WO2012114368A1 - 磁気歯車機構 - Google Patents

磁気歯車機構 Download PDF

Info

Publication number
WO2012114368A1
WO2012114368A1 PCT/JP2011/000933 JP2011000933W WO2012114368A1 WO 2012114368 A1 WO2012114368 A1 WO 2012114368A1 JP 2011000933 W JP2011000933 W JP 2011000933W WO 2012114368 A1 WO2012114368 A1 WO 2012114368A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnetic
rotor
gear mechanism
magnetic gear
Prior art date
Application number
PCT/JP2011/000933
Other languages
English (en)
French (fr)
Inventor
榎本 裕治
中津川 潤之介
則久 岩崎
北村 正司
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to US13/980,516 priority Critical patent/US9385581B2/en
Priority to PCT/JP2011/000933 priority patent/WO2012114368A1/ja
Priority to CN201180067220.0A priority patent/CN103370561B/zh
Priority to JP2013500661A priority patent/JP5526281B2/ja
Publication of WO2012114368A1 publication Critical patent/WO2012114368A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/106Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with a radial air gap

Definitions

  • the present invention relates to a magnetic gear mechanism that transmits torque without contact.
  • Motors and prime movers are used as power drive sources for industrial equipment, home appliances, automobiles, railways, and the like.
  • these power machines there are many examples in which the output torque and the rotational speed produced by the motor or the prime mover are decelerated by a mechanical gear and converted into the necessary torque and rotational speed.
  • using a high speed electric machine with a mechanical gearbox can achieve high system torque density, but requires lubrication and cooling.
  • reliability is an important issue.
  • a magnetic gear mechanism that is also disclosed in Non-Patent Document 1 or Non-Patent Document 2 has been studied by paying attention to this problem. This magnetic gear mechanism has less loss due to wear and heat generation than a mechanical gear mechanism, and can transmit a relatively large torque.
  • Non-Patent Document 2 a configuration in which the rotor structure of the magnetic gear mechanism is an embedded magnet type is disclosed, but this is one for preventing the torque transmission force from being reduced with respect to the surface magnet type.
  • this case there is a problem that the problem of generating eddy currents remains on the surface of the magnet close to the gap, rather than a structure that specializes in measures against eddy currents and greatly reduces losses.
  • an object of the present invention is to realize a magnetic gear mechanism that efficiently transmits torque.
  • the rotor has two rotors each having a permanent magnet having a plurality of poles, and a pole piece body having a plurality of poles made of a soft magnetic material between the rotors.
  • the rotor is composed of a laminated body of soft magnetic materials, a permanent magnet is disposed inside the soft magnetic material, and the permanent of the rotor The magnet may be arranged so as to be exposed on the surface facing the magnetic pole piece for modulating the magnetic flux and divided into a plurality of parts in the axial direction.
  • a magnetic gear mechanism that efficiently transmits torque can be realized.
  • FIG. 1 shows a cross-sectional view of a magnetic gear mechanism according to a first embodiment of the present invention.
  • the cross section structure of the axial direction center part of the rotor core of the magnetic gear mechanism in connection with the 1st Example of this invention is shown.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is an axial sectional view explaining the magnet arrangement
  • FIG. 5 shows a structure in which only the multipole side is embedded in the magnet holding state of the magnetic gear mechanism according to the second embodiment of the present invention, and the loss calculation result at that time. It shows a magnet holding state of the magnetic gear mechanism according to the third embodiment of the present invention, and shows an example of a configuration in which the magnet is divided in a slot in which the magnet is embedded, and a structure in which it is also divided into a shaft treasure. It is an example of the magnet holding
  • FIG. 1 shows a cross-sectional view of the magnetic gear mechanism of the present invention.
  • FIG. 2 shows an AA section which is the center of the magnetic coupling portion of the magnetic gear mechanism shown in FIG.
  • the housing that holds the rotor of the magnetic bearing mechanism includes a rear bracket 31, a housing 32, and a front bracket 33.
  • the shaft 21 protruding to the left side of the drawing is the shaft of the low speed side rotor.
  • the shaft 21 is structured to be supported on one side by bearings 24a and 24b disposed on the front bracket. However, the shaft runout is taken into consideration by setting the distance between the shafts of the bearings 24a and 24b to a certain distance.
  • the material of the low-speed side rotor is a non-magnetic metal and is composed of non-magnetic stainless steel, brass, copper, titanium, aluminum, or the like. This is to prevent leakage magnetic flux generated by the multipolar magnet from flowing through the rotor shaft.
  • the low-speed rotor shaft 21 has an outer rotor type rotor structure, and a rotor core 22 is held inside the cup type rotor. In the vicinity of the gap surface of the rotor core, there is a hole for inserting a magnet, and the magnet 23 is arranged in the hole.
  • the rotor core is made of an electromagnetic steel plate or a soft magnetic material such as a dust core, amorphous, or permendur.
  • a plurality of magnets are arranged in the circumferential direction, and the magnets are arranged so that the directions of the poles are adjacent to each other so that the inward direction (radial axis center direction) and the outward direction (radial axis center reverse direction) are alternated.
  • the circumferential direction portion of the hole into which the magnet is inserted is made as thin as possible with a thickness sufficient to maintain the strength of the rotor. This is for the purpose of minimizing the exchange of magnetic flux between adjacent magnets with different poles.
  • the number of low-speed rotor poles is 34 (17 pole pairs).
  • the axis 11 on the right side of the drawing is the axis of the high-speed rotor.
  • the shaft 11 is supported at both ends by bearings 14a and 14b.
  • a magnetic core 12 or a soft magnetic core 12 such as a dust core, amorphous, or permendur is fixed, and the surface of the rotor core of the soft magnetic body In the vicinity, there is a hole for inserting a magnet, and the magnet 13 is arranged in the hole.
  • a plurality of these magnets are arranged in the circumferential direction, and are arranged so that the inward and outward directions are alternated by magnets whose poles are adjacent to each other.
  • the circumferential direction portion of the hole into which the magnet is inserted is made as thin as possible with a thickness sufficient to maintain the strength of the rotor. This is for the purpose of minimizing the exchange of magnetic flux between adjacent magnets with different poles.
  • the number of high-speed rotor poles in this embodiment is 14 (7 pole pairs).
  • a magnetic pole piece for modulating magnetic flux is arranged between the high-speed rotor and the low-speed rotor.
  • 24 magnetic poles are arranged at a uniform pitch in the circumferential direction.
  • the pole piece 1 is made of a magnetic steel plate or a soft magnetic material such as a powder magnetic core, amorphous, or permendule so as to pass magnetic flux.
  • a thin steel plate is laminated in the axial direction in an electromagnetic steel plate or the like.
  • the pole piece 1 needs to match or shorten the axial lengths of the magnetic poles of the high speed side rotor and the low speed side rotor. The purpose of this is to prevent the magnetic flux of the magnet from spreading in the axial direction and reducing the gap magnetic flux density.
  • the magnetic pole piece body wrapped with the magnetic pole piece is fixed to the magnetic pole piece holding base 3 that holds the magnetic pole piece body, and the magnetic pole piece holding base 3 is supported by a bearing 4a so as to be rotatable with respect to the rear side bracket 31. , 4b.
  • the purpose of this is to change the gear ratio (speed ratio) for transmitting rotational torque by rotating the magnetic pole piece.
  • the gear ratio (speed ratio) of this magnetic gear is determined by the ratio of the number of pole pairs of the high speed side rotor and the low speed side rotor. In this embodiment, since the number of pole pairs on the high speed side is 7 and the number of pole pairs on the low speed side is 17, 2.43 obtained by dividing 17 by 7 is the gear ratio (speed ratio).
