WO2012111656A1 - ナノインプリント用硬化性組成物、ナノインプリント成形体及びパターン形成方法 - Google Patents

ナノインプリント用硬化性組成物、ナノインプリント成形体及びパターン形成方法 Download PDF

Info

Publication number
WO2012111656A1
WO2012111656A1 PCT/JP2012/053373 JP2012053373W WO2012111656A1 WO 2012111656 A1 WO2012111656 A1 WO 2012111656A1 JP 2012053373 W JP2012053373 W JP 2012053373W WO 2012111656 A1 WO2012111656 A1 WO 2012111656A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
mold
parts
pattern
Prior art date
Application number
PCT/JP2012/053373
Other languages
English (en)
French (fr)
Inventor
均 関根
高田 泰廣
谷本 尚志
直人 矢木
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020137021333A priority Critical patent/KR20130115358A/ko
Priority to DE112012000833.2T priority patent/DE112012000833T8/de
Priority to CN201280008915.6A priority patent/CN103392221B/zh
Priority to US13/985,792 priority patent/US20140061970A1/en
Publication of WO2012111656A1 publication Critical patent/WO2012111656A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/006Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to block copolymers containing at least one sequence of polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds

Definitions

  • the present invention relates to a curable composition used for “nanoimprint” for transferring a fine concavo-convex pattern by pressing a nanoimprint mold, a nanoimprint molded article using the same, a resist film, a resin mold, and a pattern forming method.
  • a lithography method or a laser direct drawing method has been performed.
  • the lithography method does not have a resolution below the wavelength of light, it is difficult to create a fine structure of, for example, 100 nm or less.
  • processing at a level of 100 nm or less is possible by the laser direct writing method, but the poor throughput is a problem.
  • nanoimprint lithography technology has been studied as a method for improving throughput.
  • a nanoimprint master mold in which a predetermined fine concavo-convex pattern is created in advance by electron beam lithography or the like is pressed against the substrate coated with the nanoimprint resin, and the concavoconvex of the nanoimprint master mold is transferred to the nanoimprint resin on the substrate.
  • resin compositions applied to the nanoimprint lithography technology have also been proposed. (For example, see Patent Document 1)
  • composition that can be applied to the nanoimprint lithography technology is excellent in pattern formation because it is necessary to form a fine concavo-convex pattern, and the pattern shape retention after removing the residual film from the cured pattern, that is, the nanoimprint cured product, Alternatively, performance such as excellent releasability from the mold or transparency, heat resistance, light resistance, water resistance, solvent resistance, acid resistance and the like of the obtained nanoimprint cured product is required.
  • the problem to be solved by the present invention is to provide a curable composition for nanoimprint that is excellent in pattern moldability and pattern retention and can be used for nanoimprint, and a nanoimprint molded article using the same.
  • another object of the present invention is to provide a resist film made of the nanoimprint molded body having excellent etching resistance, and a pattern molded product obtained by etching the resist film.
  • another object of the present invention is to provide a resin mold made of the nanoimprint molded article that can transfer a nano-order fine pattern and has excellent releasability, and a replica mold manufactured using the resin mold.
  • the present inventors include a composite resin having a silanol group and / or a hydrolyzable silyl group, a polysiloxane segment having a polymerizable double bond, and a polymer segment other than the polysiloxane.
  • the curable composition for nanoimprinting was found to be particularly excellent in pattern formability and pattern shape retention, and solved the above problems.
  • the present invention relates to a polysiloxane segment (a1) having a structural unit represented by general formula (1) and / or general formula (2), a silanol group and / or a hydrolyzable silyl group,
  • a nanoimprint curable composition containing a composite resin (A) in which a coalesced segment (a2) is bonded by a bond represented by the general formula (3), and a photopolymerization initiator.
  • R 1 , R 2 and R 3 each independently represent —R 4 —CH ⁇ CH 2 , —R 4 —C (CH 3 ) ⁇ CH 2 , — A group having one polymerizable double bond selected from the group consisting of R 4 —O—CO—C (CH 3 ) ⁇ CH 2 and —R 4 —O—CO—CH ⁇ CH 2 (where R 4 is A single bond or an alkylene group having 1 to 6 carbon atoms), an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, or 7 to 7 carbon atoms. 12 represents an aralkyl group, and at least one of R 1 , R 2 and R 3 is a group having the polymerizable double bond)
  • the present invention also provides a nanoimprint molded article obtained by curing the curable composition for nanoimprints described above.
  • the present invention also provides a nanoimprint laminate, wherein the nanoimprint molded article described above is laminated on a substrate.
  • the present invention also provides the nanoimprint molded article as described above, which is a resist film.
  • the present invention also provides the nanoimprint molded article as described above, which is a resin mold.
  • the present invention provides a replica mold, which is produced using the resin mold described above.
  • the present invention also includes a step of applying the nanoimprint curable composition described above to a substrate to form a film, and pressing a mold having a concavo-convex structure, and in this state, the active energy ray is applied to the nanoimprint curable composition.
  • a pattern forming method including a step of curing and a step of peeling a mold thereafter.
  • the present invention provides a pattern forming method, wherein the pattern is formed on the substrate by dry etching the substrate using the pattern formed on the resist film laminated on the nanoimprint laminate as described above as a mask. To do.
  • the present invention also provides a pattern forming method, wherein the pattern is formed on the substrate by wet etching the substrate using the pattern formed on the resist film laminated on the nanoimprint laminate as described above as a mask. To do.
  • the present invention also includes (1) a step of forming a coating film of the curable composition for nanoimprints as described above, and (2) a master mold is pressed against the coating film and cured by irradiation with active energy rays. Forming a resin mold as a molded product, (3) forming a metal layer on the resin mold, and (4) peeling the resin mold from the metal layer to obtain a metal mold.
  • a method for producing a metal mold is provided.
  • the present invention also includes (1) a step of forming a coating film of the curable composition for nanoimprints as described above, and (2) a master mold is pressed against the coating film and cured by irradiation with active energy rays. Forming a resin mold as a molded product; (5) forming a second resin layer on the resin mold and curing the second resin layer; and (6) resin mold from the second resin layer. And a step of obtaining a resin molded body. The method for producing a resin molded body is provided.
  • the present invention it is possible to provide a curable composition for nanoimprint that can be used for nanoimprint and gives a nanoimprint molded article excellent in pattern formation and pattern shape retention.
  • the composite resin (A) used in the present invention is a polysiloxane having a structural unit represented by the general formula (1) and / or the general formula (2), and a silanol group and / or a hydrolyzable silyl group.
  • Segment (a1) hereinafter simply referred to as polysiloxane segment (a1)
  • vinyl polymer segment (a2) having alcoholic hydroxyl group
  • This is a composite resin (A) bonded by a bond represented by formula (3).
  • the bond represented by the general formula (3) is generated. Accordingly, in the general formula (3), carbon atoms constitute a part of the vinyl polymer segment (a2), and silicon atoms bonded only to oxygen atoms constitute a part of the polysiloxane segment (a1).
  • the form of the composite resin (A) is, for example, a composite resin having a graft structure in which the polysiloxane segment (a1) is chemically bonded as a side chain of the polymer segment (a2), or the polymer segment (a2). And a composite resin having a block structure in which the polysiloxane segment (a1) is chemically bonded.
  • the polysiloxane segment (a1) in the present invention is a segment having a structural unit represented by the general formula (1) and / or the general formula (2), a silanol group and / or a hydrolyzable silyl group.
  • the structural unit represented by the general formula (1) and / or the general formula (2) includes a group having a polymerizable double bond.
  • the structural unit represented by the general formula (1) and / or the general formula (2) has a group having a polymerizable double bond as an essential component.
  • R 12 represents an aralkyl group, and at least one of R 1 , R 2 and R 3 is a group having the polymerizable double bond.
  • alkylene group having 1 to 6 carbon atoms in R 4 include methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, sec-butylene group, tert-butylene group, Pentylene group, isopentylene group, neopentylene group, tert-pentylene group, 1-methylbutylene group, 2-methylbutylene group, 1,2-dimethylpropylene group, 1-ethylpropylene group, hexylene group, isohesylene group, 1-methylpentylene Len group, 2-methylpentylene group, 3-methylpentylene group, 1,1-dimethylbutylene group, 1,2-dimethylbutylene group, 2,2-dimethylbutylene group, 1-ethylbutylene group, 1,
  • alkyl group having 1 to 6 carbon atoms examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, and isopentyl.
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • Examples of the aryl group include a phenyl group, a naphthyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 4-vinylphenyl group, and a 3-isopropylphenyl group.
  • Examples of the aralkyl group having 7 to 12 carbon atoms include a benzyl group, a diphenylmethyl group, and a naphthylmethyl group.
  • R 1 , R 2 and R 3 are a group having a polymerizable double bond
  • the polysiloxane segment (a1) is represented by the general formula (1).
  • R 1 is a group having the polymerizable double bond
  • R 2 and R 3 is a group having the polymerizable double bond and the polysiloxane segment (a1) has both of the structural units represented by the general formula (1) and the general formula (2)
  • R It shows that at least one of 1 , R 2 and R 3 is a group having a polymerizable double bond.
  • two or more polymerizable double bonds are preferably present in the polysiloxane segment (a1), more preferably 3 to 200, and even more preferably 3 to 50.
  • the curable composition for nanoimprints excellent in pattern moldability and pattern retention can be obtained.
  • the content of polymerizable double bonds in the polysiloxane segment (a1) is 3 to 20% by weight, desired pattern formability and pattern retention can be obtained.
  • the polymerizable double bond here is a general term for groups capable of performing a growth reaction by free radicals among vinyl group, vinylidene group or vinylene group.
  • the content rate of a polymerizable double bond shows the weight% in the polysiloxane segment of the said vinyl group, vinylidene group, or vinylene group.
