WO2007066463A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2007066463A1
WO2007066463A1 PCT/JP2006/322120 JP2006322120W WO2007066463A1 WO 2007066463 A1 WO2007066463 A1 WO 2007066463A1 JP 2006322120 W JP2006322120 W JP 2006322120W WO 2007066463 A1 WO2007066463 A1 WO 2007066463A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
compression chamber
scroll
suction
suction volume
Prior art date
Application number
PCT/JP2006/322120
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Yamaji
Kazuhiko Matsukawa
Takeshi Imanishi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007066463A1 publication Critical patent/WO2007066463A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels

Definitions

  • the sk is equipped with sks (sks) and sks (2 sks) each having a wrap wound around each other on the plate.
  • the sk is fixed to the wing which is held by contact with the cane, and the movable sk is rotatable at the center of the drive rank.
  • the movable disc only revolves with respect to the fixed disc without revolving, so that the components formed between the laps of the disc are contracted to compress the medium and the like and discharge it from the outlet of the compression mechanism. Is done.
  • the end of the scoop and the end of the pump are open, and when this is closed, compression is formed and compression is started.
  • the scrubbed gas is sucked up to a certain volume.
  • the contraction is a structure and has a constant volume (constant compression) determined by the condition of the compression structure.
  • constant compression constant compression
  • the structure of the sk is generally such that the sk is pressed against the fixed sk by utilizing the force of the sk, or the structure that supports the thrust movable sk is designed to prevent the movable sk from overturning.
  • the high-pressure force generally decreases, and the disc gluing becomes small (in other words, the ratio of radial weight to weight becomes large), so the former overturning is likely to occur. That
  • the movable disc caps overturns, there are problems such as good compression, lower operating force, and lower ratio.
  • the operation for controlling the amount of compression (20) becomes possible. For example (25a) 2 (25b) If the suction adjustment mechanism (30) is activated to reduce the number, the number of windings can be reduced even during operation.
  • the gas weight lance has a relative relationship of (25a) 2 (25b), it may be changed to the direction of 2 (25b). Physically, the configuration of (25a) 2 (25b) is adjustable, and that of 2 (25b) is better than that of (25a).
  • the suction adjustment mechanism (30) is (25a)
  • (17) above may be the space inside the Ken (10) of the type in which the inside of the Ken (10) has a low pressure, and the inside of the Ken (10) is high pressure (16) low pressure. It may be at low pressure (17) in the type delineated in (17) or during compression (20).
  • the compression of the wrap (2 b 22b) is compressed until it passes the position with the open (31) even if the gap is (25a) 2 (25b). (25a 25b) is not closed. Therefore, until a point is formed at the place where the opening and closing (31) is passed, one of (25a) 2 (25b) is in the low state (17) in the keng (10), Immediately after the position of the wrap (2 b 22 b) passes through the position of the opening (31), the position where the point is formed becomes the inhalation and the compression process (2 5a 25b) is formed. Therefore, it is possible to adjust the inhalation rate according to the location of the opening / closing (31). By adjusting the size in this way, the compression (25a 25b) of the compression force of the cold road can be obtained when the condition of the road is low compression, which is out of the point at which the disk rotates. Can be prevented from becoming too high.
  • the suction adjustment mechanism (30) is substantially the same as the wrap (21b) of the desk (21) and the sk (21b) of the desk (22) (22b).
  • One of the (25a) 2 (25b) that is formed in contact with the body is formed by opening and closing (31) that can switch the position and the outer circumference between the state and the disconnected state.
  • the opening / closing (31) can be switched to the cutoff state.
  • the (20) can be operated in normal rotation as designed. Also, open and close (3 If (33) is set to the open position by 1), the opening / closing (31) can be switched to the state, and by doing so, the rotation in the changed state of (20) can be performed, so the road condition is It is possible to deal with low compression conditions that fall outside the point of rotation.
  • the opening / closing mechanism (34) moves the closing (33) towards the opening (35) and the closing (33) against the force of (35). It is characterized in that it is provided with (36) for switching between the state of applying a force and the state of applying a low pressure force to (33).
  • a high pressure force can be applied to the closure (33) to switch the (33) to the shut-off state against the force of (35) and to apply a low pressure force to the closure (33). If marked, the force of (35) can be used to switch (33) to the open state. In this way, by switching (33) between the shut-off state and the open state, it is possible to deal with the normal operation where the compression (20) is designed and the low compression condition which is out of the normal operation. it can.
  • (32 37) is the
  • 003 49 or 2 is characterized in that the sks (21) and 2 sks (22) are configured in an asymmetric winding with different numbers of windings.
  • One of (25a) 2 (25b) can be adjusted to the second floor of inhalation.
  • (22) is characterized in that it has a symmetrical number of windings and that the suction adjusting mechanism (30) is provided symmetrically with respect to the core of the winding.
  • the position can be adjusted. Therefore, as explained in the previous section, since the fixed compression can be reduced by reducing the compression (25a 25b), the condition of the road will be the condition of low compression outside the point of rotation of the disk. At that time, the compression (25a 25b) is prevented from becoming too high than the road force in that case.
  • the compression (20) is The skeleton (21), which is a skeleton (21) held by the ring (10), and the movable skeleton (22), which is a two skeleton (22) eccentric to the sk (21), are provided. It is characterized in that the electric motor (45) which can adjust the rotation speed of the movable disc (22) is accommodated in (10).
  • the fixed disc (21) is generally fixed to the housing (23) held by contact with the can (10) by a boat or the like.
  • the suction mechanism can be adjusted regardless of the electric motor (45), and by combining the adjusting mechanism (30), which is also a mechanical capacity control mechanism, with the rotation speed control of the electric motor (45), It is also possible to expand the capacity.
  • the rotation speed of the electric motor (45) is faster than that of normal rotation by the suction adjustment mechanism (30), which is (20) smaller than that of normal rotation. It is characterized by being configured into.
  • the motor (45) Since the control to increase the rotation speed of the electric motor (45) is performed when the speed is higher than during normal rotation, the motor (45) can be operated without lowering its rate. Also, by controlling the speed of rotation of the electric motor (45), it is possible to suppress a decrease in the operating amount even if the suction product is small.
  • the state is substantially the same as that of winding (), so it can be set according to the operation conditions.
  • the constant compression of the disk becomes smaller, and the discharge ((25a 25b)) is lower than that during normal rotation. Due to the adjustable rolling, the compression (25a 25b) is still higher than the road force in that case, even when the road condition is a low compression condition that is out of the point of rotation of the disk. Can be suppressed. Therefore, it becomes possible to prevent the occurrence of shrinkage.
  • suction adjusting mechanism (30) is provided at a place, it becomes possible to perform the stepwise control to prevent the occurrence of the shrinkage according to the condition of the road, and the degree of the control is improved.
  • suction adjusting mechanism (30) is provided within the circumference of one winding, it is possible to control the amount of compression by changing the suction position during operation and then changing.
  • the suction adjusting mechanism (30) when the suction adjusting mechanism (30) is operated, the area on which the weight due to the compression (25a 25b) acts can be reduced and the gas weight around the winding can be centered. Since it can be moved to a position, the capsize is small and capsizing occurs. Therefore, it is possible to prevent such problems as good compression, lower driving force, and lower ratio.
  • Rotation speed control by an engine, and control by an intermediate pressure low pressure mechanism are available. It is. When operating with a small capacity relative to the difference in force, control that is more balanced than efficiency is performed. On the other hand, in the case of Ming, it is possible to rotate the electric motor (45) at high speed as well as the capacity, so the efficiency reduction can be stopped.
  • the compression can be prevented regardless of whether the electric motor (45) is rotating at high speed or low speed, and the compression rate is lowered at the time of high speed rotation. It is also possible to control the size by changing the size of the inhaler.
  • Inhalation can be adjusted by adjusting the position of (25) 2 (25b) only by providing the opening and closing (31) that can switch (25b) and the closed state.
  • one of (25a) 2 (25b) can be opened and closed ((a) and (b) can be switched to the open / closed state with respect to the low pressure (17) provided in the casing (10).
  • one of (25a) 2 (25b) can be adjusted and inhaled. Then, by adjusting the size of the suction, it is possible to prevent the occurrence of contraction even when the condition of the road is a low compression condition apart from the point of the spiral, and it is possible to reduce the capacity.
  • (22a) (22b) is formed in a state of being substantially in contact with (25a) 2 (25b, on either side, the opening and closing can switch the position and the outer circumference between the state and the open state ( Just by providing (31), (25 a) Adjust one of the two (25b) and inhale.
  • the opening and closing (31) can be moved (32 37) to allow the release in the state of (31), and (33) to open (32 37).
  • the operation of the suction adjusting mechanism (30) can be controlled simply by providing the closing (33) with the moving mechanism (34) located at the open position.
  • the compression (20) can be operated according to the (force ratio) movement of the road, and the occurrence of the compression can be stopped.
  • the opening / closing mechanism (34) is closed (33) toward the open position (35), and high pressure is applied to the closed (33) against the force of (35). Switch between the state of marking and the state of applying low pressure force to (33).
  • the actual operation of the opening / closing (31) can be guaranteed only by making the configuration including (36). Then, by controlling the operation of the adjusting mechanism (30) by opening and closing (31), the compression (20) corresponds to the designed normal rotation and the low compression condition that is out of the normal rotation. It can be reduced, and capacity can be increased.
  • (25) 2 (25b) is smaller, the constant compression of the disk is smaller, so even if the road condition is a low compression condition deviating from the point of rotation of the disk, compression will not be generated. It is possible to stop.
  • the force difference between (25a) 2 (25b) during compression can be reduced, so that the balance of gas weight and the movement of the winding torque It is possible to reduce the vibration effect. Inhalation while driving
  • the suction adjusting mechanism (30) in the symmetrically wound disc, the suction adjusting mechanism (30) is provided in a symmetrical position with respect to the core of the winding, so that it is fixed by (25a 25b). Compression can be reduced. Therefore, when the road condition is a low compression condition that is out of the point at which the disc is rolling, it is possible to prevent the compression (25a 25b) from becoming too high than the road force in that condition.
  • the suction device can be changed during operation, the disc (22) moves relative to the fixed disc (21) and the electric motor (45) moves.
  • the condition of the road becomes a low compression condition that is out of the point when the disk is rotated.
  • the compression (25a 25b) can be prevented from becoming too high than the road force in that case.
  • the intake can be adjusted regardless of the electric motor (45), and the intake can be adjusted during operation.
  • the rate of the electric motor (45) can be operated at a high rate, and the capacity control is equivalent to that of ⁇ . I can maintain my strength.
  • the ratio of the electric motor (45) can be increased.
  • the suction adjustment mechanism (30) can be used for efficiency, not for capacity adjustment, while maintaining the operating amount.
  • 006 is a sectional view of the disk according to the implementation.
  • 3 3 is the surface structure of the opening and closing (adjustment mechanism).
  • 4 4 is a plan view of the fixed disc.
  • 5 5 is a plan view showing the assembly of the fixed disc.
  • 6 6 is a plan view of the door that constitutes the opening and closing mechanism.
  • 7 7 is a front view of the piston that constitutes the opening / closing mechanism.
  • 9 9 is a plan view showing the opening and closing mechanism in a continuous manner.
  • FIG. 10 is a front view showing the opening / closing mechanism in a closed state.
  • 11 is a plan view showing the state of the compression structure.
  • 122 is a plan view showing the second state of the compression structure.
  • 133 is a plan view showing the third state of the compression structure.
  • 15 5 is a plan view showing the state 5 of the compression structure.
  • 16 6 is a plan view showing the 6 state of the compression structure.
  • 17 7 is a cross-sectional view of the structure related to the implementation.
  • 188 is the surface structure of the structure related to the second implementation.
  • FIG. 9 is a cross-sectional view showing the structure of the structure according to Embodiment 3.
  • FIG. 202 is a cross-sectional view showing the second state of the structure according to the third embodiment.
  • the SK of the embodiment for example, the air compression cycle is installed in the path of the air conditioner, and compressed by the low pressure sucked from the device.
  • the disk (1) has a loose structure.
  • This disk (1) comprises a cylindrically shaped keng (0, which is a cylinder (and an upper (12) fixed to (, and (11) It is composed of (13) fixed to.
  • the (20) for compression and the electric motor (45) for driving (20) are housed.
  • This motive (45) is arranged toward the compression (20) and is connected to (20) via the rotating shaft (40).
  • This motor (45) is equipped with a rotor that allows the rotational speed to be variably adjusted by an interface.
  • the inhalation (14) is attached to the upper part (12) of the 007 (10) can.
  • This (14), (bottom of figure) is connected to compression (20).
  • the discharge (15) penetrates and is attached to the (11) of the can (10).
  • This (15), (on the right in the figure) opens between the pressure (20) and the electric motor (45) in the engine (10).
  • 007 (40) is located above and downward of Ken (10).
  • This (40) comprises a main shaft (41) and an eccentric part (42), and constitutes a crankshaft.
  • the core portion (42) has a smaller diameter than the main shaft (41) and is formed in the main shaft (41).
  • the core portion (42) is eccentric to the main shaft (41) by a predetermined method.
  • the lower part (48) is fixed in the vicinity of (11) of the ken (10). This (48) rotatably supports (4) of the drive (40) via the slide (48a).
  • the above (40) part has a vertical deviation.
  • the road is formed.
  • an oil supply pump (43) is provided on the main shaft (41). By this pump (43), the refrigeration is sucked from the part of the can (10), and then the part of (20) and (40) are supplied through the path of the drive (40).
  • the motive (45) is composed of a stator (46) and a stator (47).
  • the stator (46) is fixed to the (11) of the Ken (10).
  • the motor (47) is connected to (41) of the drive (40) to rotate the drive (40).
  • the 007 (20) is provided with a sk (21) which is a sk and a movable sk (22) which is 2 sk, and is also provided with a ging (23) for fixing the fixed sk (21).
  • the sk (21) is provided with a wrap (2 b 22 b) which is wound around each other on the (2 a 22 a) as will be described later.
  • the movable disc (22) is configured so that the movable disc (22) is eccentrically moved with respect to the fixed disc (21).
  • the housing (23) is composed of the lunge (23a), the main body (23b) and (23c).
  • the lunge (23a), the main body parts (23b) and (23c) are continuously formed from above, and the main body part (23b) is joined to the (11) of the kong (10).
  • the lunge (23a) is pushed out from the body (23b) at the end of the body (23b).
  • the (23c) is formed to have a diameter smaller than that of the main body (23b) and protrudes downward from the surface of the main body (23b).
  • This (23c) rotatably supports (41) of the drive (40) via the slide (23d).
  • the disk (21) is provided with a fixed (21a), a fixed wrap (21b) and (21c). (2 a) It is shaped like a plate.
  • the wrap (21b) stands on the fixed (21a) and is integrally formed with (21a). This wrap (21b) is formed into a winding with a constant height.
  • (21c) is a lunge-shaped part that extends downward from the peripheral edge of the fixed (21a) and the upper part of it, and is fixed to the surface of the lunge (23a) of the ging (23). It is composed of
  • the 007 disc (22) has a movable (22a), a movable rack (22b), and a boss (2 2c) and. (22a) is formed in a plate shape.
  • the latch (22b) stands on the surface of the movable (22a) and is integrally formed with (22a).
  • the wrap (22b) is formed in a fixed-width winding, and is configured so as to serve as the wrap (21b) of the fixed disc (21).
  • the boss (22c) is lowered from the surface of the movable (22a) and is integrally formed with the (22a).
  • the disc (1) of the present embodiment employs a so-called asymmetric winding, and the winding (wrapping) is different between the fixed wrap (2b) and the lap (22b).
  • the above wrap (2 b) has two windings longer than the movable wrap (22 b), except that the fixed wrap (21 b) has an outer circumference.
  • the fixed wrap (2 b) follows the (2 c) of the fixed disc (21), and the end of the fixed wrap (2 b) has a circumference and one more turn. It terminates in a form facing the inner circumference located at a position that is longer by the amount, and its movable loop (22b
  • the 008 (20) has a number (25a 25b) of fixed laps (2b) and laps (22b) between the fixed (21a) (22a). These multiples (25a 25b) are fixed wraps (2b)
  • a port (29) to which the suction (14) is connected is formed in the disc (21).
  • This port (29) is, however, provided only to allow the compression (25a 25b) to be inserted, and to prohibit the reverse direction.
  • This port (29) is connected to each of (25a) 2 (25b) intermittently along with the movement of the movable disc (22), and (219) is formed at 008 (21a).
  • (219) is attached to the surface of () with the face (27). Then, the space where this (219) is enclosed by the mosquito (27) is constructed as (28). In the center of this (21a), a port (26) for the discharge (28) is formed.
  • This port (26) is intermittently connected to each of (25a) 2 (25b) as the movable disc (22) moves.
  • the gas discharged in (28) above is introduced into () 16) of the housing (23) through the new gas passage formed in the fixed disk (21) and the housing (23), and is discharged from the discharge (15).
  • Keng (10) is issued.
  • the pressure in the housing (23) is high (16), while that in the housing (circle (20)) is low (17). Composed of 008 In this state, the compression stroke of (25a)
  • Adjuster that can be adjusted by adjusting the position (30) is provided.
  • This adjusting mechanism (30) is capable of adjusting (the entry stroke is completed and the compression stroke is started) by (25) 2 (25b), and as shown in 2 It is provided only in the place.
  • This adjusting mechanism (30) is composed of an open / close (31) capable of switching (25a) 2 (25b) between a closed state and a closed state.
  • 0087 (31) is, as shown in 3 which represents the plane structure, specifically,
  • the 00088 (32) is fixed to the (21a). It is made up of (32) formed. This (32) is formed in the lower part for the center of the winding within the circumference of one winding as shown in 4 of the fixed disk (21). This (32) shows a large (32a) opening on the surface of the fixed (21a) and a smaller diameter (32b) smaller than that, as shown in Fig. 5 which is a view showing the assembly of the fixed disc (21). ), The small diameter (32b) constitutes (32) above. This (32) is formed such that the small diameter (32b) is located between the teeth of the fixed wrap (21b). This (32b) is a hole whose diameter is larger than the thickness of the teeth of the movable rack 22b).
  • this viston (33) consists of a plug (33a) of the above (32b) method, a receptacle (33b) to which the above (35) is attached rather than this plug (33a), and this plug (33b).
  • (33c) rather than (33b) is integrally formed so as to be continuous from the tip (bottom of the figure) side.
  • (33d) is formed along the direction of (33c).
  • the ring-shaped (33e) shown in 8 is attached to (33d).
  • the moving mechanism (34) includes the above-mentioned a (35) which directs the piston (33) to the open position, the state where the low pressure force is applied to the piston (33) and the piston (33). It switches between the state in which a high pressure is applied against the force of the compression (35) () (36). When a low pressure force is applied to () after piston (33) by (36), the force of Y (35) pushing up piston (33) outweighs the force of pushing down piston (33). As shown, (32) above opens, and (25a) 2 (25b) becomes the state (3).
  • the product of compression (25a 25b) repeatedly increases and decreases cyclically.
  • (25a 25b) when the product of the part of the suction port (29) increases, it is sucked into (25a 25b) from the suction (14) of the road through the suction port (29), and the suction is When the product of closed parts decreases After being compressed into, it is discharged from the discharge port (26) to the discharge (28). It flows into (16) of the housing (23) through the Shina gas line of (28) and is supplied to the line of discharge (15).
  • the end of the movable latch (22b) is located between the teeth of the fixed wrap (21b), and (25a 0) 2 (25b 0) has a lower pressure.
  • (25a 0 25b 0) is the suction port (29).
  • the movable rack (22b) and the fixed wrap (2b) are substantially in contact with P in the figure, and although the term is unclear, However, since the oil film is formed, it is in a state in which it is not a problem), and (25a) on the inner circumference (of the winding) than the (point) P is already within the compression range.
  • the volume starts to shrink, and at (25a 0), the volume further expands and the entry process proceeds.
  • 2 (25b 1) and the last (25a 0) are further advanced.
  • a new 2 (25b 0) is formed on the winding end side of the already compressed 2 (25b), and the entry stroke has started there.
  • a new (25a 0) is formed at (end of winding) of (25a 1).
  • the suction adjustment mechanism (30) (31) is open (25a) 2 (25b) when the piston (33) is in the open position and the small diameter (32b) which is (32) is open. And are in the (active state).
  • the rotation speed of the electric motor (45) is set to be higher than that during normal rotation, so the force of the disk (1) should be maintained at the same level as during normal rotation.
  • the size of the disc (1) is small. can do. Therefore, it is possible to adjust the discharge force to be lower than that during normal rotation. Therefore, even when the road condition is a low compression condition outside the point of rotation of the disk (1), the compression force (25a 25b) is higher than the road force in that condition. Can be suppressed. Therefore, it becomes possible to prevent the occurrence of shrinkage.
  • the suction adjustment mechanism (30) can be used while maintaining the operation amount for efficiency rather than for capacity adjustment.
  • the control to increase the rotation speed of the motor (45) is not always performed when the rotation speed is higher than that during normal rotation, and in some cases, the rotation speed of the electric motor (45) may not be changed. . In this case, the range of capacity can be expanded to a fixed capacity.
  • suction adjusting mechanism (30) is provided only within one winding, it is possible to adjust the suction to the second floor. If the suction adjusting mechanism (30) is provided only at one place, the structure can be most simplified as compared with the case where it is provided at a plurality of places.
  • the suction adjusting mechanism (30) is (25) 2
  • the position of (25a) 2 (25b) can be adjusted by simply providing the opening and closing (31) that can switch (25b) and the closed state.
  • the opening and closing (31) is a path (32b) of (32) which allows the release in the state of (31), and a piston (which is movable by chaining to open this (32b) ( 33) and a moving mechanism (34) positioned to open the piston (33), and (32) is formed by (32) formed on the plate of the fixed disc (21). Therefore, the structure is extremely simple.
  • the opening / closing mechanism (34) is arranged so that the piston (33) is opened and opened (35), and the piston (33) is applied with a low pressure force and a high pressure force. The actual operation of opening / closing (31) can be assured only by configuring with (36), which is for switching. 0115's
  • Reference numeral 01167 is a sectional view showing the structure of compression (20). This is the fixed disc
  • the disk (22) has a uniform number of turns and is designed for symmetrical winding. It has been done.
  • the suction adjusting mechanism (30) is provided in a position symmetrical with respect to the winding core. It is the same as for ⁇ 6 of the adjusting mechanism (30).
  • the position can be adjusted. Therefore, as in the case of ⁇ 6, since the fixed compression can be reduced by reducing the compression (25 a 25b), the road condition can be reduced at a low pressure outside the rotation point of the disc (1).
  • the compression (25a 25b) is prevented from becoming too high than the road force in the case. Therefore, shrinkage can be prevented.
  • the suction adjustment mechanism (30) can be used for efficiency rather than for capacity adjustment.
  • Ming 2 is an example different from the construction of the opening and closing (31) (adjustment mechanism (30)).
  • the opening / closing (31) is configured so that (25a) 2 (25b) can be switched between a closed state and a closed state with respect to the low pressure (17) provided in the casing (10).
  • the configuration of (31) is the same as that of implementation except for (32).
  • the part corresponding to (32b) of the implementation is (25a) 2 (25b), and the movable disc (21) is passed through to the outer circumference of the radial force and becomes (17c) of the surrounding (32c).
  • the above (32) may be connected to the compression (20) pipe or, if a suction gap is provided, between them.
  • the compression (25a 25b) can be prevented from becoming too higher than the force of the cold road, so that contraction can be prevented. It is also possible to use the suction adjustment mechanism (30) for efficiency, not for capacity adjustment, while maintaining the operating volume.
  • (25a) 2 (25b) may be switched between the state and the off state with respect to (17) above. For example, only (25a) above
  • (25a) has higher pressure. Therefore, the winding torque (depending on the gas weight Vibrations are also likely to occur due to fluctuations in g that act in the direction of rotation. On the other hand, if only (25a) is reduced, the force difference of (25a) 2 (25b) can be reduced, so that the gas weight range and winding torque It is possible to reduce the effect of vibration due to. [0125] Also, since the gas weight lance has a relative relationship of (25a) 2 (25b), it may change to the direction of 2 (25b). The configuration of (25a) 2 (25b) that can be adjusted is 2 (25b) rather than (25a).
  • Ming 3 is an example different from the construction of the opening / closing (31) (adjustment mechanism (30)). Physically, the opening and closing (31) is made with the fixed wrap (21b) and the latch (22b) in substantial contact (25a) 2 (25b) with its position and the outer circumference. It is composed of an open / close (31) that can switch between the closed state and the closed state.
  • This (31) is different from the one used in the practice, and is composed of (37a 37b) curved along the lap (21b 2b). Also, (37a 37b) is divided into (37a) 2 (25b) and (37b) for (25a). Then, a string (37a) for (25a) is formed along the fixed wrap (21b), and a string (37b) for 2 (25b) is formed along the fixed wrap (21b). (37a 37b) but with a construction similar to that described in the implementation, with the shape of the piston (33) being adapted to each (37a 37b).
  • (25a) 2 (25b) is wound around the suction adjustment mechanism (30 (only within the area surrounded by one roll of (21b 22b, but it may be provided in multiple locations. (2) to the floor Therefore, it is possible to perform finer control depending on the condition of the road.
  • the shape of (32) described in the implementation is not limited to the circular hole, and the shape may be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

A scroll compressor has a first compression chamber (25a) formed between the inner peripheral surface of a stationary wrap (21b) and the outer peripheral surface of a moving wrap (22b) and also has a second compression chamber (25b) formed between the outer peripheral surface of the stationary wrap (21b) and the inner peripheral surface of the moving wrap (22b). A suction volume regulation mechanism (30) is provided at at least one position within a range of one spiral turn on the outer part of the spiral, and the mechanism (30) is capable of regulating a suction volume by adjusting a suction close position of the compression chambers (25a, 25b) in a suction process of the compression mechanism (20). When operation of a refrigerant circuit is in a low-compression-ratio operating condition that is outside a design point of the scroll compressor, over-compression is prevented independent of control of a motor, a reduction in efficiency of the compressor is prevented, and in addition an occurrence of a failure caused by overturn of a movable scroll (22) is prevented.