  • this gear ratio is a gear ratio when the magnetic pole piece is stationary, rotation of the magnetic pole piece causes the relative speeds of the high speed side and the magnetic pole piece body, and the magnetic pole piece body and the low speed side magnetic pole piece body.
  • the gear ratio can be changed continuously. Therefore, in this embodiment, a gear mechanism 37 is attached to the outer peripheral portion of the magnetic pole piece holding base 3 to which the magnetic pole piece body is fixed, and via a pinion gear disposed at the tip of the output shaft of the motor 35 fixed to the rear side bracket 31.
  • the pole piece holding base 3 is structured to be rotated with respect to the rear side bracket 31.
  • FIG. 3 shows examples of various magnet holding shapes and pole piece configurations.
  • FIG. 3A shows a general structure of a conventional magnetic gear.
  • the magnet of the magnetic coupling portion has a structure in which the magnet is exposed on the rotor surface. For this reason, harmonic magnetic flux flows from the surface of the magnet to the inside, and eddy current loss (heat) is generated inside the magnet. Since this eddy current flows in the direction of obstructing the magnetic flux, the effective magnetic flux is canceled and the efficiency is also lowered.
  • FIG. 3B shows the magnet arrangement structure of this example. Since the magnet is embedded in the soft magnetic material, it is called an embedded magnet type. In this structure, since the surface of the magnet does not protrude from the gap surface facing the pole piece, the harmonic magnetic flux generated on the gap surface is received by the magnetic pole surface of the soft magnetic material.
  • the iron core of the soft magnetic material has a structure in which electromagnetic steel sheets and amorphous layers are laminated in the axial direction, so that eddy current loss is not easily generated even for the harmonic magnetic flux.
  • the iron core is constituted by a dust core or the like, the eddy current loss with respect to the high-frequency magnetic flux can be made almost zero.
  • the structure of the pole pieces is also different in FIGS. 3 (a) and 3 (b). In FIG. 3A, the pole pieces are arranged at an equal pitch, and the space between them is made of a nonmagnetic and nonconductive material.
  • FIG. 3 (b) shows a shape that can be manufactured by a single press in consideration of manufacturing from an iron plate such as an electromagnetic steel plate. Manufacture is facilitated by providing a thin-walled bridge and punching a portion that does not become a pole piece as a gap. It is considered that the bridge can be made to be in the same state as the air gap by being saturated, but it is desirable to make the bridge as thin as possible so that the magnetic flux until saturation is realized can be reduced.
  • a feature of the present embodiment is that a 0.35 mm thick electrical steel sheet is thinned to about 70% of its thickness to about 0.3 mm.
  • FIG. 4 shows the results of calculating the eddy current loss in the configuration of FIG. 3 using FEA (Finite Element Analysis).
  • the rated rotation speed of AC servo motors used for industrial use is 3000 r / min. Therefore, the calculation was performed with the rotation speed on the output side (low speed side) set to 3000 r / min.
  • FIG. 3 shows the calculation of the eddy current loss when the low speed side is 3000 r / min and the rotation is performed in a phase relationship for transmitting the maximum torque.
  • the material of the magnet is a sintered rare earth magnet of NdFeB.
  • the residual magnetic flux density of the magnet is 1.25 T, and the specific resistance is 14.4 ⁇ m.
  • the total loss of the magnet and the pole piece is 1901 W, and the gear efficiency is reduced to 68%.
  • the total loss of the magnet and the pole piece is as low as 83 W, and a high gear efficiency of 96% can be obtained. In this way, by suppressing the eddy current loss inside the magnet and the magnetic pole piece, a magnetic gear structure (magnetic gear) capable of transmitting torque with very high efficiency can be realized.
  • FIG. 4 of the first embodiment it can be seen that the loss on the low speed side is much larger than the loss on the high speed side.
  • the surface magnet type means that a magnet is molded on the surface of the rotor. Therefore, it can be seen that the eddy current loss can be greatly reduced by embedding only the rotor on the high-speed side having a large loss, instead of embedding both the rotors.
  • FIG. 5 shows an example in which the high speed side magnet is a surface magnet type and the high speed side magnet is embedded. The eddy current loss calculation result of this structure is shown in FIG.
  • FIG. 6A shows an example in which the magnet is divided into a plurality of parts inside the magnet insertion slot.
  • FIG. 6B shows the axial direction.
  • the rotor of the magnetic gear is configured for the purpose of preventing eddy currents by dividing the magnet in the axial direction and the circumferential direction.
  • An example is shown in FIG. As described above, since the eddy current on the low speed side (multipole) side becomes large, it is necessary to make the division of the low speed side rotor finer than the division of the high speed side rotor.
  • Fig. 8 shows an example in which the rotor magnet is divided to the ultimate on the extension of the previous division.
  • a method is adopted in which the magnet is finely divided into a powder and molded. According to this method, since the magnet can form an eddy current loop only within the grain size, the eddy current can be made almost zero.
  • the magnet is formed using a mold capable of magnetic field orientation. An appropriate amount of magnet powder material 41 that has been reduced to a size of several tens of ⁇ m is prepared, filled into a mold (die) 43, and pressure is applied to the mold (punch) 44 to perform compression molding. To mold. At that time, by performing molding while applying current to the magnetic field orientation coil 42 arranged in the mold 43, the easy magnetization direction of the magnet can be accurately oriented in the direction of the magnetic field generated by passing the current. Can do.
  • a magnetic gear having almost no eddy current can be configured by assembling the magnet 13 or 23 created by such a method into a rotor.
  • the magnet material used in compression molding can obtain a high magnetic flux density even with NdFeB magnet powder or SmFeN powder. Since SmFeN has a higher electrical resistance than NdFeB, the effect of further reducing the eddy current can be obtained, and the effect of reducing the eddy current can be obtained even if it is molded with a larger particle size.
  • FIG. 9 shows the result of calculating the loss generated in the magnet having the shape shown in FIG. 3 (a) using the value of 350 ⁇ m, which is a measurement result of the specific resistance of the magnet formed of NdFeB powder.
  • the calculation condition assumes a case where the rotation speed is 3000 r / min and the rotation speed is in a phase relationship that transmits the maximum torque.
  • the eddy current loss generated in the magnet on the high speed side was almost zero, and the result was as low as 4 W even on the low speed side (multipolar side).
  • the gear efficiency is 99.1%, and almost no loss occurs in the gear portion.
  • the magnet (bonded magnet) manufactured by the above method has a problem that it is weak against heat and relatively weak in magnetic force.
  • the magnetic gear structure magnetic gear
  • the magnetic gear which is one of the torque transmission mechanisms as in the above embodiments, focuses on transmitting torque efficiently and does not require magnetic force as much as the motor. If the magnet manufactured by the above-mentioned method is used, the merit can be utilized to the maximum.
  • the magnetic gear as in the above-described embodiment is advantageous in using a bonded magnet because there is no mechanical contact and the heat generation action is low.
  • the magnetic gear mechanism according to the present embodiment is used in a wide range of applications having a mechanism for generating power using a motor or a prime mover and transmitting the power by increasing or decreasing the speed, such as home appliances, industry, automobiles, railways, robots, etc. Is available. Moreover, it can be applied to a power transmission mechanism connected to a generator that converts kinetic energy into electricity, such as wind power, hydraulic power, nuclear power, and thermal power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