  • the structural unit represented by the general formula (1) and / or the general formula (2) is a three-dimensional network-like polysiloxane structural unit in which two or three of the silicon bonds are involved in crosslinking. Since a dense network structure is not formed while a three-dimensional network structure is formed, gelation or the like does not occur during production, and storage stability is improved.
  • the silanol group is a silicon-containing group having a hydroxyl group directly bonded to a silicon atom.
  • the silanol group is a silanol group formed by combining an oxygen atom having a bond with a hydrogen atom in the structural unit represented by the general formula (1) and / or the general formula (2). Preferably there is.
  • the hydrolyzable silyl group is a silicon-containing group having a hydrolyzable group directly bonded to a silicon atom, and specifically includes, for example, a group represented by the general formula (4).
  • R 5 is a monovalent organic group such as an alkyl group, an aryl group or an aralkyl group
  • R 6 is a halogen atom, an alkoxy group, an acyloxy group, a phenoxy group, an aryloxy group, a mercapto group
  • a hydrolyzable group selected from the group consisting of an amino group, an amide group, an aminooxy group, an iminooxy group, and an alkenyloxy group
  • b is an integer of 0 to 2.
  • Examples of the alkyl group in R 5 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group, and a tert group.
  • -Pentyl group 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl Group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group 1-ethyl-2-methylpropyl group, 1-ethyl-1-methylpropyl group and the like.
  • Examples of the aryl group include a phenyl group, a naphthyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 4-vinylphenyl group, and a 3-isopropylphenyl group.
  • Examples of the aralkyl group include a benzyl group, a diphenylmethyl group, and a naphthylmethyl group.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a second butoxy group, and a third butoxy group.
  • examples of the acyloxy group include formyloxy, acetoxy, propanoyloxy, butanoyloxy, pivaloyloxy, pentanoyloxy, phenylacetoxy, acetoacetoxy, benzoyloxy, naphthoyloxy and the like.
  • Examples of the aryloxy group include phenyloxy and naphthyloxy.
  • Examples of the alkenyloxy group include a vinyloxy group, aryloxy group, 1-propenyloxy group, isopropenyloxy group, 2-butenyloxy group, 3-butenyloxy group, 2-petenyloxy group, 3-methyl-3-butenyloxy group, Examples include 2-hexenyloxy group.
  • the hydrolyzable silyl group represented by the general formula (4) becomes a silanol group.
  • a methoxy group and an ethoxy group are preferable because of excellent hydrolyzability.
  • the hydrolyzable silyl group specifically includes an oxygen atom having a bond in the structural unit represented by the general formula (1) and / or the general formula (2) bonded to the hydrolyzable group. Or it is preferable that it is the hydrolyzable silyl group substituted.
  • the silanol group and the hydrolyzable silyl group are converted into a hydroxyl group or hydrolyzable silyl group in the silanol group in parallel with the curing reaction when a coating film is formed by the curing reaction of the group having a polymerizable double bond. Since the hydrolysis condensation reaction proceeds between the hydrolyzable groups in the group, the cross-linking density of the polysiloxane structure of the obtained coating film is increased, and a coating film having excellent solvent resistance and the like can be formed. Further, the polysiloxane segment (a1) containing the silanol group or the hydrolyzable silyl group is bonded to the vinyl polymer segment (a2) described later via the bond represented by the general formula (3). Use when.
  • the polysiloxane segment (a1) is not particularly limited except that it has a structural unit represented by the general formula (1) and / or the general formula (2), and a silanol group and / or a hydrolyzable silyl group. Other groups may be included.
  • a structural unit R 1 is a group having a polymerizable double bond in the formula (1), R 1 in the general formula (1) coexist and the structural unit is an alkyl group such as methyl may be a polysiloxane segment (a1), a structural unit R 1 is a group having a polymerizable double bond in the formula (1), R 1 in the general formula (1) is a methyl group Or a polysiloxane segment (a1) in which a structural unit that is an alkyl group such as R 2 and R 3 in the general formula (2) is an alkyl group such as a methyl group may coexist.
  • Coexistence policy May be a hexane segment (a1), there is no particular limitation.
  • examples of the polysiloxane segment (a1) include those having the following structures.
  • the polysiloxane segment (a1) is preferably contained in an amount of 10 to 90% by weight with respect to the total solid content of the composite resin (A), and has high etching resistance and adhesion properties to substrates such as glass. It is possible to achieve both. Among these, it is preferable to contain 10 to 60% by weight.
  • the vinyl polymer segment (a2) in the present invention is a vinyl polymer segment such as an acrylic polymer, a fluoroolefin polymer, a vinyl ester polymer, an aromatic vinyl polymer, and a polyolefin polymer. .
  • the acrylic polymerizable segment is obtained by polymerizing or copolymerizing a general-purpose (meth) acrylic monomer.
  • the (meth) acrylic monomer is not particularly limited, and vinyl monomers can also be copolymerized.
  • the (meth) acrylic repeating group having an aromatic ring or a cyclic hydrocarbon group with respect to the vinyl polymer segment (a2) in the present invention should be introduced.
  • the (meth) acrylic repeating unit having an aromatic ring or cyclic hydrocarbon group is preferably a (meth) acrylate having an aromatic ring such as phenyl (meth) acrylate or benzyl (meth) acrylate; cyclohexyl (meth) acrylate, cyclopenta Nyl (meth) acrylate, adamantyl (meth) acrylate, tricyclodecanyl (meth) acrylate, tetracyclododecanyl (meth) acrylate, dicyclopentanyl (meth) acrylate, ethylene glycol di (meth) acrylate, isobornyl (Meth) acrylate having a cyclic hydrocarbon group such as acrylate.
  • aromatic ring such as phenyl (meth) acrylate or benzyl (meth) acrylate
  • cyclohexyl (meth) acrylate cyclopenta Nyl (meth)
  • Monomers used include ethoxylated bisphenol A di (meth) acrylate, propoxylated bisphenol A di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, 1,4-cyclohexanedimethanol diacrylate, cyclodehydrate Candimethanol di (meth) acrylate, tricyclo [5.2.1.02,6] decandimethanol (meth) acrylate, dicyclopentenyl di (meth) acrylate, 1,4-benzenedimethanol di (meth) acrylate, Examples thereof include hydrogenated bisphenol A di (meth) acrylate and 1,3-adamantanediol di (meth) acrylate. These may be used alone or in combination of two or more.
  • a fluorine-containing monomer in the composite resin (A), a fluorine-containing monomer can be copolymerized.
  • the presence of fluorine is preferable because the mold releasability during nanoimprinting is excellent.
  • the nanoimprint molded body is used as a resin mold, it is particularly preferable to copolymerize a fluorine-containing monomer because releasability is more required.
  • the fluorine-containing monomer is copolymerized with the vinyl polymer segment (a2), it is preferable to use a (meth) acrylic monomer containing a fluorinated alkyl group.
  • ((Meth) acrylic monomer having fluorinated alkyl group) Fluorinated alkyl groups (functional groups in which one or more carbon atoms to which 1 to 3 fluorine atoms are bonded are linked, carbon atoms in the fluorinated alkyl groups are unsaturated bonds, fluorinated alkyls
  • Examples of the (meth) acrylic monomer having a group in which a carbon atom in the group is linked by an ether bond with an oxygen atom include a monomer represented by the following general formula (5).
  • R represents a hydrogen atom, a fluorine atom, a methyl group, a cyano group, a phenyl group, a benzyl group, or —CnH2n—Rf ′ (n represents an integer of 1 to 8, and Rf ′ represents the following formula (Rf-1) to (Rf-7) represents one group), and R ′ represents any one of the following formulas (R′-1) to (R′-10): Rf represents any one of the following formulas (Rf-1) to (Rf-7).
  • n represents an integer of 1 to 8.
  • m represents an integer of 1 to 8
  • n represents an integer of 0 to 8.
  • the above formula (R′-6 And Rf ′′ in (R′-7) represents any one of the following formulas (Rf-1) to (Rf-7))
  • n represents an integer of 1 to 6.
  • n represents an integer of 2 to 6.
  • the formula (Rf- 4) n represents an integer of 4 to 6.
  • m is an integer of 1 to 5
  • n is an integer of 0 to 4
  • the sum of m and n is in the above formula (Rf-6)
  • m is an integer of 0 to 4
  • n is an integer of 1 to 4
  • p is an integer of 0 to 4
  • the monomers represented by the general formula (1) those having 4 to 6 carbon atoms in the fluorinated alkyl group are preferable because of excellent liquid repellency. More specific examples of the preferred monomer (f1) include the following monomers (f1-1) to (f1-15).
  • n 3 or 5
  • a compound having a poly (perfluoroalkylene ether) chain and a structural portion having a radical polymerizable group at both ends thereof may be used.
  • Examples include those represented by the above structural formulas F-1 to F-10. Note that “—PFPE—” in each structural formula above represents a poly (perfluoroalkylene ether) chain.
  • the nanoimprint molded body in the present invention When the nanoimprint molded body in the present invention is used as a resist film or a resin mold, the resist film or the remaining film of the resin mold may be washed with alkali. In that case, it is preferable to make the nanoimprint molded article alkali-soluble.
  • the vinyl polymer segment (a2) in the present invention is an acrylic polymer having an acid group, a fluoroolefin polymer, a vinyl ester polymer, an aromatic polymer.
  • a vinyl polymer segment such as a vinyl polymer and a polyolefin polymer may be used.
  • an acrylic polymer segment obtained by copolymerizing a (meth) acrylic monomer having an acid group is preferable from the viewpoint of excellent transparency of the resulting coating film.