Description

明 細 書 Specification
スクロール圧縮機 scroll compressor
技術分野 Technical field
[0001] 本発明は、互いに嚙み合う 2つのスクロール部材の少なくとも一方が偏心回転運動 をするスクロール圧縮機に関し、特に、過圧縮防止構造に関するものである。 [0001] The present invention relates to a scroll compressor in which at least one of two scroll members that squeeze each other performs an eccentric rotational movement, and particularly relates to an overcompression prevention structure.
背景技術 Background technology
[0002] 従来より、スクロール圧縮機は例えば冷凍サイクルで冷媒ガスを圧縮する圧縮機構 として用いられている(例えば特許文献 1参照)。スクロール圧縮機は、互いに嚙み合 う渦巻き状のラップを鏡板上に有する固定スクロール (第 1スクロール部材)と可動スク ロール (第 2スクロール部材)とをケーシング内に備えている。固定スクロールはケー シングに圧入や溶接により保持されたノヽウジングに固定され、可動スクロールは駆動 軸 (クランク軸)の偏心部に回転可能に嵌合している。このスクロール圧縮機では、可 動スクロールが固定スクロールに対して自転することなく公転のみを行うことで、両ス クロールのラップ間に形成される圧縮室を収縮させて冷媒などのガスを圧縮し、圧縮 機構の吐出口から吐出する動作が行われる。ガスの吸入時には、両スクロールのラッ プの卷き終わり側が開放されており、ここが閉じ切られたときに圧縮室が形成されて、 圧縮が開始される。 [0002] Scroll compressors have conventionally been used, for example, as a compression mechanism for compressing refrigerant gas in a refrigeration cycle (see, for example, Patent Document 1). A scroll compressor is equipped within a casing with a fixed scroll (first scroll member) and a movable scroll (second scroll member), both of which have spiral wraps on an end plate that engage each other. The fixed scroll is fixed to a nozzle that is press-fitted or welded into the casing, and the movable scroll is rotatably fitted to the eccentric part of the drive shaft (crankshaft). In this scroll compressor, the movable scroll only revolves around the fixed scroll without rotating, thereby contracting the compression chamber formed between the wraps of both scrolls and compressing gas such as refrigerant. The operation of discharging from the discharge port of the compression mechanism is performed. When gas is inhaled, the ends of the wraps of both scrolls are open, and when these are closed, a compression chamber is formed and compression begins.
[0003] ところで、スクロール圧縮機は、吸入したガス容積をある一定の容積まで容積変化 させて圧縮を行う構造であり、圧縮機構の形状によって決まった「固定容積比(固定 圧縮比)」を有している。このスクロール圧縮機の圧縮機構の動作について具体的に 説明すると、圧縮室はガスの圧縮中には圧縮機構の吐出口にはつながっておらず、 固定スクロールと可動スクロールの渦巻き状の歯 (ラップ)の間の圧縮室の容積が縮 小することでガスが一定の圧力に達した後に圧縮室が吐出口と連通して、高圧ガス が吐出される。 [0003] Incidentally, a scroll compressor has a structure that compresses the sucked gas by changing the volume up to a certain volume, and has a "fixed volume ratio (fixed compression ratio)" determined by the shape of the compression mechanism. are doing. To explain the operation of the compression mechanism of this scroll compressor in detail, the compression chamber is not connected to the discharge port of the compression mechanism during gas compression, but is connected to the spiral teeth (wrap) of the fixed scroll and movable scroll. After the gas reaches a certain pressure by reducing the volume of the compression chamber between the two, the compression chamber communicates with the discharge port and high-pressure gas is discharged.
[0004] そのため、例えば冷媒回路の運転条件力スクロール圧縮機の設計点から外れた低 圧縮比 (低圧力比)の運転条件時の圧縮室の内圧(吐出圧)は、その運転条件での 冷媒回路の高圧圧力よりも高い圧力まで上昇することになる (過圧縮)。過圧縮の発 生時には余分な圧縮を行う分だけ動力が消費されるため、圧縮機の効率が低下する [0004] Therefore, for example, the internal pressure (discharge pressure) of the compression chamber under operating conditions of a low compression ratio (low pressure ratio) that deviates from the design point of the refrigerant circuit operating condition of a power scroll compressor is determined by the refrigerant under that operating condition. The pressure will rise to a level higher than the circuit high pressure (overcompression). Overcompression During production, power is consumed to perform extra compression, reducing the efficiency of the compressor.
[0005] これに対して、上記特許文献 1のスクロール圧縮機は、インバータ制御の電動機を 備えた容量可変の圧縮機であって、渦巻き状のラップの巻き終わり部分の歯の厚さ を薄くして側面の隙間を大きくした構成になっている。このスクロール圧縮機では、高 速運転時には潤滑油のシール効果によってラップの巻き終わり部分での吸入冷媒の 閉じ込み量が相対的に多いのに対して、低速運転時には潤滑油のシール効果が弱 まることで隙間が大きく設定された箇所でガスの漏れが発生し、吸入冷媒の閉じ込み 量が相対的に少なくなる。そのため、低速運転時には吸入冷媒量が少なくなつた状 態で冷媒が圧縮されるので、過圧縮を抑えることができる。 [0005] On the other hand, the scroll compressor of Patent Document 1 is a variable capacity compressor equipped with an inverter-controlled electric motor, and has thinner teeth at the end of the spiral wrap. It has a configuration with larger gaps on the sides. In this scroll compressor, during high-speed operation, the amount of suction refrigerant trapped at the end of the wrap is relatively large due to the sealing effect of the lubricating oil, whereas during low-speed operation, the sealing effect of the lubricating oil weakens. As a result, gas leaks occur where the gap is set large, and the amount of trapped refrigerant is relatively small. Therefore, during low-speed operation, the refrigerant is compressed with a reduced amount of suction refrigerant, so overcompression can be suppressed.
特許文献 1 :特開平 11 82331号公報 Patent document 1: Japanese Patent Application Laid-open No. 11 82331
発明の開示 Disclosure of invention
発明が解決しょうとする課題 Problems that the invention seeks to solve
[0006] 特許文献 1の圧縮機では、圧縮機の低速運転時に冷媒回路の運転条件が低圧縮 比になっているときには過圧縮を防止できるものの、圧縮機の高速運転時に冷媒回 路の運転条件が低圧縮比になっているときには吸入冷媒量が多いため、過圧縮を防 止できない問題がある。つまり、この特許文献 1のスクロール圧縮機では、電動機の 回転速度を遅くすることが過圧縮防止の必要条件となる制約がある。 [0006] The compressor of Patent Document 1 can prevent overcompression when the operating conditions of the refrigerant circuit are at a low compression ratio when the compressor is operating at low speed, but when the operating conditions of the refrigerant circuit are at a low compression ratio when the compressor is operating at high speed. When the compression ratio is low, the amount of refrigerant sucked is large, so there is a problem that overcompression cannot be prevented. In other words, the scroll compressor of Patent Document 1 has a restriction that slowing down the rotational speed of the electric motor is a necessary condition for preventing overcompression.
[0007] また、上記圧縮機では、冷媒回路の運転条件が低圧縮比の運転条件になって!/、る ときには、インバータ制御により電動機の回転数を低くした運転が行われるが、電動 機は一般に高速回転よりも低速回転の方が効率が低下するため、圧縮機の効率も 低下する問題があった。 [0007] In addition, in the above compressor, when the operating conditions of the refrigerant circuit become operating conditions of a low compression ratio, the motor is operated at a low rotation speed by inverter control. Generally speaking, efficiency is lower when rotating at low speeds than when rotating at high speeds, so there was a problem in that the efficiency of the compressor also decreased.
[0008] さらに、スクロール圧縮機では、一般に固定スクロールに対して可動スクロールをガ スの高圧圧力を利用して軸方向に押し付ける構造、もしくはスラスト軸受で可動スクロ ールを支持する構造により、可動スクロールが転覆 (傾斜)するのを防止するようにし ている力 低圧縮比の運転時には一般に高圧圧力が下がって可動スクロールの軸 方向押し付け力が小さくなる (言い換えると軸方向荷重に対する半径方向荷重の比 率が大きくなる)ため、前者の場合は転覆モーメントにより転覆が生じやすくなる。そし て、可動スクロールが転覆すると、圧縮不良、運転能力の低下、及び圧縮機の効率 の低下などの不具合が生じることとなる。 [0008] Furthermore, scroll compressors generally have a structure in which the movable scroll is pushed against the fixed scroll in the axial direction using high gas pressure, or a structure in which the movable scroll is supported by a thrust bearing. The force that prevents the scroll from overturning (tilting) When operating at a low compression ratio, the high pressure generally decreases and the axial pressing force on the movable scroll decreases (in other words, the ratio of radial load to axial load) (increases), so in the former case, overturning is more likely to occur due to overturning moment. stop If the movable scroll overturns, problems such as poor compression, reduced operating capacity, and reduced compressor efficiency will occur.
[0009] 本発明は、力かる点に鑑みてなされたものであり、その目的は、冷媒回路の運転条 件力 Sスクロール圧縮機の設計点力も外れた低圧縮比の運転条件になったときに、電 動機の制御とは関係なく過圧縮の発生を防止するとともに、圧縮機の効率の低下も 防止し、さらにスクロール部材の転覆による不具合の発生も防止することである。 課題を解決するための手段 [0009] The present invention was made in view of the above-mentioned problems, and its purpose is to solve the problem when the operating condition of the refrigerant circuit becomes a low compression ratio operating condition where the design point of the S-scroll compressor deviates from the operating condition. The second objective is to prevent overcompression from occurring regardless of the control of the electric motor, prevent the efficiency of the compressor from decreasing, and prevent malfunctions due to overturning of the scroll member. Means to solve problems
[0010] 第 1の発明は、互いに嚙み合う渦巻き状のラップ (21b, 22b)を鏡板 (21a, 22a)上に 備えた 2つのスクロール部材 (21, 22)の少なくとも一方が偏心回転運動をする圧縮機 構 (20)をケーシング(10)内に備えたスクロール圧縮機を前提として!/、る。 [0010] The first invention is such that at least one of the two scroll members (21, 22), which has spiral wraps (21b, 22b) that bite into each other on the end plate (21a, 22a), performs eccentric rotational movement. Assuming a scroll compressor with a compression mechanism (20) inside the casing (10)! /, Ru.
[0011] そして、このスクロール圧縮機は、第 1スクロール部材(21)のラップ(21b)の内周面 と第 2スクロール部材 (22)のラップ (22b)の外周面との間に構成される第 1圧縮室 (25 a)と、第 1スクロール部材 (21)のラップ (21b)の外周面と第 2スクロール部材 (22)のラ ップ (22b)の内周面との間に構成される第 2圧縮室 (25b)との少なくとも一方にっ 、て 、圧縮機構 (20)の吸入行程における圧縮室 (25a, 25b)の吸入閉じ切り位置を調節 することにより吸入容積を調整可能な吸入容積調整機構 (30)を、渦巻きの外周側一 巻き範囲内の少なくとも 1箇所に備えていることを特徴としている。 [0011] This scroll compressor is configured between the inner circumferential surface of the wrap (21b) of the first scroll member (21) and the outer circumferential surface of the wrap (22b) of the second scroll member (22). The compressor is configured between the first compression chamber (25a), the outer circumferential surface of the wrap (21b) of the first scroll member (21), and the inner circumferential surface of the wrap (22b) of the second scroll member (22). The suction volume can be adjusted by adjusting the suction closed position of the compression chambers (25a, 25b) during the suction stroke of the compression mechanism (20). It is characterized in that a volume adjustment mechanism (30) is provided at at least one location within the range of one turn on the outer circumferential side of the spiral.
[0012] この第 1の発明では、渦巻きの外周側一巻き範囲内に吸入容積調整機構 (30)を設 けたことにより、第 1圧縮室 (25a)と第 2圧縮室 (25b)の少なくとも一方について吸入 容積を小さくする運転が可能となる。例えば第 1圧縮室 (25a)と第 2圧縮室 (25b)の両 方の吸入容積を小さくすると、スクロール圧縮機の「固定圧縮比」が小さくなる。そうす ると、吐出圧力が通常運転時よりも低くなる運転 (以下、調整運転という)を行える。し たがって、冷媒回路の運転条件がスクロール圧縮機の通常運転時の設計点から外 れた低圧縮比の運転条件になっているときに、圧縮室 (25a, 25b)の内圧が、その運 転条件での冷媒回路の高圧圧力よりも高くなりすぎるのを抑えられる。吸入容積調整 機構 (30)を複数箇所に設けると、吐出圧力を複数段階に調整できる。 [0012] In the first invention, by providing the suction volume adjustment mechanism (30) within one turn on the outer circumferential side of the spiral, at least one of the first compression chamber (25a) and the second compression chamber (25b) It is possible to operate with a smaller suction volume. For example, if the suction volumes of both the first compression chamber (25a) and the second compression chamber (25b) are reduced, the "fixed compression ratio" of the scroll compressor becomes smaller. This allows operation in which the discharge pressure is lower than during normal operation (hereinafter referred to as adjustment operation). Therefore, when the operating conditions of the refrigerant circuit are at a low compression ratio that deviates from the design point during normal operation of the scroll compressor, the internal pressure of the compression chambers (25a, 25b) This prevents the pressure from becoming too high compared to the high pressure in the refrigerant circuit under the conditions of rotation. By providing suction volume adjustment mechanisms (30) in multiple locations, the discharge pressure can be adjusted in multiple stages.
[0013] さらに、上記吸入容積調整機構 (30)を設けたことにより、圧縮機構 (20)の容量を制 御する運転が可能となる。例えば第 1圧縮室 (25a)と第 2圧縮室 (25b)の両方の吸入 容積を小さくするように吸入容積調整機構 (30)を作動させると、運転中であっても渦 巻きの実質巻き数を小さくして容量制御を行える。 [0013]Furthermore, by providing the suction volume adjustment mechanism (30), operation that controls the capacity of the compression mechanism (20) becomes possible. For example, suction in both the first compression chamber (25a) and the second compression chamber (25b) By operating the suction volume adjustment mechanism (30) to reduce the volume, the actual number of turns of the vortex can be reduced to control the volume even during operation.
[0014] さらに、この発明では第 1圧縮室 (25a)か第 2圧縮室 (25b)の一方だけ吸入容積を 変更することも可能である。この点に関し、 2つのスクロール部材 (21, 22)の渦巻き(ラ ップ (21b, 22b) )の巻き数 (渦巻きの長さ)が異なる非対称渦巻き構造では、一般に、 第 1圧縮室 (25a)と第 2圧縮室 (25b)の圧縮比を渦巻き中心部で調整して吐出圧力 を合わせているため、渦巻きの圧縮途中では、第 1圧縮室 (25a)と第 2圧縮室 (25b) の間で圧力差がついて、渦巻きに作用するガス荷重にアンバランスが発生している。 具体的には、第 1圧縮室 (25a)の吸入容積が大きくて第 2圧縮室 (25b)の吸入容積が 小さい場合、圧縮途中は第 1圧縮室 (25a)の方が圧力が高い。そのため、渦巻きの 自転トルク (ガス荷重により渦巻きを自転させる方向に作用するトルク)の変動による 振動も生じやすい。これに対して、第 1圧縮室 (25a)の吸入容積のみを小さくするよう にすれば、第 1圧縮室 (25a)と第 2圧縮室 (25b)のガスの圧力差を小さくすることがで きるので、ガス荷重のアンバランスや、渦巻きの自転トルクの変動による振動の影響 を小さくすることが可能となる。 [0014] Furthermore, in the present invention, it is also possible to change the suction volume of only one of the first compression chamber (25a) and the second compression chamber (25b). In this regard, in an asymmetric spiral structure in which the number of turns (length of the spiral) of the spirals (wraps (21b, 22b)) of the two scroll members (21, 22) are different, the first compression chamber (25a) Since the compression ratio of the first compression chamber (25b) and the second compression chamber (25b) are adjusted at the center of the vortex to match the discharge pressure, during the compression of the vortex, the pressure between the first compression chamber (25a) and the second compression chamber (25b) There is a pressure difference between the two, causing an imbalance in the gas load acting on the vortex. Specifically, when the suction volume of the first compression chamber (25a) is large and the suction volume of the second compression chamber (25b) is small, the pressure in the first compression chamber (25a) is higher during compression. Therefore, vibrations are likely to occur due to fluctuations in the rotational torque of the volute (the torque that acts in the direction of the vortex's rotation due to the gas load). On the other hand, if only the suction volume of the first compression chamber (25a) is reduced, the pressure difference between the gases between the first compression chamber (25a) and the second compression chamber (25b) can be reduced. This makes it possible to reduce the effects of vibrations caused by unbalanced gas loads and fluctuations in the rotational torque of the vortex.
[0015] また、ガス荷重のバランスは第 1圧縮室 (25a)と第 2圧縮室 (25b)の相対的な関係で あるため、第 2圧縮室 (25b)の吸入容積を大きくする方向に変化させてもよい。具体 的には、第 1圧縮室 (25a)と第 2圧縮室 (25b)の両方の吸入容積を調整することがで きる構成で、第 1圧縮室 (25a)の吸入容積の調整位置よりも第 2圧縮室 (25b)の吸入 容積の調整位置を渦巻きの外周側 (巻き終わり側)にずらすとよ!、。 [0015] Furthermore, since the gas load balance is a relative relationship between the first compression chamber (25a) and the second compression chamber (25b), the suction volume of the second compression chamber (25b) changes in the direction of increasing it. You may let them. Specifically, the configuration is such that the suction volume of both the first compression chamber (25a) and the second compression chamber (25b) can be adjusted, and the suction volume adjustment position of the first compression chamber (25a) is Move the suction volume adjustment position of the second compression chamber (25b) to the outer circumference of the spiral (toward the end of the spiral).
[0016] また、この発明では、吸入容積調整機構 (30)を作動させると、圧縮室 (25a, 25b)の 内圧による軸方向荷重が作用する面積を小さくすることができるとともに、渦巻きに対 するガス荷重の作用点を駆動中心に近い位置に移動させることができるので、転覆 モーメントが小さくなり、転覆が生じにくくなる。 [0016] Furthermore, in this invention, by operating the suction volume adjustment mechanism (30), it is possible to reduce the area on which the axial load due to the internal pressure of the compression chambers (25a, 25b) acts, and also to prevent swirling. Since the point of application of the gas load can be moved to a position closer to the drive center, the overturning moment is reduced and overturning is less likely to occur.
[0017] 第 2の発明は、第 1の発明において、吸入容積調整機構 (30)が、第 1圧縮室 (25a) と第 2圧縮室 (25b)の両方で吸入閉じ切り位置を調節可能な機構であることを特徴と している。 [0017] A second invention is the first invention, wherein the suction volume adjustment mechanism (30) is capable of adjusting the suction closed position in both the first compression chamber (25a) and the second compression chamber (25b). It is characterized by being a mechanism.
[0018] この第 2の発明では、第 1の発明について説明したように、第 1圧縮室 (25a)と第 2 圧縮室 (25b)の両方の吸入容積を同時に小さくすることにより容量制御を行うとともに 、スクロール圧縮機の固定圧縮比を小さくし、吐出圧力を通常運転時よりも低くするこ とができる。したがって、冷媒回路の運転条件がスクロール圧縮機の通常運転時の 設計点から外れた低圧縮比の運転条件になっているときに、圧縮室 (25a, 25b)の内 圧が、その運転条件での冷媒回路の高圧圧力よりも高くなりすぎるのを抑えられる。 [0018] In this second invention, as described in the first invention, the first compression chamber (25a) and the second Capacity control is performed by simultaneously reducing the suction volumes of both compression chambers (25b), and the fixed compression ratio of the scroll compressor is reduced, making it possible to lower the discharge pressure than during normal operation. Therefore, when the operating conditions of the refrigerant circuit are at a low compression ratio that deviates from the design point during normal operation of the scroll compressor, the internal pressure of the compression chambers (25a, 25b) will be lower than that of the operating conditions. The high pressure of the refrigerant circuit can be prevented from rising too high.
[0019] 第 3の発明は、第 2の発明において、吸入容積調整機構 (30)が、第 1圧縮室 (25a) と第 2圧縮室 (25b)とを連通状態と遮断状態とに切り換え可能な開閉機構 (31)により 構成されて 、ることを特徴として 、る。 [0019] A third invention is the second invention, wherein the suction volume adjustment mechanism (30) is capable of switching the first compression chamber (25a) and the second compression chamber (25b) between a communication state and a disconnection state. It is characterized by being configured with an opening/closing mechanism (31).
[0020] この第 3の発明では、開閉機構 (31)を閉じている通常運転時の状態では、渦巻き の巻き終わり側で離れていた第 1スクロール部材 (21)のラップ (21b)の内周面と第 2ス クロール部材 (22)のラップ (22b)の外周面とが実質的に接触したとき (ミクロンオーダ 一の隙間はあるが、その間に油膜が形成されて冷媒の漏れが問題にならない状態に なったとき)の接触位置 (シールポイント)が吸入閉じ切り位置となり、第 1圧縮室 (25a )での圧縮行程が開始される。また、同じく渦巻きの巻き終わり側で離れていた第 1ス クロール部材(21)のラップ(21b)の外周面と第 2スクロール部材(22)のラップ(22b)の 内周面とが実質的に接触したときの接触位置 (シールポイント)が吸入閉じ切り位置と なり、第 2圧縮室 (25b)での圧縮行程が開始される。 [0020] In this third invention, in the normal operating state when the opening/closing mechanism (31) is closed, the inner periphery of the wrap (21b) of the first scroll member (21) that is separated at the winding end side of the spiral When the surface and the outer circumferential surface of the wrap (22b) of the second scroll member (22) substantially contact each other (there is a gap on the order of microns, but an oil film is formed between them and refrigerant leakage does not become a problem). The contact position (seal point) at the end of the first compression chamber (25a) becomes the suction closed position, and the compression stroke in the first compression chamber (25a) begins. Further, the outer circumferential surface of the wrap (21b) of the first scroll member (21), which was also separated at the end of the spiral, and the inner circumferential surface of the wrap (22b) of the second scroll member (22) are substantially The contact position (seal point) at the time of contact becomes the suction closing position, and the compression stroke in the second compression chamber (25b) begins.
[0021] 一方、開閉機構 (31)を開いた状態にすると、第 1圧縮室 (25a)と第 2圧縮室 (25b) のいずれにおいても、上記接触位置が開閉機構 (31)のある位置を通過するまでは 圧縮室 (25a, 25b)が閉じ切られない。つまり、開閉機構 (31)の位置を通過したところ にシールポイントが形成されるまでは、第 1圧縮室 (25a)は第 2圧縮室 (25b)を介して 圧縮機構 (20)の吸入側に連通した状態、第 2圧縮室 (25b)は第 1圧縮室 (25a)を介 して圧縮機構 (20)の吸入側に連通した状態であり、両ラップ (21b, 22b)の接触位置 が開閉機構 (31)の位置を通過した直後にシールポイントが形成された位置が吸入閉 じ切り位置となって、圧縮行程に入る第 1圧縮室 (25a)及び第 2圧縮室 (25b)が形成 される(図 11〜図 16参照)。そのため、開閉機構 (31)を設ける位置に応じて、吸入容 積の大きさを調整することが可能となる。そして、このようにして吸入容積の大きさを調 整することにより、冷媒回路の運転条件力スクロール圧縮機の通常運転時の設計点 力 外れた低圧縮比の運転条件になっているときに、圧縮室 (25a, 25b)の内圧が冷 媒回路の高圧圧力よりも高くなりすぎるのを抑えられる。 [0021] On the other hand, when the opening/closing mechanism (31) is opened, the above-mentioned contact position touches the position of the opening/closing mechanism (31) in both the first compression chamber (25a) and the second compression chamber (25b). The compression chambers (25a, 25b) will not be completely closed until it passes. In other words, until a seal point is formed past the opening/closing mechanism (31), the first compression chamber (25a) is connected to the suction side of the compression mechanism (20) via the second compression chamber (25b). The second compression chamber (25b) is in communication with the suction side of the compression mechanism (20) via the first compression chamber (25a), and the contact positions of both wraps (21b, 22b) are open and closed. Immediately after passing the mechanism (31), the position where the seal point is formed becomes the suction closing position, and the first compression chamber (25a) and second compression chamber (25b) are formed to enter the compression stroke. (See Figures 11 to 16). Therefore, the size of the suction volume can be adjusted depending on the position where the opening/closing mechanism (31) is provided. By adjusting the suction volume in this way, the operating conditions of the refrigerant circuit can be adjusted to the design point during normal operation of the power scroll compressor. This prevents the internal pressure of the compression chambers (25a, 25b) from becoming too high than the high pressure of the refrigerant circuit when operating conditions are such that the compression ratio is extremely low.