 本発明は、磁気歯車構造において、磁石内部に発生する渦電流を低減し、効率よくトルクを伝達する磁気歯車を実現することを目的とする。 上記課題を解決するために、磁気歯車構造において、内側ロータ部に鉄心の内部に磁石を配置する構造にする。また、その磁石に例えばNdFeBの粉末で成型したボンド磁石を用いてもいい。極数の多い外側ロータ側の渦電流の影響が大きいため、極数の多い外側ロータ部だけの内部に磁石を配置する構造にしてもよい。また更に、埋め込む磁石を複数に分割してもよい。また、磁石の分割は、細かいほど渦電流が発生しにくくなるため、分割を更に細かくして組み立てを行う方法も有効である。電磁鋼板と同等の厚みを有する板状の磁石を軸方向に積層して構成することでも更に渦電流を低減可能である。

Description

磁気歯車機構
 本発明は非接触でトルクを伝達する磁気歯車機構に関するものである。
 産業用機器や家電品,自動車,鉄道などの動力駆動源にはモータや原動機が使用されている。これらの動力機械では、モータや原動機の出す出力トルクと回転数を機械式ギヤによって減速して必要なトルクと回転数に変換して使用している例が多い。しかし、機械式ギアボックスと一緒に高速電気機械を使用すると高いシステム・トルク密度を実現することができるが、潤滑および冷却を行う必要が生じる。さらに、信頼性も重要な問題である。この課題に着目して検討されたのが非特許文献1又は非特許文献2にも開示のある磁気歯車機構である。この磁気歯車機構は、機械的な歯車機構に比べ摩耗や発熱による損失も少なく、比較的大きなトルクを伝達することができる。
Journal of the Magnetics Society of Japan Vol.33, No.2, 2009「永久磁石式磁気ギアの効率向上に関する一考察」 :Journal of the Magnetics Society of Japan Vol.34, No.3, 2010「永久磁石式磁気ギアの回転子構造に関する検討」
 しかしながら、上記非特許文献1においては、磁気歯車機構において永久磁石を積み厚方向に分割するといった構成が開示されているが、あくまで計算上の値であり、分割された磁石のそれぞれには渦電流が発生し、損失となって発熱を引き起こすという問題は残されている。
 また、上記非特許文献2においては、磁気歯車機構の回転子構造を埋め込み磁石型にする構成が開示されているが、これについては、表面磁石型に対してトルク伝達力を低下させないための一つの事例であり、渦電流対策に特化して損失を大幅に削減する構造では無く、ギャップに近い磁石の表面には渦電流が発生する問題は残るという問題があった。
 そこで、本発明では、効率よくトルクを伝達する磁気歯車機構を実現することを目的とする。
 上記課題を解決するために、複数極の永久磁石を有する2つの回転子と、その回転子間に軟磁性材料で構成される複数極を有する磁極片体を有し、その磁極片によってそれぞれの磁石極数比の磁束を変調して回転を伝達する磁気歯車機構において、前記回転子を軟磁性材料の積層体で構成し、永久磁石を軟磁性材料の内部に配置し、前記回転子の永久磁石を、磁束を変調する磁極片体と対向する面に露出させて配置し、軸方向に複数に分割するように構成すればよい。
 本発明によれば、効率よくトルクを伝達する磁気歯車機構を実現することができる。
本発明の第一実施例に関わる磁気歯車機構の横断面図を示す。 本発明の第一実施例に関わる磁気歯車機構の回転子鉄心の軸方向中央部断面構造を示す。 本発明の第一実施例に関わる磁気歯車機構の磁石配置状態を説明する軸方向断面図であり、(a)図は従来の表面磁石構造を示し、(b)図は本発明の埋め込み型磁石構造を示す。 本発明の第一実施例である、埋め込み磁石構造と、従来構造の磁石と磁極片部の渦電流損失の計算結果の比較を示す。 本発明の第二実施例に関わる磁気歯車機構の磁石保持状態で、多極側のみを埋め込み型とした構造と、そのときの損失計算結果を示す。 本発明の第三実施例に関わる磁気歯車機構の磁石保持状態であり、磁石を埋め込むスロット内で分割する構成の例と、軸宝庫にも分割する構造を示す。 本発明の第四の実施例に関わる磁気歯車機構の磁石保持状態の例であり、表面磁石型とした場合に磁石分割により渦電流を低減する例を示す。 本発明の第五の実施例に関わる磁石分割構造の究極例として、磁石を粒状にまで細かく分割して組み立てを行う構造の例を示す。 本発明の第五の実施例である、磁石を粒状にして組み立てした場合の損失計算結果を示す。
 以下、本発明の実施例を図面を用いて説明する。
 以下、本発明の第1の実施例について図1と図2を用いて説明する。
 図1には、本発明の磁気歯車機構の横断面図を示している。また、図2は、図1で示す磁気歯車機構の磁気的結合部の中心であるA-A断面を示している。
 まず図1を中心に構成を説明する。磁気軸受け機構の回転子を保持する筺体は、リアブラケット31,ハウジング32,フロントブラケット33で構成される。
 図面左側に突出する軸21は、低速側回転子の軸である。この軸21は、フロントブラケットに配置される軸受け24a,24bによって片側に支持される構造になっている。ただし、軸受け24aと24bの軸間距離をある程度の距離とすることで、軸振れに対して考慮がなされている。低速側回転子の材質は、非磁性金属であり、非磁性ステンレス,真鍮,銅,チタン,アルミニウムなどで構成されるものとする。これは、多極磁石が作る漏れ磁束を回転子シャフトに流さないようにするためである。
 低速側回転子軸21は、アウターロータ型の回転子構造を持ち、カップ型の回転子の内側に回転子鉄心22が保持される。その回転子鉄心のギャップ表面付近には、磁石を挿入する孔を有し、その孔には磁石23が配置される構成となっている。