  • Examples of (meth) acrylic monomers containing an acid group include various unsaturated carboxylic acids such as (meth) acrylic acid, 2-carboxyethyl (meth) acrylate, crotonic acid, itaconic acid, maleic acid or fumaric acid; Various kinds of saturated dicarboxylic acids and saturated monohydric alcohols such as monomethyl acid, mono-n-butyl itaconate, monomethyl maleate, mono-n-butyl maleate, monomethyl fumarate and mono-n-butyl fumarate Monoesters (half esters); monovinyl esters of various saturated dicarboxylic acids such as monovinyl adipate or monovinyl succinate; various types such as succinic anhydride, glutaric anhydride, phthalic anhydride or trimellitic anhydride And anhydrides of saturated polycarboxylic acids. Of these, (meth) acrylic acid is preferable because it is easy to react.
  • the content of the acid group described above is preferably contained so as to be in the range of 30 to 400 KOHmg / g in terms of the acid value of the composite resin (A). If it is 30 KOHmg / g or more, the alkali solubility is excellent, and if it is 400 KOHmg / g or less, gelation at the time of synthesis is suppressed, which is preferable. In particular, an amount of 40 to 300 KOHmg / g or less is particularly preferable because both alkali solubility and resin mold releasability can be achieved.
  • Polymerization of vinyl polymer segment (a2) There are no particular limitations on the polymerization method, solvent, or polymerization initiator for copolymerizing the monomers, and the vinyl polymer segment (a2) can be obtained by a known method.
  • 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-) can be obtained by various polymerization methods such as bulk radical polymerization, solution radical polymerization, and non-aqueous dispersion radical polymerization.
  • the vinyl polymer segment (a2) can be obtained by using a polymerization initiator such as tert-butyl peroxide, cumene hydroperoxide, diisopropyl peroxycarbonate or the like.
  • the number average molecular weight of the vinyl polymer segment (a2) is preferably in the range of 500 to 200,000 in terms of number average molecular weight (hereinafter abbreviated as Mn), and the composite resin (A) is produced. It is possible to prevent thickening and gelation during the process and to have excellent durability. Mn is more preferably in the range of 700 to 100,000, and more preferably in the range of 1,000 to 50,000.
  • the vinyl polymer segment (a2) is a vinyl polymer segment (A) in order to form a composite resin (A) bonded by the bond represented by the general formula (3) with the polysiloxane segment (a1). It has a silanol group and / or a hydrolyzable silyl group directly bonded to the carbon bond in a2). Since these silanol groups and / or hydrolyzable silyl groups become bonds represented by the general formula (3) in the production of the composite resin (A) described later, the composite resin (A ) In the vinyl polymer segment (a2).
  • the vinyl polymer segment (a2) having a silanol group directly bonded to a carbon bond and / or a hydrolyzable silyl group includes the above-mentioned general-purpose monomer, and a silanol group bonded directly to a carbon bond and / or It is obtained by copolymerizing a vinyl monomer containing a hydrolyzable silyl group.
  • vinyl monomers containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond include vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, and vinyltri (2-methoxyethoxy) silane.
  • the said vinyl-type polymer segment (a2) has an alcoholic hydroxyl group.
  • the vinyl polymer segment (a2) having an alcoholic hydroxyl group can be obtained by copolymerizing a (meth) acryl monomer having an alcohol hydroxyl group.
  • the (meth) acrylic monomer having an alcohol hydroxyl group examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) ) Acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl fumarate, mono-2-hydroxyethyl mono Various ⁇ such as butyl fumarate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, “Placcel FM or Plaxel FA” [Caprolactone addition monomer manufactured by Daicel Chemical Industries, Ltd.] Hydroxyalkyl esters of ⁇ - ethylenically unsaturated carboxylic acid or an adduct thereof with ⁇ - caprolactone, and the like.
  • the amount of the alcoholic hydroxyl group is preferably determined appropriately by calculating from the amount of polyisocyanate (B) described below. Moreover, as described later, in the present invention, an active energy ray-curable monomer having an alcoholic hydroxyl group may be used in combination. Accordingly, the amount of alcoholic hydroxyl group in the vinyl polymer segment (a2) having an alcoholic hydroxyl group can be determined in consideration of the amount of the active energy ray-curable monomer having an alcoholic hydroxyl group to be used in combination. It is preferably contained so as to be substantially in the range of 30 to 300 in terms of the hydroxyl value of the vinyl polymer segment (a2).
  • the composite resin (A) used in the present invention is produced by the methods shown in the following (Method 1) to (Method 3).
  • Method 1 Directly bonded to a carbon bond by copolymerizing the general-purpose (meth) acrylic monomer and the like and a vinyl monomer containing a silanol group and / or a hydrolyzable silyl group directly bonded to the carbon bond.
  • a vinyl polymer segment (a2) containing a silanol group and / or a hydrolyzable silyl group is obtained.
  • a silane compound having both a silanol group and / or a hydrolyzable silyl group and a polymerizable double bond, and, if necessary, a general-purpose silane compound are mixed and subjected to a hydrolysis condensation reaction.
  • a silanol group and / or hydrolyzable silyl group and a silanol group or hydrolyzable silyl group of a silane compound having both a polymerizable double bond and a silanol group and / or hydrolyzed directly bonded to a carbon bond The silanol group and / or hydrolyzable silyl group of the vinyl polymer segment (a2) containing a functional silyl group undergoes a hydrolytic condensation reaction to form the polysiloxane segment (a1), and the polysiloxane A composite resin (A) in which the segment (a1) and the vinyl polymer segment (a2) are combined by the bond represented by the general formula (3) is obtained.
  • Method 2 In the same manner as in Method 1, a vinyl polymer segment (a2) containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond is obtained.
  • a polysiloxane segment (a1) is obtained by subjecting a silane compound having both a silanol group and / or a hydrolyzable silyl group and a polymerizable double bond and, if necessary, a general-purpose silane compound to a hydrolysis condensation reaction.
  • silanol group and / or hydrolyzable silyl group of the vinyl polymer segment (a2) and the silanol group and / or hydrolyzable silyl group of the polysiloxane segment (a1) are hydrolyzed and condensed.
  • Method 3 Similarly to Method 1, a vinyl polymer segment (a2) containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond is obtained.
  • the polysiloxane segment (a1) is obtained in the same manner as in Method 2.
  • a silane compound containing a silane compound having both polymerizable double bonds and a general-purpose silane compound as necessary are mixed and subjected to a hydrolytic condensation reaction.
  • silane compound having both a silanol group and / or a hydrolyzable silyl group and a polymerizable double bond used in the (Method 1) to (Method 3) include, for example, vinyltrimethoxysilane, Vinyltriethoxysilane, vinylmethyldimethoxysilane, vinyltri (2-methoxyethoxy) silane, vinyltriacetoxysilane, vinyltrichlorosilane, 2-trimethoxysilylethyl vinyl ether, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (Meth) acryloyloxypropyltriethoxysilane, 3- (meth) acryloyloxypropylmethyldimethoxysilane, 3- (meth) acryloyloxypropyltrichlorosilane and the like.
  • Examples of general-purpose silane compounds used in the (Method 1) to (Method 3) include, for example, methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-butoxysilane, ethyltrimethoxysilane, and n-propyl.
  • organotrialkoxysilanes such as trimethoxysilane, iso-butyltrimethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane; dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-butoxysilane
  • diorganodialkoxysilanes such as diethyldimethoxysilane, diphenyldimethoxysilane, methylcyclohexyldimethoxysilane or methylphenyldimethoxysilane; methyltrichlorosila , Ethyl trichlorosilane, phenyl trichlorosilane, vinyl trichlorosilane, dimethyl dichlorosilane, chlorosilane such as diethyl dichlorosilane or diphenyl dichloros
  • Epoxy group-containing silane compounds can also be used.
  • Epoxy group-containing silane compounds include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxyethoxysilane, ⁇ -glycidoxypropyltriacetoxysilane, ⁇ -(3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxyethoxysilane, ⁇ - (3, 4-epoxycyclohexyl) ethyltriacetoxysilane, ⁇ -glycidoxypropyldimethoxymethylsilane, ⁇ -glycidoxypropyldiethoxy
  • a silane coupling agent having a fluorinated alkyl group can also be used, for example, trifluoropropyltrimethoxysilane and the like, and as a commercial product, KBM-7013 from Shin-Etsu Chemical Co., Ltd. and the like can be mentioned. .
  • the composite resin (A) contains a fluorine atom, it is particularly preferable because the resulting resin mold is excellent in releasability.
  • a tetrafunctional alkoxysilane compound such as tetramethoxysilane, tetraethoxysilane, or tetra-n-propoxysilane, or a partially hydrolyzed condensate of the tetrafunctional alkoxysilane compound may be used in combination as long as the effects of the present invention are not impaired. it can.
  • the silicon atom of the tetrafunctional alkoxysilane compound is 20 mol with respect to the total silicon atoms constituting the polysiloxane segment (a1). It is preferable to use it together so that it may become the range which does not exceed%.
  • a metal alkoxide compound other than a silicon atom such as boron, titanium, zirconium, or aluminum can be used in combination with the silane compound as long as the effects of the present invention are not impaired.
  • a metal alkoxide compound in combination in a range not exceeding 25 mol% with respect to all silicon atoms constituting the polysiloxane segment (a1).
  • hydrolysis condensation reaction in the (Method 1) to (Method 3), a part of the hydrolyzable group is hydrolyzed under the influence of water or the like to form a hydroxyl group, and then the hydroxyl groups or the hydroxyl group and the hydrolysis group are hydrolyzed.
  • This refers to a proceeding condensation reaction that proceeds with a functional group.
  • the hydrolysis-condensation reaction can be performed by a known method, but a method in which the reaction is advanced by supplying water and a catalyst in the production process is simple and preferable.