[0022] 第 4の発明は、第 1または第 2の発明において、吸入容積調整機構 (30)が、第 1圧 縮室 (25a)と第 2圧縮室 (25b)の少なくとも一方を、ケーシング(10)内に設けられて 、 る低圧空間(17)に対して連通状態と遮断状態とに切り換え可能な開閉機構 (31)によ り構成されていることを特徴としている。なお、上記「低圧空間(17)」は、ケーシング(1 0)内が低圧圧力になるタイプの圧縮機におけるケーシング(10)内の空間であっても よいし、ケーシング(10)内が高圧空間(16)と低圧空間(17)に区画されるタイプの圧 縮機における低圧空間( 17)であつてもよいし、圧縮機構 (20)の吸入側に連通する吸 入空間であってもよい。 [0022] A fourth invention is the first or second invention, wherein the suction volume adjustment mechanism (30) connects at least one of the first compression chamber (25a) and the second compression chamber (25b) to the casing ( 10) is characterized by being comprised of an opening/closing mechanism (31) that can be switched between a communicating state and a blocking state with respect to the low pressure space (17) provided in the low pressure space (17). Note that the above-mentioned "low pressure space (17)" may be a space inside the casing (10) of a type of compressor in which the inside of the casing (10) has a low pressure, or the inside of the casing (10) may be a high pressure space. It may be the low pressure space (17) in a type of compressor that is divided into (16) and low pressure space (17), or it may be the suction space that communicates with the suction side of the compression mechanism (20). .
[0023] この第 4の発明では、開閉機構 (31)を閉じている通常運転時の状態では、第 3の発 明と同様、渦巻きの巻き終わり側で離れていたラップ (21b, 22b)同士が実質的に接 触してシールポイントの形成された位置が吸入閉じ切り位置となり、第 1圧縮室 (25a) 及び第 2圧縮室 (25b)が形成される。 [0023] In the fourth invention, in the normal operating state when the opening/closing mechanism (31) is closed, the wraps (21b, 22b) separated at the winding end side of the spiral are separated from each other, as in the third invention. The position where the two substantially come into contact and a seal point is formed becomes the suction closed position, and a first compression chamber (25a) and a second compression chamber (25b) are formed.
[0024] 一方、開閉機構 (31)を開いた状態にすると、第 1圧縮室 (25a)と第 2圧縮室 (25b) のいずれにおいても、両ラップ (21b, 22b)の接触位置が開閉機構 (31)のある位置を 通過するまでは圧縮室 (25a, 25b)が閉じ切られない。つまり、開閉機構 (31)の位置 を通過したところにシールポイントが形成されるまでは、第 1圧縮室 (25a)及び第 2圧 縮室 (25b)の少なくとも一方はケーシング(10)内の低圧空間(17)に連通した状態で あり、両ラップ (21b, 22b)の接触位置が開閉機構 (31)の位置を通過した直後にシー ルポイントが形成された位置が吸入閉じ切り位置となって、圧縮行程に入る圧縮室 (2 5a, 25b)が形成される。そのため、開閉機構 (31)を設ける位置に応じて、吸入容積の 大きさを調整することが可能となる。そして、このようにして吸入容積の大きさを調整 することにより、冷媒回路の運転条件力スクロール圧縮機の通常運転時の設計点か ら外れた低圧縮比の運転条件になっているときに、圧縮室 (25a, 25b)の内圧が冷媒 回路の高圧圧力よりも高くなりすぎるのを抑えられる。 [0024] On the other hand, when the opening/closing mechanism (31) is opened, the contact position of both wraps (21b, 22b) is the opening/closing mechanism in both the first compression chamber (25a) and the second compression chamber (25b). The compression chambers (25a, 25b) are not completely closed until they pass a certain position (31). In other words, until a seal point is formed past the opening/closing mechanism (31), at least one of the first compression chamber (25a) and the second compression chamber (25b) is kept under low pressure inside the casing (10). It is in communication with the space (17), and the position where the seal point is formed immediately after the contact position of both wraps (21b, 22b) passes the position of the opening/closing mechanism (31) is the suction closed position. , compression chambers (2 5a, 25b) are formed that enter the compression stroke. Therefore, the size of the suction volume can be adjusted depending on the position where the opening/closing mechanism (31) is provided. By adjusting the suction volume in this way, when the refrigerant circuit operating conditions are at a low compression ratio that deviates from the design point during normal operation of the power scroll compressor, This prevents the internal pressure of the compression chambers (25a, 25b) from becoming too high than the high pressure of the refrigerant circuit.
[0025] 第 5の発明は、第 1または第 2の発明において、吸入容積調整機構 (30)が、第 1ス クロール部材 (21)のラップ(21b)と第 2スクロール部材 (22)のラップ (22b)とが実質的 に接触した状態で形成される第 1圧縮室 (25a)と第 2圧縮室 (25b)の少なくとも一方に ついて、その接触位置の内周側と外周側とを連通状態と遮断状態とに切り換え可能 な開閉機構 (31)により構成されて 、ることを特徴として 、る。 [0025] In a fifth invention, in the first or second invention, the suction volume adjustment mechanism (30) has a structure in which the suction volume adjustment mechanism (30) has a structure in which the wrap (21b) of the first scroll member (21) and the wrap of the second scroll member (22) (22b) is substantial For at least one of the first compression chamber (25a) and the second compression chamber (25b) formed in contact with the first compression chamber (25a) and the second compression chamber (25b), the inner circumference side and the outer circumference side of the contact position can be switched between a communicating state and a blocking state. It is characterized by being comprised of an opening/closing mechanism (31).
[0026] この第 5の発明では、開閉機構 (31)を閉じている通常運転時の状態では、第 3,第 4の発明と同様、渦巻きの巻き終わり側で離れていたラップ (21b, 22b)同士が実質的 に接触してシールポイントの形成された位置が吸入閉じ切り位置となり、圧縮行程に 入る第 1圧縮室 (25a)及び第 2圧縮室 (25b)が形成される。 [0026] In the fifth invention, in the normal operating state when the opening/closing mechanism (31) is closed, the wraps (21b, 22b) that are separated at the end of the spiral, as in the third and fourth inventions, ) substantially come into contact with each other and the position where the seal point is formed becomes the suction closed position, forming a first compression chamber (25a) and a second compression chamber (25b) that enter the compression stroke.
[0027] 一方、開閉機構 (31)を開いた状態にすると、第 1圧縮室 (25a)と第 2圧縮室 (25b) のいずれにおいても、両ラップ (21b, 22b)の接触位置が開閉機構 (31)のある位置を 通過するまでは圧縮室 (25a, 25b)が閉じ切られない。つまり、開閉機構 (31)の位置 を通過したところにシールポイントが形成されるまでは、第 1圧縮室 (25a)及び第 2圧 縮室 (25b)の少なくとも一方は、上記接触位置の内周側の部分が外周側の部分を介 して圧縮機構 (20)の吸入側に連通した状態であり、両ラップ (21b, 22b)の接触位置 が開閉機構 (31)の位置を通過した直後にシールポイントが形成された位置が吸入閉 じ切り位置となって、圧縮行程に入る圧縮室 (25a, 25b)が形成される。そのため、開 閉機構 (31)を設ける位置に応じて、吸入容積の大きさを調整することが可能となる。 そして、このようにして吸入容積の大きさを調整することにより、冷媒回路の運転条件 がスクロール圧縮機の通常運転時の設計点から外れた低圧縮比の運転条件になつ ているときに、圧縮室 (25a, 25b)の内圧が冷媒回路の高圧圧力よりも高くなりすぎる のを抑えられる。 [0027] On the other hand, when the opening/closing mechanism (31) is opened, the contact position of both wraps (21b, 22b) is the opening/closing mechanism in both the first compression chamber (25a) and the second compression chamber (25b). The compression chambers (25a, 25b) are not completely closed until they pass a certain position (31). In other words, until a seal point is formed past the position of the opening/closing mechanism (31), at least one of the first compression chamber (25a) and the second compression chamber (25b) is connected to the inner periphery of the contact position. The side part is in communication with the suction side of the compression mechanism (20) via the outer peripheral part, and immediately after the contact position of both wraps (21b, 22b) passes the opening/closing mechanism (31). The position where the seal point is formed becomes the suction closing position, and compression chambers (25a, 25b) are formed where the compression stroke begins. Therefore, the size of the suction volume can be adjusted depending on the position where the opening/closing mechanism (31) is provided. By adjusting the suction volume in this way, when the operating conditions of the refrigerant circuit are at a low compression ratio that deviates from the design point for normal operation of the scroll compressor, the compression This prevents the internal pressure of the chambers (25a, 25b) from becoming too high than the high pressure of the refrigerant circuit.
[0028] 第 6の発明は、第 3から第 5の発明の何れ力 1つにおいて、開閉機構 (31)が、該開 閉機構 (31)の連通状態におけるガスの流れを許容する連通路 (32, 37)と、該連通路 (32, 37)を開放する開放位置と閉鎖する閉鎖位置とに移動可能な閉鎖部材 (33)と、 閉鎖部材 (33)を開放位置と閉鎖位置とに位置変化させる開閉駆動機構 (34)とを備 えて 、ることを特徴として!/、る。 [0028] A sixth invention is one of the third to fifth inventions, wherein the opening/closing mechanism (31) includes a communication path ( 32, 37), a closing member (33) movable between an open position for opening and a closed position for closing the communicating path (32, 37), and a closing member (33) positioned in the open position and the closed position. It is characterized by being equipped with an opening/closing drive mechanism (34) that changes the opening/closing drive mechanism! /, Ru.
[0029] この第 6の発明では、開閉駆動機構 (34)により閉鎖部材 (33)を閉鎖位置に位置設 定すると、開閉機構 (31)を遮断状態に切り換えることができ、そうすることにより圧縮 機構 (20)を設計圧縮比となる通常運転で作動させることができる。また、開閉機構 (3 1)により閉鎖部材 (33)を開放位置に位置設定すると、開閉機構 (31)を連通状態に 切り換えることができ、そうすることにより圧縮機構 (20)の吸入容積を変えた状態での 運転を行えるので、冷媒回路の運転条件がスクロール圧縮機の通常運転時の設計 点から外れた低圧縮比の運転条件になっている場合に対応できる。 [0029] In the sixth invention, when the closing member (33) is set to the closed position by the opening/closing drive mechanism (34), the opening/closing mechanism (31) can be switched to the cutoff state, and thereby the compression The mechanism (20) can be operated in normal operation at the design compression ratio. In addition, the opening/closing mechanism (3 When the closing member (33) is set to the open position according to 1), the opening/closing mechanism (31) can be switched to the open state, thereby allowing operation with the suction volume of the compression mechanism (20) changed. Therefore, it can be used when the refrigerant circuit operating conditions are at a low compression ratio that deviates from the design point for normal operation of the scroll compressor.
[0030] 第 7の発明は、第 6の発明において、開閉駆動機構 (34)が、閉鎖部材 (33)を開放 位置に向力つて付勢する付勢部材 (35)と、閉鎖部材 (33)に付勢部材 (35)の付勢力 に抗して高圧圧力を印加する状態と該閉鎖部材 (33)に低圧圧力を印加する状態と を切り換える切換部材 (36)とを備えて!/ヽることを特徴として!/ヽる。 [0030] A seventh invention is based on the sixth invention, wherein the opening/closing drive mechanism (34) includes a biasing member (35) that biases the closing member (33) toward the open position, and a biasing member (35) that biases the closing member (33) toward the open position. ) and a switching member (36) for switching between applying high pressure against the urging force of the urging member (35) and applying low pressure to the closing member (33)!/ヽAs a feature! / ヽru.
[0031] この第 7の発明では、閉鎖部材 (33)に高圧圧力を印加すると、付勢部材 (35)の付 勢力に抗して閉鎖部材 (33)を遮断状態に切り換えるようにすることができ、閉鎖部材 (33)に低圧圧力を印加すると、付勢部材 (35)の付勢力により閉鎖部材 (33)を開放 状態に切り換えるようにすることができる。このようにして閉鎖部材 (33)を遮断状態と 開放状態に切り換えることにより、圧縮機構 (20)を設計圧縮比となる通常運転と、通 常運転時の設計点から外れた低圧縮比の運転条件とに対応させることができる。 [0031] In the seventh invention, when high pressure is applied to the closing member (33), the closing member (33) may be switched to the blocking state against the biasing force of the biasing member (35). When low pressure is applied to the closing member (33), the closing member (33) can be switched to the open state by the biasing force of the biasing member (35). By switching the closing member (33) between the closed state and the open state in this way, the compression mechanism (20) can be operated in normal operation at the design compression ratio, and in operation at a low compression ratio that deviates from the design point during normal operation. It can be made to correspond to the conditions.
[0032] 第 8の発明は、第 6または第 7の発明において、連通路 (32, 37)が、第 1スクロール または第 2スクロールの鏡板 (21a, 22a)に形成された穴(32)または溝 (37)により構成 されて 、ることを特徴として!/、る。 [0032] In an eighth invention, in the sixth or seventh invention, the communication passage (32, 37) is formed in the hole (32) or the end plate (21a, 22a) of the first scroll or the second scroll. It is characterized by being composed of grooves (37)! /, Ru.
[0033] この第 8の発明では、開閉機構 (31)を連通状態に切り換えたとき、開閉機構 (31)の 位置を通過したところにシールポイントが形成される前には、圧縮室(25a, 25b)のガ スが連通路(32, 37)を通って流れることで、圧縮室(25a, 25b)が閉じ切られていない 状態に保持される。そして、両ラップ (21b, 22b)の接触位置が開閉機構 (31)の位置 を通過した直後にシールポイントが形成された位置が吸入閉じ切り位置となり、ガス の圧縮が開始される。 [0033] In the eighth invention, when the opening/closing mechanism (31) is switched to the communicating state, before the seal point is formed past the position of the opening/closing mechanism (31), the compression chamber (25a, The gas in 25b) flows through the communication passages (32, 37) to keep the compression chambers (25a, 25b) in an unclosed state. Immediately after the contact position of both wraps (21b, 22b) passes the opening/closing mechanism (31), the position where the seal point is formed becomes the suction closed position, and gas compression begins.
[0034] 第 9の発明は、第 1または第 2の発明において、第 1スクロール部材 (21)及び第 2ス クロール部材 (22)が、渦巻きの巻き数が相違する非対称渦巻き構造に構成されてい ることを特徴としている。 [0034] A ninth invention is characterized in that, in the first or second invention, the first scroll member (21) and the second scroll member (22) have an asymmetric spiral structure in which the number of spiral turns is different. It is characterized by
[0035] この第 9の発明では、非対称渦巻き構造の圧縮機構 (20)において、第 1圧縮室 (25 a)と第 2圧縮室 (25b)の少なくとも一方について吸入閉じ切り位置を調整することがで きる。第 1圧縮室 (25a)と第 2圧縮室 (25b)の両方で吸入閉じ切り位置を調整できるよ うにすると、第 1の発明で説明したように、圧縮室 (25a, 25b)の吸入容積を小さくする ことで固定圧縮比を小さくすることができるので、冷媒回路の運転条件力スクロール 圧縮機の通常運転時の設計点から外れた低圧縮比の運転条件になっているときに、 圧縮室 (25a, 25b)の内圧が、その運転条件での冷媒回路の高圧圧力よりも高くなり すぎるのを抑えられる。 [0035] In the ninth invention, in the compression mechanism (20) having an asymmetric spiral structure, it is possible to adjust the suction closing position of at least one of the first compression chamber (25 a) and the second compression chamber (25b). in Wear. By making it possible to adjust the suction closed position in both the first compression chamber (25a) and the second compression chamber (25b), as explained in the first invention, the suction volume of the compression chambers (25a, 25b) can be adjusted. By reducing the fixed compression ratio, the fixed compression ratio can be reduced by reducing the fixed compression ratio. 25a, 25b) from becoming too high than the high pressure of the refrigerant circuit under the operating conditions.
[0036] また、第 1圧縮室 (25a)か第 2圧縮室 (25b)の一方だけで吸入容積を変更するように 構成すると、第 1の発明で説明したように、例えば第 1圧縮室 (25a)の吸入容積のみ を小さくすることにより、第 1圧縮室 (25a)と第 2圧縮室 (25b)のガスの圧力差を小さく することができるので、ガス荷重のアンバランスや、渦巻きの自転トルクの変動による 振動の影響を小さくすることが可能となる。 [0036] Furthermore, if the suction volume is configured to be changed in only one of the first compression chamber (25a) and the second compression chamber (25b), as explained in the first invention, for example, the first compression chamber ( By reducing only the suction volume of 25a), it is possible to reduce the pressure difference between the gas in the first compression chamber (25a) and the second compression chamber (25b), which prevents unbalanced gas loads and rotation of the vortex. This makes it possible to reduce the effects of vibration caused by torque fluctuations.
[0037] 第 10の発明は、第 9の発明において、吸入容積調整機構 (30)が、渦巻きの外周側 一巻き範囲内の 1箇所のみに設けられて 、ることを特徴として 、る。 [0037] A tenth invention is based on the ninth invention, characterized in that the suction volume adjustment mechanism (30) is provided at only one location within one turn on the outer peripheral side of the spiral.
[0038] この第 10の発明では、吸入容積調整機構 (30)を 1箇所のみに設けているので、第 1圧縮室 (25a)と第 2圧縮室 (25b)の少なくとも一方にっ 、て、吸入容積を 2段階に調 整することができる。 [0038] In the tenth invention, since the suction volume adjustment mechanism (30) is provided at only one location, the suction volume adjustment mechanism (30) is provided in at least one of the first compression chamber (25a) and the second compression chamber (25b). Inhalation volume can be adjusted in two stages.
[0039] 第 11の発明は、第 2の発明において、第 1スクロール部材 (21)及び第 2スクロール 部材 (22)が、渦巻きの巻き数が等しい対称渦巻き構造に構成され、吸入容積調整 機構 (30)が、渦巻きの中心に対して対称の位置に設けられていることを特徴としてい る。 [0039] The eleventh invention is the second invention, wherein the first scroll member (21) and the second scroll member (22) are configured to have a symmetrical spiral structure with an equal number of spiral turns, and the suction volume adjustment mechanism ( 30) are provided at symmetrical positions with respect to the center of the spiral.
[0040] この第 11の発明では、対称渦巻き構造の圧縮機構 (20)において、渦巻き中心に 対して対称に存在する第 1圧縮室 (25a)と第 2圧縮室 (25b)につ 、て吸入閉じ切り位 置を調整することができる。したがって、第 1の発明で説明したように、圧縮室 (25a, 2 5b)の吸入容積を小さくすることで固定圧縮比を小さくすることができるので、冷媒回 路の運転条件がスクロール圧縮機の通常運転時の設計点から外れた低圧縮比の運 転条件になっているときに、圧縮室 (25a, 25b)の内圧が、その運転条件での冷媒回 路の高圧圧力よりも高くなりすぎるのを抑えられる。 [0040] In the eleventh invention, in the compression mechanism (20) having a symmetrical spiral structure, suction is performed in the first compression chamber (25a) and the second compression chamber (25b) that are symmetrical with respect to the spiral center. The closed position can be adjusted. Therefore, as explained in the first invention, the fixed compression ratio can be reduced by reducing the suction volume of the compression chambers (25a, 25b), so that the operating conditions of the refrigerant circuit can be adjusted to suit the scroll compressor. When operating conditions are at a low compression ratio that deviates from the design point during normal operation, the internal pressure in the compression chambers (25a, 25b) becomes too high than the high pressure in the refrigerant circuit under those operating conditions. can be suppressed.
[0041] 第 12の発明は、第 1から第 11の発明の何れ力 1つにおいて、圧縮機構 (20)が、ケ 一シング(10)に保持される第 1スクロール部材 (21)である固定スクロール (21)と、該 固定スクロール (21)に対して偏心回転運動をする第 2スクロール部材 (22)である可 動スクロール(22)とを備え、ケーシング(10)内には、可動スクロール(22)の駆動源で あって回転速度を可変に調整することが可能な電動機 (45)が収納されていることを 特徴としている。なお、固定スクロール (21)は、一般に、ケーシング(10)に圧入や溶 接により保持されるハウジング (23)にボルト等で固定される。 [0041] A twelfth invention provides the compression mechanism (20) in any one of the first to eleventh inventions. A fixed scroll (21), which is a first scroll member (21) held by one single thing (10), and a movable, which is a second scroll member (22), which performs an eccentric rotational movement relative to the fixed scroll (21). A scroll (22) is provided, and an electric motor (45), which is a drive source for the movable scroll (22) and whose rotational speed can be variably adjusted, is housed in the casing (10). It is said that Note that the fixed scroll (21) is generally fixed with bolts or the like to a housing (23) that is held in the casing (10) by press-fitting or welding.
[0042] この第 12の発明では、固定スクロール(21)に対して可動スクロール(22)が偏心回 転運動をし、電動機 (45)の回転速度制御により運転容量が可変に構成されたスクロ ール圧縮機において、スクロール圧縮機の固定圧縮比を小さくする制御を行うことが できるので、冷媒回路の運転条件がスクロール圧縮機の通常運転時の設計点から外 れた低圧縮比の運転条件になっているときに、圧縮室 (25a, 25b)の内圧が、その運 転条件での冷媒回路の高圧圧力よりも高くなりすぎるのを抑えられる。また、この発明 では、電動機 (45)の回転数にかかわらず、吸入容積を調整できるし、電動機 (45)の 回転速度制御に機械的な容量制御機構でもある吸入容積調整機構 (30)を組み合 わせることにより、容量制御幅を広げることも可能となる。 [0042] In the twelfth invention, the movable scroll (22) performs an eccentric rotational movement relative to the fixed scroll (21), and the scroll is configured such that the operating capacity is variable by controlling the rotational speed of the electric motor (45). In the scroll compressor, it is possible to perform control to reduce the fixed compression ratio of the scroll compressor, so the operating conditions of the refrigerant circuit can be changed to low compression ratio operating conditions that are outside the design point during normal operation of the scroll compressor. The internal pressure of the compression chambers (25a, 25b) can be prevented from becoming too high than the high pressure of the refrigerant circuit under the operating conditions. Furthermore, in this invention, the suction volume can be adjusted regardless of the rotation speed of the electric motor (45), and the suction volume adjustment mechanism (30), which is also a mechanical capacity control mechanism, is incorporated in the rotation speed control of the electric motor (45). By combining them, it is also possible to widen the range of capacity control.
[0043] 第 13の発明は、第 12の発明において、電動機 (45)が、吸入容積調整機構 (30)に より通常運転時よりも圧縮機構 (20)の吸入容積を小さくする運転状態で、回転速度 を通常運転時よりも速めるように構成されて 、ることを特徴として 、る。 [0043] A thirteenth invention is the twelfth invention, in which the electric motor (45) is in an operating state in which the suction volume adjustment mechanism (30) makes the suction volume of the compression mechanism (20) smaller than during normal operation, It is characterized by being configured to make the rotation speed faster than during normal operation.
[0044] この第 13の発明では、吸入容積調整機構 (30)により圧縮機構 (20)の吸入容積を 通常運転時よりも小さくするときに、電動機 (45)の回転速度を速くする制御が行われ るので、電動機 (45)の効率を低下させずに運転できる。また、電動機 (45)の回転速 度を速くする制御を行うことで、吸入容積が少なくなつても運転容量が低下するのを 抑えられる。 [0044] In the thirteenth invention, when the suction volume adjustment mechanism (30) makes the suction volume of the compression mechanism (20) smaller than that during normal operation, control is performed to increase the rotational speed of the electric motor (45). Therefore, the electric motor (45) can be operated without reducing its efficiency. Furthermore, by controlling the rotational speed of the electric motor (45) to be faster, it is possible to prevent the operating capacity from decreasing even if the suction volume decreases.
発明の効果 Effect of the invention
[0045] 本発明によれば、第 1圧縮室 (25a)と第 2圧縮室 (25b)の両方の吸入容積を小さく すると、実質的に渦巻きの巻き数 (圧縮比)を小さくするのと同じ状態になるため、運 転条件に合わせて圧縮比を設定することができる。そして、スクロール圧縮機の固定 圧縮比が小さくなり、吐出圧力(圧縮室 (25a, 25b)の内圧)が通常運転時よりも低くな る調整運転を行えるため、冷媒回路の運転条件がスクロール圧縮機の通常運転時 の設計点力 外れた低圧縮比の運転条件になっているときでも、圧縮室 (25a, 25b) の内圧が、その運転条件での冷媒回路の高圧圧力よりも高くなりすぎるのを抑えられ る。したがって、過圧縮の発生を防止することが可能となる。 [0045] According to the present invention, reducing the suction volumes of both the first compression chamber (25a) and the second compression chamber (25b) is substantially the same as reducing the number of spiral turns (compression ratio). The compression ratio can be set according to the operating conditions. Then, the fixed compression ratio of the scroll compressor becomes smaller, and the discharge pressure (internal pressure in the compression chambers (25a, 25b)) becomes lower than during normal operation. Even when the refrigerant circuit operating conditions are at a low compression ratio that is outside the design point of the scroll compressor during normal operation, the internal pressure in the compression chambers (25a, 25b) remains This prevents the pressure from becoming too high than the high pressure in the refrigerant circuit under those operating conditions. Therefore, it is possible to prevent overcompression from occurring.
[0046] また、吸入容積調整機構 (30)を複数箇所に設けると、冷媒回路の運転条件の変化 に対応して過圧縮の発生を防止する制御を、段階的に行うことが可能となり、制御の 精度が向上する。 [0046] Furthermore, by providing suction volume adjustment mechanisms (30) at multiple locations, it becomes possible to perform control to prevent overcompression in a step-by-step manner in response to changes in the operating conditions of the refrigerant circuit. The accuracy of is improved.
