WO2012111784A1 - Manufacturing method for organic photoelectric conversion element - Google Patents

Manufacturing method for organic photoelectric conversion element Download PDF

Info

Publication number
WO2012111784A1
WO2012111784A1 PCT/JP2012/053736 JP2012053736W WO2012111784A1 WO 2012111784 A1 WO2012111784 A1 WO 2012111784A1 JP 2012053736 W JP2012053736 W JP 2012053736W WO 2012111784 A1 WO2012111784 A1 WO 2012111784A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
different
solvent
substituted
Prior art date
Application number
PCT/JP2012/053736
Other languages
French (fr)
Japanese (ja)
Inventor
岳仁 加藤
吉村 研
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012111784A1 publication Critical patent/WO2012111784A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an organic photoelectric conversion element.
  • the organic photoelectric conversion element has advantages such as that the number of organic layers in the element can be reduced and the organic layer can be manufactured by a printing method, and can be manufactured easily and inexpensively compared to an inorganic photoelectric conversion element. it can. However, the fact that the photoelectric conversion efficiency of the organic photoelectric conversion element is not sufficient has hindered practical use.
  • Japanese Patent Application Laid-Open No. 2009-158734 describes an organic photoelectric conversion element having an active layer formed using a liquid containing P3HT and o-dichlorobenzene, which are high molecular compounds. Not enough.
  • the present invention provides a method for producing an organic photoelectric conversion element having high photoelectric conversion efficiency. That is, the present invention provides an organic photoelectric conversion device comprising a pair of electrodes and an active layer containing a polymer compound between the pair of electrodes, wherein the polymer compound has a structural unit represented by the formula (1).
  • Ar 1 and Ar 2 are the same or different and represent a trivalent aromatic group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and are a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy Group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, acyl group, acyloxy group, amide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group Represents a substituted silylamino group, a monovalent heterocyclic group, a heterocyclic oxy group, a heterocyclic thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group, or a cyano group.
  • n represents 1 or 2. When n is 2, two Z may
  • FIG. 1 is a diagram showing an example of a layer configuration of an organic photoelectric conversion element in the production method of the present invention.
  • FIG. 2 is a diagram showing another example of the layer configuration of the organic photoelectric conversion element in the production method of the present invention.
  • FIG. 3 is a diagram showing another example of the layer configuration of the organic photoelectric conversion element in the production method of the present invention.
  • 10 represents an organic photoelectric conversion element
  • 20 represents a substrate
  • 32 represents a first electrode
  • 34 represents a second electrode.
  • Reference numeral 40 denotes an active layer
  • 42 denotes a first active layer
  • 44 denotes a second active layer
  • 52 denotes a first intermediate layer
  • 54 denotes a second intermediate layer.
  • each member in the drawings shown in the following description may be different from the actual scale.
  • members, such as an electrode lead wire, also exist in an organic photoelectric conversion element description and illustration are abbreviate
  • one of the substrate thickness directions may be referred to as “upper” or “upper”, and the other of the substrate thickness directions may be referred to as “lower” or “lower”.
  • This vertical relation is set for convenience of explanation, and is not necessarily applied to the process and the situation where the organic photoelectric conversion element is actually manufactured.
  • the basic configuration of the organic photoelectric conversion element targeted by the production method of the present invention is a configuration having a pair of electrodes and an active layer.
  • At least one of the pair of electrodes is transparent or translucent.
  • the transparent or translucent electrode of the pair of electrodes is usually an anode.
  • the electrode that may not be transparent or translucent is usually a cathode.
  • the position of the active layer in the organic photoelectric conversion element is between the pair of electrodes.
  • the active layer may be a single layer or a plurality of layers. A layer other than the active layer may be provided between the pair of electrodes, and this layer may be referred to as an intermediate layer in this specification.
  • the active layer is a layer containing one or more organic compounds. At least one organic compound is a polymer compound containing a structural unit represented by the formula (1).
  • Examples of the organic compound include an electron donating compound (p-type semiconductor) and an electron accepting compound (n-type semiconductor).
  • the active layer may be a single layer or a laminate in which a plurality of layers are stacked.
  • the active layer is of a so-called pn heterojunction type in which a layer formed of an electron donating compound (electron donating layer) and a layer formed of an electron accepting compound (electron accepting layer) are superimposed.
  • Active layer Examples include a bulk heterojunction active layer in which an electron-donating compound and an electron-accepting compound are mixed to form a bulk heterojunction structure, and the active layer in the present invention may have any form.
  • the active layer includes a polymer compound containing the structural unit represented by the formula (1), a first solvent, and a second solvent different from the first solvent. Formed from.
  • the active layer is formed by applying a liquid containing a polymer compound containing the structural unit represented by the formula (1), a first solvent, and a second solvent different from the first solvent on one electrode. Preferably it is formed.
  • FIGS. 1 to 3 are diagrams showing examples of the layer structure of the organic photoelectric conversion element.
  • a stacked body in which an active layer 40 is sandwiched between a first electrode 32 and a second electrode 34 is mounted on the substrate 20 to constitute the organic photoelectric conversion element 10.
  • the substrate 20 is transparent or translucent.
  • At least one of the first electrode 32 and the second electrode 34 is transparent or translucent.
  • the first electrode 32 is transparent or translucent.
  • Which of the first electrode 32 and the second electrode 34 is an anode and which is a cathode is not particularly limited.
  • the organic photoelectric conversion element 10 when the organic photoelectric conversion element 10 is manufactured by sequentially laminating from the substrate 20 side, it is preferable that the vapor deposition is performed in a later process when the vapor deposition method is used for film formation of the cathode (for example, aluminum).
  • the cathode for example, aluminum
  • the first electrode 32 is an anode and the second electrode 34 is a cathode.
  • the substrate 20 and the first electrode 32 are formed to be transparent or translucent so that the light can be taken from the substrate 20 side. In the example of FIG.
  • the active layer 40 is composed of two layers, a first active layer 42 and a second active layer 44, and is a pn heterojunction type active layer.
  • One of the first active layer 42 and the second active layer 44 is an electron accepting layer, and the other layer is an electron donating layer.
  • a first intermediate layer 52 and a second intermediate layer 54 are provided.
  • the first intermediate layer 52 is located between the active layer 40 and the first electrode 32
  • the second intermediate layer 54 is located between the active layer 40 and the second electrode 34. Only one of the first intermediate layer 52 and the second intermediate layer 54 may be provided.
  • each intermediate layer is depicted as a single layer, but each intermediate layer may be composed of a plurality of layers.
  • the intermediate layer may have various functions.
  • the first intermediate layer 52 may be, for example, a hole transport layer, an electron blocking layer, a hole injection layer, and a layer having other functions.
  • the second electrode 34 is a cathode
  • the second intermediate layer 54 can be, for example, an electron transport layer, an electron block layer, and a layer having other functions.
  • the positions of the intermediate layers are also changed accordingly.
  • the electron donating compound and the electron accepting compound contained in the active layer are not particularly limited, and can be determined relatively from the energy level of the energy level of these compounds.
  • Ar 1 And Ar 2 examples of the trivalent aromatic group represented by the formula include an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group.
  • the structural unit represented by the formula (1) is Ar 1 And Ar 2 In the case of the aromatic hydrocarbon group that may be substituted with the trivalent aromatic group represented by the formula, for example, those having a skeleton such as the following condensed cyclic compounds, phenanthracene, carbazole, fluorene, etc. .
  • the structural unit represented by the formula (1) is Ar 1 And Ar 2 In the case of the aromatic heterocyclic group which may be substituted with the trivalent aromatic group represented by the formula, for example, those having the following structures are exemplified.
  • Examples of the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains.
  • a high molecular compound is mentioned.
  • oligothiophene and derivatives thereof, and a polymer compound containing the structural unit represented by the formula (1) are preferable, and poly (3-hexylthiophene) (P3HT) is preferable.
  • the polymer compound contained in the active layer is further represented by formulas (2-1) to (2-10) in addition to the structural unit represented by formula (1). It is preferable to have a structural unit.
  • the structural unit means a repeating unit constituting the polymer compound or a partial structure of the repeating unit.
  • R 21 ⁇ R 42 Each independently represents a hydrogen atom or a substituent.
  • R 21 ⁇ R 42 As the substituent represented by, for example, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, an alkylthio group which may have a substituent, Aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group, silyl group, substituted silyl group, acyl group, acyloxy group, Examples thereof include an amide group, a heterocyclic group, a carboxy group optionally having a substituent, a nitro group, and a cyano group.
  • R 21 , R 22 And R 35 Is preferably an alkyl group which may have a substituent, an alkoxy group which may have a substituent and an alkylthio group which may have a substituent, and an alkyl which may have a substituent.
  • An alkoxy group which may have a group and a substituent is more preferable, and an alkyl group which may have a substituent is more preferable.
  • R 21 , R 22 , R 35 , R 39 And R 42 Is preferably a branched alkyl group.
  • R 23 , R 24 , R 27 , R 28 , R 31 , R 32 , R 33 , R 34 , R 37 , R 38 , R 40 And R 41 Is preferably a halogen atom or a hydrogen atom, more preferably a fluorine atom or a hydrogen atom, and even more preferably a hydrogen atom.
  • R 25 , R 26 , R 29 And R 30 Is preferably a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an aryl group or an arylalkyl group, more preferably a hydrogen atom or an arylalkyl group.
  • R 36 Is preferably a hydrogen atom, a halogen atom, an acyl group or an acyloxy group, more preferably an acyl group or an acyloxy group.
  • X 21 ⁇ X 30 Each independently represents a sulfur atom, an oxygen atom or a selenium atom. From the viewpoint of increasing the short-circuit continuous density of the photoelectric conversion element having the organic layer containing the polymer compound of the present invention, a sulfur atom and an oxygen atom are preferable, and a sulfur atom is more preferable.
  • the polymer compound is represented by formula (2-1), formula (2-2), formula (2). -3) or a structural unit represented by the formula (2-10), the structural unit represented by the formula (2-1) position, the formula (2-2) or the formula (2-10) It is more preferable to have a structural unit represented by formula (2-1) or formula (2-10), and it is particularly preferable to have a structural unit represented by formula (2-10). . From the viewpoint of increasing the photoelectric conversion efficiency, a polymer compound containing a structural unit represented by the formula (2) in addition to the structural unit represented by the formula (1) is also preferable.
  • R 43 , R 44 And R 45 Are the same or different and each represents a hydrogen atom or a substituent.
  • W 1 And W 2 Are the same or different and each represents a cyano group, a monovalent organic group having a fluorine atom, a halogen atom or a hydrogen atom.
  • X 1 And X 2 Is preferably a nitrogen atom, and X 1 And X 2 Both are preferably nitrogen atoms.
  • W 1 And W 2 are the same or different and each represents a cyano group, a monovalent organic group having a fluorine atom, a halogen atom or a hydrogen atom.
  • the monovalent organic group having a fluorine atom include a fluorinated aryl group, a fluorinated alkyl group, a fluorinated alkylthio group, a fluorinated sulfonyl group, and a fluorinated acetyl group.
  • the fluorinated alkyl group include a fluoromethyl group.
  • Examples of the fluorinated aryl group include a fluorophenyl group.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • W 1 And W 2 Is preferably a fluorine atom.
  • R 46 , R 47 And R 48 are the same or different and each represents a hydrogen atom, a halogen atom or a substituent.
  • a substituent an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an acyl group, an acyloxy group, an amide group, an imide group , Imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl group, arylalkynyl Group, carboxyl group, and cyano group.
  • Y 1 Is preferably a sulfur atom or an oxygen atom.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the alkyl group may be linear, branched or cyclic. The alkyl group usually has 1 to 30 carbon atoms.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, n-pentyl group, isopentyl group, 2- Methylbutyl group, 1-methylbutyl group, n-hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3, 7-dimethyloctyl group, nonyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl group, eicosyl group and other chain alkyl groups
  • the alkoxy group may be linear, branched or cyclic.
  • the carbon number of the alkoxy group is usually 1-20.
  • Specific examples of the alkoxy group include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group Group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, and lauryloxy group.
  • substituted alkoxy group examples include trifluoromethoxy group and pentafluoroethoxy group.
  • Fluorinated alkoxy groups having 1 to 20 carbon atoms such as perfluorobutoxy group, perfluorohexyl group, perfluorooctyl group, methoxymethyloxy group and 2-methoxyethyloxy group.
  • the alkylthio group may be linear or branched, and may be a cycloalkylthio group.
  • Carbon number of the alkylthio group is usually 1 to 20, and specific examples of the alkylthio group include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, tert-butylthio group, pentylthio group, Examples include a hexylthio group, a cyclohexylthio group, a heptylthio group, an octylthio group, a 2-ethylhexylthio group, a nonylthio group, a decylthio group, a 3,7-dimethyloctylthio group, a laurylthio group, and a trifluoromethylthio group.
  • the aryl group usually has 6 to 60 carbon atoms.
  • Specific examples of the aryl group include a phenyl group, a C1 to C12 alkoxyphenyl group (C1 to C12 alkyl represents an alkyl having 1 to 12 carbon atoms, and the C1 to C12 alkyl is preferably a C1 to C8 alkyl. More preferably, C1 to C6 alkyl, C1 to C8 alkyl represents alkyl having 1 to 8 carbon atoms, and C1 to C6 alkyl represents alkyl having 1 to 6 carbon atoms.
  • C1 to C12 alkyl, C1 to C8 alkyl and C1 to C6 alkyl include those described and exemplified for the above alkyl group, the same applies to the following), C1 to C12 alkylphenyl group, 1- Examples thereof include a naphthyl group, a 2-naphthyl group, and a pentafluorophenyl group.
  • the aryloxy group usually has 6 to 60 carbon atoms.
  • the aryloxy group examples include a phenoxy group, a C1-C12 alkoxyphenoxy group, a C1-C12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenoxy group.
  • the arylthio group usually has 6 to 60 carbon atoms.
  • Specific examples of the arylthio group include a phenylthio group, a C1-C12 alkoxyphenylthio group, a C1-C12 alkylphenylthio group, a 1-naphthylthio group, and a 2-naphthylthio group.
  • the substituted arylthio group include And pentafluorophenylthio group.
  • the arylalkyl group usually has 7 to 60 carbon atoms.
  • Specific examples of the arylalkyl group include phenyl-C1-C12 alkyl group, C1-C12 alkoxyphenyl-C1-C12 alkyl group, C1-C12 alkylphenyl-C1-C12 alkyl group, and 1-naphthyl-C1-C12 alkyl group. 2-naphthyl-C1-C12 alkyl group.
  • the arylalkoxy group usually has 7 to 60 carbon atoms.
  • the arylalkoxy group examples include a phenyl-C1-C12 alkoxy group, a C1-C12 alkoxyphenyl-C1-C12 alkoxy group, a C1-C12 alkylphenyl-C1-C12 alkoxy group, and a 1-naphthyl-C1-C12 alkoxy group. , 2-naphthyl-C1 to C12 alkoxy groups.
  • the arylalkylthio group usually has 7 to 60 carbon atoms.
  • the arylalkylthio group examples include a phenyl-C1-C12 alkylthio group, a C1-C12 alkoxyphenyl-C1-C12 alkylthio group, a C1-C12 alkylphenyl-C1-C12 alkylthio group, and a 1-naphthyl-C1-C12 alkylthio group. 2-naphthyl-C1-C12 alkylthio group.
  • the acyl group usually has 2 to 20 carbon atoms.
  • the acyl group examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
  • the acyloxy group usually has 2 to 20 carbon atoms.
  • acyloxy group examples include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
  • the amide group usually has 1 to 20 carbon atoms.
  • An amide group refers to a group obtained by removing a hydrogen atom bonded to a nitrogen atom from an acid amide.
  • an imide group refers to a group obtained by removing a hydrogen atom bonded to a nitrogen atom from an acid imide.
  • the imide group include succinimide group and phthalimide group.
  • the substituted amino group usually has 1 to 40 carbon atoms.
  • the substituted amino group include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, tert -Butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, laurylamino group, Cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino
  • examples of the substituted silyl group include trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group, triphenylsilyl group, and tri-p-xylylsilyl group.
  • examples of the substituted silyloxy group include trimethylsilyloxy group, triethylsilyloxy group, tri-n-propylsilyloxy group, triisopropylsilyloxy group, tert-butyldimethylsilyloxy group, triphenylsilyloxy group, Examples thereof include a tri-p-xylylsilyloxy group, a tribenzylsilyloxy group, a diphenylmethylsilyloxy group, a tert-butyldiphenylsilyloxy group, and a dimethylphenylsilyloxy group.
  • examples of the substituted silylthio group include trimethylsilylthio group, triethylsilylthio group, tri-n-propylsilylthio group, triisopropylsilylthio group, tert-butyldimethylsilylthio group, triphenylsilylthio group, Examples thereof include a tri-p-xylylsilylthio group, a tribenzylsilylthio group, a diphenylmethylsilylthio group, a tert-butyldiphenylsilylthio group, and a dimethylphenylsilylthio group.
  • examples of the substituted silylamino group include trimethylsilylamino group, triethylsilylamino group, tri-n-propylsilylamino group, triisopropylsilylamino group, tert-butyldimethylsilylamino group, triphenylsilylamino group, Tri-p-xylylsilylamino group, tribenzylsilylamino group, diphenylmethylsilylamino group, tert-butyldiphenylsilylamino group, dimethylphenylsilylamino group, di (trimethylsilyl) amino group, di (triethylsilyl) amino group , Di (tri-n-propylsilyl) amino group, di (triisopropylsilyl) amino group, di (tert-butyldimethylsilyl) amino group, di (triphenylsilyl) amino group, di (tri-p-
  • the monovalent heterocyclic group includes furan, thiophene, pyrrole, pyrroline, pyrrolidine, oxazole, isoxazole, thiazole, isothiazole, imidazole, imidazoline, imidazolidine, pyrazole, pyrazoline, prazolidine, furazane, triazole, Thiadiazole, oxadiazole, tetrazole, pyran, pyridine, piperidine, thiopyran, pyridazine, pyrimidine, pyrazine, piperazine, morpholine, triazine, benzofuran, isobenzofuran, benzothiophene, indole, isoindole, indolizine, indoline, isoindoline, chromene , Chroman, isochroman, benzopyran, quinoline, isoquinoline, quinolidine, benzimi
  • the heterocyclic oxy group examples include a group represented by the formula (4) in which an oxygen atom is bonded to the monovalent heterocyclic group.
  • the heterocyclic thio group examples include a group represented by the formula (5) in which a sulfur atom is bonded to the monovalent heterocyclic group.
  • Ar 7 Represents a monovalent heterocyclic group.
  • the heterocyclic oxy group usually has 2 to 60 carbon atoms.
  • heterocyclic oxy group examples include thienyloxy group, C1-C12 alkylthienyloxy group, pyrrolyloxy group, furyloxy group, pyridyloxy group, C1-C12 alkylpyridyloxy group, imidazolyloxy group, pyrazolyloxy group, triazolyl group.
  • examples include a ruoxy group, an oxazolyloxy group, a thiazoleoxy group, and a thiadiazoleoxy group.
  • the heterocyclic thio group usually has 2 to 60 carbon atoms.
  • heterocyclic thio group examples include thienyl mercapto group, C1-C12 alkyl thienyl mercapto group, pyrrolyl mercapto group, furyl mercapto group, pyridyl mercapto group, C1-C12 alkyl pyridyl mercapto group, imidazolyl mercapto group, pyrazolyl mercapto group. , Triazolyl mercapto group, oxazolyl mercapto group, thiazole mercapto group and thiadiazole mercapto group.
  • the arylalkenyl group usually has 8 to 20 carbon atoms, and specific examples of the arylalkenyl group include a styryl group.
  • an arylalkynyl group usually has 8 to 20 carbon atoms, and specific examples of the arylalkynyl group include a phenylacetylenyl group.
  • a structural unit represented by Formula (2) a structural unit represented by Formula (2-11) and a structural unit represented by Formula (2-12) are preferable.
  • the polymer compound of the present invention may further contain a structural unit represented by the formula (2 ′) in addition to the structural unit represented by the formula (1).
  • Ar 3 Represents an arylene group different from the structural unit represented by Formula (1) or a heteroarylene group different from the structural unit represented by Formula (1).
  • the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a pyrenediyl group, and a fluorenediyl group.
  • the heteroarylene group include a flangyl group, a pyrrole diyl group, and a pyridinediyl group.
  • a preferred embodiment of the structural unit represented by the formula (1) is a group represented by the formula (3).
  • Ar 11 And Ar 21 Are the same or different and each represents a trivalent heterocyclic group.
  • R 4 , R 5 , R 6 , R 7 , R 8 And R 9 are the same or different, hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group Amide group, imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, An arylalkenyl group, an arylalkynyl group, a carboxyl group or a cyano group is represented.
  • R 50 And R 51 are the same or different and are a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, acyl group, acyloxy group, amide Group, imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl Represents a group, an arylalkynyl group, a carboxyl group or a cyano group.
  • Ar 11 And Ar 21 are the same or different and each represents a trivalent heterocyclic group.
  • a trivalent heterocyclic group refers to the remaining atomic group obtained by removing three hydrogen atoms from a heterocyclic compound.
  • a heterocyclic compound is an organic compound having a cyclic structure in which the elements constituting the ring include not only carbon atoms but also heteroatoms such as oxygen, sulfur, nitrogen, phosphorus and boron in the ring. Refers to a compound.
  • R ′ is the same or different and is a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, aryl.
  • An alkoxy group, an arylalkylthio group, a substituted amino group, an acyloxy group, an amide group, an arylalkenyl group, an arylalkynyl group, a monovalent heterocyclic group, or a cyano group is represented.
  • R ′′ is the same or different and represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, a substituted silyl group, an acyl group, or a monovalent heterocyclic group.
  • Ar 11 And Ar 21 Is preferably a group obtained by removing three hydrogen atoms from a thiophene ring, and more preferably a group obtained by removing three hydrogen atoms from a thiophene ring.
  • the trivalent heterocyclic group is preferably a heterocyclic group containing a sulfur atom, more preferably a group represented by the formula (268) or the formula (273). And more preferably a group represented by the formula (273).
  • R 50 And R 51 are preferably the same or different, and are an alkyl group having 6 or more carbon atoms, an alkoxy group having 6 or more carbon atoms, an alkylthio group having 6 or more carbon atoms, an aryl group having 6 or more carbon atoms, or an aryl having 6 or more carbon atoms Oxy group, arylthio group having 6 or more carbon atoms, arylalkyl group having 7 or more carbon atoms, arylalkoxy group having 7 or more carbon atoms, arylalkylthio group having 7 or more carbon atoms, acyl group having 6 or more carbon atoms, or 6 or more carbon atoms More preferably an alkyl group having 6 or more carbon atoms, an alkoxy group having 6 or more carbon atoms, an aryl group having 6 or more carbon atoms, or an aryloxy group having 6 or more carbon atoms, particularly preferably 6 carbon atoms.
  • polymer compound having the structural unit represented by the formula (1) polymer compound A is exemplified.
  • the high molecular compound A has the following repeating unit.
  • n represents the number of repeating units.
  • the polymer compound containing the structural unit represented by the formula (1) may be contained in the active layer as an electron donating compound or may be contained in the active layer as an electron accepting compound. It is preferable that it is contained in the active layer as a functional compound.
  • the electron-donating compound in addition to the polymer compound containing the structural unit represented by the formula (1), for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinyl Carbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amine residues in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythieny Examples include lenvylene and derivatives thereof.
  • the electron donating compound may be used alone in the active layer, or two or more types may be used in combination in the active layer.
  • the electron-accepting compound include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, Diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, C 60 And the like, and phenanthrene derivatives such as bathocuproine, metal oxides such as titanium oxide, and carbon nanotubes.
  • fullerene derivatives As the electron-accepting compound, titanium oxide, carbon nanotubes, fullerenes, and fullerene derivatives are preferable, and fullerenes and fullerene derivatives are particularly preferable.
  • the fullerene derivative represents a compound in which at least a part of fullerene is modified. Examples of fullerenes include C60 fullerene, C70 fullerene, C76 fullerene, C78 fullerene, C84 fullerene and the like. Examples of the fullerene derivative include a compound represented by the formula (6), a compound represented by the formula (7), a compound represented by the formula (8), and a compound represented by the formula (9).
  • R a Is a group having an alkyl group, an aryl group, a heteroaryl group or an ester structure. Multiple R a May be the same or different.
  • R b Represents an alkyl group or an aryl group. Multiple R b May be the same or different.
  • R a Examples of the group having an ester structure represented by the formula (10) include a group represented by the formula (10). (Wherein u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, R c Represents an alkyl group, an aryl group or a heteroaryl group.
  • heteroaryl group examples include a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
  • fullerenes and fullerene derivatives are C 60 , C 70 , C 76 , C 78 , C 84 And derivatives thereof.
  • C 60 Fullerene derivative, C 70 Examples of fullerene derivatives include the following compounds.
  • fullerene derivatives include [5,6] -phenyl C61 butyric acid methyl ester ([5,6] -PCBM), [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6).
  • the ratio of the fullerene derivative in the active layer is preferably 10 to 1000 parts by weight, and 20 to 500 parts by weight with respect to 100 parts by weight of the electron donating compound. More preferred are parts by weight.
  • the electron-accepting compound one kind of compound may be used for the active layer, or two or more kinds of compounds may be used in combination for the active layer.
  • the active layer is formed from a liquid containing a polymer compound containing the structural unit represented by the formula (1), a first solvent, and a second solvent different from the first solvent. It is formed. Examples of the first solvent and the second solvent include water and organic solvents.
  • the organic solvent examples include unsaturated carbonization such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, and tert-butylbenzene.
  • Halogenated saturated hydrocarbon solvents such as hydrogen solvent, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane (especially chlorinated saturated hydrocarbons) Solvent), halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene (especially chlorinated unsaturated hydrocarbon solvents), ethers such as tetrahydrofuran, tetrahydropyran and diphenyl ether Solvents.
  • Halogenated saturated hydrocarbon solvents such as hydrogen solvent, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopen
  • the first solvent is preferably a halogenated unsaturated hydrocarbon solvent, more preferably an aromatic chlorine compound, and more preferably dichlorobenzene from the viewpoint of the solubility of the polymer compound containing the structural unit represented by the formula (1).
  • the second solvent is a solvent different from the first solvent.
  • unsaturated solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, etc.
  • Halogenated saturated hydrocarbon solvents such as hydrocarbon solvents, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane (especially chlorinated saturated carbonization) Hydrogen solvents), halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene (especially chlorinated unsaturated hydrocarbon solvents), ether solvents such as tetrahydrofuran, tetrahydropyran and diphenyl ether.
  • hydrocarbon solvents such as hydrocarbon solvents, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopent
  • the second solvent is preferably an aliphatic chlorine compound, tetralin, or diphenyl ether, more preferably an aliphatic chlorine compound, still more preferably chloroform or dichloromethane, and particularly preferably chloroform.
  • the second solvent is 0.001 wt% to 99.999 wt% with respect to the weight of the first solvent. It is preferable to mix in the range, and it is more preferable to mix in the range of 0.01 wt% to 99.99 wt%.
  • One of the first solvent and the second solvent may be a solvent in which the polymer compound containing the structural unit represented by the formula (1) has low solubility.
  • the addition amount of the polymer compound containing the structural unit represented by the formula (1) to the solvent is not particularly limited, and an optimal range can be appropriately selected.
  • the weight of the first solvent and the second amount It is 0.1% by weight or more, preferably 0.3% by weight or more, and more preferably 0.5% by weight or more with respect to the total amount of the solvent.
  • a liquid containing a polymer compound containing a repeating unit represented by formula (1), a first solvent, and a second solvent different from the first solvent is represented by an electron-accepting compound and formula (1).
  • the amount of the electron-donating compound and the amount of the electron-accepting compound in the liquid is usually 0.2 wt% or more, % By weight or less, preferably 0.5% by weight or more and 10% by weight or less, more preferably 1% by weight or more and 5% by weight or less.
  • the compounding ratio of the electron donating compound and the electron accepting compound is usually 1 to 20:20 to 1, preferably 1 to 10:10 to 1, and more preferably 1 to 5: 5 to 1. It is.
  • the electron-donating compound or the electron-accepting compound is usually 0.4% by weight or more, preferably 0.6% by weight in the solution. % Or more, more preferably 2% by weight or more.
  • an active layer is formed by applying a liquid containing a polymer compound, a first solvent, and a second solvent different from the first solvent on one electrode. Forming and forming the other electrode on the active layer.
  • spin coating method for coating, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing, flexographic printing Method, offset printing method, ink jet printing method, dispenser printing method, nozzle coating method, capillary coating method and the like are used.
  • the spin coating method, flexographic printing method, gravure printing method, ink jet printing method, and dispenser printing method are preferable, and the spin coating method is more preferable.
  • an organic photoelectric conversion element having an active layer of a bulk heterojunction type for example, after subjecting a solution containing both an electron-donating compound and an electron-accepting compound to two or more ultrasonic treatments at different frequencies, The active solution can be formed by applying the later solution onto the electrode or intermediate layer and evaporating the solvent.
  • an organic photoelectric conversion element having an active layer of pn heterojunction for example, a solution containing an electron donating compound and a solution containing an electron accepting compound are mixed at least twice with different frequencies. After being subjected to sonication, a solution containing the electron-donating compound after treatment is applied onto the electrode, and the solvent is volatilized to form an electron-donating layer.
  • an active layer having a two-layer structure can be formed.
  • the order of forming the electron donating layer and the electron accepting layer may be reversed.
  • the thickness of the active layer is usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and still more preferably 20 nm to 200 nm.
  • the substrate may be any substrate that does not chemically change when the electrode is formed and the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode (that is, the electrode farther from the substrate of the pair of electrodes) is preferably transparent or translucent.
  • the electrode material constituting the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, it is manufactured using indium oxide, zinc oxide, tin oxide, and conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), and NESA that are composites thereof.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • NESA NESA that are composites thereof.
  • a film made of a conductive material made of ITO, indium / zinc / oxide, tin oxide or the like is preferable, and a metal thin film such as gold, platinum, silver, or copper is used.
  • Examples of the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
  • the electrode paired with the transparent or translucent electrode may be transparent or translucent, but may be transparent or not translucent.
  • a metal, a conductive polymer, or the like can be used as an electrode material constituting the electrode.
  • the electrode material include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like.
  • the alloy examples include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • alkali metal or alkaline earth metal halide or oxide such as lithium fluoride (LiF)
  • inorganic semiconductor fine particles such as titanium oxide, metal alkoxide, PEDOT (poly (3,4) ethylene) Dioxythiophene) is exemplified.
  • the intermediate layer on the anode side is preferably a layer made of PEDOT.
  • the intermediate layer on the cathode side is a layer made of alkali metal halide (more preferably LiF), a titania thin film layer made of titanium isopropoxide is preferred, a layer made of lithium fluoride (LiF), titanium isopropoxide
  • a thin film layer of titania formed from is more preferable.
  • the organic photoelectric conversion element manufactured by the manufacturing method of the present invention is operated as an organic thin film solar cell by generating a photovoltaic power between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. be able to. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • the organic thin film solar cell can basically have the same module structure as a conventional solar cell module.
  • the solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side.
  • a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known.
  • the module structure of the organic thin film solar cell of the present invention can be appropriately selected depending on the purpose of use, the place of use and the environment.
  • a typical super straight type or substrate type module cells are arranged at regular intervals between support substrates that are transparent on one or both sides and treated with antireflection, and adjacent cells are connected by metal leads or flexible wiring.
  • the current collector electrode is connected to the outer edge portion, and the generated power is taken out to the outside.
  • Various types of plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency.
  • EVA ethylene vinyl acetate
  • the surface protective layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin. It is possible to eliminate the supporting substrate on one side.
  • the periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and a sealing material is hermetically sealed between the support substrate and the frame.
  • a solar cell can be formed on the curved surface.
  • a solar cell using a flexible support such as a polymer film
  • cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material.
  • the battery body can be produced.
  • a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 may be used.
  • a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
  • Synthesis example 1 (Synthesis of Compound 1) A 1000 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 13.0 g (80.0 mmol) of 3-bromothiophene and 80 mL of diethyl ether to obtain a uniform solution. While maintaining the solution at ⁇ 78 ° C., 31 mL (80.6 mmol) of 2.6M n-butyllithium (n-BuLi) in hexane was added dropwise. After reacting at ⁇ 78 ° C.
  • reaction solution was cooled to ⁇ 25 ° C., and a solution in which 60 g (236 mmol) of iodine was dissolved in 1000 mL of diethyl ether was added dropwise over 30 minutes. After dropping, the mixture was stirred at room temperature (25 ° C.) for 2 hours, and 50 mL of 1N aqueous sodium thiosulfate solution was added to stop the reaction. After extracting the reaction product with diethyl ether, the reaction product was dried with magnesium sulfate, filtered, and the filtrate was concentrated to obtain 35 g of a crude product. The crude product was purified by recrystallization using chloroform to obtain 28 g of Compound 1.
  • NBS N-bromosuccinimide
  • the flask was kept at 0 ° C., and 2.31 g (1.30 mmol) of N-bromosuccinimide (hereinafter sometimes referred to as NBS) was added over 15 minutes. Then, it stirred at 0 degreeC for 2 hours, the depositing solid was filtered and collect
  • NBS N-bromosuccinimide
  • the filtrate was concentrated to recover the precipitated solid.
  • the obtained solid is referred to as crude product 4-B.
  • the crude product 4-A and the crude product 4-B were combined and purified by silica gel column chromatography where the developing solvent was chloroform to obtain 17.3 g of compound 4. The operation so far was performed several times.
  • Synthesis of Compound 5 A homogeneous solution was prepared by adding 25.0 g (71.4 mmol) of Compound 4, 250 mL of chloroform, and 160 mL of trifluoroacetic acid to a 1000 mL four-necked flask equipped with a mechanical stirrer and replacing the gas in the flask with argon. .
  • the reaction solution was warmed to room temperature (25 ° C.), 1000 mL of THF was distilled off with an evaporator, and 100 mL of acetic acid was added.
  • the reactive organism was extracted with chloroform, and then the chloroform solution was dried over sodium sulfate. After the chloroform solution was filtered, the solvent of the filtrate was distilled off with an evaporator. The obtained solid was washed with hexane and dried under reduced pressure to obtain 10.9 g of Compound 6.
  • the solution was kept at ⁇ 78 ° C., and 4.37 mL (11.4 mmol) of a 2.6M n-butyllithium hexane solution was added dropwise to the solution over 10 minutes. After the addition, the reaction solution was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 2 hours. Thereafter, the flask was cooled to ⁇ 78 ° C., and 4.07 g (12.5 mmol) of tributyltin chloride was added. After the addition, the mixture was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 3 hours.
  • Synthesis Example 2 (Synthesis of Compound 10) In a 500 ml flask, 10.5 g (70.8 mmol) of 4,5-difluoro-1,2-diaminobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) and 150 mL of pyridine were added to obtain a homogeneous solution. While maintaining the flask at 0 ° C., 16.0 g (134 mmol) of thionyl chloride was dropped into the flask. After dropping, the flask was warmed to 25 ° C. and reacted for 6 hours. Thereafter, 250 ml of water was added, and the reaction product was extracted with chloroform.
  • the obtained solution was poured into 300 mL of 5 wt% aqueous sodium sulfite solution and stirred for 1 hour.
  • the organic layer of the obtained mixture was separated with a separatory funnel, and the aqueous layer was extracted with chloroform three times.
  • the obtained extract was combined with the organic layer separated earlier and dried over sodium sulfate. After filtration, the filtrate was concentrated with an evaporator and the solvent was distilled off.
  • the obtained yellow solid was dissolved in 90 mL of methanol heated to 55 ° C., and then cooled to 25 ° C. The precipitated crystals were collected by filtration and then dried under reduced pressure at room temperature (25 ° C.) to obtain 1.50 g of compound 11.
  • the precipitated polymer was collected by filtration, and the obtained polymer was put into a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours each using a Soxhlet extractor.
  • the polymer remaining in the cylindrical filter paper was dissolved in 100 mL of toluene, 2 g of sodium diethyldithiocarbamate and 40 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removing the aqueous layer, the organic layer is washed twice with 50 ml of water, then twice with 50 mL of a 3 wt% aqueous acetic acid solution, then twice with 50 mL of water and then with 5% fluoride.
  • polymer compound A This was washed twice with 50 mL of an aqueous potassium chloride solution and then twice with 50 mL of water, and the resulting solution was poured into methanol to precipitate a polymer.
  • the polymer was filtered and dried, and the obtained polymer was dissolved again in 50 mL of o-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and dried to obtain 185 mg of a purified polymer.
  • this polymer is referred to as polymer compound A.
  • the high molecular compound A has the following repeating unit. In the formula, n represents the number of repeating units.
  • Example 1 preparation of an organic photoelectric conversion element
  • a glass substrate on which ITO with a thickness of about 150 nm formed by sputtering was patterned was washed with an organic solvent, an alkaline detergent, and ultrapure water, and dried.
  • the glass substrate was subjected to ultraviolet ozone (UV-O 3 ) treatment using an ultraviolet ozone (UV-O 3 ) apparatus.
  • a suspension of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid dissolved in water (HC Starck B-Tech, Bytron P TP AI 4083) was filtered through a filter having a pore size of 0.5 ⁇ m.
  • the suspension after filtration was spin-coated on the ITO side of the substrate to form a film with a thickness of 70 nm. Subsequently, it was dried on the hot plate at 200 ° C. for 10 minutes in the air to form an organic layer. Next, orthodichlorobenzene (SP value: 20.72 (J / cm 3 ) 1/2 , boiling point: 183 ° C.) and chloroform (SP value: 18.81 (J / cm 3 ) 1/2 , boiling point: 61 2 ° C.) was mixed at a weight ratio of 85:15 to prepare a mixed solution.
  • polymer compound A and [6,6] -phenyl C71-butyric acid methyl ester are added to the mixed solution so that the weight ratio is 1: 2. This was added to prepare a coating solvent.
  • the polymer compound A was added so that the amount added was 0.5% by weight with respect to the weight of the mixed solvent.
  • the polymer compound A had a polystyrene equivalent weight average molecular weight of 29000 and a polystyrene equivalent number average molecular weight of 14,000.
  • the light absorption edge wavelength of the polymer compound A was 890 nm.
  • a stirrer chip was introduced into the coating solution, and stirring and mixing were performed at a rotation speed of 300 rpm to 1000 rpm.
  • the stirring and mixing was performed on a hot stirrer with a temperature variable function, and the set temperature was set to 70 ° C.
  • the coating solution was filtered with a filter having a pore size of 0.5 ⁇ m, and the obtained filtrate was spin-coated on the organic layer, followed by drying in a nitrogen atmosphere to form an active layer.
  • LiF was formed to a thickness of about 2.3 nm on the active layer, and subsequently Al was formed to a thickness of about 70 nm to form an electrode.
  • Comparative Example 1 (Production of organic photoelectric conversion element) An organic photoelectric conversion device was produced in the same manner as in Example 1 except that orthodichlorobenzene was used as a coating solvent in place of the mixed solution of orthodichlorobenzene and chloroform. (Evaluation of photoelectric conversion efficiency) The shape of the organic thin film solar cell which is the organic photoelectric conversion element obtained in Example 1 and Comparative Example 1 was a square of 2 mm ⁇ 2 mm.
  • an organic photoelectric conversion element having excellent photoelectric conversion efficiency can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