  • the catalyst used examples include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as p-toluenesulfonic acid, monoisopropyl phosphate and acetic acid; inorganic bases such as sodium hydroxide and potassium hydroxide; tetraisopropyl titanate , Titanic acid esters such as tetrabutyl titanate; 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1 Compounds containing various basic nitrogen atoms such as 1,4-diazabicyclo [2.2.2] octane (DABCO), tri-n-butylamine, dimethylbenzylamine, monoethanolamine, imidazole, 1-methylimidazole; Tetramethylammonium salt, tetrabutylammonium salt, dilauryldimethylammonium Various quatern
  • the amount of the catalyst added is not particularly limited, but generally it is preferably used in the range of 0.0001 to 10% by weight based on the total amount of each compound having the silanol group or hydrolyzable silyl group. , More preferably in the range of 0.0005 to 3% by weight, and particularly preferably in the range of 0.001 to 1% by weight.
  • the amount of water to be supplied is preferably 0.05 mol or more with respect to 1 mol of the silanol group or hydrolyzable silyl group of each compound having the silanol group or hydrolyzable silyl group, The above is more preferable, and particularly preferably 0.5 mol or more.
  • These catalyst and water may be supplied collectively or sequentially, or may be supplied by previously mixing the catalyst and water.
  • the reaction temperature for carrying out the hydrolysis condensation reaction in the above (Method 1) to (Method 3) is suitably in the range of 0 ° C. to 150 ° C., and preferably in the range of 20 ° C. to 100 ° C.
  • the reaction can be carried out under any conditions of normal pressure, increased pressure, or reduced pressure. Moreover, you may remove alcohol and water which are the by-products which can be produced
  • the charging ratio of each compound in the above (Method 1) to (Method 3) is appropriately selected depending on the desired structure of the composite resin (A) used in the present invention.
  • the composite resin (A) such that the content of the polysiloxane segment (a1) is 30 to 95% by weight, and 30 to 75% by weight is preferable. Further preferred.
  • the silanol group and the above-described silanol group may be added to only one or both ends of the polymer chain.
  • a vinyl polymer segment having a structure having a hydrolyzable silyl group as an intermediate for example, in the case of (Method 1), a silanol group and / or hydrolysis is added to the vinyl polymer segment.
  • the main chain of the vinyl polymer segment is The vinyl polymer segment having a structure in which silanol groups and / or hydrolyzable silyl groups are randomly distributed is used as an intermediate.
  • the vinyl polymer segment is Examples thereof include a method in which a hydrocondensation reaction is carried out between the silanol group and / or hydrolyzable silyl group possessed and the silanol group and / or hydrolyzable silyl group possessed by the polysiloxane segment.
  • Polyisocyanate (B) When the vinyl polymer segment (a2) in the composite resin (A) has an alcoholic hydroxyl group, it is preferable to use polyisocyanate (B) in combination. There is no limitation in particular as polyisocyanate (B) to be used, A well-known thing can be used.
  • aromatic diisocyanates such as tolylene diisocyanate and diphenylmethane-4,4′-diisocyanate
  • aralkyl diisocyanates such as meta-xylylene diisocyanate and ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethyl-meta-xylylene diisocyanate
  • blocked polyisocyanate compounds blocked with various blocking agents can be used.
  • the blocking agent include alcohols such as methanol, ethanol and lactic acid ester; phenolic hydroxyl group-containing compounds such as phenol and salicylic acid ester; amides such as ⁇ -caprolactam and 2-pyrrolidone; oximes such as acetone oxime and methyl ethyl ketoxime Active methylene compounds such as methyl acetoacetate, ethyl acetoacetate and acetylacetone can be used.
  • the reaction between the polyisocyanate and a hydroxyl group in the system (this is a hydroxyl group in the active energy ray-curable monomer having a hydroxyl group in the vinyl polymer segment (a2) or an alcoholic hydroxyl group described below), There is no need for heating or the like.
  • the reaction between the alcoholic hydroxyl group and the isocyanate may be promoted by heating at 80 ° C. for several minutes to several hours (20 minutes to 4 hours) after ultraviolet irradiation. In that case, you may use a well-known urethanation catalyst as needed.
  • the urethanization catalyst is appropriately selected according to the desired reaction temperature.
  • the curable composition for nanoimprints of the present invention contains a photopolymerization initiator. What is necessary is just to use a well-known thing in a photocurable composition as a photoinitiator, For example, 1 or more types chosen from the group which consists of acetophenones, benzyl ketals, and benzophenones can be used preferably.
  • Examples of the acetophenones include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4 -(2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone and the like.
  • Examples of the benzyl ketals include 1-hydroxycyclohexyl-phenyl ketone and benzyl dimethyl ketal.
  • Examples of the benzophenones include benzophenone and methyl o-benzoylbenzoate.
  • Examples of the benzoins include benzoin, benzoin methyl ether, and benzoin isopropyl ether.
  • a photoinitiator may be used independently and may use 2 or more types together. The amount of the photopolymerization initiator used is preferably 1 to 15% by weight and more preferably 2 to 10% by weight with respect to 100% by weight of the composite resin (A
  • a photocation initiator can be used in combination.
  • the photocation initiator include a diazonium salt of a Lewis acid, an iodonium salt of a Lewis acid, a sulfonium salt of a Lewis acid, and the cation part is an aromatic diazonium, an aromatic iodonium, an aromatic sulfonium, and an anion.
  • the moiety is an onium salt composed of BF4—, PF6—, SbF6—, [BY4] — (wherein Y is a phenyl group substituted with at least two fluorine atoms or a trifluoromethyl group) or the like.
  • Y is a phenyl group substituted with at least two fluorine atoms or a trifluoromethyl group
  • polyfunctional (meth) acrylate when making it ultraviolet-harden, it is preferable to contain polyfunctional (meth) acrylate as needed.
  • polyfunctional (meth) acrylate is made to react with polyisocyanate (B), what has an alcoholic hydroxyl group is preferable.
  • polymerizable double bonds in one molecule That polyfunctional (meth) acrylate.
  • urethane acrylate, polyester acrylate, epoxy acrylate, etc. can be illustrated as polyfunctional acrylate. These may be used alone or in combination of two or more. Among these, pentaerythritol triacrylate and dipentaerythritol pentaacrylate are preferable.
  • a monofunctional (meth) acrylate can be used in combination with the polyfunctional (meth) acrylate.
  • hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, caprolactone-modified hydroxy (meth) acrylate for example, “Plexel” manufactured by Daicel Chemical Industries
  • phthalic acid and propylene Mono (meth) acrylate of polyester diol obtained from glycol mono (meth) acrylate of polyester diol obtained from succinic acid and propylene glycol, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, pentaerythritol Tri (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, (meth) acrylate of various epoxy esters Hydroxyl group-containing (meth) acrylic acid esters,
  • the amount used when the polyfunctional acrylate (C) is used is preferably 1 to 85% by weight, more preferably 5 to 80% by weight, based on the total solid content of the curable composition for nanoimprinting of the present invention.
  • the curable composition for nanoimprints of the present invention can be molded by any method.
  • Coating properties for example, the film thickness after application and removal of the solvent is within a desired range, the film thickness is uniform over the entire surface to be processed, and even if there are some unevenness on the surface to be processed.
  • the solid content concentration is preferably 0.1% by weight or more and 10% by weight or less, more preferably 0.4%. It is not less than 5% by mass and more preferably not less than 0.7% and not more than 2% by mass.
  • the thickness of the coating film may be adjusted to be 10 nm to 50 ⁇ m, and more preferably 50 nm to 5 ⁇ m.
  • aliphatic solvents such as n-hexane, n-heptane, n-octane, cyclohexane, cyclopentane, or the like Alicyclic hydrocarbons; aromatic hydrocarbons such as toluene, xylene, ethylbenzene; alcohols such as methanol, ethanol, n-butanol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether; ethyl acetate, butyl acetate , Esters such as n-butyl acetate, n-amyl acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl n-amyl ketone,
  • Polyalkylene glycol dialkyl ethers such as diethylene glycol dimethyl ether and diethylene glycol dibutyl ether; ethers such as 1,2-dimethoxyethane, tetrahydrofuran and dioxane; N-methylpyrrolidone, dimethylformamide, dimethylacetamide or ethylene carbonate used alone Alternatively, two or more types can be used in combination.
  • the pattern formation method using the nanoimprint method of the present invention can be performed by any method.
  • the curable composition for nanoimprinting of the present invention after applying the curable composition for nanoimprinting of the present invention to a substrate to form a film, it may be cured in a state where the master mold is pressed, or the curable composition for nanoimprinting is injected into a mold.
  • curing may be performed in a state where the master mold is pressed.
  • nano-sized irregularities may be created on the injection mold itself, and the nanoimprint curable composition may be injected and cured in a state where the mold itself is used as a master mold.
  • a method in which a film is formed by applying a curable composition for nanoimprinting to a substrate and then cured in a state where the master mold is pressed is particularly preferable.
  • the step of applying a curable composition for nanoimprinting of the present invention to a substrate to form a film, and pressing the nanoimprinting mold having a concavo-convex structure, and curing the active energy ray to the curable resin composition in this state A process and a pattern forming method characterized by peeling the mold after that will be described in detail.
  • the step of applying the curable composition for nanoimprints of the present invention to a substrate to form a coating film is obtained by using a known method to form the curable composition for nanoimprints of the present invention diluted to a desired viscosity as described above. It is preferable to form a film or a coating film in a shape.
  • a method for forming a film the extrusion method, or coating on a temporary support film and drying, and if necessary, the surface of the curable composition layer for nanoimprinting covered with a coating film, It may be one that is thermocompression-bonded to the surface to be laminated.
  • a temporary support film used at this time conventionally well-known films, such as a polyethylene terephthalate film, a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, are used, for example.
