率利用が可能となる。このとき低結晶化率材料を受光面側にしないと高効率とならない。また結晶化率が40%以下に下がるとアモルファス成分が増え、劣化が生じてしまう。 Next, a second photoelectric conversion layer is formed. The second photoelectric conversion layer includes a first conductive semiconductor layer, a crystalline Si-based photoactive layer, and a second conductive semiconductor layer, and each layer corresponds to the first photoelectric conversion layer. The first conductive type semiconductor layer, the crystalline Si-based photoactive layer, and the second conductive type semiconductor layer are formed. When a potential sufficient for water splitting cannot be obtained with a two-layer tandem, it is preferable to take a three-layer structure or more. However, the volume crystallization fraction of the crystalline Si photoactive layer of the second photoelectric conversion layer is preferably higher than that of the first crystalline Si photoactive layer. Similarly, when three or more layers are laminated, the volume crystallization fraction is preferably increased as compared with the lower layer. This increases the absorption in the long wavelength region, shifts the spectral sensitivity to the longer wavelength side, and can improve the sensitivity in a wide wavelength region even when the photoactive layer is configured using the same Si material. This is because. That is, by using a tandem structure with Si having different crystallization rates, the spectral sensitivity is widened, and light can be used with high efficiency. At this time, if the low crystallization rate material is not on the light receiving surface side, high efficiency cannot be achieved. Further, when the crystallization rate is lowered to 40% or less, the amorphous component increases and deterioration occurs.
 次に、シリコン基板を用いた光電変換部2の形成例を以下に示す。
 シリコン基板としては、単結晶シリコン基板または多結晶シリコン基板などを用いることができ、p型であっても、n型であっても、i型であってもよい。このシリコン基板の一部にPなどのn型不純物を熱拡散またはイオン注入などによりドープすることによりn型半導体部37を形成し、シリコン基板のほかの一部にBなどのp型不純物を熱拡散またはイオン注入などによりドープすることによりp型半導体部36を形成することができる。このことにより、シリコン基板にpn接合、pin接合、npp+接合またはpnn+接合などを形成することができ、光電変換部2を形成することができる。
Next, the example of formation of the photoelectric conversion part 2 using a silicon substrate is shown below.
As the silicon substrate, a single crystal silicon substrate, a polycrystalline silicon substrate, or the like can be used, and may be p-type, n-type, or i-type. An n-type semiconductor portion 37 is formed by doping an n-type impurity such as P into a part of the silicon substrate by thermal diffusion or ion implantation, and a p-type impurity such as B is heated on the other part of the silicon substrate. The p-type semiconductor portion 36 can be formed by doping by diffusion or ion implantation. Thus, pn junction in the silicon substrate, pin junction can be formed and npp + junction or pnn + junction, it is possible to form a photoelectric conversion unit 2.
 n型半導体部37およびp型半導体部36は、図11、12のようにシリコン基板にそれぞれ1つの領域を形成することができ、また、n型半導体領域37およびp型半導体領域36のうちどちらか一方を複数形成することもできる。また、図12のようにn型半導体領域37およびp型半導体領域36を形成したシリコン基板を並べて設置し、第3導電部33により直列接続することにより光電変換部2を形成することもできる。
 なお、ここではシリコン基板を用いて説明したが、pn接合、pin接合、npp+接合またはpnn+接合などを形成することができる他の半導体基板を用いてもよい。また、n型半導体部37およびp型半導体部36を形成することができれば、半導体基板に限定されず、基板上に形成された半導体層であってもよい。
Each of the n-type semiconductor portion 37 and the p-type semiconductor portion 36 can form one region on the silicon substrate as shown in FIGS. 11 and 12, and either of the n-type semiconductor region 37 and the p-type semiconductor region 36 can be formed. A plurality of these can be formed. In addition, as shown in FIG. 12, the photoelectric conversion unit 2 can be formed by arranging the silicon substrates on which the n-type semiconductor region 37 and the p-type semiconductor region 36 are arranged side by side and connecting them in series by the third conductive unit 33.
Note that, although described with reference to a silicon substrate, pn junction, pin junction, may use other semiconductor substrate or the like can be formed npp + junction or pnn + junction. Further, as long as the n-type semiconductor portion 37 and the p-type semiconductor portion 36 can be formed, the semiconductor layer is not limited to the semiconductor substrate, and may be a semiconductor layer formed on the substrate.
3-2.化合物半導体を用いた光電変換部
 化合物半導体を用いた光電変換部は、例えば、III-V族元素で構成されるGaP、GaAsやInP、InAs、II-VI族元素で構成されるCdTe/CdS、I-III-VI族で構成されるCIGS(Copper Indium Gallium DiSelenide)などを用いpn接合を形成したものが挙げられる。
3-2. Photoelectric conversion part using a compound semiconductor The photoelectric conversion part using a compound semiconductor is, for example, GaP, GaAs, InP, InAs, or IId-VI elements composed of group III-V elements, CdTe / CdS, Examples thereof include those in which a pn junction is formed using CIGS (Copper Indium Gallium DiSelenide) composed of the I-III-VI group.
 化合物半導体を用いた光電変換部の製造方法の一例を以下に示すが、本製造方法では、製膜処理等はすべて有機金属気相成長法(MOCVD;Metal Organic Chemical Vapor Deposition)装置を使って連続して行われる。III族元素の材料としては、例えばトリメチルガリウム、トリメチルアルミニウム、トリメチルインジウムなどの有機金属が水素をキャリアガスとして成長装置に供給される。V族元素の材料としては、例えばアルシン(AsH3)、ホスフィン(PH3)、スチビン(SbH3)等のガスが使われる。p型不純物またはn型不純物のドーパントとしては、例えばp型化にはジエチルジンク、またはn型化には、モノシラン(SiH4)やジシラン(Si26)、セレン化水素(H2Se)等が利用される。これらの原料ガスを、例えば700℃に加熱された基板上に供給することにより熱分解させ、所望の化合物半導体材料膜をエピタキシャル成長させることが可能である。これら成長層の組成は導入するガス組成により、また膜厚はガスの導入時間によって制御することが可能である。これらの光電変換部を多接合積層する場合は、層間での格子定数を可能な限り合わせることにより、結晶性に優れた成長層を形成することができ、光電変換効率を向上することが可能となる。 An example of a method for manufacturing a photoelectric conversion unit using a compound semiconductor is shown below. In this manufacturing method, all film-forming processes are continuously performed using a metal organic chemical vapor deposition (MOCVD) apparatus. Done. As a group III element material, for example, an organic metal such as trimethylgallium, trimethylaluminum, or trimethylindium is supplied to the growth apparatus using hydrogen as a carrier gas. For example, a gas such as arsine (AsH 3 ), phosphine (PH 3 ), and stibine (SbH 3 ) is used as the material of the group V element. As a dopant of p-type impurities or n-type impurities, for example, diethyl zinc for p-type conversion, monosilane (SiH 4 ), disilane (Si 2 H 6 ), hydrogen selenide (H 2 Se) for n-type conversion, for example. Etc. are used. These source gases can be thermally decomposed by supplying them onto a substrate heated to, for example, 700 ° C., and a desired compound semiconductor material film can be epitaxially grown. The composition of these growth layers can be controlled by the gas composition to be introduced, and the film thickness can be controlled by the gas introduction time. When multi-junction laminating these photoelectric conversion parts, it is possible to form a growth layer with excellent crystallinity by adjusting the lattice constant between layers as much as possible, and to improve the photoelectric conversion efficiency. Become.
 pn接合を形成した部分以外にも、例えば受光面側に公知の窓層や、非受光面側に公知の電界層等を設けることによりキャリア収集効率を高める工夫を有してもよい。また不純物の拡散を防止するためのバッファ層を有していてもよい。 In addition to the portion where the pn junction is formed, for example, a known window layer on the light receiving surface side or a known electric field layer on the non-light receiving surface side may be provided to improve carrier collection efficiency. Further, a buffer layer for preventing diffusion of impurities may be provided.
3-3.色素増感剤を利用した光電変換部
 色素増感剤を利用した光電変換部は、例えば、主に多孔質半導体、色素増感剤、電解質、溶媒などにより構成される。
 多孔質半導体を構成する材料としては、例えば、酸化チタン、酸化タングステン、酸化亜鉛、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム等公知の半導体から1種類以上を選択することが可能である。多孔質半導体を基板上に形成する方法としては、半導体粒子を含有するペーストをスクリーン印刷法、インクジェット法等で塗布し乾燥もしくは焼成する方法や、原料ガスを用いたCVD法等により製膜する方法、PVD法、蒸着法、スパッタ法、ゾルゲル法、電気化学的な酸化還元反応を利用した方法等が挙げられる。
3-3. Photoelectric conversion part using a dye sensitizer The photoelectric conversion part using a dye sensitizer is mainly composed of, for example, a porous semiconductor, a dye sensitizer, an electrolyte, a solvent, and the like.
As a material constituting the porous semiconductor, for example, one or more kinds of known semiconductors such as titanium oxide, tungsten oxide, zinc oxide, barium titanate, strontium titanate, cadmium sulfide can be selected. As a method for forming a porous semiconductor on a substrate, a paste containing semiconductor particles is applied by a screen printing method, an ink jet method and the like, dried or baked, a method of forming a film by a CVD method using a raw material gas, etc. , PVD method, vapor deposition method, sputtering method, sol-gel method, method using electrochemical oxidation-reduction reaction, and the like.
 多孔質半導体に吸着する色素増感剤としては、可視光領域および赤外光領域に吸収を持つ種々の色素を用いることが可能である。ここで、多孔質半導体に色素を強固に吸着させるには、色素分子中にカルボン酸基、カルボン酸無水基、アルコキシ基、スルホン酸基、ヒドロキシル基、ヒドロキシルアルキル基、エステル基、メルカプト基、ホスホニル基等が存在することが好ましい。これらの官能基は、励起状態の色素と多孔質半導体の伝導帯との間の電子移動を容易にする電気的結合を提供する。 As the dye sensitizer adsorbed on the porous semiconductor, various dyes having absorption in the visible light region and the infrared light region can be used. Here, in order to firmly adsorb the dye to the porous semiconductor, the carboxylic acid group, carboxylic anhydride group, alkoxy group, sulfonic acid group, hydroxyl group, hydroxylalkyl group, ester group, mercapto group, phosphonyl in the dye molecule It is preferable that a group or the like is present. These functional groups provide an electrical bond that facilitates electron transfer between the excited state dye and the conduction band of the porous semiconductor.
 これらの官能基を含有する色素として、例えば、ルテニウムビピリジン系色素、キノン系色素、キノンイミン系色素、アゾ系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、フタロシアニン系色素、ベリレン系色素、インジゴ系色素、ナフタロシアニン系色素等が挙げられる。 Examples of dyes containing these functional groups include ruthenium bipyridine dyes, quinone dyes, quinone imine dyes, azo dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, and triphenylmethane dyes. Xanthene dyes, porphyrin dyes, phthalocyanine dyes, berylene dyes, indigo dyes, naphthalocyanine dyes, and the like.
 多孔質半導体への色素の吸着方法としては、例えば多孔質半導体を、色素を溶解した溶液(色素吸着用溶液)に浸漬する方法が挙げられる。色素吸着用溶液に用いられる溶媒としては、色素を溶解するものであれば特に制限されず、具体的には、エタノール、メタノール等のアルコール類、アセトン等のケトン類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、アセトニトリル等の窒素化合物類、ヘキサン等の脂肪族炭化水素、ベンゼン等の芳香族炭化水素、酢酸エチル等のエステル類、水等を挙げることができる。 Examples of the method of adsorbing the dye to the porous semiconductor include a method of immersing the porous semiconductor in a solution in which the dye is dissolved (dye adsorption solution). The solvent used in the dye adsorption solution is not particularly limited as long as it dissolves the dye, and specifically, alcohols such as ethanol and methanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran. Nitrogen compounds such as acetonitrile, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, esters such as ethyl acetate, water, and the like.
 電解質は、酸化還元対とこれを保持する液体または高分子ゲル等固体の媒体からなる。
 酸化還元対としては一般に、鉄系、コバルト系等の金属類や塩素、臭素、ヨウ素等のハロゲン物質が好適に用いられ、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム等の金属ヨウ化物とヨウ素の組み合わせが好ましく用いられる。さらに、ジメチルプロピルイミダゾールアイオダイド等のイミダゾール塩等を混入することもできる。
The electrolyte is composed of a redox pair and a solid medium such as a liquid or polymer gel holding the redox pair.
In general, iron- and cobalt-based metals and halogen substances such as chlorine, bromine, and iodine are preferably used as the redox pair, and metal iodides such as lithium iodide, sodium iodide, and potassium iodide and iodine are used. The combination of is preferably used. Furthermore, imidazole salts such as dimethylpropylimidazole iodide can also be mixed.
 また、溶媒としては、プロピレンカーボネート等のカーボネート化合物、アセトニトリル等のニトリル化合物、エタノール、メタノール等のアルコール、その他、水や非プロトン極性物質等が用いられるが、中でも、カーボネート化合物やニトリル化合物が好適に用いられる。 Examples of the solvent include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol and methanol, water, aprotic polar substances, and the like. Of these, carbonate compounds and nitrile compounds are preferred. Used.
3-4.有機薄膜を用いた光電変換部
 有機薄膜を用いた光電変換部2は、電子供与性および電子受容性を持つ有機半導体材料で構成される電子正孔輸送層、または電子受容性を有する電子輸送層と電子供与性を有する正孔輸送層とが積層されたものであってもよい。
 電子供与性の有機半導体材料としては、電子供与体としての機能を有するものであれば特に限定されないが、塗布法により製膜できることが好ましく、中でも電子供与性の導電性高分子が好適に使用される。
3-4. Photoelectric conversion part using organic thin film Photoelectric conversion part 2 using an organic thin film is an electron hole transport layer composed of an organic semiconductor material having electron donating properties and electron accepting properties, or an electron transport layer having electron accepting properties. And a hole transport layer having an electron donating property may be laminated.
The electron-donating organic semiconductor material is not particularly limited as long as it has a function as an electron donor, but it is preferable that a film can be formed by a coating method, and among them, an electron-donating conductive polymer is preferably used. The
 ここで導電性高分子とはπ共役高分子を示し、炭素-炭素またはヘテロ原子を含む二重結合または三重結合が、単結合と交互に連なったπ共役系からなり、半導体的性質を示すものをさす。 Here, the conductive polymer refers to a π-conjugated polymer, which is composed of a π-conjugated system in which double bonds or triple bonds containing carbon-carbon or hetero atoms are alternately connected to single bonds, and exhibits semiconducting properties. Point.
 電子供与性の導電性高分子材料としては、例えばポリフェニレン、ポリフェニレンビニレン、ポリチオフェン、ポリカルバゾール、ポリビニルカルバゾール、ポリシラン、ポリアセチレン、ポリピロール、ポリアニリン、ポリフルオレン、ポリビニルピレン、ポリビニルアントラセン、およびこれらの誘導体、共重合体、あるいはフタロシアニン含有ポリマー、カルバゾール含有ポリマー、有機金属ポリマー等が挙げられる。中でも、チオフェン-フルオレン共重合体、ポリアルキルチオフェン、フェニレンエチニレン-フェニレンビニレン共重合体、フルオレン-フェニレンビニレン共重合体、チオフェン-フェニレンビニレン共重合体等が好適に利用される。 Examples of the electron-donating conductive polymer material include polyphenylene, polyphenylene vinylene, polythiophene, polycarbazole, polyvinyl carbazole, polysilane, polyacetylene, polypyrrole, polyaniline, polyfluorene, polyvinyl pyrene, polyvinyl anthracene, and derivatives, Examples thereof include a polymer, a phthalocyanine-containing polymer, a carbazole-containing polymer, and an organometallic polymer. Of these, thiophene-fluorene copolymer, polyalkylthiophene, phenylene ethynylene-phenylene vinylene copolymer, fluorene-phenylene vinylene copolymer, thiophene-phenylene vinylene copolymer and the like are preferably used.
 電子受容性の有機半導体材料としては、電子受容体としての機能を有するものであれば特に限定されないが、塗布法により製膜できることが好ましく、中でも電子供与性の導電性高分子が好適に使用される。
 電子受容性の導電性高分子としては、例えばポリフェニレンビニレン、ポリフルオレン、およびこれらの誘導体、共重合体、あるいはカーボンナノチューブ、フラーレンおよびこれらの誘導体、CN基またはCF3基含有ポリマーおよびそれらの-CF3置換ポリマー等が挙げられる。
The electron-accepting organic semiconductor material is not particularly limited as long as it has a function as an electron acceptor. However, it is preferable that a film can be formed by a coating method, and among them, an electron-donating conductive polymer is preferably used. The
Examples of the electron-accepting conductive polymer include polyphenylene vinylene, polyfluorene, and derivatives and copolymers thereof, or carbon nanotubes, fullerene and derivatives thereof, CN group or CF 3 group-containing polymers, and —CF Examples thereof include 3- substituted polymers.
 また、電子供与性化合物がドープされた電子受容性の有機半導体材料や、電子受容性化合物がドープされた電子供与性の有機半導体材料等を用いることが可能である。電子供与性化合物がドープされる電子受容性の導電性高分子材料としては、上述の電子受容性の導電性高分子材料を挙げることができる。ドープされる電子供与性化合物としては、例えばLi、K、Ca、Cs等のアルカリ金属やアルカリ土類金属のようなルイス塩基を用いることができる。なお、ルイス塩基は電子供与体として作用する。また、電子受容性化合物がドープされる電子供与性の導電性高分子材料としては、上述した電子供与性の導電性高分子材料を挙げることができる。ドープされる電子受容性化合物としては、例えばFeCl3、AlCl3、AlBr3、AsF6やハロゲン化合物のようなルイス酸を用いることができる。なお、ルイス酸は電子受容体として作用する。 In addition, an electron-accepting organic semiconductor material doped with an electron-donating compound, an electron-donating organic semiconductor material doped with an electron-accepting compound, or the like can be used. Examples of the electron-accepting conductive polymer material doped with the electron-donating compound include the above-described electron-accepting conductive polymer material. As the electron-donating compound to be doped, for example, a Lewis base such as an alkali metal such as Li, K, Ca, or Cs or an alkaline earth metal can be used. The Lewis base acts as an electron donor. Examples of the electron-donating conductive polymer material doped with the electron-accepting compound include the above-described electron-donating conductive polymer material. As the electron-accepting compound to be doped, for example, a Lewis acid such as FeCl 3 , AlCl 3 , AlBr 3 , AsF 6 or a halogen compound can be used. In addition, Lewis acid acts as an electron acceptor.
 上記にて示した光電変換部2においては、第一義的には太陽光を受光させ光電変換を行うことを想定しているが、用途により蛍光灯や白熱灯、LED、特定の熱源から発せられる光等の人工光を照射し光電変換を行うことも可能である。 In the photoelectric conversion unit 2 shown above, it is assumed that sunlight is received and photoelectric conversion is primarily performed. However, it is emitted from a fluorescent lamp, an incandescent lamp, an LED, or a specific heat source depending on the application. It is also possible to perform photoelectric conversion by irradiating artificial light such as light.
4.第2電極
 第2電極5は、光電変換部2の裏面上に設けることができる。また、第2電極5は、光電変換部2の裏面と第1電解用電極8との間および光電変換部2の裏面と絶縁部11との間に設けることもできる。また、第2電極5は、第1電解用電極8と電気的に接続することができる。第2電極5を設けることにより、光電変換部2の裏面と第1電解用電極8との間のオーミックロスを低減することができる。また、第2電極5は、第1電解用電極8と接触してもよい。また、第2電極5は、切換部10および配線52を介して第1電解用電極8と電気的に接続してもよい。
 また、第2電極5は、電解液に対する耐食性および電解液に対する遮液性を有することが好ましい。このことにより、電解液による光電変換部2の腐食を防止することができる。
 第2電極5は、導電性を有すれば特に限定されないが、例えば、金属薄膜であり、また、例えば、Al、Ag、Auなどの薄膜である。これらは、例えば、スパッタリングなどにより形成することができる。また、例えば、In-Zn-O(IZO)、In-Sn-O(ITO)、ZnO-Al、Zn-Sn-O、SnO2等の透明導電膜である。
4). Second Electrode The second electrode 5 can be provided on the back surface of the photoelectric conversion unit 2. The second electrode 5 can also be provided between the back surface of the photoelectric conversion unit 2 and the first electrolysis electrode 8 and between the back surface of the photoelectric conversion unit 2 and the insulating unit 11. The second electrode 5 can be electrically connected to the first electrolysis electrode 8. By providing the second electrode 5, it is possible to reduce ohmic cross between the back surface of the photoelectric conversion unit 2 and the first electrolysis electrode 8. The second electrode 5 may be in contact with the first electrolysis electrode 8. Further, the second electrode 5 may be electrically connected to the first electrolysis electrode 8 via the switching unit 10 and the wiring 52.
Moreover, it is preferable that the 2nd electrode 5 has the corrosion resistance with respect to electrolyte solution, and the liquid shielding property with respect to electrolyte solution. Thereby, corrosion of the photoelectric conversion part 2 by electrolyte solution can be prevented.
Although it will not specifically limit if the 2nd electrode 5 has electroconductivity, For example, it is a metal thin film, for example, is thin films, such as Al, Ag, Au. These can be formed by, for example, sputtering. Further, for example, a transparent conductive film such as In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, and SnO 2 is used.
5.係合部、基部、動力部
 係合部22、23は、光電変換部2を支持し、光電変換部2の受光面の向きを調整することができるように設けられる。係合部22、23は、回転自在であってもよく、変形可能であってもよい。係合部22、23が回転または変形することにより、光電変換部2の受光面の向きを調整することができる。係合部22、23は、例えば、図3のように背面基板14と基部27、26との間に設けることができ、また、図4のように光電変換部2と第1および第2電解用電極8、7との間に設けることができる。
 係合部22、23は、例えば回転軸を有してもよく、歯車を有してもよく、また、ベアリングを有してもよい。このことにより、係合部22、23を回転自在にすることができる。また、係合部22、23は、ボールジョイントを有してもよい。このことにより、係合部22、23を回転自在にすることができる。
 また、係合部22、23は、例えば、ゴムやバネなどのように変形可能な材料からなってもよい。このことにより、係合部22、23を変形可能にすることができる。
5. Engaging unit, base, power unit The engaging units 22 and 23 are provided so as to support the photoelectric conversion unit 2 and to adjust the direction of the light receiving surface of the photoelectric conversion unit 2. The engaging portions 22 and 23 may be rotatable or may be deformable. The direction of the light receiving surface of the photoelectric conversion unit 2 can be adjusted by rotating or deforming the engaging units 22 and 23. The engaging portions 22 and 23 can be provided, for example, between the back substrate 14 and the base portions 27 and 26 as shown in FIG. 3, and the photoelectric conversion portion 2 and the first and second electrolysis as shown in FIG. It can be provided between the electrodes 8 and 7 for use.
The engaging portions 22 and 23 may have, for example, a rotation shaft, a gear, or a bearing. Thereby, the engaging portions 22 and 23 can be freely rotated. Moreover, the engaging parts 22 and 23 may have a ball joint. Thereby, the engaging portions 22 and 23 can be freely rotated.
Further, the engaging portions 22 and 23 may be made of a deformable material such as rubber or a spring. Thereby, the engaging portions 22 and 23 can be deformed.
 係合部22、23は、光電変換部2の受光面の傾斜角を調整する第1係合部22と、光電変換部2の受光面が向く方位を調整する第2係合部23を有することができる。このことにより、季節や時間により変化する太陽の位置に合わせて光電変換部2の受光面の向きを変化させることができる。
 第1係合部22は、例えば、図3のように第1基部26と第2基部27とを回転軸により係合することにより形成することができる。このことにより、光電変換部2と繋がった第2基部27が第1基部26に対して回転することにより、光電変換部2の受光面の向く方位を変化させることができる。
The engaging portions 22 and 23 include a first engaging portion 22 that adjusts the inclination angle of the light receiving surface of the photoelectric conversion portion 2 and a second engaging portion 23 that adjusts the direction in which the light receiving surface of the photoelectric conversion portion 2 faces. be able to. Thereby, the direction of the light receiving surface of the photoelectric conversion unit 2 can be changed in accordance with the position of the sun that changes depending on the season and time.
The first engagement portion 22 can be formed, for example, by engaging the first base portion 26 and the second base portion 27 with a rotation shaft as shown in FIG. As a result, the second base 27 connected to the photoelectric conversion unit 2 rotates relative to the first base 26, whereby the orientation of the light receiving surface of the photoelectric conversion unit 2 can be changed.
 第2係合部23は、例えば、図3のように第2基部27と背面基板14との間に回転軸を設けることにより形成することができる。このことにより、第2基部27に対して光電変換部2の受光面の向く方向の仰角を変化させることができる。
 また、第2係合部23は、例えば、図4のように第1および第2電解用電極8、7に対して光電変換部2が相対的に動くように蝶番状に設けることができる。この場合、水素製造装置45は、光電変換部2の裏面上に設けられた基板51a、第1および第2電解用電極8、7の光電変換部2側に設けられた基板51bを備えることができ、この基板51aと基板51bを開き戸のように動かすことができる。
The second engaging portion 23 can be formed, for example, by providing a rotation shaft between the second base portion 27 and the back substrate 14 as shown in FIG. This makes it possible to change the elevation angle in the direction in which the light receiving surface of the photoelectric conversion unit 2 faces the second base 27.
Moreover, the 2nd engaging part 23 can be provided in hinge shape so that the photoelectric conversion part 2 may move relatively with respect to the 1st and 2nd electrodes 8 and 7, for example, as shown in FIG. In this case, the hydrogen production apparatus 45 includes a substrate 51a provided on the back surface of the photoelectric conversion unit 2, and a substrate 51b provided on the photoelectric conversion unit 2 side of the first and second electrolysis electrodes 8 and 7. The substrate 51a and the substrate 51b can be moved like a hinged door.
 係合部22、23により可動となった光電変換部2または第1および第2電解用電極8、7は、手動により動かすことができるように設けられてもよい。この場合、季節や時間帯に応じて光電変換部2の受光面の向きを手動で変化させることにより、光電変換部2の受光面に入射する光量を大きくすることができる。また、手動とすることにより、製造コスト、設置コスト、維持コストなどを低減することができる。
 また、係合部22、23により可動となった光電変換部2または第1および第2電解用電極8、7は、動力部24、25により動くように設けられてもよい。
 動力部24、25は、係合部22、23により可動となった光電変換部2または第1および第2電解用電極8、7を動かすことができるように設けることができる。動力部24、25は、例えば、係合部22、23に含まれる回転軸と連結したモーターである。例えば、図3のように、第1基部26と第2基部27との間に設けられた第1係合部22に含まれる回転軸に第1動力部24であるモーターを連結することにより、モーターの動力により光電変換部2の受光面の向く方位を変化させることができる。このことにより、光電変換部2の受光面に入射する光量をより多くすることができる。
 図3のように背面基板14と第2基部27との間に設けられた第2係合部23に含まれる回転軸に第2動力部25であるモーターを連結させることにより、モーターの動力により光電変換部2の受光面の向く方向の仰角を変化させることができる。また、図4のように基板51aと基板51bとを蝶番状に繋ぐように設けられた第2係合部23に含まれる回転軸に第2動力部25であるモーターを連結させることによっても、光電変換部2の受光面の向く方向の仰角を変化させることができる。
The photoelectric conversion unit 2 or the first and second electrolysis electrodes 8 and 7 that are movable by the engagement units 22 and 23 may be provided so as to be manually movable. In this case, the amount of light incident on the light receiving surface of the photoelectric conversion unit 2 can be increased by manually changing the direction of the light receiving surface of the photoelectric conversion unit 2 according to the season and time zone. In addition, manual operation can reduce manufacturing cost, installation cost, maintenance cost, and the like.
In addition, the photoelectric conversion unit 2 or the first and second electrolysis electrodes 8 and 7 that are movable by the engagement units 22 and 23 may be provided so as to be moved by the power units 24 and 25.
The power units 24 and 25 can be provided so that the photoelectric conversion unit 2 or the first and second electrolysis electrodes 8 and 7 that are movable by the engagement units 22 and 23 can be moved. The power units 24 and 25 are, for example, motors connected to the rotation shafts included in the engagement units 22 and 23. For example, as shown in FIG. 3, by connecting a motor that is the first power unit 24 to the rotation shaft included in the first engagement portion 22 provided between the first base portion 26 and the second base portion 27, The orientation of the light receiving surface of the photoelectric conversion unit 2 can be changed by the power of the motor. As a result, the amount of light incident on the light receiving surface of the photoelectric conversion unit 2 can be increased.
As shown in FIG. 3, by connecting a motor, which is the second power unit 25, to the rotating shaft included in the second engagement unit 23 provided between the back substrate 14 and the second base 27, the motor power The elevation angle in the direction of the light receiving surface of the photoelectric conversion unit 2 can be changed. In addition, by connecting a motor as the second power unit 25 to the rotation shaft included in the second engagement portion 23 provided so as to connect the substrate 51a and the substrate 51b like a hinge as shown in FIG. The elevation angle in the direction of the light receiving surface of the photoelectric conversion unit 2 can be changed.
 動力部24、25は、制御部12によりその出力を制御されることができる。このことにより、光電変換部2の受光面の向く方向を制御部12で制御することができ、また、第1および第2電解用電極8、7を振動するように制御することができる。例えば、動力部24、25がモーターである場合、モーターに流れる電流の向き、大きさ、電流を流す時間を制御部12で制御することにより、光電変換部2または第1および第2電解用電極の動きを制御することができる。 The outputs of the power units 24 and 25 can be controlled by the control unit 12. Thus, the direction in which the light receiving surface of the photoelectric conversion unit 2 faces can be controlled by the control unit 12, and the first and second electrolysis electrodes 8 and 7 can be controlled to vibrate. For example, when the power units 24 and 25 are motors, the control unit 12 controls the direction and magnitude of the current flowing through the motors and the time during which the current flows, so that the photoelectric conversion unit 2 or the first and second electrolysis electrodes Can control the movement.
6.第1気体排出口、第2気体排出口、傾斜角制限手段
 第1気体排出口20、第2気体排出口19は、第1電解用電極8の端部および第2電解用電極7の端部にそれぞれ近接して設けられる。このことにより、第1気体排出口20から第1気体を回収することができ、第2気体排出口19から第2気体を回収することができる。
6). 1st gas exhaust port, 2nd gas exhaust port, inclination angle restriction | limiting means The 1st gas exhaust port 20 and the 2nd gas exhaust port 19 are the edge part of the electrode 8 for 1st electrolysis, and the edge part of the electrode 7 for 2nd electrolysis Are provided close to each other. Thus, the first gas can be recovered from the first gas discharge port 20 and the second gas can be recovered from the second gas discharge port 19.