A manufacturing method for an organic photoelectric conversion element equipped with a pair of electrodes, with an active layer containing a polymer compound between the pair of electrodes, said polymer compound having a structural unit represented in formula (1). An active layer formed from a solution containing the polymer compound, a first solvent, and a second solvent different from the first solvent, whereby an organic photoelectric conversion element that exhibits excellent photoelectric conversion efficiency can be manufactured. (1) (In the formula, Ar1 and Ar2 are the same or different, and represent a trivalent aromatic group. Z represents -O-,-S-,-C(=O)-,-CR1R2-,-S(=O)-,-SO2-,-Si(R3)(R4)-,-N(R5)-,-B(R6)-,-P(R7)- or -P(=O)(R8)-. R1, R2, R3, R4, R5, R6, R7 and R8 are the same or different, and represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an acyl group, an acyloxy group, an amide group, an imide group, an imino group, an amino group, a substituted amino group, a substituted silyl group, a substituted silyloxy group, a substituted silylthio group, a substituted silylamino group, a monovalent heterocyclic group, a heterocyclic oxy group, a heterocyclic thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group or a cyano group. n represents 1 or 2. When n is 2, the two Zs may be the same or different.)

Description

有機光電変換素子の製造方法Manufacturing method of organic photoelectric conversion element
 本発明は有機光電変換素子の製造方法に関する。 The present invention relates to a method for producing an organic photoelectric conversion element.
 有機光電変換素子は、素子中の有機層の層数を低減できること、有機層を印刷法で製造できることなどの利点を有し、無機光電変換素子と比較して、簡便かつ安価に製造することができる。しかしながら、有機光電変換素子の光電変換効率が十分でないことが、実用化の妨げになっていた。
 特開2009−158734号公報には、高分子化合物であるP3HTとo−ジクロロベンゼンとを含む液を用いて形成した活性層を有する有機光電変換素子が記載されているものの、その光電変換効率は十分ではない。
The organic photoelectric conversion element has advantages such as that the number of organic layers in the element can be reduced and the organic layer can be manufactured by a printing method, and can be manufactured easily and inexpensively compared to an inorganic photoelectric conversion element. it can. However, the fact that the photoelectric conversion efficiency of the organic photoelectric conversion element is not sufficient has hindered practical use.
Japanese Patent Application Laid-Open No. 2009-158734 describes an organic photoelectric conversion element having an active layer formed using a liquid containing P3HT and o-dichlorobenzene, which are high molecular compounds. Not enough.
 本発明は、高い光電変換効率を有する有機光電変換素子の製造方法を提供する。
 即ち、本発明は、一対の電極と、一対の電極の間に高分子化合物を含む活性層とを備え、高分子化合物が式(1)で表される構造単位を有する有機光電変換素子の製造方法であって、活性層を、高分子化合物、第1の溶媒、及び第1の溶媒とは異なる第2の溶媒を含む液から形成させる有機光電変換素子の製造方法を提供する。
Figure JPOXMLDOC01-appb-I000009
式中、Ar及びArは、同一又は相異なり、3価の芳香族基を表す。Zは、−O−、−S−、−C(=O)−、−CR−、−S(=O)−、−SO−、−Si(R)(R)−、−N(R)−、−B(R)−、−P(R)−又は−P(=O)(R)−を表す。R、R、R、R、R、R、R及びRは、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。nは1又は2を表す。nが2の場合、2つのZは同一でも異なっていてもよい。
The present invention provides a method for producing an organic photoelectric conversion element having high photoelectric conversion efficiency.
That is, the present invention provides an organic photoelectric conversion device comprising a pair of electrodes and an active layer containing a polymer compound between the pair of electrodes, wherein the polymer compound has a structural unit represented by the formula (1). A method for producing an organic photoelectric conversion element, wherein the active layer is formed from a liquid containing a polymer compound, a first solvent, and a second solvent different from the first solvent.
Figure JPOXMLDOC01-appb-I000009
In the formula, Ar 1 and Ar 2 are the same or different and represent a trivalent aromatic group. Z represents —O—, —S—, —C (═O) —, —CR 1 R 2 —, —S (═O) —, —SO 2 —, —Si (R 3 ) (R 4 ) —. , -N (R 5) -, - B (R 6) -, - P (R 7) - or -P (= O) (R 8 ) - represents a. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and are a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy Group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, acyl group, acyloxy group, amide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group Represents a substituted silylamino group, a monovalent heterocyclic group, a heterocyclic oxy group, a heterocyclic thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group, or a cyano group. n represents 1 or 2. When n is 2, two Z may be the same or different.
 図1は、本発明の製造方法における有機光電変換素子の層構成の一例を示す図である。図2は、本発明の製造方法における有機光電変換素子の層構成の他の一例を示す図である。図3は、本発明の製造方法における有機光電変換素子の層構成の他の一例を示す図である。
 10は有機光電変換素子、20は基板、32は第1電極、34は第2電極を表す。40は活性層、42は第1活性層、44は第2活性層、52は第1中間層、54は第2中間層を表す。
FIG. 1 is a diagram showing an example of a layer configuration of an organic photoelectric conversion element in the production method of the present invention. FIG. 2 is a diagram showing another example of the layer configuration of the organic photoelectric conversion element in the production method of the present invention. FIG. 3 is a diagram showing another example of the layer configuration of the organic photoelectric conversion element in the production method of the present invention.
10 represents an organic photoelectric conversion element, 20 represents a substrate, 32 represents a first electrode, and 34 represents a second electrode. Reference numeral 40 denotes an active layer, 42 denotes a first active layer, 44 denotes a second active layer, 52 denotes a first intermediate layer, and 54 denotes a second intermediate layer.
 以下の説明において示す図面における各部材の縮尺は、実際と異なる場合がある。また、有機光電変換素子には電極のリード線などの部材も存在するが、本発明の説明として直接的に関係はないために記載および図示を省略している。また、以下の説明において、基板の厚み方向の一方を「上方」又は「上」といい、基板の厚み方向の他方を「下方」又は「下」という場合がある。この上下関係は説明の便宜上設定したもので、必ずしも実際に有機光電変換素子が製造される工程および使用される状況に適用されるものではない。
 本発明の製造方法が対象とする有機光電変換素子の基本的な構成は、一対の電極と活性層とを有する構成である。一対の電極のうち少なくとも一方は透明又は半透明である。有機光電変換素子において、一対の電極のうち透明又は半透明な電極は、通常は陽極である。また、一対の電極のうち、透明又は半透明でなくてもよい電極は通常は陰極である。有機光電変換素子における活性層の位置は、一対の電極の間である。活性層は1層であってもよいが、複数層であってもよい。また、一対の電極の間に活性層以外の層が設けられてもよく、この層を本明細書においては中間層と称する場合がある。
 活性層は、1種以上の有機化合物を含む層である。少なくとも1種の有機化合物は、式(1)で表される構造単位を含有する高分子化合物である。有機化合物としては、電子供与性化合物(p型半導体)と電子受容性化合物(n型半導体)が例示される。活性層は、単層であっても、複数の層が重ね合わされた積層体であってもよい。活性層の形態としては、電子供与性化合物で形成された層(電子供与性層)と電子受容性化合物で形成された層(電子受容性層)とが重ね合わされた、いわゆるpnヘテロ接合型の活性層;電子供与性化合物と電子受容性化合物とが混合して、バルクヘテロジャンクション構造を形成したバルクヘテロ接合型の活性層等が例示され、本発明における活性層はいずれの形態であってもよい。
 本発明に係る有機光電変換素子において、活性層は式(1)で表される構造単位を含有する高分子化合物と第1の溶媒と第1の溶媒とは異なる第2の溶媒とを含む液から形成される。活性層は、式(1)で表される構造単位を含有する高分子化合物と第1の溶媒と第1の溶媒とは異なる第2の溶媒とを含む液を一方の電極上に塗布して形成されることが好ましい。
 有機光電変換素子の層構成の例について、図1~図3を参照しつつ説明する。図1~図3はそれぞれ、有機光電変換素子の層構成の例を示す図である。以下、図1について説明した後、図2について図1と異なる点のみ説明し、図3について、図1及び図2と異なる点のみ説明する。
 図1の例では、第1電極32及び第2電極34の間に活性層40が狭持された積層体が基板20に搭載されて、有機光電変換素子10を構成する。基板20側から採光する場合には、基板20は透明又は半透明である。
 第1電極32及び第2電極34のうち少なくとも一方は透明又は半透明である。基板20側から採光する場合は、第1電極32が透明又は半透明である。
 第1電極32及び第2電極34のうちいずれが陽極でありいずれが陰極であるかは、特に限定されない。例えば、基板20側から順次積層して有機光電変換素子10を製造する場合、陰極(例えば、アルミニウムなど)の成膜に蒸着法を用いるとすると、蒸着はより後の工程である方が好ましい場合がある。よって、この例の場合は、第1電極32が陽極であり、第2電極34が陰極であることが好ましい。また、この例の場合は、アルミニウム電極は、厚みの設定によっては透明又は半透明にするのが困難な場合がある。よって、基板20側から採光し得るようにするため、基板20及び第1電極32が透明又は半透明に形成されることが好ましい。
 図2の例では、活性層40は、第1活性層42及び第2活性層44の2つの層で構成されており、pnヘテロ接合型の活性層である。第1活性層42および第2活性層44のうちの一方の層が電子受容性層であり、他方の層が電子供与性層である。
 図3の例では、第1中間層52と第2中間層54が設けられている。第1中間層52は活性層40と第1電極32との間に、第2中間層54は活性層40と第2電極34との間に、それぞれ位置する。第1中間層52と第2中間層54は、いずれか一方のみを設けるものであってもよい。また、図3では各中間層を単層として描いているが、各中間層は複数の層により構成してもよい。
 中間層はさまざまな機能を有していてもよい。第1電極32が陽極である場合を想定すると、第1中間層52は、例えば、正孔輸送層、電子ブロック層、正孔注入層およびその他の機能を有する層であり得る。この場合、第2電極34は陰極であり、第2中間層54は、例えば電子輸送層、電子ブロック層およびその他の機能を有する層であり得る。反対に、第1電極32を陰極とし、第2電極34を陽極とした場合、これに応じて中間層もそれぞれ位置が入れ替わることになる。
 活性層に含まれる電子供与性化合物、電子受容性化合物は、特に限定されず、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定され得る。
 式(1)において、Ar及びArで表される3価の芳香族基は、置換されていてもよい芳香族炭化水素基及び置換されていてもよい芳香族複素環基が挙げられる。
 式(1)で表される構造単位は、Ar及びArで表される3価の芳香族基が置換されていてもよい芳香族炭化水素基の場合、例えば、以下の縮合環式化合物、フェナントラセン、カルバゾール、フルオレンなどの骨格を有するものが挙げられる。
Figure JPOXMLDOC01-appb-I000010
 式(1)で表される構造単位は、Ar及びArで表される3価の芳香族基が置換されていてもよい芳香族複素環基の場合、例えば、以下の構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-I000011
 電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、式(1)で表される構造単位を含有する高分子化合物が挙げられる。これらのうち、オリゴチオフェン及びその誘導体、式(1)で表される構造単位を含有する高分子化合物が好ましく、ポリ(3−ヘキシルチオフェン)(P3HT)が好ましい。光電変換効率を向上させる観点から、活性層中に含まれる高分子化合物は、式(1)で表される構造単位に加えて、更に式(2−1)~(2−10)で表される構造単位を有することが好ましい。本発明において、構造単位とは高分子化合物を構成する繰り返し単位、又は繰り返し単位の部分構造を意味する。
Figure JPOXMLDOC01-appb-I000012
 式(2−1)~式(2−10)中、R21~R42は、それぞれ独立に、水素原子又は置換基を表す。R21~R42で表される置換基としては、例えば、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、アシル基、アシルオキシ基、アミド基、複素環基、置換基を有していてもよいカルボキシ基、ニトロ基及びシアノ基が挙げられる。
 R21、R22、及びR35は、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基及び置換基を有していてもよいアルキルチオ基が好ましく、置換基を有していてもよいアルキル基及び置換基を有していてもよいアルコキシ基がより好ましく、置換基を有していてもよいアルキル基がさらに好ましい。本発明の高分子化合物の溶解性を高める観点からは、R21、R22、R35、R39およびR42は、分岐状のアルキル基が好ましい。
 R23、R24、R27、R28、R31、R32、R33、R34、R37、R38、R40及びR41は、ハロゲン原子及び水素原子が好ましく、フッ素原子及び水素原子がより好ましく、水素原子がさらに好ましい。
 R25、R26、R29及びR30は、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、アリール基及びアリールアルキル基が好ましく、水素原子及びアリールアルキル基がより好ましい。
 R36は、水素原子、ハロゲン原子、アシル基及びアシルオキシ基が好ましく、アシル基及びアシルオキシ基がより好ましい。
 式(2−1)~式(2−10)中、X21~X30は、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。本発明の高分子化合物を含有する有機層を有する光電変換素子の短絡連流密度を高める観点からは、硫黄原子及び酸素原子が好ましく、硫黄原子がより好ましい。
 本発明の高分子化合物を含有する有機層を有する光電変換素子の短絡連流密度を高める観点からは、該高分子化合物が、式(2−1)、式(2−2)、式(2−3)又は式(2−10)で表される構造単位を有することが好ましく、式(2−1)位、式(2−2)又は式(2−10)で表される構造単位を有することがより好ましく、式(2−1)又は式(2−10)で表される構造単位を有することがさらに好ましく、式(2−10)で表される構造単位を有することが特に好ましい。
 光電変換効率を高める観点から、式(1)で表される構造単位に加えて、更に式(2)で表される構造単位を含む高分子化合物も好ましい。
Figure JPOXMLDOC01-appb-I000013
式中、X及びXは、同一又は相異なり、窒素原子又は=CH−を表す。Yは、硫黄原子、酸素原子、セレン原子、−N(R43)−又は−CR44=CR45−を表す。R43、R44及びR45は、同一又は相異なり、水素原子又は置換基を表す。W及びWは、同一又は相異なり、シアノ基、フッ素原子を有する1価の有機基、ハロゲン原子又は水素原子を表す。
 式(2)において、X及びXは、同一又は相異なり、窒素原子又は=CH−を表す。X及びXの少なくとも一方が窒素原子であることが好ましく、X及びXの両方が窒素原子であることが好ましい。
 式(2)において、W及びWは、同一又は相異なり、シアノ基、フッ素原子を有する1価の有機基、ハロゲン原子又は水素原子を表す。ここで、フッ素原子を有する1価の有機基としては、フッ素化アリール基、フッ素化アルキル基、フッ素化アルキルチオ基、フッ素化スルホニル基、フッ素化アセチル基などが挙げられる。フッ素化アルキル基としては、フルオロメチル基等が挙げられる。フッ素化アリール基としては、フルオロフェニル基等が挙げられる。ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。
 式(2)で表される構造単位を含有する高分子化合物の吸収強度及び溶解性の観点からは、W及びWは、フッ素原子が好ましい。
 式(2)において、Yは、硫黄原子、酸素原子、セレン原子、−N(R46)−又は−CR47=CR48−を表す。R46、R47及びR48は、同一又は相異なり、水素原子、ハロゲン原子又は置換基を表す。ここで、置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基、シアノ基が挙げられる。
 式(1)で表される構造単位を含有する高分子化合物の吸収強度及び溶解性の観点からは、Yは、硫黄原子、酸素原子が好ましい。
 本発明において、ハロゲン原子は、フッ素原子、塩素原子、臭素原子、及びヨウ素原子である。
 本発明において、アルキル基は、直鎖状でも分岐状でもよく、環状であってもよい。アルキル基の炭素数は、通常1~30である。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル墓、n−ペンチル基、イソペンチル基、2−メチルブチル基、1−メチルブチル基、n−ヘキシル基、イソヘキシル基、3−メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基が挙げられる。
 本発明において、アルコキシ基は、直鎖状でも分岐状でもよく、環状であってもよい。アルコキシ基の炭素数は、通常1~20である。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基が挙げられ、置換されたアルコキシ基の具体例としては、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシル基、パーフルオロオクチル基、メトキシメチルオキシ基、2−メトキシエチルオキシ基などの炭素数が1~20のフッ素化アルコキシ基が挙げられる。
 本発明において、アルキルチオ基は、直鎖状でも分岐状でもよく、シクロアルキルチオ基であってもよい。アルキルチオ基の炭素数は、通常1~20であり、アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、tert−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基、ラウリルチオ基、トリフルオロメチルチオ基が挙げられる。
 本発明において、アリール基は、その炭素数が通常6~60である。アリール基の具体例としては、フェニル基、C1~C12アルコキシフェニル基(C1~C12アルキルは、炭素数1~12のアルキルであることを示す。C1~C12アルキルは、好ましくはC1~C8アルキルであり、より好ましくはC1~C6アルキルである。C1~C8アルキルは、炭素数1~8のアルキルであることを示し、C1~C6アルキルは、炭素数1~6のアルキルであることを示す。C1~C12アルキル、C1~C8アルキル及びC1~C6アルキルの具体例としては、上記アルキル基で説明し例示したものが挙げられる。以下も同様である。)、C1~C12アルキルフェニル基、1−ナフチル基、2−ナフチル基、ペンタフルオロフェニル基が挙げられる。
 本発明において、アリールオキシ基は、その炭素数が通常6~60である。アリールオキシ基の具体例としては、フェノキシ基、C1~C12アルコキシフェノキシ基、C1~C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェノキシ基が挙げられる。
 本発明において、アリールチオ基は、その炭素数が通常6~60である。アリールチオ基の具体例としては、フェニルチオ基、C1~C12アルコキシフェニルチオ基、C1~C12アルキルフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基が挙げられ、置換されたアリールチオ基の具体例としては、ペンタフルオロフェニルチオ基が挙げられる。
 本発明において、アリールアルキル基は、その炭素数が通常7~60である。アリールアルキル基の具体例としては、フェニル−C1~C12アルキル基、C1~C12アルコキシフェニル−C1~C12アルキル基、C1~C12アルキルフェニル−C1~C12アルキル基、1−ナフチル−C1~C12アルキル基、2−ナフチル−C1~C12アルキル基が挙げられる。
 本発明において、アリールアルコキシ基は、その炭素数が通常7~60である。アリールアルコキシ基の具体例としては、フェニル−C1~C12アルコキシ基、C1~C12アルコキシフェニル−C1~C12アルコキシ基、C1~C12アルキルフェニル−C1~C12アルコキシ基、1−ナフチル−C1~C12アルコキシ基、2−ナフチル−C1~C12アルコキシ基が挙げられる。
 本発明において、アリールアルキルチオ基は、その炭素数が通常7~60である。アリールアルキルチオ基の具体例としては、フェニル−C1~C12アルキルチオ基、C1~C12アルコキシフェニル−C1~C12アルキルチオ基、C1~C12アルキルフェニル−C1~C12アルキルチオ基、1−ナフチル−C1~C12アルキルチオ基、2−ナフチル−C1~C12アルキルチオ基が挙げられる。
 本発明において、アシル基は、その炭素数が通常2~20である。アシル基の具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基が挙げられる。
 本発明において、アシルオキシ基は、その炭素数が通常2~20である。アシルオキシ基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基が挙げられる。
 アミド基は、その炭素数が通常1~20である。アミド基とは、酸アミドから窒素原子に結合した水素原子を除いて得られる基をいう。アミド基の具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基が挙げられる。
 本発明において、イミド基とは、酸イミドから窒素原子に結合した水素原子を除いて得られる基をいう。イミド基の具体例としては、スクシンイミド基、フタル酸イミド基が挙げられる。
 本発明において、置換アミノ基は、その炭素数が通常1~40である。置換アミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、tert−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C1~C12アルコキシフェニルアミノ基、ジ(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基、フェニル−C1~C12アルキルアミノ基、C1~C12アルコキシフェニル−C1~C12アルキルアミノ基、C1~C12アルキルフェニル−C1~C12アルキルアミノ基、ジ(C1~C12アルコキシフェニル−C1~C12アルキル)アミノ基、ジ(C1~C12アルキルフェニル−C1~C12アルキル)アミノ基、1−ナフチル−C1~C12アルキルアミノ基、2−ナフチル−C1~C12アルキルアミノ基が挙げられる。
 本発明において、置換シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリ−n−プロピルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基、トリフェニルシリル基、トリ−p−キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert−ブチルジフェニルシリル基、ジメチルフェニルシリル基が挙げられる。
 本発明において、置換シリルオキシ基としては、例えば、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリ−n−プロピルシリルオキシ基、トリイソプロピルシリルオキシ基、tert−ブチルジメチルシリルオキシ基、トリフェニルシリルオキシ基、トリ−p−キシリルシリルオキシ基、トリベンジルシリルオキシ基、ジフェニルメチルシリルオキシ基、tert−ブチルジフェニルシリルオキシ基、ジメチルフェニルシリルオキシ基が挙げられる。
 本発明において、置換シリルチオ基としては、例えば、トリメチルシリルチオ基、トリエチルシリルチオ基、トリ−n−プロピルシリルチオ基、トリイソプロピルシリルチオ基、tert−ブチルジメチルシリルチオ基、トリフェニルシリルチオ基、トリ−p−キシリルシリルチオ基、トリベンジルシリルチオ基、ジフェニルメチルシリルチオ基、tert−ブチルジフェニルシリルチオ基、ジメチルフェニルシリルチオ基が挙げられる。
 本発明において、置換シリルアミノ基としては、例えば、トリメチルシリルアミノ基、トリエチルシリルアミノ基、トリ−n−プロピルシリルアミノ基、トリイソプロピルシリルアミノ基、tert−ブチルジメチルシリルアミノ基、トリフェニルシリルアミノ基、トリ−p−キシリルシリルアミノ基、トリベンジルシリルアミノ基、ジフェニルメチルシリルアミノ基、tert−ブチルジフェニルシリルアミノ基、ジメチルフェニルシリルアミノ基、ジ(トリメチルシリル)アミノ基、ジ(トリエチルシリル)アミノ基、ジ(トリ−n−プロピルシリル)アミノ基、ジ(トリイソプロピルシリル)アミノ基、ジ(tert−ブチルジメチルシリル)アミノ基、ジ(トリフェニルシリル)アミノ基、ジ(トリ−p−キシリルシリル)アミノ基、ジ(トリベンジルシリル)アミノ基、ジ(ジフェニルメチルシリル)アミノ基、ジ(tert−ブチルジフェニルシリル)アミノ基、ジ(ジメチルフェニルシリル)アミノ基が挙げられる。
 本発明において、1価の複素環基としては、フラン、チオフェン、ピロール、ピロリン、ピロリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、イミダゾリン、イミダゾリジン、ピラゾール、ピラゾリン、プラゾリジン、フラザン、トリアゾール、チアジアゾール、オキサジアゾール、テトラゾール、ピラン、ピリジン、ピペリジン、チオピラン、ピリダジン、ピリミジン、ピラジン、ピペラジン、モルホリン、トリアジン、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、インドール、イソインドール、インドリジン、インドリン、イソインドリン、クロメン、クロマン、イソクロマン、ベンゾピラン、キノリン、イソキノリン、キノリジン、ベンゾイミダゾール、ベンゾチアゾール、インダゾール、ナフチリジン、キノキサリン、キナゾリン、キナゾリジン、シンノリン、フタラジン、プリン、プテリジン、カルバゾール、キサンテン、フェナントリジン、アクリジン、β−カルボリン、ペリミジン、フェナントロリン、チアントレン、フェノキサチイン、フェノキサジン、フェノチアジン、フェナジン等の複素環式化合物から水素原子を1個除いた基が挙げられる。1価の複素環基としては、1価の芳香族複素環基が好ましい。
 本発明において、複素環オキシ基としては、前記1価の複素環基に酸素原子が結合した式(4)で表される基が挙げられる。複素環チオ基としては、前記1価の複素環基に硫黄原子が結合した式(5)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000014
式(4)及び式(5)中、Arは1価の複素環基を表す。
 本発明において、複素環オキシ基は、その炭素数が通常2~60である。複素環オキシ基の具体例としては、チエニルオキシ基、C1~C12アルキルチエニルオキシ基、ピロリルオキシ基、フリルオキシ基、ピリジルオキシ基、C1~C12アルキルピリジルオキシ基、イミダゾリルオキシ基、ピラゾリルオキシ基、トリアゾリルオキシ基、オキサゾリルオキシ基、チアゾールオキシ基、チアジアゾールオキシ基が挙げられる。
 本発明において、複素環チオ基は、その炭素数が通常2~60である。複素環チオ基の具体例としては、チエニルメルカプト基、C1~C12アルキルチエニルメルカプト基、ピロリルメルカプト基、フリルメルカプト基、ピリジルメルカプト基、C1~C12アルキルピリジルメルカプト基、イミダゾリルメルカプト基、ピラゾリルメルカプト基、トリアゾリルメルカプト基、オキサゾリルメルカプト基、チアゾールメルカプト基、チアジアゾールメルカプト基が挙げられる。
 本発明において、アリールアルケニル基は、通常、その炭素数8~20であり、アリールアルケニル基の具体例としては、スチリル基が挙げられる。
 本発明において、アリールアルキニル基は、通常、その炭素数8~20であり、アリールアルキニル基の具体例としては、フェニルアセチレニル基が挙げられる。
 式(2)で表される構造単位としては、式(2−11)で表される構造単位、及び式(2−12)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-I000015
 本発明の高分子化合物は、式(1)で表される構造単位に加えて、さらに式(2’)で表される構造単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-I000016
〔式中、Arは、式(1)で表される構造単位とは異なるアリーレン基又は式(1)で表される構造単位とは異なるヘテロアリーレン基を表す。〕
 本発明において、アリーレン基としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、ピレンジイル基、フルオレンジイル基が挙げられる。ヘテロアリーレン基としては、例えば、フランジイル基、ピロールジイル基、ピリジンジイル基が挙げられる。
 式(1)で表される構造単位の好ましい態様は式(3)で表される基である。
Figure JPOXMLDOC01-appb-I000017
 式(3)中、Ar11及びAr21は、同一又は相異なり、3価の複素環基を表す。Xは、−O−、−S−、−C(=O)−、−S(=O)−、−SO−、−Si(R)(R)−、−N(R)−、−B(R)−、−P(R)−又は−P(=O)(R)−を表す。
、R、R、R、R及びRは、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。R50及びR51は、同一又は異なり、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。XとAr21は、Ar11に含まれる複素環の隣接位に結合し、C(R50)(R51)とAr11は、Ar21に含まれる複素環の隣接位に結合している。
 式(3)中、Ar11及びAr21は、同一又は相異なり、3価の複素環基を表す。
3価の複素環基とは、複素環式化合物から水素原子3個を除いた残りの原子団をいう。
 ここに複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素などのヘテロ原子を環内に含む有機化合物をいう。
 3価の複素環基としては、例えば、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
式(201)~式(284)中、R’は、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、置換アミノ基、アシルオキシ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基又はシアノ基を表す。
 R’’は、同一又は相異なり、水素原子、アルキル基、アリール基、アリールアルキル基、置換シリル基、アシル基又は1価の複素環基を表す。
 式(3)中、Ar11及びAr21は、少なくとも一方がチオフェン環から水素原子を3個取り除いた基であることが好ましく、ともにチオフェン環から水素原子を3個取り除いた基であることがより好ましい。
 また、式(201)~式(284)中、3価の複素環基は、好ましくは硫黄原子を含む複素環基であり、より好ましくは式(268)又は式(273)で表される基であり、さらに好ましくは式(273)で表される基である。
 R50及びR51は、好ましくは両方が、同一又は相異なり、炭素数6以上のアルキル基、炭素数6以上のアルコキシ基、炭素数6以上のアルキルチオ基、炭素数6以上のアリール基、炭素数6以上のアリールオキシ基、炭素数6以上のアリールチオ基、炭素数7以上のアリールアルキル基、炭素数7以上のアリールアルコキシ基、炭素数7以上のアリールアルキルチオ基、炭素数6以上のアシル基、炭素数6以上のアシルオキシ基であり、さらに好ましくは炭素数6以上のアルキル基、炭素数6以上のアルコキシ基、炭素数6以上のアリール基、炭素数6以上のアリールオキシ基であり、特に好ましくは炭素数6以上のアルキル基である。
 式(1)で表される構造単位を有する高分子化合物としては、高分子化合物Aが例示される。
 高分子化合物Aは下記繰り返し単位を有している。式中、nは、繰り返し単位の数を表す。
Figure JPOXMLDOC01-appb-I000022
 式(1)で表される構造単位を含有する高分子化合物は、電子供与性化合物として活性層に含まれていても、電子受容性化合物として活性層に含まれていてもよいが、電子供与性化合物として活性層に含まれていることが好ましい。
 電子供与性化合物としては、式(1)で表される構造単位を含有する高分子化合物以外に、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。
 電子供与性化合物は、単独で活性層に用いてもよいし、2種類以上を組み合わせて活性層に用いてもよい。
 電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体、バソクプロイン等のフェナントレン誘導体、酸化チタンなどの金属酸化物、カーボンナノチューブ等が挙げられる。電子受容性化合物としては、好ましくは、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、特に好ましくはフラーレン、フラーレン誘導体が挙げられる。フラーレン誘導体は、フラーレンの少なくとも一部が修飾された化合物を表す。
 フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンなどが挙げられる。
 フラーレン誘導体としては、例えば、式(6)で表される化合物、式(7)で表される化合物、式(8)で表される化合物、式(9)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000023
式(6)~(9)中、Rは、アルキル基、アリール基、ヘテロアリール基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rはアルキル基又はアリール基を表す。複数個あるRは、同一であっても相異なってもよい。
 Rで表されるエステル構造を有する基は、例えば、式(10)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000024
(式中、u1は、1~6の整数を表す、u2は、0~6の整数を表す、Rは、アルキル基、アリール基又はヘテロアリール基を表す。)
 本発明において、ヘテロアリール基の具体例としては、チエニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基が挙げられる。
 フラーレン、フラーレン誘導体の例としてはC60、C70、C76、C78、C84及びその誘導体が挙げられる。C60フラーレンの誘導体、C70フラーレンの誘導体としては、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000025