 このとき、回転子鉄心は、電磁鋼板、または、圧粉磁心,アモルファス,パーメンジュールなどの軟磁性体によって構成される。また、磁石は、周方向に複数個配置され、極の向きが隣合わせる磁石で内向き(径方向軸中心向き)と外向き(径方向軸中心逆向き)が交互になるように配置されている。軟磁性体鉄心の回転子表面形状は、磁石を挿入する孔の周方向部は回転子の強度を保つのに充分な厚みで極力薄く構成するものとする。これは、隣り合う極の異なる磁石間での磁束授受を極力少なくする目的である。本実施例の低速側回転子極数は34極(17極対)である。
 図面右側の軸11が高速側回転子の軸となる。軸11は、軸受け14a,14bにより両端支持される構造となっている。軸受けで支持された軸の中央には、電磁鋼板、または、圧粉磁心,アモルファス,パーメンジュールなどの軟磁性体の鉄心12が固定される構造であり、その軟磁性体の回転子鉄心表面付近には、磁石を挿入する孔を有し、その孔には磁石13が配置される構成となっている。この磁石は、周方向に複数個配置され、極の向きが隣合わせる磁石で内向きと外向きが交互になるように配置されている。軟磁性体鉄心の回転子表面形状は、磁石を挿入する孔の周方向部は回転子の強度を保つのに充分な厚みで極力薄く構成するものとする。これは、隣り合う極の異なる磁石間での磁束授受を極力少なくする目的である。本実施例の高速側回転子極数は14極(7極対)である。
 高速側回転子と低速側回転子の間には、磁束を変調するための磁極片を配置する。この例では、周方向に24個の磁極を均等ピッチで配置している。磁極片1の材質は、磁束を通すため、電磁鋼板、または、圧粉磁心,アモルファス,パーメンジュールなどの軟磁性材料で構成する。ただし、磁束による渦電流を防止する目的で、電磁鋼板などでは、薄い板を軸方向に積層して構成するものとする。また、磁極片1は、図1に図示するように、高速側回転子と低速側回転子の磁極の軸方向長さと一致させるか、短くする必要がある。これは、磁石の磁束を軸方向に広がらせてギャップ磁束密度を低下させることを防ぐことが目的である。
 また、電磁鋼板を軸方向に積層して作成した磁極片では、軸方向に磁束が作用することで、軟磁性材料の板の面方向に渦電流が発生して損失(熱)となるためである。このため、磁束を軸方向に広がらせることなく授受できるよう、回転子磁極と同一の軸方向長である必要がある。磁極片は、周方向には等ピッチに24個であり、その磁極片と磁極片の間は非磁性体でかつ非導電性の材料で構成する必要がある。本実施例では、磁極片の周囲および、磁極片間は高強度樹脂材料や、セラミックスで構成されるものとし、磁極片は、その部材2の中に包まれているものである。回転子とのギャップ寸法は小さいほど良いため、ギャップとの対抗面は非常に薄く構成することが必要である。
 この磁極片が包まれた磁極片体は、その磁極片体を保持する磁極片保持ベース3に固定され、その磁極片保持ベース3は、リア側ブラケット31に対して回転可能なように軸受け4a,4bによって支持される構造となっている。これは、磁極片体を回転させることによって、回転トルクを伝達するギヤ比(速度比)を変化させる目的である。本磁気歯車のギヤ比(速度比)は、高速側回転子と低速側回転子の極対数の比によって決定する。本実施例では、高速側の極対数が7、低速側の極対数が17であるため、17を7で除した2.43がギヤ比(速度比)となる。
 このギヤ比は、磁極片体が静止している時のギヤ比であるため、磁極片体が回転することによって高速側と磁極片体,磁極片体と低速側の磁極片体の相対速度が変化するためにギヤ比を連続的に変化させることができるものである。そこで、本実施例では、磁極片体を固定した磁極片保持ベース3の外周部に歯車機構37を取り付け、リア側ブラケット31に固定されたモータ35の出力軸先端に配置されたピニオンギヤを介して磁極片保持ベース3を、リア側ブラケット31に対して回転させられる構造としたのである。
 図3には、各種の磁石保持形状と、磁極片構成の例を示す。図3(a)では、従来の磁気歯車の一般的な構造を示す。磁気結合部の磁石は回転子表面に磁石が露出する構造である。このために、磁石の表面から内部に高調波磁束が流入し、磁石内部で渦電流損失(熱)を発生させる。この渦電流は、磁束を妨げる方向に流れるために、有効な磁束を打ち消し、効率も低下させることになる。
 図3(b)は、本実施例の磁石配置構造を示している。軟磁性材料の内部に磁石が埋め込まれる形になっているため、埋め込み磁石型と呼ぶことにする。この構造では、磁石の表面が磁極片と対抗するギャップ面に出ていないため、ギャップ面に発生する高調波磁束は、軟磁性材料の磁極表面で受けることになる。
 軟磁性材料の鉄心は、前述したとおり、電磁鋼板やアモルファスなどについては、軸方向に積層した構成とするため、その高調波磁束に対しても渦電流損失を発生しにくい構造となっている。また、圧粉磁心などで鉄心を構成する場合においては、高周波の磁束に対する渦電流損失はほとんどゼロにすることができる。磁極片の構造も、図3(a)と図3(b)で異なったものを示した。図3(a)では、磁極片が等ピッチで配置され、その間を非磁性かつ非導電性の材料で構成するものである。
 図3(b)は、電磁鋼板などの鉄板から製作することを考慮し、全体を一回のプレスで製作可能な形状を示している。薄肉のブリッジを設け、磁極片とならない部分を空隙として打ち抜く形で構成することで製造しやすくなる。ブリッジは、飽和することで空隙と変わらない状態にできると考えられるが、飽和を実現させるまでの磁束を少なくできるように、できるだけ薄く構成することが望ましい。0.35mmの厚みの電磁鋼板では、その厚みの7割程度0.3mm程度にまで薄く構成することを本実施例の特徴として挙げておく。
