WO2012114455A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2012114455A1
WO2012114455A1 PCT/JP2011/053841 JP2011053841W WO2012114455A1 WO 2012114455 A1 WO2012114455 A1 WO 2012114455A1 JP 2011053841 W JP2011053841 W JP 2011053841W WO 2012114455 A1 WO2012114455 A1 WO 2012114455A1
Authority
WO
WIPO (PCT)
Prior art keywords
bypass
valve
suction
discharge
passage
Prior art date
Application number
PCT/JP2011/053841
Other languages
French (fr)
Japanese (ja)
Inventor
遼太 飯島
小山 昌喜
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013500751A priority Critical patent/JP5489142B2/en
Priority to EP11859605.5A priority patent/EP2679823A1/en
Priority to PCT/JP2011/053841 priority patent/WO2012114455A1/en
Publication of WO2012114455A1 publication Critical patent/WO2012114455A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present invention relates to a scroll compressor, and is particularly suitable for a scroll compressor that can handle a wide range operation from a high load to a low load.
  • scroll compressors used in air conditioners and water heaters are required to be capable of capacity control over a wide range with a single unit. Yes.
  • the room temperature is generally high at the start of operation, and thus it is necessary to operate rapidly.
  • the inverter control is used to perform high-speed operation (high-speed rotation) with a large capacity at the start, and when the room cools down to some extent and shifts to a steady operation state, the low-speed operation (low-speed rotation) is performed with a small capacity.
  • this low-speed operation in the steady-state operation state has a very low rotational speed, especially assuming that it is used in an air conditioner installed in a building where high heat insulation is deployed, especially in recent energy savings. Driving will be performed.
  • capacity control is performed while maintaining a certain rotational speed. For example, when the room is cooled to some extent, the scroll compressor is stopped and restarted when the room temperature rises. The driving pattern is repeated.
  • Patent Document 1 discloses that a part of the structure of a scroll compressor is improved to perform control to make the discharge amount variable while keeping the rotation speed constant.
  • a bypass passage for bypassing refrigerant gas in the middle of compression to the suction side is provided, and an electromagnetic valve for opening and closing the bypass passage is further provided.
  • the capacity is controlled by discharging the refrigerant gas in the middle to the suction side, and the discharge amount is made variable.
  • the compressed refrigerant can be discharged to the discharge side only after the compression chamber and the bypass passage are first raised from the suction pressure to the discharge pressure.
  • a time delay occurs in discharging the refrigerant to the discharge side, and the refrigerant circulation amount is reduced.
  • the decrease in the refrigerant circulation amount results in a decrease in the work of compression with respect to the power consumption of the compressor, and the compressor efficiency decreases.
  • An object of the present invention is to obtain a scroll compressor capable of improving the discharge delay of the refrigerant to the discharge side when switching from the capacity control operation to the normal operation and realizing high-efficiency capacity control even under low load operation conditions. .
  • the present invention forms a compression chamber by engaging a fixed scroll and a turning scroll provided in an airtight container with each other, and the fixed scroll has a discharge port formed at the center side. And a release port for communicating the compression chamber and the discharge side on the outer peripheral side of the discharge port, and a release valve for preventing a back flow from the discharge side to the compression chamber through the release port,
  • the scroll compressor having a suction chamber and a suction passage communicating with the suction chamber on the outer peripheral side, a bypass passage formed in the fixed scroll and communicating the discharge side with the suction chamber or the suction passage, and the bypass A bypass valve that opens and closes the passage, and is provided on the upstream side of the suction chamber or the portion of the suction passage where the bypass passage opens to prevent backflow to the upstream side Characterized in that it includes a suction check valve.
  • a scroll compressor capable of realizing high-efficiency capacity control even under low load operation conditions. Obtainable.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of a scroll compressor according to the present invention.
  • FIG. 3 is an enlarged view of a main part of FIG. 2, illustrating a setting range of a bypass passage.
  • FIG. 2 is a cross-sectional view of a main part for explaining the operation during normal operation (bypass valve closing) of the scroll compressor shown in FIG. 1.
  • FIG. 2 is a cross-sectional view of a main part for explaining the operation of the scroll compressor shown in FIG. 1 during bypass operation (bypass valve opening). The diagram explaining the opening / closing control of the bypass valve in Example 1 of this invention.
  • FIG. 10 is a bottom view of the fixed scroll of the scroll compressor shown in FIG. 9 and corresponds to FIG. 2.
  • FIG. 10 is a main part enlarged view showing the structure in the vicinity of the bypass valve in FIG. 9, illustrating the operation during normal operation.
  • FIG. 10 is an enlarged view of a main part showing the structure in the vicinity of the bypass valve in FIG. 9, illustrating a transition state from normal operation to bypass operation.
  • FIG. 10 is a main part enlarged view showing the structure in the vicinity of the bypass valve in FIG. 9, illustrating the operation during bypass operation.
  • FIG. 10 is a main part enlarged view showing the structure in the vicinity of the bypass valve in FIG. 9, illustrating a transition state from the bypass operation to the normal operation.
  • FIG. 1 is a longitudinal sectional view showing Embodiment 1 of the scroll compressor of the present invention.
  • the scroll compressor 1 houses a compression mechanism portion 3 configured by meshing a fixed scroll 5 and a turning scroll 6, an electric motor 4 that drives the compression mechanism portion 3, the compression mechanism portion 3, the electric motor 4, and the like. It is comprised with the airtight container 2 grade
  • the hermetic container 2 includes a cylindrical case 2a constituting the body, a lid chamber 2b welded to the upper portion of the case 2a, and a bottom chamber 2c welded to the lower portion of the case 2a. Yes.
  • a suction pipe 2d is attached to the lid chamber 2b, a discharge pipe 2e is attached to the case 2a, and the inside of the sealed container 2 is a discharge chamber 2f.
  • the compression mechanism section 3 is integrated with a fixed scroll 5 having a spiral wrap 5c standing on a mirror plate 5d, a turning scroll 6 having a spiral wrap 6a standing on a mirror plate 6b, and a bolt 8 integrated with the fixed scroll 5. And a frame 9 that supports the orbiting scroll 6.
  • Reference numeral 7 denotes a crankshaft rotatably supported by a main bearing 9 a provided on the frame 9.
  • An eccentric portion 7 b provided on an upper portion of the crankshaft 7 is a boss portion on the back surface of the orbiting scroll 6. It is connected with the turning scroll 6 through the turning bearing 6c provided in the.
  • An Oldham ring 12 is provided between the lower surface of the orbiting scroll 6 and the frame 9.
  • the Oldham ring 12 includes a groove formed on the lower surface of the orbiting scroll 6 and a groove formed on the frame 9. The revolving (turning) motion is received by receiving the eccentric rotation of the eccentric portion 7b of the crankshaft 7 without rotating the orbiting scroll 6.
  • the electric motor 4 includes a stator 4a and a rotor 4b.
  • the stator 4a is fixed to the hermetic container 2 by means such as press-fitting or welding, and the rotor 4b is fixed to the crankshaft 7 and the fixed It arrange
  • the crankshaft 7 is composed of a main shaft portion 7a and the eccentric portion 7b, and is supported by the main bearing 9a provided on the frame 9 and a sub-bearing 17 attached to the case 2a of the sealed container 2. ing.
  • the eccentric portion 7 b is formed integrally with the main shaft portion 7 a of the crankshaft 7 so as to be eccentric, and is inserted into and engaged with the orbiting bearing 6 c provided on the rear surface of the orbiting scroll 6.
  • the crankshaft 7 is driven by the electric motor 4 to cause the eccentric portion 7b to rotate eccentrically, thereby causing the orbiting scroll 6 to rotate.
  • an oil supply passage 7c for guiding the lubricating oil 13 to the main bearing 9a, the auxiliary bearing 17, the slewing bearing 6c and the like is formed.
  • the refrigerant gas of the refrigeration cycle is introduced into the compression chamber 11 defined by the fixed scroll 5 and the orbiting scroll 6 from the suction pipe 2d when the orbiting scroll 6 is orbited through the crankshaft 7 by the electric motor 4.
  • the compression chamber 11 moves toward the center of the spiral wraps 5c and 6a, the volume is reduced and the compression is performed.
  • the compressed refrigerant gas is discharged to the discharge chamber 2f in the hermetic container 2 from the discharge port 5e provided at the approximate center of the end plate 5d of the fixed scroll 5, and from the discharge pipe 2e to the outside (condenser side of the refrigeration cycle). It flows out.
  • FIGS. 2 is a bottom view of the fixed scroll 5 shown in FIG. 1, which also includes a lap 6a of the orbiting scroll 6,
  • FIG. 3 is an enlarged view of the vicinity of the suction chamber of FIG. 2, and
  • FIG. It is principal part sectional drawing which expands and shows the compressor mechanism part 3 vicinity of the scroll compressor shown.
  • the fixed scroll 5 is provided with a release port 5b for communicating the compression chamber 11 and the discharge chamber 2f on the discharge side, a suction chamber 10 and the discharge chamber 2f.
  • a bypass passage 5f for communication is formed, and the release port 5b is provided with a release valve 5a that is a check valve for preventing a back flow from the discharge side to the compression chamber 11 side.
  • a bypass valve 14 for opening and closing the bypass passage 5f is provided.
  • a suction passage 5h is provided on the upstream side of the suction chamber 10 with which the bypass passage 5f communicates, and a suction check valve 15 is provided on the upstream side (evaporator side) of the suction passage 5h.
  • the suction check valve 15 needs to be provided on the upstream side of the suction chamber 10 or the suction passage 5h where the bypass passage 5f is open, and prevents backflow to the upstream side (evaporator side).
  • FIG. 3 showing an enlarged view of the vicinity of the suction chamber of the fixed scroll 5 shows the wrap position 6a1 of the wrap 6a of the orbiting scroll 6 at the moment when the outer line side compression chamber 21 completes the suction, and the inner line side compression chamber 22 also sucks.
  • the lap position 6a2 at the moment of completing is virtually overlapped.
  • the opening on the suction chamber side of the bypass passage 5f is formed in a suction space shown by a grid in FIG. 3, that is, a compression chamber after the outer line side compression chamber 21 and the inner line side compression chamber 22 have completed the suction. It is preferable not to communicate with each other and to communicate with the suction space at all times, or at a position where the compression chamber communicates at least immediately before completing the suction.
  • this dug portion It is desirable to provide an opening of the bypass passage 5f in A.
  • the bypass valve 14 includes a valve body 14b for opening and closing the bypass passage 5f, and a space 14a for operating the valve body 14b provided on the back side of the valve body 14b (opposite to the fixed scroll 5).
  • a spring 14c provided in the space 14a is provided.
  • the space 14a is provided with a communication pipe 23 so as to communicate with the suction pipe 2d (suction side) and the discharge pipe 2e (discharge side). Further, a portion of the communication pipe 23 outside the sealed container 2 is provided. Is provided with a three-way valve 16. By controlling the three-way valve 16, a refrigerant having a suction pressure or a discharge pressure can be selectively switched and introduced into the space 14a on the back surface of the valve body 14b at an arbitrary timing.
  • valve body 14b If the refrigerant having the suction pressure is introduced into the space 14a, the valve body 14b is operated to open the bypass passage 5f by the pressure difference acting on the valve body 14b and the spring 14c, and if the refrigerant having the discharge pressure is introduced, The valve body 14b is configured to close the bypass passage 5f.
  • connection destination of the communication pipe 23 is switched by the three-way valve 16.
  • the present invention is not limited to this, and the connection destination of the space 14a is switched to the suction side or the discharge side of the compressor.
  • the bypass valve 14 may be opened and closed by introducing a refrigerant having a suction pressure or a discharge pressure into the space 14a.
  • a plurality of electromagnetic valves may be used.
  • FIG. 4 shows a state during normal operation (bypass valve closed) of the scroll compressor 1, that is, the space 14c communicates with the discharge pipe 2e and is filled with the refrigerant having the discharge pressure, and the bypass valve 14 is closed. It is a figure of a state.
  • the arrows in FIG. 4 indicate the flow of the refrigerant.
  • the refrigerant passes through the suction pipe 2d and is sucked from the suction chamber 10 into the compression chamber 11 formed by the meshing of the fixed scroll 5 and the orbiting scroll 6, and the compression chamber 11 is spiral.
  • the refrigerant is compressed and discharged from the discharge port 5e to the discharge chamber 2f.
  • the refrigerant in the discharge chamber 2f is further discharged out of the compressor (outside the sealed container) through the discharge pipe 2e.
  • FIG. 5 shows a state during bypass operation (bypass valve open) of the scroll compressor, that is, a state in which the space 14c communicates with the suction pipe 2d and is filled with the refrigerant having the suction pressure, and the bypass valve 14 is opened.
  • FIG. The arrows in FIG. 5 indicate the flow of the refrigerant.
  • the discharge chamber 2f and the suction chamber 10 communicate with each other through the bypass passage 5f. Since the suction chamber 10 is at the suction pressure when the bypass valve 14 is closed, the refrigerant in the discharge chamber 2f flows into the suction chamber 10 by opening the valve, and the suction chamber 10 becomes the discharge pressure.
  • the suction check valve 15 is provided between the suction chamber 10 and the suction pipe 2d, when the refrigerant in the discharge chamber 2f flows into the suction chamber 10, the suction check valve 15 The valve is closed by the pressure difference between the front and rear, and the suction passage 5h is closed. Therefore, the refrigerant flowing into the suction chamber 10 from the discharge chamber 2f can be prevented from flowing back from the suction chamber 10 toward the suction pipe 2d, and the suction chamber 10 becomes discharge pressure.
  • the release valve 5a is opened just by slightly compressing the refrigerant in the compression chamber 11, and the refrigerant in the compression chamber is discharged from the release port 5b.
  • a flow path that is bypassed to the discharge chamber 2f is formed.
  • the refrigerant discharged into the discharge chamber 2f forms a bypass circulation path that returns to the suction chamber 10 through the bypass passage 5f again. Note that during this bypass operation, the refrigerant is hardly compressed and discharged through the release port 5b to the discharge chamber 2f, so that the power for compressing the refrigerant is small.
  • FIG. 6 is a diagram illustrating opening / closing control of the bypass valve 14 (time change of the bypass valve opening) when capacity control is performed in the scroll compressor of the present embodiment.
  • the bypass valve 14 repeats opening and closing at a constant cycle. Thereby, the above-mentioned normal operation and bypass operation are periodically switched, and the average discharge flow rate of the compressed refrigerant can be reduced while suppressing the compression power to the necessary minimum.
  • the opening / closing control of the bypass valve 14 in the present embodiment is configured such that an arbitrary capacity can be set steplessly between 0 and 100% by making the opening / closing time ratio in one opening / closing cycle variable.
  • an arbitrary capacity can be set steplessly between 0 and 100% by making the opening / closing time ratio in one opening / closing cycle variable.
  • the opening / closing cycle may be constant, but it is preferable to make the length of the cycle variable according to the opening / closing time ratio.
  • the low pressure bypass valve (156) is opened with the high pressure bypass valve (157) closed.
  • the space provided in the upper part of the fixed scroll (bypass mechanism (140) for bypassing the fluid existing in the intermediate region between the suction side and the discharge side) becomes the suction pressure by being connected to the suction side
  • the bypass valve (146) is opened by the differential pressure, and the refrigerant in the compression chamber is discharged from the bypass passage to the suction side while being hardly compressed.
  • the compression chamber is almost filled with the suction pressure during the bypass operation.
  • the present embodiment is greatly different in that the suction chamber 10 and the compression chamber 11 are substantially filled with the discharge pressure during the bypass operation.
  • the scroll compressor that performs the operation of bypassing the refrigerant (bypass operation)
  • FIG. 7 is a diagram for explaining the relationship between the bypass valve opening control, the discharge flow rate of the compressed refrigerant, the compressor input, and the pressure in the conventional example.
  • bypass pressure is the pressure in a space where the pressure changes during bypass operation (hereinafter referred to as bypass space).
  • bypass space the pressure in a space where the pressure changes during bypass operation.
  • the bypass mechanism (140 ) And the pressure of the bypass passage BH.
  • the horizontal axis indicates the passage of time, and the relationship between the discharge flow rate of the compressed refrigerant, the compressor input, and the pressure with respect to the operation of the bypass valve will be described in time series along the passage of time.
  • the compression chamber communicates with the suction side and is filled with the refrigerant having the suction pressure. Moreover, since the said bypass space is also connected with the suction side, it becomes a suction pressure.
  • the low pressure bypass valve When a certain time has passed and the normal operation is resumed, the low pressure bypass valve is closed and compression is started. At this time, the pressure in the bypass space is reduced to the suction pressure. Necessary. For this reason, it takes time to compress and discharge the refrigerant to a pressure higher than the pressure on the discharge side, and there is a time delay between closing the low-pressure bypass valve and discharging the refrigerant. On the other hand, the discharge flow rate is reduced. That is, the conventional one has a problem that causes a reduction in compressor efficiency during capacity control operation.
  • FIG. 8 is a diagram for explaining the relationship between the bypass valve opening degree control, the discharge flow rate of the compressed refrigerant, the compressor input, and the pressure in this embodiment.
  • the bypass space is the suction chamber 10, the compression chamber 11, and the bypass passage 5f
  • the “bypass pressure” in FIG. 8 is the pressure of the suction chamber 10 and the bypass passage 5f.
  • FIG. 8 The diagram of FIG. 8 will be described in time series.
  • the refrigerant is normally compressed and discharged, so that a necessary discharge flow rate is obtained.
  • a normal compressor input is required as power for compressing the refrigerant.
  • the bypass pressure (the pressure in the bypass space) is the suction pressure.
  • the suction chamber 10 communicates with the discharge chamber 2f, the suction chamber 10 and the bypass passage 5f are filled with the discharge pressure, and the compression chamber 11 also becomes the discharge pressure.
  • the present embodiment is characterized in that the bypass pressure becomes substantially the discharge pressure during the bypass operation.
  • the compression chamber 11 When a predetermined time has passed and the bypass valve 14 is closed and returns to normal operation, the compression chamber 11 is already filled with the refrigerant at the discharge pressure, so that there is no need for recompression and the refrigerant is immediately discharged.
  • the normal discharge amount can be secured. That is, according to the present embodiment, it takes no time to compress and discharge the refrigerant to a pressure higher than the discharge side, and the discharge delay can be eliminated. It can prevent that the flow rate decreases and the compressor efficiency decreases. Accordingly, since the discharge amount can be increased as compared with the conventional example, the compressor efficiency during the capacity control operation can be improved.
  • the capacity control according to the present embodiment switches between normal operation and bypass operation at a constant time ratio, the capacity can be varied steplessly in a wide range of 0 to 100% by adjusting the time ratio.
  • the scroll compressor can be used at a rotational speed that can be operated with high efficiency and high reliability.
  • FIGS. 9 to 15 the same reference numerals as those in FIGS. 1 to 8 denote the same or corresponding parts.
  • 9 is a cross-sectional view of the vicinity of the compression mechanism portion of the scroll compressor according to the second embodiment of the present invention
  • FIG. 10 is a bottom view of the fixed scroll of the scroll compressor shown in FIG. It is a figure.
  • bypass valve 14 is controlled to be opened and closed using the pressure of the refrigerant flowing through the suction pipe 2d and the discharge pipe 2e.
  • the second embodiment uses the pressure change in the suction chamber 10.
  • the bypass valve 14 is controlled to open and close.
  • the fixed scroll 5 is provided with a bypass passage 5f that connects the suction chamber 10 and the discharge chamber 2f, and the bypass passage 5f has a discharge chamber side.
  • a bypass valve 14 is provided at the opening.
  • the bypass valve 14 includes a valve body 14b for opening and closing the bypass passage 5f, and a space 14a for operating the valve body 14b provided on the back side of the valve body 14b (the side opposite to the fixed scroll 5).
  • a spring 14c provided in the space 14a is provided.
  • the space 14 a is configured to communicate with the suction chamber 10 through a switch valve passage 5 g formed in the fixed scroll 5.
  • a switch valve 18 for opening and closing the opening is provided at the opening of the switch valve passage 5g on the discharge chamber 2f side.
  • the space 14a becomes the suction chamber.
  • the switch valve 18 is closed, the space 14a is configured so that the communication with the suction chamber 10 is blocked.
  • the switch valve 18 includes a valve body 18a for opening and closing the switch valve passage 5g, a spring 18b for pressing the valve body 18a toward the switch valve passage 5g, and a coil 18c for opening and closing the valve body 18a. ing.
  • the switch valve passage 5g is used only for inflow of refrigerant into the space 14a or outflow from the space 14a of the bypass valve 14 having a small volume, the passage area can be very small, and the valve body 18a. Since the pressure of the refrigerant is small, it is possible to easily open and close the valve body 18a.
  • the bypass passage 5f is provided at the same position as that of the first embodiment shown in FIG. 2, and the switch valve passage 5g is provided in the bypass passage 5f shown in FIG. It is provided in the same range as the connection destination range of the suction chamber side opening.
  • the switch valve passage 5g is connected to a space 14a in the bypass valve 14, and the switch valve can be opened and closed by turning the current to the coil of the switch valve 18 on and off. , Non-communication can be switched arbitrarily. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • FIGS. 11 to 14 are enlarged views showing the structure in the vicinity of the bypass valve in FIG. 9.
  • FIG. 11 is a state during normal operation
  • FIG. 12 is a transition state from normal operation to bypass operation
  • FIG. 13 is a state during bypass operation.
  • FIG. 14 is a diagram for explaining a transition state from the bypass operation to the normal operation.
  • the bypass valve 14 and the switch valve 18 are in the state shown in FIG. That is, since the pressure in the compressor is uniform at the time of start-up, the valve body 18a is pushed toward the fixed scroll 5 by the force of the spring 18b and is closed by closing the switch valve passage 5g. Since the pressure in the suction chamber decreases with the operation of the compressor, the bypass valve 14 is kept closed by the pressure difference between the space 14a on the back side and the suction chamber 10 side.
  • FIG. 15 is a diagram for explaining the relationship between the change in the opening degree of the bypass valve 14 with respect to the opening degree control of the switch valve 18, the pressure change in the space 14 a of the bypass valve 14, and the pressure change in the suction chamber 10 in the second embodiment. It is.
  • the scroll compressor capacity control operation can be performed by repeating the above operation. That is, when the switch valve 18 is energized and the switch valve is opened for a short time, the pressure in the space 14a of the bypass valve 14 changes from the discharge pressure to the suction pressure, and thereby the bypass valve 14 is opened, so that the suction chamber 10 becomes the discharge pressure.
  • Bypass operation is performed.
  • the switch valve 18 is energized again and the switch valve is opened for a short time
  • the pressure in the space 14a of the bypass valve 14 changes from the suction pressure to the discharge pressure, whereby the bypass valve 14 is closed and the suction chamber 10 becomes the suction pressure.
  • the duty capacity control operation for controlling the normal operation time and the bypass operation time becomes possible. Therefore, also in the second embodiment, by controlling the ratio (duty ratio) between the normal operation time and the bypass operation time, the discharge amount can be freely controlled and the capacity control operation can be performed.
  • the suction chamber 10 can be kept at the discharge pressure during the bypass operation, the discharge can be started immediately when the bypass valve 14 is closed when switching to the normal operation.
  • the discharge delay to the discharge side of the refrigerant at the time of switching to can be improved.
  • bypass valve 14 and the switch valve 18 necessary for the bypass operation can be provided in the sealed container 2. it can. Therefore, structural parts such as the communication pipe 23 and the three-way valve 16 provided outside the hermetic container 2 as shown in the first embodiment are not necessary, and an effect of being compact and inexpensive can be obtained.