 また、第1気体排出口20は、光電変換部2の受光面を水平面に対して傾斜するように水素製造装置45を設置したとき、第1電解用電極8の電解液に接触可能な面の上端に近接して設けることができる。また、第2気体排出口19は、光電変換部2の受光面を水平面に対して傾斜するように水素製造装置45を設置したとき、第2電解用電極7の電解液に接触可能な面の上端に近接して設けることができる。このことにより、水素製造装置45を光電変換部2の受光面が水平面に対して傾斜するように設置し、前記受光面に太陽光を入射させた場合に、第1電解用電極8で発生させた第1気体を気泡として電解液中を上昇させ第1気体排出口20から回収することができ、第2電解用電極7で発生させた第2気体を気泡として電解液中を上昇させ第2気体排出口19から回収することができる。
 第1気体排出口20、第2気体排出口19は、例えば、シール材16に開口を設けることにより形成することができる。また、第1気体排出口20、第2気体排出口19に電解液が流入しないように流入防止弁を設けることもできる。
The first gas discharge port 20 is a surface that can contact the electrolyte of the first electrolysis electrode 8 when the hydrogen production device 45 is installed so that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane. It can be provided close to the upper end. The second gas discharge port 19 is a surface that can contact the electrolyte solution of the second electrolysis electrode 7 when the hydrogen production device 45 is installed so that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane. It can be provided close to the upper end. Thus, when the hydrogen production apparatus 45 is installed such that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane, and sunlight is incident on the light receiving surface, the hydrogen generating device 45 is generated at the first electrolysis electrode 8. The first gas can be raised as bubbles in the electrolyte solution and recovered from the first gas discharge port 20, and the second gas generated at the second electrolysis electrode 7 can be raised as bubbles in the electrolyte solution to be second. It can be recovered from the gas outlet 19.
The 1st gas exhaust port 20 and the 2nd gas exhaust port 19 can be formed by providing opening in the sealing material 16, for example. An inflow prevention valve may be provided so that the electrolyte does not flow into the first gas outlet 20 and the second gas outlet 19.
 また、第1気体排出口20は、第1気体排出路48と導通することができ、第2気体排出口19は第2気体排出路と導通することができる。また、第1気体排出路48は、複数の第1気体排出口20と導通することができ、第2気体排出路は、複数の第2気体排出口19と導通することができる。このことにより、水素製造装置45で発生させた第1気体および第2気体を回収することができる。また、第1気体排出路48または第2気体排出路は、水素貯蔵装置45と接続することができる。このことにより水素製造装置45で発生させた水素を水素貯蔵装置で貯蔵することができる。 Further, the first gas discharge port 20 can be connected to the first gas discharge passage 48, and the second gas discharge port 19 can be connected to the second gas discharge passage 48. Further, the first gas discharge path 48 can be electrically connected to the plurality of first gas discharge ports 20, and the second gas exhaust path can be electrically connected to the plurality of second gas discharge ports 19. As a result, the first gas and the second gas generated in the hydrogen production apparatus 45 can be recovered. Further, the first gas discharge path 48 or the second gas discharge path can be connected to the hydrogen storage device 45. As a result, hydrogen generated in the hydrogen production device 45 can be stored in the hydrogen storage device.
 しかし、係合部22、23により、光電変換部2の受光面の向きを太陽の位置を追尾するように変化させた場合、第1および第2電解用電極8、7の傾斜角が小さくなってしまい、第1気体および第2気体が電解液中を気泡として浮上することにより第1気体排出口20および第2気体排出口19にそれぞれ移動できなくなる場合がある。第1気体および第2気体が、排出されず、第1および第2電解用電極8、7の表面にそれぞれ滞留すると、第1および第2電解用電極8、7が電解液と接触する面積が減少し、電解液の電気分解効率が低下し、水素製造効率が低下する。このような水素製造効率の低下を防止するために、傾斜角制限手段21を設けることができる。 However, when the direction of the light receiving surface of the photoelectric conversion unit 2 is changed by the engaging units 22 and 23 so as to track the position of the sun, the inclination angles of the first and second electrolysis electrodes 8 and 7 are reduced. As a result, the first gas and the second gas may not move to the first gas discharge port 20 and the second gas discharge port 19 due to floating in the electrolyte as bubbles. If the first gas and the second gas are not discharged and stay on the surfaces of the first and second electrolysis electrodes 8 and 7, respectively, the area where the first and second electrolysis electrodes 8 and 7 are in contact with the electrolytic solution is increased. It decreases, the electrolysis efficiency of electrolyte solution falls, and hydrogen production efficiency falls. In order to prevent such a decrease in hydrogen production efficiency, the tilt angle limiting means 21 can be provided.
 傾斜角制限手段21は、第1気体および第2気体が電解液中を浮力により第1気体排出口20および第2気体排出口19にそれぞれ移動するように第1および第2電解用電極の傾斜角を制限する。このことにより、第1気体および第2気体が第1および第2電解用電極8、7の表面で滞留することを防止することができ、水素製造効率の低下を防止することができる。また、傾斜角制限手段21は、第1気体および第2気体が電解液中を気泡として浮上し第1気体排出口20および第2気体排出口19にそれぞれ移動するように第1および第2電解用電極の傾斜角を制限することができる。
 傾斜角制限手段21は、例えば、図3のように第2係合部23により生じる可動範囲を物理的に制限する手段であってもよく、図4のように第1および第2電解用電極8、7の傾斜角を固定する手段であってもよく、制御部12に含まれ、第2係合部23により生じる可動範囲を制限するプログラムであってもよい。
 物理的に制限する手段としては、他にも、水素製造装置が一定の傾きを超えた際に気体が生成しない、もしくは電解液が流出しないよう気体排出口付近に逆止弁構造など気体もしくは液体の流れを制限する公知の手段であってもよい。
The tilt angle limiting means 21 tilts the first and second electrolysis electrodes so that the first gas and the second gas move to the first gas discharge port 20 and the second gas discharge port 19 by buoyancy in the electrolytic solution, respectively. Limit the corners. Thereby, it is possible to prevent the first gas and the second gas from staying on the surfaces of the first and second electrolysis electrodes 8 and 7, and to prevent a reduction in hydrogen production efficiency. In addition, the inclination angle limiting means 21 performs first and second electrolysis so that the first gas and the second gas float as bubbles in the electrolyte and move to the first gas outlet 20 and the second gas outlet 19, respectively. The inclination angle of the working electrode can be limited.
The tilt angle limiting means 21 may be a means for physically limiting the movable range generated by the second engaging portion 23 as shown in FIG. 3, for example, and the first and second electrolysis electrodes as shown in FIG. A means for fixing the inclination angles of 8 and 7 may be used, and a program included in the control unit 12 to limit the movable range generated by the second engagement unit 23 may be used.
There are other means for physically limiting such as a gas or liquid such as a check valve structure in the vicinity of the gas outlet so that no gas is generated or the electrolyte does not flow out when the hydrogen production apparatus exceeds a certain inclination. It may be a known means for restricting the flow.
7.第1導電部
 第1導電部9は、第1電極4と第2電解用電極7とにそれぞれ接触するように設けることができる。第1導電部9を設けることにより、容易に光電変換部2の受光面に接触した第1電極4と第2電解用電極7とを電気的に接続することができる。
 また、第1導電部9は、図2、6のように光電変換部2を貫通するコンタクトホールに設けられてもよい。このことにより、光電変換部2の受光面と第2電解用電極7との間の電流経路を短くすることができ、より効率的に第1気体および第2気体を発生させることができる。また、第1導電部9が設けられたコンタクトホールは、1つまたは複数でもよく、円形の断面を有してもよい。
 また、第1導電部9は、図9のように光電変換部2の側面を覆うように設けられてもよい。
7. First Conductive Part The first conductive part 9 can be provided in contact with the first electrode 4 and the second electrolysis electrode 7. By providing the first conductive portion 9, the first electrode 4 and the second electrolysis electrode 7 that are in contact with the light receiving surface of the photoelectric conversion portion 2 can be easily electrically connected.
Moreover, the 1st electroconductive part 9 may be provided in the contact hole which penetrates the photoelectric conversion part 2 like FIG. Thus, the current path between the light receiving surface of the photoelectric conversion unit 2 and the second electrolysis electrode 7 can be shortened, and the first gas and the second gas can be generated more efficiently. Further, the contact hole provided with the first conductive portion 9 may be one or plural, and may have a circular cross section.
Moreover, the 1st electroconductive part 9 may be provided so that the side surface of the photoelectric conversion part 2 may be covered like FIG.
 第1導電部9の材料は、導電性を有しているものであれば特に制限されない。導電性粒子を含有するペースト、例えばカーボンペースト、Agペースト等をスクリーン印刷法、インクジェット法等で塗布し乾燥もしくは焼成する方法や、原料ガスを用いたCVD法等により製膜する方法、PVD法、蒸着法、スパッタ法、ゾルゲル法、電気化学的な酸化還元反応を利用した方法等が挙げられる。 The material of the first conductive portion 9 is not particularly limited as long as it has conductivity. A paste containing conductive particles, for example, a carbon paste, an Ag paste or the like applied by screen printing, an inkjet method, etc., dried or baked, a method of forming a film by a CVD method using a raw material gas, a PVD method, Examples thereof include a vapor deposition method, a sputtering method, a sol-gel method, and a method using an electrochemical redox reaction.
8.絶縁部
 絶縁部11は、リーク電流の発生を防止するために設けることができる。例えば、図2、6のように第1導電部9を光電変換部2を貫通するコンタクトホール内に設ける場合、コンタクトホールの側壁に絶縁部11を設けることができる。
 また、絶縁部11は、例えば、図2、5~9のように第2電解用電極7と光電変換部2の裏面との間に設けることができる。このことにより、第2電解用電極7と光電変換部2の裏面との間でリーク電流が生じるのを防止することができる。また、光電変換部2が図11、12のように受光することにより光電変換部2の裏面の第1区域と第2区域との間に電位差を生じるものである場合、絶縁部11は、第1電解用電極8と光電変換部2の裏面との間、および第2電解用電極7と光電変換部2の裏面との間に設けられ、絶縁部11は、第1区域上および第2区域上に開口を有してもよい。このことにより、光電変換部2が受光することにより形成される電子およびホールを効率よく分離することができ、光電変換効率をより高くすることができる。
 また、絶縁部11は、電解液に対する耐食性および電解液に対する遮液性を有することが好ましい。このことにより、リーク電流の発生を防止することができ、また、電解液による光電変換部2の腐食を防止することができる。
8). Insulating part The insulating part 11 can be provided in order to prevent the occurrence of leakage current. For example, when providing the 1st electroconductive part 9 in the contact hole which penetrates the photoelectric conversion part 2 like FIG.2, 6, the insulating part 11 can be provided in the side wall of a contact hole.
Further, the insulating part 11 can be provided between the second electrolysis electrode 7 and the back surface of the photoelectric conversion part 2 as shown in FIGS. This can prevent a leak current from being generated between the second electrolysis electrode 7 and the back surface of the photoelectric conversion unit 2. In addition, when the photoelectric conversion unit 2 receives light as shown in FIGS. 11 and 12 to generate a potential difference between the first and second areas on the back surface of the photoelectric conversion unit 2, the insulating unit 11 1 between the electrode 8 for electrolysis and the back surface of the photoelectric conversion unit 2, and between the second electrode for electrolysis 7 and the back surface of the photoelectric conversion unit 2, and the insulating unit 11 is provided on the first area and the second area. You may have an opening on it. Thereby, the electrons and holes formed by the photoelectric conversion unit 2 receiving light can be efficiently separated, and the photoelectric conversion efficiency can be further increased.
Moreover, it is preferable that the insulation part 11 has the corrosion resistance with respect to electrolyte solution, and the liquid shielding property with respect to electrolyte solution. Thereby, generation | occurrence | production of a leakage current can be prevented and corrosion of the photoelectric conversion part 2 by electrolyte solution can be prevented.
 絶縁部11としては、有機材料、無機材料を問わず用いることが可能であり、例えば、ポリアミド、ポリイミド、ポリアリーレン、芳香族ビニル化合物、フッ素系重合体、アクリル系重合体、ビニルアミド系重合体等の有機ポリマー、無機系材料としては、Al23等の金属酸化物、多孔質性シリカ膜等のSiO2や、フッ素添加シリコン酸化膜(FSG)、SiOC、HSQ(Hydrogen Silsesquioxane)膜、SiNx、シラノール(Si(OH)4)をアルコール等の溶媒に溶かし塗布・加熱することにより製膜する方法を用いることが可能である。 The insulating part 11 can be used regardless of an organic material or an inorganic material. For example, polyamide, polyimide, polyarylene, aromatic vinyl compound, fluorine polymer, acrylic polymer, vinylamide polymer, etc. Examples of organic polymers and inorganic materials include metal oxides such as Al 2 O 3 , SiO 2 such as porous silica films, fluorine-added silicon oxide films (FSG), SiOC, HSQ (Hydrogen Silsesquioxane) films, SiN x , It is possible to use a method of forming a film by dissolving silanol (Si (OH) 4 ) in a solvent such as alcohol and applying and heating.
 絶縁部11を形成する方法としては、絶縁性材料を含有するペーストをスクリーン印刷法、インクジェット法、スピンコーティング法等で塗布し乾燥もしくは焼成する方法や、原料ガスを用いたCVD法等により製膜する方法、PVD法、蒸着法、スパッタ法、ゾルゲル法を利用した方法等が挙げられる。 As a method for forming the insulating portion 11, a film containing a paste containing an insulating material is applied by a screen printing method, an ink jet method, a spin coating method, etc., dried or baked, or a CVD method using a source gas is used. And a method using a PVD method, a vapor deposition method, a sputtering method, a sol-gel method, and the like.
9.第2導電部、第3導電部
 第2導電部29は、絶縁部11と第2電解用電極7との間、または、絶縁部11と第1電解用電極8との間に設けることができる。第2導電部29を設けることにより、光電変換部2が受光することにより生じた起電力を効率よく第1電解用電極8または第2電解用電極7に出力することができ、オーミックロスを低減することができる。第2導電部29は、例えば、図9、11、12に示すように設けることができる。
 第2導電部29は、電解液に対する耐食性および電解液に対する遮液性を有することが好ましい。このことにより、オーミック抵抗の上昇を防止することができ、また、電解液による光電変換部2の腐食を防止することができる。
 第3導電部33は、図9、12のように光電変換層を直列接続するように設けることができる。
9. Second Conductive Part, Third Conductive Part The second conductive part 29 can be provided between the insulating part 11 and the second electrolysis electrode 7 or between the insulating part 11 and the first electrolysis electrode 8. . By providing the second conductive portion 29, an electromotive force generated by receiving light by the photoelectric conversion portion 2 can be efficiently output to the first electrolysis electrode 8 or the second electrolysis electrode 7 and the ohmic cross is reduced. can do. The second conductive portion 29 can be provided, for example, as shown in FIGS.
The second conductive portion 29 preferably has corrosion resistance to the electrolytic solution and liquid shielding properties to the electrolytic solution. Thereby, an increase in ohmic resistance can be prevented, and corrosion of the photoelectric conversion unit 2 due to the electrolytic solution can be prevented.
The 3rd electroconductive part 33 can be provided so that a photoelectric converting layer may be connected in series like FIG.
 第2導電部29または第3導電部33は、導電性を有すれば特に限定されないが、例えば、金属薄膜であり、また、例えば、Al、Ag、Auなどの薄膜である。これらは、例えば、スパッタリングなどにより形成することができる。また、例えば、In-Zn-O(IZO)、In-Sn-O(ITO)、ZnO-Al、Zn-Sn-O、SnO2等の透明導電膜である。 The second conductive portion 29 or the third conductive portion 33 is not particularly limited as long as it has conductivity. For example, the second conductive portion 29 or the third conductive portion 33 is a metal thin film, for example, a thin film such as Al, Ag, or Au. These can be formed by, for example, sputtering. Further, for example, a transparent conductive film such as In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, and SnO 2 is used.
10.第1電解用電極、第2電解用電極
 第1電解用電極8および第2電解用電極7は、光電変換部2の裏面側にそれぞれ設けられる。図2のように、第1および第2電解用電極8、7は、光電変換部2の裏面上に設けられてもよく、図4のように光電変換部の裏面との間に基板や空間を挟んで設けられてもよい。また、第1電解用電極8および第2電解用電極7は、光電変換部2の裏面側の面とその裏面であり電解液に接触可能な面とをそれぞれ有することができる。このことにより、第1電解用電極8および第2電解用電極7は光電変換部2に入射する光を遮ることはない。
 また、第1電解用電極8および第2電解用電極7は、電解液と接触するとき、光電変換部2が受光することにより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体を発生させることができるように設けられる。例えば、光電変換部2が受光することにより受光面とその裏面との間に起電力が生じる場合、図2、9のように、第1電解用電極8は、光電変換部2の裏面と電気的に接続することができ、第2電解用電極7は、光電変換部2の受光面と電気的に接続することができる。また、光電変換部2が受光することによりその裏面の第1区域と第2区域との間に起電力が生じる場合、図11、12のように第1電解用電極8は第1区域と第2区域のうちどちらか一方と電気的に接続し、第2電解用電極7は第1区域と第2区域のうち他方と電気的に接続することができる。
10. First Electrolysis Electrode, Second Electrolysis Electrode The first electrolysis electrode 8 and the second electrolysis electrode 7 are provided on the back side of the photoelectric conversion unit 2, respectively. As shown in FIG. 2, the first and second electrolysis electrodes 8 and 7 may be provided on the back surface of the photoelectric conversion unit 2, and a substrate or a space between the back surface of the photoelectric conversion unit as shown in FIG. It may be provided across. Moreover, the electrode 8 for 1st electrolysis and the electrode 7 for 2nd electrolysis can each have the surface of the back surface side of the photoelectric conversion part 2, and the surface which is the back surface and can contact electrolyte solution. Thus, the first electrolysis electrode 8 and the second electrolysis electrode 7 do not block light incident on the photoelectric conversion unit 2.
In addition, when the first electrolysis electrode 8 and the second electrolysis electrode 7 are in contact with the electrolytic solution, the electrolysis solution is electrolyzed by using the electromotive force generated by the photoelectric conversion unit 2 receiving light, and the first gas is obtained. And the second gas can be generated. For example, when an electromotive force is generated between the light receiving surface and the back surface thereof when the photoelectric conversion unit 2 receives light, the first electrolysis electrode 8 is electrically connected to the back surface of the photoelectric conversion unit 2 as shown in FIGS. The second electrolysis electrode 7 can be electrically connected to the light receiving surface of the photoelectric conversion unit 2. In addition, when an electromotive force is generated between the first area and the second area on the back surface when the photoelectric conversion unit 2 receives light, the first electrolysis electrode 8 is connected to the first area and the second area as shown in FIGS. The second electrolysis electrode 7 can be electrically connected to the other of the first area and the second area.
 図4、6、7のように第1電解用電極8が光電変換部2の裏面または第2電極5と接触していない場合、第1電解用電極8は、切換部10を介して光電変換部2の裏面と電気的に接続することができる。また、図4、5、7、10のような場合、第2電解用電極7は、光電変換部2の受光面と切換部10を介して電気的に接続することができる。 4, 6, and 7, when the first electrolysis electrode 8 is not in contact with the back surface of the photoelectric conversion unit 2 or the second electrode 5, the first electrolysis electrode 8 is photoelectrically converted via the switching unit 10. It can be electrically connected to the back surface of the portion 2. 4, 5, 7, and 10, the second electrolysis electrode 7 can be electrically connected to the light receiving surface of the photoelectric conversion unit 2 via the switching unit 10.
 第1電解用電極8および第2電解用電極7は、少なくとも一方が複数であってもよく、それぞれ帯状の電解液に接触可能な面を有してもよく、その面の長辺が隣接するように交互に設けられてもよい。このように、第1電解用電極8および第2電解用電極7を設けることにより、第1気体が発生する反応が生じる部分と、第2気体が発生する反応が生じる部分との間の距離を短くすることができ、電解液中で生じるイオン濃度の不均衡をより少なくすることができる。また、電解液に接触可能な面を帯状とすることにより、第1気体および第2気体を容易に回収することができる。
 第1電解用電極8および第2電解用電極7は、電解液に対する耐食性および電解液に対する遮液性を有することが好ましい。このことにより、安定して第1気体および第2気体を発生させることができ、また、電解液による光電変換部2の腐食を防止することができる。例えば、第1電解用電極8および第2電解用電極7に電解液に対する耐食性を有する金属板または金属膜を用いることができる。
At least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 may be plural, and each may have a surface that can contact the strip-shaped electrolyte solution, and the long sides of the surfaces are adjacent to each other. Alternatively, they may be provided alternately. In this way, by providing the first electrolysis electrode 8 and the second electrolysis electrode 7, the distance between the portion where the reaction generating the first gas occurs and the portion where the reaction generating the second gas occurs is increased. It can be shortened, and the ion concentration imbalance generated in the electrolyte can be reduced. Moreover, the 1st gas and 2nd gas can be collect | recovered easily by making the surface which can contact electrolyte solution into strip | belt shape.
The first electrolysis electrode 8 and the second electrolysis electrode 7 preferably have corrosion resistance to the electrolytic solution and liquid shielding properties to the electrolytic solution. Thereby, the first gas and the second gas can be stably generated, and corrosion of the photoelectric conversion unit 2 due to the electrolytic solution can be prevented. For example, a metal plate or a metal film having corrosion resistance against the electrolytic solution can be used for the first electrolysis electrode 8 and the second electrolysis electrode 7.
 また、第1電解用電極8および第2電解用電極7のうち少なくとも一方は、光電変換部2の受光面の面積より大きい触媒表面積を有することが好ましい。このような構成によれば、光電変換部2で生じる起電力により、より効率的に第1気体または第2気体を発生させることができる。
 また、第1電解用電極8および第2電解用電極7のうち少なくとも一方は、触媒が担持された多孔質の導電体であることが好ましい。このような構成によれば、第1電解用電極8および第2電解用電極7のうち少なくとも一方の触媒表面積を大きくすることができ、より効率的に第1気体または第2気体を発生させることができる。また、多孔質の導電体を用いることにより、光電変換部2と触媒との間の電流が流れることによる電位の変化を抑制することができ、より効率的に第1気体または第2気体を発生させることができる。また、この場合、第1電解用電極8または第2電解用電極7を電解液に対する遮液性を有する部分と多孔質からなる部分の二層構造とすることもできる。
 第1電解用電極8および第2電解用電極7のうち、一方は水素発生部であってもよく、他方が酸素発生部であってもよい。この場合、第1気体および第2気体のうち一方は水素であり、他方は酸素である。
Moreover, it is preferable that at least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 has a catalyst surface area larger than the area of the light receiving surface of the photoelectric conversion unit 2. According to such a configuration, the first gas or the second gas can be generated more efficiently by the electromotive force generated in the photoelectric conversion unit 2.
In addition, at least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 is preferably a porous conductor carrying a catalyst. According to such a configuration, the surface area of at least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 can be increased, and the first gas or the second gas can be generated more efficiently. Can do. Further, by using a porous conductor, it is possible to suppress a change in potential due to a current flowing between the photoelectric conversion unit 2 and the catalyst, and to generate the first gas or the second gas more efficiently. Can be made. In this case, the first electrolysis electrode 8 or the second electrolysis electrode 7 can also have a two-layer structure of a portion having a liquid shielding property against the electrolytic solution and a porous portion.
One of the first electrolysis electrode 8 and the second electrolysis electrode 7 may be a hydrogen generation unit, and the other may be an oxygen generation unit. In this case, one of the first gas and the second gas is hydrogen, and the other is oxygen.
 第1および第2電解用電極8、7は、係合部22により生じる可動範囲内で制御部12により振動するように制御されてもよい。このことにより、第1電解用電極8の表面で生じた第1気体、または第2電解用電極7の表面で生じた第2気体を容易に電解液中の気泡とすることができ、第1気体を第1気体排出口20から回収することができ、第2気体を第2気体排出口19から回収することができる。 The first and second electrolysis electrodes 8 and 7 may be controlled so as to vibrate by the control unit 12 within a movable range generated by the engagement unit 22. Thus, the first gas generated on the surface of the first electrolysis electrode 8 or the second gas generated on the surface of the second electrolysis electrode 7 can be easily made into bubbles in the electrolytic solution. The gas can be recovered from the first gas outlet 20, and the second gas can be recovered from the second gas outlet 19.
11.水素発生部
 水素発生部は、電解液からH2を発生させる部分であり、第1電解用電極8および第2電解用電極7のうちどちらか一方である。
 また、水素発生部は、電解液からH2が発生する反応の触媒を含んでもよい。このことにより、電解液からH2が発生する反応の反応速度を大きくすることができる。水素発生部は、電解液からH2が発生する反応の触媒のみからなってもよく、この触媒が担持体に担持されたものであってもよい。また、水素発生部は、光電変換部2の受光面の面積より大きい触媒表面積を有してもよい。このことにより、電解液からH2が発生する反応をより速い反応速度とすることができる。また、水素発生部は、触媒が担持された多孔質の導電体であってもよい。このことにより、触媒表面積を大きくすることができる。また、光電変換部2の受光面または裏面と水素発生部に含まれる触媒との間に電流が流れることによる電位の変化を抑制することができる。さらに、水素発生部は、水素発生触媒を含んでよく、水素発生触媒は、Pt、Ir、Ru、Pd、Rh、Au、Fe、NiおよびSeのうち少なくとも1つを含んでもよい。このような構成によれば、光電変換部2で生じる起電力により、より速い反応速度で水素を発生させることができる。
11. Hydrogen generating part The hydrogen generating part is a part for generating H 2 from the electrolytic solution, and is one of the first electrolysis electrode 8 and the second electrolysis electrode 7.
Further, the hydrogen generation unit may include a catalyst for a reaction in which H 2 is generated from the electrolytic solution. Thereby, the reaction rate of the reaction in which H 2 is generated from the electrolytic solution can be increased. The hydrogen generation part may consist only of a catalyst for the reaction in which H 2 is generated from the electrolytic solution, or this catalyst may be supported on a support. Further, the hydrogen generation unit may have a catalyst surface area larger than the area of the light receiving surface of the photoelectric conversion unit 2. Thereby, the reaction in which H 2 is generated from the electrolytic solution can be set to a faster reaction rate. The hydrogen generation part may be a porous conductor carrying a catalyst. This can increase the catalyst surface area. In addition, a change in potential due to a current flowing between the light receiving surface or the back surface of the photoelectric conversion unit 2 and the catalyst included in the hydrogen generation unit can be suppressed. Furthermore, the hydrogen generation unit may include a hydrogen generation catalyst, and the hydrogen generation catalyst may include at least one of Pt, Ir, Ru, Pd, Rh, Au, Fe, Ni, and Se. According to such a configuration, hydrogen can be generated at a higher reaction rate by the electromotive force generated in the photoelectric conversion unit 2.
 電解液からH2が発生する反応の触媒(水素発生触媒)は、2つのプロトンと2つの電子から1分子の水素への変換を促進する触媒であり、化学的に安定であり、水素生成過電圧が小さい材料を用いることができる。例えば、水素に対して触媒活性を有するPt,Ir,Ru,Pd,Rh,Au等の白金族金属およびその合金あるいは化合物、水素生成酵素であるヒドロゲナーゼの活性中心を構成するFe,Ni,Seの合金あるいは化合物、およびこれらの組み合わせ等を好適に用いることが可能である。中でもPtおよびPtを含有するナノ構造体は水素発生過電圧が小さく好適に用いることが可能である。光照射により水素発生反応が確認されるCdS,CdSe,ZnS,ZrO2などの材料を用いることもできる。 The catalyst for the reaction of generating H 2 from the electrolyte (hydrogen generation catalyst) is a catalyst that promotes the conversion of two protons and two electrons into one molecule of hydrogen, is chemically stable, and generates hydrogen overvoltage. Can be used. For example, platinum group metals such as Pt, Ir, Ru, Pd, Rh, and Au, which have catalytic activity for hydrogen, and alloys or compounds thereof, Fe, Ni, and Se that constitute the active center of hydrogenase that is a hydrogen-producing enzyme. An alloy or a compound, a combination thereof, or the like can be preferably used. Among them, a nanostructure containing Pt and Pt has a small hydrogen generation overvoltage and can be suitably used. Materials such as CdS, CdSe, ZnS, and ZrO 2 whose hydrogen generation reaction is confirmed by light irradiation can also be used.
 水素発生触媒を導電体に担持することができる。触媒を担持する導電体としては、金属材料、炭素質材料、導電性を有する無機材料等が挙げられる。
 金属材料としては、電子伝導性を有し、酸性雰囲気下で耐腐食性を有する材料が好ましい。具体的には、Au、Pt、Pd等の貴金属、Ti、Ta、W、Nb、Ni、Al、Cr、Ag、Cu、Zn、Su、Si等の金属並びにこれらの金属の窒化物および炭化物、ステンレス鋼、Cu-Cr、Ni-Cr、Ti-Pt等の合金が挙げられる。金属材料には、Pt、Ti、Au、Ag、Cu、Ni、Wからなる群より選ばれる少なくとも一つの元素を含むことが、他の化学的な副反応が少ないという観点から、より好ましい。これら金属材料は、比較的電気抵抗が小さく、面方向に電流を取り出しても電圧の低下を抑制することができる。また、Cu、Ag、Zn等の酸性雰囲気下での耐腐食性に乏しい金属材料を用いる場合には、Au、Pt、Pd等の耐腐食性を有する貴金属および金属、カーボン、グラファイト、グラッシーカーボン、導電性高分子、導電性窒化物、導電性炭化物、導電性酸化物等によって耐腐食性に乏しい金属の表面をコーティングしてもよい。
The hydrogen generating catalyst can be supported on the conductor. Examples of the conductor carrying the catalyst include metal materials, carbonaceous materials, and conductive inorganic materials.
As the metal material, a material having electronic conductivity and resistance to corrosion in an acidic atmosphere is preferable. Specifically, noble metals such as Au, Pt, Pd, metals such as Ti, Ta, W, Nb, Ni, Al, Cr, Ag, Cu, Zn, Su, Si, and nitrides and carbides of these metals, Examples of the alloy include stainless steel, Cu—Cr, Ni—Cr, and Ti—Pt. It is more preferable that the metal material contains at least one element selected from the group consisting of Pt, Ti, Au, Ag, Cu, Ni, and W from the viewpoint that there are few other chemical side reactions. These metal materials have a relatively small electric resistance, and can suppress a decrease in voltage even when a current is extracted in the surface direction. Further, when using a metal material having poor corrosion resistance in an acidic atmosphere such as Cu, Ag, Zn, etc., noble metals and metals having corrosion resistance such as Au, Pt, Pd, carbon, graphite, glassy carbon, A metal surface having poor corrosion resistance may be coated with a conductive polymer, a conductive nitride, a conductive carbide, a conductive oxide, or the like.
 炭素質材料としては、化学的に安定で導電性を有する材料が好ましい。例えば、アセチレンブラック、バルカン、ケッチェンブラック、ファーネスブラック、VGCF、カーボンナノチューブ、カーボンナノホーン、フラーレン等の炭素粉末や炭素繊維が挙げられる。 As the carbonaceous material, a chemically stable and conductive material is preferable. Examples thereof include carbon powders and carbon fibers such as acetylene black, vulcan, ketjen black, furnace black, VGCF, carbon nanotube, carbon nanohorn, and fullerene.
 導電性を有する無機材料としては、例えば、In-Zn-O(IZO)、In-Sn-O(ITO)、ZnO-Al、Zn-Sn-O、SnO2、酸化アンチモンドープ酸化スズが挙げられる。 Examples of the inorganic material having conductivity include In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, SnO 2 , and antimony oxide-doped tin oxide. .