 図4は、図3の構成での渦電流損失をFEA(Finite Element Analysis)を用いて計算した結果を示す。産業用に使用されるACサーボモータなどの定格回転数は3000r/minが主流である。そこで、出力側(低速側)の回転数を3000r/minとして計算を行った。図3は低速側が3000r/minで、最大トルクを伝達する位相関係で回転しているときの渦電流損失を計算したものである。磁石の材質は、NdFeBの焼結希土類磁石である。磁石の残留磁束密度は1.25T、比抵抗は14.4μΩmとしている。このとき、図3(a)の構造では、磁石と磁極片の損失を足し合わせた損失が、1901Wとなり、ギヤ効率が68%と低下してしまう。本実施例の埋め込み型磁石構造、すなわち、図3(b)の構造では、磁石と磁極片の損失を足し合わせた損失は83Wと低く、ギヤ効率96%と高い効率を得ることができる。このように、磁石内部と磁極片部の渦電流損失を抑えることにより、非常に高い効率でトルク伝達が可能な磁気歯車構造(磁気ギア)を実現することができる。
 続いて、本発明の第2の実施例について図5を用いて説明する。
 第1の実施例の図4で示した表面磁石型の渦電流損失の計算結果を見ると、高速側の損失に比べると低速側の損失がはるかに大きいことがわかる。ここで、表面磁石型とは、回転子の表面に磁石が成型されていることをいう。従って、双方の回転子を埋め込み構造にするのではなく、損失の大きい高速側の回転子のみを埋め込み構造にすることで渦電流損失の低減は大きな効果が得られることがわかる。図5には、高速側の磁石を表面磁石型にして、高速側の磁石を埋め込み構造にした例を示している。この構造の渦電流損失計算結果を図5(b)に示す。高速側の損失は、両方を表面磁石型にした場合よりも低減し、低速側は大幅に低減できることがわかる。このように、少なくとも片方の回転子を埋め込み磁石構造とすることだけでも十分効率の高いギヤを得ることができる。
 続いて、本発明の第3の実施例について図6を用いて説明する。
 図4,図5に示した渦電流損失の計算結果では、本実施例の埋め込み磁石型にしても低速側(多極側)の渦電流損失はゼロにすることはできない結果となっていた。これは、高調波磁束が磁石内に存在することが原因である。そこで、さらに渦電流損失を低減するためには、磁石中を電流が流れにくくする必要がある。そこで、第3の実施例では、磁石を分割することによって磁石の内部の電流を細かく分けて磁石間に電流が流れないようにする構造を示す。図6(a)では、磁石挿入スロット内部で、磁石が複数個に分割されている例を示している。また、図6(b)は、軸方向についての図を示すが、軸方向にも磁石を分割することで、磁石の渦電流のループを小さくすることができるため、渦電流損失が大幅に低減できる。
 本発明の第4の実施例について図7を用いて説明する。
 磁石を細かく分割することで渦電流が流れにくい構造は、表面磁石型においても有効である。このため、図7に示すように、表面磁石型とした場合においても、磁石を軸方向,周方向に分割することによって渦電流を防止することを目的として、磁気歯車の回転子を構成する。図7にはその例を示している。先に示したとおり、低速側(多極)側の渦電流が大きくなるので、高速側回転子の分割よりも低速側回転子の分割を細かくする必要がある。
 本発明の第5の実施例について図8を用いて説明する。
 図8には回転子磁石を先の分割の延長上で究極まで分割した例を示す。磁石を粉末状にまで細かくし、成形する方法を採用する。この方法によれば、磁石は粒の大きさの中でしか渦電流ループを形成することができないので、渦電流は、ほとんどゼロにすることができる。磁石の成形は、磁場配向可能な金型を用いて行う。数十μmの大きさにまで細かくした磁石粉末材料41を適正量準備し、金型(ダイ)43内に充填し、金型(パンチ)44に圧力を加えて圧縮成形するなどの手段を用いて成形する。その際、金型43内に配置した、磁場配向用のコイル42に電流を通電しながら成形を行うことにより、磁石の磁化容易方向を、電流を流してつくる磁界の向きに精度良く配向させることができる。
 このような方法で作成した磁石13、または23を回転子に組み立てることにより渦電流のほとんど無い磁気歯車を構成することができる。
 圧縮成形で使用される磁石材料は、NdFeB磁石の粉末、またはSmFeNの粉末でも高い磁束密度が得られるものである。SmFeNはNdFeBに比べ、電気抵抗が高いので、さらに渦電流を低減する効果が得られるとともに、より大きな粒径で成形したものでも渦電流の低減効果が大きいなどの効果が得られるものである。
 図9は、NdFeBの粉末で成形した磁石の比抵抗の測定結果350μΩmという値を用いて、図3(a)に示す形状での磁石に発生する損失を計算した結果を示す。計算条件は、低速側の回転数が3000r/minで最大トルクを伝達する位相関係で回転している場合を想定している。その結果、高速側の磁石に発生する渦電流損失はほとんどゼロであり、低速側(多極側)でも、4Wと低い結果となった。このときのギヤ効率は、99.1%とギヤ部分での損失はほとんど発生しない状態になる。
 なお、上記のような方法で製造した磁石(ボンド磁石)は、熱に弱く磁力も比較的弱めという問題がある。上記実施例のようなトルク伝達機構の一つである磁気歯車構造(磁気ギア)は、モータとは異なり、トルクを効率よく伝達することに主眼を置いておりモータほど磁力を必要としないため、上述した方法で製造した磁石を用いればそのメリットを最大限に活用できる。上記実施例のような磁気ギアでは、機械式歯車構造とは異なり機械的な接触もなく発熱作用も低いということもあり、ボンド磁石を用いる上で都合がよい。
 本実施例による磁気歯車機構は、家電,産業,自動車,鉄道,ロボットなど、モータや原動機を用いて動力を発生し、それを増速,減速などして動力を伝達する機構を有する幅広い用途に利用可能である。また、風力,水力,原子力,火力など、運動エネルギーを電気に変換する発電機につながる動力伝達機構にも応用することが可能である。
1 磁極片
2 非磁性部材
3 磁極片保持ベース
4a,4b,14a,14b,24a,24b 軸受け
11 軸
12 鉄心
13,23 磁石
21 低速側回転子の軸
22 回転子鉄心
31 リアブラケット
32 ハウジング
33 フロントブラケット
34 ベアリング押え板
35 磁極片群駆動用モータ
36 ピニオンギヤ
37 平歯車
41 磁石粉末
42 配向制御用コイル
43 金型(ダイ)
44 金型(パンチ)
45 電源