Abstract

In a scroll compressor, a compression chamber (11) is formed by meshing together a fixed scroll (5) and an orbiting scroll (6). A discharge slot (5e) is formed in the middle section of the fixed scroll, and in the external periphery of the discharge slot, the fixed scroll has a release port (5b) for communicating the compression chamber and a discharge side, and a release valve (5a) for preventing backflow from the release port to the compression chamber. An intake chamber (10) and an intake passage (5h) are provided in the external periphery of the fixed scroll. A bypass passage (5f) for communicating the discharge side and the intake chamber or the intake passage is formed in the fixed scroll, and a bypass valve (14) is provided for opening and closing the bypass passage. Farther upstream than the portion of the intake chamber or the intake passage where the bypass passage opens, an intake non-return valve (15) is provided for preventing upstream backflow. Thereby, improvement can be seen in the discharge lag of refrigerant to the discharge side during a switch from capacity control operation to normal operation, and highly efficient capacity control can be achieved even in low-load operating conditions.

Description

スクロール圧縮機Scroll compressor
 本発明は、スクロール圧縮機に関し、特に高負荷から低負荷までのワイドレンジな運転に対応可能なスクロール圧縮機に好適なものである。 The present invention relates to a scroll compressor, and is particularly suitable for a scroll compressor that can handle a wide range operation from a high load to a low load.
 近年、一般住宅において消費されるエネルギー、即ち、空調機で消費されるエネルギーや給湯機で消費されるエネルギーを低減する観点から、建物の断熱材に高断熱材を用いたり、高気密化して熱負荷を低減したり、或いは太陽熱利用などにより消費エネルギー低減の傾向が強まっている。 In recent years, from the viewpoint of reducing the energy consumed in ordinary houses, that is, the energy consumed by air conditioners and the energy consumed by hot water heaters, high heat insulating materials are used as heat insulating materials for buildings, or heat is increased by making them highly airtight. There is an increasing tendency to reduce energy consumption by reducing the load or using solar heat.
 このような住宅の高断熱化や高気密化などによる熱負荷の低下に対して、空調機や給湯機で用いられているスクロール圧縮機には、一台で広範囲に容量制御できることが要求されている。例えば、空調機における冷房運転では、運転開始時に室内の温度が高くなっているのが一般的であるため、急速に運転する必要がある。 In order to reduce the heat load due to such high heat insulation and high airtightness in houses, scroll compressors used in air conditioners and water heaters are required to be capable of capacity control over a wide range with a single unit. Yes. For example, in a cooling operation in an air conditioner, the room temperature is generally high at the start of operation, and thus it is necessary to operate rapidly.
 こうした場合、インバータ制御を用いて、始動時には大容量で高速運転(高速回転)し、室内が或る程度冷えて定常運転状態に移行すると、小容量で低速運転(低速回転)するようにしていた。しかし、この定常運転状態での低速運転は、特に最近の省エネルギー化を実施し、高断熱材が配備された建物に設備された空調機で使用される場合を想定すると、非常に低い回転速度で運転が行われることになる。 In such a case, the inverter control is used to perform high-speed operation (high-speed rotation) with a large capacity at the start, and when the room cools down to some extent and shifts to a steady operation state, the low-speed operation (low-speed rotation) is performed with a small capacity. . However, this low-speed operation in the steady-state operation state has a very low rotational speed, especially assuming that it is used in an air conditioner installed in a building where high heat insulation is deployed, especially in recent energy savings. Driving will be performed.
 ところが、スクロール圧縮機で過度に低速回転を行うと、インバータ効率や圧縮機効率が低下する上、構造的にすべり軸受での油膜破断が生じて軸受が損傷し易くなる。また、低速回転であるが故にクランクシャフトを回転させるためのモータ駆動が円滑に行われなくなる等、安定した運転動作も行われ難くなる。 However, if the scroll compressor is rotated at an excessively low speed, the inverter efficiency and the compressor efficiency are lowered, and the oil film breakage in the slide bearing is structurally caused to easily damage the bearing. Further, since the motor is not smoothly driven to rotate the crankshaft because of the low-speed rotation, it is difficult to perform a stable driving operation.
 そこで、一般に小容量運転時には、回転速度を或る程度維持して容量制御を行うようにし、例えば室内が或る程度冷えたらスクロール圧縮機を停止し、室内の温度が上昇した場合に再び始動する運転パターンを繰り返すようにしている。 Therefore, in general, during small capacity operation, capacity control is performed while maintaining a certain rotational speed. For example, when the room is cooled to some extent, the scroll compressor is stopped and restarted when the room temperature rises. The driving pattern is repeated.
 しかし、こうした小容量運転時に停止・始動を繰り返す運転パターンは効率が悪いばかりでなく、快適な空気調和を実施できないため、容量制御を工夫する技術が提案されている。 However, such an operation pattern that repeatedly stops and starts during small-capacity operation is not only inefficient, but also cannot implement comfortable air conditioning, and thus a technique for devising capacity control has been proposed.
 例えば、スクロール圧縮機の一部の構造を改良し、回転速度を一定にして吐出量を可変にする制御を行うものが特許文献1などに記載されている。この特許文献1に記載されているものでは、圧縮途中の冷媒ガスを吸込側にバイパスさせるバイパス通路を設け、更にこのバイパス通路を開閉する電磁弁を設けて、この電磁弁を開くことにより、圧縮途中の冷媒ガスを吸込側に排出することで容量制御をし、吐出量を可変するようにしている。 For example, Patent Document 1 discloses that a part of the structure of a scroll compressor is improved to perform control to make the discharge amount variable while keeping the rotation speed constant. In what is described in Patent Document 1, a bypass passage for bypassing refrigerant gas in the middle of compression to the suction side is provided, and an electromagnetic valve for opening and closing the bypass passage is further provided. The capacity is controlled by discharging the refrigerant gas in the middle to the suction side, and the discharge amount is made variable.
特開2004-143951号公報JP 2004-143951 A
 上記特許文献1に記載のものにおいて、前記パイパス通路の電磁弁を開いて容量制御を行おうとする場合、圧縮途中の圧縮室及びバイパス通路が吸込側と連通して、吸込圧力の冷媒が循環することになり、この循環路は容量制御運転時には吸込圧になっている。一方、容量制御運転時にもスクロール圧縮機の吐出側(例えば吐出チャンバ内)は吐出圧力となっている。 In the above-mentioned Patent Document 1, when the volume control is performed by opening the solenoid valve of the bypass passage, the compression chamber in the middle of compression and the bypass passage communicate with the suction side, and the refrigerant at the suction pressure circulates. Therefore, this circulation path is at the suction pressure during the capacity control operation. On the other hand, the discharge side (for example, in the discharge chamber) of the scroll compressor is at the discharge pressure even during the capacity control operation.
 このため、容量制御運転から通常運転に切り替わる際には、まず圧縮室やバイパス通路などを、吸込圧力から吐出圧力まで上昇させた後でなければ、圧縮された冷媒を吐出側に吐出できないため、冷媒を吐出側に吐出させるのに時間遅れが生じてしまい、冷媒循環量が低下するという課題があった。冷媒循環量の低下は、圧縮機の消費電力に対する圧縮仕事量の低下となり、圧縮機効率が低下する。 For this reason, when switching from the capacity control operation to the normal operation, the compressed refrigerant can be discharged to the discharge side only after the compression chamber and the bypass passage are first raised from the suction pressure to the discharge pressure. There is a problem that a time delay occurs in discharging the refrigerant to the discharge side, and the refrigerant circulation amount is reduced. The decrease in the refrigerant circulation amount results in a decrease in the work of compression with respect to the power consumption of the compressor, and the compressor efficiency decreases.
 本発明の目的は、容量制御運転から通常運転に切り替わる際の冷媒の吐出側への吐出遅れを改善して低負荷運転条件においても高効率な容量制御を実現できるスクロール圧縮機を得ることにある。 An object of the present invention is to obtain a scroll compressor capable of improving the discharge delay of the refrigerant to the discharge side when switching from the capacity control operation to the normal operation and realizing high-efficiency capacity control even under low load operation conditions. .
 上記目的を達成するため、本発明は、密閉容器内に設けられた固定スクロールと旋回スクロールとを互いに噛み合わせて圧縮室を形成し、前記固定スクロールは、中央部側に吐出口が形成されると共に該吐出口の外周側に前記圧縮室と吐出側を連通するリリースポートとこのリリースポートを介して前記吐出側から圧縮室側への逆流を防ぐためのリリース弁を有し、前記固定スクロールの外周側には吸込室と該吸込室に通じる吸込通路を備えているスクロール圧縮機において、前記固定スクロールに形成され、前記吐出側と前記吸込室または吸込通路とを連通するバイパス通路と、このバイパス通路を開閉するバイパス弁と、前記バイパス通路が開口する前記吸込室または吸込通路の部分よりも上流側に設けられ、上流側への逆流を防止する吸込逆止弁とを備えていることを特徴とする。 In order to achieve the above object, the present invention forms a compression chamber by engaging a fixed scroll and a turning scroll provided in an airtight container with each other, and the fixed scroll has a discharge port formed at the center side. And a release port for communicating the compression chamber and the discharge side on the outer peripheral side of the discharge port, and a release valve for preventing a back flow from the discharge side to the compression chamber through the release port, In the scroll compressor having a suction chamber and a suction passage communicating with the suction chamber on the outer peripheral side, a bypass passage formed in the fixed scroll and communicating the discharge side with the suction chamber or the suction passage, and the bypass A bypass valve that opens and closes the passage, and is provided on the upstream side of the suction chamber or the portion of the suction passage where the bypass passage opens to prevent backflow to the upstream side Characterized in that it includes a suction check valve.
 本発明によれば、容量制御運転から通常運転に切り替わる際の冷媒の吐出側への吐出遅れを改善することができるので、低負荷運転条件においても高効率な容量制御を実現できるスクロール圧縮機を得ることができる。 According to the present invention, since it is possible to improve the discharge delay of the refrigerant to the discharge side when switching from the capacity control operation to the normal operation, a scroll compressor capable of realizing high-efficiency capacity control even under low load operation conditions. Obtainable.