[0047] また、渦巻きの外周側一巻き範囲内に吸入容積調整機構 (30)を設けたので、運転 中に吸入閉じ切り位置を変更して吸入容積を小さくすることで、圧縮機の運転容量を 小さくする制御も可能となる。 [0047] In addition, since the suction volume adjustment mechanism (30) is provided within the range of one turn on the outer circumference of the spiral, the operating capacity of the compressor can be adjusted by changing the suction closed position during operation and reducing the suction volume. It is also possible to control to reduce .
[0048] さらに、この発明では、吸入容積を調整することにより固定圧縮比を変えられるよう にしているため、電動機 (45)がインバータ制御の可変回転速度タイプである場合に、 高速回転であるか低速回転であるかにかかわらず過圧縮を防止でき、電動機 (45)の 回転速度が過圧縮防止の制約になることはない。そして、低速運転でしか過圧縮を 防止できない特許文献 1の圧縮機とは違い、高速運転でも過圧縮を防止できるし、そ の際には電動機 (45)を高効率で運転できるので圧縮機の効率低下を防止できる。 [0048] Furthermore, in this invention, the fixed compression ratio can be changed by adjusting the suction volume, so if the electric motor (45) is an inverter-controlled variable rotation speed type, it is possible to change the fixed compression ratio by adjusting the suction volume. Overcompression can be prevented regardless of low speed rotation, and the rotational speed of the electric motor (45) is not a constraint on overcompression prevention. Unlike the compressor of Patent Document 1, which can prevent overcompression only at low speeds, overcompression can be prevented even at high speeds, and in that case, the electric motor (45) can be operated with high efficiency, so the compressor Efficiency reduction can be prevented.
[0049] また、第 1圧縮室 (25a)か第 2圧縮室 (25b)の一方だけ吸入容積を変更すると、非 対称渦巻き構造の圧縮機構 (20)にお 、て、圧縮途中における第 1圧縮室 (25a)と第 2圧縮室(25b)のガスの圧力差を小さくすることができるので、ガス荷重のアンバラン スゃ、渦巻きの自転トルクの変動による振動の影響を小さくすることが可能となる。 [0049] Furthermore, if the suction volume of only one of the first compression chamber (25a) and the second compression chamber (25b) is changed, the first compression in the middle of compression in the asymmetric spiral structure compression mechanism (20) Since the pressure difference between the gas in the chamber (25a) and the second compression chamber (25b) can be reduced, it is possible to reduce the effects of vibration caused by unbalanced gas loads and fluctuations in the rotational torque of the vortex. .
[0050] また、この発明では、吸入容積調整機構 (30)を作動させると、圧縮室 (25a, 25b)の 内圧による軸方向荷重が作用する面積を小さくすることができるとともに、渦巻きに対 するガス荷重の作用点を中心に近い位置に移動させることができるので、転覆モーメ ントが小さくなり、転覆が生じに《なる。したがって、圧縮不良、運転能力の低下、及 び圧縮機の効率の低下などの不具合を防止できる。 [0050] Furthermore, in this invention, by operating the suction volume adjustment mechanism (30), it is possible to reduce the area on which the axial load due to the internal pressure of the compression chambers (25a, 25b) acts, and also to prevent swirling. Since the point of action of the gas load can be moved to a position closer to the center, the overturning moment becomes smaller and overturning becomes less likely. Therefore, problems such as poor compression, reduction in operating capacity, and reduction in compressor efficiency can be prevented.
[0051] ここで、従来のスクロール圧縮機の容量制御方法としては、圧縮機の ON— OFF制 御やインバータによる回転速度制御、さらには中間圧の冷媒を低圧側にバイパスさ せるアンロード機構による制御などがあり、それぞれ単独または組み合わせて用いら れている。いずれも圧縮機の定格能力に対して小さな能力で運転する場合は、効率 よりも能力調整に重きを置いた制御を行っている。これに対して、本発明では、能力 調整はもちろん、電動機 (45)を高速回転することもできるので、効率低下も防止でき る。 [0051] Conventional methods for controlling the capacity of scroll compressors include compressor ON-OFF control, rotational speed control using an inverter, and an unloading mechanism that bypasses intermediate-pressure refrigerant to the low-pressure side. control, etc., and each can be used alone or in combination. It is. In either case, when operating at a capacity smaller than the rated capacity of the compressor, control is performed that emphasizes capacity adjustment rather than efficiency. On the other hand, in the present invention, the electric motor (45) can be rotated at high speed in addition to adjusting the capacity, so that a decrease in efficiency can be prevented.
[0052] 上記第 2の発明によれば、第 1圧縮室 (25a)と第 2圧縮室 (25b)の両方の吸入容積 を小さくすることにより、第 1の発明と同様に、冷媒回路の運転条件がスクロール圧縮 機の通常運転時の設計点から外れた低圧縮比の運転条件になっているときでも、過 圧縮の発生を防止することが可能となる。また、電動機 (45)が高速回転であっても低 速回転であっても過圧縮を防止できるし、高速回転時には圧縮機の運転効率が低 下するのも抑えられる。また、吸入閉じ切り位置を変更して吸入容積を小さくすること により容量制御を行うこともできる。 [0052] According to the second invention, by reducing the suction volumes of both the first compression chamber (25a) and the second compression chamber (25b), the operation of the refrigerant circuit is improved as in the first invention. Even when operating conditions are at a low compression ratio that deviates from the design point for normal operation of the scroll compressor, it is possible to prevent overcompression from occurring. In addition, overcompression can be prevented whether the electric motor (45) rotates at high speed or low speed, and a decrease in operating efficiency of the compressor can be suppressed when the motor (45) rotates at high speed. Capacity control can also be performed by changing the suction closed position and reducing the suction volume.
[0053] 上記第 3の発明によれば、吸入容積調整機構 (30)として、第 1圧縮室 (25a)と第 2 圧縮室 (25b)とを連通状態と遮断状態とに切り換え可能な開閉機構 (31)を設けるだ けで、第 1圧縮室 (25a)と第 2圧縮室 (25b)の吸入閉じ切り位置を調整し、吸入容積を 変化させることができる。そして、吸入容積の大きさを調整することにより、冷媒回路 の運転条件が渦巻きの設計点から外れた低圧縮比の運転条件になっているときでも 過圧縮が発生するのを防止できるし、容量制御量の調節もできる。 [0053] According to the third invention, the suction volume adjustment mechanism (30) includes an opening/closing mechanism capable of switching the first compression chamber (25a) and the second compression chamber (25b) between a communicating state and a blocking state. By simply providing (31), the suction closed position of the first compression chamber (25a) and the second compression chamber (25b) can be adjusted to change the suction volume. By adjusting the size of the suction volume, it is possible to prevent overcompression from occurring even when the refrigerant circuit operating conditions are at a low compression ratio that deviates from the swirl design point, and the capacity can be increased. The control amount can also be adjusted.
[0054] 上記第 4の発明によれば、第 1圧縮室 (25a)と第 2圧縮室 (25b)の少なくとも一方を 、ケーシング (10)内に設けられている低圧空間(17)に対して連通状態と遮断状態と に切り換え可能な開閉機構 (31)を設けるだけで、第 1圧縮室 (25a)と第 2圧縮室 (25b )の少なくとも一方の吸入閉じ切り位置を調整し、吸入容積を変化させることができる 。そして、吸入容積の大きさを調整することにより、冷媒回路の運転条件が渦巻きの 設計点から離れた低圧縮比の運転条件になっているときでも過圧縮が発生するのを 防止できるし、容量制御量の調節もできる。 [0054] According to the fourth invention, at least one of the first compression chamber (25a) and the second compression chamber (25b) is connected to the low pressure space (17) provided in the casing (10). By simply providing an opening/closing mechanism (31) that can be switched between a communication state and a cutoff state, the suction closed position of at least one of the first compression chamber (25a) and the second compression chamber (25b) can be adjusted, and the suction volume can be increased. can be changed. By adjusting the size of the suction volume, it is possible to prevent overcompression from occurring even when the operating conditions of the refrigerant circuit are at a low compression ratio far from the swirl design point, and the capacity can be increased. The control amount can also be adjusted.
[0055] 上記第 5の発明によれば、第 1スクロール部材 (21)のラップ (21b)と第 2スクロール 部材 (22)のラップ (22b)とが実質的に接触した状態で形成される第 1圧縮室 (25a)と 第 2圧縮室 (25b)の少なくとも一方について、その接触位置の内周側と外周側とを連 通状態と遮断状態とに切り換え可能な開閉機構 (31)を設けるだけで、第 1圧縮室 (25 a)と第 2圧縮室 (25b)の少なくとも一方の吸入閉じ切り位置を調整し、吸入容積を変 ィ匕させることができる。そして、吸入容積の大きさを調整することにより、冷媒回路の 運転条件がスクロール圧縮機の通常運転時の設計点から離れた低圧縮比の運転条 件になっているときでも過圧縮が発生するのを防止できるし、容量制御量の調節もで きる。 [0055] According to the fifth invention, the wrap (21b) of the first scroll member (21) and the wrap (22b) of the second scroll member (22) are formed in a state where the wrap (22b) is substantially in contact with each other. For at least one of the first compression chamber (25a) and the second compression chamber (25b), an opening/closing mechanism (31) that can switch the inner circumferential side and the outer circumferential side of the contact position between a communicating state and a blocking state is simply provided. and the first compression chamber (25 The suction volume can be changed by adjusting the suction closed position of at least one of a) and the second compression chamber (25b). By adjusting the suction volume, overcompression can occur even when the operating conditions of the refrigerant circuit are at a low compression ratio, which is far from the design point during normal operation of the scroll compressor. It is possible to prevent this from occurring, and also to adjust the amount of capacity control.
[0056] 上記第 6の発明によれば、開閉機構 (31)を、該開閉機構 (31)の連通状態における ガスの流れを許容する連通路 (32, 37)と、該連通路 (32, 37)を開放する開放位置と 閉鎖する閉鎖位置とに移動可能な閉鎖部材 (33)と、閉鎖部材 (33)を開放位置と閉 鎖位置とに位置変化させる開閉駆動機構 (34)とを備えた構成にするだけで、吸入容 積調整機構 (30)の動作を制御できる。そして、圧縮機構 (20)を冷媒回路の圧縮比( 圧力比)の変動に対応させて運転することができ、過圧縮の発生も防止できる。 [0056] According to the sixth invention, the opening/closing mechanism (31) includes the communicating passage (32, 37) that allows gas to flow in the communicating state of the opening/closing mechanism (31), and the communicating passage (32, 37). 37), a closing member (33) movable between an open position for opening and a closed position for closing, and an opening/closing drive mechanism (34) for changing the position of the closing member (33) between the open position and the closed position. The operation of the suction volume adjustment mechanism (30) can be controlled simply by configuring the suction volume adjustment mechanism (30). The compression mechanism (20) can be operated in response to fluctuations in the compression ratio (pressure ratio) of the refrigerant circuit, and overcompression can also be prevented.
[0057] 上記第 7の発明によれば、開閉駆動機構 (34)を、閉鎖部材 (33)を開放位置に向か つて付勢する付勢部材 (35)と、閉鎖部材 (33)に付勢部材 (35)の付勢力に杭して高 圧圧力を印加する状態と該閉鎖部材 (33)に低圧圧力を印加する状態とを切り換える 切換部材 (36)とを備えた構成にするだけで、開閉機構 (31)の確実な動作を保証で きる。そして、開閉機構 (31)により吸入容積調整機構 (30)の動作を制御することによ り、圧縮機構 (20)を、設計圧縮比となる通常運転と、通常運転時の設計点から外れ た低圧縮比の運転条件とに対応させることができるし、容量制御も可能となる。 [0057] According to the seventh invention, the opening/closing drive mechanism (34) is attached to the urging member (35) that urges the closing member (33) toward the open position and the closing member (33). All that is required is a configuration including a switching member (36) that switches between a state in which high pressure is applied by applying the biasing force of the closing member (35) and a state in which low pressure is applied to the closing member (33). , the reliable operation of the opening/closing mechanism (31) can be guaranteed. Then, by controlling the operation of the suction volume adjustment mechanism (30) by the opening/closing mechanism (31), the compression mechanism (20) can be operated at the design compression ratio in normal operation and at the design point during normal operation. It can be adapted to operating conditions with low compression ratios, and capacity control is also possible.
[0058] 上記第 8の発明によれば、連通路 (32, 37)を、第 1スクロールまたは第 2スクロール の鏡板 (21a, 22a)に形成された穴 (32)または溝 (37)にするだけで、開閉機構 (31) の連通状態の動作を保証できる。そして、開閉機構 (31)によって吸入容積調整機構 (30)の動作を制御することにより、圧縮機構 (20)を、設計圧縮比となる通常運転と、 通常運転時の設計点から外れた低圧縮比の運転条件とに対応させることができるし [0058] According to the eighth invention, the communication passage (32, 37) is the hole (32) or groove (37) formed in the end plate (21a, 22a) of the first scroll or the second scroll. This alone can guarantee the open/close operation of the opening/closing mechanism (31). By controlling the operation of the suction volume adjustment mechanism (30) by the opening/closing mechanism (31), the compression mechanism (20) can be operated at a normal operation at the design compression ratio and at a low compression rate that deviates from the design point during normal operation. It can be adapted to different operating conditions.
、容量制御も可能となる。 , capacity control is also possible.
[0059] 上記第 9の発明によれば、非対称渦巻き構造のスクロール圧縮機において、第 1圧 縮室 (25a)と第 2圧縮室 (25b)の両方の吸入容積を小さくすると、スクロール圧縮機の 固定圧縮比が小さくなるので、冷媒回路の運転条件がスクロール圧縮機の通常運転 時の設計点から外れた低圧縮比の運転条件になっているときでも、過圧縮の発生を 防止することが可能となる。また、第 1圧縮室 (25a)か第 2圧縮室 (25b)の一方だけ吸 入容積を変更すると、圧縮途中における第 1圧縮室 (25a)と第 2圧縮室 (25b)のガス の圧力差を小さくすることができるので、ガス荷重のアンバランスや、渦巻きの自転ト ルクの変動による振動の影響を小さくすることが可能となる。また、運転中に吸入閉じ 切り位置を変更して吸入容積を小さくする容量制御を行うことができる。 [0059] According to the ninth invention, in a scroll compressor with an asymmetric spiral structure, when the suction volumes of both the first compression chamber (25a) and the second compression chamber (25b) are reduced, the scroll compressor's Since the fixed compression ratio is small, overcompression can be prevented even when the operating conditions of the refrigerant circuit are at a low compression ratio that deviates from the design point for normal operation of the scroll compressor. It becomes possible to prevent this. In addition, if the suction volume of only one of the first compression chamber (25a) or the second compression chamber (25b) is changed, the pressure difference between the gas in the first compression chamber (25a) and the second compression chamber (25b) during compression will change. This makes it possible to reduce the effects of vibrations caused by unbalanced gas loads and fluctuations in the rotational torque of the vortex. In addition, capacity control can be performed to reduce the suction volume by changing the suction closed position during operation.
[0060] 上記第 10の発明によれば、吸入容積調整機構 (30)を渦巻きの外周側一巻き範囲 内の 1箇所のみに設けているため、第 1圧縮室 (25a)と第 2圧縮室 (25b)の少なくとも 一方について、吸入容積を 2段階に調整することができる。そして、吸入容積調整機 構 (30)を複数箇所に設けるのに対して構造を簡素化することが可能となる。 [0060] According to the tenth invention, since the suction volume adjustment mechanism (30) is provided only at one location within the range of one turn on the outer circumferential side of the spiral, the first compression chamber (25a) and the second compression chamber Regarding at least one of (25b), the inhalation volume can be adjusted in two stages. In addition, the structure can be simplified compared to providing the suction volume adjustment mechanism (30) at multiple locations.
[0061] 上記第 11の発明によれば、対称渦巻き構造のスクロール圧縮機において、吸入容 積調整機構 (30)を渦巻きの中心に対して対称の位置に設けているので、各圧縮室( 25a, 25b)について吸入容積を小さくすることで固定圧縮比を小さくすることができる 。したがって、冷媒回路の運転条件力スクロール圧縮機の通常運転時の設計点から 外れた低圧縮比の運転条件になっているときに、圧縮室 (25a, 25b)の内圧が、その 運転条件での冷媒回路の高圧圧力よりも高くなりすぎるのを抑えられる。また、運転 中に吸入閉じ切り位置を変更して吸入容積を小さくする容量制御を行うことができる [0061] According to the eleventh invention, in the scroll compressor having a symmetrical spiral structure, since the suction volume adjustment mechanism (30) is provided at a symmetrical position with respect to the center of the spiral, each compression chamber (25a , 25b), the fixed compression ratio can be reduced by reducing the suction volume. Therefore, when the operating condition of the refrigerant circuit is a low compression ratio that deviates from the design point of the normal operation of the force scroll compressor, the internal pressure of the compression chambers (25a, 25b) will be lower than that of the operating condition. This prevents the pressure from becoming too high compared to the high pressure in the refrigerant circuit. In addition, capacity control can be performed to reduce the suction volume by changing the suction closed position during operation.
[0062] 上記第 12の発明によれば、固定スクロール (21)に対して可動スクロール (22)が偏 心回転運動をし、電動機 (45)の回転速度制御により運転容量が可変に構成された スクロール圧縮機において、スクロール圧縮機の固定圧縮比を小さくする制御を行う ことができるので、冷媒回路の運転条件力スクロール圧縮機の通常運転時の設計点 力 外れた低圧縮比の運転条件になっているときに、圧縮室 (25a, 25b)の内圧が、 その運転条件での冷媒回路の高圧圧力よりも高くなりすぎるのを抑えられる。また、 電動機 (45)の回転数にかかわらず、吸入容積を調整できるし、運転中に吸入閉じ切 り位置を変更して吸入容積を小さくする容量制御を行うことができる。 [0062] According to the twelfth invention, the movable scroll (22) rotates eccentrically relative to the fixed scroll (21), and the operating capacity is configured to be variable by controlling the rotational speed of the electric motor (45). In a scroll compressor, it is possible to perform control to reduce the fixed compression ratio of the scroll compressor, so that the operating conditions of the refrigerant circuit become lower than the design point of the normal operation of the scroll compressor. This prevents the internal pressure of the compression chambers (25a, 25b) from becoming too high than the high pressure of the refrigerant circuit under the operating conditions. In addition, the suction volume can be adjusted regardless of the rotation speed of the electric motor (45), and the suction volume can be controlled to be reduced by changing the suction closing position during operation.
[0063] 上記第 13の発明によれば、吸入容積調整機構 (30)により圧縮機構 (20)の吸入容 積を通常運転時よりも小さくするときに、電動機 (45)の回転速度を速くする制御が行 われるので、電動機 (45)の効率が高い運転ができるし、容量制御を行う前と同等の 能力を維持できる。このように、電動機 (45)の回転速度制御と吸入容積調整機構 (30 )の機械式容量制御を組み合わせることにより、過圧縮の低減に加えて、電動機 (45) の効率の向上による圧縮機の効率の向上を実現できる。また、電動機 (45)の回転速 度を速くする制御を行うことで、運転容量が低下するのも抑えられる。つまり、運転容 量を維持したまま、能力調整のためではなく効率向上のために吸入容積調整機構 (3 0)を使用することができる。さらに、圧縮機構 (20)の吸入容積を通常運転時よりも小 さくするときに、電動機 (45)の回転速度を速くする制御を行うことにより、渦巻きの内 部の冷媒の漏れが減少し、圧縮効率が向上する効果もある。 [0063] According to the thirteenth invention, when the suction volume adjustment mechanism (30) makes the suction volume of the compression mechanism (20) smaller than that during normal operation, the rotational speed of the electric motor (45) is increased. Since the control is performed, the electric motor (45) can be operated with high efficiency, and the capacity can be maintained at the same level as before capacity control. ability can be maintained. In this way, by combining the rotational speed control of the electric motor (45) and the mechanical capacity control of the suction volume adjustment mechanism (30), in addition to reducing overcompression, the efficiency of the electric motor (45) is improved and the compressor is improved. Improved efficiency can be achieved. Further, by controlling the rotational speed of the electric motor (45) to be faster, a decrease in operating capacity can be suppressed. In other words, while maintaining the operating capacity, the suction volume adjustment mechanism (30) can be used not for capacity adjustment but for efficiency improvement. Furthermore, by controlling the rotational speed of the electric motor (45) to be faster when the suction volume of the compression mechanism (20) is made smaller than during normal operation, the leakage of refrigerant inside the spiral is reduced. It also has the effect of improving compression efficiency.
図面の簡単な説明 Brief description of the drawing
[図 1]図 1は、実施形態 1に係るスクロール圧縮機の縦断面図である。 [FIG. 1] FIG. 1 is a longitudinal cross-sectional view of a scroll compressor according to a first embodiment.
[図 2]図 2は、図 1の II II線断面図であり、圧縮機構の横断面構造を示している。 [Figure 2] Figure 2 is a cross-sectional view taken along line II II in Figure 1, showing the cross-sectional structure of the compression mechanism.
[図 3]図 3は、開閉機構 (吸入容積調整機構)の断面構造図である。 [Figure 3] Figure 3 is a cross-sectional structural diagram of the opening/closing mechanism (suction volume adjustment mechanism).
[図 4]図 4は、固定スクローノレの底面図である。 [Figure 4] Figure 4 is a bottom view of the fixed scroll screw.
[図 5]図 5は、固定スクロールのサブアセンブリを示す断面図である。 [FIG. 5] FIG. 5 is a sectional view showing a subassembly of the fixed scroll.
[図 6]図 6は、開閉機構を構成する圧縮コイルパネの断面図である。 [Fig. 6] Fig. 6 is a sectional view of a compression coil panel that constitutes the opening/closing mechanism.
[図 7]図 7は、開閉機構を構成するピストンの正面図である。 [Fig. 7] Fig. 7 is a front view of a piston that constitutes the opening/closing mechanism.
[図 8]図 8は、ピストンに装着されるシール部材の断面図である。 [FIG. 8] FIG. 8 is a cross-sectional view of a seal member attached to a piston.
[図 9]図 9は、開閉機構を連通状態で示す断面図である。 [Fig. 9] Fig. 9 is a sectional view showing the opening/closing mechanism in a communicating state.
[図 10]図 10は、開閉機構を遮断状態で示す断面図である。 [Fig. 10] Fig. 10 is a sectional view showing the opening/closing mechanism in a blocked state.
圆 11]図 11は、圧縮機構の第 1の動作状態を示す断面図である。 FIG. 11 is a sectional view showing the first operating state of the compression mechanism.
圆 12]図 12は、圧縮機構の第 2の動作状態を示す断面図である。 FIG. 12 is a sectional view showing the second operating state of the compression mechanism.
[図 13]図 13は、圧縮機構の第 3の動作状態を示す断面図である。 [FIG. 13] FIG. 13 is a cross-sectional view showing a third operating state of the compression mechanism.
[図 14]図 14は、圧縮機構の第 4の動作状態を示す断面図である。 [Fig. 14] Fig. 14 is a sectional view showing a fourth operating state of the compression mechanism.
[図 15]図 15は、圧縮機構の第 5の動作状態を示す断面図である。 [Fig. 15] Fig. 15 is a sectional view showing a fifth operating state of the compression mechanism.
[図 16]図 16は、圧縮機構の第 6の動作状態を示す断面図である。 [FIG. 16] FIG. 16 is a sectional view showing a sixth operating state of the compression mechanism.
[図 17]図 17は、実施形態 1の変形例に係る圧縮機構の横断面図である。 [Fig. 17] Fig. 17 is a cross-sectional view of a compression mechanism according to a modification of the first embodiment.
[図 18]図 18は、実施形態 2に係る開閉機構の断面構造図である。 [Fig. 18] Fig. 18 is a cross-sectional structural diagram of the opening/closing mechanism according to the second embodiment.
[図 19]図 19は、実施形態 3に係る圧縮機構の第 1の動作状態を示す横断面図である [図 20]図 20は、実施形態 3に係る圧縮機構の第 2の動作状態を示す横断面図である 符号の説明 [Fig. 19] Fig. 19 is a cross-sectional view showing the first operating state of the compression mechanism according to the third embodiment. [Figure 20] Figure 20 is a cross-sectional view showing a second operating state of the compression mechanism according to Embodiment 3.
1 スクロール圧縮機 1 scroll compressor
10 ケーシング 10 Casing
17 低圧空間 17 Low pressure space
20 圧縮機構 20 Compression mechanism
21 固定スクローノレ (第 1スクロー -ル部材) 21 Fixed scroll (1st scroll member)
21a 固定側鏡板 21a Fixed side mirror plate
21b 固定側ラップ 21b Fixed side wrap
22 可動スクローノレ(第 2スクロー -ル部材) 22 Movable scroll (2nd scroll member)
22a 可動側鏡板 22a Movable end plate
22b 可動側ラップ 22b Movable side wrap
25a 第 1圧縮室 25a 1st compression chamber
25b 第 2圧縮室 25b 2nd compression chamber
30 吸入容積調整機構 30 Suction volume adjustment mechanism
31 開閉機構 31 Opening/closing mechanism
32 穴 (連通路) 32 holes (communication path)
33 ピストン(閉鎖部材) 33 Piston (closing member)
34 開閉駆動機構 34 Opening/closing drive mechanism
35 圧縮コイルパネ (付勢部材) 35 Compression coil panel (biasing member)
36 切換弁 (切換部材) 36 Switching valve (switching member)
37 溝 (連通路) 37 groove (communication path)
45 電動機 45 Electric motor
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0066] 以下、本発明の実施形態を図面に基づいて詳細に説明する。 [0066] Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