 また、フラーレン誘導体の例としては、[5,6]−フェニル C61 ブチリックアシッドメチルエステル([5,6]−PCBM)、[6,6]フェニル−C61酪酸メチルエステル(C60PCBM、[6,6]−Phenyl C61 butyric acid methyl ester)、[6,6]フェニル−C71酪酸メチルエステル(C70PCBM、[6,6]−Phenyl C71 butyric acid methyl ester)、[6,6]フェニル−C85酪酸メチルエステル(C84PCBM、[6,6]−Phenyl C85 butyric acid methyl ester)、[6,6]チェニル−C61酪酸メチルエステル([6,6]−Thienyl C61 butyric acid methyl ester)などが挙げられる。
 活性層が電子供与性化合物とフラーレン誘導体とを含む場合、活性層中のフラーレン誘導体の割合は、電子供与性化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。
 電子受容性化合物は、1種類の化合物を活性層に用いてもよく、2種類以上の化合物を組み合わせて活性層に用いてもよい。
 本発明の有機光電変換素子において、活性層は式(1)で表される構造単位を含有する高分子化合物と第1の溶媒と第1の溶媒とは異なる第2の溶媒とを含む液から形成される。
 第1の溶媒及び第2の溶媒としては、水及び有機溶媒が例示される。第1の溶媒が有機溶媒である場合、有機溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素溶媒(特に、塩素化飽和炭化水素溶媒)、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素溶媒(特に、塩素化不飽和炭化水素溶媒)、テトラヒドロフラン、テトラヒドロピラン、ジフェニルエーテル等のエーテル溶媒が挙げられる。第1の溶媒は、式(1)で表される構造単位を含有する高分子化合物の溶解性の観点からは、ハロゲン化不飽和炭化水素溶媒が好ましく、芳香族塩素化合物がより好ましく、ジクロロベンゼンがさらに好ましく、オルトジクロロベンゼンが特に好ましい。
 第2の溶媒は、第1の溶媒とは異なる溶媒であり、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素溶媒(特に、塩素化飽和炭化水素溶媒)、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素溶媒(特に、塩素化不飽和炭化水素溶媒)、テトラヒドロフラン、テトラヒドロピラン、ジフェニルエーテル等のエーテル溶媒が挙げられる。第2の溶媒は、脂肪族塩素化合物、テトラリン、ジフェニルエーテルが好ましく、脂肪族塩素化合物がより好ましく、クロロホルム、ジクロロメタンがさらに好ましく、クロロホルムが特に好ましい。
 式(1)で表される構造単位を含有する高分子化合物の溶解性の観点からは、第1の溶媒の重量に対し、第2の溶媒を0.001重量%から99.999重量%の範囲で混合させることが好ましく、0.01重量%から99.99重量%の範囲で混合させることがより好ましい。第1の溶媒と第2の溶媒の一方は、式(1)で表される構造単位を含有する高分子化合物の溶解性が低い溶媒であってもよい。該式(1)で表される構造単位を含有する高分子化合物の溶解性が低い溶媒としては、N−メチル−2−ピロリドン(N−Methyl−2−pyrrolidon)(23.1(J/cm1/2)、ジメチルスルホキシド(Dimethyl Sulfoxide)(24.5(J/cm1/2)、2−プロパノール(2−Propanol)(23.5(J/cm1/2)、メタノール(Methanol)(29.7(J/cm1/2)などが挙げられる。()内の数値は、溶解度を示すパラメーターであるSP値を表す。
 ここで、SP値(Solubility Parameter(δ):溶解パラメーター)とは、ヒルデブラント(Hildebrand)によって導入された正則溶液論により定義された値であり、2成分系溶液の溶解度の目安となるとなることで知られている。正則溶液論では溶媒−溶質間に作用する力は分子間力のみと仮定されるので、溶解パラメーターは分子間力を表す尺度として使用される。実際の溶液は正則溶液とは限らないが、2つの成分のSP値の差が小さいほど溶解度が大となることが経験的に知られている。
 溶媒への、式(1)で表される構造単位を含有する高分子化合物の添加量は、特に限定されず適宜最適な範囲を選択することができ、第1の溶媒の重量と第2の溶媒の重量の合計量に対し、0.1重量%以上、好ましくは0.3重量%以上、より好ましくは0.5重量%以上である。
 式(1)で表される繰り返し単位を含む高分子化合物、第1の溶媒、及び第1の溶媒とは異なる第2の溶媒を含有する液が、電子受容性化合物と式(1)で表される繰り返し単位を含む高分子化合物である電子供与性化合物とを含む場合、液中の電子供与性化合物の量と電子受容性化合物の量との合計量は、通常0.2重量%以上20重量%以下であり、好ましくは0.5重量%以上10重量%以下であり、より好ましくは1重量%以上5重量%以下である。また、電子供与性化合物と電子受容性化合物の配合比は、通常は1~20:20~1であり、好ましくは1~10:10~1であり、さらに好ましくは1~5:5~1である。電子供与性化合物の溶液と電子受容性化合物の溶液とが個々に調製される場合、電子供与性化合物又は電子受容性化合物は、溶液中に通常0.4重量%以上、好ましくは0.6重量%以上、より好ましくは2重量%以上含まれる。
 本発明の有機光電変換素子の製造は、通常、一方の電極上に、高分子化合物、第1の溶媒、及び第1の溶媒とは異なる第2の溶媒を含む液を塗布して活性層を形成し、該活性層上に他方の電極を形成することに行われる。
 塗布に際しては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等が用いられる。このうち、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましく、スピンコート法がより好ましい。
 活性層がバルクヘテロ接合型の有機光電変換素子を製造する場合は、例えば、電子供与性化合物と電子受容性化合物の両方を含む溶液を異なる周波数による2回以上の超音波処理に供した後、処理後の溶液を、電極または中間層上に塗工し、溶媒を揮発させることにより、活性層を形成し得る。
 一方、活性層がpnヘテロ接合型の有機光電変換素子を製造する場合には、例えば、電子供与性化合物を含む溶液と電子受容性化合物を含む溶液とを、それぞれ異なる周波数による2回以上の超音波処理に供した後、処理後の電子供与性化合物を含む溶液を電極上に塗布し、溶媒を揮発させて電子供与性層を形成する。続いて、同処理後の電子受容性化合物を含む溶液を電子供与性層上に塗布し、溶媒を揮発させて電子受容性層を形成する。このようにして2層構成の活性層を形成し得る。電子供与性層および電子受容性層の形成順序は上記の逆でもよい。
 活性層の厚さは、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらにより好ましくは20nm~200nmである。
 基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。不透明な基板の場合には、反対の電極(即ち、一対の電極のうち基板から遠い方の電極)が透明又は半透明であることが好ましい。
 透明又は半透明の電極を構成する電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が例示される。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド(IZO)、NESA等の導電性材料を用いて作製された膜や、金、白金、銀、銅等の金属薄膜が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズ等からなる導電性材料を用いて作製された膜が好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が例示される。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
 透明又は半透明の電極と対をなす電極は、透明又は半透明であってもよいが、透明でも半透明でもなくてもよい。該電極を構成する電極材料としては、金属、導電性高分子等を用いることができる。該電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属;前記金属のうち2つ以上の合金;1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金;グラファイト、グラファイト層間化合物;ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金等が挙げられる。
 中間層の材料としては、フッ化リチウム(LiF)等のアルカリ金属又はアルカリ土類金属のハロゲン化物又は酸化物、酸化チタン等の無機半導体の微粒子、金属アルコキシド、PEDOT(ポリ(3,4)エチレンジオキシチオフェン)が例示される。これらの材料のうち、陽極側の中間層はPEDOTからなる層が好ましい。陰極側の中間層はアルカリ金属のハロゲン化物からなる層(より好ましくはLiF)、チタンイソプロポキシドから形成されるチタニアの薄膜層が好ましく、フッ化リチウム(LiF)からなる層、チタンイソプロポキシドから形成されるチタニアの薄膜層がより好ましい。
 本発明の製造方法により製造された有機光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
 また、電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
 有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の有機薄膜太陽電池も使用目的や使用場所および環境により、適宜これらのモジュール構造を選択できる。
 代表的なスーパーストレートタイプあるいはサブストレートタイプのモジュールは、片側または両側が透明で反射防止処理を施された支持基板の間に一定間隔にセルが配置され、隣り合うセル同士が金属リードまたはフレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力を外部に取り出される構造となっている。基板とセルの間には、セルの保護や集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルムまたは充填樹脂の形で用いてもよい。また、外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成し、または上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板をなくすことが可能である。支持基板の周囲は、内部の密封およびモジュールの剛性を確保するため金属製のフレームでサンドイッチ状に固定し、支持基板とフレームの間は封止材料で密封シールする。また、セルそのものや支持基板、充填材料および封止材料に可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。
 ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより電池本体を作製できる。また、Solar Energy Materials and Solar Cells,48,p383−391記載の「SCAF」とよばれるモジュール構造とすることもできる。更に、フレキシブル支持体を用いた太陽電池は曲面ガラス等に接着固定して使用することもできる。
 成膜時に不溶成分やダストが溶液中に存在していると、塗布膜上にクラックが発生し、また、不要成分やダストが核となり、凝集粒が発生する。これにより接合界面での電気的、化学的接触が不良となることや、リーク電流が発生する。これを低減させることにより光電変換効率が向上する。
The scale of each member in the drawings shown in the following description may be different from the actual scale. Moreover, although members, such as an electrode lead wire, also exist in an organic photoelectric conversion element, description and illustration are abbreviate | omitted since it is not directly related as description of this invention. In the following description, one of the substrate thickness directions may be referred to as “upper” or “upper”, and the other of the substrate thickness directions may be referred to as “lower” or “lower”. This vertical relation is set for convenience of explanation, and is not necessarily applied to the process and the situation where the organic photoelectric conversion element is actually manufactured.
The basic configuration of the organic photoelectric conversion element targeted by the production method of the present invention is a configuration having a pair of electrodes and an active layer. At least one of the pair of electrodes is transparent or translucent. In the organic photoelectric conversion element, the transparent or translucent electrode of the pair of electrodes is usually an anode. Of the pair of electrodes, the electrode that may not be transparent or translucent is usually a cathode. The position of the active layer in the organic photoelectric conversion element is between the pair of electrodes. The active layer may be a single layer or a plurality of layers. A layer other than the active layer may be provided between the pair of electrodes, and this layer may be referred to as an intermediate layer in this specification.
The active layer is a layer containing one or more organic compounds. At least one organic compound is a polymer compound containing a structural unit represented by the formula (1). Examples of the organic compound include an electron donating compound (p-type semiconductor) and an electron accepting compound (n-type semiconductor). The active layer may be a single layer or a laminate in which a plurality of layers are stacked. The active layer is of a so-called pn heterojunction type in which a layer formed of an electron donating compound (electron donating layer) and a layer formed of an electron accepting compound (electron accepting layer) are superimposed. Active layer: Examples include a bulk heterojunction active layer in which an electron-donating compound and an electron-accepting compound are mixed to form a bulk heterojunction structure, and the active layer in the present invention may have any form.
In the organic photoelectric conversion element according to the present invention, the active layer includes a polymer compound containing the structural unit represented by the formula (1), a first solvent, and a second solvent different from the first solvent. Formed from. The active layer is formed by applying a liquid containing a polymer compound containing the structural unit represented by the formula (1), a first solvent, and a second solvent different from the first solvent on one electrode. Preferably it is formed.
An example of the layer configuration of the organic photoelectric conversion element will be described with reference to FIGS. 1 to 3 are diagrams showing examples of the layer structure of the organic photoelectric conversion element. Hereinafter, after describing FIG. 1, only differences from FIG. 1 will be described with respect to FIG. 2, and only differences from FIG. 1 and FIG.
In the example of FIG. 1, a stacked body in which an active layer 40 is sandwiched between a first electrode 32 and a second electrode 34 is mounted on the substrate 20 to constitute the organic photoelectric conversion element 10. When the lighting is performed from the substrate 20 side, the substrate 20 is transparent or translucent.
At least one of the first electrode 32 and the second electrode 34 is transparent or translucent. In the case of daylighting from the substrate 20 side, the first electrode 32 is transparent or translucent.
Which of the first electrode 32 and the second electrode 34 is an anode and which is a cathode is not particularly limited. For example, when the organic photoelectric conversion element 10 is manufactured by sequentially laminating from the substrate 20 side, it is preferable that the vapor deposition is performed in a later process when the vapor deposition method is used for film formation of the cathode (for example, aluminum). There is. Therefore, in this example, it is preferable that the first electrode 32 is an anode and the second electrode 34 is a cathode. In this example, it may be difficult to make the aluminum electrode transparent or translucent depending on the thickness setting. Therefore, it is preferable that the substrate 20 and the first electrode 32 are formed to be transparent or translucent so that the light can be taken from the substrate 20 side.
In the example of FIG. 2, the active layer 40 is composed of two layers, a first active layer 42 and a second active layer 44, and is a pn heterojunction type active layer. One of the first active layer 42 and the second active layer 44 is an electron accepting layer, and the other layer is an electron donating layer.
In the example of FIG. 3, a first intermediate layer 52 and a second intermediate layer 54 are provided. The first intermediate layer 52 is located between the active layer 40 and the first electrode 32, and the second intermediate layer 54 is located between the active layer 40 and the second electrode 34. Only one of the first intermediate layer 52 and the second intermediate layer 54 may be provided. In FIG. 3, each intermediate layer is depicted as a single layer, but each intermediate layer may be composed of a plurality of layers.
The intermediate layer may have various functions. Assuming the case where the first electrode 32 is an anode, the first intermediate layer 52 may be, for example, a hole transport layer, an electron blocking layer, a hole injection layer, and a layer having other functions. In this case, the second electrode 34 is a cathode, and the second intermediate layer 54 can be, for example, an electron transport layer, an electron block layer, and a layer having other functions. On the other hand, when the first electrode 32 is a cathode and the second electrode 34 is an anode, the positions of the intermediate layers are also changed accordingly.
The electron donating compound and the electron accepting compound contained in the active layer are not particularly limited, and can be determined relatively from the energy level of the energy level of these compounds.
In formula (1), Ar 1 And Ar 2 Examples of the trivalent aromatic group represented by the formula include an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group.
The structural unit represented by the formula (1) is Ar 1 And Ar 2 In the case of the aromatic hydrocarbon group that may be substituted with the trivalent aromatic group represented by the formula, for example, those having a skeleton such as the following condensed cyclic compounds, phenanthracene, carbazole, fluorene, etc. .
Figure JPOXMLDOC01-appb-I000010
The structural unit represented by the formula (1) is Ar 1 And Ar 2 In the case of the aromatic heterocyclic group which may be substituted with the trivalent aromatic group represented by the formula, for example, those having the following structures are exemplified.
Figure JPOXMLDOC01-appb-I000011
Examples of the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains. A polysiloxane derivative having a residue, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and a structural unit represented by the formula (1) A high molecular compound is mentioned. Among these, oligothiophene and derivatives thereof, and a polymer compound containing the structural unit represented by the formula (1) are preferable, and poly (3-hexylthiophene) (P3HT) is preferable. From the viewpoint of improving the photoelectric conversion efficiency, the polymer compound contained in the active layer is further represented by formulas (2-1) to (2-10) in addition to the structural unit represented by formula (1). It is preferable to have a structural unit. In the present invention, the structural unit means a repeating unit constituting the polymer compound or a partial structure of the repeating unit.
Figure JPOXMLDOC01-appb-I000012
In formulas (2-1) to (2-10), R 21 ~ R 42 Each independently represents a hydrogen atom or a substituent. R 21 ~ R 42 As the substituent represented by, for example, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, an alkylthio group which may have a substituent, Aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group, silyl group, substituted silyl group, acyl group, acyloxy group, Examples thereof include an amide group, a heterocyclic group, a carboxy group optionally having a substituent, a nitro group, and a cyano group.
R 21 , R 22 And R 35 Is preferably an alkyl group which may have a substituent, an alkoxy group which may have a substituent and an alkylthio group which may have a substituent, and an alkyl which may have a substituent. An alkoxy group which may have a group and a substituent is more preferable, and an alkyl group which may have a substituent is more preferable. From the viewpoint of increasing the solubility of the polymer compound of the present invention, R 21 , R 22 , R 35 , R 39 And R 42 Is preferably a branched alkyl group.
R 23 , R 24 , R 27 , R 28 , R 31 , R 32 , R 33 , R 34 , R 37 , R 38 , R 40 And R 41 Is preferably a halogen atom or a hydrogen atom, more preferably a fluorine atom or a hydrogen atom, and even more preferably a hydrogen atom.
R 25 , R 26 , R 29 And R 30 Is preferably a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an aryl group or an arylalkyl group, more preferably a hydrogen atom or an arylalkyl group.
R 36 Is preferably a hydrogen atom, a halogen atom, an acyl group or an acyloxy group, more preferably an acyl group or an acyloxy group.
In formula (2-1) to formula (2-10), X 21 ~ X 30 Each independently represents a sulfur atom, an oxygen atom or a selenium atom. From the viewpoint of increasing the short-circuit continuous density of the photoelectric conversion element having the organic layer containing the polymer compound of the present invention, a sulfur atom and an oxygen atom are preferable, and a sulfur atom is more preferable.
From the viewpoint of increasing the short-circuit continuous density of the photoelectric conversion element having the organic layer containing the polymer compound of the present invention, the polymer compound is represented by formula (2-1), formula (2-2), formula (2). -3) or a structural unit represented by the formula (2-10), the structural unit represented by the formula (2-1) position, the formula (2-2) or the formula (2-10) It is more preferable to have a structural unit represented by formula (2-1) or formula (2-10), and it is particularly preferable to have a structural unit represented by formula (2-10). .
From the viewpoint of increasing the photoelectric conversion efficiency, a polymer compound containing a structural unit represented by the formula (2) in addition to the structural unit represented by the formula (1) is also preferable.
Figure JPOXMLDOC01-appb-I000013
Where X 1 And X 2 Are the same or different and each represents a nitrogen atom or = CH-. Y 1 Is a sulfur atom, an oxygen atom, a selenium atom, -N (R 43 )-Or -CR 44 = CR 45 -Represents. R 43 , R 44 And R 45 Are the same or different and each represents a hydrogen atom or a substituent. W 1 And W 2 Are the same or different and each represents a cyano group, a monovalent organic group having a fluorine atom, a halogen atom or a hydrogen atom.
In formula (2), X 1 And X 2 Are the same or different and each represents a nitrogen atom or = CH-. X 1 And X 2 Is preferably a nitrogen atom, and X 1 And X 2 Both are preferably nitrogen atoms.
In equation (2), W 1 And W 2 Are the same or different and each represents a cyano group, a monovalent organic group having a fluorine atom, a halogen atom or a hydrogen atom. Here, examples of the monovalent organic group having a fluorine atom include a fluorinated aryl group, a fluorinated alkyl group, a fluorinated alkylthio group, a fluorinated sulfonyl group, and a fluorinated acetyl group. Examples of the fluorinated alkyl group include a fluoromethyl group. Examples of the fluorinated aryl group include a fluorophenyl group. Here, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
From the viewpoint of absorption strength and solubility of the polymer compound containing the structural unit represented by the formula (2), W 1 And W 2 Is preferably a fluorine atom.
In formula (2), Y 1 Is a sulfur atom, an oxygen atom, a selenium atom, -N (R 46 )-Or -CR 47 = CR 48 -Represents. R 46 , R 47 And R 48 Are the same or different and each represents a hydrogen atom, a halogen atom or a substituent. Here, as a substituent, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an acyl group, an acyloxy group, an amide group, an imide group , Imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl group, arylalkynyl Group, carboxyl group, and cyano group.
From the viewpoint of absorption strength and solubility of the polymer compound containing the structural unit represented by the formula (1), Y 1 Is preferably a sulfur atom or an oxygen atom.