Claims (4)

  1.  複数極の永久磁石を有する2つの回転子と、その回転子間に軟磁性材料で構成される複数極を有する磁極片体を有し、その磁極片によってそれぞれの磁石極数比の磁束を変調して回転を伝達する磁気歯車機構において、
     前記回転子を軟磁性材料の積層体で構成し、永久磁石を軟磁性材料の内部に配置し、
     前記回転子の永久磁石を、磁束を変調する磁極片体と対向する面に露出させて配置し、軸方向に複数に分割することを特徴とする磁気歯車機構。
  2.  請求項1記載の磁気歯車機構において、
     磁石の分割数は、多極側の磁石と少極側の磁石で異ならせ、多極側の磁石の分割数が多いことを特徴とする磁気歯車機構。
  3.  請求項1記載の磁気歯車機構において、
     磁極片は、電磁鋼板などの鉄板を積層して構成され、その形状は、周方向に一体として空隙部を孔としてくり抜いた形状として構成されることを特徴とする磁気歯車機構。
  4.  複数極の永久磁石を有する2つの回転子と、その回転子間に複数極を有する磁極片体を有した磁気歯車機構において、
     前記回転子の永久磁石を粉状にした状態にまで細かく分割し磁場配向させながら成形を行った磁石を用いて回転子として用いることを特徴とする磁気歯車機構。
PCT/JP2011/000933 2011-02-21 2011-02-21 磁気歯車機構 WO2012114368A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/980,516 US9385581B2 (en) 2011-02-21 2011-02-21 Magnetic gear mechanism
PCT/JP2011/000933 WO2012114368A1 (ja) 2011-02-21 2011-02-21 磁気歯車機構
CN201180067220.0A CN103370561B (zh) 2011-02-21 2011-02-21 磁齿轮机构
JP2013500661A JP5526281B2 (ja) 2011-02-21 2011-02-21 磁気歯車機構