  • the curable composition for nanoimprinting of the present invention directly on the temporary support film
  • a coating film can be produced by applying and drying, and even if those films have low solvent resistance or heat resistance, for example, a release film such as a polytetrafluoroethylene film or a release film can be used.
  • the curable composition for nanoimprinting of the present invention is formed on a film having moldability, and then a temporary support film having low solvent resistance, heat resistance, etc. is laminated on the layer, and then has mold release properties.
  • a coating film can also be produced by peeling the film.
  • a coating film formed by applying the curable composition for nanoimprinting of the present invention on the surface to be treated and volatilizing and removing the solvent may be used.
  • the coating method include a spray method, a spin coat method, a dip method, a roll coat method, a blade coat method, a doctor roll method, a doctor blade method, a curtain coat method, a slit coat method, and a screen printing method.
  • the spin coating method is preferably used in terms of excellent productivity and easy control of the film thickness.
  • the base material used by the laminated body in this invention is suitably selected according to the intended purpose of the nanoimprint hardened
  • Resins polymer substrates such as SOG (Spin On Glass), polyester film, polycarbonate film, polyimide film, TFT array substrates, light emitting diode (LED) substrates such as sapphire and GaN, glass and transparent plastic substrates, indium tin Examples thereof include conductive base materials such as oxide (ITO) and metal, insulating base materials, semiconductor manufacturing base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon. These may be light transmissive or non-light transmissive.
  • the shape of the substrate is not particularly limited, and may be any shape according to the purpose such as a flat plate, a sheet, or a three-dimensional shape having a curvature on the entire surface or a part thereof. There are no particular restrictions on the hardness and thickness of the substrate. The film thickness greatly depends on the desired depth of the unevenness, but is preferably 0.001 to 300 ⁇ m or less.
  • the step of pressing a master mold for nanoimprint having a concavo-convex structure against the film produced by the above method specifically, while pressing the master mold for nanoimprint, the curable composition layer for nanoimprint is made of the master mold. Push into a fine shape. In that case, it can also press, heating and reducing a viscosity so that the said curable composition for nanoimprint may follow the fine shape of a master mold more. Then, the fine shape currently formed in the master mold was formed in the surface of the said curable composition for nanoimprints by separating the master mold after irradiating with ultraviolet rays and hardening the curable composition layer for nanoimprints. A resist film can be obtained.
  • the nanoimprint master mold is brought into contact with and pinched on the nanoimprint curable composition layer provided on the surface of the substrate.
  • the master mold for nanoimprinting is a method for efficiently producing a large-area molded product, an up-down method of a planar original plate suitable for a roll process, a bonding method of a belt-shaped original plate, a roll transfer method of a roll-shaped original plate, A method in which the contact is made by a method such as a roll transfer method of a roll belt-shaped master is also preferable.
  • the material of the master mold examples include light transmitting materials such as quartz glass, ultraviolet light transmitting glass, silicon materials such as sapphire, diamond, polydimethylsiloxane, fluororesin, and other light transmitting resin materials. Further, if the base material to be used is a material that transmits light, the master mold may be a material that does not transmit light. Examples of the material that does not transmit light include metal, silicon, SiC, and mica. As described above, the master mold can be selected in any form such as a flat form, a belt form, a roll form, and a roll belt form. For the purpose of preventing contamination of the original plate due to floating dust or the like, it is preferable to perform a conventionally known release treatment on the transfer surface.
  • the curing method includes a method of irradiating light from the master mold side when the master mold is a material that transmits light, and a method of irradiating light from the substrate side when the substrate is a material that transmits light.
  • the light used for the light irradiation may be light that reacts with the photopolymerization initiator. Among them, light with a wavelength of 450 nm or less is preferred because the photopolymerization initiator reacts easily and can be cured at a lower temperature.
  • Active energy rays such as ultraviolet rays, X-rays and ⁇ rays
  • light having a wavelength of 200 to 450 nm is particularly preferable. Specifically, the light used for the above-described ultraviolet curing can be used.
  • the film may be heated to a temperature at which sufficient fluidity can be obtained during light irradiation.
  • the temperature for heating is preferably 300 ° C. or lower, more preferably 0 ° C. to 200 ° C., further preferably 0 ° C. to 150 ° C., and particularly preferably 25 ° C. to 80 ° C. In this temperature range, the precision of the fine pattern shape formed in the curable resin composition layer is kept high.
  • a method of curing by transporting the inside of the reactor so as to be compatible with the roll process is also preferable.
  • the molded body is peeled off from the master mold, thereby obtaining a resist film in which a concavo-convex pattern obtained by transferring the concavo-convex pattern of the master mold is formed on the surface of the cured product of the curable resin composition layer.
  • the temperature of the peeling step is a method to be performed after the temperature of the nanoimprint molded body is cooled to around room temperature (25 ° C.), Even when the nanoimprint molded article is peeled off while still being heated, a method of cooling the nanoimprint molded article to around room temperature (25 ° C.) with a certain tension applied is preferable.
  • a gas used for dry etching a known and commonly used gas may be used, for example, oxygen atom-containing gas such as oxygen, carbon monoxide, carbon dioxide, helium, nitrogen, an inert gas of robbery, chlorine, boron chloride.
  • oxygen atom-containing gas such as oxygen, carbon monoxide, carbon dioxide, helium, nitrogen, an inert gas of robbery, chlorine, boron chloride.
  • a chlorine-based gas, a fluorine-based gas, a hydrogen gas, an ammonia gas, or the like can be used, and these gases may be used alone or in combination as appropriate.
  • the curable composition for nanoimprinting of the present application is excellent in acid resistance, a pattern or the like is not broken even during the wet etching, and a fine etching pattern can be provided.
  • a known and commonly used etchant may be used as an etchant used for wet etching.
  • a strong alkali or a strong acid for example, cupric chloride, ferric chloride, copper ammonia complex solution, sulfuric acid / hydrogen peroxide solution, ammonium persulfate
  • Hydrofluoric acid for example, cupric chloride, ferric chloride, copper ammonia complex solution, sulfuric acid / hydrogen peroxide solution, ammonium persulfate
  • Hydrofluoric acid sulfuric acid, ammonium fluoride, sulfuric acid / hydrofluoric acid aqueous solution, etc.
  • etching may be performed until the resist film is completely removed.
  • the remaining film may be removed with an etching gas such as oxygen plasma.
  • an acid value is introduced into the vinyl polymer segment (a2) so that the total acid value of the composite resin (A) is in the range of 30 to 400 KOHmg / g.
  • the alkaline cleaning liquid used for the alkaline cleaning may be appropriately selected from known and commonly used alkaline cleaning liquids according to the application and the type of the substrate, as long as the invention of the present invention is not impaired.
  • aqueous solutions such as sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, are mentioned.
  • the nanoimprint molded article of the present invention can also be used as a resin mold.
  • the resin mold is a mold for use in further replicating the manufactured nanoimprint molded body, and the mold transferred from the resin mold is referred to as a replica mold.
  • a master mold it is possible to create an initial mold called a master mold and create a resin molding directly from the master mold, or after transferring the master mold to a metal mold, a resin molding can be created.
  • the master mold used as the first mold is made of quartz or silicon and is produced by an electron beam drawing method or the like, but it is known that the production is very expensive.
  • a master mold for nanoimprinting in which a nano-order fine pattern is formed not only is it expensive, but it takes a very long time to form a fine pattern.
  • a metal replica mold is produced from a master mold, it is necessary to destroy the master mold when taking out the replica mold after metal plating, which is a problem in terms of cost.
  • the peelability from the master mold is insufficient, so the fine pattern of the master mold is lost or deformed, and there is a problem in the subsequent transferability. there were.
  • the resin mold which is the nanoimprint molding of the present invention can be obtained by transferring the pattern to the curable resin composition of the present invention and curing the master mold.
  • the master mold is pressed against the coating film of the curable resin composition for nanoimprint applied on the substrate and cured, and then the cured resin mold is peeled off from the master mold.
  • the nanoimprint curable resin composition may be directly applied to the master mold, and the resin may be cured after the substrate is brought into close contact therewith to produce a resin mold.
  • Step of forming a coating film For the step of forming a coating film in which the curable resin composition for nanoimprints is in close contact with the substrate, a known and commonly used method may be used. For example, by applying a liquid curable resin composition for nanoimprints to the substrate surface. Obtainable. In the case of a liquid curable resin composition for nanoimprinting, the concentration of the total solid content in the curable resin composition for nanoimprinting is such that the film thickness after coating and removal of the solvent is within a desired range. , Etc., considering that the film thickness is uniform over the entire surface to be processed, and even if there are some irregularities on the surface to be processed, a coating film having a uniform thickness is formed following the irregularities.
  • the thickness of the coating film may be adjusted to 10 nm to 50 ⁇ m, more preferably 50 nm to 5 ⁇ m.
  • the solvent used may be any organic solvent used in known curable resin compositions.
  • aliphatic solvents such as n-hexane, n-heptane, n-octane, cyclohexane, and cyclopentane, or alicyclic rings are used.
  • Aromatic hydrocarbons such as toluene, xylene and ethylbenzene; alcohols such as methanol, ethanol, n-butanol, ethylene glycol monomethyl ether and propylene glycol monomethyl ether; ethyl acetate and n-butyl acetate , Esters such as isobutyl acetate, n-amyl acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl n-amyl ketone, and cyclohexanone; Polyalkylene glycol dialkyl ethers such as diethylene glycol dimethyl ether and diethylene glycol dibutyl ether; ethers such as 1,2-dimethoxyethane, tetrahydrofuran and dioxane; N-methylpyrroli
  • the coating film of the curable resin composition for nanoimprinting of the present invention is formed by forming the curable resin composition for nanoimprinting of the present invention into a film by a known molding method such as extrusion molding, or coating on a temporary support film. Then, if necessary, the surface of the curable resin composition for nanoimprinting covered with a coating film may be heat-pressed and laminated on the surface to be treated.