[0067] 《発明の実施形態 1》 本発明の実施形態 1について説明する。 [0067] 《Embodiment 1 of the invention》 Embodiment 1 of the present invention will be described.
[0068] 本実施形態のスクロール圧縮機は、例えば、蒸気圧縮式冷凍サイクルを行う空気 調和装置の冷媒回路に設けられ、蒸発器から吸入した低圧の冷媒を圧縮して凝縮 器へ吐出するものである。 [0068] The scroll compressor of this embodiment is installed, for example, in a refrigerant circuit of an air conditioner that performs a vapor compression refrigeration cycle, and compresses low-pressure refrigerant sucked in from an evaporator and discharges it to a condenser. be.
[0069] 図 1に示すように、上記スクロール圧縮機(1)は、いわゆる全密閉型に構成されてい る。このスクロール圧縮機(1)は、縦長円筒形の密閉容器状に形成されたケーシング (10)を備えている。ケーシング(10)は、縦長円筒部材である胴部(11)と、胴部(11) の上端部に固定された上部胴体(12)と、胴部(11)の下端部に固定された下部胴体( 13)とから構成されている。 [0069] As shown in FIG. 1, the scroll compressor (1) is configured as a so-called completely hermetic type. This scroll compressor (1) includes a casing (10) formed in the shape of a vertically elongated cylindrical closed container. The casing (10) includes a body (11) that is a vertically elongated cylindrical member, an upper body (12) fixed to the upper end of the body (11), and a lower body fixed to the lower end of the body (11). It consists of a body (13).
[0070] このケーシング (10)内には、冷媒を圧縮する圧縮機構 (20)と、該圧縮機構 (20)を 駆動する電動機 (45)とが収納されている。この電動機 (45)は、圧縮機構 (20)の下方 に配置され、回転軸である駆動軸 (40)を介して圧縮機構 (20)に連結されている。こ の電動機 (45)には、インバータ制御により回転速度を可変に調整することが可能な ブラシレス DCモータが用いられて!/、る。 [0070] The casing (10) houses a compression mechanism (20) that compresses refrigerant and an electric motor (45) that drives the compression mechanism (20). This electric motor (45) is disposed below the compression mechanism (20) and is connected to the compression mechanism (20) via a drive shaft (40) that is a rotating shaft. This electric motor (45) uses a brushless DC motor whose rotational speed can be variably adjusted by inverter control.
[0071] 上記ケーシング(10)の頂部である上部胴体(12)には、吸入管(14)が貫通して取り 付けられている。この吸入管(14)は、終端(図の下端)が圧縮機構 (20)に接続されて いる。上記ケーシング(10)の胴部(11)には、吐出管(15)が貫通して取り付けられて いる。この吐出管(15)は、終端(図の右端)がケーシング(10)内の圧縮機構 (20)と電 動機 (45)の間に開口して 、る。 [0071] A suction pipe (14) is attached to pass through the upper body (12), which is the top of the casing (10). This suction pipe (14) is connected at its terminal end (lower end in the figure) to the compression mechanism (20). A discharge pipe (15) is attached to the body (11) of the casing (10) so as to penetrate therethrough. The discharge pipe (15) has a terminal end (right end in the figure) opened between the compression mechanism (20) and the electric motor (45) in the casing (10).
[0072] 上記駆動軸 (40)は、ケーシング(10)の上下方向の中心線上に配置されている。こ の駆動軸 (40)は、主軸部 (41)と偏心部 (42)とを備え、クランク軸を構成している。上 記偏心部 (42)は、主軸部 (41)よりも小径に形成され、主軸部 (41)の上端面に形成さ れている。そして、この偏心部 (42)は、主軸部 (41)の軸心に対して所定寸法だけ偏 心し、偏心ピンを構成している。 [0072] The drive shaft (40) is arranged on the vertical center line of the casing (10). The drive shaft (40) includes a main shaft portion (41) and an eccentric portion (42), and constitutes a crankshaft. The eccentric portion (42) is formed to have a smaller diameter than the main shaft portion (41), and is formed on the upper end surface of the main shaft portion (41). The eccentric portion (42) is eccentric by a predetermined dimension with respect to the axis of the main shaft portion (41), and forms an eccentric pin.
[0073] 上記ケーシング(10)の胴部(11)内には、その下端付近に、下部軸受部材 (48)が 固定されて 、る。この下部軸受部材 (48)は、滑り軸受 (48a)を介して駆動軸 (40)の主 軸部 (41)の下端部を回転自在に支持して 、る。 [0073] A lower bearing member (48) is fixed within the body (11) of the casing (10) near its lower end. The lower bearing member (48) rotatably supports the lower end of the main shaft (41) of the drive shaft (40) via the sliding bearing (48a).
[0074] なお、図示していないが、上記駆動軸 (40)の内部には、上下方向へ延びる給油通 路が形成されている。また、主軸部 (41)の下端部には、給油ポンプ (43)が設けられ ている。この給油ポンプ (43)によってケーシング(10)の底部から冷凍機油が吸い上 げられ、その冷凍機油は、駆動軸 (40)の給油通路を通って圧縮機構 (20)の摺動部 や駆動軸 (40)の軸受部へ供給される。 [0074] Although not shown, inside the drive shaft (40), there is an oil supply passage extending in the vertical direction. A road is formed. Furthermore, an oil supply pump (43) is provided at the lower end of the main shaft (41). Refrigerating machine oil is sucked up from the bottom of the casing (10) by this oil supply pump (43), and the refrigerating machine oil passes through the oil supply passage of the drive shaft (40) to the sliding parts of the compression mechanism (20) and the drive shaft. (40) is supplied to the bearing section.
[0075] 上記電動機 (45)は、ステータ (46)とロータ (47)とによって構成されて 、る。ステータ [0075] The electric motor (45) is composed of a stator (46) and a rotor (47). stator
(46)は、ケーシング(10)の胴部(11)に固定されている。ロータ (47)は、駆動軸 (40) の主軸部 (41)に連結され、駆動軸 (40)を回転駆動する。 (46) is fixed to the body (11) of the casing (10). The rotor (47) is connected to the main shaft portion (41) of the drive shaft (40) and rotationally drives the drive shaft (40).
[0076] 上記圧縮機構 (20)は、第 1スクロール部材である固定スクロール (21)と、第 2スクロ 一ル部材である可動スクロール (22)とを備えると共に、固定スクロール (21)を固定支 持するハウジング (23)を備えて!/ヽる。固定スクロール (21)と可動スクロール (22)は、 後述するように、互いに嚙み合う渦巻き状のラップ (21b, 22b)を鏡板 (21a, 22a)上に 備えている。そして、上記圧縮機構 (20)は、可動スクロール (22)が固定スクロール (2 1)に対して偏心回転運動をするように構成されている。 [0076] The compression mechanism (20) includes a fixed scroll (21) as a first scroll member, a movable scroll (22) as a second scroll member, and a fixed support for the fixed scroll (21). Equipped with a housing (23) that holds!/ヽru. As described later, the fixed scroll (21) and the movable scroll (22) are provided with spiral wraps (21b, 22b) on end plates (21a, 22a) that squeeze into each other. The compression mechanism (20) is configured such that the movable scroll (22) performs an eccentric rotational movement relative to the fixed scroll (21).
[0077] 上記ハウジング (23)は、フランジ部(23a)と本体部(23b)と軸受部(23c)とによって 構成されて 、る。これらフランジ部(23a)、本体部(23b)および軸受部(23c)は、上か ら下へ連続して形成され、本体部(23b)がケーシング(10)の胴部(11)に嵌合して接 合されて!/、る。フランジ部 (23a)は、本体部(23b)の上端にぉ 、て該本体部(23b)力 ら径方向外方へ突出している。軸受部(23c)は、本体部(23b)よりも小径に形成され 、本体部(23b)の下面から下方へ突出している。この軸受部(23c)は、滑り軸受(23d) を介して駆動軸 (40)の主軸部 (41)を回転自在に支持して 、る。 [0077] The housing (23) is composed of a flange portion (23a), a main body portion (23b), and a bearing portion (23c). These flange portion (23a), main body portion (23b), and bearing portion (23c) are formed continuously from top to bottom, and the main body portion (23b) is fitted into the body portion (11) of the casing (10). It's joined!/,ru. The flange portion (23a) is located at the upper end of the main body portion (23b) and projects radially outward from the main body portion (23b). The bearing portion (23c) is formed to have a smaller diameter than the main body portion (23b), and protrudes downward from the lower surface of the main body portion (23b). This bearing portion (23c) rotatably supports the main shaft portion (41) of the drive shaft (40) via a sliding bearing (23d).
[0078] 上記固定スクロール (21)は、固定側鏡板 (21a)と、固定側ラップ (21b)と、縁部 (21c )とを備えている。上記固定側鏡板 (21a)は略円板状に形成されている。上記固定側 ラップ (21b)は、固定側鏡板 (21a)の下面に立設され、該固定側鏡板 (21a)に一体形 成されている。この固定側ラップ (21b)は、高さが一定の渦巻き壁状に形成されてい る。上記縁部(21c)は、固定側鏡板 (21a)の外周縁部から下方へ向カゝつて延びる壁 状の部分と、その壁上の部分の下端部力 径方向外方へ突出し、ハウジング (23)の フランジ部(23a)の上面に固定されるフランジ状の部分とから構成されている。 [0078] The fixed scroll (21) includes a fixed end plate (21a), a fixed wrap (21b), and an edge (21c). The fixed side end plate (21a) is formed into a substantially disk shape. The fixed-side wrap (21b) is erected on the lower surface of the fixed-side end plate (21a), and is integrally formed with the fixed-side end plate (21a). This fixed side wrap (21b) is formed in the shape of a spiral wall with a constant height. The edge portion (21c) includes a wall-shaped portion that extends downward from the outer peripheral edge of the fixed end plate (21a), a lower end portion of the portion on the wall, and a lower end portion of the wall portion that protrudes outward in the radial direction. 23) and a flange-shaped part fixed to the upper surface of the flange part (23a).
[0079] 上記可動スクロール (22)は、可動側鏡板 (22a)と、可動側ラップ (22b)と、ボス部(2 2c)とを備えている。上記可動側鏡板 (22a)は略円板状に形成されている。上記可動 側ラップ (22b)は、可動側鏡板 (22a)の上面に立設され、該可動側鏡板 (22a)に一体 形成されている。この可動側ラップ (22b)は、高さが一定の渦巻き壁状に形成され、 固定スクロール (21)の固定側ラップ (21b)に嚙合するように構成されている。上記ボ ス部(22c)は、可動側鏡板 (22a)の下面から下方へ延設され、該可動側鏡板 (22a)に 一体形成されている。 [0079] The movable scroll (22) includes a movable end plate (22a), a movable wrap (22b), and a boss portion (2 2c). The movable end plate (22a) is formed into a substantially disk shape. The movable side wrap (22b) is erected on the upper surface of the movable end plate (22a) and is integrally formed with the movable end plate (22a). This movable side wrap (22b) is formed in the shape of a spiral wall with a constant height, and is configured to fit into the fixed side wrap (21b) of the fixed scroll (21). The boss portion (22c) extends downward from the lower surface of the movable end plate (22a) and is integrally formed with the movable end plate (22a).
[0080] このボス部 (22c)には、滑り軸受(22d)を介して駆動軸 (40)の偏心部 (42)が挿入さ れている。このため、上記駆動軸 (40)が回転すると、可動スクロール (22)が主軸部 (4 1)の軸心を中心として公転する。この可動スクロール (22)の公転半径は、偏心部 (42 )の偏心量、すなわち主軸部(41)の軸心から偏心部(42)の軸心までの寸法と同じで ある。 [0080] The eccentric portion (42) of the drive shaft (40) is inserted into the boss portion (22c) via a sliding bearing (22d). Therefore, when the drive shaft (40) rotates, the movable scroll (22) revolves around the axis of the main shaft (41). The orbital radius of the movable scroll (22) is the same as the eccentricity of the eccentric portion (42), that is, the dimension from the axis of the main shaft portion (41) to the axis of the eccentric portion (42).
[0081] 上記可動側鏡板 (22a)はハウジング (23)の上端面に設けられた第 1凹部 (23e)内 に位置し、上記ボス部(22c)はハウジング (23)の本体部(23b)に設けられた第 2凹部 (23f)内に位置している。なお、上記可動側鏡板 (22a)とハウジング (23)との間には、 可動スクロール (22)の自転を阻止するオルダム継手 (24)が配設されて 、る。上記第 1凹部 (23e)は可動側鏡板 (22a)の偏心回転運動を許容する大きさに形成され、上 記第 2凹部(23f)はボス部 (22c)の偏心回転運動を許容する大きさに形成されている [0081] The movable end plate (22a) is located in the first recess (23e) provided on the upper end surface of the housing (23), and the boss portion (22c) is located in the main body (23b) of the housing (23). The second recess (23f) is located within the second recess (23f). Note that an Oldham joint (24) that prevents rotation of the movable scroll (22) is disposed between the movable end plate (22a) and the housing (23). The first recess (23e) is formed in a size that allows eccentric rotational movement of the movable end plate (22a), and the second recess (23f) is formed in a size that allows eccentric rotational movement of the boss part (22c). is formed in
[0082] 図 2は図 1の II II線断面図であり、圧縮機構 (20)の横断面形状を表している。この 図 2に示すように、本実施形態のスクロール圧縮機(1)では、いわゆる非対称渦巻き 構造が採用されており、固定側ラップ (21b)と可動側ラップ (22b)とで巻き数 (渦巻き の長さ)が相違している。具体的に、上記固定側ラップ (21b)は、可動側ラップ (22b) よりも約 1Z2巻き分だけ渦巻きの巻き数が長くなつている。ただし、固定側ラップ (21 b)の最外周の一巻き分には外周面は形成されておらず、その範囲で固定側ラップ (2 lb)が固定スクロール(21)の縁部(21c)につながっている。そして、固定側ラップ(21b )の巻き終わり端は、外周側端部とそれよりも一巻き分だけ長く巻かれたところに位置 する内周側端部とが向き合った形で終結しており、その近傍に可動側ラップ (22b)の 外周側端部 (巻き終わり端)が位置して 、る。 [0083] 上記圧縮機構 (20)は、固定側鏡板 (21a)と可動側鏡板 (22a)の間で固定側ラップ( 21b)と可動側ラップ (22b)が嚙合して区画形成された複数の圧縮室 (25a, 25b)を備 えている。これら複数の圧縮室 (25a, 25b)は、固定側ラップ (21b)の内周面と可動側 ラップ (22b)の外周面との間に構成される第 1圧縮室 (25a)と、固定側ラップ (21b)の 外周面と可動側ラップ (22b)の内周面との間に構成される第 2圧縮室 (25b)とから構 成され、第 1圧縮室 (25a)と第 2圧縮室 (25b)のそれぞれが複数形成されている。この 例では、上記固定側ラップ (21b)の巻き数が可動側ラップ (22b)の巻き数よりも多!、た め、第 1圧縮室 (25a)の最大容積が第 2圧縮室 (25b)の最大容積よりも大き!/、。 [0082] FIG. 2 is a sectional view taken along line II II in FIG. 1, and shows the cross-sectional shape of the compression mechanism (20). As shown in Fig. 2, the scroll compressor (1) of this embodiment employs a so-called asymmetric spiral structure, and the fixed side wrap (21b) and the movable side wrap (22b) have a different number of turns (the number of spirals). length) are different. Specifically, the fixed side wrap (21b) has a spiral number longer than that of the movable side wrap (22b) by approximately 1Z2 turns. However, no outer peripheral surface is formed on the outermost turn of the fixed side wrap (21 b), and within that range the fixed side wrap (2 lb) is attached to the edge (21c) of the fixed scroll (21). linked. The end of the fixed wrap (21b) ends in such a way that the outer end and the inner end, which is located one turn longer than the outer end, face each other. The outer circumferential end (end of winding) of the movable wrap (22b) is located near the movable wrap (22b). [0083] The compression mechanism (20) has a plurality of compartments formed by interlocking a fixed side wrap (21b) and a movable side wrap (22b) between a fixed side end plate (21a) and a movable side end plate (22a). Equipped with compression chambers (25a, 25b). These multiple compression chambers (25a, 25b) are comprised of a first compression chamber (25a) formed between the inner circumferential surface of the fixed side wrap (21b) and the outer circumferential surface of the movable side wrap (22b); It consists of a second compression chamber (25b) constructed between the outer peripheral surface of the wrap (21b) and the inner peripheral surface of the movable wrap (22b), and the first compression chamber (25a) and the second compression chamber. A plurality of each of (25b) is formed. In this example, the number of turns on the fixed side wrap (21b) is greater than the number of turns on the movable side wrap (22b)! , so the maximum volume of the first compression chamber (25a) is larger than the maximum volume of the second compression chamber (25b)!/.
[0084] 図 1に示すように、上記固定スクロール (21)の外周側には、吸入管(14)の終端が 接続される吸入ポート(29)が形成されている。この吸入ポート (29)には、図示してい ないが、圧縮室(25a, 25b)への冷媒の吸入のみを許容し、逆向きの冷媒の流れを禁 止する逆止弁が設けられている。この吸入ポート(29)は、可動スクロール(22)の公転 運動に伴って、第 1圧縮室 (25a)と第 2圧縮室 (25b)のそれぞれに間欠的に連通する [0084] As shown in FIG. 1, a suction port (29) to which the terminal end of the suction pipe (14) is connected is formed on the outer peripheral side of the fixed scroll (21). Although not shown, this suction port (29) is equipped with a check valve that only allows refrigerant to be sucked into the compression chambers (25a, 25b) and prohibits the flow of refrigerant in the opposite direction. . This suction port (29) intermittently communicates with each of the first compression chamber (25a) and the second compression chamber (25b) as the movable scroll (22) revolves.
[0085] 上記固定側鏡板 (21a)の上端部には凹陥部(21g)が形成され、該固定側鏡板 (21a )の上面には、上記凹陥部(21g)を覆う吐出カバー(27)が取り付けられている。そし て、この凹陥部(21g)が吐出カバー(27)で覆われた空間が吐出室 (28)として構成さ れている。この固定側鏡板 (21a)の中央には、吐出室 (28)に開口する吐出ポート (26 )が形成されている。この吐出ポート (26)は、可動スクロール (22)の公転運動に伴つ て第 1圧縮室 (25a)と第 2圧縮室 (25b)のそれぞれに間欠的に連通する。なお、上記 吐出室 (28)に吐出されたガス冷媒は、固定スクロール (21)とハウジング (23)に形成 された図示しないガス通路を通じてハウジング (23)の下方の空間(高圧空間)(16)に 導入され、吐出管(15)力もケーシング(10)外へ吐出される。ケーシング(10)内は、 ハウジング(23)の下方の空間が高圧空間(16)であるのに対して、ハウジングの上方 の空間 (圧縮機構 (20)の周囲の空間)は、低圧空間(17)になるように構成されている [0085] A recess (21g) is formed at the upper end of the fixed end plate (21a), and a discharge cover (27) is provided on the upper surface of the fixed end plate (21a) to cover the recess (21g). installed. A space in which this concave portion (21g) is covered with a discharge cover (27) is configured as a discharge chamber (28). A discharge port (26) that opens into the discharge chamber (28) is formed in the center of the fixed end plate (21a). The discharge port (26) intermittently communicates with each of the first compression chamber (25a) and the second compression chamber (25b) as the movable scroll (22) revolves. The gas refrigerant discharged into the discharge chamber (28) passes through a gas passage (not shown) formed in the fixed scroll (21) and the housing (23) to the space (high pressure space) (16) below the housing (23). The force of the discharge pipe (15) is also discharged to the outside of the casing (10). Inside the casing (10), the space below the housing (23) is a high-pressure space (16), while the space above the housing (the space around the compression mechanism (20)) is a low-pressure space (17). ) is configured to be
[0086] この実施形態では、圧縮機構 (20)の吸入行程における圧縮室 (25a, 25b)の吸入 閉じ切り位置を調節することにより吸入容積を調整することのできる吸入容積調整機 構 (30)が設けられている。この吸入容積調整機構 (30)は、第 1圧縮室 (25a)と第 2圧 縮室 (25b)の両方で吸入閉じ切り位置(吸入行程が完了し、圧縮行程が開始される 位置)を調節できるものであり、図 2に示すように渦巻きの外周側一巻き範囲内の 1箇 所のみに設けられている。この吸入容積調整機構 (30)は、第 1圧縮室 (25a)と第 2圧 縮室 (25b)とを連通状態と遮断状態とに切り換え可能な開閉機構 (31)により構成さ れている。 [0086] In this embodiment, a suction volume adjustment device is provided that can adjust the suction volume by adjusting the suction closed position of the compression chambers (25a, 25b) during the suction stroke of the compression mechanism (20). A structure (30) is provided. This suction volume adjustment mechanism (30) adjusts the suction closed position (the position where the suction stroke is completed and the compression stroke begins) in both the first compression chamber (25a) and the second compression chamber (25b). As shown in Figure 2, it is provided at only one location within one turn on the outer circumference of the spiral. The suction volume adjustment mechanism (30) includes an opening/closing mechanism (31) that can switch the first compression chamber (25a) and the second compression chamber (25b) between a communication state and a cutoff state.
[0087] 上記開閉機構 (31)は、その断面構造を表す図 3に示すように、具体的には、第 1圧 縮室 (25a)と第 2圧縮室 (25b)とが連通状態にあるときに両圧縮室 (25a, 25b)間での 冷媒の流れを許容する連通路 (32)と、この連通路 (32)を開放する開放位置と該連 通路 (32)を閉鎖する閉鎖位置とに移動可能なピストン(閉鎖部材)(33)と、このピスト ン (33)を開放位置と閉鎖位置とに位置変化させる開閉駆動機構 (34)とを備えている [0087] Specifically, the opening/closing mechanism (31) has a first compression chamber (25a) and a second compression chamber (25b) in communication with each other, as shown in FIG. 3 showing its cross-sectional structure. A communication passage (32) that sometimes allows refrigerant to flow between the compression chambers (25a, 25b), an open position where the communication passage (32) is opened, and a closed position where the communication passage (32) is closed. It is equipped with a piston (closing member) (33) that is movable between the piston (33) and an opening/closing drive mechanism (34) that changes the position of the piston (33) between an open position and a closed position.
[0088] 上記連通路 (32)は、固定側鏡板 (21a)に形成された段付き穴(32)により構成され ている。この段付き穴(32)は、固定スクロール (21)の底面図である図 4に示すように、 渦巻きの外周側一巻き範囲内で、図において渦巻き中心の左側斜め下方の位置に 形成されている。この段付き穴(32)は、固定スクロール (21)のサブアセンブリを示す 断面図である図 5に示すように、固定側鏡板 (21a)の上面に開口した大径部(32a)と 、それよりも直径の小さな小径部 (32b)とから構成されていて、小径部 (32b)が上記連 通路 (32)を構成している。この段付き穴(32)は、小径部(32b)が固定側ラップ (21b) の歯と歯の間に位置するように形成されている。この小径部(32b)は、可動側ラップ( 22b)の歯の厚さよりも直径が大きい円形の穴である。 [0088] The communication path (32) is constituted by a stepped hole (32) formed in the fixed end plate (21a). As shown in Figure 4, which is a bottom view of the fixed scroll (21), this stepped hole (32) is formed within one turn on the outer circumference of the spiral, at a position diagonally below and to the left of the center of the spiral in the figure. There is. As shown in Figure 5, which is a cross-sectional view of the subassembly of the fixed scroll (21), this stepped hole (32) has a large diameter part (32a) opened on the upper surface of the fixed end plate (21a), and and a small diameter portion (32b) having a smaller diameter than the above-mentioned communication path (32). This stepped hole (32) is formed such that the small diameter portion (32b) is located between the teeth of the fixed side wrap (21b). This small diameter portion (32b) is a circular hole with a diameter larger than the thickness of the teeth of the movable side wrap (22b).
[0089] 上記段付き穴 (32)の中には、図 6に示す圧縮コイルパネ (付勢部材)(35)と、先端 部で上記小径部 (32b)を開閉する上記ピストン (33) (図 7参照)とが装填されている。 このピストン (33)は、図 7に示すように、上記小径部(32b)と嵌合する寸法のプラグ部 (33a)と、このプラグ部(33a)よりも大径で上記圧縮コイルパネ (35)が装着されるパネ 受け部 (33b)と、このパネ受け部 (33b)よりも大径のシール装着部 (33c)とが、先端( 図の下端)側力も連続するように一体的に形成されたものである。そして、上記シー ル装着部(33c)には周方向に沿ってシール装着溝 (33d)が形成され、このシール装 着溝 (33d)には図 8に示すリング状のシール部材 (33e)が装着されている。 [0089] Inside the stepped hole (32) are the compression coil panel (biasing member) (35) shown in Figure 6, and the piston (33) that opens and closes the small diameter part (32b) at its tip (Fig. 7) is loaded. As shown in Figure 7, this piston (33) has a plug part (33a) sized to fit with the small diameter part (32b), and a compression coil panel (35) with a larger diameter than this plug part (33a). The panel receiving part (33b) to which the panel is attached and the seal mounting part (33c), which has a larger diameter than this panel receiving part (33b), are integrally formed so that the force on the tip (lower end in the figure) is also continuous. It is something that A seal mounting groove (33d) is formed along the circumferential direction in the seal mounting portion (33c), and this seal mounting groove (33d) is formed along the circumferential direction. A ring-shaped seal member (33e) shown in FIG. 8 is attached to the groove (33d).
[0090] 図 5に示すように、上記開閉駆動機構 (34)は、ピストン (33)を開放位置に向かって 付勢する上記圧縮コイルパネ (35)と、ピストン (33)に低圧圧力を印加する状態と該ピ ストン (33)に圧縮コイルパネ (35)の付勢力に抗して高圧圧力を印加する状態とを切 り換える切換弁 (切換部材)(36)とから構成されている。切換弁 (36)によりピストン (33 )の後端面 (上端面)に低圧圧力を印加した状態では、ピストン (33)を押し下げようと する力よりも圧縮コイルパネ (35)がピストン (33)を押し上げる力が勝って図 9に示すよ うに上記連通路 (32)が開き、第 1圧縮室 (25a)と第 2圧縮室 (25b)とが連通状態にな る(図 3参照)。一方、切換弁 (36)によりピストン (33)の後端面に高圧圧力を印力!]した 状態では、ピストン (33)を押し下げる力力 圧縮コイルパネ (35)によりピストン (33)を 押し上げようとする力よりも勝って図 10に示すように上記連通路 (32)が閉じ、第 1圧 縮室 (25a)と第 2圧縮室 (25b)とが遮断状態となる。 [0090] As shown in Figure 5, the opening/closing drive mechanism (34) applies low pressure to the compression coil panel (35) that urges the piston (33) toward the open position and to the piston (33). It is comprised of a switching valve (switching member) (36) that switches between the state and the state where high pressure is applied to the piston (33) against the biasing force of the compression coil panel (35). When low pressure is applied to the rear end surface (upper end surface) of the piston (33) by the switching valve (36), the compression coil panel (35) pushes up the piston (33) more than the force trying to push down the piston (33). When the force prevails, the communication passage (32) opens as shown in Figure 9, and the first compression chamber (25a) and the second compression chamber (25b) become in communication (see Figure 3). On the other hand, when high pressure is applied to the rear end surface of the piston (33) by the switching valve (36), the force pushing down the piston (33) tries to push the piston (33) up by the compression coil panel (35). As shown in FIG. 10, the communication passage (32) is closed, and the first compression chamber (25a) and the second compression chamber (25b) are cut off.