In the present invention, the halogen atom is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
In the present invention, the alkyl group may be linear, branched or cyclic. The alkyl group usually has 1 to 30 carbon atoms. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, n-pentyl group, isopentyl group, 2- Methylbutyl group, 1-methylbutyl group, n-hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3, 7-dimethyloctyl group, nonyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl group, eicosyl group and other chain alkyl groups, cyclopentyl group, cyclohexyl group, adamantyl group and other cycloalkyl groups Can be mentioned.
In the present invention, the alkoxy group may be linear, branched or cyclic. The carbon number of the alkoxy group is usually 1-20. Specific examples of the alkoxy group include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group Group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, and lauryloxy group. Specific examples of the substituted alkoxy group include trifluoromethoxy group and pentafluoroethoxy group. Fluorinated alkoxy groups having 1 to 20 carbon atoms such as perfluorobutoxy group, perfluorohexyl group, perfluorooctyl group, methoxymethyloxy group and 2-methoxyethyloxy group.
In the present invention, the alkylthio group may be linear or branched, and may be a cycloalkylthio group. Carbon number of the alkylthio group is usually 1 to 20, and specific examples of the alkylthio group include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, tert-butylthio group, pentylthio group, Examples include a hexylthio group, a cyclohexylthio group, a heptylthio group, an octylthio group, a 2-ethylhexylthio group, a nonylthio group, a decylthio group, a 3,7-dimethyloctylthio group, a laurylthio group, and a trifluoromethylthio group.
In the present invention, the aryl group usually has 6 to 60 carbon atoms. Specific examples of the aryl group include a phenyl group, a C1 to C12 alkoxyphenyl group (C1 to C12 alkyl represents an alkyl having 1 to 12 carbon atoms, and the C1 to C12 alkyl is preferably a C1 to C8 alkyl. More preferably, C1 to C6 alkyl, C1 to C8 alkyl represents alkyl having 1 to 8 carbon atoms, and C1 to C6 alkyl represents alkyl having 1 to 6 carbon atoms. Specific examples of C1 to C12 alkyl, C1 to C8 alkyl and C1 to C6 alkyl include those described and exemplified for the above alkyl group, the same applies to the following), C1 to C12 alkylphenyl group, 1- Examples thereof include a naphthyl group, a 2-naphthyl group, and a pentafluorophenyl group.
In the present invention, the aryloxy group usually has 6 to 60 carbon atoms. Specific examples of the aryloxy group include a phenoxy group, a C1-C12 alkoxyphenoxy group, a C1-C12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenoxy group.
In the present invention, the arylthio group usually has 6 to 60 carbon atoms. Specific examples of the arylthio group include a phenylthio group, a C1-C12 alkoxyphenylthio group, a C1-C12 alkylphenylthio group, a 1-naphthylthio group, and a 2-naphthylthio group. Specific examples of the substituted arylthio group include And pentafluorophenylthio group.
In the present invention, the arylalkyl group usually has 7 to 60 carbon atoms. Specific examples of the arylalkyl group include phenyl-C1-C12 alkyl group, C1-C12 alkoxyphenyl-C1-C12 alkyl group, C1-C12 alkylphenyl-C1-C12 alkyl group, and 1-naphthyl-C1-C12 alkyl group. 2-naphthyl-C1-C12 alkyl group.
In the present invention, the arylalkoxy group usually has 7 to 60 carbon atoms. Specific examples of the arylalkoxy group include a phenyl-C1-C12 alkoxy group, a C1-C12 alkoxyphenyl-C1-C12 alkoxy group, a C1-C12 alkylphenyl-C1-C12 alkoxy group, and a 1-naphthyl-C1-C12 alkoxy group. , 2-naphthyl-C1 to C12 alkoxy groups.
In the present invention, the arylalkylthio group usually has 7 to 60 carbon atoms. Specific examples of the arylalkylthio group include a phenyl-C1-C12 alkylthio group, a C1-C12 alkoxyphenyl-C1-C12 alkylthio group, a C1-C12 alkylphenyl-C1-C12 alkylthio group, and a 1-naphthyl-C1-C12 alkylthio group. 2-naphthyl-C1-C12 alkylthio group.
In the present invention, the acyl group usually has 2 to 20 carbon atoms. Specific examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
In the present invention, the acyloxy group usually has 2 to 20 carbon atoms. Specific examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
The amide group usually has 1 to 20 carbon atoms. An amide group refers to a group obtained by removing a hydrogen atom bonded to a nitrogen atom from an acid amide. Specific examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, and a dibenzamide group. , Ditrifluoroacetamide group and dipentafluorobenzamide group.
In the present invention, an imide group refers to a group obtained by removing a hydrogen atom bonded to a nitrogen atom from an acid imide. Specific examples of the imide group include succinimide group and phthalimide group.
In the present invention, the substituted amino group usually has 1 to 40 carbon atoms. Specific examples of the substituted amino group include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, tert -Butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, laurylamino group, Cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, pyrrolidyl group, piperidyl group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, C1-C12 alkoxy Siphenylamino group, di (C1-C12 alkoxyphenyl) amino group, di (C1-C12 alkylphenyl) amino group, 1-naphthylamino group, 2-naphthylamino group, pentafluorophenylamino group, pyridylamino group, pyrida Dinylamino group, pyrimidylamino group, pyrazylamino group, triazylamino group, phenyl-C1-C12 alkylamino group, C1-C12 alkoxyphenyl-C1-C12 alkylamino group, C1-C12 alkylphenyl-C1-C12 alkylamino group Di (C1-C12 alkoxyphenyl-C1-C12 alkyl) amino group, di (C1-C12 alkylphenyl-C1-C12 alkyl) amino group, 1-naphthyl-C1-C12 alkylamino group, 2-naphthyl-C1- A C12 alkylamino group is mentioned.
In the present invention, examples of the substituted silyl group include trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group, triphenylsilyl group, and tri-p-xylylsilyl group. , Tribenzylsilyl group, diphenylmethylsilyl group, tert-butyldiphenylsilyl group, and dimethylphenylsilyl group.
In the present invention, examples of the substituted silyloxy group include trimethylsilyloxy group, triethylsilyloxy group, tri-n-propylsilyloxy group, triisopropylsilyloxy group, tert-butyldimethylsilyloxy group, triphenylsilyloxy group, Examples thereof include a tri-p-xylylsilyloxy group, a tribenzylsilyloxy group, a diphenylmethylsilyloxy group, a tert-butyldiphenylsilyloxy group, and a dimethylphenylsilyloxy group.
In the present invention, examples of the substituted silylthio group include trimethylsilylthio group, triethylsilylthio group, tri-n-propylsilylthio group, triisopropylsilylthio group, tert-butyldimethylsilylthio group, triphenylsilylthio group, Examples thereof include a tri-p-xylylsilylthio group, a tribenzylsilylthio group, a diphenylmethylsilylthio group, a tert-butyldiphenylsilylthio group, and a dimethylphenylsilylthio group.
In the present invention, examples of the substituted silylamino group include trimethylsilylamino group, triethylsilylamino group, tri-n-propylsilylamino group, triisopropylsilylamino group, tert-butyldimethylsilylamino group, triphenylsilylamino group, Tri-p-xylylsilylamino group, tribenzylsilylamino group, diphenylmethylsilylamino group, tert-butyldiphenylsilylamino group, dimethylphenylsilylamino group, di (trimethylsilyl) amino group, di (triethylsilyl) amino group , Di (tri-n-propylsilyl) amino group, di (triisopropylsilyl) amino group, di (tert-butyldimethylsilyl) amino group, di (triphenylsilyl) amino group, di (tri-p-xylylsilyl) Amino group Di (tribenzylsilyl) amino group, di (diphenylmethyl silyl) amino, di (tert- butyldiphenylsilyl) amino group, di (dimethylphenylsilyl) and amino group.
In the present invention, the monovalent heterocyclic group includes furan, thiophene, pyrrole, pyrroline, pyrrolidine, oxazole, isoxazole, thiazole, isothiazole, imidazole, imidazoline, imidazolidine, pyrazole, pyrazoline, prazolidine, furazane, triazole, Thiadiazole, oxadiazole, tetrazole, pyran, pyridine, piperidine, thiopyran, pyridazine, pyrimidine, pyrazine, piperazine, morpholine, triazine, benzofuran, isobenzofuran, benzothiophene, indole, isoindole, indolizine, indoline, isoindoline, chromene , Chroman, isochroman, benzopyran, quinoline, isoquinoline, quinolidine, benzimidazole, benzothiazole, indah , Naphthyridine, quinoxaline, quinazoline, quinazoline, cinnoline, phthalazine, purine, pteridine, carbazole, xanthene, phenanthridine, acridine, β-carboline, perimidine, phenanthroline, thianthrene, phenoxathiin, phenoxazine, phenothiazine, phenazine, etc. And a group obtained by removing one hydrogen atom from the heterocyclic compound. As the monovalent heterocyclic group, a monovalent aromatic heterocyclic group is preferable.
In the present invention, examples of the heterocyclic oxy group include a group represented by the formula (4) in which an oxygen atom is bonded to the monovalent heterocyclic group. Examples of the heterocyclic thio group include a group represented by the formula (5) in which a sulfur atom is bonded to the monovalent heterocyclic group.
Figure JPOXMLDOC01-appb-I000014
In formula (4) and formula (5), Ar 7 Represents a monovalent heterocyclic group.
In the present invention, the heterocyclic oxy group usually has 2 to 60 carbon atoms. Specific examples of the heterocyclic oxy group include thienyloxy group, C1-C12 alkylthienyloxy group, pyrrolyloxy group, furyloxy group, pyridyloxy group, C1-C12 alkylpyridyloxy group, imidazolyloxy group, pyrazolyloxy group, triazolyl group. Examples include a ruoxy group, an oxazolyloxy group, a thiazoleoxy group, and a thiadiazoleoxy group.
In the present invention, the heterocyclic thio group usually has 2 to 60 carbon atoms. Specific examples of the heterocyclic thio group include thienyl mercapto group, C1-C12 alkyl thienyl mercapto group, pyrrolyl mercapto group, furyl mercapto group, pyridyl mercapto group, C1-C12 alkyl pyridyl mercapto group, imidazolyl mercapto group, pyrazolyl mercapto group. , Triazolyl mercapto group, oxazolyl mercapto group, thiazole mercapto group and thiadiazole mercapto group.
In the present invention, the arylalkenyl group usually has 8 to 20 carbon atoms, and specific examples of the arylalkenyl group include a styryl group.
In the present invention, an arylalkynyl group usually has 8 to 20 carbon atoms, and specific examples of the arylalkynyl group include a phenylacetylenyl group.
As a structural unit represented by Formula (2), a structural unit represented by Formula (2-11) and a structural unit represented by Formula (2-12) are preferable.
Figure JPOXMLDOC01-appb-I000015
The polymer compound of the present invention may further contain a structural unit represented by the formula (2 ′) in addition to the structural unit represented by the formula (1).
Figure JPOXMLDOC01-appb-I000016
[Wherein Ar 3 Represents an arylene group different from the structural unit represented by Formula (1) or a heteroarylene group different from the structural unit represented by Formula (1). ]
In the present invention, examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a pyrenediyl group, and a fluorenediyl group. Examples of the heteroarylene group include a flangyl group, a pyrrole diyl group, and a pyridinediyl group.
A preferred embodiment of the structural unit represented by the formula (1) is a group represented by the formula (3).
Figure JPOXMLDOC01-appb-I000017
In formula (3), Ar 11 And Ar 21 Are the same or different and each represents a trivalent heterocyclic group. X 3 Are —O—, —S—, —C (═O) —, —S (═O) —, —SO. 2 -, -Si (R 9 ) (R 4 )-, -N (R 5 )-, -B (R 6 )-, -P (R 7 )-Or -P (= O) (R 8 )-.
R 4 , R 5 , R 6 , R 7 , R 8 And R 9 Are the same or different, hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group Amide group, imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, An arylalkenyl group, an arylalkynyl group, a carboxyl group or a cyano group is represented. R 50 And R 51 Are the same or different and are a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, acyl group, acyloxy group, amide Group, imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl Represents a group, an arylalkynyl group, a carboxyl group or a cyano group. X 3 And Ar 21 Is Ar 11 Is bonded to the adjacent position of the heterocyclic ring, and C (R 50 ) (R 51 ) And Ar 11 Is Ar 21 It is bonded to the adjacent position of the heterocyclic ring contained in.
In formula (3), Ar 11 And Ar 21 Are the same or different and each represents a trivalent heterocyclic group.
A trivalent heterocyclic group refers to the remaining atomic group obtained by removing three hydrogen atoms from a heterocyclic compound.
Here, a heterocyclic compound is an organic compound having a cyclic structure in which the elements constituting the ring include not only carbon atoms but also heteroatoms such as oxygen, sulfur, nitrogen, phosphorus and boron in the ring. Refers to a compound.
Examples of the trivalent heterocyclic group include the following groups.
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
In the formula (201) to the formula (284), R ′ is the same or different and is a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, aryl. An alkoxy group, an arylalkylthio group, a substituted amino group, an acyloxy group, an amide group, an arylalkenyl group, an arylalkynyl group, a monovalent heterocyclic group, or a cyano group is represented.
R ″ is the same or different and represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, a substituted silyl group, an acyl group, or a monovalent heterocyclic group.
In formula (3), Ar 11 And Ar 21 Is preferably a group obtained by removing three hydrogen atoms from a thiophene ring, and more preferably a group obtained by removing three hydrogen atoms from a thiophene ring.
In the formulas (201) to (284), the trivalent heterocyclic group is preferably a heterocyclic group containing a sulfur atom, more preferably a group represented by the formula (268) or the formula (273). And more preferably a group represented by the formula (273).
R 50 And R 51 Are preferably the same or different, and are an alkyl group having 6 or more carbon atoms, an alkoxy group having 6 or more carbon atoms, an alkylthio group having 6 or more carbon atoms, an aryl group having 6 or more carbon atoms, or an aryl having 6 or more carbon atoms Oxy group, arylthio group having 6 or more carbon atoms, arylalkyl group having 7 or more carbon atoms, arylalkoxy group having 7 or more carbon atoms, arylalkylthio group having 7 or more carbon atoms, acyl group having 6 or more carbon atoms, or 6 or more carbon atoms More preferably an alkyl group having 6 or more carbon atoms, an alkoxy group having 6 or more carbon atoms, an aryl group having 6 or more carbon atoms, or an aryloxy group having 6 or more carbon atoms, particularly preferably 6 carbon atoms. These are the above alkyl groups.
As the polymer compound having the structural unit represented by the formula (1), polymer compound A is exemplified.
The high molecular compound A has the following repeating unit. In the formula, n represents the number of repeating units.
Figure JPOXMLDOC01-appb-I000022
The polymer compound containing the structural unit represented by the formula (1) may be contained in the active layer as an electron donating compound or may be contained in the active layer as an electron accepting compound. It is preferable that it is contained in the active layer as a functional compound.
As the electron-donating compound, in addition to the polymer compound containing the structural unit represented by the formula (1), for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinyl Carbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amine residues in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythieny Examples include lenvylene and derivatives thereof.
The electron donating compound may be used alone in the active layer, or two or more types may be used in combination in the active layer.
Examples of the electron-accepting compound include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, Diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, C 60 And the like, and phenanthrene derivatives such as bathocuproine, metal oxides such as titanium oxide, and carbon nanotubes. As the electron-accepting compound, titanium oxide, carbon nanotubes, fullerenes, and fullerene derivatives are preferable, and fullerenes and fullerene derivatives are particularly preferable. The fullerene derivative represents a compound in which at least a part of fullerene is modified.
Examples of fullerenes include C60 fullerene, C70 fullerene, C76 fullerene, C78 fullerene, C84 fullerene and the like.
Examples of the fullerene derivative include a compound represented by the formula (6), a compound represented by the formula (7), a compound represented by the formula (8), and a compound represented by the formula (9).
Figure JPOXMLDOC01-appb-I000023
In formulas (6) to (9), R a Is a group having an alkyl group, an aryl group, a heteroaryl group or an ester structure. Multiple R a May be the same or different. R b Represents an alkyl group or an aryl group. Multiple R b May be the same or different.
R a Examples of the group having an ester structure represented by the formula (10) include a group represented by the formula (10).
Figure JPOXMLDOC01-appb-I000024
(Wherein u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, R c Represents an alkyl group, an aryl group or a heteroaryl group. )
In the present invention, specific examples of the heteroaryl group include a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
Examples of fullerenes and fullerene derivatives are C 60 , C 70 , C 76 , C 78 , C 84 And derivatives thereof. C 60 Fullerene derivative, C 70 Examples of fullerene derivatives include the following compounds.
Figure JPOXMLDOC01-appb-I000025
Examples of fullerene derivatives include [5,6] -phenyl C61 butyric acid methyl ester ([5,6] -PCBM), [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6). ] -Phenyl C61 butyric acid methyl ester), [6,6] Phenyl-C71 butyric acid methyl ester (C70PCBM, [6,6] -Phenyl C71 butyric acid methyl ester), [6,6] phenyl-C85 butyric acid methyl ester (C70PCBM, [6,6] -Phenyl C71 butyric acid methyl ester) C84PCBM, [6,6] -phenyl C85 butyric acid methyl ester), [6,6] chenyl-C61 butyric acid methyl ester ([6,6] -thienyl C61 butyric acid methyl) ester) and the like.