  • a temporary support film used at this time conventionally well-known films, such as a polyethylene terephthalate film, a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, are used, for example. At that time, when those films have solvent resistance, heat resistance, etc.
  • the curable resin composition for nanoimprinting of the present invention is directly formed on the temporary support film.
  • a coating film can be prepared by applying an object and drying, and even if those films have low solvent resistance, heat resistance, etc., for example, polytetrafluoroethylene film, release film, etc.
  • a temporary support film having low solvent resistance or heat resistance is laminated on the layer, and then releasability. By peeling the film having, a coating film of the curable resin composition for nanoimprinting can also be produced.
  • the coating film of the curable resin composition for nanoimprinting of the present invention is a coating film formed by applying the curable resin composition for nanoimprinting of the present invention on the surface to be treated and evaporating and removing the solvent. It may be.
  • the coating method include a spray method, a spin coat method, a dip method, a roll coat method, a blade coat method, a doctor roll method, a doctor blade method, a curtain coat method, a slit coat method, and a screen printing method.
  • the spin coating method is preferably used in terms of excellent productivity and easy control of the film thickness.
  • the substrate for resin mold of the present invention is appropriately selected according to the purpose of the resin mold of the present invention. For example, synthesis of quartz, sapphire, glass, optical film, ceramic material, deposited film, magnetic film, reflective film, metal substrate such as Al, Ni, Cu, Cr, Fe, stainless steel, screen mesh, paper, wood, silicon, etc.
  • Resin SOG (Spin On Glass), polyester film, polycarbonate film, polymer base material such as polyimide film, TFT array base material, light emitting diode (LED) base material such as sapphire and GaN, glass and transparent plastic base material, indium tin Examples thereof include conductive base materials such as oxide (ITO) and metal, insulating base materials, semiconductor manufacturing base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon. These may be light transmissive or non-light transmissive.
  • the shape of the substrate is not particularly limited, and may be any shape according to the purpose such as a flat plate, a sheet, or a three-dimensional shape having a curvature on the entire surface or a part thereof. There are no particular restrictions on the hardness and thickness of the substrate.
  • the step of pressing the master mold against the coating film of the curable resin composition for nanoimprints produced by the above method is specifically the step of pressing the master mold while the curable resin composition layer for nanoimprints is finely molded. Push into the shape. At that time, the nano-imprint curable resin composition can be pressed while heating to lower the viscosity so that the nano-imprint curable resin composition can follow the fine shape of the mold. Then, after irradiating active energy rays to cure the curable resin composition layer for nanoimprints and then separating the master mold, the fine shape formed in the master mold is the surface of the curable resin composition for nanoimprints A resin mold formed in the above can be obtained.
  • the master mold is brought into contact with and pressed between the curable composition layer for nanoimprinting provided on the surface of the base material, and sandwiched.
  • the master mold is a method for efficiently producing a large-area molded body.
  • a method of contacting by an original plate roll transfer method or the like is also preferable.
  • the material of the master mold include light transmitting materials such as quartz glass, ultraviolet light transmitting glass, silicon materials such as sapphire, diamond, polydimethylsiloxane, fluororesin, and other light transmitting resin materials.
  • the master mold may be a material that does not transmit light.
  • the material that does not transmit light include metal, silicon, SiC, and mica.
  • the master mold can be selected in any form such as a flat form, a belt form, a roll form, and a roll belt form. For the purpose of preventing contamination of the original plate due to floating dust or the like, it is preferable to perform a conventionally known release treatment on the transfer surface.
  • the curing method includes a method of irradiating light from the master mold side when the master mold is a material that transmits light, and a method of irradiating light from the substrate side when the substrate is a material that transmits light.
  • the light used for the light irradiation may be light that reacts with the photopolymerization initiator. Among them, light with a wavelength of 450 nm or less is preferred because the photopolymerization initiator reacts easily and can be cured at a lower temperature. (Active energy rays such as ultraviolet rays, X-rays and ⁇ rays) are preferred. In view of operability, light having a wavelength of 200 to 450 nm is particularly preferable. Specifically, the light used for the above-described ultraviolet curing can be used.
  • the film may be heated to a temperature at which sufficient fluidity can be obtained during light irradiation.
  • the temperature for heating is preferably 300 ° C. or lower, more preferably 0 ° C. to 200 ° C., further preferably 0 ° C. to 150 ° C., and particularly preferably 25 ° C. to 80 ° C. In this temperature range, the precision of the fine pattern shape formed in the curable resin composition layer for nanoimprint is kept high.
  • a method of curing by transporting the inside of the reactor so as to be compatible with the roll process is also preferable.
  • the resin mold is peeled from the master mold, thereby obtaining a resin mold in which an uneven pattern obtained by transferring the uneven pattern of the mold is formed on the surface of the cured product of the curable resin composition layer for nanoimprint.
  • the temperature of the peeling process is a method implemented after the temperature of the resin mold is cooled to around room temperature (25 ° C.) or resin Even in the case where the mold is peeled off while still being heated, a method of cooling to around room temperature (25 ° C.) with a certain tension applied to the resin mold is preferable.
  • a replica mold can be produced using the resin mold of the present invention as a mold.
  • the replica mold include a metal mold such as nickel and a resin molded body made of a resin composition.
  • Metal mold By producing the metal mold from the master mold through the resin mold, the metal mold can be produced without damaging the master mold. In addition, since a plurality of metal molds can be created from the same master mold, the same metal mold can be used at the same time, and it is possible to perform a molding process with further high throughput.
  • Step of forming metal layer In order to create the metal mold of the present invention, a metal layer is formed on the surface of the resin mold, and the resin mold is peeled off from the obtained metal layer.
  • a known and commonly used method may be used for the formation of the metal layer.
  • (3-1) Forming a conductive layer on the resin mold surface (3-2) A process of laminating a metal layer on the surface of the conductive layer by electroforming is often used.
  • conductive layer Formation of conductive layer on resin mold surface
  • methods for forming the conductive layer include physical vapor deposition and electroless plating.
  • physical vapor deposition include sputtering, vacuum vapor deposition, and ion plating.
  • electroless plating method metal fine particles, colloids, organometallic complexes, and the like can be used as a catalyst, and salts such as nickel, copper, cobalt, gold, platinum, and silver can be used as an electroless plating solution.
  • (3-2) Laminating a metal layer on the surface of the conductive layer by electrocasting
  • a resin mold having a conductive layer formed on the surface is immersed in an electrolytic plating solution and energized to deposit metal on the conductive layer. Form a layer.
  • a metal used for the metal layer nickel, copper, chromium, aluminum, titanium, tungsten, molybdenum, platinum, and alloys thereof can be used.
  • the resin composition to be used may be a known and commonly used resin, and a thermosetting resin, a thermoplastic resin, a photocurable resin, etc., which will be described later, can be used.
  • the replica mold of the present invention may be a resin molded body.
  • the obtained resin molded body may be used as the second resin mold or may be used as a product as it is.
  • Any resin may be used as the resin constituting the second resin layer as long as it does not impair the effects of the present invention.
  • a thermosetting resin, a thermoplastic resin, a photocurable resin, or the like may be used. it can.
  • thermosetting resin examples include phenol resin, urea resin, melamine resin, furan resin, alkyd resin, unsaturated polyester resin, diallyl phthalate resin, epoxy resin, silicone resin, polyimide resin, polyurethane resin, guanamine resin, and the like. It is done.
  • thermoplastic resin examples include polyolefin resins, polystyrene resins, polyvinyl chloride resins, polyvinylidene chloride resins, polyacrylonitrile resins, polyamide resins, polyether imides, polyamide imides, polyester resins, polycarbonate resins, Polyacetal resin, vinyl acetate resin, polyvinyl acetal, thermoplastic polyurethane elastomer, acrylic resin, polyphenylene resin, fluororesin, polyvinyl alcohol, polyvinylpyrrolidone, cellulose derivative, phenol resin, urea resin, melamine resin, furan resin, alkyd resin , Unsaturated polyester resin, diallyl phthalate resin, epoxy resin, silicone resin, polyimide resin, polyurethane resin, guanamine resin and the like. *
  • the photocurable resin may be, for example, an ultraviolet curable resin or an electron beam curable resin.
  • Various known materials can be used as the ultraviolet curable resin or the electron beam curable resin, and examples thereof include acrylic resins, silicone resins, ester resins, and the like.
  • Typical examples are UV curable resins having an acryloyl group in the molecule, epoxy acrylate, urethane acrylate, polyester acrylate, polyol acrylate oligomers, polymers and monofunctional, bifunctional, or polyfunctional.
  • Polymerizable (meth) acrylic monomers such as tetrahydrofurfuryl acrylate, 2-hydroxyethyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, trimethylolpropane triacrylate, pentaerythritol tris
  • Mixtures of monomers such as acrylate and pentaerythritol tetraacrylate, oligomers and polymers are used.
  • These resins may be used alone or in combination of two or more.
  • Step of forming and curing second resin layer As a method of forming and curing the second resin layer, a resin mold is pressed against the second resin layer applied on the substrate for the second resin and cured. Or Alternatively, the resin for the second resin layer may be directly applied to the resin mold, and the substrate may be adhered from above to be cured.
  • the resin for the second resin layer may be an organic solvent, inorganic pigment, organic pigment, extender pigment, clay mineral, wax, surfactant, stabilizer, flow regulator, dye, leveling agent, rheology control agent, ultraviolet ray as necessary.
  • Various additives such as an absorbent, an antioxidant, or a plasticizer can also be used.
  • Adhesive aid composed of silane coupling agent, talc, mica, clay, silica, alumina, sericite, white carbon, gypsum, mica, barium sulfate, inorganic fine particles such as barium carbonate and magnesium carbonate, pigments and dyes, etc.