本発明のスクロール圧縮機の実施例1を示す縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing a first embodiment of a scroll compressor according to the present invention. 図1に示すスクロール圧縮機の固定スクロールの底面図で、旋回スクロールのラップも併記した図。The bottom view of the fixed scroll of the scroll compressor shown in FIG. 図2の要部拡大図で、バイパス通路の設置範囲を説明する図。FIG. 3 is an enlarged view of a main part of FIG. 2, illustrating a setting range of a bypass passage. 図1に示すスクロール圧縮機の通常運転(バイパス弁閉)時の動作を説明する要部断面図。FIG. 2 is a cross-sectional view of a main part for explaining the operation during normal operation (bypass valve closing) of the scroll compressor shown in FIG. 1. 図1に示すスクロール圧縮機のバイパス運転(バイパス弁開)時の動作を説明する要部断面図。FIG. 2 is a cross-sectional view of a main part for explaining the operation of the scroll compressor shown in FIG. 1 during bypass operation (bypass valve opening). 本発明の実施例1におけるバイパス弁の開閉制御を説明する線図。The diagram explaining the opening / closing control of the bypass valve in Example 1 of this invention. 従来技術における低圧バイパス弁開度制御と、圧縮機の吐出流量、入力及び圧力との関係を説明する線図。The diagram explaining the relationship between the low pressure bypass valve opening degree control in a prior art, the discharge flow rate of a compressor, an input, and a pressure. 本発明の実施例1におけるバイパス弁開度制御と、圧縮機の吐出流量、入力及び圧力との関係を説明する線図。The diagram explaining the relationship between the bypass valve opening degree control in Example 1 of this invention, the discharge flow rate of a compressor, an input, and a pressure. 本発明のスクロール圧縮機の実施例2を示す要部断面図。The principal part sectional drawing which shows Example 2 of the scroll compressor of this invention. 図9に示すスクロール圧縮機の固定スクロールの底面図で、図2に相当する図。FIG. 10 is a bottom view of the fixed scroll of the scroll compressor shown in FIG. 9 and corresponds to FIG. 2. 図9におけるバイパス弁付近の構造を示す要部拡大図で、通常運転時の動作を説明する図。FIG. 10 is a main part enlarged view showing the structure in the vicinity of the bypass valve in FIG. 9, illustrating the operation during normal operation. 図9におけるバイパス弁付近の構造を示す要部拡大図で、通常運転からバイパス運転への遷移状態を説明する図。FIG. 10 is an enlarged view of a main part showing the structure in the vicinity of the bypass valve in FIG. 9, illustrating a transition state from normal operation to bypass operation. 図9におけるバイパス弁付近の構造を示す要部拡大図で、バイパス運転時の動作を説明する図。FIG. 10 is a main part enlarged view showing the structure in the vicinity of the bypass valve in FIG. 9, illustrating the operation during bypass operation. 図9におけるバイパス弁付近の構造を示す要部拡大図で、バイパス運転から通常運転への遷移状態を説明する図。FIG. 10 is a main part enlarged view showing the structure in the vicinity of the bypass valve in FIG. 9, illustrating a transition state from the bypass operation to the normal operation. 本発明の実施例2におけるスイッチ弁の開度制御に対するバイパス弁の開度変化と、バイパス弁空間の圧力変化及び吸込室の圧力変化との関係を説明する線図。The diagram explaining the relationship between the opening degree change of the bypass valve with respect to the opening degree control of the switch valve in Example 2 of this invention, the pressure change of bypass valve space, and the pressure change of a suction chamber.
 以下、本発明の具体的実施例を、図面を用いて詳細に説明する。 Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の実施例1を図1~図8を用いて説明する。 
 図1は本発明のスクロール圧縮機の実施例1を示す縦断面図である。 
 スクロール圧縮機1は、固定スクロール5と旋回スクロール6を互いに噛合わせて構成された圧縮機構部3、この圧縮機構部3を駆動する電動機4、前記圧縮機構部3と前記電動機4などを収納する密閉容器2などにより構成されている。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a longitudinal sectional view showing Embodiment 1 of the scroll compressor of the present invention.
The scroll compressor 1 houses a compression mechanism portion 3 configured by meshing a fixed scroll 5 and a turning scroll 6, an electric motor 4 that drives the compression mechanism portion 3, the compression mechanism portion 3, the electric motor 4, and the like. It is comprised with the airtight container 2 grade | etc.,.
 前記密閉容器2内には、上部に前記圧縮機構部3、下部に前記電動機4が配置され、更に底部には潤滑油が貯留される油溜り13が設けられている。また、前記密閉容器2は、胴部を構成する円筒状のケース2aと、このケース2aの上部に溶接された蓋チャンバ2bと、前記ケース2aの下部に溶接された底チャンバ2cにより構成されている。前記蓋チャンバ2bには吸込パイプ2dが取り付けられ、前記ケース2aには吐出パイプ2eが取り付けられ、また密閉容器2の内部は吐出チャンバ2fとなっている。 In the sealed container 2, the compression mechanism section 3 is disposed at the top, the electric motor 4 is disposed at the bottom, and an oil reservoir 13 in which lubricating oil is stored is disposed at the bottom. The hermetic container 2 includes a cylindrical case 2a constituting the body, a lid chamber 2b welded to the upper portion of the case 2a, and a bottom chamber 2c welded to the lower portion of the case 2a. Yes. A suction pipe 2d is attached to the lid chamber 2b, a discharge pipe 2e is attached to the case 2a, and the inside of the sealed container 2 is a discharge chamber 2f.
 前記圧縮機構部3は、鏡板5d上に渦巻状のラップ5cを立設した固定スクロール5、鏡板6b上に渦巻状のラップ6aを立設した旋回スクロール6、前記固定スクロール5にボルト8により一体に固定されて前記旋回スクロール6を支持するフレーム9などにより構成されている。また、7は前記フレーム9に設けられた主軸受9aにより回転自在に支持されているクランク軸で、このクランク軸7の上部に設けられた偏心部7bは、前記旋回スクロール6の背面のボス部に設けられた旋回軸受6cを介して、旋回スクロール6と連結されている。 The compression mechanism section 3 is integrated with a fixed scroll 5 having a spiral wrap 5c standing on a mirror plate 5d, a turning scroll 6 having a spiral wrap 6a standing on a mirror plate 6b, and a bolt 8 integrated with the fixed scroll 5. And a frame 9 that supports the orbiting scroll 6. Reference numeral 7 denotes a crankshaft rotatably supported by a main bearing 9 a provided on the frame 9. An eccentric portion 7 b provided on an upper portion of the crankshaft 7 is a boss portion on the back surface of the orbiting scroll 6. It is connected with the turning scroll 6 through the turning bearing 6c provided in the.
 また、前記旋回スクロール6の下面と前記フレーム9との間にはオルダムリング12が設けられており、このオルダムリング12は、旋回スクロール6の下面に形成された溝とフレーム9に形成された溝に係合し、旋回スクロール6を自転させることなく、クランク軸7の偏心部7bの偏心回転を受けて公転(旋回)運動させるものである。 An Oldham ring 12 is provided between the lower surface of the orbiting scroll 6 and the frame 9. The Oldham ring 12 includes a groove formed on the lower surface of the orbiting scroll 6 and a groove formed on the frame 9. The revolving (turning) motion is received by receiving the eccentric rotation of the eccentric portion 7b of the crankshaft 7 without rotating the orbiting scroll 6.
 前記電動機4は、固定子4aと回転子4bを備え、固定子4aは前記密閉容器2に圧入や溶接などの手段で固定され、前記回転子4bは前記クランク軸7に固定されて、前記固定子4a内に回転可能に配置されている。 The electric motor 4 includes a stator 4a and a rotor 4b. The stator 4a is fixed to the hermetic container 2 by means such as press-fitting or welding, and the rotor 4b is fixed to the crankshaft 7 and the fixed It arrange | positions rotatably in the child 4a.
 前記クランク軸7は、主軸部7aと前記偏心部7bとで構成され、前記フレーム9に設けられた前記主軸受9aと、前記密閉容器2のケース2aに取り付けられた副軸受17とで支持されている。前記偏心部7bはクランク軸7の主軸部7aに対して偏心して一体に形成されており、前記旋回スクロール6の背面に設けられた前記旋回軸受6cに挿入して係合されている。また、前記クランク軸7は前記電動機4によって駆動され、偏心部7bを偏心回転運動させて、旋回スクロール6を旋回運動させる。 
 前記クランク軸7内には、前記主軸受9a、前記副軸受17及び前記旋回軸受6cなどへ潤滑油13を導くための給油通路7cが形成されている。
The crankshaft 7 is composed of a main shaft portion 7a and the eccentric portion 7b, and is supported by the main bearing 9a provided on the frame 9 and a sub-bearing 17 attached to the case 2a of the sealed container 2. ing. The eccentric portion 7 b is formed integrally with the main shaft portion 7 a of the crankshaft 7 so as to be eccentric, and is inserted into and engaged with the orbiting bearing 6 c provided on the rear surface of the orbiting scroll 6. The crankshaft 7 is driven by the electric motor 4 to cause the eccentric portion 7b to rotate eccentrically, thereby causing the orbiting scroll 6 to rotate.
In the crankshaft 7, an oil supply passage 7c for guiding the lubricating oil 13 to the main bearing 9a, the auxiliary bearing 17, the slewing bearing 6c and the like is formed.
 冷凍サイクルの冷媒ガスは、電動機4によりクランク軸7を介して旋回スクロール6が旋回運動されると、前記吸込パイプ2dから固定スクロール5と旋回スクロール6により画成される圧縮室11に導入され、圧縮室11が渦巻状ラップ5c,6aの中心側に移動するに従い、その容積が縮小することで圧縮される。圧縮された冷媒ガスは固定スクロール5の鏡板5dの略中央に設けられた吐出口5eから密閉容器2内の吐出チャンバ2fへ吐出され、吐出パイプ2eから外部(冷凍サイクルの凝縮器側)へと流出していく。 The refrigerant gas of the refrigeration cycle is introduced into the compression chamber 11 defined by the fixed scroll 5 and the orbiting scroll 6 from the suction pipe 2d when the orbiting scroll 6 is orbited through the crankshaft 7 by the electric motor 4. As the compression chamber 11 moves toward the center of the spiral wraps 5c and 6a, the volume is reduced and the compression is performed. The compressed refrigerant gas is discharged to the discharge chamber 2f in the hermetic container 2 from the discharge port 5e provided at the approximate center of the end plate 5d of the fixed scroll 5, and from the discharge pipe 2e to the outside (condenser side of the refrigeration cycle). It flows out.
 次に、本実施例における固定スクロール5の構成を図2~図4により説明する。図2は図1に示す固定スクロール5の底面図で、旋回スクロール6のラップ6aも併記している図、図3は図2の吸込室付近を拡大して示す図、図4は図1に示すスクロール圧縮機の圧縮機機構部3付近を拡大して示す要部断面図である。 Next, the configuration of the fixed scroll 5 in this embodiment will be described with reference to FIGS. 2 is a bottom view of the fixed scroll 5 shown in FIG. 1, which also includes a lap 6a of the orbiting scroll 6, FIG. 3 is an enlarged view of the vicinity of the suction chamber of FIG. 2, and FIG. It is principal part sectional drawing which expands and shows the compressor mechanism part 3 vicinity of the scroll compressor shown.
 これらに図に示すように、本実施例においては、前記固定スクロール5に、圧縮室11と吐出側である前記吐出チャンバ2fとを連通させるリリースポート5bと、吸込室10と前記吐出チャンバ2fを連通させるバイパス通路5fが形成されており、前記リリースポート5bには、吐出側から圧縮室11側への逆流を防ぐための逆止弁であるリリース弁5aが設けられ、前記バイパス通路5fには、該バイパス通路5fを開閉するためのバイパス弁14が設けられている。また、前記バイパス通路5fが連通する吸込室10の上流側には吸込通路5hが設けられ、この吸込通路5hよりも上流側(蒸発器側)には吸込逆止弁15が設けられている。この吸込逆止弁15は、前記バイパス通路5fが開口する前記吸込室10または吸込通路5hよりも上流側に設ける必要があり、上流側(蒸発器側)への逆流を防止するものである。 As shown in these figures, in this embodiment, the fixed scroll 5 is provided with a release port 5b for communicating the compression chamber 11 and the discharge chamber 2f on the discharge side, a suction chamber 10 and the discharge chamber 2f. A bypass passage 5f for communication is formed, and the release port 5b is provided with a release valve 5a that is a check valve for preventing a back flow from the discharge side to the compression chamber 11 side. A bypass valve 14 for opening and closing the bypass passage 5f is provided. A suction passage 5h is provided on the upstream side of the suction chamber 10 with which the bypass passage 5f communicates, and a suction check valve 15 is provided on the upstream side (evaporator side) of the suction passage 5h. The suction check valve 15 needs to be provided on the upstream side of the suction chamber 10 or the suction passage 5h where the bypass passage 5f is open, and prevents backflow to the upstream side (evaporator side).
 固定スクロール5の吸込室付近を拡大して示す図3には、旋回スクロール6のラップ6aの、外線側圧縮室21が吸込を完了した瞬間のラップ位置6a1と、同じく内線側圧縮室22が吸込を完了した瞬間のラップ位置6a2を、仮想的に重ねて示している。前記バイパス通路5fの吸込室側の開口部は、図3に格子状の網掛けで示した吸込空間、即ち前記外線側圧縮室21及び内線側圧縮室22が吸込を完了した後の圧縮室には連通せず、しかも吸込空間には常時連通するか、少なくとも圧縮室が吸込を完了する直前には連通する位置に設けることが好ましい。これは、不十分な吸込により吸込完了時の圧縮室内の圧力が低下し、そこから再圧縮することによって不必要な動力が発生するのを防ぐためである。特に、図2のA部で示すように、通常運転時の吸込流路断面積確保のために、鏡板面よりも掘り込まれた掘込部を持つ固定スクロールの場合には、この掘込部Aに、前記バイパス通路5fの開口部を設けることが望ましい。 FIG. 3 showing an enlarged view of the vicinity of the suction chamber of the fixed scroll 5 shows the wrap position 6a1 of the wrap 6a of the orbiting scroll 6 at the moment when the outer line side compression chamber 21 completes the suction, and the inner line side compression chamber 22 also sucks. The lap position 6a2 at the moment of completing is virtually overlapped. The opening on the suction chamber side of the bypass passage 5f is formed in a suction space shown by a grid in FIG. 3, that is, a compression chamber after the outer line side compression chamber 21 and the inner line side compression chamber 22 have completed the suction. It is preferable not to communicate with each other and to communicate with the suction space at all times, or at a position where the compression chamber communicates at least immediately before completing the suction. This is to prevent unnecessary power from being generated by recompressing the pressure in the compression chamber when the suction is completed due to insufficient suction. In particular, as shown in part A of FIG. 2, in the case of a fixed scroll having a dug portion dug more than the end plate surface in order to secure the suction channel cross-sectional area during normal operation, this dug portion It is desirable to provide an opening of the bypass passage 5f in A.