When the active layer contains an electron donating compound and a fullerene derivative, the ratio of the fullerene derivative in the active layer is preferably 10 to 1000 parts by weight, and 20 to 500 parts by weight with respect to 100 parts by weight of the electron donating compound. More preferred are parts by weight.
As the electron-accepting compound, one kind of compound may be used for the active layer, or two or more kinds of compounds may be used in combination for the active layer.
In the organic photoelectric conversion element of the present invention, the active layer is formed from a liquid containing a polymer compound containing the structural unit represented by the formula (1), a first solvent, and a second solvent different from the first solvent. It is formed.
Examples of the first solvent and the second solvent include water and organic solvents. When the first solvent is an organic solvent, examples of the organic solvent include unsaturated carbonization such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, and tert-butylbenzene. Halogenated saturated hydrocarbon solvents such as hydrogen solvent, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane (especially chlorinated saturated hydrocarbons) Solvent), halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene (especially chlorinated unsaturated hydrocarbon solvents), ethers such as tetrahydrofuran, tetrahydropyran and diphenyl ether Solvents. The first solvent is preferably a halogenated unsaturated hydrocarbon solvent, more preferably an aromatic chlorine compound, and more preferably dichlorobenzene from the viewpoint of the solubility of the polymer compound containing the structural unit represented by the formula (1). Are more preferred, and orthodichlorobenzene is particularly preferred.
The second solvent is a solvent different from the first solvent. For example, unsaturated solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, etc. Halogenated saturated hydrocarbon solvents such as hydrocarbon solvents, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane (especially chlorinated saturated carbonization) Hydrogen solvents), halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene (especially chlorinated unsaturated hydrocarbon solvents), ether solvents such as tetrahydrofuran, tetrahydropyran and diphenyl ether. And the like. The second solvent is preferably an aliphatic chlorine compound, tetralin, or diphenyl ether, more preferably an aliphatic chlorine compound, still more preferably chloroform or dichloromethane, and particularly preferably chloroform.
From the viewpoint of solubility of the polymer compound containing the structural unit represented by the formula (1), the second solvent is 0.001 wt% to 99.999 wt% with respect to the weight of the first solvent. It is preferable to mix in the range, and it is more preferable to mix in the range of 0.01 wt% to 99.99 wt%. One of the first solvent and the second solvent may be a solvent in which the polymer compound containing the structural unit represented by the formula (1) has low solubility. As a solvent with low solubility of the polymer compound containing the structural unit represented by the formula (1), N-methyl-2-pyrrolidone (23.1 (J / cm 3 ) 1/2 ), Dimethyl sulfoxide (24.5 (J / cm 3 ) 1/2 ), 2-propanol (2-Propanol) (23.5 (J / cm 3 ) 1/2 ), Methanol (29.7 (J / cm 3 ) 1/2 ) And the like. The numerical value in () represents SP value which is a parameter indicating solubility.
Here, the SP value (Solubility Parameter (δ): solubility parameter) is a value defined by the regular solution theory introduced by Hildebrand, and serves as a measure of the solubility of the binary solution. Is known. In regular solution theory, the force acting between the solvent and the solute is assumed to be only an intermolecular force, so the solubility parameter is used as a measure of the intermolecular force. Although an actual solution is not necessarily a regular solution, it is empirically known that the smaller the difference between the SP values of the two components, the greater the solubility.
The addition amount of the polymer compound containing the structural unit represented by the formula (1) to the solvent is not particularly limited, and an optimal range can be appropriately selected. The weight of the first solvent and the second amount It is 0.1% by weight or more, preferably 0.3% by weight or more, and more preferably 0.5% by weight or more with respect to the total amount of the solvent.
A liquid containing a polymer compound containing a repeating unit represented by formula (1), a first solvent, and a second solvent different from the first solvent is represented by an electron-accepting compound and formula (1). When the amount of the electron-donating compound and the amount of the electron-accepting compound in the liquid is usually 0.2 wt% or more, % By weight or less, preferably 0.5% by weight or more and 10% by weight or less, more preferably 1% by weight or more and 5% by weight or less. The compounding ratio of the electron donating compound and the electron accepting compound is usually 1 to 20:20 to 1, preferably 1 to 10:10 to 1, and more preferably 1 to 5: 5 to 1. It is. When the electron-donating compound solution and the electron-accepting compound solution are separately prepared, the electron-donating compound or the electron-accepting compound is usually 0.4% by weight or more, preferably 0.6% by weight in the solution. % Or more, more preferably 2% by weight or more.
In the production of the organic photoelectric conversion device of the present invention, usually, an active layer is formed by applying a liquid containing a polymer compound, a first solvent, and a second solvent different from the first solvent on one electrode. Forming and forming the other electrode on the active layer.
For coating, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing, flexographic printing Method, offset printing method, ink jet printing method, dispenser printing method, nozzle coating method, capillary coating method and the like are used. Of these, the spin coating method, flexographic printing method, gravure printing method, ink jet printing method, and dispenser printing method are preferable, and the spin coating method is more preferable.
When manufacturing an organic photoelectric conversion element having an active layer of a bulk heterojunction type, for example, after subjecting a solution containing both an electron-donating compound and an electron-accepting compound to two or more ultrasonic treatments at different frequencies, The active solution can be formed by applying the later solution onto the electrode or intermediate layer and evaporating the solvent.
On the other hand, when an organic photoelectric conversion element having an active layer of pn heterojunction is manufactured, for example, a solution containing an electron donating compound and a solution containing an electron accepting compound are mixed at least twice with different frequencies. After being subjected to sonication, a solution containing the electron-donating compound after treatment is applied onto the electrode, and the solvent is volatilized to form an electron-donating layer. Subsequently, a solution containing the electron-accepting compound after the treatment is applied on the electron-donating layer, and the solvent is volatilized to form an electron-accepting layer. In this way, an active layer having a two-layer structure can be formed. The order of forming the electron donating layer and the electron accepting layer may be reversed.
The thickness of the active layer is usually 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and still more preferably 20 nm to 200 nm.
The substrate may be any substrate that does not chemically change when the electrode is formed and the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode farther from the substrate of the pair of electrodes) is preferably transparent or translucent.
Examples of the electrode material constituting the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, it is manufactured using indium oxide, zinc oxide, tin oxide, and conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), and NESA that are composites thereof. A film made of a conductive material made of ITO, indium / zinc / oxide, tin oxide or the like is preferable, and a metal thin film such as gold, platinum, silver, or copper is used. Examples of the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
The electrode paired with the transparent or translucent electrode may be transparent or translucent, but may be transparent or not translucent. As an electrode material constituting the electrode, a metal, a conductive polymer, or the like can be used. Specific examples of the electrode material include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. Two or more alloys of the metals; one or more metals selected from the group consisting of one or more of the metals and gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin Alloys with graphite; graphite, graphite intercalation compounds; polyaniline and derivatives thereof, polythiophene and derivatives thereof. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
As the material of the intermediate layer, alkali metal or alkaline earth metal halide or oxide such as lithium fluoride (LiF), inorganic semiconductor fine particles such as titanium oxide, metal alkoxide, PEDOT (poly (3,4) ethylene) Dioxythiophene) is exemplified. Of these materials, the intermediate layer on the anode side is preferably a layer made of PEDOT. The intermediate layer on the cathode side is a layer made of alkali metal halide (more preferably LiF), a titania thin film layer made of titanium isopropoxide is preferred, a layer made of lithium fluoride (LiF), titanium isopropoxide A thin film layer of titania formed from is more preferable.
The organic photoelectric conversion element manufactured by the manufacturing method of the present invention is operated as an organic thin film solar cell by generating a photovoltaic power between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. be able to. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
Further, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes or in a state where no voltage is applied, a photocurrent flows and the organic light sensor can be operated. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
The organic thin film solar cell can basically have the same module structure as a conventional solar cell module. The solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side. Specifically, a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known. The module structure of the organic thin film solar cell of the present invention can be appropriately selected depending on the purpose of use, the place of use and the environment.
In a typical super straight type or substrate type module, cells are arranged at regular intervals between support substrates that are transparent on one or both sides and treated with antireflection, and adjacent cells are connected by metal leads or flexible wiring. The current collector electrode is connected to the outer edge portion, and the generated power is taken out to the outside. Various types of plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency. Also, when used in places where there is no need to cover the surface with a hard material, such as where there is little impact from the outside, the surface protective layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin. It is possible to eliminate the supporting substrate on one side. The periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and a sealing material is hermetically sealed between the support substrate and the frame. Further, if a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
In the case of a solar cell using a flexible support such as a polymer film, cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material. Thus, the battery body can be produced. Further, a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 may be used. Furthermore, a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
If an insoluble component or dust is present in the solution at the time of film formation, a crack is generated on the coating film, and an unnecessary component or dust serves as a nucleus to generate aggregated particles. This results in poor electrical and chemical contact at the bonding interface and leakage current. By reducing this, the photoelectric conversion efficiency is improved.
合成例1
(化合物1の合成)
Figure JPOXMLDOC01-appb-I000026
 フラスコ内の気体をアルゴンで置換した1000mLの4つ口フラスコに、3−ブロモチオフェンを13.0g(80.0mmol)、ジエチルエーテルを80mL入れて均一な溶液とした。該溶液を−78℃に保ったまま、2.6Mのn−ブチルリチウム(n−BuLi)のヘキサン溶液31mL(80.6mmol)を滴下した。−78℃で2時間反応させた後、3−チオフェンアルデヒド8.96g(80.0mmol)をジエチルエーテル20mLに溶解させた溶液を滴下した。滴下後、−78℃で30分攪拌し、さらに室温(25℃)で30分攪拌した。反応液を再度−78℃に冷却し、2.6Mのn−BuLiのヘキサン溶液62mL(161mmol)を15分かけて滴下した。滴下後、反応液を−25℃で2時間攪拌し、さらに室温(25℃)で1時間攪拌した。その後、反応液を−25℃に冷却し、ヨウ素60g(236mmol)をジエチルエーテル1000mLに溶解させた溶液を30分かけて滴下した。滴下後、室温(25℃)で2時間攪拌し、1規定のチオ硫酸ナトリウム水溶液50mLを加えて反応を停止させた。ジエチルエーテルで反応生成物を抽出した後、硫酸マグネシウムで反応生成物を乾燥し、ろ過後、ろ液を濃縮して35gの粗生成物を得た。クロロホルムを用いて粗生成物を再結晶することにより精製し、化合物1を28g得た。
(化合物2の合成)
Figure JPOXMLDOC01-appb-I000027
 300mLの4つ口フラスコに、ビスヨードチエニルメタノール(化合物1)を10.5g(23.4mmol)、塩化メチレンを150mL加えて均一な溶液とした。該溶液にクロロクロム酸ピリジニウム7.50g(34.8mmol)を加えて室温(25℃)で10時間攪拌した。反応液をろ過して不溶物を除去後、ろ液を濃縮し、化合物2を10.0g(22.4mmol)得た。
(化合物3の合成)
Figure JPOXMLDOC01-appb-I000028
 フラスコ内の気体をアルゴンで置換した300mLフラスコに、化合物2を10.0g(22.4mmol)、銅粉末を6.0g(94.5mmol)、脱水N,N−ジメチルホルムアミド(以下、DMFと呼称することもある)を120mL加えて、120℃で4時間攪拌した。反応後、フラスコを室温(25℃)まで冷却し、反応液をシリカゲルカラムに通して不溶成分を除去した。その後、水500mLを加え、クロロホルムで反応生成物を抽出した。クロロホルム溶液である油層を硫酸マグネシウムで乾燥し、油層をろ過し、ろ液を濃縮して粗製物を得た。該粗成物を展開溶媒がクロロホルムであるシリカゲルカラムで精製し、化合物3を3.26g得た。ここまでの操作を複数回行った。
(化合物4の合成)
Figure JPOXMLDOC01-appb-I000029
 フラスコ内の気体をアルゴンで置換したフラスコに、化合物3を10.0g(5.20mmol)、テトラヒドロフラン(以下、THFと呼称する場合がある。)を100mL入れ、均一溶液とした。フラスコを0℃に保ち、N−ブロモスクシンイミド(以下、NBSと呼称する場合がある。)2.31g(1.30mmol)を15分かけて加えた。その後、0℃で2時間攪拌し、析出した固体をろ過して回収し、10重量(wt)%チオ硫酸ナトリウム水溶液及び水で洗浄した。得られた固体を粗製物4−Aと呼ぶ。その後、ろ液に10wt%のチオ硫酸ナトリウム水溶液を200mL加えて、クロロホルムで抽出した。クロロホルム溶液である有機層を硫酸ナトリウムで乾燥し、ろ過した。ろ液を濃縮して析出した固体を回収した。得られた固体を粗製物4−Bと呼ぶ。粗製物4−Aと粗製物4−Bを合わせ、展開溶媒がクロロホルムであるシリカゲルカラムクロマトグラフィーで精製して化合物4を17.3g得た。ここまでの操作を複数回行った。
(化合物5の合成)
Figure JPOXMLDOC01-appb-I000030
 メカニカルスターラーを備え、フラスコ内の気体をアルゴンで置換した1000mLの4つ口フラスコに、化合物4を25.0g(71.4mmol)、クロロホルムを250mL、トリフルオロ酢酸を160mL入れて均一な溶液とした。該溶液に過ホウ酸ナトリウム1水和物21.0g(210mmol)を35分かけて加え、室温(25℃)で240分間攪拌した。その後、反応液に5wt%の亜硫酸ナトリウム水溶液500mLを加えて反応を停止し、炭酸水素ナトリウムを反応液のpHが6になるまで加えた。その後、クロロホルムで反応生成物を抽出し、クロロホルム溶液である有機層をシリカゲルカラムに通してろ液を得、エバポレーターでろ液の溶媒を留去した。メタノールを用いて残渣を再結晶し、化合物5を7.70g(21.0mmol)得た。ここまでの操作を複数回行った。
(化合物6の合成)
Figure JPOXMLDOC01-appb-I000031
 フラスコ内の気体をアルゴンで置換した2000mLフラスコに、化合物5を23.1g(63.1mmol)、THFを1500mL入れて均一な溶液とした。フラスコを−50℃に冷却し、1mol/Lのn−オクチルマグネシウムブロミドのTHF溶液190mLを10分かけて滴下した。反応液を−50℃で30分攪拌後、水500mLを加えて反応を停止した。反応液を室温(25℃)まで昇温し、エバポレーターでTHF1000mLを留去し、酢酸100mLを加えた。クロロホルムで反応性生物を抽出し、その後、クロロホルム溶液を硫酸ナトリウムで乾燥した。クロロホルム溶液をろ過後、エバポレーターでろ液の溶媒を留去した。得られた固体をヘキサンで洗浄し、減圧下で乾燥して化合物6を10.9g得た。
(化合物7の合成)
Figure JPOXMLDOC01-appb-I000032
 フラスコ内の気体をアルゴンで置換した100mLの四つ口フラスコに、化合物6を1.00g(4.80mmol)と脱水THFを30ml入れて均一な溶液とした。フラスコを−20℃に保ちながら、1Mの3,7−ジメチルオクチルマグネシウムブロミドのエーテル溶液を12.7mL加えた。その後、30分かけて反応液の温度を−5℃まで上げ、そのまま30分攪拌した。その後、10分かけて反応液の温度を0℃に上げ、そのまま1.5時間攪拌を行った。その後、反応液に水を加えて反応を停止し、酢酸エチルで反応生成物を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、ろ過後、酢酸エチル溶液をシリカゲルカラムに通し、ろ液の溶媒を留去し、化合物7を1.50g得た。
H NMR in CDCl(ppm):8.42(b、1H)、7.25(d、1H)、7.20(d、1H)、6.99(d、1H)、6.76(d、1H)、2.73(b、1H)、1.90(m、4H)、1.58−1.02(b、20H)、0.92(s、6H)、0.88(s、12H)
(化合物8の合成)
Figure JPOXMLDOC01-appb-I000033
 フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物7を1.50g、トルエンを30mL入れて均一な溶液とした。該溶液にp−トルエンスルホン酸ナトリウム1水和物を100mg入れて100℃で1.5時間攪拌を行った。反応液を室温(25℃)まで冷却後、水50mLを加え、トルエンで反応生成物を抽出した。トルエン溶液である有機層を硫酸ナトリウムで乾燥し、ろ過後、溶媒を留去した。得られた粗生成物を展開溶媒がヘキサンであるシリカゲルカラムで精製し、化合物8を1.33g得た。ここまでの操作を複数回行った。
H NMR in CDCl(ppm):6.98(d、1H)、6.93(d、1H)、6.68(d、1H)、6.59(d、1H)、1.89(m、4H)、1.58−1.00(b、20H)、0.87(s、6H)、0.86(s、12H)
(化合物9の合成)
Figure JPOXMLDOC01-appb-I000034
 フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物8を2.16g(4.55mmol)、脱水THFを100mL入れて均一な溶液とした。該溶液を−78℃に保ち、該溶液に2.6Mのn−ブチルリチウムのヘキサン溶液4.37mL(11.4mmol)を10分かけて滴下した。滴下後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で2時間攪拌した。その後、フラスコを−78℃に冷却し、トリブチルスズクロリドを4.07g(12.5mmol)加えた。添加後、−78℃で30分攪拌し、次いで、室温(25℃)で3時間攪拌した。その後、水200mlを加えて反応を停止し、酢酸エチルで反応生成物を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、ろ過後、ろ液をエバポレーターで濃縮し、溶媒を留去した。得られたオイル状の物質を展開溶媒がヘキサンであるシリカゲルカラムで精製した。シリカゲルカラムのシリカゲルには、あらかじめ5wt%のトリエチルアミンを含むヘキサンに5分間浸し、その後、ヘキサンで濯いだシリカゲルを用いた。精製後、化合物9を3.52g(3.34mmol)得た。
合成例2(化合物10の合成)
Figure JPOXMLDOC01-appb-I000035
 500mlフラスコに、4,5−ジフルオロ−1,2−ジアミノベンゼン(東京化成工業製)を10.2g(70.8mmol)、ピリジンを150mL入れて均一溶液とした。フラスコを0℃に保ったまま、フラスコ内に塩化チオニル16.0g(134mmol)を滴下した。滴下後、フラスコを25℃に温めて、6時間反応を行った。その後、水250mlを加え、クロロホルムで反応生成物を抽出した。クロロホルム溶液である有機層を硫酸ナトリウムで乾燥し、ろ過した。ろ液をエバポレーターで濃縮して析出した固体を再結晶で精製した。再結晶の溶媒には、メタノールを用いた。精製後、化合物10を10.5g(61.0mmol)得た。
H NMR(CDCl、ppm):7.75(t、2H)
19F NMR(CDCl、ppm):−128.3(s、2F)
(化合物11の合成)
Figure JPOXMLDOC01-appb-I000036
 100mLフラスコに化合物10を2.00g(11.6mmol)、鉄粉0.20g(3.58mmol)をいれ、フラスコを90℃に加熱した。このフラスコに臭素31g(194mmol)を1時間かけて滴下した。滴下後、90℃で38時間攪拌した。その後、フラスコを室温(25℃)まで冷却し、クロロホルム100mLを入れて希釈した。得られた溶液を、5wt%の亜硫酸ナトリウム水溶液300mLに注ぎ込み、1時間攪拌した。得られた混合液の有機層を分液ロートで分離し、水層をクロロホルムで3回抽出した。得られた抽出液を先ほど分離した有機層と合わせて硫酸ナトリウムで乾燥した。ろ過後、ろ液をエバポレーターで濃縮し、溶媒を留去した。得られた黄色の固体を、55℃に熱したメタノール90mLに溶解させ、その後、25℃まで冷却した。析出した結晶をろ過回収し、その後、室温(25℃)で減圧乾燥して化合物11を1.50g得た。
19F NMR(CDCl、ppm):−118.9(s、2F)
合成例3(高分子化合物Aの作製)
 フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物9を500mg(0.475mmol)、化合物11を141mg(0.427mmol)、トルエンを32ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを6.52mg(0.007mmol)、トリス(2−トルイル)ホスフィンを13.0mg加え、100℃で6時間攪拌した。その後、反応液にフェニルブロミドを500mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール300mLに注いだ。析出したポリマーをろ過して回収し、得られたポリマーを、円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、トルエン100mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム2gと水40mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3重量(wt)%の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、5%フッ化カリウム水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン50mLに再度溶解し、アルミナ/シリカゲルカラムを通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された重合体185mgを得た。以下、この重合体を高分子化合物Aと呼称する。
Figure JPOXMLDOC01-appb-I000037
 高分子化合物Aは下記繰り返し単位を有している。式中、nは、繰り返し単位の数を表す。
Figure JPOXMLDOC01-appb-I000038
実施例1 (有機光電変換素子の作製)
 スパッタ法にて成膜された約150nmの膜厚のITOがパターニングされたガラス基板を、有機溶媒、アルカリ洗剤、及び超純水で洗浄し、乾燥させた。紫外線オゾン(UV−O)装置を用い、該ガラス基板に紫外線オゾン(UV−O)処理を施した。
 ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルフォン酸を水に溶解させた懸濁液(HCスタルクビーテック社製、Bytron P TP AI 4083)を孔径0.5μmのフィルターでろ過した。ろ過後の懸濁液を、基板のITO側にスピンコートして70nmの厚みで成膜した。次いで、大気中において、ホットプレート上で200℃で10分間乾燥させ、有機層を形成した。
 次に、オルトジクロロベンゼン(SP値:20.72(J/cm1/2、沸点:183℃)とクロロホルム(SP値:18.81(J/cm1/2、沸点:61.2℃)とを、重量比が85:15となるように混合し、混合溶液を作製した。次に、高分子化合物Aと[6,6]−フェニルC71−酪酸メチルエステル([6,6]−Phenyl C71 butyric acid methyl ester)とを重量比が1:2となるように該混合溶液に添加し、塗布溶媒を作製した。高分子化合物Aの添加量が該混合溶媒の重量に対して0.5重量%となるように添加した。高分子化合物Aのポリスチレン換算の重量平均分子量が29000であり、ポリスチレン換算の数平均分子量が14000であった。高分子化合物Aの光吸収端波長は890nmであった。
 該塗布溶液中にスターラーチップを投入し、300rpmから1000rpmの回転数で攪拌混合を行った。攪拌混合は温度可変機能付きホットスターラー上で行い、設定温度を70℃とした。その後、塗布溶液を孔径0.5μmのフィルターでろ過を行い、得られたろ液を該有機層上にスピンコートした後、窒素雰囲気中で乾燥を行い、活性層を形成した。
 抵抗加熱蒸着装置内にて、活性層の上部にLiFを約2.3nmの膜厚で成膜し、続いてAlを約70nmの膜厚で成膜し、電極を形成した。次いで、エポキシ樹脂(急速硬化型アラルダイト)を封止剤として用いてガラス基板を接着することで封止処理を施し、有機薄膜太陽電池を得た。
比較例1 (有機光電変換素子の作製)
 オルトジクロロベンゼンとクロロホルムとの混合溶液にかえて、オルトジクロロベンゼンを塗布溶媒に用いた以外は実施例1と同様の方法で有機光電変換素子を作製した。
(光電変換効率の評価)
 実施例1及び比較例1において得られた有機光電変換素子である有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。これらの有機薄膜太陽電池に、ソーラシミュレーター(分光計器製、商品名:CEP−2000型、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定し、光電変換効率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000039
Synthesis example 1
(Synthesis of Compound 1)
Figure JPOXMLDOC01-appb-I000026
A 1000 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 13.0 g (80.0 mmol) of 3-bromothiophene and 80 mL of diethyl ether to obtain a uniform solution. While maintaining the solution at −78 ° C., 31 mL (80.6 mmol) of 2.6M n-butyllithium (n-BuLi) in hexane was added dropwise. After reacting at −78 ° C. for 2 hours, a solution prepared by dissolving 8.96 g (80.0 mmol) of 3-thiophenaldehyde in 20 mL of diethyl ether was added dropwise. After dropping, the mixture was stirred at -78 ° C for 30 minutes, and further stirred at room temperature (25 ° C) for 30 minutes. The reaction solution was cooled again to −78 ° C., and 62 mL (161 mmol) of 2.6 M n-BuLi in hexane was added dropwise over 15 minutes. After dropping, the reaction solution was stirred at −25 ° C. for 2 hours, and further stirred at room temperature (25 ° C.) for 1 hour. Thereafter, the reaction solution was cooled to −25 ° C., and a solution in which 60 g (236 mmol) of iodine was dissolved in 1000 mL of diethyl ether was added dropwise over 30 minutes. After dropping, the mixture was stirred at room temperature (25 ° C.) for 2 hours, and 50 mL of 1N aqueous sodium thiosulfate solution was added to stop the reaction. After extracting the reaction product with diethyl ether, the reaction product was dried with magnesium sulfate, filtered, and the filtrate was concentrated to obtain 35 g of a crude product. The crude product was purified by recrystallization using chloroform to obtain 28 g of Compound 1.
(Synthesis of Compound 2)
Figure JPOXMLDOC01-appb-I000027
10.5 g (23.4 mmol) of bisiodothienylmethanol (Compound 1) and 150 mL of methylene chloride were added to a 300 mL four-necked flask to obtain a uniform solution. To the solution, 7.50 g (34.8 mmol) of pyridinium chlorochromate was added and stirred at room temperature (25 ° C.) for 10 hours. The reaction solution was filtered to remove insoluble matters, and then the filtrate was concentrated to obtain 10.0 g (22.4 mmol) of Compound 2.
(Synthesis of Compound 3)
Figure JPOXMLDOC01-appb-I000028
In a 300 mL flask in which the gas in the flask was replaced with argon, 10.0 g (22.4 mmol) of Compound 2 and 6.0 g (94.5 mmol) of copper powder, dehydrated N, N-dimethylformamide (hereinafter referred to as DMF). 120 mL) was added and stirred at 120 ° C. for 4 hours. After the reaction, the flask was cooled to room temperature (25 ° C.), and the reaction solution was passed through a silica gel column to remove insoluble components. Thereafter, 500 mL of water was added, and the reaction product was extracted with chloroform. The oil layer which is a chloroform solution was dried with magnesium sulfate, the oil layer was filtered, and the filtrate was concentrated to obtain a crude product. The crude product was purified with a silica gel column whose developing solvent was chloroform, and 3.26 g of Compound 3 was obtained. The operation so far was performed several times.
(Synthesis of Compound 4)
Figure JPOXMLDOC01-appb-I000029
A flask in which the gas in the flask was replaced with argon was charged with 10.0 g (5.20 mmol) of Compound 3 and 100 mL of tetrahydrofuran (hereinafter sometimes referred to as THF) to obtain a uniform solution. The flask was kept at 0 ° C., and 2.31 g (1.30 mmol) of N-bromosuccinimide (hereinafter sometimes referred to as NBS) was added over 15 minutes. Then, it stirred at 0 degreeC for 2 hours, the depositing solid was filtered and collect | recovered, and it wash | cleaned with 10 weight (wt)% sodium thiosulfate aqueous solution and water. The resulting solid is referred to as crude 4-A. Then, 200 mL of 10 wt% sodium thiosulfate aqueous solution was added to the filtrate, and extracted with chloroform. The organic layer, which is a chloroform solution, was dried over sodium sulfate and filtered. The filtrate was concentrated to recover the precipitated solid. The obtained solid is referred to as crude product 4-B. The crude product 4-A and the crude product 4-B were combined and purified by silica gel column chromatography where the developing solvent was chloroform to obtain 17.3 g of compound 4. The operation so far was performed several times.
(Synthesis of Compound 5)
Figure JPOXMLDOC01-appb-I000030
A homogeneous solution was prepared by adding 25.0 g (71.4 mmol) of Compound 4, 250 mL of chloroform, and 160 mL of trifluoroacetic acid to a 1000 mL four-necked flask equipped with a mechanical stirrer and replacing the gas in the flask with argon. . To the solution, 21.0 g (210 mmol) of sodium perborate monohydrate was added over 35 minutes, and the mixture was stirred at room temperature (25 ° C.) for 240 minutes. Thereafter, 500 mL of a 5 wt% aqueous sodium sulfite solution was added to the reaction solution to stop the reaction, and sodium bicarbonate was added until the pH of the reaction solution reached 6. Thereafter, the reaction product was extracted with chloroform, the organic layer as a chloroform solution was passed through a silica gel column to obtain a filtrate, and the solvent of the filtrate was distilled off with an evaporator. The residue was recrystallized using methanol to obtain 7.70 g (21.0 mmol) of Compound 5. The operation so far was performed several times.
(Synthesis of Compound 6)
Figure JPOXMLDOC01-appb-I000031
A 2000 mL flask in which the gas in the flask was replaced with argon was charged with 23.1 g (63.1 mmol) of Compound 5 and 1500 mL of THF to obtain a uniform solution. The flask was cooled to −50 ° C., and 190 mL of 1 mol / L n-octylmagnesium bromide in THF was added dropwise over 10 minutes. After stirring the reaction solution at −50 ° C. for 30 minutes, 500 mL of water was added to stop the reaction. The reaction solution was warmed to room temperature (25 ° C.), 1000 mL of THF was distilled off with an evaporator, and 100 mL of acetic acid was added. The reactive organism was extracted with chloroform, and then the chloroform solution was dried over sodium sulfate. After the chloroform solution was filtered, the solvent of the filtrate was distilled off with an evaporator. The obtained solid was washed with hexane and dried under reduced pressure to obtain 10.9 g of Compound 6.
(Synthesis of Compound 7)
Figure JPOXMLDOC01-appb-I000032
In a 100 mL four-necked flask in which the gas in the flask was replaced with argon, 1.00 g (4.80 mmol) of Compound 6 and 30 ml of dehydrated THF were added to obtain a uniform solution. While maintaining the flask at −20 ° C., 12.7 mL of 1M 3,7-dimethyloctylmagnesium bromide ether solution was added. Thereafter, the temperature of the reaction solution was raised to −5 ° C. over 30 minutes, and stirred as it was for 30 minutes. Thereafter, the temperature of the reaction solution was raised to 0 ° C. over 10 minutes, and the mixture was stirred for 1.5 hours. Thereafter, water was added to the reaction solution to stop the reaction, and the reaction product was extracted with ethyl acetate. The organic layer, which is an ethyl acetate solution, was dried over sodium sulfate, and after filtration, the ethyl acetate solution was passed through a silica gel column, and the solvent of the filtrate was distilled off to obtain 1.50 g of compound 7.
1 H NMR in CDCl 3 (ppm): 8.42 (b, 1H), 7.25 (d, 1H), 7.20 (d, 1H), 6.99 (d, 1H), 6.76 ( d, 1H), 2.73 (b, 1H), 1.90 (m, 4H), 1.58-1.02 (b, 20H), 0.92 (s, 6H), 0.88 (s) , 12H)
(Synthesis of Compound 8)
Figure JPOXMLDOC01-appb-I000033
In a 200 mL flask in which the gas in the flask was replaced with argon, 1.50 g of Compound 7 and 30 mL of toluene were added to obtain a uniform solution. 100 mg of sodium p-toluenesulfonate monohydrate was added to the solution, and the mixture was stirred at 100 ° C. for 1.5 hours. After cooling the reaction solution to room temperature (25 ° C.), 50 mL of water was added, and the reaction product was extracted with toluene. The organic layer, which is a toluene solution, was dried over sodium sulfate and filtered, and then the solvent was distilled off. The obtained crude product was purified with a silica gel column whose developing solvent was hexane, and 1.33 g of Compound 8 was obtained. The operation so far was performed several times.
1 H NMR in CDCl 3 (ppm): 6.98 (d, 1H), 6.93 (d, 1H), 6.68 (d, 1H), 6.59 (d, 1H), 1.89 ( m, 4H), 1.58-1.00 (b, 20H), 0.87 (s, 6H), 0.86 (s, 12H)
(Synthesis of Compound 9)
Figure JPOXMLDOC01-appb-I000034
Into a 200 mL flask in which the gas in the flask was replaced with argon, 2.16 g (4.55 mmol) of Compound 8 and 100 mL of dehydrated THF were added to obtain a uniform solution. The solution was kept at −78 ° C., and 4.37 mL (11.4 mmol) of a 2.6M n-butyllithium hexane solution was added dropwise to the solution over 10 minutes. After the addition, the reaction solution was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 2 hours. Thereafter, the flask was cooled to −78 ° C., and 4.07 g (12.5 mmol) of tributyltin chloride was added. After the addition, the mixture was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 3 hours. Thereafter, 200 ml of water was added to stop the reaction, and the reaction product was extracted with ethyl acetate. The organic layer, which is an ethyl acetate solution, was dried over sodium sulfate and filtered, and then the filtrate was concentrated with an evaporator and the solvent was distilled off. The obtained oily substance was purified by a silica gel column whose developing solvent was hexane. As the silica gel of the silica gel column, silica gel previously immersed in hexane containing 5 wt% triethylamine for 5 minutes and then rinsed with hexane was used. After purification, 3.52 g (3.34 mmol) of compound 9 was obtained.
Synthesis Example 2 (Synthesis of Compound 10)
Figure JPOXMLDOC01-appb-I000035
In a 500 ml flask, 10.5 g (70.8 mmol) of 4,5-difluoro-1,2-diaminobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) and 150 mL of pyridine were added to obtain a homogeneous solution. While maintaining the flask at 0 ° C., 16.0 g (134 mmol) of thionyl chloride was dropped into the flask. After dropping, the flask was warmed to 25 ° C. and reacted for 6 hours. Thereafter, 250 ml of water was added, and the reaction product was extracted with chloroform. The organic layer, which is a chloroform solution, was dried over sodium sulfate and filtered. The filtrate was concentrated with an evaporator and the precipitated solid was purified by recrystallization. Methanol was used as the solvent for recrystallization. After purification, 10.5 g (61.0 mmol) of Compound 10 was obtained.
1 H NMR (CDCl 3 , ppm): 7.75 (t, 2H)
19 F NMR (CDCl 3 , ppm): -128.3 (s, 2F)
(Synthesis of Compound 11)
Figure JPOXMLDOC01-appb-I000036
In a 100 mL flask, 2.00 g (11.6 mmol) of Compound 10 and 0.20 g (3.58 mmol) of iron powder were added, and the flask was heated to 90 ° C. To this flask, 31 g (194 mmol) of bromine was added dropwise over 1 hour. After dropping, the mixture was stirred at 90 ° C. for 38 hours. Thereafter, the flask was cooled to room temperature (25 ° C.) and diluted with 100 mL of chloroform. The obtained solution was poured into 300 mL of 5 wt% aqueous sodium sulfite solution and stirred for 1 hour. The organic layer of the obtained mixture was separated with a separatory funnel, and the aqueous layer was extracted with chloroform three times. The obtained extract was combined with the organic layer separated earlier and dried over sodium sulfate. After filtration, the filtrate was concentrated with an evaporator and the solvent was distilled off. The obtained yellow solid was dissolved in 90 mL of methanol heated to 55 ° C., and then cooled to 25 ° C. The precipitated crystals were collected by filtration and then dried under reduced pressure at room temperature (25 ° C.) to obtain 1.50 g of compound 11.
19 F NMR (CDCl 3 , ppm): -118.9 (s, 2F)
Synthesis Example 3 (Preparation of polymer compound A)
A 200 mL flask in which the gas in the flask was replaced with argon was charged with 500 mg (0.475 mmol) of Compound 9, 141 mg (0.427 mmol) of Compound 11, and 32 ml of toluene to obtain a uniform solution. The resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 6.52 mg (0.007 mmol) of tris (dibenzylideneacetone) dipalladium and 13.0 mg of tris (2-toluyl) phosphine were added to the toluene solution, and the mixture was stirred at 100 ° C. for 6 hours. Thereafter, 500 mg of phenyl bromide was added to the reaction solution, and the mixture was further stirred for 5 hours. Thereafter, the flask was cooled to 25 ° C., and the reaction solution was poured into 300 mL of methanol. The precipitated polymer was collected by filtration, and the obtained polymer was put into a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours each using a Soxhlet extractor. The polymer remaining in the cylindrical filter paper was dissolved in 100 mL of toluene, 2 g of sodium diethyldithiocarbamate and 40 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removing the aqueous layer, the organic layer is washed twice with 50 ml of water, then twice with 50 mL of a 3 wt% aqueous acetic acid solution, then twice with 50 mL of water and then with 5% fluoride. This was washed twice with 50 mL of an aqueous potassium chloride solution and then twice with 50 mL of water, and the resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the obtained polymer was dissolved again in 50 mL of o-dichlorobenzene and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and dried to obtain 185 mg of a purified polymer. Hereinafter, this polymer is referred to as polymer compound A.
Figure JPOXMLDOC01-appb-I000037
The high molecular compound A has the following repeating unit. In the formula, n represents the number of repeating units.
Figure JPOXMLDOC01-appb-I000038
Example 1 (Preparation of an organic photoelectric conversion element)
A glass substrate on which ITO with a thickness of about 150 nm formed by sputtering was patterned was washed with an organic solvent, an alkaline detergent, and ultrapure water, and dried. The glass substrate was subjected to ultraviolet ozone (UV-O 3 ) treatment using an ultraviolet ozone (UV-O 3 ) apparatus.
A suspension of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid dissolved in water (HC Starck B-Tech, Bytron P TP AI 4083) was filtered through a filter having a pore size of 0.5 μm. The suspension after filtration was spin-coated on the ITO side of the substrate to form a film with a thickness of 70 nm. Subsequently, it was dried on the hot plate at 200 ° C. for 10 minutes in the air to form an organic layer.
Next, orthodichlorobenzene (SP value: 20.72 (J / cm 3 ) 1/2 , boiling point: 183 ° C.) and chloroform (SP value: 18.81 (J / cm 3 ) 1/2 , boiling point: 61 2 ° C.) was mixed at a weight ratio of 85:15 to prepare a mixed solution. Next, polymer compound A and [6,6] -phenyl C71-butyric acid methyl ester ([6,6] -Phenyl C71 butyric acid methyl ester) are added to the mixed solution so that the weight ratio is 1: 2. This was added to prepare a coating solvent. The polymer compound A was added so that the amount added was 0.5% by weight with respect to the weight of the mixed solvent. The polymer compound A had a polystyrene equivalent weight average molecular weight of 29000 and a polystyrene equivalent number average molecular weight of 14,000. The light absorption edge wavelength of the polymer compound A was 890 nm.
A stirrer chip was introduced into the coating solution, and stirring and mixing were performed at a rotation speed of 300 rpm to 1000 rpm. The stirring and mixing was performed on a hot stirrer with a temperature variable function, and the set temperature was set to 70 ° C. Thereafter, the coating solution was filtered with a filter having a pore size of 0.5 μm, and the obtained filtrate was spin-coated on the organic layer, followed by drying in a nitrogen atmosphere to form an active layer.
In a resistance heating vapor deposition apparatus, LiF was formed to a thickness of about 2.3 nm on the active layer, and subsequently Al was formed to a thickness of about 70 nm to form an electrode. Subsequently, the sealing process was performed by adhere | attaching a glass substrate using an epoxy resin (rapid hardening type Araldite) as a sealing agent, and the organic thin-film solar cell was obtained.
Comparative Example 1 (Production of organic photoelectric conversion element)
An organic photoelectric conversion device was produced in the same manner as in Example 1 except that orthodichlorobenzene was used as a coating solvent in place of the mixed solution of orthodichlorobenzene and chloroform.
(Evaluation of photoelectric conversion efficiency)
The shape of the organic thin film solar cell which is the organic photoelectric conversion element obtained in Example 1 and Comparative Example 1 was a square of 2 mm × 2 mm. These organic thin film solar cells are irradiated with a certain amount of light using a solar simulator (trade name: CEP-2000, manufactured by Spectrometer Co., Ltd., irradiance: 100 mW / cm 2 ), and the generated current and voltage are measured. Conversion efficiency was calculated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000039
 本発明の製造方法によれば、光電変換効率に優れた有機光電変換素子を製造することができる。 According to the production method of the present invention, an organic photoelectric conversion element having excellent photoelectric conversion efficiency can be produced.