  • Such coloring materials, fading inhibitors, antioxidants, UV absorbers, paint additives such as plasticizers and lubricants may be blended.
  • step (5) the second resin layer is cured in a state where the resin mold is pressed against the second resin layer, and then the resin mold is cured. By peeling from the resin layer, it is possible to obtain a resin molded body that is a replica mold to which the fine structure of the resin mold is transferred.
  • the resin molded body may be used as a product as it is or may be used as a mold.
  • reaction vessel was heated to 80 ° C. and stirred for 4 hours to carry out a hydrolysis condensation reaction, thereby obtaining a reaction product.
  • the number average molecular weight is 1000 and the active ingredient is 75. 1000 parts of polysiloxane (a1-1) which was 0.0% was obtained.
  • the "active ingredient” is a value obtained by dividing the theoretical yield (parts by weight) when all the methoxy groups of the silane monomer used undergo hydrolysis condensation reaction by the actual yield (parts by weight) after hydrolysis condensation reaction, That is, it is calculated by the formula [theoretical yield when all methoxy groups of the silane monomer undergo hydrolysis condensation reaction (parts by weight) / actual yield after hydrolysis condensation reaction (parts by weight)].
  • MMA methyl methacrylate
  • BMA n-butyl methacrylate
  • EHMA 2-ethylhexyl methacrylate
  • AA acrylic acid
  • MPTS 2-hydroxyethyl
  • HEMA methacrylate
  • TPEH tert-butylperoxy-2-ethylhexanoate
  • MMA methyl methacrylate
  • BMA n-butyl methacrylate
  • CHMA cyclohexyl methacrylate
  • AA acrylic acid
  • MPTS 2-hydroxyethyl
  • HEMA methacrylate
  • TPEH tert-butylperoxy-2-ethylhexanoate
  • MMA methyl methacrylate
  • BMA n-butyl methacrylate
  • EHMA 2-ethylhexyl methacrylate
  • AA acrylic acid
  • MPTS 2-hydroxyethyl
  • HEMA methacrylate
  • TPEH tert-butylperoxy-2-ethylhexanoate
  • MMA methyl methacrylate
  • BMA n-butyl methacrylate
  • EHMA 2-ethylhexyl methacrylate
  • AA acrylic acid
  • MPTS 2-hydroxyethyl
  • HEMA methacrylate
  • TPEH tert-butylperoxy-2-ethylhexanoate
  • a composite resin (A-1) composed of a polysiloxane segment having a nonvolatile content of 50.0% and a vinyl polymer segment.
  • a composite resin (A-2) composed of a polysiloxane segment having a nonvolatile content of 70.0% and a vinyl polymer segment.
  • a composite resin (A-3) composed of a polysiloxane segment having a nonvolatile content of 50.0% and a vinyl polymer segment.
  • a polysiloxane segment having a nonvolatile content of 72% 400 parts of a composite resin (A-5) having a1-1) and a vinyl polymer segment (a2-1) were obtained.
  • reaction product was distilled under reduced pressure of 10 to 300 kPa at 40 to 60 ° C. for 2 hours to remove the produced methanol and water, and then 150 parts of methyl ethyl ketone (MEK), n-acetate -600 parts of composite resin (A-8) comprising 27.3 parts of butyl and having a polysiloxane segment (a1-1) and a vinyl polymer segment (a2-3) having a nonvolatile content of 50.0% Got.
  • MEK methyl ethyl ketone
  • A-8 composite resin
  • reaction product When the reaction product was analyzed by 1 H-NMR, almost 100% of the methoxysilyl group of the silane monomer in the reaction vessel was hydrolyzed. Next, by stirring at the same temperature for 10 hours, a reaction product having a residual amount of TBPEH of 0.1% or less was obtained. The residual amount of TBPEH was measured by an iodometric titration method.
  • a composite resin (A-9) composed of a polysiloxane segment having a nonvolatile content of 50.0% and a vinyl polymer segment.
  • the acid value of the obtained composite resin (A-9) [the number of milligrams (mg) of potassium hydroxide required to neutralize the acidic components contained in 1 g of the sample] was determined in accordance with JIS K2501-2003 according to JIS K2501-2003. It was measured by an indicator titration method using phthalein.
  • the acid value of the solid content of the composite resin (A-9) was 50.2 KOHmg / g.
  • the acid value of the obtained composite resin (A-10) was measured by an indicator titration method using phenolphthalein according to JIS K2501-2003.
  • the acid value of the solid content of the composite resin (A-10) was 100.2 KOHmg / g.
  • a composite resin (A-11) composed of a polysiloxane segment and a vinyl polymer segment having a nonvolatile content of 50.0%.
  • the acid value of the obtained composite resin (A-11) was measured by an indicator titration method using phenolphthalein according to JIS K2501-2003.
  • the acid value of the solid content of the composite resin (A-11) was 360.4 KOH mg / g.
  • the acid value of the vinyl polymer segment of the resin solution that resulted in gelation was estimated to be 467.5 KOHmg / g from the content of AA.
  • Example 1 curable composition for nanoimprint, and production example of resist film 40.0 parts of composite resin (A-1) obtained in Synthesis Example 1, 7.0 parts of pentaerythritol triacrylate (PETA), Irgacure 184 [photopolymerization initiator manufactured by Ciba Japan Co., Ltd.] 1.08 parts, By mixing 0.67 part of Tinuvin 400 [hydroxyphenyltriazine-based UV absorber Ciba Japan Co., Ltd.] and 0.34 part of Tinuvin 123 [Hindered amine light stabilizer (HALS) Ciba Japan Co., Ltd.] A curable composition for nanoimprint (hereinafter referred to as composition) -1 was obtained.
  • composition A curable composition for nanoimprint
  • the composition-1 was applied on a sapphire substrate, and a flat glass mold made of quartz glass having a line-and-space structure with a width of 200 nm, a pitch of 200 nm, and a height of 200 nm was pressed on the surface, and a peak wavelength of 375 nm ⁇ 5 LED light source (manufactured by Immac Co., Ltd.), in this state, the resin composition side was irradiated with light at a light amount of 1000 mJ / cm 2 to be cured, and then the mold and the sapphire substrate were peeled off to form a line-and-space pattern.
  • a resist film (1) having
  • Examples 2 to 5 Based on the formulation shown in Table 1, (Composition-2) to (Composition-5) were obtained as curable compositions for nanoimprinting in the same manner as in Example 1. In the same manner as in Example 1, resist films (2) to (5) having a line-and-space pattern were obtained.
  • Comparative Example 1 Based on the formulation shown in Table 2, a comparative nanoimprint curable composition (specific composition-1) was obtained in the same manner as in Example 1. In the same manner as in Example 1, a comparative resist film (H1) having a line-and-space pattern was obtained.
  • the pattern of the obtained resist film was observed at a magnification of 100,000 times with a scanning microscope (manufactured by JEOL Ltd .: JSM-7500F) and evaluated as follows.
  • There is no chipping such as roundness in the upper part of the pattern, and an uneven pattern faithful to the mold is obtained.
  • Some irregularities such as roundness are present in the upper part of the pattern, but an uneven pattern faithful to the mold is obtained.
  • X There is a chipping such as roundness in the upper part of the pattern, and a concave-convex pattern faithful to the mold cannot be obtained, resulting in a kamaboko-like line pattern.
  • Tables 1 and 2 show the compositions of the curable compositions for nanoimprinting of Examples 1 to 5 and Comparative Example 1, and the evaluation results of the obtained resist films.
  • (A1) is an abbreviation for polysiloxane segment (a1). * 1 Content (%) of the polysiloxane segment (a1) with respect to the total solid content (including additives) of the curable resin composition. * 2 Content of the polysiloxane segment (a1) relative to the total solid content of the composite resin (A). 17-813: Unidic 17-813 [made by urethane acrylate DIC Corporation]. PETA: Pentaerythritol triacrylate.
  • I-184 Irgacure 184 [Photopolymerization initiator, manufactured by Ciba Japan Co., Ltd.]
  • I-127 Irgacure 127 [Photopolymerization initiator, manufactured by Ciba Japan Co., Ltd.]
  • Tinuvin 479 [Hydroxyphenyltriazine-based ultraviolet absorber Ciba Japan Co., Ltd.].
  • Tinuvin 123 [hindered amine light stabilizer (HALS) manufactured by Ciba Japan Ltd.].
  • Tinuvin 152 [hindered amine light stabilizer (HALS) manufactured by Ciba Japan Ltd.].
  • the resist films (1) to (5) using the curable resin compositions for nanoimprint (Composition-1) to (Composition-5) evaluated in Examples 1 to 5 were all subjected to pattern formation. And pattern shape retention were excellent.
  • the comparative resist film (H1) obtained in Comparative Example 1 is an example that does not contain the composite resin (A), but the pattern shape retention was poor.
  • Example 6 (Preparation example of dry etching resist film) 108.5 parts of composite resin (A-1) obtained in Synthesis Example 6, 20.2 parts of pentaerythritol triacrylate (PETA), Irgacure 184 [photopolymerization initiator manufactured by Ciba Japan Ltd.], 3.2 parts, Tinuvin 123 [Hindered amine light stabilizer (HALS), manufactured by Ciba Japan Ltd.] By mixing 0.74 part, nanoimprint curable composition for dry etching resist film-6 (Composition-6) was obtained.
  • PETA pentaerythritol triacrylate
  • Irgacure 184 photopolymerization initiator manufactured by Ciba Japan Ltd.
  • HALS Hindered amine light stabilizer
  • Composition-6 was applied onto a silicon wafer substrate with a spin coater, heated on a hot plate at 80 ° C. for 1 minute, and then from an LED light source (manufactured by Immac Co., Ltd.) having a peak wavelength of 375 nm ⁇ 5 from the resist composition side.