 前記バイパス弁14は、前記バイパス通路5fを開閉するための弁体14bと、この弁体14bの背面側(固定スクロール5と反対側)に設けられ前記弁体14bを作動させるための空間14aと、この空間14aに設けられたばね14cを備えている。また、前記空間14aは、前記吸込パイプ2d(吸込側)及び前記吐出パイプ2e(吐出側)と連通するように連通管23が設けられており、更にこの連通管23における密封容器2外の部分の途中には三方弁16が設けられている。この三方弁16を制御することで、前記弁体14b背面の空間14aに吸込圧力または吐出圧力の冷媒を、任意のタイミングで選択的に切り替えて導入可能に構成されている。吸込圧力の冷媒を空間14aに導入すれば弁体14bは、該弁体14bに作用する圧力差と前記ばね14cにより、パイパス通路5fを開くように作動し、吐出圧力の冷媒を導入すれば、前記弁体14bはパイパス通路5fを閉じるように構成されている。 The bypass valve 14 includes a valve body 14b for opening and closing the bypass passage 5f, and a space 14a for operating the valve body 14b provided on the back side of the valve body 14b (opposite to the fixed scroll 5). A spring 14c provided in the space 14a is provided. The space 14a is provided with a communication pipe 23 so as to communicate with the suction pipe 2d (suction side) and the discharge pipe 2e (discharge side). Further, a portion of the communication pipe 23 outside the sealed container 2 is provided. Is provided with a three-way valve 16. By controlling the three-way valve 16, a refrigerant having a suction pressure or a discharge pressure can be selectively switched and introduced into the space 14a on the back surface of the valve body 14b at an arbitrary timing. If the refrigerant having the suction pressure is introduced into the space 14a, the valve body 14b is operated to open the bypass passage 5f by the pressure difference acting on the valve body 14b and the spring 14c, and if the refrigerant having the discharge pressure is introduced, The valve body 14b is configured to close the bypass passage 5f.
 なお、本実施例では前記三方弁16により、前記連通管23の接続先を切り替えるようにしているが、これには限られず、前記空間14aの接続先を圧縮機の吸込側または吐出側に切り替えることにより前記空間14aに吸込圧力または吐出圧力の冷媒を導入してバイパス弁14の開閉を行うように構成されていれば良く、例えば複数の電磁弁などを用いて構成するようにしても良い。 In this embodiment, the connection destination of the communication pipe 23 is switched by the three-way valve 16. However, the present invention is not limited to this, and the connection destination of the space 14a is switched to the suction side or the discharge side of the compressor. Thus, the bypass valve 14 may be opened and closed by introducing a refrigerant having a suction pressure or a discharge pressure into the space 14a. For example, a plurality of electromagnetic valves may be used.
 図4は、スクロール圧縮機1の通常運転(バイパス弁閉)時の状態、即ち、前記空間14cが吐出パイプ2eと連通して吐出圧力の冷媒で満たされ、バイパス弁14が閉弁している状態の図である。図4中の矢印は冷媒の流れを示している。バイパス弁14が閉じた通常運転時には、冷媒は吸込パイプ2dを通り、吸込室10から、固定スクロール5と旋回スクロール6の噛み合いで形成される圧縮室11へ吸い込まれ、この圧縮室11は渦巻状のスクロールラップの中心方向に移動しながら、その容積が縮小することにより、冷媒は圧縮され、吐出口5eから吐出チャンバ2fへ吐出される。吐出チャンバ2fの冷媒は、更に吐出パイプ2eを通って圧縮機外(密閉容器外)へと吐出される。 FIG. 4 shows a state during normal operation (bypass valve closed) of the scroll compressor 1, that is, the space 14c communicates with the discharge pipe 2e and is filled with the refrigerant having the discharge pressure, and the bypass valve 14 is closed. It is a figure of a state. The arrows in FIG. 4 indicate the flow of the refrigerant. During normal operation with the bypass valve 14 closed, the refrigerant passes through the suction pipe 2d and is sucked from the suction chamber 10 into the compression chamber 11 formed by the meshing of the fixed scroll 5 and the orbiting scroll 6, and the compression chamber 11 is spiral. As the volume of the scroll wrap is reduced while moving in the center direction, the refrigerant is compressed and discharged from the discharge port 5e to the discharge chamber 2f. The refrigerant in the discharge chamber 2f is further discharged out of the compressor (outside the sealed container) through the discharge pipe 2e.
 図5は、スクロール圧縮機のバイパス運転(バイパス弁開)時の状態、即ち、前記空間14cが吸込パイプ2dと連通して吸込圧力の冷媒で満たされ、バイパス弁14が開弁している状態の図である。図5中の矢印は冷媒の流れを示している。バイパス弁14が開いたバイパス運転時には、吐出チャンバ2fと吸込室10とがバイパス通路5fを介して連通する。吸込室10は、前記バイパス弁14の閉弁時には吸込圧力となっているため、開弁により吐出チャンバ2fの冷媒が吸込室10へと流れ込み、吸込室10は吐出圧力となる。即ち、吸込室10と前記吸込パイプ2dとの間には前記吸込逆止弁15が設けられているので、吐出チャンバ2fの冷媒が吸込室10へと流れ込むと、前記吸込逆止弁15はその前後の圧力差によって閉弁し、吸込通路5hを閉じる。従って、吐出チャンバ2fから吸込室10に流れ込んだ冷媒が、吸込室10から吸込パイプ2d側へと逆流するのを防止できるので、吸込室10は吐出圧力になる。 FIG. 5 shows a state during bypass operation (bypass valve open) of the scroll compressor, that is, a state in which the space 14c communicates with the suction pipe 2d and is filled with the refrigerant having the suction pressure, and the bypass valve 14 is opened. FIG. The arrows in FIG. 5 indicate the flow of the refrigerant. During the bypass operation in which the bypass valve 14 is opened, the discharge chamber 2f and the suction chamber 10 communicate with each other through the bypass passage 5f. Since the suction chamber 10 is at the suction pressure when the bypass valve 14 is closed, the refrigerant in the discharge chamber 2f flows into the suction chamber 10 by opening the valve, and the suction chamber 10 becomes the discharge pressure. That is, since the suction check valve 15 is provided between the suction chamber 10 and the suction pipe 2d, when the refrigerant in the discharge chamber 2f flows into the suction chamber 10, the suction check valve 15 The valve is closed by the pressure difference between the front and rear, and the suction passage 5h is closed. Therefore, the refrigerant flowing into the suction chamber 10 from the discharge chamber 2f can be prevented from flowing back from the suction chamber 10 toward the suction pipe 2d, and the suction chamber 10 becomes discharge pressure.
 一方、その間も旋回スクロールの偏心回転は行われているため、吐出圧力の冷媒は圧縮室11へと吸い込まれ圧縮が開始されるが、圧縮室11に吸い込まれた冷媒の圧力は初めから吐出圧力となっているため、吐出チャンバ2fと圧縮室11には圧力差がなく、圧縮室11の冷媒が僅かに圧縮されるだけで前記リリース弁5aが開き、圧縮室の冷媒は、リリースポート5bから吐出チャンバ2fへとバイパスされる流路が形成される。吐出チャンバ2fに吐出された冷媒は再び前記バイパス通路5fを通って吸込室10へと戻るバイパス循環路が形成される。なお、このバイパス運転時には、冷媒は圧縮ほとんど圧縮されずにリリースポート5bを通って吐出チャンバ2fに排出されるため、冷媒を圧縮するための動力は僅かである。 On the other hand, since the eccentric rotation of the orbiting scroll is performed during that time, the refrigerant having the discharge pressure is sucked into the compression chamber 11 and the compression is started, but the pressure of the refrigerant sucked into the compression chamber 11 is the discharge pressure from the beginning. Therefore, there is no pressure difference between the discharge chamber 2f and the compression chamber 11, the release valve 5a is opened just by slightly compressing the refrigerant in the compression chamber 11, and the refrigerant in the compression chamber is discharged from the release port 5b. A flow path that is bypassed to the discharge chamber 2f is formed. The refrigerant discharged into the discharge chamber 2f forms a bypass circulation path that returns to the suction chamber 10 through the bypass passage 5f again. Note that during this bypass operation, the refrigerant is hardly compressed and discharged through the release port 5b to the discharge chamber 2f, so that the power for compressing the refrigerant is small.
 図6は、本実施例のスクロール圧縮機において、容量制御を行った時のバイパス弁14の開閉制御(バイパス弁開度の時間変化)を説明する図である。この図に示すように、バイパス弁14は一定の周期で開閉を繰り返す。これにより、上述した、通常運転とバイパス運転が周期的に切り替わり、圧縮動力を必要最小限に抑えながら、圧縮冷媒の平均的な吐出流量を低減させることができる。 FIG. 6 is a diagram illustrating opening / closing control of the bypass valve 14 (time change of the bypass valve opening) when capacity control is performed in the scroll compressor of the present embodiment. As shown in this figure, the bypass valve 14 repeats opening and closing at a constant cycle. Thereby, the above-mentioned normal operation and bypass operation are periodically switched, and the average discharge flow rate of the compressed refrigerant can be reduced while suppressing the compression power to the necessary minimum.
 本実施例における前記バイパス弁14の開閉制御は、開閉の1周期における開閉の時間比を可変とすることにより、0~100%の間で無段階に任意の容量にすることができるように構成されている。例えば、1周期中にバイパス弁が開いている時間が、1周期全体の時間の40%ならば、容量としては60%となる。なお、開閉の周期は一定でも良いが、開閉の時間比に応じて周期の長さを可変にすることが好ましい。 The opening / closing control of the bypass valve 14 in the present embodiment is configured such that an arbitrary capacity can be set steplessly between 0 and 100% by making the opening / closing time ratio in one opening / closing cycle variable. Has been. For example, if the time during which the bypass valve is open during one cycle is 40% of the total time of one cycle, the capacity is 60%. The opening / closing cycle may be constant, but it is preferable to make the length of the cycle variable according to the opening / closing time ratio.
 次に、本実施例の効果を説明する。 
 まず、比較のために、上記特許文献1に示すような従来のスクロール圧縮機における動作を説明する。特許文献1のものでは、低圧バイパス弁(156)と高圧バイパス弁(157)が、通常運転とバイパス運転を切り替える役割を果たしている。通常運転時には、前記低圧バイパス弁(156)が閉じ、圧縮された冷媒は吐出管或いは高圧側のバイパス通路BHを通って吐出側109Bへ吐出される。
Next, the effect of the present embodiment will be described.
First, for comparison, the operation of a conventional scroll compressor as shown in Patent Document 1 will be described. In the thing of patent document 1, the low pressure bypass valve (156) and the high pressure bypass valve (157) play the role which switches a normal driving | operation and a bypass driving | operation. During normal operation, the low pressure bypass valve (156) is closed and the compressed refrigerant is discharged to the discharge side 109B through the discharge pipe or the high pressure side bypass passage BH.
 一方、バイパス運転時には、前記高圧バイパス弁(157)が閉じた状態で前記低圧バイパス弁(156)を開く。これにより、固定スクロールの上部に設けられた空間(吸込側と吐出側との間の中間領域に存在する流体をバイパスするバイパス機構(140))は吸込側と接続されることで吸込圧力となり、バイパス弁(146)が差圧で開いて、圧縮室の冷媒はほとんど圧縮されないままバイパス通路から、吸込側に排出される。このように、上記従来例のものでは、バイパス運転時には、圧縮室はほぼ吸込圧力で満たされることになる。 On the other hand, during the bypass operation, the low pressure bypass valve (156) is opened with the high pressure bypass valve (157) closed. Thereby, the space provided in the upper part of the fixed scroll (bypass mechanism (140) for bypassing the fluid existing in the intermediate region between the suction side and the discharge side) becomes the suction pressure by being connected to the suction side, The bypass valve (146) is opened by the differential pressure, and the refrigerant in the compression chamber is discharged from the bypass passage to the suction side while being hardly compressed. Thus, in the above conventional example, the compression chamber is almost filled with the suction pressure during the bypass operation.
 これに対して、本実施例では、バイパス運転時には、吸込室10も圧縮室11もほぼ吐出圧力で満たされるように構成されている点が大きく異なっている。 
 このように、冷媒をバイパスさせる運転(バイパス運転)を行うスクロール圧縮機では、通常運転時とバイパス運転時とでは圧力が異なる空間が、圧縮室を含んで存在する。
On the other hand, the present embodiment is greatly different in that the suction chamber 10 and the compression chamber 11 are substantially filled with the discharge pressure during the bypass operation.