[0091] 吸入容積調整機構 (30) (開閉機構 (31) )の動作の詳細については後述するが、ピ ストン (33)を閉鎖位置にして運転を行うと、第 1圧縮室 (25a)と第 2圧縮室 (25b)とが 遮断状態になるため、設計値通りの吸入容積で冷媒を圧縮する通常運転となる。こ れに対して、ピストン (33)を開放位置にして運転を行うと、第 1圧縮室 (25a)と第 2圧 縮室 (25b)とが連通状態になるため、設計値よりも少ない吸入容積で冷媒を圧縮する 調整運転となる。この調整運転を行うとき、本実施形態では、電動機 (45)の回転速度 を通常運転時よりも速めるようにして 、る。 [0091] Details of the operation of the suction volume adjustment mechanism (30) (opening/closing mechanism (31)) will be described later, but when operating with the piston (33) in the closed position, the first compression chamber (25a) and Since the second compression chamber (25b) is cut off, the refrigerant is compressed with the designed suction volume, resulting in normal operation. On the other hand, when operating with the piston (33) in the open position, the first compression chamber (25a) and the second compression chamber (25b) are in communication, resulting in less suction than the design value. This is an adjustment operation that compresses the refrigerant by volume. When performing this adjustment operation, in this embodiment, the rotational speed of the electric motor (45) is made faster than during normal operation.
[0092] 運転動作 [0092] Driving behavior
次に、上述したスクロール圧縮機(1)の運転動作について説明する。 Next, the operation of the scroll compressor (1) described above will be explained.
[0093] まず、上記電動機 (45)を駆動すると、駆動軸 (40)が回転し、可動スクロール (22) (2 2)が固定スクロール (21)に対して公転運動を行う。その際、固定スクロール (21)は、 オルダム継手 (24)によって自転が阻止される。 [0093] First, when the electric motor (45) is driven, the drive shaft (40) rotates, and the movable scroll (22) (22) performs a revolution movement relative to the fixed scroll (21). At this time, the fixed scroll (21) is prevented from rotating by the Oldham joint (24).
[0094] 上記可動スクロール (22)の公転運動に伴って、圧縮室 (25a, 25b)の容積が周期的 に増減を繰り返す。上記圧縮室 (25a, 25b)では、吸入ポート (29)に連通した部分の 容積が増大するときに、冷媒回路の冷媒が吸入管(14)から吸入ポート (29)を通って 圧縮室 (25a, 25b)に吸い込まれ、吸入側が閉じ切られた部分の容積が減少するとき に冷媒が圧縮された後、吐出ポート (26)から吐出室 (28)に吐出される。吐出室 (28) の冷媒は、図示しないガス通路を通じてハウジング (23)の下方の高圧空間(16)に流 入し、吐出管(15)力 冷媒回路の凝縮器に供給される。 [0094] With the orbital movement of the movable scroll (22), the volume of the compression chambers (25a, 25b) repeatedly increases and decreases periodically. In the compression chambers (25a, 25b), when the volume of the portion communicating with the suction port (29) increases, the refrigerant in the refrigerant circuit passes from the suction pipe (14) through the suction port (29) and enters the compression chamber (25a). , 25b), and the volume of the part where the suction side is completely closed decreases. After the refrigerant is compressed, it is discharged from the discharge port (26) into the discharge chamber (28). The refrigerant in the discharge chamber (28) flows into the high pressure space (16) below the housing (23) through a gas passage (not shown), and is supplied to the condenser of the refrigerant circuit through the discharge pipe (15).
[0095] (通常運転時の圧縮機構の動作) [0095] (Operation of compression mechanism during normal operation)
ここで、吸入容積調整機構 (30)が作動して 、な 、とき (通常運転時)の圧縮機構 (2 0)の冷媒吸入動作及び冷媒圧縮動作について、図 11から図 16を参照して説明する 。この通常運転時は、開閉機構 (31)のピストン (33)が閉鎖位置にあって連通路 (32) を閉鎖しており、第 1圧縮室 (25a)と第 2圧縮室 (25b)とが遮断状態になっている。な お、図 11から図 16は、圧縮機構 (20)の動作状態を 6つの段階に分けて示す断面図 であり、可動スクロール (22)が図の時計回り方向に所定の角度間隔で公転している 様子を表している。 Here, the refrigerant suction operation and refrigerant compression operation of the compression mechanism (20) when the suction volume adjustment mechanism (30) is activated (during normal operation) will be explained with reference to FIGS. 11 to 16. do . During this normal operation, the piston (33) of the opening/closing mechanism (31) is in the closed position and closes the communication passage (32), and the first compression chamber (25a) and the second compression chamber (25b) are closed. It is in a blocked state. 11 to 16 are cross-sectional views showing the operating states of the compression mechanism (20) in six stages, in which the movable scroll (22) revolves clockwise in the figure at predetermined angular intervals. It shows the state of being.
[0096] まず、図 11に示した第 1の動作状態では、可動側ラップ (22b)の巻き終わり端が固 定側ラップ (21b)の歯と歯の間に位置しており、最外周の第 1圧縮室 (25a-0)と第 2圧 縮室 (25b-0)の両方が低圧側に開放された状態で、両圧縮室 (25a-0, 25b-0)が吸 入ポート (29)に連通している。なお、第 1圧縮室 (25a)に関し、図の中心線 Y上のボイ ント P1で可動側ラップ (22b)の外周面と固定側ラップ (21b)の内周面とが実質的に接 触しており(ここで言う「接触」はミクロンオーダーの隙間はあるが、油膜が形成される ために冷媒の漏れが問題にならない状態のことである)、その接触位置 (シールボイ ント) P1よりも内周側 (渦巻きの卷始め側)の部分 (25a-l)は既に圧縮行程に入って いる。 [0096] First, in the first operating state shown in Fig. 11, the winding end of the movable wrap (22b) is located between the teeth of the fixed wrap (21b), and the outermost With both the first compression chamber (25a-0) and the second compression chamber (25b-0) open to the low pressure side, both compression chambers (25a-0, 25b-0) are connected to the suction port (29 ). Regarding the first compression chamber (25a), the outer peripheral surface of the movable wrap (22b) and the inner peripheral surface of the fixed wrap (21b) substantially contact each other at point P1 on the center line Y in the figure. (“Contact” here refers to a state in which there is a gap on the order of microns, but an oil film is formed so that refrigerant leakage is not a problem), and the contact point (seal point) is located inside P1. The peripheral side (starting side of the spiral) (25a-l) has already entered the compression stroke.
[0097] ここから可動スクロール (22)が図において時計回り方向に公転し、図 12の第 2の動 作状態になると、可動側ラップ (22b)の巻き終わり端の内周面が固定側ラップ (21b) の外周面に接触し、その接触位置 (シールポイント) P2が第 2圧縮室 (25b-l)の吸入 閉じ切り位置となる。このとき、最外周の第 1圧縮室 (25a-0)では容積が拡大する吸 入行程の途中であり、まだ巻き終わり側のシールポイントは形成されて ヽな 、。 [0097] From here, the movable scroll (22) revolves clockwise in the figure, and when it enters the second operating state shown in Fig. 12, the inner circumferential surface of the winding end of the movable side wrap (22b) touches the fixed side wrap. (21b), and its contact position (seal point) P2 becomes the suction closing position of the second compression chamber (25b-l). At this time, the first compression chamber (25a-0) at the outermost periphery is in the middle of the suction stroke where the volume expands, and the seal point at the winding end side has not yet been formed.
[0098] そこから可動スクロール (22)が公転して図 13の第 3の動作状態になると、第 2圧縮 室 (25b- 1)では容積が縮小して冷媒の圧縮行程が始まり、最外周の第 1圧縮室 (25a -0)では容積がさらに拡大して冷媒の吸入行程が進む。図 14の第 4の動作状態では 、第 2圧縮室 (25b- 1)での圧縮行程と最外周の第 1圧縮室 (25a-0)での吸入行程が さらに進んでいる。なお、第 2圧縮室 (25b)に関しては、既に圧縮途中の第 2圧縮室( 25b-l)に対して渦巻きの巻き終わり側に新たな第 2圧縮室 (25b-0)が形成され、そこ で吸入行程が開始されて 、る。 [0098] When the movable scroll (22) revolves from there and enters the third operating state shown in Figure 13, the volume in the second compression chamber (25b-1) decreases and the refrigerant compression stroke begins, causing the outermost In the first compression chamber (25a -0), the volume is further expanded and the refrigerant suction stroke progresses. In the fourth operating state of Figure 14 , the compression stroke in the second compression chamber (25b-1) and the suction stroke in the outermost first compression chamber (25a-0) are further advanced. Regarding the second compression chamber (25b), a new second compression chamber (25b-0) is formed on the end side of the spiral compared to the second compression chamber (25b-l), which is already in the middle of compression. The inhalation stroke begins at .
[0099] 図 15に示す第 5の動作状態になると、最外周の第 2圧縮室 (25b-0)での吸入行程 力 Sさらに進む一方、可動側ラップ (22b)の巻き終わり端の外周面が固定側ラップ (21b )の内周面に接触し、その接触位置 (シールポイント) P1が第 1圧縮室 (25a-l)の吸 入閉じ切り位置となる。図 16に示す第 6の動作状態になると、図 15の状態で形成さ れた第 1圧縮室 (25a-l)での圧縮行程が進むとともに、最外周の第 2圧縮室 (25b-0) での吸入行程が進む。そして、図 11に示す第 1の動作状態に戻って、圧縮途中の第 1圧縮室 (25a-l)の外周側 (渦巻きの巻き終わり側)に新たな第 1圧縮室 (25a-0)が形 成される。 [0099] When the fifth operating state shown in Fig. 15 is reached, the suction stroke force S in the second compression chamber (25b-0) at the outermost periphery continues, while the outer circumferential surface of the winding end of the movable wrap (22b) contacts the inner peripheral surface of the fixed side wrap (21b), and the contact position (seal point) P1 becomes the suction closed position of the first compression chamber (25a-l). When the sixth operating state shown in Fig. 16 is reached, the compression stroke in the first compression chamber (25a-l) formed in the state shown in Fig. 15 progresses, and the second compression chamber (25b-0) at the outermost periphery progresses. The inhalation process progresses. Then, returning to the first operating state shown in Fig. 11, a new first compression chamber (25a-0) is created on the outer circumferential side (end side of the spiral) of the first compression chamber (25a-l), which is in the middle of compression. It is formed.
[0100] その後は、図 11から図 16の動作が繰り返され、圧縮途中の第 1圧縮室 (25a-l)及 び第 2圧縮室 (25b-l)が容積を縮小しながら渦巻きの内周側へ移動して、それぞれ 吐出直前の第 1圧縮室 (25a-2)及び第 2圧縮室 (25b-2)へ変化していく。そして、第 1圧縮室 (25a-2)及び第 2圧縮室 (25b-2)は、最も内周側へ移動して容積が最小に なったときに吐出ポート (26)と連通し、冷媒が圧縮機構 (20)力 吐出される。 [0100] After that, the operations shown in Figures 11 to 16 are repeated, and the first compression chamber (25a-l) and second compression chamber (25b-l), which are in the middle of compression, reduce their volume while filling the inner periphery of the spiral. They move to the side and change to the first compression chamber (25a-2) and the second compression chamber (25b-2), respectively, just before discharge. The first compression chamber (25a-2) and the second compression chamber (25b-2) communicate with the discharge port (26) when they move to the innermost side and the volume becomes the minimum, and the refrigerant flows through the first compression chamber (25a-2) and the second compression chamber (25b-2). Compression mechanism (20) Force Discharged.
[0101] (調整運転時の圧縮機構の動作) [0101] (Operation of compression mechanism during adjustment operation)
次に、吸入容積調整機構 (30)が作動して ヽるとき (調整運転時)の圧縮機構 (20) の冷媒吸入動作及び冷媒圧縮動作にっ 、て、同じく図 11から図 16を参照して説明 する。この調整運転時は、吸入容積調整機構 (30)である開閉機構 (31)はピストン (3 3)が開放位置にあって連通路 (32)である小径部 (32b)を開放しており、第 1圧縮室( 25a)と第 2圧縮室 (25b)とが連通状態 (連通可能な状態)になって!/、る。 Next, regarding the refrigerant suction operation and refrigerant compression operation of the compression mechanism (20) when the suction volume adjustment mechanism (30) is in operation (during adjustment operation), refer to FIGS. 11 to 16 as well. I will explain. During this adjustment operation, the piston (3 3) of the opening/closing mechanism (31), which is the suction volume adjustment mechanism (30), is in the open position, opening the small diameter portion (32b), which is the communication passage (32). The first compression chamber (25a) and the second compression chamber (25b) are in communication state (state where communication is possible)!/,.
[0102] まず、図 11に示した第 1の動作状態において、最外周の第 1圧縮室 (25a-0)と第 2 圧縮室 (25b_0)の両方が低圧側に開放された状態で、両圧縮室 (25a_0, 25b_0)が 吸入ポート (29)に連通している点は通常運転時と同じである。一方、通常運転時に は可動側ラップ (22b)の外周面と固定側ラップ (21b)の内周面が図の中心線 Y上の ポイント P1で接触し、このポイント(シールポイント) P1よりも内周側(渦巻きの卷始め 側)の第 1圧縮室 (25a_l)が既に閉じ切られていたのに対して、この第 1圧縮室 (25a- 1)は連通路 (32)を介して、吸入行程の途中にある最外周の第 2圧縮室 (25b-0)に連 通している。したがって、この第 1圧縮室 (25a-l)はまだ吸入閉じ切り位置の手前の 状態であり、上記第 2圧縮室 (25b)と同様に吸入行程の途中の段階である。 [0102] First, in the first operating state shown in Figure 11, both the outermost first compression chamber (25a-0) and second compression chamber (25b_0) are open to the low pressure side, and The point that the compression chambers (25a_0, 25b_0) communicate with the suction port (29) is the same as during normal operation. On the other hand, during normal operation, the outer circumferential surface of the movable side wrap (22b) and the inner circumferential surface of the fixed side wrap (21b) come into contact at point P1 on the center line Y in the figure, and the inner circumferential surface of this point (seal point) is Peripheral side (beginning of spiral) While the first compression chamber (25a_l) on the side) was already completely closed, this first compression chamber (25a-1) was It communicates with the second compression chamber (25b-0). Therefore, this first compression chamber (25a-l) is still in a state before the suction closed position, and is in the middle of the suction stroke like the second compression chamber (25b).
[0103] 図 12の第 2の動作状態になると、固定側ラップ (21b)の内周面と可動側ラップ (22b )の外周面との接触点 PIが開閉機構 (31)の連通路 (32)を通過した直後の位置に変 位している。したがって、このときの接触位置(シールポイント) P1が第 1圧縮室(25a- 1)の吸入閉じ切り位置となる。一方、この状態で通常運転時には閉じ切られていた最 外周の第 2圧縮室 (25b-l)は、圧縮行程に入った第 1圧縮室 (25a-l)の渦巻き外周 側に形成されて ヽる最外周の第 1圧縮室 (25a-0)に連通路 (32)を通じて連通して ヽ る。そして、この最外周の第 1圧縮室 (25a-0)が吸入行程の途中であるため、上記第 2圧縮室 (25b)は吸入閉じ切り前である。 [0103] When the second operating state shown in Figure 12 is reached, the contact point PI between the inner circumferential surface of the fixed side wrap (21b) and the outer circumferential surface of the movable side wrap (22b) connects to the communication path (32) of the opening/closing mechanism (31). ) is displaced to the position immediately after passing through. Therefore, the contact position (seal point) P1 at this time becomes the suction closed position of the first compression chamber (25a-1). On the other hand, in this state, the outermost second compression chamber (25b-l), which was closed during normal operation, is formed on the spiral outer circumferential side of the first compression chamber (25a-l), which has entered the compression stroke. It communicates with the outermost first compression chamber (25a-0) through the communication passage (32). Since the first compression chamber (25a-0) at the outermost periphery is in the middle of the suction stroke, the second compression chamber (25b) is not yet fully closed for suction.
[0104] この状態は図 13に示す第 3の運転状態と図 14に示す第 4の運転状態でも同じであ り、第 2圧縮室 (25b- 1)は吸入閉じ切り前の状態で、まだ巻き終わり側のシールポイン トは形成されていない。このとき、最外周の第 1圧縮室 (25a-0)も吸入行程の途中で ある。なお、図 14に示す第 4の動作状態では、上記第 2圧縮室 (25b-l)の渦巻き外 周側に、新たな第 2圧縮室 (25b-0)が形成され始めている。 [0104] This state is the same in the third operating state shown in FIG. 13 and the fourth operating state shown in FIG. No seal point is formed at the end of the winding. At this time, the outermost first compression chamber (25a-0) is also in the middle of the suction stroke. In addition, in the fourth operating state shown in FIG. 14, a new second compression chamber (25b-0) is beginning to be formed on the spiral outer peripheral side of the second compression chamber (25b-l).
[0105] 図 15に示す第 5の動作状態になると、固定側ラップ (21b)の外周面と可動側ラップ [0105] When the fifth operating state shown in Fig. 15 is reached, the outer peripheral surface of the fixed side wrap (21b) and the movable side wrap
(22b)の内周面との接触点 P2が開閉機構 (31)の連通路 (32)を通過する。したがつ て、このときの接触点 P2が第 2圧縮室 (25b- 1)のシールポイントとなり、第 2圧縮室 (2 5b-l)での圧縮行程が開始される。この状態で、通常運転時には最外周の第 1圧縮 室 (25a-l)が閉じ切られた状態になっていたが、調整運転時には最外周の第 1圧縮 室 (25a_l)が最外周の第 2圧縮室 (25b_0)を通じて低圧側に連通して 、るため、まだ 吸入行程の途中である。このことは図 16の第 6の動作状態でも同じであり、図 11の第 1の動作状態に戻っても同じである。 The contact point P2 with the inner peripheral surface of (22b) passes through the communication passage (32) of the opening/closing mechanism (31). Therefore, the contact point P2 at this time becomes the sealing point of the second compression chamber (25b-1), and the compression stroke in the second compression chamber (25b-l) is started. In this state, during normal operation, the outermost first compression chamber (25a-l) is closed, but during adjustment operation, the outermost first compression chamber (25a_l) is closed to the outermost second compression chamber. It is still in the middle of the suction stroke because it communicates with the low pressure side through the compression chamber (25b_0). This is the same in the sixth operating state in FIG. 16, and also in returning to the first operating state in FIG.
[0106] 以上のように、開閉機構 (31)の連通路 (32)を開いておくことにより、第 1圧縮室 (25 a)及び第 2圧縮室 (25b)の両方の吸入容積が通常運転時に比べて小さくなる。その 結果、通常運転時よりも圧縮比が小さくなり、吸入圧力が通常運転時と同じとすると 吐出圧力が下がることになる。 [0106] As described above, by keeping the communication passage (32) of the opening/closing mechanism (31) open, the suction volumes of both the first compression chamber (25 a) and the second compression chamber (25b) are maintained in normal operation. smaller than time. As a result, the compression ratio becomes smaller than during normal operation, assuming the suction pressure is the same as during normal operation. The discharge pressure will decrease.
[0107] なお、この調整運転を行うとき、本実施形態では、電動機 (45)の回転速度を通常運 転時よりも速めるようにしているため、スクロール圧縮機(1)の能力を通常運転時と同 等に保つことができる。 [0107] When performing this adjustment operation, in this embodiment, the rotational speed of the electric motor (45) is made faster than during normal operation, so the capacity of the scroll compressor (1) is increased to the same level as during normal operation. can be kept equal to
[0108] 一実施形態 1の効果 [0108] Effects of Embodiment 1
以上のように、この実施形態では、圧縮途中で容量制御する場合と異なり、渦巻き の外周側一巻き範囲内で容量制御を行うことで吸入容積を変化させる吸入容積調整 機構 (30)を設けたことによって、スクロール圧縮機(1)の圧縮比を小さくすることがで きる。そのため、吐出圧力を通常運転時よりも低くする調整運転を行える。したがって 、冷媒回路の運転条件がスクロール圧縮機(1)の通常運転時の設計点から外れた低 圧縮比の運転条件になっているときでも、圧縮室 (25a, 25b)の内圧が、その運転条 件での冷媒回路の高圧圧力よりも上昇しすぎるのを抑えられる。したがって、過圧縮 の発生を防止することが可能となる。 As described above, this embodiment is equipped with a suction volume adjustment mechanism (30) that changes the suction volume by performing volume control within one turn on the outer circumference of the spiral, unlike the case where the volume is controlled during compression. By doing so, the compression ratio of the scroll compressor (1) can be reduced. Therefore, an adjustment operation can be performed in which the discharge pressure is lowered than during normal operation. Therefore, even when the operating conditions of the refrigerant circuit are at a low compression ratio that deviates from the design point during normal operation of the scroll compressor (1), the internal pressure of the compression chambers (25a, 25b) is lower than the operating condition. This prevents the pressure from rising too much compared to the high pressure in the refrigerant circuit under these conditions. Therefore, it is possible to prevent overcompression from occurring.
[0109] さらに、この実施形態では、低差圧で高速運転を行う場合でも、過圧縮を防止でき 、電動機 (45)の回転速度が過圧縮防止の制約になることはない。そして、低速運転 でしか過圧縮を防止できな 、特許文献 1の圧縮機(1)とは違 、、高速運転でも過圧 縮を防止できるし、その際には電動機 (45)を高効率で運転できるので圧縮機(1)の 効率低下を防止できる。 [0109] Furthermore, in this embodiment, even when high-speed operation is performed with a low differential pressure, overcompression can be prevented, and the rotational speed of the electric motor (45) does not become a constraint on preventing overcompression. And, unlike the compressor (1) of Patent Document 1, which can prevent overcompression only at low speeds, overcompression can be prevented even at high speeds, and in that case, the electric motor (45) can be operated with high efficiency. Since the compressor (1) can be operated, a decrease in efficiency of the compressor (1) can be prevented.
[0110] また、本実施形態では、吸入容積調整機構 (30)を設けたことによって、第 1圧縮室 [0110] Furthermore, in this embodiment, by providing the suction volume adjustment mechanism (30), the first compression chamber
(25a)と第 2圧縮室 (25b)の両方の吸入容積を通常運転時よりも小さくするように調整 が可能となる。そして、圧縮室 (25a, 25b)の吸入容積を吸入容積調整機構 (30)によ つて調整したうえで、圧縮機(1)の能力が通常運転時の能力と同等になるように電動 機 (45)の回転速度を速めるようにすることで、電動機 (45)の効率向上と渦巻き内部 漏れの低減を同時に達成することができる。つまり、本実施形態では、運転容量を維 持したまま、能力調整のためではなく効率向上のために吸入容積調整機構 (30)を使 用することができる。なお、吸入容積調整機構 (30)により圧縮機構 (20)の吸入容積 を通常運転時よりも小さくするときに、必ず電動機 (45)の回転速度を速くする制御を 行う必要はなぐ場合によっては電動機 (45)の回転速度を変えないようにしてもよい 。この場合、能力の可変範囲を定容量側に拡大することができる。 The suction volumes of both (25a) and the second compression chamber (25b) can be adjusted to be smaller than during normal operation. After adjusting the suction volume of the compression chambers (25a, 25b) using the suction volume adjustment mechanism (30), the electric motor ( By increasing the rotational speed of motor (45), it is possible to simultaneously improve the efficiency of motor (45) and reduce internal leakage from the vortex. That is, in this embodiment, the suction volume adjustment mechanism (30) can be used not for capacity adjustment but for efficiency improvement while maintaining the operating capacity. Note that when the suction volume adjustment mechanism (30) makes the suction volume of the compression mechanism (20) smaller than that during normal operation, it is not always necessary to control the rotation speed of the electric motor (45) to increase. The rotation speed of (45) may not be changed. . In this case, the variable range of capacity can be expanded to the constant capacity side.
[0111] さらに、この実施形態では、吸入容積調整機構 (30)を作動させると、圧縮室 (25a, 2 5b)の内圧による軸方向荷重が作用する面積を小さくすることができるうえ、可動側ラ ップ (22b)に対するガス荷重の作用点を駆動軸 (40)の偏心部 (42)の中心に近 、位 置に移動させることができるので、転覆モーメントが小さくなり、転覆が生じに《なる。 したがって、圧縮不良、運転能力の低下、及び圧縮機(1)の効率の低下などの不具 合を防止できる。 [0111] Furthermore, in this embodiment, when the suction volume adjustment mechanism (30) is activated, the area on which the axial load due to the internal pressure of the compression chambers (25a, 25b) acts can be reduced, and the movable side Since the point of action of the gas load on the wrap (22b) can be moved to a position closer to the center of the eccentric portion (42) of the drive shaft (40), the overturning moment is reduced and overturning is less likely to occur. Become. Therefore, problems such as poor compression, reduced operating capacity, and reduced efficiency of the compressor (1) can be prevented.