 なお、導電性高分子としては、ポリアセチレン、ポリチオフェン、ポリアニリン、ポリピロール、ポリパラフェニレン、ポリパラフェニレンビニレン等が挙げられ、導電性窒化物としては、窒化炭素、窒化ケイ素、窒化ガリウム、窒化インジウム、窒化ゲルマニウム、窒化チタニウム、窒化ジルコニウム、窒化タリウム等が挙げられ、導電性炭化物としては、炭化タンタル、炭化ケイ素、炭化ジルコニウム、炭化チタニウム、炭化モリブデン、炭化ニオブ、炭化鉄、炭化ニッケル、炭化ハフニウム、炭化タングステン、炭化バナジウム、炭化クロム等が挙げられ、導電性酸化物としては、酸化スズ、酸化インジウムスズ(ITO)、酸化アンチモンドープ酸化スズ等が挙げられる。 In addition, examples of the conductive polymer include polyacetylene, polythiophene, polyaniline, polypyrrole, polyparaphenylene, polyparaphenylene vinylene, and the like, and examples of the conductive nitride include carbon nitride, silicon nitride, gallium nitride, indium nitride, and nitride. Germanium, titanium nitride, zirconium nitride, thallium nitride, etc. are listed, and conductive carbides include tantalum carbide, silicon carbide, zirconium carbide, titanium carbide, molybdenum carbide, niobium carbide, iron carbide, nickel carbide, hafnium carbide, tungsten carbide. , Vanadium carbide, chromium carbide, and the like. Examples of the conductive oxide include tin oxide, indium tin oxide (ITO), and antimony oxide-doped tin oxide.
 水素発生触媒を担持する導電体の構造としては、板状、箔状、棒状、メッシュ状、ラス板状、多孔質板状、多孔質棒状、織布状、不織布状、繊維状、フェルト状が好適に使用できる。また、フェルト状電極の表面を溝状に圧着した溝付き導電体は、電気抵抗と電極液の流動抵抗を低減できるので好適である。 The structure of the conductor supporting the hydrogen generation catalyst includes a plate shape, a foil shape, a rod shape, a mesh shape, a lath plate shape, a porous plate shape, a porous rod shape, a woven fabric shape, a nonwoven fabric shape, a fiber shape, and a felt shape. It can be used suitably. Further, a grooved conductor in which the surface of the felt-like electrode is pressure-bonded in a groove shape is preferable because the electric resistance and the flow resistance of the electrode liquid can be reduced.
12.酸素発生部
 酸素発生部は、電解液からO2を発生させる部分であり、第1電解用電極8および第2電解用電極7のうちどちらか一方である。
 また、酸素発生部は、電解液からO2が発生する反応の触媒を含んでもよい。このことにより、電解液からO2が発生する反応の反応速度を大きくすることができる。また、酸素発生部は、電解液からO2が発生する反応の触媒のみからなってもよく、この触媒が担持体に担持されたものであってもよい。また、酸素発生部は、光電変換部2の受光面の面積より大きい触媒表面積を有してもよい。このことにより、電解液からO2が発生する反応をより速い反応速度とすることができる。また、酸素発生部は、触媒が担持された多孔質の導電体であってもよい。このことにより、触媒表面積を大きくすることができる。また、光電変換部2の受光面または裏面と酸素発生部に含まれる触媒との間に電流が流れることによる電位の変化を抑制することができる。さらに、酸素発生部は、酸素発生触媒を含んでもよく、酸素発生触媒は、Mn、Ca、Zn、CoおよびIrのうち少なくとも1つを含んでもよい。このような構成によれば、光電変換部で生じる起電力により、より速い反応速度で酸素を発生させることができる。
12 Oxygen generating portion The oxygen generating portion is a portion that generates O 2 from the electrolytic solution, and is one of the first electrolysis electrode 8 and the second electrolysis electrode 7.
Further, the oxygen generation unit may include a catalyst for a reaction in which O 2 is generated from the electrolytic solution. Thereby, the reaction rate of the reaction in which O 2 is generated from the electrolytic solution can be increased. Further, the oxygen generation part may consist only of a catalyst for the reaction that generates O 2 from the electrolytic solution, or the catalyst may be supported on a carrier. Further, the oxygen generation unit may have a catalyst surface area larger than the area of the light receiving surface of the photoelectric conversion unit 2. Thereby, the reaction in which O 2 is generated from the electrolytic solution can be set to a faster reaction rate. The oxygen generation part may be a porous conductor carrying a catalyst. This can increase the catalyst surface area. In addition, a change in potential due to a current flowing between the light receiving surface or the back surface of the photoelectric conversion unit 2 and the catalyst included in the oxygen generation unit can be suppressed. Furthermore, the oxygen generation unit may include an oxygen generation catalyst, and the oxygen generation catalyst may include at least one of Mn, Ca, Zn, Co, and Ir. According to such a configuration, oxygen can be generated at a higher reaction rate by the electromotive force generated in the photoelectric conversion unit.
 電解液からO2が発生する反応の触媒(酸素発生触媒)は、2つの水分子から1分子の酸素および4つのプロトンと4つの電子への変換を促進する触媒であり、化学的に安定であり、酸素発生過電圧が小さい材料を用いることができる。例えば、光を用い水から酸素発生を行う反応を触媒する酵素であるPhotosystem IIの活性中心を担うMn,Ca,Zn,Coを含む酸化物あるいは化合物や、Pt,RuO2,IrO2等の白金族金属を含む化合物や、Ti,Zr,Nb,Ta,W,Ce,Fe,Ni等の遷移金属を含む酸化物あるいは化合物、および上記材料の組み合わせ等を用いることが可能である。中でも酸化イリジウム、酸化マンガン、酸化コバルト、リン酸コバルトは、過電圧が小さく酸素発生効率が高いことから好適に用いることができる。 The catalyst for the reaction of generating O 2 from the electrolyte (oxygen generating catalyst) is a catalyst that promotes the conversion of two water molecules into one molecule of oxygen, four protons, and four electrons, and is chemically stable. In addition, a material having a small oxygen generation overvoltage can be used. For example, oxides or compounds containing Mn, Ca, Zn, Co, which are active centers of Photosystem II, which is an enzyme that catalyzes the reaction of generating oxygen from water using light, and platinum such as Pt, RuO 2 , IrO 2 It is possible to use compounds containing group metals, oxides or compounds containing transition metals such as Ti, Zr, Nb, Ta, W, Ce, Fe, Ni, and combinations of the above materials. Among these, iridium oxide, manganese oxide, cobalt oxide, and cobalt phosphate can be suitably used because they have low overvoltage and high oxygen generation efficiency.
 酸素発生触媒を導電体に担持することができる。触媒を担持する導電体としては、金属材料、炭素質材料、導電性を有する無機材料等が挙げられる。これらの説明は、「8.水素発生部」に記載した水素発生触媒についての説明が矛盾がない限り当てはまる。
 水素発生触媒および酸素発生触媒の単独の触媒活性が小さい場合、助触媒を用いることも可能である。例えば、Ni,Cr,Rh,Mo,Co,Seの酸化物あるいは化合物などが挙げられる。
The oxygen generating catalyst can be supported on the conductor. Examples of the conductor carrying the catalyst include metal materials, carbonaceous materials, and conductive inorganic materials. These explanations apply as long as there is no contradiction in the explanation of the hydrogen generation catalyst described in “8. Hydrogen generation part”.
When the catalytic activity of the hydrogen generating catalyst and the oxygen generating catalyst alone is small, a promoter can be used. Examples thereof include oxides or compounds of Ni, Cr, Rh, Mo, Co, and Se.
 なお、水素発生触媒、酸素発生触媒の担持方法は、導電体もしくは半導体に直接塗布する方法や、真空蒸着法、スパッタ法、イオンプレーティング法等のPVD法、CVD法等の乾式塗工法、電析法など、材料により適宜その手法を変え作製ことが可能である。光電変換部と触媒の間に適宜導電物質を担持することが可能である。また水素発生および酸素発生のための触媒活性が十分でない場合、金属やカーボン等の多孔質体や繊維状物質、ナノ粒子等に担持することにより反応表面積を大きくし、水素及び酸素発生速度を向上させることが可能である。 The method for supporting the hydrogen generating catalyst and the oxygen generating catalyst can be applied directly to a conductor or semiconductor, PVD methods such as vacuum deposition, sputtering, and ion plating, dry coating methods such as CVD, The method can be appropriately changed depending on the material such as an analysis method. A conductive material can be appropriately supported between the photoelectric conversion unit and the catalyst. Also, when the catalytic activity for hydrogen generation and oxygen generation is not sufficient, the reaction surface area is increased by supporting it on porous materials such as metals and carbon, fibrous materials, nanoparticles, etc., and the hydrogen and oxygen generation rates are improved. It is possible to make it.
13.背面基板
 背面基板14は、第1電解用電極8および第2電解用電極7の上に透光性基板1と対向するように設けることができる。また、図4のように、光電変換部2と第1および第2電解用電極8、7とが分離されている場合、背面基板14は、第1および第2電解用電極8、7と対向するように設けることができる。
 また、背面基板14は、第1電解用電極8および第2電解用電極7と背面基板14との間に空間が設けられるように設けることができる。この空間を電解液室15とすることができ、電解液室15に電解液を導入することにより、第1電解用電極8および第2電解用電極7を電解液に接触させることができる。また、背面基板14に箱状のものを用いる場合、背面基板14は箱体の底の部分であってもよい。
13. Back Substrate The back substrate 14 can be provided on the first electrolysis electrode 8 and the second electrolysis electrode 7 so as to face the translucent substrate 1. Further, as shown in FIG. 4, when the photoelectric conversion unit 2 and the first and second electrolysis electrodes 8 and 7 are separated, the back substrate 14 faces the first and second electrolysis electrodes 8 and 7. Can be provided.
The back substrate 14 can be provided such that a space is provided between the first electrolysis electrode 8 and the second electrolysis electrode 7 and the back substrate 14. This space can be used as the electrolytic solution chamber 15, and the first electrolytic electrode 8 and the second electrolytic electrode 7 can be brought into contact with the electrolytic solution by introducing the electrolytic solution into the electrolytic solution chamber 15. Moreover, when using a box-shaped thing for the back substrate 14, the back substrate 14 may be the bottom part of a box.
 また、背面基板14は、電解液室15を構成し、生成した第1気体および第2気体を閉じ込めるために構成される材料であり、機密性が高い物質が求められる。透明なものであっても不透明なものであっても特に限定されるものではないが、第1気体および第2気体が発生していることを視認できる点においては透明な材料であることが好ましい。透明な背面基板としては特に限定されず、例えば石英ガラス、パイレックス(登録商標)、合成石英板等の透明なリジッド材、あるいは透明樹脂板、透明樹脂フィルムなどを挙げることができる。中でも、ガスの透過性がなく、化学的物理的に安定な物質である点でガラス材を用いることが好ましい。 Further, the back substrate 14 is a material that constitutes the electrolytic solution chamber 15 and confines the generated first gas and second gas, and a highly confidential substance is required. It is not particularly limited whether it is transparent or opaque, but it is preferably a transparent material in that it can be visually confirmed that the first gas and the second gas are generated. . The transparent back substrate is not particularly limited, and examples thereof include a transparent rigid material such as quartz glass, Pyrex (registered trademark), and a synthetic quartz plate, a transparent resin plate, and a transparent resin film. Among them, it is preferable to use a glass material because it is a gas that is not chemically permeable and is chemically and physically stable.
14.隔壁
 隔壁13は、第1電解用電極8と背面基板14との間の空間である電解液室15および第2電解用電極7と背面基板14との間の空間である電解液室15とを仕切るように設けることができる。また、隔壁13は、図10のように第1電解用電極8と第2電解用電極7との間に設けることもできる。このことにより、第1電解用電極8および第2電解用電極7で発生させた第1気体および第2気体が混合することを防止することができ、第1気体および第2気体を分離して回収することができる。
 また、隔壁13は、イオン交換体を含んでもよい。このことにより、第1電解用電極8と背面基板14との間の空間の電解液と第2電解用電極7と背面基板14との間の空間の電解液でアンバランスとなったイオン濃度を一定に保つことができる。
14 The partition wall 13 includes an electrolyte chamber 15 that is a space between the first electrolysis electrode 8 and the back substrate 14 and an electrolyte chamber 15 that is a space between the second electrolysis electrode 7 and the back substrate 14. It can be provided so as to partition. The partition wall 13 can also be provided between the first electrolysis electrode 8 and the second electrolysis electrode 7 as shown in FIG. As a result, the first gas and the second gas generated by the first electrolysis electrode 8 and the second electrolysis electrode 7 can be prevented from mixing, and the first gas and the second gas can be separated. It can be recovered.
The partition wall 13 may include an ion exchanger. As a result, the ion concentration that is unbalanced by the electrolytic solution in the space between the first electrolysis electrode 8 and the back substrate 14 and the electrolytic solution in the space between the second electrolysis electrode 7 and the back substrate 14 is reduced. Can be kept constant.
 隔壁13は、例えば、多孔質ガラス、多孔質ジルコニア、多孔質アルミナ等の無機膜あるいはイオン交換体を用いることが可能である。
 イオン交換体としては、当該分野で公知のイオン交換体をいずれも使用でき、プロトン伝導性膜、カチオン交換膜、アニオン交換膜等を使用できる。
 プロトン伝導性膜の材質としては、プロトン伝導性を有しかつ電気的絶縁性を有する材質であれば特に限定されず、高分子膜、無機膜又はコンポジット膜を用いることができる。
For the partition wall 13, for example, an inorganic film such as porous glass, porous zirconia, or porous alumina or an ion exchanger can be used.
As the ion exchanger, any ion exchanger known in the art can be used, and a proton conductive membrane, a cation exchange membrane, an anion exchange membrane, or the like can be used.
The material of the proton conductive film is not particularly limited as long as it is a material having proton conductivity and electrical insulation, and a polymer film, an inorganic film, or a composite film can be used.
 高分子膜としては、例えば、パーフルオロスルホン酸系電解質膜である、デュポン社製のナフィオン(登録商標)、旭化成社製のアシプレックス(登録商標)、旭硝子社製のフレミオン(登録商標)等の膜や、ポリスチレンスルホン酸、スルホン化ポリエーテルエーテルケトン等の炭化水素系電解質膜等が挙げられる。 Examples of the polymer membrane include Nafion (registered trademark) manufactured by DuPont, Aciplex (registered trademark) manufactured by Asahi Kasei Co., and Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., which are perfluorosulfonic acid electrolyte membranes. Examples thereof include membranes and hydrocarbon electrolyte membranes such as polystyrene sulfonic acid and sulfonated polyether ether ketone.
 無機膜としては、例えば、リン酸ガラス、硫酸水素セシウム、ポリタングストリン酸、ポリリン酸アンモニウム等からなる膜が挙げられる。コンポジット膜としては、スルホン化ポリイミド系ポリマー、タングステン酸等の無機物とポリイミド等の有機物とのコンポジット等からなる膜が挙げられ、具体的にはゴア社製のゴアセレクト膜(登録商標)や細孔フィリング電解質膜等が挙げられる。さらに、高温環境下(例えば、100℃以上)で使用する場合には、スルホン化ポリイミド、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)、スルホン化ポリベンゾイミダゾール、ホスホン化ポリベンゾイミダゾール、硫酸水素セシウム、ポリリン酸アンモニウム等が挙げられる。 Examples of the inorganic film include films made of phosphate glass, cesium hydrogen sulfate, polytungstophosphoric acid, ammonium polyphosphate, and the like. Examples of the composite membrane include a membrane made of a sulfonated polyimide polymer, a composite of an inorganic material such as tungstic acid and an organic material such as polyimide, and specifically, Gore Select membrane (registered trademark) or pores manufactured by Gore. Examples thereof include a filling electrolyte membrane. Furthermore, when used in a high temperature environment (for example, 100 ° C. or higher), sulfonated polyimide, 2-acrylamido-2-methylpropanesulfonic acid (AMPS), sulfonated polybenzimidazole, phosphonated polybenzimidazole, sulfuric acid Examples include cesium hydrogen and ammonium polyphosphate.
 カチオン交換膜としては、カチオンを移動させることができる固体高分子電解質であればよい。具体的には、パーフルオロカーボンスルフォン酸膜や、パーフルオロカーボンカルボン酸膜等のフッ素系イオン交換膜、リン酸を含浸させたポリベンズイミダゾール膜、ポリスチレンスルホン酸膜、スルホン酸化スチレン・ビニルベンゼン共重合体膜等が挙げられる。
 支持電解質溶液のアニオン輸率が高い場合には、アニオン交換膜の使用が好ましい。アニオン交換膜としては、アニオンの移動可能な固体高分子電解質を使用できる。具体的には、ポリオルトフェニレンジアミン膜、アンモニウム塩誘導体基を有するフッ素系イオン交換膜、アンモニウム塩誘導体基を有するビニルベンゼンポリマー膜、クロロメチルスチレン・ビニルベンゼン共重合体をアミノ化した膜等が挙げられる。
The cation exchange membrane may be any solid polymer electrolyte that can move cations. Specifically, fluorine ion exchange membranes such as perfluorocarbon sulfonic acid membranes and perfluorocarbon carboxylic acid membranes, polybenzimidazole membranes impregnated with phosphoric acid, polystyrene sulfonic acid membranes, sulfonated styrene / vinylbenzene copolymers Examples include membranes.
When the anion transport number of the supporting electrolyte solution is high, it is preferable to use an anion exchange membrane. As the anion exchange membrane, a solid polymer electrolyte capable of transferring anions can be used. Specifically, a polyorthophenylenediamine film, a fluorine-based ion exchange film having an ammonium salt derivative group, a vinylbenzene polymer film having an ammonium salt derivative group, a film obtained by aminating a chloromethylstyrene / vinylbenzene copolymer, etc. Can be mentioned.
15.シール材
 シール材16は、透光性基板1と背面基板14を接着し、水素製造装置45内の電解液および水素製造装置45内で生成した第1気体および第2気体を密閉するための材料である。背面基板14に箱状のものを用いる場合、この箱体と透光性基板1とを接着するためにシール材16が用いられる。シール材16は、例えば、紫外線硬化性接着剤、熱硬化性接着剤等が好適に使用されるが、その種類は限定されるものではない。紫外線硬化性の接着剤としては、200~400nmの波長を持つ光を照射することにより重合が起こり光照射後数秒で硬化反応が起こる樹脂であり、ラジカル重合型とカチオン重合型に分けられ、ラジカル重合型樹脂としてはアクリルレート、不飽和ポリエステル、カチオン重合型としては、エポキシ、オキセタン、ビニルエーテル等が挙げられる。また熱硬化性の高分子接着剤としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、熱硬化性ポリイミド等の有機樹脂が挙げられる。熱硬化性の高分子接着剤は、熱圧着時に圧力を掛けた状態で加熱重合し、その後、加圧したまま、室温まで冷却することにより、各部材を良好に接合させるため、締め付け部材等を要しない。また、有機樹脂に加えて、ガラス基板に対して密着性の高いハイブリッド材料を用いることが可能である。ハイブリッド材料を用いることによって、弾性率や硬度等の力学的特性が向上し、耐熱性や耐薬品性が飛躍的に向上する。ハイブリッド材料は、無機コロイド粒子と有機バインダ樹脂とから構成される。例えば、シリカなどの無機コロイド粒子と、エポキシ樹脂、ポリウレタンアクリレート樹脂やポリエステルアクリレート樹脂などの有機バインダ樹脂とから構成されるものが挙げられる。
15. Sealing material The sealing material 16 is a material for adhering the translucent substrate 1 and the back substrate 14 and sealing the electrolyte in the hydrogen production apparatus 45 and the first gas and the second gas generated in the hydrogen production apparatus 45. It is. When a box-shaped substrate is used for the back substrate 14, a sealing material 16 is used for bonding the box body and the translucent substrate 1. As the sealing material 16, for example, an ultraviolet curable adhesive, a thermosetting adhesive, or the like is preferably used, but the type thereof is not limited. UV curable adhesives are resins that undergo polymerization when irradiated with light having a wavelength of 200 to 400 nm and undergo a curing reaction within a few seconds after light irradiation, and are classified into radical polymerization type and cationic polymerization type. Examples of the polymerization type resin include acrylates, unsaturated polyesters, and examples of the cationic polymerization type include epoxy, oxetane, and vinyl ether. Examples of the thermosetting polymer adhesive include organic resins such as phenol resin, epoxy resin, melamine resin, urea resin, and thermosetting polyimide. The thermosetting polymer adhesive is heated and polymerized in a state where pressure is applied at the time of thermocompression bonding, and then cooled to room temperature while being pressurized. I don't need it. In addition to the organic resin, a hybrid material having high adhesion to the glass substrate can be used. By using a hybrid material, mechanical properties such as elastic modulus and hardness are improved, and heat resistance and chemical resistance are dramatically improved. The hybrid material is composed of inorganic colloidal particles and an organic binder resin. For example, what is comprised from inorganic colloidal particles, such as a silica, and organic binder resin, such as an epoxy resin, a polyurethane acrylate resin, and a polyester acrylate resin, is mentioned.
 ここではシール材16と記しているが、透光性基板1と背面基板14を接着させる機能を有するものであれば限定されず、樹脂製あるいは金属製のガスケットを用い外部からネジ等の部材を用いて物理的に圧力を加え機密性を高める方法等を適宜用いることも可能である。 Here, the sealing material 16 is described. However, the sealing material 16 is not limited as long as it has a function of adhering the translucent substrate 1 and the back substrate 14, and a member such as a screw is externally used using a resin or metal gasket. It is also possible to appropriately use a method of applying pressure physically to increase confidentiality.
16.電解液室
 電解液室15は、第1電解用電極8と背面基板14との間の空間および第2電解用電極7と背面基板14との間の空間とすることができる。また、電解液室15は、隔壁13により仕切ることができる。
16. Electrolyte Chamber The electrolyte chamber 15 can be a space between the first electrolysis electrode 8 and the back substrate 14 and a space between the second electrolysis electrode 7 and the back substrate 14. Further, the electrolyte chamber 15 can be partitioned by the partition wall 13.
17.給水口
 給水口18は、水素製造装置45に含まれるシール材16の一部、もしくは背面基板14の一部などに開口を作ることにより設けることができる。給水口18は、第1気体及び第2気体へと分解された電解液を補充するために配置され、その配置箇所および形状は、原料となる電解液が効率よく水素製造装置45へ供給されさえすれば、特に限定されるものではない。
17. Water Supply Port The water supply port 18 can be provided by making an opening in a part of the sealing material 16 included in the hydrogen production apparatus 45 or a part of the back substrate 14. The water supply port 18 is arranged to replenish the electrolytic solution that has been decomposed into the first gas and the second gas, and the arrangement location and shape of the water supply port 18 are such that the electrolytic solution as a raw material can be efficiently supplied to the hydrogen production device 45. If it does, it will not be limited in particular.
18.電解液
 電解液は、第1気体および第2気体の原料となるものであれば特に限定されないが、例えば、電解質を含む水溶液であり、例えば、0.1MのH2SO4を含む電解液、0.1Mリン酸カリウム緩衝液などである。この場合、電解液から第1気体および第2気体として水素および酸素を製造することができる。
18. Electrolytic Solution The electrolytic solution is not particularly limited as long as it is a raw material for the first gas and the second gas. For example, the electrolytic solution is an aqueous solution containing an electrolyte, for example, an electrolytic solution containing 0.1 M H 2 SO 4 , 0.1M potassium phosphate buffer. In this case, hydrogen and oxygen can be produced from the electrolytic solution as the first gas and the second gas.
19.センサ部
 水素製造装置45は、センサ部17を備えてもよい。図13は、本実施形態の水素製造装置に含まれる制御部、センサ部などの概念図である。
 センサ部17は、例えば、傾斜センサ、方位センサ、位置センサ、照度センサ、時計などを備えることができる。また、これらのセンサは、センサが得た情報を制御部12に出力することができる。なお、センサ部17に含まれる複数のセンサ、時計は、水素製造装置45の異なる箇所に設置されてもよい。
 センサ部17が、傾斜センサ、方位センサを備えることにより、光電変換部2の受光面が向く方向の方位、仰角などを検出することができ、また、第1電解用電極8、第2電解用電極7の傾斜角を検出することができる。これらの情報を制御部12が入力することにより、制御部12が光電変換部2の受光面の向きや第1および第2電解用電極7の動きを正確に制御することができる。
19. Sensor Unit The hydrogen production apparatus 45 may include a sensor unit 17. FIG. 13 is a conceptual diagram of a control unit, a sensor unit, and the like included in the hydrogen production apparatus of the present embodiment.
The sensor unit 17 can include, for example, an inclination sensor, an orientation sensor, a position sensor, an illuminance sensor, a clock, and the like. Further, these sensors can output information obtained by the sensors to the control unit 12. The plurality of sensors and the timepiece included in the sensor unit 17 may be installed at different locations of the hydrogen production apparatus 45.
By providing the sensor unit 17 with an inclination sensor and an orientation sensor, it is possible to detect the orientation, elevation angle, and the like in the direction in which the light receiving surface of the photoelectric conversion unit 2 faces, and the first electrolysis electrode 8 and the second electrolysis electrode. The inclination angle of the electrode 7 can be detected. When the control unit 12 inputs these pieces of information, the control unit 12 can accurately control the orientation of the light receiving surface of the photoelectric conversion unit 2 and the movement of the first and second electrolysis electrodes 7.
 センサ部17が位置センサ、時計を備えることにより、太陽の位置や動きを算出することができる。これらの情報を制御部12が入力することにより、制御部12が光電変換部2の受光面の向きを太陽を追尾するように制御することができる。位置センサは、例えば、GPSである。
 センサ部17が照度センサを備えることにより、日照条件を検出することができる。この情報を制御部12が入力することにより、日射量を検出することができ、日射があるか否かを検出することができる。この情報を制御部12が入力することにより、日射がある場合、光電変換部2の受光面を太陽を追尾するように制御し、日射がない場合、光電変換部2の受光面を固定するように制御することができる。日射がない場合、光電変換部2の受光面を太陽を追尾するように制御しても、光電変換部2に入射する光量は大きく変わらないため、光電変換部2を固定することにより、光電変換部2を動かすことに要するエネルギーを節約することができる。
When the sensor unit 17 includes a position sensor and a clock, the position and movement of the sun can be calculated. When the control unit 12 inputs these pieces of information, the control unit 12 can control the direction of the light receiving surface of the photoelectric conversion unit 2 so as to track the sun. The position sensor is, for example, a GPS.
When the sensor unit 17 includes an illuminance sensor, the sunshine condition can be detected. When the control unit 12 inputs this information, the amount of solar radiation can be detected, and whether or not there is solar radiation can be detected. When the control unit 12 inputs this information, when there is solar radiation, the light receiving surface of the photoelectric conversion unit 2 is controlled to track the sun, and when there is no solar radiation, the light receiving surface of the photoelectric conversion unit 2 is fixed. Can be controlled. When there is no solar radiation, even if the light receiving surface of the photoelectric conversion unit 2 is controlled to track the sun, the amount of light incident on the photoelectric conversion unit 2 does not change significantly. The energy required to move the part 2 can be saved.
20.切換部
 切換部10は、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力させる回路と、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7に出力し電解液からそれぞれ第1気体および第2気体を発生させる回路とを切り換えることができる。このことにより、光電変換部2が受光することにより生じる起電力を第1外部回路へ電力として供給でき、また、光電変換部2が受光することにより生じる起電力を用いて第1気体および第2気体を製造することができる。
 切換部10が第1外部回路と電気的に接続する方法は、特に限定されないが、例えば、切換部10が出力端子を備え、出力端子を介して第1外部回路と電気的に接続してもよい。
20. Switching unit The switching unit 10 includes a circuit that outputs an electromotive force generated when the photoelectric conversion unit 2 receives light to the first external circuit, and an electromotive force generated when the photoelectric conversion unit 2 receives light. It is possible to switch between the circuits that output to the second electrolysis electrode 7 and generate the first gas and the second gas from the electrolyte, respectively. As a result, the electromotive force generated when the photoelectric conversion unit 2 receives light can be supplied as power to the first external circuit, and the first gas and the second gas are generated using the electromotive force generated when the photoelectric conversion unit 2 receives light. A gas can be produced.
The method for electrically connecting the switching unit 10 to the first external circuit is not particularly limited. For example, even if the switching unit 10 includes an output terminal and is electrically connected to the first external circuit via the output terminal. Good.
 また、切換部10は、第2外部回路と電気的に接続することができ、かつ、第2外部回路から入力される起電力を第1電解用電極8および第2電解用電極7に出力し電解液からそれぞれ第1気体および第2気体を発生させる回路に切り換えることができる。このことにより、第2外部回路から入力される起電力を利用して、電解液から第1気体および第2気体を製造することができる。
 切換部10が第2外部回路と電気的に接続する方法は特に限定されないが、例えば、切換部10が入力端子を備え、入力端子を介して第2外部回路と電気的に接続してもよい。
The switching unit 10 can be electrically connected to the second external circuit, and outputs an electromotive force input from the second external circuit to the first electrolysis electrode 8 and the second electrolysis electrode 7. It can switch to the circuit which produces | generates 1st gas and 2nd gas, respectively from electrolyte solution. Thus, the first gas and the second gas can be produced from the electrolyte using the electromotive force input from the second external circuit.
The method for electrically connecting the switching unit 10 to the second external circuit is not particularly limited. For example, the switching unit 10 may include an input terminal and be electrically connected to the second external circuit via the input terminal. .
 図面を用いて具体的に説明する。図14~17は、本実施形態の水素製造装置の概略回路図である。例えば、本実施形態の水素製造装置45が図4、7のような断面を有し、図14のような電気回路を有する場合、例えば、SW(スイッチ)1、SW2がON状態であり、SW3、SW4がOFF状態である場合、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力することができる。また、SW1、SW2、SW5、SW6がOFF状態であり、SW3、SW4がON状態である場合、光電変換部2が受光することにより生じる起電力を第1電解用電極8と第2電解用電極7に出力することができる。
 また、例えば、SW3、SW4がOFF状態であり、SW5、SW6がON状態である場合、第2外部回路から入力される起電力を第1電解用電極8および第2電解用電極7に出力することができる。また、SW1、SW2がOFF状態であり、SW3、SW4、SW5、SW6がON状態である場合、光電変換部2が受光することにより生じる起電力および第2外部回路から入力される起電力の両方を第1電解用電極8および第2電解用電極7に出力することができる。
This will be specifically described with reference to the drawings. 14 to 17 are schematic circuit diagrams of the hydrogen production apparatus of the present embodiment. For example, when the hydrogen production apparatus 45 of this embodiment has a cross section as shown in FIGS. 4 and 7 and an electric circuit as shown in FIG. 14, for example, SW (switch) 1 and SW2 are in an ON state, and SW3 When SW4 is in the OFF state, the electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit. In addition, when SW1, SW2, SW5, and SW6 are in the OFF state and SW3 and SW4 are in the ON state, the electromotive force generated when the photoelectric conversion unit 2 receives light is used as the first electrolysis electrode 8 and the second electrolysis electrode. 7 can be output.