Claims (16)

  1.  一対の電極と、一対の電極の間に高分子化合物を含む活性層とを備え、高分子化合物が式(1)
    Figure JPOXMLDOC01-appb-I000001
    〔式中、Ar及びArは、同一又は相異なり、3価の芳香族基を表す。Zは、−O−、−S−、−C(=O)−、−CR−、−S(=O)−、−SO−、−Si(R)(R)−、−N(R)−、−B(R)−、−P(R)−又は−P(=O)(R)−を表す。R、R、R、R、R、R、R及びRは、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。nは1又は2を表す。nが2の場合、2つのZは同一でも異なっていてもよい。]
    で表される構造単位を有する有機光電変換素子の製造方法であって、活性層を、高分子化合物、第1の溶媒、及び第1の溶媒とは異なる第2の溶媒を含む液から形成させる有機光電変換素子の製造方法。
    A pair of electrodes and an active layer containing a polymer compound between the pair of electrodes are provided, and the polymer compound has the formula (1)
    Figure JPOXMLDOC01-appb-I000001
    [Wherein, Ar 1 and Ar 2 are the same or different and each represents a trivalent aromatic group. Z represents —O—, —S—, —C (═O) —, —CR 1 R 2 —, —S (═O) —, —SO 2 —, —Si (R 3 ) (R 4 ) —. , -N (R 5) -, - B (R 6) -, - P (R 7) - or -P (= O) (R 8 ) - represents a. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and are a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy Group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, acyl group, acyloxy group, amide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group Represents a substituted silylamino group, a monovalent heterocyclic group, a heterocyclic oxy group, a heterocyclic thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group, or a cyano group. n represents 1 or 2. When n is 2, two Z may be the same or different. ]
    The active layer is formed from a liquid containing a polymer compound, a first solvent, and a second solvent different from the first solvent. The manufacturing method of an organic photoelectric conversion element.
  2.  高分子化合物が、さらに以下の式(2−1)から(2−10)のいずれかの構造単位を含む高分子化合物である請求項1の方法。
    Figure JPOXMLDOC01-appb-I000002
    〔式(2−1)~(2−10)中、R21~R42は、それぞれ独立に、水素原子又は置換基を表す。X21~X30は、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。〕
    The method according to claim 1, wherein the polymer compound further comprises a structural unit represented by any one of the following formulas (2-1) to (2-10).
    Figure JPOXMLDOC01-appb-I000002
    [In formulas (2-1) to (2-10), R 21 to R 42 each independently represents a hydrogen atom or a substituent. X 21 to X 30 each independently represents a sulfur atom, an oxygen atom or a selenium atom. ]
  3.  高分子化合物が、さらに式(2)で表される構造単位含む高分子化合物である請求項1の方法。
    Figure JPOXMLDOC01-appb-I000003
    〔式中、X及びXは、同一又は相異なり、窒素原子又は=CH−を表す。Yは、硫黄原子、酸素原子、セレン原子、−N(R43)−又は−CR44=CR45−を表す。R43、R44及びR45は、同一又は相異なり、水素原子又は置換基を表す。W及びWは、同一又は相異なり、シアノ基、フッ素原子を有する1価の有機基、ハロゲン原子又は水素原子を表す。〕
    The method according to claim 1, wherein the polymer compound is a polymer compound further comprising a structural unit represented by the formula (2).
    Figure JPOXMLDOC01-appb-I000003
    [Wherein, X 1 and X 2 are the same or different and represent a nitrogen atom or ═CH—. Y 1 is a sulfur atom, an oxygen atom, a selenium atom, -N (R 43) - or -CR 44 = CR 45 - represents a. R 43 , R 44 and R 45 are the same or different and each represents a hydrogen atom or a substituent. W 1 and W 2 are the same or different and represent a cyano group, a monovalent organic group having a fluorine atom, a halogen atom or a hydrogen atom. ]
  4.  Wがフッ素原子である請求項3に記載の方法。 The method according to claim 3, wherein W 1 is a fluorine atom.
  5.  W及びWがフッ素原子である請求項3に記載の方法。 The method according to claim 3, wherein W 1 and W 2 are fluorine atoms.
  6.  XとXの少なくとも一方が、窒素原子である請求項3に記載の方法。 The method according to claim 3, wherein at least one of X 1 and X 2 is a nitrogen atom.
  7.  XとXが、共に窒素原子である請求項3に記載の方法。 The method according to claim 3, wherein X 1 and X 2 are both nitrogen atoms.
  8.  Yが、硫黄原子又は酸素原子である請求項3に記載の方法。 The method according to claim 3, wherein Y 1 is a sulfur atom or an oxygen atom.
  9.  第1の溶媒が芳香族塩素化合物であり、第2の溶媒が脂肪族塩素化合物である請求項1に記載の方法。 The method according to claim 1, wherein the first solvent is an aromatic chlorine compound and the second solvent is an aliphatic chlorine compound.
  10.  一対の電極と、一対の電極の間に活性層を備える有機光電変換素子の製造方法であって、一方の電極上に、高分子化合物と第1の溶媒と第1の溶媒とは異なる第2の溶媒とを含む液を塗布して活性層を形成する工程、及び、活性層上に他方の電極を形成する工程を含む請求項1に記載の方法。 A method of manufacturing an organic photoelectric conversion element including an active layer between a pair of electrodes and a pair of electrodes, wherein the second compound is different from the polymer compound, the first solvent, and the first solvent on one electrode. The method of Claim 1 including the process of forming the active layer by apply | coating the liquid containing these solvents, and forming the other electrode on an active layer.
  11.  請求項1に記載の方法により製造される有機光電変換素子。 An organic photoelectric conversion element produced by the method according to claim 1.
  12.  式(1)で表される構造単位を含む高分子化合物、第1の溶媒、及び第1の溶媒とは異なる第2の溶媒を含有する液。
    Figure JPOXMLDOC01-appb-I000004
    〔式中、Ar及びArは、同一又は相異なり、3価の芳香族基を表す。Zは、−O−、−S−、−C(=O)−、−CR−、−S(=O)−、−SO−、−Si(R)(R)−、−N(R)−、−B(R)−、−P(R)−又は−P(=O)(R)−を表す。R、R、R、R、R、R、R及びRは、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。nは1又は2を表す。nが2の場合、2つのZは同一でも異なっていてもよい。]
    A liquid containing a polymer compound containing the structural unit represented by formula (1), a first solvent, and a second solvent different from the first solvent.
    Figure JPOXMLDOC01-appb-I000004
    [Wherein, Ar 1 and Ar 2 are the same or different and each represents a trivalent aromatic group. Z represents —O—, —S—, —C (═O) —, —CR 1 R 2 —, —S (═O) —, —SO 2 —, —Si (R 3 ) (R 4 ) —. , -N (R 5) -, - B (R 6) -, - P (R 7) - or -P (= O) (R 8 ) - represents a. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and are a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy Group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, acyl group, acyloxy group, amide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group Represents a substituted silylamino group, a monovalent heterocyclic group, a heterocyclic oxy group, a heterocyclic thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group, or a cyano group. n represents 1 or 2. When n is 2, two Z may be the same or different. ]
  13.  高分子化合物が、式(1)で表される構造単位に加えて、さらに、式(2−1)から(2−10)のいずれかの繰り返し単位を含む高分子化合物である請求項12の液。
    Figure JPOXMLDOC01-appb-I000005
    〔式(2−1)~(2−10)中、R21~R42は、それぞれ独立に、水素原子又は置換基を表す。X21~X30は、それぞれ独立に、硫黄原子、酸素原子又はセレン原子を表す。〕
    13. The polymer compound according to claim 12, wherein the polymer compound further contains a repeating unit of any one of formulas (2-1) to (2-10) in addition to the structural unit represented by formula (1). liquid.
    Figure JPOXMLDOC01-appb-I000005
    [In formulas (2-1) to (2-10), R 21 to R 42 each independently represents a hydrogen atom or a substituent. X 21 to X 30 each independently represents a sulfur atom, an oxygen atom or a selenium atom. ]
  14.  高分子化合物が、式(1)で表される構造単位に加えて、さらに、式(2)で表される構造単位を含む高分子化合物である請求項12に記載の液。
    Figure JPOXMLDOC01-appb-I000006
    〔式中、X及びXは、同一又は相異なり、窒素原子又は=CH−を表す。Yは、硫黄原子、酸素原子、セレン原子、−N(R43)−又は−CR44=CR45−を表す。R43、R44及びR45は、同一又は相異なり、水素原子又は置換基を表す。W及びWは、同一又は相異なり、シアノ基、フッ素原子を有する1価の有機基、ハロゲン原子又は水素原子を表す。〕
    The liquid according to claim 12, wherein the polymer compound is a polymer compound further containing a structural unit represented by the formula (2) in addition to the structural unit represented by the formula (1).
    Figure JPOXMLDOC01-appb-I000006
    [Wherein, X 1 and X 2 are the same or different and represent a nitrogen atom or ═CH—. Y 1 is a sulfur atom, an oxygen atom, a selenium atom, -N (R 43) - or -CR 44 = CR 45 - represents a. R 43 , R 44 and R 45 are the same or different and each represents a hydrogen atom or a substituent. W 1 and W 2 are the same or different and represent a cyano group, a monovalent organic group having a fluorine atom, a halogen atom or a hydrogen atom. ]
  15.  式(2)で表される構造単位を含有する高分子化合物、第1の溶媒、及び第1の溶媒とは異なる第2の溶媒を含有する請求項12に記載の液。 The liquid according to claim 12, comprising a polymer compound containing the structural unit represented by the formula (2), a first solvent, and a second solvent different from the first solvent.
  16.  式(1)で表される構造単位及び式(2)で表される構造単位を含む高分子化合物、第1の溶媒、及び第1の溶媒とは異なる第2の溶媒を含有する請求項12に記載の液。
    Figure JPOXMLDOC01-appb-I000007
    〔式中、Ar及びArは、同一又は相異なり、3価の芳香族基を表す。Zは、−O−、−S−、−C(=O)−、−CR−、−S(=O)−、−SO−、−Si(R)(R)−、−N(R)−、−B(R)−、−P(R)−又は−P(=O)(R)−を表す。R、R、R、R、R、R、R及びRは、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。nは1又は2を表す。nが2の場合、2つのZは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-I000008
    〔式中、X及びXは、同一又は相異なり、窒素原子又は=CH−を表す。Yは、硫黄原子、酸素原子、セレン原子、−N(R43)−又は−CR44=CR45−を表す。R43、R44及びR45は、同一又は相異なり、水素原子又は置換基を表す。W及びWは、同一又は相異なり、シアノ基、フッ素原子を有する1価の有機基、ハロゲン原子又は水素原子を表す。〕
    13. The polymer unit containing the structural unit represented by the formula (1) and the structural unit represented by the formula (2), the first solvent, and a second solvent different from the first solvent. Liquid described in 1.
    Figure JPOXMLDOC01-appb-I000007
    [Wherein, Ar 1 and Ar 2 are the same or different and each represents a trivalent aromatic group. Z represents —O—, —S—, —C (═O) —, —CR 1 R 2 —, —S (═O) —, —SO 2 —, —Si (R 3 ) (R 4 ) —. , -N (R 5) -, - B (R 6) -, - P (R 7) - or -P (= O) (R 8 ) - represents a. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and are a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy Group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, acyl group, acyloxy group, amide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group Represents a substituted silylamino group, a monovalent heterocyclic group, a heterocyclic oxy group, a heterocyclic thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group, or a cyano group. n represents 1 or 2. When n is 2, two Z may be the same or different. ]
    Figure JPOXMLDOC01-appb-I000008
    [Wherein, X 1 and X 2 are the same or different and represent a nitrogen atom or ═CH—. Y 1 is a sulfur atom, an oxygen atom, a selenium atom, -N (R 43) - or -CR 44 = CR 45 - represents a. R 43 , R 44 and R 45 are the same or different and each represents a hydrogen atom or a substituent. W 1 and W 2 are the same or different and represent a cyano group, a monovalent organic group having a fluorine atom, a halogen atom or a hydrogen atom. ]
PCT/JP2012/053736 2011-02-14 2012-02-10 Manufacturing method for organic photoelectric conversion element WO2012111784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011028259 2011-02-14
JP2011-028259 2011-02-14