As described above, in the scroll compressor that performs the operation of bypassing the refrigerant (bypass operation), there is a space including the compression chamber in which the pressure is different between the normal operation and the bypass operation.
 図7は、上記従来例におけるバイパス弁開度制御と、圧縮冷媒の吐出流量、圧縮機入力及び圧力との関係を説明する図である。図7において、「バイパス圧力」とはバイパス運転時に圧力が変化する空間(以下、バイパス空間と称す)の圧力であり、上記従来例のものでは、固定スクロールの上部に設けられたバイパス機構(140)の空間や、バイパス通路BHの圧力である。 FIG. 7 is a diagram for explaining the relationship between the bypass valve opening control, the discharge flow rate of the compressed refrigerant, the compressor input, and the pressure in the conventional example. In FIG. 7, “bypass pressure” is the pressure in a space where the pressure changes during bypass operation (hereinafter referred to as bypass space). In the conventional example, the bypass mechanism (140 ) And the pressure of the bypass passage BH.
 図7において、横軸は時間の経過であり、この時間の経過に沿って、バイパス弁の動作に対する圧縮冷媒の吐出流量、圧縮機入力及び圧力との関係を時系列的に説明する。 
 まず、低圧バイパス弁(156)が閉じ、高圧バイパス弁(157)が開いている通常運転時には、冷媒は普通に圧縮されて吐出されるので、必要な吐出流量が得られている。また、冷媒を圧縮するための動力として通常の圧縮機入力が必要となる。このとき、バイパス圧力(バイパス空間の圧力)は吐出圧力と一致している。
In FIG. 7, the horizontal axis indicates the passage of time, and the relationship between the discharge flow rate of the compressed refrigerant, the compressor input, and the pressure with respect to the operation of the bypass valve will be described in time series along the passage of time.
First, during normal operation in which the low pressure bypass valve (156) is closed and the high pressure bypass valve (157) is open, the refrigerant is normally compressed and discharged, so that the necessary discharge flow rate is obtained. Moreover, a normal compressor input is required as power for compressing the refrigerant. At this time, the bypass pressure (the pressure in the bypass space) matches the discharge pressure.
 次に、低圧バイパス弁(156)が開き、高圧バイパス弁(157)が閉じたバイパス運転に切り替わると、圧縮室は吸込側と連通することで、吸込圧力の冷媒で満たされる。また、前記バイパス空間も吸込側と連通しているので、吸込圧力となる。 Next, when the low-pressure bypass valve (156) is opened and the high-pressure bypass valve (157) is switched to the bypass operation, the compression chamber communicates with the suction side and is filled with the refrigerant having the suction pressure. Moreover, since the said bypass space is also connected with the suction side, it becomes a suction pressure.
 更に一定時間が経過し、再び通常運転に戻ると、前記低圧バイパス弁が閉じることで、圧縮が開始されるが、このとき前記バイパス空間の圧力は吸込圧力まで低下しているため、再圧縮が必要となる。このため、冷媒を吐出側の圧力以上に圧縮して吐出するのに時間が掛かり、低圧バイパス弁を閉じてから冷媒を吐出するまでに時間遅れが生じて、これが吐出遅れとなり、圧縮機入力に対して吐出流量の減少を招く。即ち、従来のものでは、容量制御運転時に圧縮機効率の低下を引き起こす課題がある。 When a certain time has passed and the normal operation is resumed, the low pressure bypass valve is closed and compression is started. At this time, the pressure in the bypass space is reduced to the suction pressure. Necessary. For this reason, it takes time to compress and discharge the refrigerant to a pressure higher than the pressure on the discharge side, and there is a time delay between closing the low-pressure bypass valve and discharging the refrigerant. On the other hand, the discharge flow rate is reduced. That is, the conventional one has a problem that causes a reduction in compressor efficiency during capacity control operation.
 図8は、本実施例におけるバイパス弁開度制御と、圧縮冷媒の吐出流量、圧縮機入力及び圧力との関係を説明する図である。この図8において、前記図7と同じ部分の説明については説明を省略する。 
 本実施例においては、上記バイパス空間は、吸込室10、圧縮室11及びバイパス通路5fであり、図8における「バイパス圧力」とは吸込室10及びバイパス通路5fの圧力とする。
FIG. 8 is a diagram for explaining the relationship between the bypass valve opening degree control, the discharge flow rate of the compressed refrigerant, the compressor input, and the pressure in this embodiment. In FIG. 8, the description of the same part as in FIG. 7 is omitted.
In this embodiment, the bypass space is the suction chamber 10, the compression chamber 11, and the bypass passage 5f, and the “bypass pressure” in FIG. 8 is the pressure of the suction chamber 10 and the bypass passage 5f.
 図8の線図を時系列に沿って説明する。まず、バイパス弁14が閉じている通常運転時には、冷媒は普通に圧縮されて吐出されるので、必要な吐出流量が得られている。また、冷媒を圧縮するための動力として通常の圧縮機入力が必要となる。このとき、バイパス圧力(バイパス空間の圧力)は吸込圧力となっている。 The diagram of FIG. 8 will be described in time series. First, during the normal operation in which the bypass valve 14 is closed, the refrigerant is normally compressed and discharged, so that a necessary discharge flow rate is obtained. Moreover, a normal compressor input is required as power for compressing the refrigerant. At this time, the bypass pressure (the pressure in the bypass space) is the suction pressure.
 次に、バイパス弁14が開いてバイパス運転に切り替わると、吸込室10は吐出チャンバ2fと連通し、吸込室10やバイパス通路5fは吐出圧力で満たされ、圧縮室11も吐出圧力となる。このように本実施例においては、バイパス運転時に前記バイパス圧力がほぼ吐出圧力となる点が大きな特徴である。 Next, when the bypass valve 14 is opened and switched to the bypass operation, the suction chamber 10 communicates with the discharge chamber 2f, the suction chamber 10 and the bypass passage 5f are filled with the discharge pressure, and the compression chamber 11 also becomes the discharge pressure. As described above, the present embodiment is characterized in that the bypass pressure becomes substantially the discharge pressure during the bypass operation.
 更に一定時間が経過し、前記バイパス弁14が閉じて再び通常運転に戻ると、圧縮室11は既に吐出圧力の冷媒で満たされているため、再圧縮の必要がなく、即座に冷媒の吐出を開始でき、通常の吐出量を確保できる。即ち、本実施例によれば、冷媒を吐出側の圧力以上に圧縮して吐出するのに時間が掛からず、吐出遅れをなくすことができるので、容量制御運転時に、圧縮機入力に対して吐出流量が減少して圧縮機効率の低下するのを防止できる。従って、従来例に比較して吐出量を上昇できるから、容量制御運転時の圧縮機効率を向上できる。 When a predetermined time has passed and the bypass valve 14 is closed and returns to normal operation, the compression chamber 11 is already filled with the refrigerant at the discharge pressure, so that there is no need for recompression and the refrigerant is immediately discharged. The normal discharge amount can be secured. That is, according to the present embodiment, it takes no time to compress and discharge the refrigerant to a pressure higher than the discharge side, and the discharge delay can be eliminated. It can prevent that the flow rate decreases and the compressor efficiency decreases. Accordingly, since the discharge amount can be increased as compared with the conventional example, the compressor efficiency during the capacity control operation can be improved.
 以上説明したように、本実施例によれば、容量制御運転時に圧縮機効率の低下するのを防止でき、しかも、バイパス弁14の開閉の1周期における開閉の時間比を可変することで、0~100%の無段階で任意の容量に制御することができ、低速、低負荷運転条件においても高効率な容量制御を実現可能なスクロール圧縮機を得ることができる。 As described above, according to the present embodiment, it is possible to prevent the compressor efficiency from being lowered during the capacity control operation, and to change the opening / closing time ratio in one cycle of the opening / closing of the bypass valve 14 to 0 A scroll compressor that can be controlled to an arbitrary capacity in a stepless manner of ˜100% and can realize a highly efficient capacity control even under low-speed and low-load operation conditions can be obtained.
 また、本実施例による容量制御は、通常運転とバイパス運転を一定の時間比で切り替えるようにしているので、時間比の調節により0~100%の広い範囲で無段階に容量を可変することができるだけでなく、スクロール圧縮機を、高効率且つ高信頼性で運転できる回転速度条件で使用することも可能となる。 In addition, since the capacity control according to the present embodiment switches between normal operation and bypass operation at a constant time ratio, the capacity can be varied steplessly in a wide range of 0 to 100% by adjusting the time ratio. In addition, the scroll compressor can be used at a rotational speed that can be operated with high efficiency and high reliability.
 次に、本発明のスクロール圧縮機の実施例2を図9~図15により説明する。なお、図9~図15において図1~図8と同一符号を付した部分は同一或いは相当する部分を示している。 
 図9は本発明の実施例2を示すスクロール圧縮機の圧縮機構部付近の断面図であり、また図10は図9に示すスクロール圧縮機の固定スクロールの底面図で、旋回スクロールラップも併記している図である。
Next, a second embodiment of the scroll compressor of the present invention will be described with reference to FIGS. 9 to 15, the same reference numerals as those in FIGS. 1 to 8 denote the same or corresponding parts.
9 is a cross-sectional view of the vicinity of the compression mechanism portion of the scroll compressor according to the second embodiment of the present invention, and FIG. 10 is a bottom view of the fixed scroll of the scroll compressor shown in FIG. It is a figure.
 上述した実施例1では、バイパス弁14を、吸込パイプ2d及び吐出パイプ2eを流れる冷媒の圧力を利用して開閉制御するようにしたが、この実施例2は吸込室10の圧力変化を利用してバイパス弁14を開閉制御するようにしたものである。 In the first embodiment described above, the bypass valve 14 is controlled to be opened and closed using the pressure of the refrigerant flowing through the suction pipe 2d and the discharge pipe 2e. However, the second embodiment uses the pressure change in the suction chamber 10. Thus, the bypass valve 14 is controlled to open and close.
 図9に示すように、本実施例においても前記実施例1と同様に、固定スクロール5に、吸込室10と吐出チャンバ2fとを接続するバイパス通路5fを設け、このバイパス通路5fの吐出チャンバ側開口部にはバイパス弁14が設けられている。このバイパス弁14は、前記バイパス通路5fを開閉するための弁体14bと、この弁体14bの背面側(固定スクロール5と反対側)に設けられ前記弁体14bを作動させるための空間14aと、この空間14aに設けられたばね14cを備えている。 As shown in FIG. 9, also in the present embodiment, as in the first embodiment, the fixed scroll 5 is provided with a bypass passage 5f that connects the suction chamber 10 and the discharge chamber 2f, and the bypass passage 5f has a discharge chamber side. A bypass valve 14 is provided at the opening. The bypass valve 14 includes a valve body 14b for opening and closing the bypass passage 5f, and a space 14a for operating the valve body 14b provided on the back side of the valve body 14b (the side opposite to the fixed scroll 5). A spring 14c provided in the space 14a is provided.
 また、前記空間14aは、固定スクロール5に形成されたスイッチ弁通路5gを介して、前記吸込室10と連通されるように構成されている。また、前記スイッチ弁通路5gの前記吐出チャンバ2f側開口部には、該開口部を開閉するためのスイッチ弁18が設けられており、このスイッチ弁18が開けば、前記空間14aは前記吸込室10に連通し、スイッチ弁18が閉じれば、前記空間14aは吸込室10との連通が遮断されるように構成されている。前記スイッチ弁18は、前記スイッチ弁通路5gを開閉する弁体18a、該弁体18aを前記スイッチ弁通路5g側に押圧するばね18b、及び前記弁体18aを開閉動作させるためのコイル18cを備えている。 The space 14 a is configured to communicate with the suction chamber 10 through a switch valve passage 5 g formed in the fixed scroll 5. In addition, a switch valve 18 for opening and closing the opening is provided at the opening of the switch valve passage 5g on the discharge chamber 2f side. When the switch valve 18 is opened, the space 14a becomes the suction chamber. When the switch valve 18 is closed, the space 14a is configured so that the communication with the suction chamber 10 is blocked. The switch valve 18 includes a valve body 18a for opening and closing the switch valve passage 5g, a spring 18b for pressing the valve body 18a toward the switch valve passage 5g, and a coil 18c for opening and closing the valve body 18a. ing.
 前記スイッチ弁18のコイル18cに通電すると、コイル中心部に磁場が発生し、鉄等で作られたスイッチ弁の前記弁体18aは磁力に引き付けられて浮上し、該弁体18aは開く。一方、コイルへの通電を行わないと、ばね18bの力によって弁体18aは固定スクロール5側へ押され、前記スイッチ弁通路5gを塞ぐ。 When the coil 18c of the switch valve 18 is energized, a magnetic field is generated at the center of the coil, the valve body 18a of the switch valve made of iron or the like is attracted by the magnetic force and floats, and the valve body 18a opens. On the other hand, if the coil is not energized, the valve element 18a is pushed to the fixed scroll 5 side by the force of the spring 18b and closes the switch valve passage 5g.