For example, when SW3 and SW4 are in an OFF state and SW5 and SW6 are in an ON state, an electromotive force input from the second external circuit is output to the first electrolysis electrode 8 and the second electrolysis electrode 7. be able to. When SW1 and SW2 are in the OFF state and SW3, SW4, SW5, and SW6 are in the ON state, both the electromotive force generated by the photoelectric conversion unit 2 receiving light and the electromotive force input from the second external circuit Can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
 例えば、本実施形態の水素製造装置45が図5、10のような断面を有し、図15のような電気回路を有する場合、例えば、SW1、SW2がON状態であり、SW3、SW4がOFF状態である場合、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力することができる。また、SW1、SW2、SW3、SW5がOFF状態であり、SW4がON状態である場合、光電変換部2が受光することにより生じる起電力を第1電解用電極8と第2電解用電極7に出力することができる。
 また、例えば、SW1、SW2、SW4がOFF状態であり、SW3、SW5がON状態である場合、第2外部回路から入力される起電力を第1電解用電極8および第2電解用電極7に出力することができる。また、SW1、SW2がOFF状態であり、SW3、SW4、SW5がON状態である場合、光電変換部2が受光することにより生じる起電力および第2外部回路から入力される起電力の両方を第1電解用電極8および第2電解用電極7に出力することができる。
For example, when the hydrogen production apparatus 45 of this embodiment has a cross section as shown in FIGS. 5 and 10 and an electric circuit as shown in FIG. 15, for example, SW1 and SW2 are in an ON state, and SW3 and SW4 are in an OFF state. In the state, the electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit. Further, when SW1, SW2, SW3, and SW5 are in the OFF state and SW4 is in the ON state, the electromotive force generated when the photoelectric conversion unit 2 receives light is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output.
For example, when SW1, SW2, and SW4 are in an OFF state and SW3 and SW5 are in an ON state, an electromotive force input from the second external circuit is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output. When SW1 and SW2 are in the OFF state and SW3, SW4 and SW5 are in the ON state, both the electromotive force generated by the photoelectric conversion unit 2 receiving light and the electromotive force input from the second external circuit are It can output to the electrode 8 for 1 electrolysis and the electrode 7 for 2nd electrolysis.
 例えば、本実施形態の水素製造装置45が図6のような断面を有し、図16のような電気回路を有する場合、例えば、SW1、SW2がON状態であり、SW3、SW4がOFF状態である場合、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力することができる。また、SW1、SW2、SW3、SW5がOFF状態であり、SW4がON状態である場合、光電変換部2が受光することにより生じる起電力を第1電解用電極8と第2電解用電極7に出力することができる。
 また、例えば、SW1、SW2、SW4がOFF状態であり、SW3、SW5がON状態である場合、第2外部回路から入力される起電力を第1電解用電極8および第2電解用電極7に出力することができる。また、SW1、SW2がOFF状態であり、SW3、SW4、SW5がON状態である場合、光電変換部2が受光することにより生じる起電力および第2外部回路から入力される起電力の両方を第1電解用電極8および第2電解用電極7に出力することができる。
For example, when the hydrogen production apparatus 45 of this embodiment has a cross section as shown in FIG. 6 and an electric circuit as shown in FIG. 16, for example, SW1 and SW2 are in the ON state, and SW3 and SW4 are in the OFF state. In some cases, an electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit. Further, when SW1, SW2, SW3, and SW5 are in the OFF state and SW4 is in the ON state, the electromotive force generated when the photoelectric conversion unit 2 receives light is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output.
For example, when SW1, SW2, and SW4 are in an OFF state and SW3 and SW5 are in an ON state, an electromotive force input from the second external circuit is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output. When SW1 and SW2 are in the OFF state and SW3, SW4 and SW5 are in the ON state, both the electromotive force generated by the photoelectric conversion unit 2 receiving light and the electromotive force input from the second external circuit are It can output to the electrode 8 for 1 electrolysis and the electrode 7 for 2nd electrolysis.
 例えば、本実施形態の水素製造装置45が図2、8、9、11、12のような断面を有し、図17のような電気回路を有する場合、例えば、SW1、SW2がON状態であり、SW3、SW4がOFF状態である場合であって、光電変換部が受光することにより生じる起電力が電解液の電解電圧に達しない場合、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力することができる。また、SW1、SW2、SW3、SW4がOFF状態である場合であって、光電変換部が受光することにより生じる起電力が電解液の電解電圧に達する場合、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7へ出力することができる。従って、図17のような電気回路を有する場合でも、切換部10により、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力させる回路と、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7に出力させる回路とを切り換えることができる。
 また、SW3、SW4がON状態であり、SW1,SW2がOFF状態の場合、第2外部回路から入力される起電力、または第2外部回路から入力される起電力と光電変換部2が受光することにより生じる起電力の両方を第1電解用電極8および第2電解用電極7に出力することができる。
For example, when the hydrogen production apparatus 45 of this embodiment has a cross section as shown in FIGS. 2, 8, 9, 11, and 12 and an electric circuit as shown in FIG. 17, for example, SW1 and SW2 are in an ON state. , SW3, SW4 are in the OFF state, and when the electromotive force generated by the photoelectric conversion unit receiving light does not reach the electrolytic voltage of the electrolyte, the electromotive force generated by the photoelectric conversion unit 2 receiving the light is first 1 It is possible to output to an external circuit. In addition, when SW1, SW2, SW3, and SW4 are in the OFF state, and the electromotive force generated by the photoelectric conversion unit receiving light reaches the electrolytic voltage of the electrolytic solution, the photoelectric conversion unit 2 receives the light. The electromotive force can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7. Accordingly, even when the electric circuit as shown in FIG. 17 is provided, the switching unit 10 causes the photoelectric conversion unit 2 to receive the electromotive force generated by the photoelectric conversion unit 2 receiving light and the photoelectric conversion unit 2 to receive light. It is possible to switch between the circuit that outputs the electromotive force generated by the above to the first electrolysis electrode 8 and the second electrolysis electrode 7.
When SW3 and SW4 are in the ON state and SW1 and SW2 are in the OFF state, the electromotive force input from the second external circuit or the electromotive force input from the second external circuit and the photoelectric conversion unit 2 receive light. Both the electromotive forces generated by this can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
 また、切換部10は、制御部12からの情報を入力することができ、入力した情報に基づき回路の切換を行うことができる。このことにより、切換部10は、制御部12が選択した回路に切り換えることができる。
 また、切換部10は、光電変換部2が受光することにより生じる起電力の大きさに基づき回路の切換を行うこともできる。このことにより、第1外部回路に出力する電力が光電変換部2で生じている場合、第1外部回路に光電変換部2で生じた起電力を出力することができ、第1外部回路に出力する電力が光電変換部2で生じていない場合、第1電解用電極8および第2電解用電極7に光電変換部2で生じた起電力を出力することができる。
 さらに切換部10は、第2外部回路の起電力の大きさに基づき回路の切換を行うこともできる。このことにより、第2外部回路が供給する電力が電気需要より大きくなっている場合、第2外部回路が供給する電力を利用して第1気体および第2気体を製造することができる。
The switching unit 10 can input information from the control unit 12 and can switch circuits based on the input information. Thereby, the switching unit 10 can switch to the circuit selected by the control unit 12.
The switching unit 10 can also switch circuits based on the magnitude of the electromotive force generated when the photoelectric conversion unit 2 receives light. As a result, when the electric power output to the first external circuit is generated in the photoelectric conversion unit 2, the electromotive force generated in the photoelectric conversion unit 2 can be output to the first external circuit and output to the first external circuit. When the power to be generated is not generated in the photoelectric conversion unit 2, the electromotive force generated in the photoelectric conversion unit 2 can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
Further, the switching unit 10 can also switch circuits based on the magnitude of the electromotive force of the second external circuit. Thereby, when the electric power supplied from the second external circuit is larger than the electric demand, the first gas and the second gas can be produced using the electric power supplied from the second external circuit.
21.制御部
 制御部12は、光電変換部2の受光面の向きを制御することができる。このことにより、光電変換部2の受光面を太陽を追尾するように動かすことができ、光電変換部2の入射光量を多くすることができる。その結果、光電変換部2の発電量が多くすることができる。
 また、制御部12は、第1および第2電解用電極8、7を振動するように制御することができる。このことにより、第1および第2電解用電極8、7を振動させることができ、第1気体または第2気体の排出を促進することができる。
 さらに、制御部12は、切換部10が切り換える回路を設定し、設定した情報を切換部10に出力することができる。このことにより、切換部10が切り換える回路を制御することができ、光電変換部2が発電するエネルギーを有効に活用することができる。また、第1および第2電解用電極8、7を有効に利用することができる。
21. Control Unit The control unit 12 can control the direction of the light receiving surface of the photoelectric conversion unit 2. Accordingly, the light receiving surface of the photoelectric conversion unit 2 can be moved so as to track the sun, and the amount of incident light of the photoelectric conversion unit 2 can be increased. As a result, the power generation amount of the photoelectric conversion unit 2 can be increased.
Further, the control unit 12 can control the first and second electrolysis electrodes 8 and 7 to vibrate. Accordingly, the first and second electrolysis electrodes 8 and 7 can be vibrated, and the discharge of the first gas or the second gas can be promoted.
Further, the control unit 12 can set a circuit to be switched by the switching unit 10 and output the set information to the switching unit 10. Thereby, the circuit which the switching part 10 switches can be controlled, and the energy which the photoelectric conversion part 2 generates can be utilized effectively. Further, the first and second electrolysis electrodes 8 and 7 can be used effectively.
 制御部12は、例えば、半導体装置とプログラムから構成できる。
 制御部12は、情報を入力するための入力手段と、入力手段から入力された情報に基づき光電変換部2の受光面の向きまたは第1および第2電解用電極8、7の動きを設定する設定手段と、設定手段により設定された情報を出力するための出力手段と、出力手段により出力された情報に基づき少なくとも光電変換部2を動かす動力部24、25とを備えることができる。このことにより、制御部12は、光電変換部2または第1および第2電解用電極8、7の動きを制御することができる。
 また、制御部12は、情報を入力するための入力手段と、入力手段から入力された情報に基づき切換部10が切り換える回路を設定する設定手段と、設定手段により設定された情報を切換部10に出力するための出力手段とを備えることができる。このことにより、制御部12は、切換部10が切り換える回路を制御することができる。
The control part 12 can be comprised from a semiconductor device and a program, for example.
The control unit 12 sets input means for inputting information, and the direction of the light receiving surface of the photoelectric conversion unit 2 or the movement of the first and second electrolysis electrodes 8 and 7 based on the information input from the input means. A setting unit, an output unit for outputting information set by the setting unit, and power units 24 and 25 for moving at least the photoelectric conversion unit 2 based on the information output by the output unit can be provided. Thus, the control unit 12 can control the movement of the photoelectric conversion unit 2 or the first and second electrolysis electrodes 8 and 7.
The control unit 12 also includes an input unit for inputting information, a setting unit for setting a circuit to be switched by the switching unit 10 based on the information input from the input unit, and the information set by the setting unit. Output means for outputting to the output. Thus, the control unit 12 can control the circuit that the switching unit 10 switches.
 制御部12は、例えば、図13のように切換部10、動力部24、25、センサ部17、情報配線と接続することができる。
 また、制御部12に含まれる入力手段は、情報配線または無線から情報を入力することができる。例えば、制御部12に含まれる入力手段は、情報配線または無線を介して、電力会社からの情報、売電情報、Web情報、ソリューションサーバー情報などを入力することができる。この情報に基づき、制御部12は、光電変換部2または第1および第2電解用電極8、7の動きを制御することができる。また、この情報に基づき、制御部12は、切換部10が切り換える回路を制御することができる。
 また、制御部12は、傾斜角制限手段21となるプログラムを含むことができる。
The control unit 12 can be connected to the switching unit 10, the power units 24 and 25, the sensor unit 17, and the information wiring as shown in FIG.
The input means included in the control unit 12 can input information from information wiring or wirelessly. For example, the input means included in the control unit 12 can input information from an electric power company, power sale information, Web information, solution server information, and the like via information wiring or wireless. Based on this information, the control unit 12 can control the movement of the photoelectric conversion unit 2 or the first and second electrolysis electrodes 8 and 7. Further, based on this information, the control unit 12 can control the circuit that the switching unit 10 switches.
Further, the control unit 12 can include a program that serves as the tilt angle limiting means 21.
 図18は、制御部12の制御フローチャートの一例である。このフローチャートのように水素製造装置45を制御することにより、光電変換部2への入射光量を増やすことができ、また、光電変換部2が発電する電力を有効に利用することができる。 FIG. 18 is an example of a control flowchart of the control unit 12. By controlling the hydrogen production apparatus 45 as in this flowchart, the amount of light incident on the photoelectric conversion unit 2 can be increased, and the electric power generated by the photoelectric conversion unit 2 can be used effectively.
第2実施形態の水素製造装置の構成
 図19は本発明の一実施形態の水素製造装置の第1形態における概略平面図であり、図20(a)は、本発明の一実施形態の水素製造装置の第2形態における概略平面図であり、(b)はその概略側面図である。図21は、本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略平面図であり、図2は、図21の点線A-Aにおける水素製造モジュールの概略断面図である。図22、29は、本発明の一実施形態の水素製造装置に含まれる水素製造モジュールの概略裏面図である。
 図23は、本発明の一実施形態の水素製造装置の第1形態における概略平面図であり、図24は、図23に示した水素製造装置の概略上面図である。また、図25は、本発明の一実施形態の水素製造装置の第1形態における概略平面図であり、図26(a)は、本発明の一実施形態の水素製造装置の第2形態における概略平面図であり、図26(b)はその概略側面図である。また、図27は、本発明の一実施形態の水素製造装置の第1形態における概略平面図であり、図28(a)は、本発明の一実施形態の水素製造装置の第2形態における概略側面図であり、図28(b)はその概略上面図である。
Configuration of Hydrogen Production Apparatus of Second Embodiment FIG. 19 is a schematic plan view of the first form of the hydrogen production apparatus of one embodiment of the present invention, and FIG. 20A is a hydrogen production of one embodiment of the present invention. It is a schematic plan view in the 2nd form of an apparatus, (b) is the schematic side view. FIG. 21 is a schematic plan view of a hydrogen production module included in the hydrogen production apparatus of one embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of the hydrogen production module taken along a dotted line AA in FIG. 22 and 29 are schematic back views of the hydrogen production module included in the hydrogen production apparatus according to the embodiment of the present invention.
FIG. 23 is a schematic plan view of the first embodiment of the hydrogen production apparatus according to one embodiment of the present invention, and FIG. 24 is a schematic top view of the hydrogen production apparatus shown in FIG. FIG. 25 is a schematic plan view of the first embodiment of the hydrogen production apparatus according to one embodiment of the present invention, and FIG. 26A is a schematic view of the second embodiment of the hydrogen production apparatus according to one embodiment of the present invention. It is a top view and FIG.26 (b) is the schematic side view. FIG. 27 is a schematic plan view of the first embodiment of the hydrogen production apparatus according to one embodiment of the present invention. FIG. 28A is a schematic diagram of the second embodiment of the hydrogen production apparatus according to one embodiment of the present invention. FIG. 28B is a side view, and FIG. 28B is a schematic top view thereof.
 第2実施形態の水素製造装置121は、第1形態から第2形態に、または第2形態から第1形態に変形可能な水素製造装置121であって、変形可能に設けられた少なくとも1つの水素製造モジュール6を備え、水素製造モジュール6は、受光面および裏面を有する光電変換部2と、光電変換部2の裏面側に設けられた第1電解用電極8および第2電解用電極7とを備え、第1および第2電解用電極8、7は、光電変換部2の受光面に光が入射し第1および第2電解用電極8、7が電解液と接触するとき、光電変換部2が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体を発生させることができるように設けられ、第1気体および第2気体のうち、一方は水素であり他方は酸素であり、第1形態は、水素製造装置121に含まれる前記受光面の略全体が太陽光を直接受光可能な形態であり、第2形態は、1つの水素製造モジュール6に含まれる光電変換部2の受光面側又は裏面側に、同じ又は異なる水素製造モジュール6に含まれる光電変換部2が位置する形態であることを特徴とする。
 以下、第2実施形態の水素製造装置について説明する。
The hydrogen production apparatus 121 of the second embodiment is a hydrogen production apparatus 121 that can be deformed from the first form to the second form or from the second form to the first form, and is at least one hydrogen that can be deformed. The hydrogen production module 6 includes a photoelectric conversion unit 2 having a light receiving surface and a back surface, and a first electrolysis electrode 8 and a second electrolysis electrode 7 provided on the back surface side of the photoelectric conversion unit 2. The first and second electrolysis electrodes 8 and 7 are arranged such that when light enters the light receiving surface of the photoelectric conversion unit 2 and the first and second electrolysis electrodes 8 and 7 come into contact with the electrolytic solution, the photoelectric conversion unit 2 Is provided so that the electrolysis solution can be electrolyzed using the electromotive force generated by receiving light to generate the first gas and the second gas, respectively, and one of the first gas and the second gas is hydrogen. And the other is oxygen, the first form The substantially entire light receiving surface included in the hydrogen production apparatus 121 is capable of directly receiving sunlight, and the second mode is the light receiving surface side or the back surface of the photoelectric conversion unit 2 included in one hydrogen production module 6. It is the form which the photoelectric conversion part 2 contained in the same or different hydrogen production module 6 is located in the side.
Hereinafter, the hydrogen production apparatus according to the second embodiment will be described.
1.水素製造装置の形態
 本実施形態の水素製造装置121は、第1形態から第2形態に、または第2形態から第1形態に変形可能である。
 第1形態とは、水素製造装置121がとり得る形態であり、水素製造装置121に含まれる光電変換部2の受光面の略全体が太陽光を直接受光可能な形態である。また、第1形態は、水素製造装置121に含まれる光電変換部2の受光面の60、70、80、90、95または99%以上が太陽光を直接受光可能な形態であってもよく、この直接受光可能な範囲は上記数値のうち2つの数値の間であってもよい。
 第1形態は、第2形態に比べ、水素製造モジュール6が横向きに広がった形態であってもよく、水素製造モジュール6が縦向きに広がった形態であってもよく、斜めやランダムに広がった形態であってもよい。
 第2形態とは、水素製造装置121がとり得る形態であり、1つの水素製造モジュール6に含まれる光電変換部2の受光面側又は裏面側に、同じ又は異なる水素製造モジュール6に含まれる前記光電変換部が位置する形態である。
 また、第2形態は、1つの水素製造モジュール6に含まれる光電変換部2の受光面の一部と、同じ又は異なる水素製造モジュール6に含まれる光電変換部2の受光面の一部とが重なる形態であってもよい。第2形態は、水素製造モジュール6に含まれる光電変換部2の受光面のうち50、60、70、80、90または99%以上が同じ又は異なる水素製造モジュール6に含まれる光電変換部2の受光面と重なった形態であってもよく、この重なる範囲は、上記数値のうち2つの数値の間であってもよい。また、水素製造装置121に含まれる光電変換部2の受光面のうち50、60、70、80、90または99%以上が同じ又は異なる水素製造モジュール6に含まれる光電変換部2の受光面と重なった形態であってもよく、この重なる範囲は、上記数値のうち2つの数値の間であってもよい。
 また、水素製造装置121は、モーターなどの動力部により自動的に第1形態と第2形態との間の変形をできるように設けてもよく、手動で第1形態と第2形態との間の変形をできるように設けてもよい。また、水素製造装置121を自動的に変形できるように設ける場合、時間帯や天気、季節などに応じて自動的に変形するように制御部により制御されてもよい。
 本実施形態の水素製造装置121は、1つの水素製造モジュール6からなってもよく、複数の水素製造モジュール6からなってもよい。例えば、図19、20、23~26のように複数の水素製造モジュール6からなってもよく、図27、28のように1つの水素製造モジュール6からなってもよい。なお、変形可能に設けられた少なくとも1つの水素製造モジュールとは、1つの水素製造モジュール6が変形するようなものであってもよく、複数の水素製造モジュール6がその位置関係を変化させることにより変形するようなものであってもよい。
1. Form of Hydrogen Production Apparatus The hydrogen production apparatus 121 of the present embodiment can be modified from the first form to the second form, or from the second form to the first form.
A 1st form is a form which the hydrogen production apparatus 121 can take, and the whole light receiving surface of the photoelectric conversion part 2 contained in the hydrogen production apparatus 121 is a form which can receive sunlight directly. Further, the first form may be a form in which 60, 70, 80, 90, 95 or 99% or more of the light receiving surface of the photoelectric conversion unit 2 included in the hydrogen production apparatus 121 can directly receive sunlight, This directly receivable range may be between two of the above numerical values.
The first form may be a form in which the hydrogen production module 6 is spread laterally or may be a form in which the hydrogen production module 6 is spread vertically, as compared with the second form, and is spread obliquely or randomly. Form may be sufficient.
The second form is a form that the hydrogen production apparatus 121 can take, and is included in the same or different hydrogen production module 6 on the light receiving surface side or the back side of the photoelectric conversion unit 2 contained in one hydrogen production module 6. In this configuration, the photoelectric conversion unit is located.
In the second embodiment, a part of the light receiving surface of the photoelectric conversion unit 2 included in one hydrogen production module 6 and a part of the light receiving surface of the photoelectric conversion unit 2 included in the same or different hydrogen production module 6 are provided. The form which overlaps may be sufficient. In the second embodiment, 50, 60, 70, 80, 90, or 99% or more of the light receiving surface of the photoelectric conversion unit 2 included in the hydrogen production module 6 is the same or different in the photoelectric conversion unit 2 included in the hydrogen production module 6. The light-receiving surface may be overlapped, and the overlapping range may be between two numerical values among the above numerical values. Further, among the light receiving surfaces of the photoelectric conversion unit 2 included in the hydrogen production apparatus 121, 50, 60, 70, 80, 90, or 99% or more of the light reception surface of the photoelectric conversion unit 2 included in the same or different hydrogen production module 6 The form which overlapped may be sufficient and this overlapping range may be between two numerical values among the said numerical values.
Further, the hydrogen production apparatus 121 may be provided so that it can be automatically deformed between the first form and the second form by a power unit such as a motor, and manually between the first form and the second form. It may be provided so that it can be modified. Further, when the hydrogen production apparatus 121 is provided so as to be automatically deformable, it may be controlled by the control unit so as to be automatically deformed according to the time zone, weather, season, or the like.
The hydrogen production apparatus 121 of the present embodiment may consist of one hydrogen production module 6 or a plurality of hydrogen production modules 6. For example, it may consist of a plurality of hydrogen production modules 6 as shown in FIGS. 19, 20, 23 to 26, or may consist of one hydrogen production module 6 as shown in FIGS. The at least one hydrogen production module provided in a deformable manner may be one in which one hydrogen production module 6 is deformed, and a plurality of hydrogen production modules 6 change their positional relationship. It may be something that deforms.
 まず、本実施形態の水素製造装置121が複数の水素製造モジュール6からなる場合について説明する。この場合、各水素製造モジュール6は、連結部112により連結することができる。連結部112は、本実施形態の水素製造装置121が第1形態と第2形態の両方の形態をとることを可能とする部材である。
 連結部112は、例えば、図19、20に示したヒンジ部材126のような回転軸を含む構造を有するものであってもよく、例えば、図23、24に示した案内溝55とレール部54のような少なくとも1つの水素製造モジュール6が案内溝に沿って摺動する構造を有するものであってもよく、例えば、図25、26に示した磁石部57のような磁石を有するものであってもよい。また、連結部112は、例えば、図19、20、23、25、26に示した第1気体排出管122、第2気体排出管123または給水管124のような各水素製造モジュールを連結する配管であってもよい。
First, the case where the hydrogen production apparatus 121 of the present embodiment includes a plurality of hydrogen production modules 6 will be described. In this case, each hydrogen production module 6 can be connected by the connecting portion 112. The connecting part 112 is a member that enables the hydrogen production apparatus 121 of the present embodiment to take both the first form and the second form.
The connecting portion 112 may have a structure including a rotating shaft such as the hinge member 126 shown in FIGS. 19 and 20, for example, the guide groove 55 and the rail portion 54 shown in FIGS. The at least one hydrogen production module 6 may have a structure that slides along the guide groove. For example, the hydrogen production module 6 may have a magnet such as the magnet portion 57 shown in FIGS. May be. Moreover, the connection part 112 is piping which connects each hydrogen production modules like the 1st gas exhaust pipe 122, the 2nd gas exhaust pipe 123, or the water supply pipe 124 which were shown in FIG. It may be.
 連結部112が図19、20に示したヒンジ部材126のように回転軸を有する構造を有する場合、ヒンジ部材126(連結部112)を隣接する2つの水素製造モジュール6間に設け、複数の水素製造モジュール6を一列に連結することができる。このように連結した場合、ヒンジ部材126を回転軸として、隣接する2つの水素製造モジュール6が開閉するように変形させることができる。また、ヒンジ部材126の折れ曲がる向きが交互に変わるようにヒンジ部材126を設けることにより、水素製造装置121を蛇腹折りに折りたたむことができる。例えば、図19のようにヒンジ部材126により連結された各水素製造モジュール6a~dが広がるようにヒンジ部材126を変形させることにより、水素製造装置121を水素製造装置121に含まれる光電変換部2の受光面の略全体が太陽光を直接受光可能な第1形態とすることができる。このことにより、水素製造モジュール6a~dの光電変換部2の受光面に入射する光量を多くすることができ、水素生成量を多くすることができる。 When the connecting portion 112 has a structure having a rotation axis like the hinge member 126 shown in FIGS. 19 and 20, the hinge member 126 (connecting portion 112) is provided between two adjacent hydrogen production modules 6, and a plurality of hydrogen The production modules 6 can be connected in a row. When connected in this manner, the two adjacent hydrogen production modules 6 can be opened and closed with the hinge member 126 as a rotation axis. Further, by providing the hinge members 126 so that the bending directions of the hinge members 126 are alternately changed, the hydrogen production apparatus 121 can be folded into a bellows fold. For example, as shown in FIG. 19, by transforming the hinge member 126 so that the respective hydrogen production modules 6a to 6d connected by the hinge member 126 spread, the hydrogen production apparatus 121 is converted into the photoelectric conversion unit 2 included in the hydrogen production apparatus 121. It is possible to adopt a first configuration in which substantially the entire light receiving surface of the first light can directly receive sunlight. As a result, the amount of light incident on the light receiving surface of the photoelectric conversion unit 2 of the hydrogen production modules 6a to 6d can be increased, and the amount of hydrogen generation can be increased.
 また、図19に示したような第1形態の水素製造装置121を変形させ、図20に示したような第1水素製造モジュール6aに含まれる光電変換部2の受光面と、第2水素製造モジュール6bに含まれる光電変換部2の受光面とが重なった形態とすることができる。また、このことにより、水素製造装置121を、水素製造モジュール6aに含まれる光電変換部2の裏面側に、水素製造モジュール6b、6c、6dに含まれる光電変換部2が位置する第2形態とすることができる。具体的には、図19に示したヒンジ部材126により連結された水素製造モジュール6a~dを蛇腹折りに折りたたむことにより、図20に示したような第2形態に変形させることができる。このことにより、水素製造装置121をコンパクト化することができ、水素製造装置121の設置面積を狭くすることができる。なお、図19に示した第1形態において各水素製造モジュール6を連結していた第1気体排出管122、第2気体排出管123、または給水管124は、各水素製造モジュール6と分離可能に設けることができる。このことにより、第1気体排出管122、第2気体排出管123、または給水管124を各水素製造モジュール6から分離して、水素製造装置121を第1形態から第2形態に変形させることができる。なお、この場合、水素製造モジュール6の第1気体排出口20、第2気体排出口19、給水口18または給水管124に液漏れ防止機構125を設けることができる。このことにより、第1気体排出管122、第2気体排出管123、または給水管124を水素製造モジュール6から分離しても電解液が液漏れすることを防止することができる。液漏れ防止機構125は、例えば、スプリングと弁体を含む逆流防止弁からなってもよく、ビー玉逆止弁からなってもよい。 Further, the first embodiment of the hydrogen production apparatus 121 as shown in FIG. 19 is modified so that the light receiving surface of the photoelectric conversion unit 2 included in the first hydrogen production module 6a as shown in FIG. It can be set as the form with which the light-receiving surface of the photoelectric conversion part 2 contained in the module 6b overlapped. In addition, as a result, the hydrogen production apparatus 121 is configured so that the photoelectric conversion unit 2 included in the hydrogen production modules 6b, 6c, and 6d is positioned on the back side of the photoelectric conversion unit 2 included in the hydrogen production module 6a. can do. Specifically, the hydrogen production modules 6a to 6d connected by the hinge member 126 shown in FIG. 19 can be folded into a bellows fold to be deformed into the second form as shown in FIG. As a result, the hydrogen production apparatus 121 can be made compact, and the installation area of the hydrogen production apparatus 121 can be reduced. In addition, the 1st gas exhaust pipe 122, the 2nd gas exhaust pipe 123, or the water supply pipe 124 which connected each hydrogen production module 6 in the 1st form shown in FIG. Can be provided. By this, the 1st gas exhaust pipe 122, the 2nd gas exhaust pipe 123, or the water supply pipe 124 is isolate | separated from each hydrogen production module 6, and the hydrogen production apparatus 121 can be changed from a 1st form to a 2nd form. it can. In this case, the liquid leakage prevention mechanism 125 can be provided in the first gas discharge port 20, the second gas discharge port 19, the water supply port 18, or the water supply pipe 124 of the hydrogen production module 6. Thus, even if the first gas discharge pipe 122, the second gas discharge pipe 123, or the water supply pipe 124 is separated from the hydrogen production module 6, it is possible to prevent the electrolyte from leaking. The liquid leakage prevention mechanism 125 may be composed of, for example, a backflow prevention valve including a spring and a valve body, or may be composed of a marble check valve.
 また、第1気体排出管122、第2気体排出管123、または給水管124は、水素製造装置121が第1形態の場合と第2形態の場合とで異なる形態の部材からなってもよい。このことにより、例えば、図19に示した第1気体排出管122、第2気体排出管123、または給水管124と、図19に示した第1気体排出管122、第2気体排出管123、または給水管124のように、各水素製造モジュール6と連結する部分の幅が第1形態と第2形態とで異なる部材を用いることができる。このことにより、第2形態において、水素を回収するための配管距離を短くすることができ、第2形態の水素製造装置121で外部電力を用いて電解液を電気分解し水素を発生させる場合、効率よく水素を回収することができる。
 また、第1気体排出管122、第2気体排出管123、または給水管124は、伸縮性や柔軟性を有する管からなってもよい。これらの管が伸縮性または柔軟性を有することにより、これらの管を水素製造モジュール6から取り外すことなく水素製造装置121を第1形態から第2形態へまたは第2形態から第1形態へ変形させることができる。また、これらの管が伸縮性を有することにより、水素製造装置121を第2形態としたとき、配管距離を短くすることができる。伸縮性および柔軟性を有する管は、例えば、蛇腹管を用いることができ、柔軟性を有する管は、例えば、ゴム製のチューブを用いることができる。
 なお、以上の第1気体排出管122、第2気体排出管123、または給水管124についての説明は、矛盾が生じない限り後述する他の例についても当てはまる。
Moreover, the 1st gas exhaust pipe 122, the 2nd gas exhaust pipe 123, or the water supply pipe 124 may consist of a member with a different form by the case where the hydrogen production apparatus 121 is a 1st form, and the case of a 2nd form. Accordingly, for example, the first gas exhaust pipe 122, the second gas exhaust pipe 123, or the water supply pipe 124 shown in FIG. 19, and the first gas exhaust pipe 122, the second gas exhaust pipe 123 shown in FIG. Or like the water supply pipe | tube 124, the member from which the width | variety of the part connected with each hydrogen production module 6 differs by a 1st form and a 2nd form can be used. Thus, in the second embodiment, the piping distance for recovering hydrogen can be shortened, and when hydrogen is generated by electrolyzing the electrolyte using external power in the hydrogen production apparatus 121 of the second embodiment, Hydrogen can be recovered efficiently.