[0112] また、この実施形態では、吸入容積調整機構 (30)を渦巻きの外周側一巻き範囲内 の 1箇所のみに設けているため、吸入容積を 2段階に調整することができる。そして、 吸入容積調整機構 (30)を 1箇所のみに設けると、複数箇所に設けるのに対して構造 を最も簡素化することが可能となる。 [0112] Furthermore, in this embodiment, since the suction volume adjustment mechanism (30) is provided at only one location within the range of one turn on the outer circumferential side of the spiral, the suction volume can be adjusted in two stages. Furthermore, if the suction volume adjustment mechanism (30) is provided at only one location, the structure can be most simplified as opposed to providing it at multiple locations.
[0113] さらに、本実施形態では、吸入容積調整機構 (30)として、第 1圧縮室 (25a)と第 2圧 縮室 (25b)とを連通状態と遮断状態とに切り換え可能な開閉機構 (31)を設けるだけ で、第 1圧縮室 (25a)と第 2圧縮室 (25b)の吸入閉じ切り位置を調整し、吸入容積を 変化させることができるから、その点でも構造が複雑になるのを防止できる。 [0113] Furthermore, in the present embodiment, the suction volume adjustment mechanism (30) includes an opening/closing mechanism ( 31), the suction closed positions of the first compression chamber (25a) and the second compression chamber (25b) can be adjusted and the suction volume can be changed, which also reduces the complexity of the structure. can be prevented.
[0114] 特に、開閉機構 (31)は、該開閉機構 (31)の連通状態におけるガスの流れを許容 する連通路である段付き穴 (32)の小径部 (32b)と、この小径部 (32b)を開放する開放 位置と閉鎖する閉鎖位置とに移動可能な閉鎖部材であるピストン (33)と、ピストン (33 )を開放位置と閉鎖位置とに位置変化させる開閉駆動機構 (34)とを備えたものであり 、連通路 (32)を固定スクロール (21)の鏡板に形成した段付き穴(32)により構成して いるので、構造が極めて簡単である。また、開閉駆動機構 (34)は、ピストン (33)を開 放位置に向力つて付勢する付勢部材である圧縮コイルパネ (35)と、ピストン (33)に低 圧圧力を印加する状態と高圧圧力を印加する状態とを切り換える切換部材である切 換弁 (36)とを備えた構成にするだけで、開閉機構 (31)の確実な動作を保証できる。 [0114] In particular, the opening/closing mechanism (31) has a small diameter portion (32b) of the stepped hole (32), which is a communication path that allows gas to flow when the opening/closing mechanism (31) is in communication, and a small diameter portion (32b) of the stepped hole (32). 32b), which is a closing member movable between an open position for opening and a closed position for closing, and an opening/closing drive mechanism (34) for changing the position of the piston (33) between the open position and the closed position. The structure is extremely simple because the communication passage (32) is formed by a stepped hole (32) formed in the end plate of the fixed scroll (21). The opening/closing drive mechanism (34) also includes a compression coil panel (35) that is a biasing member that biases the piston (33) toward the open position, and a state that applies low pressure to the piston (33). Reliable operation of the opening/closing mechanism (31) can be guaranteed simply by providing a configuration including a switching valve (36), which is a switching member that switches between the state of applying high pressure and the state of applying high pressure.
[0115] 実施形態 1の変形例 [0115] Modification of Embodiment 1
実施形態 1の変形例を図 17に示して 、る。 A modification of Embodiment 1 is shown in FIG. 17.
[0116] 図 17は圧縮機構 (20)の構造を示す横断面図である。この変形例では、固定スクロ ール (21)及び可動スクロール (22)は、渦巻きの巻き数が等しい対称渦巻き構造に構 成されている。そして、吸入容積調整機構 (30)は、渦巻きの中心に対して対称となる 位置に設けられている。吸入容積調整機構 (30)の構造は、図 1〜図 16の例と同じで ある。 [0116] FIG. 17 is a cross-sectional view showing the structure of the compression mechanism (20). In this modification, the fixed scroll (21) and the movable scroll (22) have a symmetrical spiral structure with an equal number of spiral turns. has been completed. The suction volume adjustment mechanism (30) is provided at a position symmetrical to the center of the spiral. The structure of the suction volume adjustment mechanism (30) is the same as the examples shown in FIGS. 1 to 16.
[0117] この変形例では、対称渦巻き構造の圧縮機構 (20)において、渦巻き中心に対して 対称に存在する第 1圧縮室 (25a)と第 2圧縮室 (25b)のそれぞれにつ 、て吸入閉じ 切り位置を調整することができる。したがって、図 1〜図 16の例と同様に、圧縮室 (25 a, 25b)の吸入容積を小さくすることで固定圧縮比を小さくすることができるので、冷 媒回路の運転条件がスクロール圧縮機(1)の通常運転時の設計点から外れた低圧 縮比の運転条件になっているときに、圧縮室 (25a, 25b)の内圧が、その運転条件で の冷媒回路の高圧圧力よりも高くなりすぎるのを抑えられる。したがって、過圧縮を防 止できる。また、運転容量を維持したまま、能力調整のためではなく効率向上のため に吸入容積調整機構 (30)を使用することができる。 [0117] In this modification, in the compression mechanism (20) with a symmetrical spiral structure, suction is performed in each of the first compression chamber (25a) and the second compression chamber (25b), which are symmetrical with respect to the spiral center. Closed position can be adjusted. Therefore, as in the examples shown in Figures 1 to 16, the fixed compression ratio can be lowered by reducing the suction volume of the compression chambers (25a, 25b), so the operating conditions of the refrigerant circuit are lower than those of the scroll compressor. When the operating condition is a low compression ratio that deviates from the design point for normal operation in (1), the internal pressure in the compression chambers (25a, 25b) is higher than the high pressure in the refrigerant circuit under that operating condition. You can prevent it from becoming too much. Therefore, overcompression can be prevented. Furthermore, while maintaining the operating capacity, the suction volume adjustment mechanism (30) can be used not for capacity adjustment but for efficiency improvement.
[0118] 図 1〜図 16の例について説明したその他の効果は、この変形例においても、同様 の効果として奏することができる。 [0118] The other effects described in the examples of FIGS. 1 to 16 can also be achieved in this modification as similar effects.
[0119] 《発明の実施形態 2》 [0119] 《Embodiment 2 of the invention》
本発明の実施形態 2は、開閉機構 (31) (吸入容積調整機構 (30) )の構造を実施形 態 1とは異ならせた例である。具体的には、開閉機構 (31)は、第 1圧縮室 (25a)と第 2 圧縮室 (25b)を、ケーシング(10)内に設けられている低圧空間(17)に対して連通状 態と遮断状態とに切り換え可能に構成されている。開閉機構 (31)は連通路 (32)を除 いては実施形態 1と同じ構成である。連通路 (32)は、実施形態 1の小径部(32b)に相 当する部分が、第 1圧縮室 (25a)と第 2圧縮室 (25b)を互いに連通するとともに、可動 スクロール (21)内を径方向外方へ外周まで貫通し、周囲の低圧空間(17)と連通する 貫通孔 (32c)になっている。なお、上記連通路 (32)は、圧縮機構 (20)の吸入側の配 管に連通するようにしてもょ 、し、吸入空間が設けられて 、る場合はその吸入空間に 連通するようにしてもよ ヽ。 Embodiment 2 of the present invention is an example in which the structure of the opening/closing mechanism (31) (suction volume adjustment mechanism (30)) is different from that of Embodiment 1. Specifically, the opening/closing mechanism (31) communicates the first compression chamber (25a) and the second compression chamber (25b) with the low pressure space (17) provided in the casing (10). and a cutoff state. The opening/closing mechanism (31) has the same configuration as Embodiment 1 except for the communication path (32). A portion of the communication passage (32) corresponding to the small diameter portion (32b) of Embodiment 1 communicates the first compression chamber (25a) and the second compression chamber (25b) with each other, and also communicates with the inside of the movable scroll (21). It is a through hole (32c) that penetrates radially outward to the outer periphery and communicates with the surrounding low pressure space (17). The communication passage (32) should be connected to the piping on the suction side of the compression mechanism (20), and if a suction space is provided, it should be connected to the suction space. It's okay ヽ.
[0120] この実施形態においても、開閉機構 (31)を閉じている通常運転時の状態では、実 施形態 1と同様、渦巻きの巻き終わり側で離れていたラップ (21b, 22b)同士が実質的 に接触してシールポイントの形成された位置が吸入閉じ切り位置となり、そのときに第 1圧縮室 (25a)及び第 2圧縮室 (25b)での圧縮行程が開始される。 [0120] Also in this embodiment, in the normal operating state when the opening/closing mechanism (31) is closed, the wraps (21b, 22b) that were separated at the winding end side of the spiral are substantially separated from each other, as in the first embodiment. The position where a seal point is formed by contacting the target becomes the suction closing position, and at that time, the A compression stroke is started in the first compression chamber (25a) and the second compression chamber (25b).
[0121] 一方、開閉機構 (31)を開いた状態にすると、第 1圧縮室 (25a)と第 2圧縮室 (25b) の ヽずれにお 、ても、可動側ラップ (22b)と固定側ラップ (21b)の接触位置が開閉機 構 (31)のある位置を通過するまでは圧縮室 (25a, 25b)が閉じ切られない。この点も 実施形態 1と同じである。つまり、上記接触位置が開閉機構 (31)の位置を通過するま では、第 1圧縮室 (25a)及び第 2圧縮室 (25b)はケーシング(10)内の低圧空間(17) に連通した状態であり、上記接触位置が開閉機構 (31)の位置を通過した直後の位 置が吸入閉じ切り位置となって、圧縮行程に入る圧縮室 (25a, 25b)が形成される。そ のため、開閉機構 (31)を設ける位置に応じて、吸入容積の大きさを調整することが可 能となる。 [0121] On the other hand, when the opening/closing mechanism (31) is opened, even if the first compression chamber (25a) and the second compression chamber (25b) are misaligned, the movable side wrap (22b) and the fixed side The compression chambers (25a, 25b) are not completely closed until the contact position of the wrap (21b) passes through the position of the opening/closing mechanism (31). This point is also the same as the first embodiment. In other words, until the above contact point passes the opening/closing mechanism (31), the first compression chamber (25a) and the second compression chamber (25b) are in communication with the low pressure space (17) in the casing (10). The position immediately after the contact position passes the opening/closing mechanism (31) is the suction closed position, and the compression chambers (25a, 25b) are formed to enter the compression stroke. Therefore, the size of the suction volume can be adjusted depending on the position where the opening/closing mechanism (31) is provided.
[0122] このようにして吸入容積の大きさを調整することにより、実施形態 1と同様、冷媒回 路の運転条件がスクロール圧縮機(1)の通常運転時の設計点から外れた低圧縮比 の運転条件になっているときに、圧縮室 (25a, 25b)の内圧が冷媒回路の高圧圧力よ りも高くなりすぎるのを抑えられるので、過圧縮が発生するのを防止できる。また、運 転容量を維持したまま、能力調整のためではなく効率向上のために吸入容積調整機 構 (30)を使用することもできる。 [0122] By adjusting the size of the suction volume in this way, as in Embodiment 1, the operating conditions of the refrigerant circuit can be adjusted to a low compression ratio that deviates from the design point during normal operation of the scroll compressor (1). Since the internal pressure of the compression chambers (25a, 25b) can be prevented from becoming too high than the high pressure of the refrigerant circuit when the operating conditions are as follows, overcompression can be prevented from occurring. It is also possible to use the suction volume adjustment mechanism (30) to improve efficiency rather than adjust capacity while maintaining the operating capacity.
[0123] 一実施形態 2の変形例 [0123] Modification of Embodiment 2
上記実施形態 2において、吸入容積調整機構 (30) (開閉機構 (31) )は、第 1圧縮 室 (25a)と第 2圧縮室 (25b)の一方を上記低圧空間(17)に対して連通状態と遮断状 態とに切り換えるものであってもよい。例えば、第 1圧縮室 (25a)のみを上記低圧空間 (17)に対して連通状態と遮断状態とに切り換えるようにしてもよい。 In the second embodiment, the suction volume adjustment mechanism (30) (opening/closing mechanism (31)) communicates one of the first compression chamber (25a) and the second compression chamber (25b) with the low pressure space (17). It may be a device that can be switched between a state and a cutoff state. For example, only the first compression chamber (25a) may be switched between a communicating state and a blocking state with respect to the low pressure space (17).
[0124] この点に関し、固定スクロール(21)と可動スクロール(22)の渦巻き(ラップ(21b, 22 b) )の巻き数が異なる非対称渦巻き構造では、一般に、第 1圧縮室 (25a)と第 2圧縮 室 (25b)の圧縮比を渦巻き中心部で調整して吐出圧力を合わせているため、渦巻き の圧縮途中では、第 1圧縮室 (25a)と第 2圧縮室 (25b)の間で圧力差がついて、渦巻 きに作用するガス荷重にアンバランスが発生している。具体的には第 1圧縮室 (25a) の吸入容積が大きくて第 2圧縮室 (25b)の吸入容積が小さいため、圧縮途中は第 1 圧縮室 (25a)の方が圧力が高い。そのため、渦巻きの自転トルク (ガス荷重により渦 卷きを自転させる方向に作用するトルク)の変動による振動も生じやす 、。これに対し て、第 1圧縮室 (25a)の吸入容積のみを小さくするようにすれば、第 1圧縮室 (25a)と 第 2圧縮室 (25b)のガスの圧力差を小さくすることができるので、ガス荷重のアンバラ ンスや、渦巻きの自転トルクの変動による振動の影響を小さくすることが可能となる。 [0124] In this regard, in an asymmetric spiral structure in which the fixed scroll (21) and the movable scroll (22) have different numbers of turns (wraps (21b, 22 b)), the first compression chamber (25a) and the The compression ratio of the two compression chambers (25b) is adjusted at the center of the vortex to match the discharge pressure, so during the compression of the vortex, the pressure changes between the first compression chamber (25a) and the second compression chamber (25b). There is a difference, and an imbalance occurs in the gas load acting on the vortex. Specifically, since the suction volume of the first compression chamber (25a) is large and the suction volume of the second compression chamber (25b) is small, the pressure in the first compression chamber (25a) is higher during compression. Therefore, the rotational torque of the vortex (the vortex due to the gas load) Vibration is also likely to occur due to fluctuations in the torque (acting in the direction that causes the roll to rotate). On the other hand, by reducing only the suction volume of the first compression chamber (25a), the pressure difference between the gases between the first compression chamber (25a) and the second compression chamber (25b) can be reduced. Therefore, it is possible to reduce the effects of vibrations caused by unbalanced gas loads and fluctuations in the rotational torque of the vortex.
[0125] また、ガス荷重のバランスは第 1圧縮室 (25a)と第 2圧縮室 (25b)の相対的な関係で あるため、第 2圧縮室 (25b)の吸入容積を大きくする方向に変化させてもよい。その 場合は、第 1圧縮室 (25a)と第 2圧縮室 (25b)の両方の吸入容積を調整することがで きる構成で、第 1圧縮室 (25a)の吸入容積の調整位置よりも第 2圧縮室 (25b)の吸入 容積の調整位置を渦巻きの外周側 (巻き終わり側)にずらすとよ!、。 [0125] Furthermore, since the gas load balance is a relative relationship between the first compression chamber (25a) and the second compression chamber (25b), the suction volume of the second compression chamber (25b) changes in the direction of increasing it. You may let them. In that case, the configuration is such that the suction volume of both the first compression chamber (25a) and the second compression chamber (25b) can be adjusted, and the position for adjusting the suction volume of the first compression chamber (25a) is adjusted. Shift the suction volume adjustment position of compression chamber 2 (25b) to the outer circumference of the spiral (toward the end of the spiral).
[0126] 《発明の実施形態 3》 [0126] 《Embodiment 3 of the invention》
本発明の実施形態 3は、開閉機構 (31) (吸入容積調整機構 (30) )の構造を実施形 態 1とは異ならせた例である。具体的には、開閉機構 (31)は、固定側ラップ (21b)と 可動側ラップ (22b)とが実質的に接触した状態で形成される第 1圧縮室 (25a)と第 2 圧縮室 (25b)の両方について、その接触位置の内周側と外周側とを連通状態と遮断 状態とに切り換え可能な開閉機構 (31)により構成されている。 Embodiment 3 of the present invention is an example in which the structure of the opening/closing mechanism (31) (suction volume adjustment mechanism (30)) is different from that of Embodiment 1. Specifically, the opening/closing mechanism (31) has a first compression chamber (25a) and a second compression chamber ( Both of 25b) are constituted by an opening/closing mechanism (31) that can switch the inner circumferential side and the outer circumferential side of the contact position between a communication state and a cutoff state.
[0127] この開閉機構 (31)は、連通路の形状が実施形態 1のものとは異なり、ラップ (21b, 2 2b)に沿って湾曲した溝 (37a, 37b)により形成されている。また、連通路 (37a, 37b)は 、第 1圧縮室 (25a)用のもの(37a)と第 2圧縮室 (25b)用のもの(37b)に分かれて 、る 。そして、第 1圧縮室 (25a)用の連通路 (37a)が固定側ラップ (21b)の内周面に沿って 形成され、第 2圧縮室 (25b)用の連通路 (37b)が固定側ラップ (21b)の外周面に沿つ て形成されている。連通路 (37a, 37b)の開閉構造は図示していないが、実施形態 1 で説明したものと同様の構造で、ピストン (33)の形状が各連通路 (37a, 37b)に適合 するように定められたものを採用すればよい。 [0127] This opening/closing mechanism (31) differs in the shape of the communication path from that of Embodiment 1, and is formed by grooves (37a, 37b) curved along the wraps (21b, 22b). Further, the communication passages (37a, 37b) are divided into a passage (37a) for the first compression chamber (25a) and a passage (37b) for the second compression chamber (25b). A communication passage (37a) for the first compression chamber (25a) is formed along the inner circumferential surface of the stationary side wrap (21b), and a communication passage (37b) for the second compression chamber (25b) is formed on the stationary side. It is formed along the outer circumferential surface of the wrap (21b). Although the opening/closing structure of the communication passages (37a, 37b) is not shown, the structure is similar to that described in Embodiment 1, and the shape of the piston (33) is adapted to fit each communication passage (37a, 37b). All you have to do is adopt what is prescribed.
[0128] この実施形態 3においても、開閉機構 (31)を閉じている通常運転時の状態では、 上記各実施形態と同様、渦巻きの巻き終わり側で離れていたラップ (21b, 22b)同士 が実質的に接触してシールポイントの形成された位置が吸入閉じ切り位置となり、第 1圧縮室 (25a)及び第 2圧縮室 (25b)が形成される。 [0128] Also in this embodiment 3, in the normal operating state when the opening/closing mechanism (31) is closed, the wraps (21b, 22b) separated at the winding end side of the spiral are separated from each other as in each of the above embodiments. The position where the seal points are formed by substantially contacting each other becomes the suction closed position, and a first compression chamber (25a) and a second compression chamber (25b) are formed.
[0129] 一方、開閉機構 (31)を開いた状態にすると、第 1圧縮室 (25a)と第 2圧縮室 (25b) のいずれにおいても、両ラップ (21b, 22b)の接触位置が開閉機構 (31)のある位置を 通過するまでは圧縮室 (25a, 25b)が閉じ切られない。つまり、上記接触位置が開閉 機構 (31)の位置を通過するまでは、第 1圧縮室 (25a)及び第 2圧縮室 (25b)の一方 は、上記接触位置の内周側の部分が外周側の部分を介して圧縮機構 (20)の吸入側 に連通した状態であり、上記接触位置が開閉機構 (31)の位置を通過した直後の位 置が吸入閉じ切り位置となって、圧縮行程に入る圧縮室 (25a, 25b)が形成される。具 体的には、図 19の状態では通常運転時には閉じ切られている第 2圧縮室 (25b- 1)が 閉じ切られておらず、図 20の状態では同じく第 1圧縮室 (25a-l)が閉じ切られていな い。 [0129] On the other hand, when the opening/closing mechanism (31) is opened, the first compression chamber (25a) and the second compression chamber (25b) In either case, the compression chambers (25a, 25b) are not completely closed until the contact point of both wraps (21b, 22b) passes through the location of the opening/closing mechanism (31). In other words, until the above-mentioned contact point passes the opening/closing mechanism (31), one of the first compression chamber (25a) and the second compression chamber (25b) has a part on the inner circumference side of the above-mentioned contact point on the outer circumference side. The contact position immediately after the opening/closing mechanism (31) is the suction closed position, and the compression stroke begins. Compression chambers (25a, 25b) are formed. Specifically, in the state shown in Figure 19, the second compression chamber (25b-1), which is closed during normal operation, is not closed, and in the state shown in Figure 20, the first compression chamber (25a-l) is also closed. ) is not completely closed.
[0130] そのため、この実施形態 3でも、開閉機構 (31)を設ける位置に応じて、吸入容積の 大きさを調整することが可能となる。そして、このようにして吸入容積の大きさを調整 することにより、冷媒回路の運転条件力スクロール圧縮機(1)の通常運転時の設計点 力 外れた低圧縮比の運転条件になっているときに、圧縮室 (25a, 25b)の内圧が冷 媒回路の高圧圧力よりも高くなりすぎるのを抑えられるので、過圧縮が発生するのを 防止できる。 [0130] Therefore, in this third embodiment as well, the size of the suction volume can be adjusted depending on the position where the opening/closing mechanism (31) is provided. By adjusting the suction volume in this way, the operating conditions of the refrigerant circuit can be adjusted when the operating conditions of the refrigerant circuit are at a low compression ratio that is outside the design point of the normal operation of the scroll compressor (1). Furthermore, since the internal pressure of the compression chambers (25a, 25b) can be prevented from becoming too high than the high pressure of the refrigerant circuit, overcompression can be prevented from occurring.
[0131] なお、この実施形態 3においても、第 1圧縮室 (25a)の吸入容積のみを小さくできる ように第 1圧縮室 (25a)側にのみ連通路 (37a)を設ければ、第 1圧縮室 (25a)と第 2圧 縮室(25b)のガスの圧力差を小さくすることができるので、ガス荷重のアンバランスや 、渦巻きの自転トルクの変動による振動の影響を小さくすることが可能となる。また、 ガス荷重のバランスは第 1圧縮室 (25a)と第 2圧縮室 (25b)の相対的な関係であるた め、第 1圧縮室 (25a)と第 2圧縮室 (25b)の両方の吸入容積を調整することができる 構成にして、第 2圧縮室 (25b)の吸入容積の調整位置を第 1圧縮室 (25a)の吸入容 積の調整位置よりも渦巻きの外周側 (巻き終わり側)にずらすようにしてもよい。 [0131] Also in this third embodiment, if the communication passage (37a) is provided only on the first compression chamber (25a) side so that only the suction volume of the first compression chamber (25a) can be reduced, Since the pressure difference between the gas in the compression chamber (25a) and the second compression chamber (25b) can be reduced, it is possible to reduce the effects of vibrations caused by unbalanced gas loads and fluctuations in the rotational torque of the vortex. becomes. In addition, since the balance of gas load is the relative relationship between the first compression chamber (25a) and the second compression chamber (25b), both the first compression chamber (25a) and the second compression chamber (25b) The structure is such that the suction volume can be adjusted, and the suction volume adjustment position of the second compression chamber (25b) is set closer to the outer circumference of the spiral (the winding end side) than the suction volume adjustment position of the first compression chamber (25a). ).
[0132] 《その他の実施形態》 [0132] 《Other embodiments》
上記実施形態にっ 、ては、以下のような構成としてもょ 、。 The above embodiment may have the following configuration.
[0133] 上記各実施形態では、第 1圧縮室 (25a)と第 2圧縮室 (25b)には、吸入容積調整機 構 (30)を渦巻き (ラップ (21b, 22b) )の外周側一巻き範囲内の一箇所にのみ設けて いるが、複数箇所に設けてもよい。そうすると、圧縮機構 (20)の吸入容積を段階的に 調整することができるので、冷媒回路の運転条件に応じて、より細かい制御を行うこと が可能となる。 [0133] In each of the above embodiments, the suction volume adjustment mechanism (30) is installed in the first compression chamber (25a) and the second compression chamber (25b) by one turn on the outer circumferential side of the spiral (wrap (21b, 22b)). Although it is installed at only one location within the range, it may be installed at multiple locations. Then, the suction volume of the compression mechanism (20) will be increased in stages. Since it can be adjusted, it is possible to perform more detailed control according to the operating conditions of the refrigerant circuit.
[0134] また、本発明は、両歯タイプのスクロール圧縮機や、両方のスクロール部材が旋回 するタイプのスクロール圧縮機にも適用可能である。 [0134] The present invention is also applicable to a double-tooth type scroll compressor or a scroll compressor in which both scroll members rotate.
[0135] さらに、実施形態 1で説明した連通路 (32)の形状は、円形の段付き穴に限らず、適 宜設定した形状に変更してもよ 、。 [0135] Further, the shape of the communication passage (32) described in Embodiment 1 is not limited to the circular stepped hole, but may be changed to any shape set as appropriate.
[0136] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。 [0136] The above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its applications, or its uses.
産業上の利用可能性 Industrial applicability
[0137] 以上説明したように、本発明は、互いに嚙み合う 2つのスクロール部材の少なくとも 一方が偏心回転運動をするスクロール圧縮機の過圧縮防止構造について有用であ る。 [0137] As explained above, the present invention is useful for an overcompression prevention structure of a scroll compressor in which at least one of two scroll members that squeeze each other performs an eccentric rotational motion.