 前記スイッチ弁通路5gは、容積の小さいバイパス弁14の前記空間14aへの冷媒の流入または前記空間14aからの流出のみに用いられるため、その通路面積を非常に小さくすることができ、弁体18aにかかる冷媒の圧力も小さいために、弁体18aを開閉させることは容易に可能である。 Since the switch valve passage 5g is used only for inflow of refrigerant into the space 14a or outflow from the space 14a of the bypass valve 14 having a small volume, the passage area can be very small, and the valve body 18a. Since the pressure of the refrigerant is small, it is possible to easily open and close the valve body 18a.
 図10に示すように、前記バイパス通路5fは図2に示す実施例1と同様の位置に設けられ、また前記スイッチ弁通路5gは、前記図3に格子状の網掛けで示したバイパス通路5fの吸込室側開口部の接続先範囲と同様の範囲に設けられる。前記スイッチ弁通路5gは、バイパス弁14における空間14aに接続されており、前記スイッチ弁18のコイルへの電流をON-OFFすることによりスイッチ弁を開閉させることができ、スイッチ弁通路5gの連通、非連通を任意に切り替えることができる。 
 他の構成は上記実施例1と同様であるので、説明を省略する。
As shown in FIG. 10, the bypass passage 5f is provided at the same position as that of the first embodiment shown in FIG. 2, and the switch valve passage 5g is provided in the bypass passage 5f shown in FIG. It is provided in the same range as the connection destination range of the suction chamber side opening. The switch valve passage 5g is connected to a space 14a in the bypass valve 14, and the switch valve can be opened and closed by turning the current to the coil of the switch valve 18 on and off. , Non-communication can be switched arbitrarily.
Since other configurations are the same as those of the first embodiment, description thereof is omitted.
 次に、この実施例2の動作を図11~図15により説明する。 
 図11~図14は図9におけるバイパス弁付近の構造を拡大して示す図で、図11は通常運転時の状態、図12は通常運転からバイパス運転への遷移状態、図13はバイパス運転時の状態、図14はバイパス運転から通常運転への遷移状態をそれぞれ説明する図である。
Next, the operation of the second embodiment will be described with reference to FIGS.
11 to 14 are enlarged views showing the structure in the vicinity of the bypass valve in FIG. 9. FIG. 11 is a state during normal operation, FIG. 12 is a transition state from normal operation to bypass operation, and FIG. 13 is a state during bypass operation. FIG. 14 is a diagram for explaining a transition state from the bypass operation to the normal operation.
 スクロール圧縮機の起動時には、バイパス弁14とスイッチ弁18は図11に示す状態となっている。即ち、起動時には圧縮機内の圧力は均一であるため、ばね18bの力によって弁体18aは固定スクロール5側へ押され、前記スイッチ弁通路5gを塞ぐことで閉弁している。圧縮機の運転に伴って吸込室の圧力は低下するので、バイパス弁14はその背面側の空間14aと吸込室10側との圧力差により閉じた状態が保持される。 When the scroll compressor is started, the bypass valve 14 and the switch valve 18 are in the state shown in FIG. That is, since the pressure in the compressor is uniform at the time of start-up, the valve body 18a is pushed toward the fixed scroll 5 by the force of the spring 18b and is closed by closing the switch valve passage 5g. Since the pressure in the suction chamber decreases with the operation of the compressor, the bypass valve 14 is kept closed by the pressure difference between the space 14a on the back side and the suction chamber 10 side.
 図11の状態から、スイッチ弁18のコイル18cに短時間通電すると図12に示すように、通電している時間の間だけ弁体18aが上昇してスイッチ弁18が開く。スイッチ弁18が開くと、吸込室10と前記バイパス弁14の空間14aとが連通し、該空間14aが吸込圧力となる。また、このとき、吐出チャンバ2f内は吐出圧力となっているから、図12にAで示した部分には吐出圧力がかかる。従って、弁体14bは圧力差で持ち上げられ、図13に示すように、バイパス弁14は開いて、吐出チャンバ2fと吸込室10が連通し、吐出チャンバ2f内の吐出圧力の冷媒がバイパス通路5fを通って、吸込室10に流入するバイパス運転が開始される。なお、前記スイッチ弁18への通電は短時間のみであるので、スイッチ弁18は図13に示すようにすぐに閉じる。このため、前記バイパス運転中は、前記空間14a内の圧力は吸込圧力に保たれたままとなっている。 11, when the coil 18c of the switch valve 18 is energized for a short time, as shown in FIG. 12, the valve body 18a is raised and the switch valve 18 is opened only during the energized time. When the switch valve 18 is opened, the suction chamber 10 and the space 14a of the bypass valve 14 communicate with each other, and the space 14a becomes the suction pressure. At this time, since the discharge chamber 2f is at discharge pressure, the discharge pressure is applied to the portion indicated by A in FIG. Accordingly, the valve body 14b is lifted by the pressure difference, and as shown in FIG. 13, the bypass valve 14 is opened, the discharge chamber 2f and the suction chamber 10 communicate with each other, and the refrigerant at the discharge pressure in the discharge chamber 2f is passed through the bypass passage 5f. Bypass operation is started to flow into the suction chamber 10. Since the switch valve 18 is energized only for a short time, the switch valve 18 is immediately closed as shown in FIG. For this reason, the pressure in the space 14a is kept at the suction pressure during the bypass operation.
 このバイパス運転の状態では、吸込室10には吐出チャンバ2fの冷媒が流入しているから吐出圧力となっている。次に、このバイパス運転の状態から再びスイッチ弁18に短時間通電すると、スイッチ弁18は開いて図14で示す状態となる。このため、吸込室10の吐出圧力の冷媒が前記バイパス弁14の空間14aに流れ込んで、前記空間14aは吐出圧力となり、弁体14bの上下の面に作用する圧力は釣り合う。前記弁体14bにはばね14cにより弁体14bを閉じる方向に力が与えられているから、弁体14bはバイパス通路5fを塞ぎ、バイパス弁14は閉じる。前記スイッチ弁18は短時間だけ通電されるため、図11に示した通常運転に切り替わり、スクロール圧縮機は通常の圧縮動作を開始する。 In this bypass operation state, since the refrigerant in the discharge chamber 2f flows into the suction chamber 10, the discharge pressure is set. Next, when the switch valve 18 is energized again for a short time from this bypass operation state, the switch valve 18 is opened to the state shown in FIG. For this reason, the refrigerant of the discharge pressure of the suction chamber 10 flows into the space 14a of the bypass valve 14, the space 14a becomes the discharge pressure, and the pressure acting on the upper and lower surfaces of the valve body 14b is balanced. Since force is applied to the valve body 14b in the direction of closing the valve body 14b by the spring 14c, the valve body 14b closes the bypass passage 5f and the bypass valve 14 is closed. Since the switch valve 18 is energized for a short time, the operation is switched to the normal operation shown in FIG. 11, and the scroll compressor starts the normal compression operation.
 図15はこの実施例2において、スイッチ弁18の開度制御に対するバイパス弁14の開度変化と、バイパス弁14の空間14aの圧力変化及び吸込室10の圧力変化との関係を説明する線図である。 FIG. 15 is a diagram for explaining the relationship between the change in the opening degree of the bypass valve 14 with respect to the opening degree control of the switch valve 18, the pressure change in the space 14 a of the bypass valve 14, and the pressure change in the suction chamber 10 in the second embodiment. It is.
 この図15に示す通り、上記の動作を繰り返すことで、スクロール圧縮機の容量制御運転を行うことができる。即ち、スイッチ弁18に通電して短時間スイッチ弁を開くとバイパス弁14の空間14aの圧力が吐出圧力から吸込圧力に変化し、それによってバイパス弁14が開くので、吸込室10は吐出圧力となり、バイパス運転が実施される。再び、スイッチ弁18に通電して短時間スイッチ弁を開くとバイパス弁14の空間14aの圧力が吸込圧力から吐出圧力に変化し、それによってバイパス弁14は閉じ、吸込室10は吸込圧力となって通常運転に戻る。従って、スイッチ弁18の開閉を制御することで、通常運転時間とバイパス運転時間を制御するデューティ容量制御運転が可能となる。従って、この実施例2においても、前記通常運転時間とバイパス運転時間との比(デューティ比)を制御することにより、自由に吐出量を制御でき、容量制御運転が可能となる。 As shown in FIG. 15, the scroll compressor capacity control operation can be performed by repeating the above operation. That is, when the switch valve 18 is energized and the switch valve is opened for a short time, the pressure in the space 14a of the bypass valve 14 changes from the discharge pressure to the suction pressure, and thereby the bypass valve 14 is opened, so that the suction chamber 10 becomes the discharge pressure. Bypass operation is performed. When the switch valve 18 is energized again and the switch valve is opened for a short time, the pressure in the space 14a of the bypass valve 14 changes from the suction pressure to the discharge pressure, whereby the bypass valve 14 is closed and the suction chamber 10 becomes the suction pressure. Return to normal operation. Therefore, by controlling the opening and closing of the switch valve 18, the duty capacity control operation for controlling the normal operation time and the bypass operation time becomes possible. Therefore, also in the second embodiment, by controlling the ratio (duty ratio) between the normal operation time and the bypass operation time, the discharge amount can be freely controlled and the capacity control operation can be performed.
 また、本実施例においても、バイパス運転時には吸込室10を吐出圧力に保つことができるから、通常運転への切り替えの際、バイパス弁14を閉じると即座に吐出を開始することができ、通常運転への切り替えの際の冷媒の吐出側への吐出遅れを改善することができる。これにより、低負荷運転条件においても高効率な容量制御を実現できるスクロール圧縮機を得ることができる。 Also in this embodiment, since the suction chamber 10 can be kept at the discharge pressure during the bypass operation, the discharge can be started immediately when the bypass valve 14 is closed when switching to the normal operation. The discharge delay to the discharge side of the refrigerant at the time of switching to can be improved. Thereby, the scroll compressor which can implement | achieve highly efficient capacity | capacitance control also in low load driving | running conditions can be obtained.
 このように、本実施例においても上記実施例1と同様の効果が得られるだけでなく、本実施例では、バイパス運転に必要なバイパス弁14及びスイッチ弁18を密閉容器2内に設けることができる。従って、実施例1に示すような密閉容器2外に設けていた連通管23や三方弁16などの構造部品が不要となるから、コンパクトで安価に製作できる効果も得られる。 Thus, in this embodiment, not only the same effects as in the first embodiment can be obtained, but also in this embodiment, the bypass valve 14 and the switch valve 18 necessary for the bypass operation can be provided in the sealed container 2. it can. Therefore, structural parts such as the communication pipe 23 and the three-way valve 16 provided outside the hermetic container 2 as shown in the first embodiment are not necessary, and an effect of being compact and inexpensive can be obtained.
1:スクロール圧縮機、
2:密閉容器(2a:ケース、2b:蓋チャンバ、2c:底チャンバ、2d:吸込パイプ、2e:吐出パイプ、2f:吐出チャンバ)、
3:圧縮機構部、
4:電動機(4a:固定子、4b:回転子)、
5:固定スクロール(5a:リリース弁、5b:リリースポート、5c:ラップ、5d:鏡板、5e:吐出口、5f:バイパス通路、5g:スイッチ弁通路、5h:吸込通路)、6:旋回スクロール(6a:ラップ、6b:鏡板、6c:旋回軸受)、
7:クランク軸(7a:主軸部、7b:偏心部、7c:給油通路)
8:ボルト、
9:フレーム(9a:主軸受)、
10:吸込室、
11:圧縮室、    
12:オルダムリング、
13:油溜り、
14:バイパス弁(14a:空間、14b:弁体、14c:ばね)、
15:吸込逆止弁、
16:三方弁、
17:副軸受、
18:スイッチ弁(18a:弁体、18b:ばね、18c:コイル)、
21:外線側圧縮室、22:内線側圧縮室、
23:連通管。
1: scroll compressor,
2: airtight container (2a: case, 2b: lid chamber, 2c: bottom chamber, 2d: suction pipe, 2e: discharge pipe, 2f: discharge chamber),
3: Compression mechanism part,
4: Electric motor (4a: stator, 4b: rotor),
5: fixed scroll (5a: release valve, 5b: release port, 5c: lap, 5d: end plate, 5e: discharge port, 5f: bypass passage, 5g: switch valve passage, 5h: suction passage), 6: orbiting scroll ( 6a: lap, 6b: end plate, 6c: slewing bearing),
7: Crankshaft (7a: main shaft portion, 7b: eccentric portion, 7c: oil supply passage)
8: Bolt,
9: Frame (9a: main bearing),
10: suction chamber,
11: compression chamber,
12: Oldham Ring,
13: Oil sump,
14: Bypass valve (14a: space, 14b: valve body, 14c: spring),
15: Suction check valve,
16: Three-way valve,
17: Secondary bearing,
18: switch valve (18a: valve body, 18b: spring, 18c: coil),
21: Outer line side compression chamber, 22: Inner line side compression chamber,
23: Communication pipe.