Moreover, the 1st gas exhaust pipe 122, the 2nd gas exhaust pipe 123, or the water supply pipe 124 may consist of a pipe | tube which has a stretching property or a softness | flexibility. Since these tubes have elasticity or flexibility, the hydrogen production apparatus 121 is deformed from the first configuration to the second configuration or from the second configuration to the first configuration without removing these tubes from the hydrogen production module 6. be able to. Moreover, when these pipe | tubes have a stretching property, when the hydrogen production apparatus 121 is made into a 2nd form, piping distance can be shortened. As the tube having elasticity and flexibility, for example, a bellows tube can be used, and as the tube having flexibility, for example, a rubber tube can be used.
Note that the description of the first gas exhaust pipe 122, the second gas exhaust pipe 123, or the water supply pipe 124 described above also applies to other examples described later as long as no contradiction occurs.
 連結部112が案内溝55を有し、少なくとも1つの水素製造モジュール6が案内溝55に沿って摺動する場合、より具体的には、図23、24に示したように水素製造装置121の裏面側に案内溝55が設けられ、水素製造装置121の受光面側にレール部54が設けられている場合、水素製造モジュール6b、c、dが案内溝55に沿って摺動するように連結部112を設けることができ、連結部112により各水素製造モジュールを一列に連結することができる。このように各水素製造モジュールを連結した場合、水素製造モジュール6b、c、dが隣接する水素製造モジュール6の裏面に設けられた案内溝55に沿って摺動することにより水素製造装置121は、第1形態から第2形態に変形することができ、第2形態から第1形態に変形することができる。 When the connecting portion 112 has the guide groove 55 and the at least one hydrogen production module 6 slides along the guide groove 55, more specifically, as shown in FIGS. When the guide groove 55 is provided on the back surface side and the rail portion 54 is provided on the light receiving surface side of the hydrogen production apparatus 121, the hydrogen production modules 6b, c, d are connected so as to slide along the guide groove 55. The part 112 can be provided, and the hydrogen production modules can be connected in a row by the connecting part 112. When the hydrogen production modules are connected in this way, the hydrogen production modules 121 b, c, d slide along the guide groove 55 provided on the back surface of the adjacent hydrogen production module 6, so that the hydrogen production apparatus 121 is The first form can be changed to the second form, and the second form can be changed to the first form.
 例えば、図23、24のように、水素製造装置121を、水素製造モジュール6aに設けられた案内溝55の端と水素製造モジュール6bに設けられたレール部54の端部とが嵌合し、水素製造モジュール6bの案内溝55の端と水素製造モジュール6cのレール部54の端部とが嵌合し、水素製造モジュール6cの案内溝55の端と水素製造モジュール6dのレール部54の端部とが嵌合する形態とすることにより、水素製造装置121を、水素製造装置121に含まれる光電変換部2の受光面の略全体が太陽光を直接受光可能な第1形態にすることができる。このことにより、水素製造モジュール6a~dの光電変換部2の受光面に入射する光量を多くすることができ、水素生成量を多くすることができる。 For example, as shown in FIGS. 23 and 24, the hydrogen production apparatus 121 is fitted with the end of the guide groove 55 provided in the hydrogen production module 6a and the end of the rail portion 54 provided in the hydrogen production module 6b. The end of the guide groove 55 of the hydrogen production module 6b and the end of the rail portion 54 of the hydrogen production module 6c are fitted, and the end of the guide groove 55 of the hydrogen production module 6c and the end of the rail portion 54 of the hydrogen production module 6d are fitted. By adopting a configuration in which the hydrogen producing apparatus 121 is fitted, the hydrogen producing apparatus 121 can be changed to a first form in which substantially the entire light receiving surface of the photoelectric conversion unit 2 included in the hydrogen producing apparatus 121 can directly receive sunlight. . As a result, the amount of light incident on the light receiving surface of the photoelectric conversion unit 2 of the hydrogen production modules 6a to 6d can be increased, and the amount of hydrogen generation can be increased.
 図23、24に示したような第1形態の水素製造装置121に含まれる水素製造モジュール6b、c、dを隣接する水素製造モジュールの裏面に設けられた案内溝に沿うように摺動させることにより、水素製造モジュール6a~dが積重させることができ、水素製造装置121を、水素製造モジュール6aに含まれる光電変換部2の裏面側に、水素製造モジュール6b、6c、6dに含まれる光電変換部2が位置する第2形態とすることができる。また、水素製造装置121を、水素製造モジュール6bの光電変換部2の受光面と、水素製造モジュール6aの光電変換部2の受光面とが重なる形態に変形させることができる。このことにより、水素製造装置121をコンパクト化することができ、水素製造装置121の設置面積を狭くすることができる。 23. Slide the hydrogen production modules 6b, c, d included in the hydrogen production apparatus 121 of the first embodiment as shown in FIGS. 23 and 24 along the guide groove provided on the back surface of the adjacent hydrogen production module. Thus, the hydrogen production modules 6a to 6d can be stacked, and the hydrogen production apparatus 121 can be placed on the back side of the photoelectric conversion unit 2 included in the hydrogen production module 6a on the photoelectric contained in the hydrogen production modules 6b, 6c, and 6d. It can be set as the 2nd form in which the conversion part 2 is located. Moreover, the hydrogen production apparatus 121 can be deformed so that the light receiving surface of the photoelectric conversion unit 2 of the hydrogen production module 6b and the light reception surface of the photoelectric conversion unit 2 of the hydrogen production module 6a overlap. As a result, the hydrogen production apparatus 121 can be made compact, and the installation area of the hydrogen production apparatus 121 can be reduced.
 図23、24に示した例では、案内溝を水素製造モジュール6の裏面に設けたが、案内溝は、水素製造モジュール6の受光面に設けられてもよく、上部に設けられてもよく、下部に設けられてもよい。また、案内溝は、水素製造モジュール6と別部材の連結部112に設けられてもよく、例えば、戸や障子を立てる溝のような形態であってもよい。 In the example shown in FIGS. 23 and 24, the guide groove is provided on the back surface of the hydrogen production module 6. However, the guide groove may be provided on the light receiving surface of the hydrogen production module 6, or may be provided on the upper part. It may be provided in the lower part. In addition, the guide groove may be provided in the connecting portion 112 which is a separate member from the hydrogen production module 6, and may be in the form of a groove for standing a door or a shoji, for example.
 連結部112は、各水素製造モジュールを分離可能となるようなものであってもよい。このような連結部112としては、例えば、磁石の磁力により各水素製造装置モジュールを連結するものであってもよく、はめ込み式構造により各水素製造モジュールを連結するものであってもよく、おねじ構造とめねじ構造の組み合わせにより各水素製造モジュールを連結するものであってもよい。また、第1気体排出管122、第2気体排出管123または給水管124が水素製造モジュール6から分離可能な場合、連結部112は、第1気体排出管122、第2気体排出管123または給水管124であってもよい。
 また、この場合、水素製造装置121が第1形態をとる場合と、第2形態をとる場合とで、異なる連結部112により各水素製造モジュール6が連結されてもよい。
 以下に、各水素製造モジュール6が磁石を含む連結部により連結された例について説明するが、連結部112がはめ込み式構造を有する場合、ねじ構造を有する場合、配管からなる場合などについても、連結部112を置き換えた説明が矛盾のない限り当てはまる。
The connection part 112 may be such that each hydrogen production module can be separated. As such a connection part 112, for example, each hydrogen production apparatus module may be connected by the magnetic force of a magnet, or each hydrogen production module may be connected by a built-in structure. Each hydrogen production module may be connected by a combination of a structure and a female screw structure. When the first gas exhaust pipe 122, the second gas exhaust pipe 123, or the water supply pipe 124 can be separated from the hydrogen production module 6, the connecting portion 112 is connected to the first gas exhaust pipe 122, the second gas exhaust pipe 123, or the water supply. It may be a tube 124.
Further, in this case, the hydrogen production modules 6 may be connected by different connection parts 112 depending on whether the hydrogen production apparatus 121 takes the first form or the second form.
Hereinafter, an example in which each hydrogen production module 6 is connected by a connecting part including a magnet will be described. However, the connecting part 112 has a fitting structure, a screw structure, a pipe structure, and the like. This is the case as long as there is no contradiction when the description of the part 112 is replaced.
 図25のように、連結部112が磁石部57からなり、各水素製造モジュール6がその側面に磁石部57(第1連結部112)を有する場合、各水素製造モジュール6の側面間を磁石部57で連結することができる。このことにより、水素製造装置121を、水素製造装置121に含まれる光電変換部2の受光面の略全体が太陽光を直接受光可能な第1形態にすることができる。このことにより、水素製造モジュール6a~dの光電変換部2の受光面に入射する光量を多くすることができ、水素生成量を多くすることができる。
 図25のような水素製造装置121は、例えば、第1気体排出管122、第2気体排出管123および給水管124を各水素製造モジュール6から取り外し、各磁石部57により連結した各水素製造モジュール6を分離することにより、各水素製造モジュール6を分離することができる。
As shown in FIG. 25, when the connecting portion 112 includes the magnet portion 57 and each hydrogen production module 6 has the magnet portion 57 (first connecting portion 112) on its side surface, the magnet portion is provided between the side surfaces of each hydrogen production module 6. 57 can be connected. Thereby, the hydrogen production apparatus 121 can be in a first form in which substantially the entire light receiving surface of the photoelectric conversion unit 2 included in the hydrogen production apparatus 121 can directly receive sunlight. As a result, the amount of light incident on the light receiving surface of the photoelectric conversion unit 2 of the hydrogen production modules 6a to 6d can be increased, and the amount of hydrogen generation can be increased.
25, for example, each hydrogen production module in which the first gas exhaust pipe 122, the second gas exhaust pipe 123, and the water supply pipe 124 are removed from each hydrogen production module 6 and connected by each magnet unit 57. By separating 6, each hydrogen production module 6 can be separated.
 図26のように、連結部112が磁石部57からなり、各水素製造モジュール6がその受光面側および裏面側に磁石部57(第2連結部112)を有する場合、隣接する2つの水素製造モジュール6の受光面と裏面とを連結することができる。このことにより、水素製造装置121を、水素製造モジュール6aに含まれる光電変換部2の裏面側に、水素製造モジュール6b、6c、6dに含まれる光電変換部2が位置する第2形態とすることができる。また、水素製造装置121を、水素製造モジュール6bに含まれる光電変換部2の受光面と、水素製造モジュール6aに含まれる光電変換部2の受光面とが重なる形態とすることができる。
 このことにより、水素製造装置121をコンパクト化することができ、水素製造装置121の設置面積を狭くすることができる。
 なお、以上に挙げた、水素製造装置121が複数の水素製造モジュール6からなる場合の例は、それぞれ組み合わせることもできる。また、第2形態は、複数の水素製造装置121を連結部により組み合わせた形態であってもよい。このことにより、水素製造装置121の設置場所をより有効に利用することができる。
As shown in FIG. 26, when the connecting portion 112 is composed of the magnet portion 57 and each hydrogen production module 6 has the magnet portion 57 (second connecting portion 112) on the light receiving surface side and the back surface side, two adjacent hydrogen producing units are produced. The light receiving surface and the back surface of the module 6 can be connected. Accordingly, the hydrogen production apparatus 121 is set to the second configuration in which the photoelectric conversion unit 2 included in the hydrogen production modules 6b, 6c, and 6d is positioned on the back side of the photoelectric conversion unit 2 included in the hydrogen production module 6a. Can do. Moreover, the hydrogen production apparatus 121 can be configured such that the light receiving surface of the photoelectric conversion unit 2 included in the hydrogen production module 6b and the light reception surface of the photoelectric conversion unit 2 included in the hydrogen production module 6a overlap.
As a result, the hydrogen production apparatus 121 can be made compact, and the installation area of the hydrogen production apparatus 121 can be reduced.
In addition, the example in case the hydrogen production apparatus 121 mentioned above consists of the several hydrogen production module 6 can also be combined, respectively. Moreover, the 2nd form may be the form which combined the some hydrogen production apparatus 121 by the connection part. Thereby, the installation place of the hydrogen production apparatus 121 can be used more effectively.
 次に、本実施形態の水素製造装置121が1つの水素製造モジュール6からなる場合について説明する。この場合、例えば、水素製造モジュール6は、柔軟性を有するシート状とすることができる。このような水素製造モジュール6は、例えば、柔軟性を有するシートの上に光電変換部2ならびに第1および第2電解用電極を形成することにより製造することができる。
 水素製造装置121に含まれる水素製造モジュール6が柔軟性を有するシート状であるとき、水素製造モジュール6が変形することにより、水素製造装置121は、第1形態から第2形態に、または第2形態から第1形態に変形することができる。また、柔軟性を有するシート状の水素製造モジュール6は、巻き上げ可能であってもよい。
 例えば、柔軟性を有し巻き上げ可能なシート状の水素製造モジュール6を広げた形態とすることにより、水素製造装置121を、水素製造装置121に含まれる光電変換部2の受光面の略全体が太陽光を直接受光可能な第1形態とすることができる。
 例えば、図27のように水素製造モジュール6を広げることにより、水素製造装置121を第1形態とすることができる。このことにより、水素製造モジュール6の光電変換部2の受光面に入射する光量を多くすることができ、水素生成量を多くすることができる。
Next, the case where the hydrogen production apparatus 121 of this embodiment consists of one hydrogen production module 6 will be described. In this case, for example, the hydrogen production module 6 can be formed into a flexible sheet. Such a hydrogen production module 6 can be produced, for example, by forming the photoelectric conversion unit 2 and the first and second electrolysis electrodes on a flexible sheet.
When the hydrogen production module 6 included in the hydrogen production apparatus 121 has a flexible sheet shape, the hydrogen production module 6 is deformed, so that the hydrogen production apparatus 121 changes from the first form to the second form or the second form. It can deform | transform from a form to a 1st form. The flexible sheet-like hydrogen production module 6 may be rollable.
For example, by forming a sheet-like hydrogen production module 6 that is flexible and can be rolled up, the hydrogen production apparatus 121 is configured so that substantially the entire light receiving surface of the photoelectric conversion unit 2 included in the hydrogen production apparatus 121 is included. It can be set as the 1st form which can receive sunlight directly.
For example, by expanding the hydrogen production module 6 as shown in FIG. 27, the hydrogen production apparatus 121 can be in the first configuration. As a result, the amount of light incident on the light receiving surface of the photoelectric conversion unit 2 of the hydrogen production module 6 can be increased, and the amount of hydrogen generated can be increased.
 また、例えば、柔軟性を有し巻き上げ可能なシート状の水素製造モジュール6を巻き上げた形態とすることにより、水素製造装置121を、水素製造モジュール6に含まれる光電変換部2の一部の受光面側又は裏面側に、同じ水素製造モジュール6に含まれる他の一部の光電変換部2が位置する第2形態とすることができる。また、このことにより、水素製造装置121を、水素製造モジュール6に含まれる光電変換部2の受光面の一部と、同じ水素製造モジュール6に含まれる光電変換部2の受光面の他の一部とが重なる形態とすることができる。
 例えば、図28のように水素製造モジュール6を巻き上げた形態とすることにより、水素製造装置121を第2形態とすることができる。このことにより、水素製造装置121をコンパクト化することができ、水素製造装置121の設置面積を狭くすることができる。なお、第2形態における水素製造装置の形態は、水素製造モジュール6を巻き上げた形態に限定されず、例えば、水素製造モジュール6を蛇腹折りにしたような形態であってもよく、他の形状に折りたたんだような形態であってもよい。
 なお、この水素製造装置121が1つの水素製造モジュール6からなる場合の例は、前述の水素製造装置121が複数の水素製造モジュール6からなる場合の例と組み合わせることもできる。また、第2形態は、複数の水素製造装置121を連結部により組み合わせた形態であってもよい。このことにより、水素製造装置121の設置場所をより有効に利用することができる。
In addition, for example, by forming a flexible sheet-like hydrogen production module 6 that can be rolled up, the hydrogen production apparatus 121 can receive light from a part of the photoelectric conversion unit 2 included in the hydrogen production module 6. It can be set as the 2nd form by which the other one part photoelectric conversion part 2 contained in the same hydrogen production module 6 is located in the surface side or a back surface side. In addition, as a result, the hydrogen production apparatus 121 is connected to a part of the light receiving surface of the photoelectric conversion unit 2 included in the hydrogen production module 6 and the other light receiving surface of the photoelectric conversion unit 2 included in the same hydrogen production module 6. It can be set as the form which a part overlaps.
For example, when the hydrogen production module 6 is rolled up as shown in FIG. 28, the hydrogen production apparatus 121 can be in the second form. As a result, the hydrogen production apparatus 121 can be made compact, and the installation area of the hydrogen production apparatus 121 can be reduced. In addition, the form of the hydrogen production apparatus in the second form is not limited to the form in which the hydrogen production module 6 is wound up. For example, the form in which the hydrogen production module 6 is folded in a bellows may be used. It may be a folded form.
Note that the example in which the hydrogen production apparatus 121 includes one hydrogen production module 6 may be combined with the example in which the hydrogen production apparatus 121 includes a plurality of hydrogen production modules 6. Moreover, the 2nd form may be the form which combined the some hydrogen production apparatus 121 by the connection part. Thereby, the installation place of the hydrogen production apparatus 121 can be used more effectively.
2.水素製造モジュール
 水素製造モジュール6は、受光面およびその裏面を有する光電変換部2と、光電変換部2の裏面側に設けられた第1電解用電極8および第2電解用電極7とを備え、光電変換部2の受光面に光が入射し第1および第2電解用電極8、7が電解液と接触するとき、第1および第2電解用電極8、7は、光電変換部2が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体を発生させることができるように設けられる。
 水素製造装置121は、1つの水素製造モジュール6を備えてもよく、複数の水素製造モジュール6を備えてもよい。
 図5~12は、本発明の一実施形態の水素製造装置に含まれる水素製造モジュール6の概略断面図であり、図21の点線A-Aにおける水素製造モジュールの概略断面図に対応する。
2. Hydrogen production module The hydrogen production module 6 includes a photoelectric conversion unit 2 having a light receiving surface and a back surface thereof, a first electrolysis electrode 8 and a second electrolysis electrode 7 provided on the back surface side of the photoelectric conversion unit 2, When light is incident on the light receiving surface of the photoelectric conversion unit 2 and the first and second electrolysis electrodes 8 and 7 are in contact with the electrolytic solution, the first and second electrolysis electrodes 8 and 7 are received by the photoelectric conversion unit 2. The electrolytic solution is electrolyzed using the electromotive force generated by the generation, and the first gas and the second gas can be generated, respectively.
The hydrogen production apparatus 121 may include one hydrogen production module 6 or a plurality of hydrogen production modules 6.
5 to 12 are schematic cross-sectional views of the hydrogen production module 6 included in the hydrogen production apparatus according to the embodiment of the present invention, and correspond to the schematic cross-sectional view of the hydrogen production module taken along the dotted line AA in FIG.
3.透光性基板
 透光性基板1は、本実施形態の水素製造モジュール6が備えてもよい。また、光電変換部2は、受光面が透光性基板1側となるように透光性基板1の上に設けられてもよい。なお、光電変換部2が、半導体基板などからなり一定の強度を有する場合、透光性基板1は省略することが可能である。また、光電変換部2が樹脂フィルムなど柔軟性を有する材料の上に形成可能な場合、透光性基板1は省略することができる。光電変換部2を柔軟性を有する材料の上に形成した場合、水素製造モジュール6を柔軟性を有するシート状に形成することが可能となり、水素製造モジュール6を変形させることにより、水素製造装置121を第1形態から第2形態へまたは第2形態から第1形態へ変形させることが可能となる。
3. Translucent substrate The translucent substrate 1 may be provided in the hydrogen production module 6 of the present embodiment. Moreover, the photoelectric conversion part 2 may be provided on the translucent board | substrate 1 so that a light-receiving surface may become the translucent board | substrate 1 side. In addition, when the photoelectric conversion part 2 consists of semiconductor substrates etc. and has fixed intensity | strength, the translucent board | substrate 1 can be abbreviate | omitted. Moreover, when the photoelectric conversion part 2 can be formed on a flexible material such as a resin film, the translucent substrate 1 can be omitted. When the photoelectric conversion unit 2 is formed on a flexible material, the hydrogen production module 6 can be formed into a flexible sheet, and the hydrogen production module 121 is deformed to deform the hydrogen production device 121. Can be changed from the first form to the second form or from the second form to the first form.
 また、太陽光を光電変換部2の受光面で受光するため、透光性基板1は、透明であり光透過率が高いことが好ましいが、光電変換部2へ効率的な光の入射が可能な構造であれば、光透過率に制限はない。
 光透過率が高い基板材料として、例えば、ソーダガラス、石英ガラス、パイレックス(登録商標)、合成石英板等の透明なリジッド材、あるいは透明樹脂板やフィルム材等が好適に用いられる。化学的および物理的安定性を備える点より、ガラス基板を用いることが好ましい。
 透光性基板1の光電変換部2側の表面には、入射した光が光電変換部2の表面で有効に乱反射されるように、微細な凹凸構造に形成することができる。この微細な凹凸構造は、例えば反応性イオンエッチング(RIE)処理もしくはブラスト処理等の公知の方法により形成することが可能である。
In addition, since the sunlight is received by the light receiving surface of the photoelectric conversion unit 2, the translucent substrate 1 is preferably transparent and has high light transmittance. However, it is possible to efficiently enter light into the photoelectric conversion unit 2. If it is a simple structure, there is no restriction | limiting in the light transmittance.
As a substrate material having a high light transmittance, for example, a transparent rigid material such as soda glass, quartz glass, Pyrex (registered trademark), or a synthetic quartz plate, or a transparent resin plate or film material is preferably used. In view of chemical and physical stability, it is preferable to use a glass substrate.
On the surface of the translucent substrate 1 on the photoelectric conversion unit 2 side, a fine uneven structure can be formed so that incident light is effectively irregularly reflected on the surface of the photoelectric conversion unit 2. This fine concavo-convex structure can be formed by a known method such as reactive ion etching (RIE) treatment or blast treatment.
4.第1電極
 第1電極4は、透光性基板1の上に設けることができ、光電変換部2の受光面と接触するように設けることができる。また、第1電極4は透光性を有してもよい。また、第1電極4は、透光性基板1を省略可能の場合、光電変換部2の受光面に直接設けられてもよい。第1電極4は、第2電解用電極7と電気的に接続することができる。第1電極4を設けることにより、光電変換部2の受光面と第2電解用電極7との間に流れる電流を大きくすることができる。また、光電変換部2が図11、12のように光電変換部2の裏面の第1区域と第2区域との間に起電力が生じるものである場合、第1電極4は不要である。
 第1電極4は、図2、6、9のように第1導電部9を介して第2電解用電極7と電気的に接続してもよく、図8のように第2電解用電極7と接触してもよい。また、第1電極4は、図5、7、10のような場合、切換部10および配線52を介して第2電解用電極7と電気的に接続することができる。
 第1電極4は、例えば、ITO、SnO2などの透明導電膜からなってもよく、Ag、Auなどの金属のフィンガー電極からなってもよい。
4). 1st electrode The 1st electrode 4 can be provided on the translucent board | substrate 1, and can be provided so that the light-receiving surface of the photoelectric conversion part 2 may be contacted. Moreover, the 1st electrode 4 may have translucency. Moreover, the 1st electrode 4 may be directly provided in the light-receiving surface of the photoelectric conversion part 2, when the translucent board | substrate 1 can be abbreviate | omitted. The first electrode 4 can be electrically connected to the second electrolysis electrode 7. By providing the first electrode 4, the current flowing between the light receiving surface of the photoelectric conversion unit 2 and the second electrolysis electrode 7 can be increased. Moreover, when the photoelectric conversion part 2 produces an electromotive force between the 1st area and the 2nd area of the back surface of the photoelectric conversion part 2 like FIG. 11, 12, the 1st electrode 4 is unnecessary.
The first electrode 4 may be electrically connected to the second electrolysis electrode 7 via the first conductive portion 9 as shown in FIGS. 2, 6 and 9, and the second electrolysis electrode 7 as shown in FIG. You may contact with. Moreover, the 1st electrode 4 can be electrically connected with the electrode 7 for 2nd electrolysis via the switch part 10 and the wiring 52 in the case like FIG.
The first electrode 4 may be made of a transparent conductive film such as ITO or SnO 2, or may be made of a metal finger electrode such as Ag or Au.
 以下に第1電極4を透明導電膜とした場合について説明する。
 透明導電膜は、光電変換部2の受光面と第2電解用電極7とのコンタクトを取りやすくするために用いることができる。
 一般に透明電極として使用されているものを用いることが可能である。具体的にはIn-Zn-O(IZO)、In-Sn-O(ITO)、ZnO-Al、Zn-Sn-O、SnO2等を挙げることができる。なお本透明導電膜は、太陽光の光線透過率が85%以上、中でも90%以上、特に92%以上であることが好ましい。このことにより光電変換部2が光を効率的に吸収することができるためである。
 透明導電膜の作成方法としては公知の方法を用いることができ、スパッタリング、真空蒸着、ゾルゲル法、クラスタービーム蒸着法、PLD(Pulse Laser Deposition)法などが挙げられる。
A case where the first electrode 4 is a transparent conductive film will be described below.
The transparent conductive film can be used to facilitate contact between the light receiving surface of the photoelectric conversion unit 2 and the second electrolysis electrode 7.
What is generally used as a transparent electrode can be used. Specifically, In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, SnO 2 and the like can be given. The transparent conductive film preferably has a sunlight transmittance of 85% or more, particularly 90% or more, and particularly 92% or more. This is because the photoelectric conversion unit 2 can absorb light efficiently.
As a method for producing the transparent conductive film, a known method can be used, and examples thereof include sputtering, vacuum deposition, sol-gel method, cluster beam deposition method, and PLD (Pulse Laser Deposition) method.
5.光電変換部
 光電変換部2は、受光面およびその裏面を有し、光電変換部2の裏面側に第1電解用電極8と第2電解用電極7が設けられる。なお、受光面とは、光電変換するための光を受光する面であり、裏面とは、受光面の裏の面である。なお、水素製造装置121の受光面とは、光電変換部2の受光面と同じ側の水素製造装置121の面であり、水素製造装置121の裏面とは、光電変換部2の裏面と同じ側の水素製造装置121の面である。
 また、光電変換部2は、第1電極4が設けられた透光性基板1の上に受光面を下にして設けることができる。光電変換部2は、例えば、図2、5~10のように受光面と裏面との間に起電力が生じるものであってもよく、図11、12のように光電変換部2の裏面の第1区域と第2区域との間に起電力が生じるものであってもよい。図11、12のような光電変換部2は、n型半導体領域37とp型半導体領域36を形成した半導体基板などにより形成することができる。
 光電変換部2の形は、特に限定されないが、例えば、方形状とすることができる。
 光電変換部2は、入射光により電荷分離することができ、起電力が生じるものであれば、特に限定されないが、例えば、シリコン系半導体を用いた光電変換部、化合物半導体を用いた光電変換部、色素増感剤を利用した光電変換部、有機薄膜を用いた光電変換部などである。
5. Photoelectric Conversion Unit The photoelectric conversion unit 2 has a light receiving surface and a back surface thereof, and a first electrolysis electrode 8 and a second electrolysis electrode 7 are provided on the back surface side of the photoelectric conversion unit 2. The light receiving surface is a surface that receives light for photoelectric conversion, and the back surface is the back surface of the light receiving surface. The light receiving surface of the hydrogen production device 121 is the surface of the hydrogen production device 121 on the same side as the light reception surface of the photoelectric conversion unit 2, and the back surface of the hydrogen production device 121 is the same side as the back surface of the photoelectric conversion unit 2. This is a surface of the hydrogen production apparatus 121 of FIG.
Moreover, the photoelectric conversion part 2 can be provided on the translucent substrate 1 provided with the first electrode 4 with the light receiving surface facing down. For example, the photoelectric conversion unit 2 may generate an electromotive force between the light receiving surface and the back surface as shown in FIGS. 2 and 5 to 10. An electromotive force may be generated between the first area and the second area. The photoelectric conversion part 2 as shown in FIGS. 11 and 12 can be formed by a semiconductor substrate on which the n-type semiconductor region 37 and the p-type semiconductor region 36 are formed.
Although the shape of the photoelectric conversion part 2 is not specifically limited, For example, it can be set as a square shape.
The photoelectric conversion unit 2 is not particularly limited as long as it can separate charges by incident light and generates an electromotive force. For example, the photoelectric conversion unit using a silicon-based semiconductor or the photoelectric conversion unit using a compound semiconductor A photoelectric conversion part using a dye sensitizer, a photoelectric conversion part using an organic thin film, and the like.
 第1気体および第2気体のうちどちらか一方が水素であり、他方が酸素の場合、光電変換部2は、光を受光することにより、第1電解用電極8および第2電解用電極7において水素と酸素が発生するために必要な起電力が生じる材料を使用する必要がある。第1電解用電極8と第2電解用電極7の電位差は、水分解のための理論電圧(1.23V)より大きくする必要があり、そのためには光電変換部2で十分大きな電位差を生み出す必要がある。そのため光電変換部2は、pn接合など起電力を生じさせる部分を二接合以上直列に接続することが好ましい。例えば、図9、12のように並べて設けられた光電変換層を第3導電部33により直列接続した構造を有することができる。 When either one of the first gas and the second gas is hydrogen and the other is oxygen, the photoelectric conversion unit 2 receives light in the first electrolysis electrode 8 and the second electrolysis electrode 7. It is necessary to use a material that generates an electromotive force necessary for generating hydrogen and oxygen. The potential difference between the first electrolysis electrode 8 and the second electrolysis electrode 7 needs to be larger than the theoretical voltage (1.23 V) for water decomposition, and for this purpose, a sufficiently large potential difference needs to be generated in the photoelectric conversion unit 2. There is. Therefore, it is preferable that the photoelectric conversion unit 2 connects two or more junctions in series such as a pn junction to generate an electromotive force. For example, the photoelectric conversion layers arranged side by side as shown in FIGS. 9 and 12 can be connected in series by the third conductive portion 33.