Publications (1)

Publication Number Publication Date
WO2012111784A1 true WO2012111784A1 (en) 2012-08-23

Family

ID=46672696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053736 WO2012111784A1 (en) 2011-02-14 2012-02-10 Manufacturing method for organic photoelectric conversion element

Country Status (3)

Country Link
JP (1) JP2012186462A (en)
TW (1) TW201238994A (en)
WO (1) WO2012111784A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076213A1 (en) * 2014-11-13 2016-05-19 住友化学株式会社 Ink composition and photoelectric conversion element produced using same
CN110741028A (en) * 2017-06-01 2020-01-31 住友化学株式会社 Method for producing polymer compound

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6096315B2 (en) * 2012-11-30 2017-03-15 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー Benzodithiophene-based copolymer containing isoindoline-1,3-diketone unit, production method, and method of use thereof
WO2014119962A1 (en) * 2013-02-01 2014-08-07 부산대학교 산학협력단 Novel polymer material for hightly efficient organic thin-film solar cell, and organic thin-film solar cell using same
GB2572573A (en) 2018-04-03 2019-10-09 Sumitomo Chemical Co Organic photodetector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212477A (en) * 2008-02-29 2009-09-17 National Chiao Tung Univ Organic active layer material solution for polymer solar cell and method of manufacturing the same
WO2010021921A1 (en) * 2008-08-20 2010-02-25 Plextronics, Inc. Improved solvent system for fabrication of organic solar cells
JP2010050159A (en) * 2008-08-19 2010-03-04 Panasonic Electric Works Co Ltd Organic power generation element
JP2010074127A (en) * 2008-02-18 2010-04-02 Sumitomo Chemical Co Ltd Composition and organic photoelectric conversion device using the same
WO2010084865A1 (en) * 2009-01-20 2010-07-29 東レ株式会社 Material for photovoltaic element, and photovoltaic element
JP2010528119A (en) * 2007-05-02 2010-08-19 プレックストロニクス インコーポレーティッド Solvent system for conjugated polymers
JP2010205976A (en) * 2009-03-04 2010-09-16 Konica Minolta Holdings Inc Organic photoelectric conversion element and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2259356A4 (en) * 2008-03-25 2012-05-02 Sumitomo Chemical Co Composition and photo-electric converting element obtained using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528119A (en) * 2007-05-02 2010-08-19 プレックストロニクス インコーポレーティッド Solvent system for conjugated polymers
JP2010074127A (en) * 2008-02-18 2010-04-02 Sumitomo Chemical Co Ltd Composition and organic photoelectric conversion device using the same
JP2009212477A (en) * 2008-02-29 2009-09-17 National Chiao Tung Univ Organic active layer material solution for polymer solar cell and method of manufacturing the same
JP2010050159A (en) * 2008-08-19 2010-03-04 Panasonic Electric Works Co Ltd Organic power generation element
WO2010021921A1 (en) * 2008-08-20 2010-02-25 Plextronics, Inc. Improved solvent system for fabrication of organic solar cells
WO2010084865A1 (en) * 2009-01-20 2010-07-29 東レ株式会社 Material for photovoltaic element, and photovoltaic element
JP2010205976A (en) * 2009-03-04 2010-09-16 Konica Minolta Holdings Inc Organic photoelectric conversion element and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076213A1 (en) * 2014-11-13 2016-05-19 住友化学株式会社 Ink composition and photoelectric conversion element produced using same
JPWO2016076213A1 (en) * 2014-11-13 2017-06-29 住友化学株式会社 Ink composition and photoelectric conversion element manufactured using the same
CN110741028A (en) * 2017-06-01 2020-01-31 住友化学株式会社 Method for producing polymer compound
CN110741028B (en) * 2017-06-01 2022-05-03 住友化学株式会社 Method for producing polymer compound

Also Published As

Publication number Publication date
JP2012186462A (en) 2012-09-27
TW201238994A (en) 2012-10-01

Similar Documents

Publication Publication Date Title
JP5999095B2 (en) Polymer compound and electronic device
JP5720178B2 (en) High molecular compound
JP5720179B2 (en) High molecular compound
JP5742422B2 (en) Polymer compounds, compounds and uses thereof
JP5720180B2 (en) Photoelectric conversion element
JP5906803B2 (en) Organic photoelectric conversion element material and method for producing organic photoelectric conversion element
JP5740836B2 (en) Photoelectric conversion element
WO2012111784A1 (en) Manufacturing method for organic photoelectric conversion element
JP5742494B2 (en) Polymer compound and electronic device using the same
JP2013237828A (en) Method for producing nitrogen-containing compound
WO2011052725A1 (en) Polymeric compound
WO2013183549A1 (en) Composition and electronic element using same
WO2012147564A1 (en) High-molecular-weight compound and electronic element comprising same
JP5927965B2 (en) Manufacturing method of organic photoelectric conversion element
JP2013095813A (en) Polymer compound and photoelectric conversion element using the same
WO2011052726A1 (en) Composition and electronic element
WO2012173030A1 (en) Photoelectric conversion element
JP2013220994A (en) Compound and electronic element using the same
JP5893846B2 (en) Method for producing compound
JP2011165789A (en) Photoelectric conversion element
WO2015108206A1 (en) Compound and electronic element
JP2014189721A (en) Polymer compound
JP2013119589A (en) Polymer compound and electronic device
JP2015095576A (en) Buffer layer containing phosphine oxide compounds and photoelectric conversion element using the same
JP2013185047A (en) Method of manufacturing compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747432

Country of ref document: EP

Kind code of ref document: A1