Claims (7)

  1.  密閉容器内に設けられた固定スクロールと旋回スクロールとを互いに噛み合わせて圧縮室を形成し、前記固定スクロールは、中央部側に吐出口が形成されると共に該吐出口の外周側に前記圧縮室と吐出側を連通するリリースポートとこのリリースポートを介して前記吐出側から圧縮室側への逆流を防ぐためのリリース弁を有し、前記固定スクロールの外周側には吸込室と該吸込室に通じる吸込通路を備えているスクロール圧縮機において、
     前記固定スクロールに形成され、前記吐出側と前記吸込室または吸込通路とを連通するバイパス通路と、
     このバイパス通路を開閉するバイパス弁と、
     前記バイパス通路が開口する前記吸込室または吸込通路の部分よりも上流側に設けられ、上流側への逆流を防止する吸込逆止弁と
     を備えていることを特徴とするスクロール圧縮機。
    The fixed scroll and the orbiting scroll provided in the hermetic container are meshed with each other to form a compression chamber. The fixed scroll has a discharge port formed at the center side and the compression chamber at the outer peripheral side of the discharge port. A release port communicating with the discharge side, and a release valve for preventing a back flow from the discharge side to the compression chamber side through the release port, and a suction chamber and a suction chamber on the outer peripheral side of the fixed scroll In a scroll compressor having a suction passage leading to it,
    A bypass passage formed in the fixed scroll and communicating the discharge side and the suction chamber or the suction passage;
    A bypass valve for opening and closing the bypass passage;
    A scroll compressor, comprising: a suction check valve provided upstream of the suction chamber or the portion of the suction passage where the bypass passage opens, and preventing a reverse flow upstream.
  2.  請求項1に記載のスクロール圧縮機において、前記バイパス弁は、前記バイパス通路を開閉するための弁体と、この弁体の背面側に設けられ前記弁体を作動させるための空間と、この空間に設けられたばねを備えていることを特徴とするスクロール圧縮機。 2. The scroll compressor according to claim 1, wherein the bypass valve includes a valve body for opening and closing the bypass passage, a space provided on a back side of the valve body for operating the valve body, and the space. A scroll compressor characterized by comprising a spring provided on the scroll compressor.
  3.  請求項2に記載のスクロール圧縮機において、前記バイパス弁に設けられた前記弁体を作動させるための空間には、圧縮機の吸込側及び吐出側と連通させるための連通管が接続され、前記空間の接続先を圧縮機の吸込側または吐出側に切り替えることにより前記空間に吸込圧力または吐出圧力の冷媒を導入し、バイパス弁の開閉を行うように構成されていることを特徴とするスクロール圧縮機。 In the scroll compressor according to claim 2, a communication pipe for communicating with the suction side and the discharge side of the compressor is connected to a space for operating the valve body provided in the bypass valve, Scroll compression characterized by switching the connection destination of the space to the suction side or the discharge side of the compressor to introduce a refrigerant having a suction pressure or a discharge pressure into the space to open and close the bypass valve Machine.
  4.  請求項3に記載のスクロール圧縮機において、前記バイパス弁の開閉の1周期における開閉の時間比を可変することで、任意の容量に制御することを特徴とするスクロール圧縮機。 4. The scroll compressor according to claim 3, wherein the capacity is controlled to an arbitrary capacity by changing a time ratio of opening and closing in one cycle of opening and closing of the bypass valve.
  5.  請求項2に記載のスクロール圧縮機において、前記バイパス弁に設けられた前記弁体を作動させるための空間は、前記固定スクロールに形成されたスイッチ弁通路を介して前記吸込室と連通されるように構成され、更に前記スイッチ弁通路を開閉するためのスイッチ弁を備えていることを特徴とするスクロール圧縮機。 3. The scroll compressor according to claim 2, wherein a space for operating the valve body provided in the bypass valve is communicated with the suction chamber via a switch valve passage formed in the fixed scroll. And a switch valve for opening and closing the switch valve passage.
  6.  請求項5に記載のスクロール圧縮機において、前記スイッチ弁は、前記スイッチ弁通路を開閉する弁体と、該弁体18aを押圧するばねと、前記弁体を開閉動作させるためのコイルとを備えていることを特徴とするスクロール圧縮機。 6. The scroll compressor according to claim 5, wherein the switch valve includes a valve body that opens and closes the switch valve passage, a spring that presses the valve body 18a, and a coil that opens and closes the valve body. A scroll compressor characterized by that.
  7.  請求項5に記載のスクロール圧縮機において、前記スイッチ弁の開閉を制御することで通常運転時間とバイパス運転時間を制御し、前記通常運転時間とバイパス運転時間との比を制御することにより任意の容量に制御することを特徴とするスクロール圧縮機。 6. The scroll compressor according to claim 5, wherein the normal operation time and the bypass operation time are controlled by controlling the opening and closing of the switch valve, and the ratio between the normal operation time and the bypass operation time is controlled arbitrarily. A scroll compressor characterized by controlling the capacity.
PCT/JP2011/053841 2011-02-22 2011-02-22 Scroll compressor WO2012114455A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013500751A JP5489142B2 (en) 2011-02-22 2011-02-22 Scroll compressor
EP11859605.5A EP2679823A1 (en) 2011-02-22 2011-02-22 Scroll compressor
PCT/JP2011/053841 WO2012114455A1 (en) 2011-02-22 2011-02-22 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053841 WO2012114455A1 (en) 2011-02-22 2011-02-22 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2012114455A1 true WO2012114455A1 (en) 2012-08-30