 光電変換を行う材料は、シリコン系半導体、化合物半導体、有機材料をベースとしたものなどが挙げられるが、いずれの光電変換材料も使用することが可能である。また、起電力を大きくするために、これらの光電変換材料を積層することが可能である。積層する場合には同一材料で多接合構造を形成することが可能であるが、光学的バンドギャップの異なる複数の光電変換層を積層し、各々の光電変換層の低感度波長領域を相互に補完することにより、広い波長領域にわたり入射光を効率よく吸収することが可能となる。これらの複数の光電変換層は、それぞれ異なるバンドギャップを有することが好ましい。このような構成によれば、光電変換部2で生じる起電力をより大きくすることができ、電解液をより効率的に電気分解することができる。 Examples of materials that perform photoelectric conversion include silicon-based semiconductors, compound semiconductors, and materials based on organic materials, and any photoelectric conversion material can be used. In order to increase the electromotive force, these photoelectric conversion materials can be stacked. In the case of stacking, it is possible to form a multi-junction structure with the same material, but stacking multiple photoelectric conversion layers with different optical band gaps and complementing the low sensitivity wavelength region of each photoelectric conversion layer mutually By doing so, incident light can be efficiently absorbed over a wide wavelength region. The plurality of photoelectric conversion layers preferably have different band gaps. According to such a configuration, the electromotive force generated in the photoelectric conversion unit 2 can be increased, and the electrolytic solution can be electrolyzed more efficiently.
 また、光電変換層間の直列接続特性の改善や、光電変換部2で発生する光電流の整合のために、層間に透明導電膜等の導電体を介在させることが可能である。これにより光電変換部2の劣化を抑制することが可能となる。
 光電変換部2の例を以下に具体的に説明する。また、光電変換部2は、これらを組み合わせたものでもよい。また、以下の光電変換部2の例は、矛盾しない限り光電変換層とすることもできる。
Moreover, it is possible to interpose a conductor such as a transparent conductive film between the layers in order to improve the serial connection characteristics between the photoelectric conversion layers and to match the photocurrent generated in the photoelectric conversion unit 2. Thereby, it becomes possible to suppress deterioration of the photoelectric conversion unit 2.
An example of the photoelectric conversion unit 2 will be specifically described below. The photoelectric conversion unit 2 may be a combination of these. Moreover, as long as there is no contradiction, the example of the following photoelectric conversion parts 2 can also be made into a photoelectric converting layer.
5-1.シリコン系半導体を用いた光電変換部
 シリコン系半導体を用いた光電変換部2は、例えば、単結晶型、多結晶型、アモルファス型、球状シリコン型、及びこれらを組み合わせたもの等が挙げられる。
 第1実施形態の水素製造装置についての「3-1.シリコン系半導体を用いた光電変換部」の欄の説明は、第2実施形態の水素製造装置に含まれる光電変換部2が「シリコン系半導体を用いた光電変換部」である場合にも矛盾がない限り当てはまる。
5-1. Photoelectric conversion part using a silicon-based semiconductor Examples of the photoelectric conversion part 2 using a silicon-based semiconductor include a single crystal type, a polycrystalline type, an amorphous type, a spherical silicon type, and combinations thereof.
The description in the column of “3-1. Photoelectric conversion unit using silicon-based semiconductor” for the hydrogen production apparatus of the first embodiment is the same as that of the photoelectric conversion unit 2 included in the hydrogen production apparatus of the second embodiment. This also applies to the case of “a photoelectric conversion unit using a semiconductor” as long as there is no contradiction.
5-2.化合物半導体を用いた光電変換部
 化合物半導体を用いた光電変換部は、例えば、III-V族元素で構成されるGaP、GaAsやInP、InAs、II-VI族元素で構成されるCdTe/CdS、I-III-VI族で構成されるCIGS(Copper Indium Gallium DiSelenide)などを用いpn接合を形成したものが挙げられる。
 第1実施形態の水素製造装置についての「3-2.化合物半導体を用いた光電変換部」の欄の説明は、第2実施形態の水素製造装置に含まれる光電変換部2が「化合物半導体を用いた光電変換部」である場合にも矛盾がない限り当てはまる。
5-2. Photoelectric conversion part using a compound semiconductor The photoelectric conversion part using a compound semiconductor is, for example, GaP, GaAs, InP, InAs, or IId-VI elements composed of group III-V elements, CdTe / CdS, Examples thereof include those in which a pn junction is formed using CIGS (Copper Indium Gallium DiSelenide) composed of the I-III-VI group.
The description in the column “3-2. Photoelectric conversion unit using compound semiconductor” for the hydrogen production apparatus of the first embodiment is the same as that of the photoelectric conversion unit 2 included in the hydrogen production apparatus of the second embodiment. The same applies to the case of “the photoelectric conversion unit used” as long as there is no contradiction.
5-3.色素増感剤を利用した光電変換部
 色素増感剤を利用した光電変換部は、例えば、主に多孔質半導体、色素増感剤、電解質、溶媒などにより構成される。
 第1実施形態の水素製造装置についての「3-3.色素増感剤を利用した光電変換部」の欄の説明は、第2実施形態の水素製造装置に含まれる光電変換部2が「色素増感剤を利用した光電変換部」である場合にも矛盾がない限り当てはまる。
5-3. Photoelectric conversion part using a dye sensitizer The photoelectric conversion part using a dye sensitizer is mainly composed of, for example, a porous semiconductor, a dye sensitizer, an electrolyte, a solvent, and the like.
The description of the column “3-3. Photoelectric conversion unit using a dye sensitizer” for the hydrogen production apparatus of the first embodiment is the same as that of the photoelectric conversion unit 2 included in the hydrogen production apparatus of the second embodiment. This also applies to the case of a “photoelectric conversion unit using a sensitizer” as long as there is no contradiction.
5-4.有機薄膜を用いた光電変換部
 有機薄膜を用いた光電変換部2は、電子供与性および電子受容性を持つ有機半導体材料で構成される電子正孔輸送層、または電子受容性を有する電子輸送層と電子供与性を有する正孔輸送層とが積層されたものであってもよい。
 第1実施形態の水素製造装置についての「3-4.有機薄膜を用いた光電変換部」の欄の説明は、第2実施形態の水素製造装置に含まれる光電変換部2が「有機薄膜を用いた光電変換部」である場合にも矛盾がない限り当てはまる。
5-4. Photoelectric conversion part using organic thin film Photoelectric conversion part 2 using an organic thin film is an electron hole transport layer composed of an organic semiconductor material having electron donating properties and electron accepting properties, or an electron transport layer having electron accepting properties. And a hole transport layer having an electron donating property may be laminated.
The description in the column of “3-4. Photoelectric Conversion Unit Using Organic Thin Film” for the hydrogen production apparatus of the first embodiment is the same as that of the photoelectric conversion unit 2 included in the hydrogen production apparatus of the second embodiment. The same applies to the case of “the photoelectric conversion unit used” as long as there is no contradiction.
 上記にて示した光電変換部2においては、第一義的には太陽光を受光させ光電変換を行うことを想定しているが、用途により蛍光灯や白熱灯、LED、特定の熱源から発せられる光等の人工光を照射し光電変換を行うことも可能である。 In the photoelectric conversion unit 2 shown above, it is assumed that sunlight is received and photoelectric conversion is primarily performed. However, it is emitted from a fluorescent lamp, an incandescent lamp, an LED, or a specific heat source depending on the application. It is also possible to perform photoelectric conversion by irradiating artificial light such as light.
6.第2電極
 第2電極5は、光電変換部2の裏面上に設けることができる。また、第2電極5は、光電変換部2の裏面と第1電解用電極8との間および光電変換部2の裏面と絶縁部11との間に設けることもできる。また、第2電極5は、第1電解用電極8と電気的に接続することができる。第2電極5を設けることにより、光電変換部2の裏面と第1電解用電極8との間のオーミックロスを低減することができる。また、第2電極5は、第1電解用電極8と接触してもよい。また、第2電極5は、切換部10および配線52を介して第1電解用電極8と電気的に接続してもよい。
 また、第2電極5は、電解液に対する耐食性および電解液に対する遮液性を有することが好ましい。このことにより、電解液による光電変換部2の腐食を防止することができる。
 第2電極5は、導電性を有すれば特に限定されないが、例えば、金属薄膜であり、また、例えば、Al、Ag、Auなどの薄膜である。これらは、例えば、スパッタリングなどにより形成することができる。また、例えば、In-Zn-O(IZO)、In-Sn-O(ITO)、ZnO-Al、Zn-Sn-O、SnO2等の透明導電膜である。
6). Second Electrode The second electrode 5 can be provided on the back surface of the photoelectric conversion unit 2. The second electrode 5 can also be provided between the back surface of the photoelectric conversion unit 2 and the first electrolysis electrode 8 and between the back surface of the photoelectric conversion unit 2 and the insulating unit 11. The second electrode 5 can be electrically connected to the first electrolysis electrode 8. By providing the second electrode 5, it is possible to reduce ohmic cross between the back surface of the photoelectric conversion unit 2 and the first electrolysis electrode 8. The second electrode 5 may be in contact with the first electrolysis electrode 8. Further, the second electrode 5 may be electrically connected to the first electrolysis electrode 8 via the switching unit 10 and the wiring 52.
Moreover, it is preferable that the 2nd electrode 5 has the corrosion resistance with respect to electrolyte solution, and the liquid shielding property with respect to electrolyte solution. Thereby, corrosion of the photoelectric conversion part 2 by electrolyte solution can be prevented.
Although it will not specifically limit if the 2nd electrode 5 has electroconductivity, For example, it is a metal thin film, for example, is thin films, such as Al, Ag, Au. These can be formed by, for example, sputtering. Further, for example, a transparent conductive film such as In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, and SnO 2 is used.
7.第1導電部
 第1導電部9は、第1電極4と第2電解用電極7とにそれぞれ接触するように設けることができる。第1導電部9を設けることにより、容易に光電変換部2の受光面に接触した第1電極4と第2電解用電極7とを電気的に接続することができる。
 また、第1導電部9は、図2、6のように光電変換部2を貫通するコンタクトホールに設けられてもよい。このことにより、光電変換部2の受光面と第2電解用電極7との間の電流経路を短くすることができ、より効率的に第1気体および第2気体を発生させることができる。また、第1導電部9が設けられたコンタクトホールは、1つまたは複数でもよく、円形の断面を有してもよい。
 また、第1導電部9は、図9のように光電変換部2の側面を覆うように設けられてもよい。
7. First Conductive Part The first conductive part 9 can be provided in contact with the first electrode 4 and the second electrolysis electrode 7. By providing the first conductive portion 9, the first electrode 4 and the second electrolysis electrode 7 that are in contact with the light receiving surface of the photoelectric conversion portion 2 can be easily electrically connected.
Moreover, the 1st electroconductive part 9 may be provided in the contact hole which penetrates the photoelectric conversion part 2 like FIG. Thus, the current path between the light receiving surface of the photoelectric conversion unit 2 and the second electrolysis electrode 7 can be shortened, and the first gas and the second gas can be generated more efficiently. Further, the contact hole provided with the first conductive portion 9 may be one or plural, and may have a circular cross section.
Moreover, the 1st electroconductive part 9 may be provided so that the side surface of the photoelectric conversion part 2 may be covered like FIG.
 第1導電部9の材料は、導電性を有しているものであれば特に制限されない。導電性粒子を含有するペースト、例えばカーボンペースト、Agペースト等をスクリーン印刷法、インクジェット法等で塗布し乾燥もしくは焼成する方法や、原料ガスを用いたCVD法等により製膜する方法、PVD法、蒸着法、スパッタ法、ゾルゲル法、電気化学的な酸化還元反応を利用した方法等が挙げられる。 The material of the first conductive portion 9 is not particularly limited as long as it has conductivity. A paste containing conductive particles, for example, a carbon paste, an Ag paste or the like applied by screen printing, an inkjet method, etc., dried or baked, a method of forming a film by a CVD method using a raw material gas, a PVD method, Examples thereof include a vapor deposition method, a sputtering method, a sol-gel method, and a method using an electrochemical redox reaction.
8.絶縁部
 絶縁部11は、リーク電流の発生を防止するために設けることができる。例えば、図2、6のように第1導電部9を光電変換部2を貫通するコンタクトホール内に設ける場合、コンタクトホールの側壁に絶縁部11を設けることができる。
 また、絶縁部11は、例えば、図2、5~9のように第2電解用電極7と光電変換部2の裏面との間に設けることができる。このことにより、第2電解用電極7と光電変換部2の裏面との間でリーク電流が生じるのを防止することができる。また、光電変換部2が図11、12のように受光することにより光電変換部2の裏面の第1区域と第2区域との間に電位差を生じるものである場合、絶縁部11は、第1電解用電極8と光電変換部2の裏面との間、および第2電解用電極7と光電変換部2の裏面との間に設けられ、絶縁部11は、第1区域上および第2区域上に開口を有してもよい。このことにより、光電変換部2が受光することにより形成される電子およびホールを効率よく分離することができ、光電変換効率をより高くすることができる。
 また、絶縁部11は、電解液に対する耐食性および電解液に対する遮液性を有することが好ましい。このことにより、リーク電流の発生を防止することができ、また、電解液による光電変換部2の腐食を防止することができる。
8). Insulating part The insulating part 11 can be provided in order to prevent the occurrence of leakage current. For example, when providing the 1st electroconductive part 9 in the contact hole which penetrates the photoelectric conversion part 2 like FIG.2, 6, the insulating part 11 can be provided in the side wall of a contact hole.
Further, the insulating part 11 can be provided between the second electrolysis electrode 7 and the back surface of the photoelectric conversion part 2 as shown in FIGS. This can prevent a leak current from being generated between the second electrolysis electrode 7 and the back surface of the photoelectric conversion unit 2. In addition, when the photoelectric conversion unit 2 receives light as shown in FIGS. 11 and 12 to generate a potential difference between the first and second areas on the back surface of the photoelectric conversion unit 2, the insulating unit 11 1 between the electrode 8 for electrolysis and the back surface of the photoelectric conversion unit 2, and between the second electrode for electrolysis 7 and the back surface of the photoelectric conversion unit 2, and the insulating unit 11 is provided on the first area and the second area. You may have an opening on it. Thereby, the electrons and holes formed by the photoelectric conversion unit 2 receiving light can be efficiently separated, and the photoelectric conversion efficiency can be further increased.
Moreover, it is preferable that the insulation part 11 has the corrosion resistance with respect to electrolyte solution, and the liquid shielding property with respect to electrolyte solution. Thereby, generation | occurrence | production of a leakage current can be prevented and corrosion of the photoelectric conversion part 2 by electrolyte solution can be prevented.
 絶縁部11としては、有機材料、無機材料を問わず用いることが可能であり、例えば、ポリアミド、ポリイミド、ポリアリーレン、芳香族ビニル化合物、フッ素系重合体、アクリル系重合体、ビニルアミド系重合体等の有機ポリマー、無機系材料としては、Al23等の金属酸化物、多孔質性シリカ膜等のSiO2や、フッ素添加シリコン酸化膜(FSG)、SiOC、HSQ(Hydrogen Silsesquioxane)膜、SiNx、シラノール(Si(OH)4)をアルコール等の溶媒に溶かし塗布・加熱することにより製膜する方法を用いることが可能である。 The insulating part 11 can be used regardless of an organic material or an inorganic material. For example, polyamide, polyimide, polyarylene, aromatic vinyl compound, fluorine polymer, acrylic polymer, vinylamide polymer, etc. Examples of organic polymers and inorganic materials include metal oxides such as Al 2 O 3 , SiO 2 such as porous silica films, fluorine-added silicon oxide films (FSG), SiOC, HSQ (Hydrogen Silsesquioxane) films, SiN x , It is possible to use a method of forming a film by dissolving silanol (Si (OH) 4 ) in a solvent such as alcohol and applying and heating.
 絶縁部11を形成する方法としては、絶縁性材料を含有するペーストをスクリーン印刷法、インクジェット法、スピンコーティング法等で塗布し乾燥もしくは焼成する方法や、原料ガスを用いたCVD法等により製膜する方法、PVD法、蒸着法、スパッタ法、ゾルゲル法を利用した方法等が挙げられる。 As a method for forming the insulating portion 11, a film containing a paste containing an insulating material is applied by a screen printing method, an ink jet method, a spin coating method, etc., dried or baked, or a CVD method using a source gas is used. And a method using a PVD method, a vapor deposition method, a sputtering method, a sol-gel method, and the like.
9.第2導電部、第3導電部
 第2導電部29は、絶縁部11と第2電解用電極7との間、または、絶縁部11と第1電解用電極8との間に設けることができる。第2導電部29を設けることにより、光電変換部2が受光することにより生じた起電力を効率よく第1電解用電極8または第2電解用電極7に出力することができ、オーミックロスを低減することができる。第2導電部29は、例えば、図9、11、12に示すように設けることができる。
 第2導電部29は、電解液に対する耐食性および電解液に対する遮液性を有することが好ましい。このことにより、オーミック抵抗の上昇を防止することができ、また、電解液による光電変換部2の腐食を防止することができる。
 第3導電部33は、図9、12のように光電変換層を直列接続するように設けることができる。
9. Second Conductive Part, Third Conductive Part The second conductive part 29 can be provided between the insulating part 11 and the second electrolysis electrode 7 or between the insulating part 11 and the first electrolysis electrode 8. . By providing the second conductive portion 29, an electromotive force generated by receiving light by the photoelectric conversion portion 2 can be efficiently output to the first electrolysis electrode 8 or the second electrolysis electrode 7 and the ohmic cross is reduced. can do. The second conductive portion 29 can be provided, for example, as shown in FIGS.
The second conductive portion 29 preferably has corrosion resistance to the electrolytic solution and liquid shielding properties to the electrolytic solution. Thereby, an increase in ohmic resistance can be prevented, and corrosion of the photoelectric conversion unit 2 due to the electrolytic solution can be prevented.
The 3rd electroconductive part 33 can be provided so that a photoelectric converting layer may be connected in series like FIG.
 第2導電部29または第3導電部33は、導電性を有すれば特に限定されないが、例えば、金属薄膜であり、また、例えば、Al、Ag、Auなどの薄膜である。これらは、例えば、スパッタリングなどにより形成することができる。また、例えば、In-Zn-O(IZO)、In-Sn-O(ITO)、ZnO-Al、Zn-Sn-O、SnO2等の透明導電膜である。 The second conductive portion 29 or the third conductive portion 33 is not particularly limited as long as it has conductivity. For example, the second conductive portion 29 or the third conductive portion 33 is a metal thin film, for example, a thin film such as Al, Ag, or Au. These can be formed by, for example, sputtering. Further, for example, a transparent conductive film such as In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, and SnO 2 is used.
10.第1電解用電極、第2電解用電極
 第1電解用電極8および第2電解用電極7は、光電変換部2の裏面側にそれぞれ設けられる。図2のように、第1および第2電解用電極8、7は、光電変換部2の裏面上に設けられてもよい。また、第1電解用電極8および第2電解用電極7は、光電変換部2の裏面側の面とその裏面であり電解液に接触可能な面とをそれぞれ有することができる。このことにより、第1電解用電極8および第2電解用電極7は光電変換部2に入射する光を遮ることはない。
 また、第1電解用電極8および第2電解用電極7は、電解液と接触するとき、光電変換部2が受光することにより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体を発生させることができるように設けられる。例えば、光電変換部2が受光することにより受光面とその裏面との間に起電力が生じる場合、図2、8、9のように、第1電解用電極8は、光電変換部2の裏面と電気的に接続することができ、第2電解用電極7は、光電変換部2の受光面と電気的に接続することができる。また、光電変換部2が受光することによりその裏面の第1区域と第2区域との間に起電力が生じる場合、図11、12のように第1電解用電極8は第1区域と第2区域のうちどちらか一方と電気的に接続し、第2電解用電極7は第1区域と第2区域のうち他方と電気的に接続することができる。
10. First Electrolysis Electrode, Second Electrolysis Electrode The first electrolysis electrode 8 and the second electrolysis electrode 7 are provided on the back side of the photoelectric conversion unit 2, respectively. As shown in FIG. 2, the first and second electrolysis electrodes 8 and 7 may be provided on the back surface of the photoelectric conversion unit 2. Moreover, the electrode 8 for 1st electrolysis and the electrode 7 for 2nd electrolysis can each have the surface of the back surface side of the photoelectric conversion part 2, and the surface which is the back surface and can contact electrolyte solution. Thus, the first electrolysis electrode 8 and the second electrolysis electrode 7 do not block light incident on the photoelectric conversion unit 2.
In addition, when the first electrolysis electrode 8 and the second electrolysis electrode 7 are in contact with the electrolytic solution, the electrolysis solution is electrolyzed by using the electromotive force generated by the photoelectric conversion unit 2 receiving light, and the first gas is obtained. And the second gas can be generated. For example, when an electromotive force is generated between the light receiving surface and the back surface when the photoelectric conversion unit 2 receives light, the first electrolysis electrode 8 is connected to the back surface of the photoelectric conversion unit 2 as shown in FIGS. The second electrolysis electrode 7 can be electrically connected to the light receiving surface of the photoelectric conversion unit 2. In addition, when an electromotive force is generated between the first area and the second area on the back surface when the photoelectric conversion unit 2 receives light, the first electrolysis electrode 8 is connected to the first area and the second area as shown in FIGS. The second electrolysis electrode 7 can be electrically connected to the other of the first area and the second area.
 図6、7のように第1電解用電極8が光電変換部2の裏面または第2電極5と接触していない場合、第1電解用電極8は、切換部10を介して光電変換部2の裏面と電気的に接続することができる。また、図5、7、10のような場合、第2電解用電極7は、光電変換部2の受光面と切換部10を介して電気的に接続することができる。 6 and 7, when the first electrolysis electrode 8 is not in contact with the back surface of the photoelectric conversion unit 2 or the second electrode 5, the first electrolysis electrode 8 is connected to the photoelectric conversion unit 2 via the switching unit 10. It can be electrically connected to the back surface of. 5, 7, and 10, the second electrolysis electrode 7 can be electrically connected to the light receiving surface of the photoelectric conversion unit 2 via the switching unit 10.
 第1電解用電極8および第2電解用電極7は、少なくとも一方が複数であってもよく、それぞれ帯状の電解液に接触可能な面を有してもよく、その面の長辺が隣接するように交互に設けられてもよい。このように、第1電解用電極8および第2電解用電極7を設けることにより、第1気体が発生する反応が生じる部分と、第2気体が発生する反応が生じる部分との間の距離を短くすることができ、電解液中で生じるイオン濃度の不均衡をより少なくすることができる。また、電解液に接触可能な面を帯状とすることにより、第1気体および第2気体を容易に回収することができる。例えば、第1電解用電極8および第2電解用電極7は、図29のように設けることができる。
 第1電解用電極8および第2電解用電極7は、電解液に対する耐食性および電解液に対する遮液性を有することが好ましい。このことにより、安定して第1気体および第2気体を発生させることができ、また、電解液による光電変換部2の腐食を防止することができる。例えば、第1電解用電極8および第2電解用電極7に電解液に対する耐食性を有する金属板または金属膜を用いることができる。
At least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 may be plural, and each may have a surface that can contact the strip-shaped electrolyte solution, and the long sides of the surfaces are adjacent to each other. Alternatively, they may be provided alternately. In this way, by providing the first electrolysis electrode 8 and the second electrolysis electrode 7, the distance between the portion where the reaction generating the first gas occurs and the portion where the reaction generating the second gas occurs is increased. It can be shortened, and the ion concentration imbalance generated in the electrolyte can be reduced. Moreover, the 1st gas and 2nd gas can be collect | recovered easily by making the surface which can contact electrolyte solution into strip | belt shape. For example, the first electrolysis electrode 8 and the second electrolysis electrode 7 can be provided as shown in FIG.
The first electrolysis electrode 8 and the second electrolysis electrode 7 preferably have corrosion resistance to the electrolytic solution and liquid shielding properties to the electrolytic solution. Thereby, the first gas and the second gas can be stably generated, and corrosion of the photoelectric conversion unit 2 due to the electrolytic solution can be prevented. For example, a metal plate or a metal film having corrosion resistance against the electrolytic solution can be used for the first electrolysis electrode 8 and the second electrolysis electrode 7.
 また、第1電解用電極8および第2電解用電極7のうち少なくとも一方は、光電変換部2の受光面の面積より大きい触媒表面積を有することが好ましい。このような構成によれば、光電変換部2で生じる起電力により、より効率的に第1気体または第2気体を発生させることができる。
 また、第1電解用電極8および第2電解用電極7のうち少なくとも一方は、触媒が担持された多孔質の導電体であることが好ましい。このような構成によれば、第1電解用電極8および第2電解用電極7のうち少なくとも一方の触媒表面積を大きくすることができ、より効率的に第1気体または第2気体を発生させることができる。また、多孔質の導電体を用いることにより、光電変換部2と触媒との間の電流が流れることによる電位の変化を抑制することができ、より効率的に第1気体または第2気体を発生させることができる。また、この場合、第1電解用電極8または第2電解用電極7を電解液に対する遮液性を有する部分と多孔質からなる部分の二層構造とすることもできる。
 第1電解用電極8および第2電解用電極7のうち、一方は水素発生部であってもよく、他方が酸素発生部であってもよい。この場合、第1気体および第2気体のうち一方は水素であり、他方は酸素である。
Moreover, it is preferable that at least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 has a catalyst surface area larger than the area of the light receiving surface of the photoelectric conversion unit 2. According to such a configuration, the first gas or the second gas can be generated more efficiently by the electromotive force generated in the photoelectric conversion unit 2.
In addition, at least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 is preferably a porous conductor carrying a catalyst. According to such a configuration, the surface area of at least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 can be increased, and the first gas or the second gas can be generated more efficiently. Can do. Further, by using a porous conductor, it is possible to suppress a change in potential due to a current flowing between the photoelectric conversion unit 2 and the catalyst, and to generate the first gas or the second gas more efficiently. Can be made. In this case, the first electrolysis electrode 8 or the second electrolysis electrode 7 can also have a two-layer structure of a portion having a liquid shielding property against the electrolytic solution and a porous portion.
One of the first electrolysis electrode 8 and the second electrolysis electrode 7 may be a hydrogen generation unit, and the other may be an oxygen generation unit. In this case, one of the first gas and the second gas is hydrogen, and the other is oxygen.
11.水素発生部
 水素発生部は、電解液からH2を発生させる部分であり、第1電解用電極8および第2電解用電極7のうちどちらか一方である。
 第1実施形態の水素製造装置についての「11.水素発生部」の欄の説明は、第2実施形態の水素製造装置に含まれる「水素発生部」についても矛盾がない限り当てはまる。
11. Hydrogen generating part The hydrogen generating part is a part for generating H 2 from the electrolytic solution, and is one of the first electrolysis electrode 8 and the second electrolysis electrode 7.
The description in the column “11. Hydrogen generation unit” for the hydrogen production apparatus of the first embodiment applies to the “hydrogen generation unit” included in the hydrogen production apparatus of the second embodiment as long as there is no contradiction.
12.酸素発生部
 酸素発生部は、電解液からO2を発生させる部分であり、第1電解用電極8および第2電解用電極7のうちどちらか一方である。
 第1実施形態の水素製造装置についての「12.酸素発生部」の欄の説明は、第2実施形態の水素製造装置に含まれる「酸素発生部」についても矛盾がない限り当てはまる。
12 Oxygen generating portion The oxygen generating portion is a portion that generates O 2 from the electrolytic solution, and is one of the first electrolysis electrode 8 and the second electrolysis electrode 7.
The description in the column “12. Oxygen generation section” for the hydrogen production apparatus according to the first embodiment applies to the “oxygen generation section” included in the hydrogen production apparatus according to the second embodiment as long as there is no contradiction.
 水素発生触媒および酸素発生触媒の単独の触媒活性が小さい場合、助触媒を用いることも可能である。例えば、Ni,Cr,Rh,Mo,Co,Seの酸化物あるいは化合物などが挙げられる。
 なお、水素発生触媒、酸素発生触媒の担持方法は、導電体もしくは半導体に直接塗布する方法や、真空蒸着法、スパッタ法、イオンプレーティング法等のPVD法、CVD法等の乾式塗工法、電析法など、材料により適宜その手法を変え作製ことが可能である。光電変換部と触媒の間に適宜導電物質を担持することが可能である。また水素発生および酸素発生のための触媒活性が十分でない場合、金属やカーボン等の多孔質体や繊維状物質、ナノ粒子等に担持することにより反応表面積を大きくし、水素及び酸素発生速度を向上させることが可能である。
When the catalytic activity of the hydrogen generating catalyst and the oxygen generating catalyst alone is small, a promoter can be used. Examples thereof include oxides or compounds of Ni, Cr, Rh, Mo, Co, and Se.
The method for supporting the hydrogen generating catalyst and the oxygen generating catalyst can be applied directly to a conductor or semiconductor, PVD methods such as vacuum deposition, sputtering, and ion plating, dry coating methods such as CVD, The method can be appropriately changed depending on the material such as an analysis method. A conductive material can be appropriately supported between the photoelectric conversion unit and the catalyst. Also, when the catalytic activity for hydrogen generation and oxygen generation is not sufficient, the reaction surface area is increased by supporting it on porous materials such as metals and carbon, fibrous materials, nanoparticles, etc., and the hydrogen and oxygen generation rates are improved. It is possible to make it.
13.背面基板
 背面基板14は、第1電解用電極8および第2電解用電極7の上に透光性基板1と対向するように設けることができる。
 また、背面基板14は、第1電解用電極8および第2電解用電極7と背面基板14との間に空間が設けられるように設けることができる。この空間を電解液室15とすることができ、電解液室15に電解液を導入することにより、第1電解用電極8および第2電解用電極7を電解液に接触させることができる。また、背面基板14に箱状のものを用いる場合、背面基板14は箱体の底の部分であってもよい。
13. Back Substrate The back substrate 14 can be provided on the first electrolysis electrode 8 and the second electrolysis electrode 7 so as to face the translucent substrate 1.
The back substrate 14 can be provided such that a space is provided between the first electrolysis electrode 8 and the second electrolysis electrode 7 and the back substrate 14. This space can be used as the electrolytic solution chamber 15, and the first electrolytic electrode 8 and the second electrolytic electrode 7 can be brought into contact with the electrolytic solution by introducing the electrolytic solution into the electrolytic solution chamber 15. Moreover, when using a box-shaped thing for the back substrate 14, the back substrate 14 may be the bottom part of a box.
 また、背面基板14は、電解液室15を構成し、生成した第1気体および第2気体を閉じ込めるために構成される材料であり、機密性が高い物質が求められる。透明なものであっても不透明なものであっても特に限定されるものではないが、第1気体および第2気体が発生していることを視認できる点においては透明な材料であることが好ましい。透明な背面基板としては特に限定されず、例えば石英ガラス、パイレックス(登録商標)、合成石英板等の透明なリジッド材、あるいは透明樹脂板、透明樹脂フィルムなどを挙げることができる。中でも、ガスの透過性がなく、化学的物理的に安定な物質である点でガラス材を用いることが好ましい。 Further, the back substrate 14 is a material that constitutes the electrolytic solution chamber 15 and confines the generated first gas and second gas, and a highly confidential substance is required. It is not particularly limited whether it is transparent or opaque, but it is preferably a transparent material in that it can be visually confirmed that the first gas and the second gas are generated. . The transparent back substrate is not particularly limited, and examples thereof include a transparent rigid material such as quartz glass, Pyrex (registered trademark), and a synthetic quartz plate, a transparent resin plate, and a transparent resin film. Among them, it is preferable to use a glass material because it is a gas that is not chemically permeable and is chemically and physically stable.