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000933 WO2012114368A1 (ja) 2011-02-21 2011-02-21 磁気歯車機構

Publications (1)

Publication Number Publication Date
WO2012114368A1 true WO2012114368A1 (ja) 2012-08-30

Family

ID=46720197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000933 WO2012114368A1 (ja) 2011-02-21 2011-02-21 磁気歯車機構

Country Status (4)

Country Link
US (1) US9385581B2 (ja)
JP (1) JP5526281B2 (ja)
CN (1) CN103370561B (ja)
WO (1) WO2012114368A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109268A1 (ja) * 2013-01-11 2014-07-17 日立金属株式会社 磁気ギア装置
JP2014155253A (ja) * 2013-02-05 2014-08-25 Sanyo Denki Co Ltd 動力伝達装置
JP2016201996A (ja) * 2016-08-26 2016-12-01 セイコーエプソン株式会社 電気機械装置、及び、これを備える移動体およびロボット、並びに、変速装置
JP2017017984A (ja) * 2015-07-01 2017-01-19 グッドリッチ・アクチュエイション・システムズ・リミテッド 磁気歯車のための磁極片構造体
JP2018078777A (ja) * 2016-11-11 2018-05-17 株式会社プロスパイン 回転増速部を有する発電機
CN109560682A (zh) * 2019-01-25 2019-04-02 三峡大学 一种带有金属薄片的磁力齿轮装置
JP2021113566A (ja) * 2020-01-16 2021-08-05 三菱重工業株式会社 磁気ギヤード回転電機および製造方法。
JPWO2022030031A1 (ja) * 2020-08-03 2022-02-10
WO2022210237A1 (ja) * 2021-03-30 2022-10-06 三菱重工業株式会社 磁気ギアード回転機械、発電システム、および磁極片回転子
DE112021007284T5 (de) 2021-03-12 2024-01-04 Mitsubishi Electric Corporation Magnetgetriebe vom magnetflussmodulierten typ

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733387B1 (en) * 2011-07-15 2017-01-04 Hitachi Metals, Ltd. Magnetic gear device
WO2014147612A1 (en) 2013-03-19 2014-09-25 Vastech Holdings Ltd. A device and method for using a magnetic clutch in bldc motors
CN104221269B (zh) * 2012-03-27 2017-07-25 日立金属株式会社 频率转换装置
US10916999B2 (en) 2013-03-19 2021-02-09 Intellitech Pty Ltd Device and method for using a magnetic clutch in BLDC motors
WO2015136514A1 (en) * 2014-03-13 2015-09-17 Vastech Holdings Ltd. Magnetic clutch
CN104052241A (zh) * 2014-06-19 2014-09-17 诸暨和创磁电科技有限公司 永磁传动速度合成装置
DK3161321T3 (da) 2014-06-24 2019-06-24 Grundfos Holding As Magnetgear
CN204103738U (zh) * 2014-09-25 2015-01-14 刁俊起 一种固定磁隙的永磁调速器
JP6212472B2 (ja) * 2014-12-08 2017-10-11 マブチモーター株式会社 永久磁石の固定構造、モータ、および永久磁石の固定方法
CN104500691B (zh) * 2014-12-17 2017-01-25 大连理工大学 一种永磁齿轮变速箱
RU2579443C2 (ru) * 2015-03-20 2016-04-10 Рафаэль Наильевич Узяков Соосный магнитный редуктор-мультипликатор узякова
RU2579756C2 (ru) * 2015-04-13 2016-04-10 Рафаэль Наильевич Узяков Синхронный магнитный редуктор-мультипликатор узякова
CN105207448A (zh) * 2015-09-15 2015-12-30 南京艾凌节能技术有限公司 应用于空气预热***的永磁减速离合器及该空气预热***
RU2629003C2 (ru) * 2015-09-16 2017-08-24 Рафаэль Наильевич Узяков Синхронный реактивный магнитный редуктор-мультипликатор узякова
GB2544720A (en) 2015-10-15 2017-05-31 Vastech Holdings Ltd Electric motor
EP3261238B1 (en) * 2016-06-23 2020-08-12 Goodrich Actuation Systems Limited Magnetic gear
CN107959401A (zh) * 2017-12-12 2018-04-24 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) 一种海尔贝克阵列型永磁体磁齿轮
GB201722054D0 (en) 2017-12-28 2018-02-14 Vastech Holdings Ltd Electric Motor
KR102402603B1 (ko) * 2017-12-29 2022-05-26 에스엘 주식회사 액츄에이터 및 이를 포함하는 차량용 변속 장치
CN110115522B (zh) * 2018-02-06 2022-03-01 佛山市顺德区美的电热电器制造有限公司 磁力传动盘、磁传动组件、刀具组件和食物料理机
JP7259798B2 (ja) * 2020-04-17 2023-04-18 トヨタ自動車株式会社 アキシャルギャップモータ
CN112615518B (zh) * 2020-11-30 2022-02-08 珠海格力电器股份有限公司 磁齿轮及具有其的复合电机
KR20220080503A (ko) * 2020-12-07 2022-06-14 현대자동차주식회사 마그네틱 기어
CN115816857A (zh) * 2022-10-26 2023-03-21 中国航发北京航空材料研究院 一种磁性齿轮调制环制备方法
KR20240080107A (ko) * 2022-11-28 2024-06-05 한국전자기술연구원 마그네틱 커플링 및 그를 포함하는 마그네틱 펌프