Family

ID=46720275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053841 WO2012114455A1 (en) 2011-02-22 2011-02-22 Scroll compressor

Country Status (3)

Country Link
EP (1) EP2679823A1 (en)
JP (1) JP5489142B2 (en)
WO (1) WO2012114455A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169689A (en) * 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 Scroll compressor
CN105986998A (en) * 2015-03-19 2016-10-05 艾默生环境优化技术有限公司 Variable volume ratio compressor
WO2018092622A1 (en) * 2016-11-21 2018-05-24 日立ジョンソンコントロールズ空調株式会社 Scroll compressor
US9989057B2 (en) 2014-06-03 2018-06-05 Emerson Climate Technologies, Inc. Variable volume ratio scroll compressor
US10066622B2 (en) 2015-10-29 2018-09-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
US10094380B2 (en) 2012-11-15 2018-10-09 Emerson Climate Technologies, Inc. Compressor
WO2019138553A1 (en) * 2018-01-12 2019-07-18 日立ジョンソンコントロールズ空調株式会社 Scroll compressor
US10378540B2 (en) 2015-07-01 2019-08-13 Emerson Climate Technologies, Inc. Compressor with thermally-responsive modulation system
US10495086B2 (en) 2012-11-15 2019-12-03 Emerson Climate Technologies, Inc. Compressor valve system and assembly
CN110603381A (en) * 2017-07-07 2019-12-20 大金工业株式会社 Scroll compressor having a discharge port
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
US10954940B2 (en) 2009-04-07 2021-03-23 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub
US11965507B1 (en) 2022-12-15 2024-04-23 Copeland Lp Compressor and valve assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873417B1 (en) * 2014-12-16 2018-07-31 엘지전자 주식회사 Scroll compressor
JP6606804B2 (en) * 2016-12-26 2019-11-20 三菱重工サーマルシステムズ株式会社 Scroll compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861269A (en) * 1994-06-08 1996-03-08 Nippon Soken Inc Scroll type compressor
JPH11351167A (en) * 1998-06-12 1999-12-21 Daikin Ind Ltd Multistage volume control scroll compressor
JP2003500611A (en) * 1999-06-01 2003-01-07 エルジー エレクトロニクス インコーポレイテッド Vacuum compression prevention device for scroll compressor
JP2004143951A (en) 2002-10-22 2004-05-20 Tokyo Gas Co Ltd Scroll compressor
JP2006046114A (en) * 2004-08-02 2006-02-16 Toshiba Kyaria Kk Refrigeration cycle apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861269A (en) * 1994-06-08 1996-03-08 Nippon Soken Inc Scroll type compressor
JPH11351167A (en) * 1998-06-12 1999-12-21 Daikin Ind Ltd Multistage volume control scroll compressor
JP2003500611A (en) * 1999-06-01 2003-01-07 エルジー エレクトロニクス インコーポレイテッド Vacuum compression prevention device for scroll compressor
JP2004143951A (en) 2002-10-22 2004-05-20 Tokyo Gas Co Ltd Scroll compressor
JP2006046114A (en) * 2004-08-02 2006-02-16 Toshiba Kyaria Kk Refrigeration cycle apparatus

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10954940B2 (en) 2009-04-07 2021-03-23 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11635078B2 (en) 2009-04-07 2023-04-25 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US10907633B2 (en) 2012-11-15 2021-02-02 Emerson Climate Technologies, Inc. Scroll compressor having hub plate
US11434910B2 (en) 2012-11-15 2022-09-06 Emerson Climate Technologies, Inc. Scroll compressor having hub plate
US10094380B2 (en) 2012-11-15 2018-10-09 Emerson Climate Technologies, Inc. Compressor
US10495086B2 (en) 2012-11-15 2019-12-03 Emerson Climate Technologies, Inc. Compressor valve system and assembly
US9989057B2 (en) 2014-06-03 2018-06-05 Emerson Climate Technologies, Inc. Variable volume ratio scroll compressor
JP2016169689A (en) * 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 Scroll compressor
CN105986998A (en) * 2015-03-19 2016-10-05 艾默生环境优化技术有限公司 Variable volume ratio compressor
US10323639B2 (en) 2015-03-19 2019-06-18 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10323638B2 (en) 2015-03-19 2019-06-18 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10378540B2 (en) 2015-07-01 2019-08-13 Emerson Climate Technologies, Inc. Compressor with thermally-responsive modulation system
US10066622B2 (en) 2015-10-29 2018-09-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
US10087936B2 (en) 2015-10-29 2018-10-02 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
CN108884830A (en) * 2016-11-21 2018-11-23 日立江森自控空调有限公司 Screw compressor
US10533555B2 (en) 2016-11-21 2020-01-14 Hitachi-Johnson Controls Air Conditioning, Inc. Scroll compressor
JP2018084157A (en) * 2016-11-21 2018-05-31 日立ジョンソンコントロールズ空調株式会社 Scroll compressor
WO2018092622A1 (en) * 2016-11-21 2018-05-24 日立ジョンソンコントロールズ空調株式会社 Scroll compressor
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
CN110603381B (en) * 2017-07-07 2020-06-30 大金工业株式会社 Scroll compressor having a discharge port
CN110603381A (en) * 2017-07-07 2019-12-20 大金工业株式会社 Scroll compressor having a discharge port
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
WO2019138553A1 (en) * 2018-01-12 2019-07-18 日立ジョンソンコントロールズ空調株式会社 Scroll compressor
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11754072B2 (en) 2018-05-17 2023-09-12 Copeland Lp Compressor having capacity modulation assembly
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11879460B2 (en) 2021-07-29 2024-01-23 Copeland Lp Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub
US11965507B1 (en) 2022-12-15 2024-04-23 Copeland Lp Compressor and valve assembly

Also Published As

Publication number Publication date
JP5489142B2 (en) 2014-05-14
JPWO2012114455A1 (en) 2014-07-07
EP2679823A1 (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5489142B2 (en) Scroll compressor
US4475360A (en) Refrigeration system incorporating scroll type compressor
JP4859694B2 (en) Multistage compressor
JPH0830471B2 (en) Air conditioner equipped with an inverter-driven scroll compressor
WO2007066463A1 (en) Scroll compressor
EP2679930A1 (en) Refrigeration cycle apparatus
JP5985068B2 (en) Scroll compressor
WO2018096824A1 (en) Scroll compressor
WO2018096823A1 (en) Asymmetrical scroll compressor
KR20050012633A (en) Scroll compressor with volume regulating capability
JP2959457B2 (en) Scroll gas compressor
EP2541066B1 (en) Scroll compressor
JP3764261B2 (en) Scroll compressor
JP2007132274A (en) Scroll compressor
JP6343328B2 (en) Scroll compressor
CN107131112A (en) High pressure compressor and the refrigerating circulatory device for possessing the high pressure compressor
JP2824476B2 (en) Air conditioner with scroll compressor driven by inverter
EP2322804B1 (en) Multiple-stage compressor
JPH10184568A (en) Scroll compressor and its back pressure chamber pressure control valve
JPH11107968A (en) Injection device for compressor
JP2011027372A (en) Refrigerating cycle device and heat pump water heater
JP2017210926A (en) Compressor
CN100455802C (en) Vortex compressor with soakage regulator
JP3635826B2 (en) Scroll compressor
JP5484604B2 (en) Refrigeration air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500751

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011859605

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011859605

Country of ref document: EP