14.隔壁
 隔壁13は、第1電解用電極8と背面基板14との間の空間である電解液室15および第2電解用電極7と背面基板14との間の空間である電解液室15とを仕切るように設けることができる。また、隔壁13は、図10のように第1電解用電極8と第2電解用電極7との間に設けることもできる。また、第1電解用電極8および第2電解用電極7のうち少なくとも一方を複数設ける場合、隔壁13は、図29のように並列に並ぶように設けることができる。このことにより、第1電解用電極8および第2電解用電極7で発生させた第1気体および第2気体が混合することを防止することができ、第1気体および第2気体を分離して回収することができる。
 第1実施形態の水素製造装置についての「14.隔壁」の欄の説明は、第2実施形態の水素製造装置に含まれる「隔壁」についても矛盾がない限り当てはまる。
14 The partition wall 13 includes an electrolyte chamber 15 that is a space between the first electrolysis electrode 8 and the back substrate 14 and an electrolyte chamber 15 that is a space between the second electrolysis electrode 7 and the back substrate 14. It can be provided so as to partition. The partition wall 13 can also be provided between the first electrolysis electrode 8 and the second electrolysis electrode 7 as shown in FIG. When at least one of the first electrolysis electrode 8 and the second electrolysis electrode 7 is provided, the partition walls 13 can be provided so as to be arranged in parallel as shown in FIG. As a result, the first gas and the second gas generated by the first electrolysis electrode 8 and the second electrolysis electrode 7 can be prevented from mixing, and the first gas and the second gas can be separated. It can be recovered.
The description in the column “14. Partition wall” for the hydrogen production apparatus of the first embodiment is applicable to the “partition wall” included in the hydrogen production apparatus of the second embodiment as long as there is no contradiction.
15.シール材
 シール材16は、透光性基板1と背面基板14を接着し、水素製造モジュール6内の電解液および水素製造モジュール6内で生成した第1気体および第2気体を密閉するための材料である。背面基板14に箱状のものを用いる場合、この箱体と透光性基板1とを接着するためにシール材16が用いられる。シール材16は、例えば、紫外線硬化性接着剤、熱硬化性接着剤等が好適に使用されるが、その種類は限定されるものではない。紫外線硬化性の接着剤としては、200~400nmの波長を持つ光を照射することにより重合が起こり光照射後数秒で硬化反応が起こる樹脂であり、ラジカル重合型とカチオン重合型に分けられ、ラジカル重合型樹脂としてはアクリルレート、不飽和ポリエステル、カチオン重合型としては、エポキシ、オキセタン、ビニルエーテル等が挙げられる。また熱硬化性の高分子接着剤としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、熱硬化性ポリイミド等の有機樹脂が挙げられる。熱硬化性の高分子接着剤は、熱圧着時に圧力を掛けた状態で加熱重合し、その後、加圧したまま、室温まで冷却することにより、各部材を良好に接合させるため、締め付け部材等を要しない。また、有機樹脂に加えて、ガラス基板に対して密着性の高いハイブリッド材料を用いることが可能である。ハイブリッド材料を用いることによって、弾性率や硬度等の力学的特性が向上し、耐熱性や耐薬品性が飛躍的に向上する。ハイブリッド材料は、無機コロイド粒子と有機バインダ樹脂とから構成される。例えば、シリカなどの無機コロイド粒子と、エポキシ樹脂、ポリウレタンアクリレート樹脂やポリエステルアクリレート樹脂などの有機バインダ樹脂とから構成されるものが挙げられる。
15. Seal material The seal material 16 is a material for adhering the translucent substrate 1 and the back substrate 14 and sealing the electrolyte in the hydrogen production module 6 and the first gas and the second gas generated in the hydrogen production module 6. It is. When a box-shaped substrate is used for the back substrate 14, a sealing material 16 is used for bonding the box body and the translucent substrate 1. As the sealing material 16, for example, an ultraviolet curable adhesive, a thermosetting adhesive, or the like is preferably used, but the type thereof is not limited. UV curable adhesives are resins that undergo polymerization when irradiated with light having a wavelength of 200 to 400 nm and undergo a curing reaction within a few seconds after light irradiation, and are classified into radical polymerization type and cationic polymerization type. Examples of the polymerization type resin include acrylates, unsaturated polyesters, and examples of the cationic polymerization type include epoxy, oxetane, and vinyl ether. Examples of the thermosetting polymer adhesive include organic resins such as phenol resin, epoxy resin, melamine resin, urea resin, and thermosetting polyimide. The thermosetting polymer adhesive is heated and polymerized in a state where pressure is applied at the time of thermocompression bonding, and then cooled to room temperature while being pressurized. I don't need it. In addition to the organic resin, a hybrid material having high adhesion to the glass substrate can be used. By using a hybrid material, mechanical properties such as elastic modulus and hardness are improved, and heat resistance and chemical resistance are dramatically improved. The hybrid material is composed of inorganic colloidal particles and an organic binder resin. For example, what is comprised from inorganic colloidal particles, such as a silica, and organic binder resin, such as an epoxy resin, a polyurethane acrylate resin, and a polyester acrylate resin, is mentioned.
 ここではシール材16と記しているが、透光性基板1と背面基板14を接着させる機能を有するものであれば限定されず、樹脂製あるいは金属製のガスケットを用い外部からネジ等の部材を用いて物理的に圧力を加え機密性を高める方法等を適宜用いることも可能である。 Here, the sealing material 16 is described. However, the sealing material 16 is not limited as long as it has a function of adhering the translucent substrate 1 and the back substrate 14, and a member such as a screw is externally used using a resin or metal gasket. It is also possible to appropriately use a method of applying pressure physically to increase confidentiality.
16.電解液室
 電解液室15は、第1電解用電極8と背面基板14との間の空間および第2電解用電極7と背面基板14との間の空間とすることができる。また、電解液室15は、隔壁13により仕切ることができる。
16. Electrolyte Chamber The electrolyte chamber 15 can be a space between the first electrolysis electrode 8 and the back substrate 14 and a space between the second electrolysis electrode 7 and the back substrate 14. Further, the electrolyte chamber 15 can be partitioned by the partition wall 13.
17.給水口、給水管
 給水口18は、水素製造モジュール6に含まれるシール材16の一部、もしくは背面基板14の一部などに開口を作ることにより設けることができる。給水口18は、第1気体及び第2気体へと分解された電解液を補充するために配置され、その配置箇所および形状は、原料となる電解液が効率よく水素製造モジュール6へ供給されさえすれば、特に限定されるものではない。
17. Water supply port, water supply pipe The water supply port 18 can be provided by making an opening in a part of the sealing material 16 included in the hydrogen production module 6 or a part of the back substrate 14. The water supply port 18 is arranged to replenish the electrolytic solution that has been decomposed into the first gas and the second gas, and the arrangement location and shape of the water supply port 18 are such that the electrolytic solution as a raw material can be efficiently supplied to the hydrogen production module 6. If it does, it will not be limited in particular.
 また、給水口18は、給水管124と連結することができ、給水口18と給水管124とを導通させることができる。このことにより給水管124を介して水素製造モジュール6に電解液を供給することができる。また、給水管124は、給水口18から取り外すことができるように設けることができる。このことにより、水素製造モジュール6から給水管124を取り外して、水素製造装置121を第1形態から第2形態へ変形させることができる。また、水素製造装置121が複数の水素製造モジュール6を有する場合、給水管124は各水素製造モジュール6の給水口と連結することができ、給水管124が複数の水素製造モジュール6を連結させることができ、給水管124を連結部112とすることもできる。 Further, the water supply port 18 can be connected to the water supply pipe 124, and the water supply port 18 and the water supply pipe 124 can be conducted. As a result, the electrolytic solution can be supplied to the hydrogen production module 6 through the water supply pipe 124. Further, the water supply pipe 124 can be provided so as to be removable from the water supply port 18. Thereby, the water supply pipe 124 can be removed from the hydrogen production module 6 and the hydrogen production apparatus 121 can be transformed from the first configuration to the second configuration. When the hydrogen production apparatus 121 has a plurality of hydrogen production modules 6, the water supply pipes 124 can be connected to the water supply ports of the respective hydrogen production modules 6, and the water supply pipes 124 can connect the plurality of hydrogen production modules 6. The water supply pipe 124 can be used as the connecting portion 112.
 また、給水口18、給水管124は、液漏れ防止機構を有することができる。このことにより、水素製造装置121を第1形態から第2形態へ変形させるとき、給水口18から給水管124と取り外しても、電解液の漏れを最小限とすることができる。液漏れ防止機構は、例えば、例えば、スプリングと弁体を含む逆流防止弁からなってもよく、ビー玉逆止弁からなってもよい。 Further, the water supply port 18 and the water supply pipe 124 can have a liquid leakage prevention mechanism. Thus, when the hydrogen production apparatus 121 is deformed from the first form to the second form, leakage of the electrolyte can be minimized even if the water supply pipe 124 is detached from the water supply port 18. The liquid leakage prevention mechanism may be composed of, for example, a backflow prevention valve including a spring and a valve body, or may be composed of a marble check valve.
18.第1気体排出口、第2気体排出口、第1気体排出管および第2気体排出管
 第1気体排出口20、第2気体排出口19は、第1電解用電極8の端部および第2電解用電極7の端部にそれぞれ近接して設けることができる。このことにより、第1気体排出口20から第1気体を回収することができ、第2気体排出口19から第2気体を回収することができる。
18. The first gas exhaust port, the second gas exhaust port, the first gas exhaust tube and the second gas exhaust tube The first gas exhaust port 20 and the second gas exhaust port 19 are the end portion of the first electrolysis electrode 8 and the second gas exhaust port. It can be provided close to the end of the electrode 7 for electrolysis. Thus, the first gas can be recovered from the first gas discharge port 20 and the second gas can be recovered from the second gas discharge port 19.
 また、第1気体排出口20は、光電変換部2の受光面を水平面に対して傾斜するように第1形態の水素製造装置121を設置したとき、第1電解用電極8の電解液に接触可能な面の上端に近接して設けることができる。また、第2気体排出口19は、光電変換部2の受光面を水平面に対して傾斜するように第1形態の水素製造装置121を設置したとき、第2電解用電極7の電解液に接触可能な面の上端に近接して設けることができる。このことにより、第1形態の水素製造装置121を光電変換部2の受光面が水平面に対して傾斜するように設置し、前記受光面に太陽光を入射させた場合に、第1電解用電極8で発生させた第1気体を気泡として電解液中を上昇させ第1気体排出口20から回収することができ、第2電解用電極7で発生させた第2気体を気泡として電解液中を上昇させ第2気体排出口19から回収することができる。
 第1気体排出口20、第2気体排出口19は、例えば、シール材16に開口を設けることにより形成することができる。また、第1気体排出口20、第2気体排出口19に電解液が流入しないように流入防止弁を設けることもできる。
Further, the first gas discharge port 20 contacts the electrolytic solution of the first electrolysis electrode 8 when the hydrogen generator 121 of the first form is installed so that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane. It can be provided close to the upper end of the possible surface. The second gas discharge port 19 is in contact with the electrolytic solution of the second electrolysis electrode 7 when the hydrogen production device 121 of the first form is installed so that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane. It can be provided close to the upper end of the possible surface. Thus, when the hydrogen production apparatus 121 of the first embodiment is installed such that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane, and sunlight is incident on the light receiving surface, the first electrolysis electrode The first gas generated in 8 can be raised as bubbles in the electrolytic solution and recovered from the first gas discharge port 20, and the second gas generated in the second electrolysis electrode 7 can be recovered as bubbles in the electrolytic solution. It can be raised and recovered from the second gas outlet 19.
The 1st gas exhaust port 20 and the 2nd gas exhaust port 19 can be formed by providing opening in the sealing material 16, for example. An inflow prevention valve may be provided so that the electrolyte does not flow into the first gas outlet 20 and the second gas outlet 19.
 また、第1気体排出口20は、第1気体排出管122と連結および導通することができ、第2気体排出口19は第2気体排出管123と連結および導通することができる。
 また、第1気体排出管122および第2気体排出管123は、それぞれ第1気体排出口20および第2気体排出口19から取り外すことができるように設けることができる。このことにより、水素製造モジュール6から第1気体排出管122および第2気体排出管123を取り外して、水素製造装置121を第1形態から第2形態へ変形させることができる。また、水素製造装置121が複数の水素製造モジュール6を有する場合、第1気体排出管122および第2気体排出管123は、それぞれ各水素製造モジュール6の第1気体排出口20および第2気体排出口19と連結することができ、第1気体排出管122および第2気体排出管123が複数の水素製造モジュール6を連結させることができ、第1気体排出管122または第2気体排出管123を連結部112とすることもできる。
Further, the first gas discharge port 20 can be connected to and connected to the first gas discharge tube 122, and the second gas discharge port 19 can be connected to and connected to the second gas discharge tube 123.
Moreover, the 1st gas exhaust pipe 122 and the 2nd gas exhaust pipe 123 can be provided so that it can remove from the 1st gas exhaust port 20 and the 2nd gas exhaust port 19, respectively. Thereby, the 1st gas exhaust pipe 122 and the 2nd gas exhaust pipe 123 can be removed from the hydrogen production module 6, and the hydrogen production apparatus 121 can be changed from a 1st form to a 2nd form. When the hydrogen production apparatus 121 has a plurality of hydrogen production modules 6, the first gas exhaust pipe 122 and the second gas exhaust pipe 123 are respectively connected to the first gas exhaust port 20 and the second gas exhaust pipe of each hydrogen production module 6. The first gas exhaust pipe 122 and the second gas exhaust pipe 123 can be connected to the plurality of hydrogen production modules 6, and the first gas exhaust pipe 122 or the second gas exhaust pipe 123 can be connected to the outlet 19. The connecting portion 112 can also be used.
 また、第1気体排出口20および第2気体排出口19は、液漏れ防止機構を有することができる。このことにより、水素製造装置121を第1形態から第2形態へ変形させるとき、第1気体排出口20および第2気体排出口19からそれぞれ第1気体排出管122および第2気体排出管123と取り外しても、電解液の漏れを防止することができる。液漏れ防止機構は、例えば、例えば、スプリングと弁体を含む逆流防止弁からなってもよく、ビー玉逆止弁からなってもよい。 Also, the first gas outlet 20 and the second gas outlet 19 can have a liquid leakage prevention mechanism. Thus, when the hydrogen production apparatus 121 is deformed from the first form to the second form, the first gas exhaust pipe 122 and the second gas exhaust pipe 123 are respectively connected from the first gas exhaust port 20 and the second gas exhaust port 19. Even if it is removed, leakage of the electrolyte can be prevented. The liquid leakage prevention mechanism may be composed of, for example, a backflow prevention valve including a spring and a valve body, or may be composed of a marble check valve.
19.電解液
 電解液は、第1気体および第2気体の原料となるものであれば特に限定されないが、例えば、電解質を含む水溶液であり、例えば、0.1MのH2SO4を含む電解液、0.1Mリン酸カリウム緩衝液などである。この場合、電解液から第1気体および第2気体として水素および酸素を製造することができる。
19. Electrolytic Solution The electrolytic solution is not particularly limited as long as it is a raw material for the first gas and the second gas. For example, the electrolytic solution is an aqueous solution containing an electrolyte, for example, an electrolytic solution containing 0.1 M H 2 SO 4 , 0.1M potassium phosphate buffer. In this case, hydrogen and oxygen can be produced from the electrolytic solution as the first gas and the second gas.
20.切換部
 水素製造装置121または水素製造モジュール6は、切換部10を有することができる。切換部10は、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力させる回路と、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7に出力し電解液からそれぞれ第1気体および第2気体を発生させる回路とを切り換えることができる。このことにより、水素製造装置121を第1形態とし、水素製造モジュール6の光電変換部2に光を入射させたとき、光電変換部2が受光することにより生じる起電力を第1外部回路へ電力として供給でき、また、光電変換部2が受光することにより生じる起電力を用いて第1気体および第2気体を製造することができる。
 切換部10が第1外部回路と電気的に接続する方法は、特に限定されないが、例えば、切換部10が出力端子を備え、出力端子を介して第1外部回路と電気的に接続してもよい。
20. Switching Unit The hydrogen production apparatus 121 or the hydrogen production module 6 can have the switching unit 10. The switching unit 10 outputs the electromotive force generated when the photoelectric conversion unit 2 receives light to the first external circuit and the electromotive force generated when the photoelectric conversion unit 2 receives light from the first electrolysis electrode 8 and the second electrode. It is possible to switch between a circuit that outputs to the electrode 7 for electrolysis and generates a first gas and a second gas from the electrolyte. As a result, when the hydrogen production apparatus 121 is in the first form and light is incident on the photoelectric conversion unit 2 of the hydrogen production module 6, the electromotive force generated by the photoelectric conversion unit 2 receiving light is supplied to the first external circuit. In addition, the first gas and the second gas can be produced using the electromotive force generated when the photoelectric conversion unit 2 receives light.
The method for electrically connecting the switching unit 10 to the first external circuit is not particularly limited. For example, even if the switching unit 10 includes an output terminal and is electrically connected to the first external circuit via the output terminal. Good.
 また、切換部10は、第2外部回路と電気的に接続することができ、かつ、第2外部回路から入力される起電力を第1電解用電極8および第2電解用電極7に出力し電解液からそれぞれ第1気体および第2気体を発生させる回路に切り換えることができる。このことにより、第2外部回路から入力される起電力を利用して、電解液から第1気体および第2気体を製造することができる。水素製造装置121が第1形態のときであっても、第2形態のときであっても第2外部回路から入力される起電力を利用して第1気体および第2気体を製造することができるが、水素製造装置121を第2形態として第2外部回路から入力される起電力を利用して第1気体および第2気体を製造することにより、第1気体および第2気体の配管距離を短くすることができ、効率的に第1気体および第2気体を回収することができる。
 切換部10が第2外部回路と電気的に接続する方法は特に限定されないが、例えば、切換部10が入力端子を備え、入力端子を介して第2外部回路と電気的に接続してもよい。
The switching unit 10 can be electrically connected to the second external circuit, and outputs an electromotive force input from the second external circuit to the first electrolysis electrode 8 and the second electrolysis electrode 7. It can switch to the circuit which produces | generates 1st gas and 2nd gas, respectively from electrolyte solution. Thus, the first gas and the second gas can be produced from the electrolyte using the electromotive force input from the second external circuit. Whether the hydrogen production apparatus 121 is in the first form or the second form, the first gas and the second gas can be produced using the electromotive force input from the second external circuit. However, the first gas and the second gas are produced by using the electromotive force input from the second external circuit with the hydrogen production device 121 as the second form, thereby reducing the piping distance between the first gas and the second gas. The first gas and the second gas can be efficiently recovered.
The method for electrically connecting the switching unit 10 to the second external circuit is not particularly limited. For example, the switching unit 10 may include an input terminal and be electrically connected to the second external circuit via the input terminal. .
 図面を用いて具体的に説明する。図14~17は、本実施形態の水素製造装置の概略回路図である。なお、図14~17は、水素製造装置121が1つの水素製造モジュール6を有する場合の概略回路図であるが、水素製造装置121が複数の水素製造モジュール6を有する場合、各水素製造モジュール6の第1電極4および第2電極5を並列または直列に接続してもよく、各水素製造モジュール6の第1電解用電極8および第2電解用電極7を並列に接続してもよい。 Specific description will be made using drawings. 14 to 17 are schematic circuit diagrams of the hydrogen production apparatus of the present embodiment. 14 to 17 are schematic circuit diagrams when the hydrogen production apparatus 121 has one hydrogen production module 6. However, when the hydrogen production apparatus 121 has a plurality of hydrogen production modules 6, each hydrogen production module 6 The first electrode 4 and the second electrode 5 may be connected in parallel or in series, and the first electrolysis electrode 8 and the second electrolysis electrode 7 of each hydrogen production module 6 may be connected in parallel.
 例えば、水素製造モジュール6が図7のような断面を有し、図14のような電気回路を有する場合、例えば、SW(スイッチ)1、SW2がON状態であり、SW3、SW4がOFF状態である場合、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力することができる。また、SW1、SW2、SW5、SW6がOFF状態であり、SW3、SW4がON状態である場合、光電変換部2が受光することにより生じる起電力を第1電解用電極8と第2電解用電極7に出力することができる。
 また、例えば、SW3、SW4がOFF状態であり、SW5、SW6がON状態である場合、第2外部回路から入力される起電力を第1電解用電極8および第2電解用電極7に出力することができる。また、SW1、SW2がOFF状態であり、SW3、SW4、SW5、SW6がON状態である場合、光電変換部2が受光することにより生じる起電力および第2外部回路から入力される起電力の両方を第1電解用電極8および第2電解用電極7に出力することができる。
For example, when the hydrogen production module 6 has a cross section as shown in FIG. 7 and an electric circuit as shown in FIG. 14, for example, SW (switch) 1 and SW2 are in the ON state, and SW3 and SW4 are in the OFF state. In some cases, an electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit. In addition, when SW1, SW2, SW5, and SW6 are in the OFF state and SW3 and SW4 are in the ON state, the electromotive force generated when the photoelectric conversion unit 2 receives light is used as the first electrolysis electrode 8 and the second electrolysis electrode. 7 can be output.
For example, when SW3 and SW4 are in an OFF state and SW5 and SW6 are in an ON state, an electromotive force input from the second external circuit is output to the first electrolysis electrode 8 and the second electrolysis electrode 7. be able to. When SW1 and SW2 are in the OFF state and SW3, SW4, SW5, and SW6 are in the ON state, both the electromotive force generated by the photoelectric conversion unit 2 receiving light and the electromotive force input from the second external circuit Can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
 例えば、水素製造モジュール6が図5、10のような断面を有し、図15のような電気回路を有する場合、例えば、SW1、SW2がON状態であり、SW3、SW4がOFF状態である場合、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力することができる。また、SW1、SW2、SW3、SW5がOFF状態であり、SW4がON状態である場合、光電変換部2が受光することにより生じる起電力を第1電解用電極8と第2電解用電極7に出力することができる。
 また、例えば、SW1、SW2、SW4がOFF状態であり、SW3、SW5がON状態である場合、第2外部回路から入力される起電力を第1電解用電極8および第2電解用電極7に出力することができる。また、SW1、SW2がOFF状態であり、SW3、SW4、SW5がON状態である場合、光電変換部2が受光することにより生じる起電力および第2外部回路から入力される起電力の両方を第1電解用電極8および第2電解用電極7に出力することができる。
For example, when the hydrogen production module 6 has a cross section as shown in FIGS. 5 and 10 and an electric circuit as shown in FIG. 15, for example, SW1 and SW2 are in an ON state, and SW3 and SW4 are in an OFF state. The electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit. Further, when SW1, SW2, SW3, and SW5 are in the OFF state and SW4 is in the ON state, the electromotive force generated when the photoelectric conversion unit 2 receives light is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output.
For example, when SW1, SW2, and SW4 are in an OFF state and SW3 and SW5 are in an ON state, an electromotive force input from the second external circuit is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output. When SW1 and SW2 are in the OFF state and SW3, SW4 and SW5 are in the ON state, both the electromotive force generated by the photoelectric conversion unit 2 receiving light and the electromotive force input from the second external circuit are It can output to the electrode 8 for 1 electrolysis and the electrode 7 for 2nd electrolysis.
 例えば、本実施形態の水素製造モジュール6が図6のような断面を有し、図16のような電気回路を有する場合、例えば、SW1、SW2がON状態であり、SW3、SW4がOFF状態である場合、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力することができる。また、SW1、SW2、SW3、SW5がOFF状態であり、SW4がON状態である場合、光電変換部2が受光することにより生じる起電力を第1電解用電極8と第2電解用電極7に出力することができる。
 また、例えば、SW1、SW2、SW4がOFF状態であり、SW3、SW5がON状態である場合、第2外部回路から入力される起電力を第1電解用電極8および第2電解用電極7に出力することができる。また、SW1、SW2がOFF状態であり、SW3、SW4、SW5がON状態である場合、光電変換部2が受光することにより生じる起電力および第2外部回路から入力される起電力の両方を第1電解用電極8および第2電解用電極7に出力することができる。
For example, when the hydrogen production module 6 of this embodiment has a cross section as shown in FIG. 6 and an electric circuit as shown in FIG. 16, for example, SW1 and SW2 are in an ON state, and SW3 and SW4 are in an OFF state. In some cases, an electromotive force generated when the photoelectric conversion unit 2 receives light can be output to the first external circuit. Further, when SW1, SW2, SW3, and SW5 are in the OFF state and SW4 is in the ON state, the electromotive force generated when the photoelectric conversion unit 2 receives light is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output.
For example, when SW1, SW2, and SW4 are in an OFF state and SW3 and SW5 are in an ON state, an electromotive force input from the second external circuit is applied to the first electrolysis electrode 8 and the second electrolysis electrode 7. Can be output. When SW1 and SW2 are in the OFF state and SW3, SW4 and SW5 are in the ON state, both the electromotive force generated by the photoelectric conversion unit 2 receiving light and the electromotive force input from the second external circuit are It can output to the electrode 8 for 1 electrolysis and the electrode 7 for 2nd electrolysis.
 例えば、水素製造モジュール6が図2、8、9、11、12のような断面を有し、図17のような電気回路を有する場合、例えば、SW1、SW2がON状態であり、SW3、SW4がOFF状態である場合であって、光電変換部が受光することにより生じる起電力が電解液の電解電圧に達しない場合、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力することができる。また、SW1、SW2、SW3、SW4がOFF状態である場合であって、光電変換部が受光することにより生じる起電力が電解液の電解電圧に達する場合、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7へ出力することができる。従って、図17のような電気回路を有する場合でも、切換部10により、光電変換部2が受光することにより生じる起電力を第1外部回路へ出力させる回路と、光電変換部2が受光することにより生じる起電力を第1電解用電極8および第2電解用電極7に出力させる回路とを切り換えることができる。
 また、SW3、SW4がON状態であり、SW1,SW2がOFF状態の場合、第2外部回路から入力される起電力、または第2外部回路から入力される起電力と光電変換部2が受光することにより生じる起電力の両方を第1電解用電極8および第2電解用電極7に出力することができる。
For example, when the hydrogen production module 6 has a cross section as shown in FIGS. 2, 8, 9, 11, and 12 and an electric circuit as shown in FIG. 17, for example, SW1 and SW2 are in an ON state, and SW3 and SW4 When the electromotive force generated by the photoelectric conversion unit receiving light does not reach the electrolytic voltage of the electrolytic solution, the electromotive force generated by the photoelectric conversion unit 2 receiving light is sent to the first external circuit. Can be output. In addition, when SW1, SW2, SW3, and SW4 are in the OFF state, and the electromotive force generated by the photoelectric conversion unit receiving light reaches the electrolytic voltage of the electrolytic solution, the photoelectric conversion unit 2 receives the light. The electromotive force can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7. Accordingly, even when the electric circuit as shown in FIG. 17 is provided, the switching unit 10 causes the photoelectric conversion unit 2 to receive the electromotive force generated by the photoelectric conversion unit 2 receiving light and the photoelectric conversion unit 2 to receive light. It is possible to switch between the circuit that outputs the electromotive force generated by the above to the first electrolysis electrode 8 and the second electrolysis electrode 7.
When SW3 and SW4 are in the ON state and SW1 and SW2 are in the OFF state, the electromotive force input from the second external circuit or the electromotive force input from the second external circuit and the photoelectric conversion unit 2 receive light. Both the electromotive forces generated by this can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
 また、切換部10は、制御部からの情報を入力することができ、入力した情報に基づき回路の切換を行うことができる。このことにより、切換部10は、制御部が選択した回路に切り換えることができる。
 また、切換部10は、光電変換部2が受光することにより生じる起電力の大きさに基づき回路の切換を行うこともできる。このことにより、第1外部回路に出力する電力が光電変換部2で生じている場合、第1外部回路に光電変換部2で生じた起電力を出力することができ、第1外部回路に出力する電力が光電変換部2で生じていない場合、第1電解用電極8および第2電解用電極7に光電変換部2で生じた起電力を出力することができる。
 さらに切換部10は、第2外部回路の起電力の大きさに基づき回路の切換を行うこともできる。このことにより、第2外部回路が供給する電力が電気需要より大きくなっている場合、第2外部回路が供給する電力を利用して第1気体および第2気体を製造することができる。
The switching unit 10 can input information from the control unit, and can switch circuits based on the input information. Thereby, the switching unit 10 can switch to the circuit selected by the control unit.
The switching unit 10 can also switch circuits based on the magnitude of the electromotive force generated when the photoelectric conversion unit 2 receives light. As a result, when the electric power output to the first external circuit is generated in the photoelectric conversion unit 2, the electromotive force generated in the photoelectric conversion unit 2 can be output to the first external circuit and output to the first external circuit. When the power to be generated is not generated in the photoelectric conversion unit 2, the electromotive force generated in the photoelectric conversion unit 2 can be output to the first electrolysis electrode 8 and the second electrolysis electrode 7.
Further, the switching unit 10 can also switch circuits based on the magnitude of the electromotive force of the second external circuit. Thereby, when the electric power supplied from the second external circuit is larger than the electric demand, the first gas and the second gas can be produced using the electric power supplied from the second external circuit.
水素製造方法
 本実施形態の水素製造方法は、水素製造装置45(121)を光電変換部2の受光面が水平面に対し傾斜するように設置し、電解液室15に電解液を導入し、太陽光を光電変換部2の受光面に入射させることにより第1電解用電極8および第2電解用電極7からそれぞれ第1気体および第2気体を発生させ、第1気体排出口20および第2気体排出口19からそれぞれ第1気体および第2気体を排出させることができる。
 このことにより第1気体および第2気体を製造することができ、水素を製造することができる。
Hydrogen Production Method In the hydrogen production method of the present embodiment, the hydrogen production apparatus 45 (121) is installed so that the light receiving surface of the photoelectric conversion unit 2 is inclined with respect to the horizontal plane, the electrolyte is introduced into the electrolyte chamber 15, and the solar By making light incident on the light receiving surface of the photoelectric conversion unit 2, the first gas and the second gas are generated from the first electrolysis electrode 8 and the second electrolysis electrode 7, respectively, and the first gas outlet 20 and the second gas are generated. The first gas and the second gas can be discharged from the discharge port 19, respectively.
Thus, the first gas and the second gas can be produced, and hydrogen can be produced.