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396849A (en) * 1980-05-02 1983-08-02 Nova Scotia Research Foundation Corporation Synchronous magnetic drive assembly with laminated barrier
JP2001054277A (ja) * 1999-08-09 2001-02-23 Isuzu Motors Ltd 渦電流減速装置の磁石とその製造方法
JP2007116885A (ja) * 2005-09-20 2007-05-10 Isuzu Motors Ltd 渦電流式減速装置
JP2009168101A (ja) * 2008-01-15 2009-07-30 Hitachi Ltd 磁気歯車装置
GB2457682A (en) * 2008-02-21 2009-08-26 Magnomatics Ltd Variable magnetic gears

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH568677A5 (ja) * 1972-10-12 1975-10-31 Sulzer Constr Mecan
JP2001275314A (ja) * 2000-03-24 2001-10-05 Seiko Precision Inc ロータ磁石およびモータおよびステッピングモータ
DE10361378B3 (de) * 2003-12-29 2005-09-22 Karl Schmidt Magnetkupplungsanordnung zur Übertragung eines Drehmomentes
JP4576363B2 (ja) * 2006-08-09 2010-11-04 本田技研工業株式会社 補機駆動装置
GB0800463D0 (en) * 2008-01-11 2008-02-20 Magnomatics Ltd Magnetic drive systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396849A (en) * 1980-05-02 1983-08-02 Nova Scotia Research Foundation Corporation Synchronous magnetic drive assembly with laminated barrier
JP2001054277A (ja) * 1999-08-09 2001-02-23 Isuzu Motors Ltd 渦電流減速装置の磁石とその製造方法
JP2007116885A (ja) * 2005-09-20 2007-05-10 Isuzu Motors Ltd 渦電流式減速装置
JP2009168101A (ja) * 2008-01-15 2009-07-30 Hitachi Ltd 磁気歯車装置
GB2457682A (en) * 2008-02-21 2009-08-26 Magnomatics Ltd Variable magnetic gears

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020598B2 (ja) * 2013-01-11 2016-11-02 日立金属株式会社 磁気ギア装置
WO2014109268A1 (ja) * 2013-01-11 2014-07-17 日立金属株式会社 磁気ギア装置
EP2763298A3 (en) * 2013-02-05 2017-05-17 Sanyo Denki Co., Ltd. Power transmission device
JP2014155253A (ja) * 2013-02-05 2014-08-25 Sanyo Denki Co Ltd 動力伝達装置
US10985642B2 (en) 2013-02-05 2021-04-20 Sanyo Denki Co., Ltd. Power transmission device
JP2017017984A (ja) * 2015-07-01 2017-01-19 グッドリッチ・アクチュエイション・システムズ・リミテッド 磁気歯車のための磁極片構造体
JP2016201996A (ja) * 2016-08-26 2016-12-01 セイコーエプソン株式会社 電気機械装置、及び、これを備える移動体およびロボット、並びに、変速装置
JP2018078777A (ja) * 2016-11-11 2018-05-17 株式会社プロスパイン 回転増速部を有する発電機
CN109560682A (zh) * 2019-01-25 2019-04-02 三峡大学 一种带有金属薄片的磁力齿轮装置
JP2021113566A (ja) * 2020-01-16 2021-08-05 三菱重工業株式会社 磁気ギヤード回転電機および製造方法。
JP7346312B2 (ja) 2020-01-16 2023-09-19 三菱重工業株式会社 磁気ギヤード回転電機および製造方法。
JPWO2022030031A1 (ja) * 2020-08-03 2022-02-10
WO2022030031A1 (ja) * 2020-08-03 2022-02-10 三菱電機株式会社 磁束変調型磁気歯車
JP7412568B2 (ja) 2020-08-03 2024-01-12 三菱電機株式会社 磁束変調型磁気歯車
DE112021007284T5 (de) 2021-03-12 2024-01-04 Mitsubishi Electric Corporation Magnetgetriebe vom magnetflussmodulierten typ
WO2022210237A1 (ja) * 2021-03-30 2022-10-06 三菱重工業株式会社 磁気ギアード回転機械、発電システム、および磁極片回転子

Also Published As

Publication number Publication date
CN103370561A (zh) 2013-10-23
US9385581B2 (en) 2016-07-05
JPWO2012114368A1 (ja) 2014-07-07
JP5526281B2 (ja) 2014-06-18
CN103370561B (zh) 2016-04-27
US20130320795A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5526281B2 (ja) 磁気歯車機構
US10700561B2 (en) Double-rotor flux-switching machine
CN101803157B (zh) 永磁旋转电机
US10873228B2 (en) Rotor of an electric machine
US9143025B2 (en) Magnetic gear mechanism including a plurality of rotors or stators
JP4692688B1 (ja) 回転電機、直動電機、および風力発電システム
CN106594072B (zh) 一种无推力盘径轴向一体化永磁偏置磁轴承
JP2012165620A (ja) 回転機
WO2016056294A1 (ja) アキシャルギャップ型回転電機およびその製造方法
CN113394936A (zh) 轴向磁通电机的磁体、极靴和槽开口
Uppalapati et al. A flux focusing ferrite magnetic gear
WO2019077983A1 (ja) アキシャルギャップ型回転電機
Zhang et al. Mechanical construction and analysis of an axial flux segmented armature torus machine
JP6655290B2 (ja) アキシャルギャップ型回転電機
JP2016518097A (ja) 磁束スイッチング変調磁極機械
JP2014195351A (ja) 永久磁石式回転電機
JP2013223370A (ja) 同期回転機
KR101938889B1 (ko) 모터와 알터네이터를 융합한 전동차용 인휠 시스템
CN102299599B (zh) 一种定子永磁体高速电机
JP2014099990A (ja) 回転電機
JP5609514B2 (ja) リングコイルモータ
JP2004304995A (ja) 励磁機、界磁機、およびそれを用いた電動機
JP2010259309A (ja) 電磁ユニット及びリングコイルモータ
JP2015039297A (ja) 回転機
JP7426569B1 (ja) 表面磁石型同期機、その回転子および回転子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180067220.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500661

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980516

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859301

Country of ref document: EP

Kind code of ref document: A1