Claims

請求の範囲 The scope of the claims
[1] 互いに嚙み合う渦巻き状のラップ (21b, 22b)を鏡板 (21a, 22a)上に備えた 2つのス クロール部材 (21, 22)の少なくとも一方が偏心回転運動をする圧縮機構 (20)をケー シング(10)内に備えたスクロール圧縮機であって、 [1] A compression mechanism (20 ) in a casing (10),
第 1スクロール部材 (21)のラップ (21b)の内周面と第 2スクロール部材 (22)のラップ (22b)の外周面との間に構成される第 1圧縮室 (25a)と、第 1スクロール部材 (21)のラ ップ (21b)の外周面と第 2スクロール部材 (22)のラップ (22b)の内周面との間に構成 される第 2圧縮室 (25b)との少なくとも一方について、圧縮機構 (20)の吸入行程にお ける圧縮室 (25a, 25b)の吸入閉じ切り位置を調節することにより吸入容積を調整可 能な吸入容積調整機構 (30)を、渦巻きの外周側一巻き範囲内の少なくとも 1箇所に 備えて 、ることを特徴とするスクロール圧縮機。 A first compression chamber (25a) configured between the inner circumferential surface of the wrap (21b) of the first scroll member (21) and the outer circumferential surface of the wrap (22b) of the second scroll member (22); At least one side of the second compression chamber (25b) configured between the outer peripheral surface of the wrap (21b) of the scroll member (21) and the inner peripheral surface of the wrap (22b) of the second scroll member (22). Regarding the suction volume adjustment mechanism (30), the suction volume can be adjusted by adjusting the suction closed position of the compression chambers (25a, 25b) during the suction stroke of the compression mechanism (20). A scroll compressor characterized in that the scroll compressor is provided at at least one location within one winding range.
[2] 請求項 1において、 [2] In claim 1,
吸入容積調整機構 (30)は、第 1圧縮室 (25a)と第 2圧縮室 (25b)の両方で吸入閉じ 切り位置を調節可能な機構であることを特徴とするスクロール圧縮機。 A scroll compressor characterized in that the suction volume adjustment mechanism (30) is a mechanism that can adjust the suction closed position in both the first compression chamber (25a) and the second compression chamber (25b).
[3] 請求項 2において、 [3] In claim 2,
吸入容積調整機構 (30)は、第 1圧縮室 (25a)と第 2圧縮室 (25b)とを連通状態と遮 断状態とに切り換え可能な開閉機構 (31)により構成されていることを特徴とするスク ロール圧縮機。 The suction volume adjustment mechanism (30) is configured with an opening/closing mechanism (31) that can switch the first compression chamber (25a) and the second compression chamber (25b) between a communicating state and a blocking state. Scroll compressor.
[4] 請求項 1において、 [4] In claim 1,
吸入容積調整機構 (30)は、第 1圧縮室 (25a)と第 2圧縮室 (25b)の少なくとも一方 を、ケーシング (10)内に設けられている低圧空間(17)に対して連通状態と遮断状態 とに切り換え可能な開閉機構 (31)により構成されていることを特徴とするスクロール 圧縮機。 The suction volume adjustment mechanism (30) brings at least one of the first compression chamber (25a) and the second compression chamber (25b) into communication with the low pressure space (17) provided in the casing (10). A scroll compressor comprising an opening/closing mechanism (31) that can be switched between a cutoff state and a cutoff state.
[5] 請求項 1において、 [5] In claim 1,
吸入容積調整機構 (30)は、第 1スクロール部材 (21)のラップ (21b)と第 2スクロール 部材 (22)のラップ (22b)とが実質的に接触した状態で形成される第 1圧縮室 (25a)と 第 2圧縮室 (25b)の少なくとも一方について、その接触位置の内周側と外周側とを連 通状態と遮断状態とに切り換え可能な開閉機構 (31)により構成されていることを特徴 とするスクロール圧縮機。 The suction volume adjustment mechanism (30) has a first compression chamber formed when the wrap (21b) of the first scroll member (21) and the wrap (22b) of the second scroll member (22) are substantially in contact with each other. At least one of (25a) and the second compression chamber (25b) shall be constructed with an opening/closing mechanism (31) that can switch the inner and outer circumferential sides of the contact position between a communicating state and a blocking state. Features Scroll compressor.
[6] 請求項 3において、 [6] In claim 3,
開閉機構 (31)は、該開閉機構 (31)の連通状態におけるガスの流れを許容する連 通路 (32, 37)と、該連通路 (32, 37)を開放する開放位置と閉鎖する閉鎖位置とに移 動可能な閉鎖部材 (33)と、閉鎖部材 (33)を開放位置と閉鎖位置とに位置変化させ る開閉駆動機構 (34)とを備えて!/ヽることを特徴とするスクロール圧縮機。 The opening/closing mechanism (31) includes communication passages (32, 37) that allow gas to flow when the opening/closing mechanism (31) is in communication, and an open position where the communication passages (32, 37) are opened and a closed position where the communication passages (32, 37) are closed. A scroll characterized in that it is equipped with a closing member (33) that is movable and an opening/closing drive mechanism (34) that changes the position of the closing member (33) between an open position and a closed position. compressor.
[7] 請求項 6において、 [7] In claim 6,
開閉駆動機構 (34)は、閉鎖部材 (33)を開放位置に向力つて付勢する付勢部材 (3 5)と、閉鎖部材 (33)に付勢部材 (35)の付勢力に杭して高圧圧力を印加する状態と 該閉鎖部材 (33)に低圧圧力を印加する状態とを切り換える切換部材 (36)とを備えて V、ることを特徴とするスクロール圧縮機。 The opening/closing drive mechanism (34) includes a biasing member (35) that biases the closing member (33) toward the open position, and a biasing force of the biasing member (35) attached to the closing member (33). A scroll compressor comprising: a switching member (36) for switching between applying high pressure to the closing member (33) and applying low pressure to the closing member (33).
[8] 請求項 6において、 [8] In claim 6,
連通路 (32, 37)は、第 1スクロール部材 (21)または第 2スクロール部材 (22)の鏡板 (21a, 22a)に形成された穴(32)または溝 (37)により構成されていることを特徴とする スクロール圧縮機。 The communication path (32, 37) is constituted by a hole (32) or groove (37) formed in the end plate (21a, 22a) of the first scroll member (21) or the second scroll member (22). A scroll compressor featuring:
[9] 請求項 1において、 [9] In claim 1,
第 1スクロール部材 (21)及び第 2スクロール部材 (22)は、渦巻きの巻き数が相違す る非対称渦巻き構造に構成されていることを特徴とするスクロール圧縮機。 A scroll compressor characterized in that the first scroll member (21) and the second scroll member (22) have an asymmetric spiral structure in which the number of spiral turns is different.
[10] 請求項 9において、 [10] In claim 9,
吸入容積調整機構 (30)が、渦巻きの外周側一巻き範囲内の 1箇所のみに設けられ て 、ることを特徴とするスクロール圧縮機。 A scroll compressor characterized in that a suction volume adjustment mechanism (30) is provided at only one location within one turn on the outer circumferential side of a spiral.
[11] 請求項 2において、 [11] In claim 2,
第 1スクロール部材 (21)及び第 2スクロール部材 (22)は、渦巻きの巻き数が等しい 対称渦巻き構造に構成され、 The first scroll member (21) and the second scroll member (22) have a symmetrical spiral structure with an equal number of spiral turns,
吸入容積調整機構 (30)は、渦巻きの中心に対して対称の位置に設けられているこ とを特徴とするスクロール圧縮機。 A scroll compressor characterized in that the suction volume adjustment mechanism (30) is provided at a symmetrical position with respect to the center of the spiral.
[12] 請求項 1において、 [12] In claim 1,
圧縮機構 (20)は、ケーシング(10)に保持される第 1スクロール部材 (21)である固定 スクロール (21)と、該固定スクロール (21)に対して偏心回転運動をする第 2スクロー ル部材 (22)である可動スクロール (22)とを備え、 The compression mechanism (20) is a fixed member, which is a first scroll member (21) held in the casing (10). It comprises a scroll (21), and a movable scroll (22) that is a second scroll member (22) that rotates eccentrically relative to the fixed scroll (21),
ケーシング(10)内には、可動スクロール(22)の駆動源であって回転速度を可変に 調整することが可能な電動機 (45)が収納されて 、ることを特徴とするスクロール圧縮 機。 A scroll compressor characterized in that a casing (10) houses an electric motor (45) which is a driving source for a movable scroll (22) and whose rotational speed can be variably adjusted.
請求項 12において、 In claim 12,
電動機 (45)は、吸入容積調整機構 (30)により通常運転時よりも圧縮機構 (20)の吸 入容積を小さくする運転状態で、回転速度を通常運転時よりも速めるように構成され て 、ることを特徴とするスクロール圧縮機。 The electric motor (45) is configured to make the rotational speed faster than during normal operation in an operating state in which the suction volume adjustment mechanism (30) makes the suction volume of the compression mechanism (20) smaller than during normal operation. A scroll compressor characterized by:
PCT/JP2006/322120 2005-12-05 2006-11-06 Scroll compressor WO2007066463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005350938A JP2007154761A (en) 2005-12-05 2005-12-05 Scroll compressor
JP2005-350938 2005-12-05

Publications (1)

Publication Number Publication Date
WO2007066463A1 true WO2007066463A1 (en) 2007-06-14

Family

ID=38122614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322120 WO2007066463A1 (en) 2005-12-05 2006-11-06 Scroll compressor

Country Status (2)

Country Link
JP (1) JP2007154761A (en)
WO (1) WO2007066463A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030469A (en) 2007-07-25 2009-02-12 Daikin Ind Ltd Scroll compressor
WO2009155105A2 (en) 2008-05-30 2009-12-23 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
US7976295B2 (en) 2008-05-30 2011-07-12 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
US7967583B2 (en) 2008-05-30 2011-06-28 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
CN102588277B (en) 2008-05-30 2014-12-10 艾默生环境优化技术有限公司 Compressor having capacity modulation system
EP2307728B1 (en) 2008-05-30 2016-08-10 Emerson Climate Technologies, Inc. Compressor having output adjustment assembly including piston actuation
US7976296B2 (en) 2008-12-03 2011-07-12 Emerson Climate Technologies, Inc. Scroll compressor having capacity modulation system
JP4844642B2 (en) * 2009-03-12 2011-12-28 ダイキン工業株式会社 Scroll compressor
US7988433B2 (en) 2009-04-07 2011-08-02 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US8568118B2 (en) 2009-05-29 2013-10-29 Emerson Climate Technologies, Inc. Compressor having piston assembly
US8616014B2 (en) 2009-05-29 2013-12-31 Emerson Climate Technologies, Inc. Compressor having capacity modulation or fluid injection systems
US8517703B2 (en) 2010-02-23 2013-08-27 Emerson Climate Technologies, Inc. Compressor including valve assembly
KR101059880B1 (en) * 2011-03-09 2011-08-29 엘지전자 주식회사 Scroll compressor
US9651043B2 (en) 2012-11-15 2017-05-16 Emerson Climate Technologies, Inc. Compressor valve system and assembly
US9249802B2 (en) 2012-11-15 2016-02-02 Emerson Climate Technologies, Inc. Compressor
US9435340B2 (en) 2012-11-30 2016-09-06 Emerson Climate Technologies, Inc. Scroll compressor with variable volume ratio port in orbiting scroll
US9127677B2 (en) 2012-11-30 2015-09-08 Emerson Climate Technologies, Inc. Compressor with capacity modulation and variable volume ratio
US9739277B2 (en) 2014-05-15 2017-08-22 Emerson Climate Technologies, Inc. Capacity-modulated scroll compressor
US9989057B2 (en) 2014-06-03 2018-06-05 Emerson Climate Technologies, Inc. Variable volume ratio scroll compressor
US9790940B2 (en) 2015-03-19 2017-10-17 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10378540B2 (en) 2015-07-01 2019-08-13 Emerson Climate Technologies, Inc. Compressor with thermally-responsive modulation system
CN207377799U (en) 2015-10-29 2018-05-18 艾默生环境优化技术有限公司 Compressor
JP6206468B2 (en) * 2015-11-11 2017-10-04 ダイキン工業株式会社 Scroll compressor
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11656003B2 (en) 2019-03-11 2023-05-23 Emerson Climate Technologies, Inc. Climate-control system having valve assembly
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105583A (en) * 1980-11-03 1982-07-01 Trane Co Scroll type compressor
JPH0533786A (en) * 1991-07-26 1993-02-09 Toshiba Corp Scroll type compressor
JP2001165073A (en) * 1999-12-06 2001-06-19 Daikin Ind Ltd Scroll compressor and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105583A (en) * 1980-11-03 1982-07-01 Trane Co Scroll type compressor
JPH0533786A (en) * 1991-07-26 1993-02-09 Toshiba Corp Scroll type compressor
JP2001165073A (en) * 1999-12-06 2001-06-19 Daikin Ind Ltd Scroll compressor and air conditioner

Also Published As

Publication number Publication date
JP2007154761A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
WO2007066463A1 (en) Scroll compressor
KR101442548B1 (en) Scroll compressor
US9157438B2 (en) Scroll compressor with bypass hole
JP4341205B2 (en) Scroll compressor
JP4903826B2 (en) Scroll fluid machinery
JP2009030469A (en) Scroll compressor
JP2007170253A (en) Scroll compressor
WO2015040720A1 (en) Scroll compressor
KR20180083646A (en) Scroll compressor
KR20050095246A (en) Capacity changeable apparatus for scroll compressor
JP6503901B2 (en) Scroll compressor
JP2007154762A (en) Scroll compressor
KR20180085285A (en) Scroll compressor
KR101597556B1 (en) Scroll compressor
WO2021010099A1 (en) Scroll compressor
JP3764261B2 (en) Scroll compressor
JP4512479B2 (en) Scroll compressor
KR101368395B1 (en) Scroll compressor
WO2015083369A1 (en) Scroll compressor
WO2017081845A1 (en) Compressor
JP4844642B2 (en) Scroll compressor
JP2010150946A (en) Scroll compressor
WO2018051750A1 (en) Scroll compressor
JP6008516B2 (en) Scroll compressor
KR100305369B1 (en) Counter revolution interruption structure of a scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823033

Country of ref document: EP

Kind code of ref document: A1