  1: 透光性基板  2:光電変換部  4:第1電極  5:第2電極  6、6a、6b、6c、6d:水素製造モジュール  7:第2電解用電極  8:第1電解用電極  9:第1導電部  10:切換部  11:絶縁部  12:制御部  13:隔壁  14:背面基板  15:電解液室  16:シール材  17:センサ部  18:給水口  19:第2気体排出口  20:第1気体排出口  21:傾斜角制限手段  22:第1係合部  23:第2係合部  24:第1動力部  25:第2動力部  26:第1基部  27:第2基部  28:光電変換層  29:第2導電部  30:透光性電極  31:裏面電極  33:第3導電部  35:半導体部  36:p型半導体部  37:n型半導体部  40:アイソレーション  45、121:水素製造装置  46:電解液  47:水素貯蔵装置  48:配管(第1気体排出路)  49:入力端子  51a、51b:基板  52:配線  54:レール部  55:案内溝  57:磁石部 112:連結部  122:第1気体排出管  123:第2気体排出管  124:給水管  125:液漏れ防止機構  126:ヒンジ部材 1: translucent substrate 2: photoelectric conversion unit 4: first electrode 5: second electrode 6, 6a, 6b, 6c, 6d: hydrogen production module 7: second electrolysis electrode 8: first electrolysis electrode 9: 1st conductive part 10: Switching part 11: Insulating part 12: Control part 13: Bulkhead 14: Back substrate 15: Electrolyte chamber 16: Sealing material 17: Sensor part 18: Water supply port 19: Second gas discharge port 20: Second 1 gas discharge port 21: tilt angle limiting means 22: first engagement part 23: second engagement part 24: first power part 25: second power part 26: first base 27: second base 28: photoelectric conversion Layer 29: Second conductive part 30: Translucent electrode 31: Back electrode 33: Third conductive part 35: Semiconductor part 36: P-type semiconductor part 37 n-type semiconductor section 40: isolation 45, 121: hydrogen production equipment 46: electrolyte solution 47: hydrogen storage equipment 48: piping (first gas discharge path) 49: input terminals 51a, 51b: substrate 52: wiring 54: rail section 55: Guide groove 57: Magnet part 112: Connection part 122: First gas discharge pipe 123: Second gas discharge pipe 124: Water supply pipe 125: Liquid leakage prevention mechanism 126: Hinge member

Claims (53)

  1.  受光面およびその裏面を有する光電変換部と、前記光電変換部の裏面側に設けられた第1電解用電極および第2電解用電極と、前記光電変換部を支持する係合部とを備え、
    前記光電変換部の受光面に太陽光が入射し第1および第2電解用電極が電解液と接触するとき、
    第1および第2電解用電極は、前記光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体を発生させることができるように設けられ、
    第1気体および第2気体のうち、一方は水素であり他方は酸素であり、
    前記係合部は、前記光電変換部の受光面の太陽光に対する向きを調整することができるように設けられたことを特徴とする水素製造装置。
    A photoelectric conversion unit having a light receiving surface and a back surface thereof, a first electrolysis electrode and a second electrolysis electrode provided on the back surface side of the photoelectric conversion unit, and an engagement unit that supports the photoelectric conversion unit,
    When sunlight is incident on the light receiving surface of the photoelectric conversion unit and the first and second electrolysis electrodes are in contact with the electrolytic solution,
    The first and second electrolysis electrodes are provided so that the electrolysis solution can be electrolyzed using the electromotive force generated by the photoelectric conversion unit receiving light to generate the first gas and the second gas, respectively. ,
    Of the first gas and the second gas, one is hydrogen and the other is oxygen,
    The hydrogen producing apparatus, wherein the engaging portion is provided so that a direction of a light receiving surface of the photoelectric conversion portion with respect to sunlight can be adjusted.
  2.  傾斜角制限手段、第1気体排出口および第2気体排出口をさらに備え、
    第1および第2気体排出口は、第1電解用電極の端部および第2電解用電極の端部にそれぞれ近接して設けられ、
    前記光電変換部の受光面に太陽光が入射し第1および第2電解用電極が電解液と接触するとき、前記傾斜角制限手段は、第1気体および第2気体が電解液中を浮力により第1気体排出口および第2気体排出口にそれぞれ移動するように第1および第2電解用電極の傾斜角を制限する請求項1に記載の装置。
    Further comprising an inclination angle limiting means, a first gas outlet and a second gas outlet,
    The first and second gas outlets are provided close to the end of the first electrolysis electrode and the end of the second electrolysis electrode,
    When sunlight is incident on the light receiving surface of the photoelectric conversion unit and the first and second electrolysis electrodes are in contact with the electrolytic solution, the tilt angle restricting means is configured such that the first gas and the second gas are buoyant in the electrolytic solution. The apparatus of Claim 1 which restrict | limits the inclination-angle of the electrode for 1st and 2nd electrolysis so that it may move to a 1st gas exhaust port and a 2nd gas exhaust port, respectively.
  3.  前記係合部は、回転自在または変形可能である請求項1または2に記載の装置。 The apparatus according to claim 1 or 2, wherein the engaging portion is rotatable or deformable.
  4.  前記光電変換部の受光面の太陽光に対する向き、または第1および第2電解用電極の動きを制御する制御部をさらに備える請求項1~3のいずれか1つに記載の装置。 The apparatus according to any one of claims 1 to 3, further comprising a control unit that controls a direction of the light receiving surface of the photoelectric conversion unit with respect to sunlight or movement of the first and second electrolysis electrodes.
  5.  前記制御部は、前記光電変換部の受光面の太陽光に対する向きを太陽の仰角と方位に基づき制御する請求項4に記載の装置。 The apparatus according to claim 4, wherein the control unit controls the direction of the light receiving surface of the photoelectric conversion unit with respect to sunlight based on an elevation angle and a direction of the sun.
  6.  前記制御部は、第1および第2電解用電極が振動するように第1および第2電解用電極の動きを制御する請求項4に記載の装置。 The apparatus according to claim 4, wherein the control unit controls movement of the first and second electrolysis electrodes such that the first and second electrolysis electrodes vibrate.
  7.  前記制御部は、情報を入力するための入力手段と、前記入力手段から入力された情報に基づき前記光電変換部の受光面の向きまたは第1および第2電解用電極の動きを設定する設定手段と、前記設定手段により設定された情報を出力するための出力手段と、前記出力手段により出力された情報に基づき少なくとも前記光電変換部を動かす動力部とを備える請求項4~6のいずれか1つに記載の装置。 The control unit includes an input unit for inputting information, and a setting unit for setting the direction of the light receiving surface of the photoelectric conversion unit or the movement of the first and second electrolysis electrodes based on the information input from the input unit. 7. An output means for outputting information set by the setting means, and a power section for moving at least the photoelectric conversion section based on the information output by the output means. Device.
  8.  前記制御部は、第1および第2電解用電極の傾斜角を制限する傾斜角制限手段を含む請求項4~7のいずれか1つに記載の装置。 The apparatus according to any one of claims 4 to 7, wherein the control unit includes an inclination angle limiting means for limiting an inclination angle of the first and second electrolysis electrodes.
  9.  第1外部回路と電気的に接続できる切換部をさらに備え、
    前記切換部は、前記光電変換部が受光することにより生じる起電力を第1外部回路へ出力させる回路と、前記光電変換部が受光することにより生じる起電力を第1および第2電解用電極に出力させる回路とを切り換えることができる請求項1~3のいずれか1つに記載の装置。
    A switching unit that can be electrically connected to the first external circuit;
    The switching unit includes a circuit that outputs an electromotive force generated by the photoelectric conversion unit receiving light to the first external circuit, and an electromotive force generated by the photoelectric conversion unit receiving light to the first and second electrolysis electrodes. The apparatus according to any one of claims 1 to 3, wherein a circuit to be output can be switched.
  10.  前記切換部は、第2外部回路と電気的に接続することができ、かつ、第2外部回路から入力される起電力を第1電解用電極および第2電解用電極に出力し電解液からそれぞれ第1気体および第2気体を発生させる回路に切り換えることができる請求項9に記載の装置。 The switching unit can be electrically connected to the second external circuit, and outputs an electromotive force input from the second external circuit to the first electrolysis electrode and the second electrolysis electrode from the electrolyte. The apparatus according to claim 9, wherein the apparatus can be switched to a circuit that generates a first gas and a second gas.
  11.  前記切換部が切り換える回路を設定し、設定した情報を前記切換部に出力する制御部をさらに備える請求項9または10に記載の装置。 The apparatus according to claim 9 or 10, further comprising a control unit that sets a circuit to be switched by the switching unit and outputs the set information to the switching unit.
  12.  前記制御部は、情報を入力するための入力手段と、前記入力手段から入力された情報に基づき前記切換部が切り換える回路を設定する設定手段と、前記設定手段により設定された情報を前記切換部に出力するための出力手段とを備える請求項11に記載の装置。 The control unit includes an input unit for inputting information, a setting unit for setting a circuit to be switched by the switching unit based on information input from the input unit, and information set by the setting unit as the switching unit. The apparatus according to claim 11, further comprising output means for outputting to the device.
  13.  傾斜センサ、方位センサ、位置センサ、照度センサまたは時計をさらに備え、
    前記入力手段は、前記傾斜センサ、前記方位センサ、前記位置センサ、前記照度センサまたは前記時計から情報を入力する請求項7または12に記載の装置。
    Further comprising a tilt sensor, orientation sensor, position sensor, illuminance sensor or watch,
    The apparatus according to claim 7 or 12, wherein the input unit inputs information from the tilt sensor, the azimuth sensor, the position sensor, the illuminance sensor, or the timepiece.
  14.  前記入力手段は、電力会社からの情報、売電情報、Web情報、ソリューションサーバー情報を入力する請求項7、12または13に記載の装置。 14. The apparatus according to claim 7, 12 or 13, wherein the input means inputs information from an electric power company, power sale information, Web information, and solution server information.
  15.  基部をさらに備え、
    前記係合部は、前記基部に対して前記光電変換部、第1電解用電極および第2電解用電極が相対的に動くように設けられた請求項1~14のいずれか1つに記載の装置。
    Further comprising a base,
    The engagement portion is provided according to any one of claims 1 to 14, wherein the photoelectric conversion portion, the first electrolysis electrode, and the second electrolysis electrode are provided to move relative to the base portion. apparatus.
  16.  前記係合部は、前記光電変換部の受光面の傾斜角を調整する第1係合部と、前記光電変換部の受光面が向く方位を調整する第2係合部とを含む請求項1~15のいずれか1つに記載の装置。 2. The engagement portion includes a first engagement portion that adjusts an inclination angle of a light receiving surface of the photoelectric conversion portion, and a second engagement portion that adjusts an orientation in which the light reception surface of the photoelectric conversion portion faces. The apparatus according to any one of 1 to 15.
  17.  第2係合部は、第1電解用電極および第2電解用電極に対して前記光電変換部が相対的に動くように設けられた請求項16に記載の装置。 The device according to claim 16, wherein the second engaging portion is provided so that the photoelectric conversion portion moves relative to the first electrolysis electrode and the second electrolysis electrode.
  18.  前記係合部は、第1電解用電極および第2電解用電極に対して前記光電変換部が相対的に動くように設けられた請求項1~15のいずれか1つに記載の装置。 The apparatus according to any one of claims 1 to 15, wherein the engaging portion is provided such that the photoelectric conversion portion moves relative to the first electrolysis electrode and the second electrolysis electrode.
  19.  第1形態から第2形態に、または第2形態から第1形態に変形可能な水素製造装置であって、
    変形可能に設けられた少なくとも1つの水素製造モジュールを備え、
    前記水素製造モジュールは、受光面および裏面を有する光電変換部と、前記光電変換部の裏面側に設けられた第1電解用電極および第2電解用電極とを備え、
    第1および第2電解用電極は、前記光電変換部の受光面に光が入射し第1および第2電解用電極が電解液と接触するとき、前記光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体を発生させることができるように設けられ、
    第1気体および第2気体のうち、一方は水素であり他方は酸素であり、
    第1形態は、前記水素製造装置に含まれる前記受光面の略全体が太陽光を直接受光可能な形態であり、
    第2形態は、1つの前記水素製造モジュールに含まれる前記光電変換部の受光面側又は裏面側に、同じ又は異なる前記水素製造モジュールに含まれる前記光電変換部が位置する形態である水素製造装置。
    A hydrogen production apparatus that can be transformed from the first form to the second form or from the second form to the first form,
    Comprising at least one hydrogen production module provided in a deformable manner,
    The hydrogen production module includes a photoelectric conversion unit having a light receiving surface and a back surface, a first electrolysis electrode and a second electrolysis electrode provided on the back surface side of the photoelectric conversion unit,
    The first and second electrolysis electrodes have an electromotive force generated when the photoelectric conversion unit receives light when light enters the light receiving surface of the photoelectric conversion unit and the first and second electrolysis electrodes come into contact with the electrolytic solution. Is provided so that the electrolyte can be electrolyzed to generate the first gas and the second gas, respectively,
    Of the first gas and the second gas, one is hydrogen and the other is oxygen,
    The first form is a form in which substantially the entire light receiving surface included in the hydrogen production apparatus can directly receive sunlight,
    The second mode is a hydrogen production apparatus in which the photoelectric conversion units included in the same or different hydrogen production modules are located on the light receiving surface side or the back side of the photoelectric conversion units included in one hydrogen production module. .
  20.  前記水素製造モジュールは複数であり、
    第1形態は、各水素製造モジュールの前記光電変換部の受光面に太陽光が入射できるように各水素製造モジュールが並んだ形態であり、
    第2形態は、各水素製造モジュールが積重した形態である請求項19に記載の装置。
    The hydrogen production module is plural,
    The first form is a form in which the hydrogen production modules are arranged so that sunlight can enter the light receiving surface of the photoelectric conversion unit of each hydrogen production module,
    The apparatus according to claim 19, wherein the second form is a form in which the hydrogen production modules are stacked.
  21.  複数の水素製造モジュールを連結する連結部をさらに備える請求項20に記載の装置。 21. The apparatus according to claim 20, further comprising a connecting part that connects a plurality of hydrogen production modules.
  22.  前記連結部は、回転軸を含む構造を有する請求項21に記載の装置。 The apparatus according to claim 21, wherein the connecting portion has a structure including a rotating shaft.
  23.  前記連結部は、案内溝を有し、
    少なくとも1つの水素製造モジュールは、前記案内溝に沿って摺動する請求項21に記載の装置。
    The connecting portion has a guide groove,
    The apparatus of claim 21, wherein at least one hydrogen production module slides along the guide groove.
  24.  各水素製造モジュールは、それぞれ分離可能であり、かつ、第1形態において第1連結部により連結され、第2形態において第2連結部により連結される請求項21に記載の装置。 The apparatus according to claim 21, wherein the hydrogen production modules are separable, and are connected by the first connecting part in the first form and are connected by the second connecting part in the second form.
  25.  第1および第2連結部は、各水素製造モジュールから分離可能である請求項24に記載の装置。 25. The apparatus according to claim 24, wherein the first and second connecting parts are separable from each hydrogen production module.
  26.  前記連結部は、磁石を含む請求項21、24、25のいずれか1つに記載の装置。 The device according to any one of claims 21, 24, and 25, wherein the connecting portion includes a magnet.
  27.  前記連結部は、各水素製造モジュールに電解液を供給する給水管、各水素製造モジュールから第1気体を排出する第1気体排出管、または各水素製造モジュールから第2気体を排出する第2気体排出管である請求項21、24、25のいずれか1つに記載の装置。 The connecting portion includes a water supply pipe that supplies an electrolytic solution to each hydrogen production module, a first gas discharge pipe that discharges a first gas from each hydrogen production module, or a second gas that discharges a second gas from each hydrogen production module. 26. The apparatus according to any one of claims 21, 24, 25, wherein the apparatus is a discharge pipe.
  28.  各水素製造モジュールは、電解液を水素製造モジュール内に供給する給水口と、第1気体を排出する第1気体排出口と、第2気体を排出する第2気体排出口とを備え、
    前記給水口、第1気体排出口または第2気体排出口に液漏れ防止機構を備える請求項19~27のいずれか1つに記載の装置。
    Each hydrogen production module includes a water supply port for supplying the electrolyte into the hydrogen production module, a first gas exhaust port for discharging the first gas, and a second gas exhaust port for discharging the second gas,
    The apparatus according to any one of claims 19 to 27, wherein a liquid leakage prevention mechanism is provided in the water supply port, the first gas discharge port, or the second gas discharge port.
  29.  前記水素製造モジュールは、柔軟性を有し巻き上げ可能なシート状であり、
    第1形態は、シート状の前記水素製造モジュールを広げた形態であり、
    第2形態は、シート状の前記水素製造モジュールを巻き上げた形態である請求項19に記載の装置。
    The hydrogen production module is a flexible sheet that can be rolled up,
    The first form is a form in which the sheet-like hydrogen production module is expanded,
    The apparatus according to claim 19, wherein the second form is a form in which the hydrogen production module in sheet form is wound up.
  30.  第1外部回路と電気的に接続できる切換部をさらに備え、
    前記切換部は、前記光電変換部が受光することにより生じる起電力を第1外部回路へ出力させる回路と、前記光電変換部が受光することにより生じる起電力を第1および第2電解用電極に出力させる回路とを切り換えることができる請求項19~29のいずれか1つに記載の装置。
    A switching unit that can be electrically connected to the first external circuit;
    The switching unit includes a circuit that outputs an electromotive force generated by the photoelectric conversion unit receiving light to the first external circuit, and an electromotive force generated by the photoelectric conversion unit receiving light to the first and second electrolysis electrodes. The apparatus according to any one of claims 19 to 29, wherein a circuit to be output can be switched.
  31.  前記切換部は、第2外部回路と電気的に接続することができ、かつ、第2外部回路から入力される起電力を第1電解用電極および第2電解用電極に出力し電解液からそれぞれ第1気体および第2気体を発生させる回路に切り換えることができる請求項30に記載の装置。 The switching unit can be electrically connected to the second external circuit, and outputs an electromotive force input from the second external circuit to the first electrolysis electrode and the second electrolysis electrode from the electrolyte. 31. The apparatus of claim 30, wherein the apparatus can be switched to a circuit that generates a first gas and a second gas.
  32.  前記光電変換部は、受光することによりその受光面と裏面との間に起電力が生じ、
    第1電解用電極は、前記光電変換部の裏面と電気的に接続することができるように設けられ、
    第2電解用電極は、前記光電変換部の受光面と電気的に接続することができるように設けられた請求項1~16、19~31のいずれか1つに記載の装置。
    The photoelectric conversion unit generates an electromotive force between the light receiving surface and the back surface by receiving light,
    The first electrolysis electrode is provided so as to be electrically connected to the back surface of the photoelectric conversion unit,
    The apparatus according to any one of claims 1 to 16, and 19 to 31, wherein the second electrolysis electrode is provided so as to be electrically connected to a light receiving surface of the photoelectric conversion unit.
  33.  第2電解用電極と前記光電変換部の裏面との間に絶縁部をさらに備える請求項32に記載の装置。 The apparatus according to claim 32, further comprising an insulating part between the second electrolysis electrode and the back surface of the photoelectric conversion part.
  34.  前記光電変換部の受光面に接触する第1電極をさらに備える請求項33に記載の装置。 34. The apparatus according to claim 33, further comprising a first electrode that contacts a light receiving surface of the photoelectric conversion unit.
  35.  第1電極と第2電解用電極とを電気的に接続する第1導電部をさらに備える請求項34に記載の装置。 The apparatus according to claim 34, further comprising a first conductive portion that electrically connects the first electrode and the second electrolysis electrode.
  36.  第1導電部は、前記光電変換部を貫通するコンタクトホールに設けられた請求項35に記載の装置。 36. The apparatus according to claim 35, wherein the first conductive part is provided in a contact hole penetrating the photoelectric conversion part.
  37.  前記絶縁部は、前記光電変換部の側面を覆うように設けられ、
    第1導電部は、前記絶縁部の一部であり前記光電変換部の側面を覆う部分の上に設けられた請求項35に記載の装置。
    The insulating part is provided so as to cover a side surface of the photoelectric conversion part,
    36. The apparatus according to claim 35, wherein the first conductive portion is provided on a portion that is a part of the insulating portion and covers a side surface of the photoelectric conversion portion.
  38.  前記絶縁部は、前記光電変換部の側面を覆うように設けられ、
    第2電解用電極は、前記絶縁部の一部であり前記光電変換部の側面を覆う部分の上に設けられ、かつ、第1電極と接触する請求項34に記載の装置。
    The insulating part is provided so as to cover a side surface of the photoelectric conversion part,
    35. The apparatus according to claim 34, wherein the second electrolysis electrode is provided on a portion that is a part of the insulating portion and covers a side surface of the photoelectric conversion portion, and is in contact with the first electrode.
  39.  前記光電変換部は、p型半導体層、i型半導体層およびn型半導体層からなる光電変換層を有する請求項32~38のいずれか1つに記載の装置。 The apparatus according to any one of claims 32 to 38, wherein the photoelectric conversion unit includes a photoelectric conversion layer including a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer.
  40.  前記光電変換部は、受光することにより前記光電変換部の裏面の第1および第2区域間に電位差が生じ、
    第1区域は、第1電解用電極と電気的に接続するように設けられ、第2区域は、第2電解用電極と電気的に接続するように設けられた請求項1~16、19~31のいずれか1つに記載の装置。
    The photoelectric conversion unit generates a potential difference between the first and second areas on the back surface of the photoelectric conversion unit by receiving light,
    The first section is provided so as to be electrically connected to the first electrolysis electrode, and the second section is provided so as to be electrically connected to the second electrolysis electrode. 31. The device according to any one of 31.
  41.  第1および第2電解用電極と前記光電変換部の裏面との間に絶縁部をさらに備え、
    前記絶縁部は、第1区域上および第2区域上に開口を有する請求項40に記載の装置。
    An insulating part is further provided between the first and second electrolysis electrodes and the back surface of the photoelectric conversion part,
    41. The apparatus of claim 40, wherein the insulation has openings on the first area and the second area.
  42.  前記光電変換部は、n型半導体部およびp型半導体部を有する少なくとも1つの半導体材料からなり、
    第1および第2区域のうち、一方は前記n型半導体部の一部であり、他方は前記p型半導体部の一部である請求項40または41に記載の装置。
    The photoelectric conversion part is made of at least one semiconductor material having an n-type semiconductor part and a p-type semiconductor part,
    42. The device according to claim 40 or 41, wherein one of the first and second areas is a part of the n-type semiconductor part and the other is a part of the p-type semiconductor part.
  43.  透光性基板をさらに備え、
    前記光電変換部は、前記透光性基板の上に設けられた請求項32~42のいずれか1つに記載の装置。
    A translucent substrate;
    The apparatus according to any one of claims 32 to 42, wherein the photoelectric conversion unit is provided on the translucent substrate.
  44.  前記光電変換部は、直列接続した複数の光電変換層を含み、
    前記複数の光電変換層は、受光することにより生じる起電力を第1電解用電極および第2電解用電極に供給するように設けられた請求項32~43のいずれか1つに記載の装置。
    The photoelectric conversion unit includes a plurality of photoelectric conversion layers connected in series,
    The device according to any one of claims 32 to 43, wherein the plurality of photoelectric conversion layers are provided so as to supply an electromotive force generated by receiving light to the first electrolysis electrode and the second electrolysis electrode.
  45.  第1電解用電極および第2電解用電極のうち、一方は電解液からH2を発生させる水素発生部であり、他方は電解液からO2を発生させる酸素発生部であり、
    前記水素発生部および前記酸素発生部は、それぞれ電解液からH2が発生する反応の触媒である水素発生触媒および電解液からO2が発生する反応の触媒である酸素発生触媒を含む請求項32~44のいずれか1つに記載の装置。
    Of the first electrolysis electrode and the second electrolysis electrode, one is a hydrogen generation unit that generates H 2 from the electrolytic solution, and the other is an oxygen generation unit that generates O 2 from the electrolytic solution,
    The hydrogen generation part and the oxygen generation part include a hydrogen generation catalyst that is a catalyst for a reaction that generates H 2 from an electrolytic solution and an oxygen generation catalyst that is a catalyst for a reaction that generates O 2 from an electrolytic solution, respectively. 45. Apparatus according to any one of.
  46.  前記水素発生部および前記酸素発生部のうち少なくとも一方は、前記光電変換部の受光面の面積より大きい触媒表面積を有する請求項45に記載の装置。 46. The apparatus according to claim 45, wherein at least one of the hydrogen generation unit and the oxygen generation unit has a catalyst surface area larger than an area of a light receiving surface of the photoelectric conversion unit.
  47.  前記水素発生部および前記酸素発生部のうち少なくとも一方は、触媒が担持された多孔質の導電体である請求項45または46に記載の装置。 47. The apparatus according to claim 45 or 46, wherein at least one of the hydrogen generator and the oxygen generator is a porous conductor carrying a catalyst.
  48.  前記水素発生触媒は、Pt、Ir、Ru、Pd、Rh、Au、Fe、NiおよびSeのうち少なくとも1つを含む請求項45~47のいずれか1つに記載の装置。 The apparatus according to any one of claims 45 to 47, wherein the hydrogen generation catalyst includes at least one of Pt, Ir, Ru, Pd, Rh, Au, Fe, Ni, and Se.
  49.  前記酸素発生触媒は、Mn、Ca、Zn、CoおよびIrのうち少なくとも1つを含む請求項45~48のいずれか1つに記載の装置。 The apparatus according to any one of claims 45 to 48, wherein the oxygen generation catalyst includes at least one of Mn, Ca, Zn, Co, and Ir.
  50.  透光性基板と、電解液室と、第1電解用電極および第2電解用電極の上に設けられた背面基板とをさらに備え、
    前記光電変換部は、前記透光性基板の上に設けられ、
    前記電解液室は、第1電解用電極および第2電解用電極と前記背面基板との間に設けられた請求項32~49のいずれか1つに記載の装置。
    A translucent substrate, an electrolyte chamber, and a back substrate provided on the first electrolysis electrode and the second electrolysis electrode;
    The photoelectric conversion unit is provided on the translucent substrate,
    The apparatus according to any one of claims 32 to 49, wherein the electrolyte chamber is provided between the first and second electrolysis electrodes and the back substrate.
  51.  第1電解用電極と前記背面基板との間の電解液室および第2電解用電極と前記背面基板との間の電解液室とを仕切る隔壁をさらに備える請求項50に記載の装置。 51. The apparatus according to claim 50, further comprising a partition partitioning the electrolyte chamber between the first electrolysis electrode and the back substrate and the electrolyte chamber between the second electrolysis electrode and the back substrate.
  52.  前記隔壁は、イオン交換体を含む請求項51に記載の装置。 The apparatus according to claim 51, wherein the partition wall includes an ion exchanger.
  53.  請求項1~52のいずれか1つに記載の水素製造装置を前記光電変換部の受光面が水平面に対し傾斜するように設置し、
    前記水素製造装置の下部から前記水素製造装置に電解液を導入し、太陽光を前記光電変換部の受光面に入射させることにより第1電解用電極および第2電解用電極からそれぞれ第1気体および第2気体を発生させ、前記水素製造装置の上部から第1気体および第2気体を排出する水素製造方法。
    The hydrogen production apparatus according to any one of claims 1 to 52 is installed such that a light receiving surface of the photoelectric conversion unit is inclined with respect to a horizontal plane,
    An electrolyte is introduced into the hydrogen production apparatus from the lower part of the hydrogen production apparatus, and sunlight is incident on the light receiving surface of the photoelectric conversion unit, whereby the first gas and the second electrolysis electrode are respectively supplied from the first gas and the second electrolysis electrode. A hydrogen production method in which a second gas is generated and the first gas and the second gas are discharged from an upper part of the hydrogen production apparatus.
PCT/JP2012/050386 2011-02-25 2012-01-11 Hydrogen production device and hydrogen production method WO2012114787A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011040639A JP5802403B2 (en) 2011-02-25 2011-02-25 Hydrogen production apparatus and hydrogen production method
JP2011-040628 2011-02-25
JP2011-040639 2011-02-25
JP2011040628A JP5785736B2 (en) 2011-02-25 2011-02-25 Hydrogen production apparatus and hydrogen production method

Publications (1)

Publication Number Publication Date
WO2012114787A1 true WO2012114787A1 (en) 2012-08-30

Family

ID=46720577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050386 WO2012114787A1 (en) 2011-02-25 2012-01-11 Hydrogen production device and hydrogen production method

Country Status (1)

Country Link
WO (1) WO2012114787A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774052B2 (en) 2013-02-21 2017-09-26 Panasonic Intellectual Property Management Co., Ltd. Hydrogen producing device and hydrogen producing unit and energy system including the hydrogen producing device and the hydrogen producing unit
US10597787B2 (en) 2014-05-20 2020-03-24 Kabushiki Kaisha Toshiba Electrochemical reaction device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111202A (en) * 1980-09-08 1982-07-10 Engelhard Min & Chem Simultaneous manufacture of hydrogen and oxygen from water
JPH03121915U (en) * 1990-03-27 1991-12-12
JP2003096587A (en) * 2001-09-21 2003-04-03 Mitsubishi Heavy Ind Ltd Gas generator
JP2004197167A (en) * 2002-12-18 2004-07-15 Honda Motor Co Ltd Hydrogen producing apparatus
JP2008507464A (en) * 2004-05-18 2008-03-13 ハイドロジェン ソーラー リミテッド Photoelectrochemical system and method thereof
JP2009193887A (en) * 2008-02-15 2009-08-27 Sign Create:Kk Lighting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111202A (en) * 1980-09-08 1982-07-10 Engelhard Min & Chem Simultaneous manufacture of hydrogen and oxygen from water
JPH03121915U (en) * 1990-03-27 1991-12-12
JP2003096587A (en) * 2001-09-21 2003-04-03 Mitsubishi Heavy Ind Ltd Gas generator
JP2004197167A (en) * 2002-12-18 2004-07-15 Honda Motor Co Ltd Hydrogen producing apparatus
JP2008507464A (en) * 2004-05-18 2008-03-13 ハイドロジェン ソーラー リミテッド Photoelectrochemical system and method thereof
JP2009193887A (en) * 2008-02-15 2009-08-27 Sign Create:Kk Lighting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774052B2 (en) 2013-02-21 2017-09-26 Panasonic Intellectual Property Management Co., Ltd. Hydrogen producing device and hydrogen producing unit and energy system including the hydrogen producing device and the hydrogen producing unit
US10597787B2 (en) 2014-05-20 2020-03-24 Kabushiki Kaisha Toshiba Electrochemical reaction device

Similar Documents

Publication Publication Date Title
JP4594438B1 (en) Hydrogen production apparatus and hydrogen production method
JP5663254B2 (en) Hydrogen production apparatus and hydrogen production method
JP5792560B2 (en) Power generation system
JP5802374B2 (en) Solar cell integrated gas production system
JP5676218B2 (en) Gas production apparatus, gas production method, and gas production apparatus array
JP5802403B2 (en) Hydrogen production apparatus and hydrogen production method
JP5860636B2 (en) Anion exchange membrane fuel cell system
JP5785736B2 (en) Hydrogen production apparatus and hydrogen production method
JP5427653B2 (en) Gas production apparatus and gas production method
JP5719576B2 (en) Gas production apparatus and gas production method
WO2012114787A1 (en) Hydrogen production device and hydrogen production method
WO2013011843A1 (en) Electrolytic cell, gas producing device, and gas producing method
WO2013073271A1 (en) Electricity generating device
JP2013105631A (en) Power generation apparatus
JP2013105632A (en) Power generation apparatus
JP2012021197A (en) Device for producing gas
JP2012094684A (en) Photovoltaic power generation system
JP2012107278A (en) Gas producing device
JP2011116625A (en) Hydrogen producing apparatus and hydrogen producing method
JP2011236466A (en) Apparatus for manufacturing gas
JP2012094686A (en) Photovoltaic power generation system
JP2011162428A (en) Apparatus and method for producing hydrogen
JP2013105630A (en) Power generation apparatus
JP2012094685A (en) Photovoltaic power generation system and control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12750081

Country of ref document: EP

Kind code of ref document: A1