  • the resist film was cured by light irradiation with a light amount of 1000 mJ / cm 2 to obtain a resist film (6-1) having a uniform thickness of 0.5 ⁇ m on the substrate surface.
  • the uniformly coated resist film (6-2) on the white glass substrate, the uniformly coated resist film (6-3) on the quartz glass substrate, and the uniformly coated resist film (6-) on the sapphire substrate surface. 4 was obtained.
  • Composition-6 was coated on a silicon wafer substrate with a spin coater, heated on a hot plate at 80 ° C. for 1 minute, and then a quartz glass having a line-and-space structure with a width of 200 nm, a pitch of 200 nm, and a height of 200 nm on the surface.
  • a plate-shaped mold made by pressing is pressed and cured by light irradiation with a light amount of 1000 mJ / cm 2 from the resist composition side in this state by an LED light source (manufactured by Immac Co., Ltd.) having a peak wavelength of 375 nm ⁇ 5.
  • the silicon wafer substrate was peeled off to obtain a resist film (6-5) having a line-and-space pattern.
  • a patterned resist film (6-6) is obtained on a white glass substrate
  • a patterned resist film (6-7) is produced on a quartz glass substrate
  • a patterned resist film (6-8) is produced on a sapphire substrate. It was.
  • Example 7 Based on the formulation shown in Table 1, Composition-7 was obtained in the same manner as in Example 6. In the same manner as in Example 6, uniform coated resist films (7-1) to (7-4) and pattern resist films (7-5) to (7-8) were obtained.
  • Comparative Example 2 Based on the formulation shown in Table 2, a comparative nanoimprint curable composition for resist film (specific composition-2) was obtained in the same manner as in Example 6. Comparative uniform coated resist films (H2-1) to (H2-4) and pattern resist films (H2-5) to (H2-8) were obtained in the same manner as in Example 1.
  • SF6 / C4F8 mixed gas was supplied at a flow rate of 20 sccm and 5 sccm respectively using EIS-700 manufactured by Elionix Co., Ltd., plasma etching was performed for 1 minute under a vacuum of 0.4 Pa, and the remaining film thickness was measured. The etching rate per minute was calculated.
  • SF6 / C4F8 mixed gas was supplied at a flow rate of 20 sccm and 5 sccm respectively using EIS-700 manufactured by Elionix Co., Ltd., plasma etching was performed for 1 minute under a vacuum of 0.4 Pa, and the remaining film thickness was measured. The etching rate per minute was calculated.
  • SAMCO stock for the resist films (6-4), (6-8), (7-4), (7-8), (H2-4) and (H2-8) on the sapphire substrate obtained Using a company-made RIE-101iPH, supplying a mixed system of BCl3 / Cl2 / Ar at flow rates of 20 sccm, 15 sccm and 20 sccm, respectively, performing plasma etching for 1 minute under a vacuum of 0.7 Pa, and then measuring the remaining film thickness The etching rate per minute was calculated.
  • Standardized etching rate is 0 or more and less than 0.3 ⁇ : Standardized etching rate is 0.3 or more and less than 0.6 ⁇ : Standardized etching rate is 0.6 or more and less than 1 x: Standard Etching rate is 1 or more
  • Tables 3 and 4 show the compositions of the resist compositions of Examples 6 and 7 and Comparative Example 2 and the evaluation results of the etching rates of the obtained resist films.
  • (A1) is an abbreviation for polysiloxane segment (a1). * 1 Content (%) of the polysiloxane segment (a1) with respect to the total solid content (including additives) of the curable resin composition. * 2 Content of the polysiloxane segment (a1) relative to the total solid content of the composite resin (A).
  • PETA Pentaerythritol triacrylate.
  • I-184 Irgacure 184 [Photopolymerization initiator, manufactured by Ciba Japan Co., Ltd.] Tinuvin 123: [hindered amine light stabilizer (HALS) manufactured by Ciba Japan Ltd.].
  • resist films (6-1) to (6-8), (7-) using the curable compositions for nanoimprint (Composition-6) to (Composition-7) evaluated in Examples 6 and 7 were used. All of 1) to (7-8) were excellent in dry etching resistance.
  • the resist film obtained in Comparative Example 2 is an example not containing the composite resin (A), but was inferior in dry etching resistance.
  • Example 8 (Preparation example of resin mold composition-1) 40.0 parts of composite resin (A-11) obtained in Synthesis Example 16; 14.7 parts of dipentaerythritol hexaacrylate (DPHA); Irgacure 184 (photopolymerization initiator, manufactured by Ciba Specialty Chemicals Co., Ltd.) By mixing 39 parts, a nanoimprint curable composition-8 (Composition-8) for resin molding was obtained.
  • DPHA dipentaerythritol hexaacrylate
  • Irgacure 184 photopolymerization initiator, manufactured by Ciba Specialty Chemicals Co., Ltd.
  • Composition-1 was applied onto a silicon wafer substrate with a spin coater, heated on a hot plate at 80 ° C. for 1 minute, and then a quartz having a regular triangular lattice structure with a diameter of 230 nm, a height of 200 nm, and a pitch of 460 nm on the surface.
  • a glass flat master mold is pressed and cured by light irradiation with a light amount of 300 mJ / cm 2 from the master mold side in this state by an LED light source (manufactured by Immac Co., Ltd.) having a peak wavelength of 375 nm ⁇ 5.
  • the master mold and the silicon wafer substrate were peeled off to obtain a resin mold-1 having a cylindrical pattern.
  • a nickel conductive layer is formed on the cylindrical pattern surface of the obtained resin mold by sputtering. Thereafter, the resin mold provided with the conductive layer is immersed in a nickel electroforming bath having the following composition to perform electroforming, and then immersed in a 20 wt% potassium hydroxide aqueous solution at 30 ° C. for 300 seconds to form a nickel layer. The resin mold was melted to obtain a metal mold 1-1.
  • a conductive layer is formed on the cylindrical pattern surface of the obtained resin mold by sputtering. Thereafter, the resin mold provided with the conductive layer was immersed in a nickel electroforming bath having the following composition to perform electroforming, and then the nickel layer and the resin mold were peeled off to obtain a metal mold 1-2.
  • Composition-8 was coated on an optically easy-adhesive PET film substrate (A-4300 manufactured by Toyobo Co., Ltd .; 125 ⁇ m) with a bar coater, heated at 80 ° C. for 4 minutes, and then the surface had a diameter of 230 nm, a height of 200 nm,
  • the metal mold 1-2 produced as described above having a columnar structure of a regular triangular lattice with a pitch of 460 nm is pressed, and 300 mJ / cm from the coating film side in this state by an LED light source (manufactured by Immac Co., Ltd.) having a peak wavelength of 375 nm ⁇ 5.
  • the resin mold 1 having a columnar pattern was obtained by peeling off the metal mold 1-2 and the PET film substrate.
  • Example 9 Based on the formulation shown in Table 5, a nanoimprint curable composition-9 (Composition-9) for resin molding was obtained in the same manner as in Example 8. In the same manner as in Example 8, resin mold 2, resin mold alkali-soluble metal mold 2-1, resin mold peeling metal mold 2-2, and resin molded product 2 were obtained.
  • composition-10 for resin molding was obtained in the same manner as in Example 8.
  • a resin mold 3 a metal mold 3-1, which was soluble in a resin mold alkali, a metal mold 3-2, which was peeled off from the resin mold, and a resin molded product 3 were obtained.
  • composition-11 for resin molding was obtained in the same manner as in Example 8.
  • a resin mold 4 a metal mold 4-1 made by alkali-solubility of the resin mold, a metal mold 4-2 made by peeling off the resin mold, and a resin molded product 4 were obtained.
  • composition-12 for resin molding was obtained in the same manner as in Example 8.
  • a resin mold 5 a metal mold 5-1 by resin mold alkali-soluble, a metal mold 5-2 by peeling off the resin mold, and a resin molded product 5 were obtained.
  • composition-13 for a resin resin mold was obtained in the same manner as in Example 8.
  • a resin mold 6 a metal mold 6-1 made of an alkali-soluble resin mold, a metal mold 6-2 made by peeling off a resin mold, and a resin molded product 6 were obtained.
  • Example 14 Based on the formulation shown in Table 5, a nanoimprint curable composition-14 (composition-14) for resin molding was obtained in the same manner as in Example 8. In the same manner as in Example 8, a resin mold 7, a metal mold 7-1 by resin mold alkali-soluble, a metal mold 7-2 by peeling off the resin mold, and a resin molded product 7 were obtained.
  • composition-15 for resin mold was obtained in the same manner as in Example 8.
  • a resin mold 8 a metal mold 8-1 that is soluble in resin mold alkali, a metal mold 8-2 that is peeled off from the resin mold, and a resin molded product 8 were obtained.
  • Comparative Example 3 Based on the formulation shown in Table 6, a comparative nanoimprint curable composition (specific composition-3) for a resin mold was obtained in the same manner as in Example 8. In the same manner as in Example 8, a comparative resin mold-1, a comparative metal mold 1-1 by resin mold alkali-soluble, a comparative metal mold 1-2 by peeling off the resin mold, and a comparative resin molded product 1 were obtained.
  • the resin mold remaining rate remaining on the metal mold release surface is 0% by weight, and the resin mold remaining rate is more than 0% by weight and less than 1% by weight.
  • the exfoliation property between the resin mold and the metal mold was evaluated with ⁇ for less than 5% by weight and x for 5% by weight or more.
  • Metal mold pattern transferability evaluation The pattern transferability of the obtained metal mold was observed at a magnification of 100,000 with a scanning microscope (manufactured by JEOL Ltd .: JSM-7500F) and evaluated as follows. ⁇ : No defect or deformation in metal mold ⁇ : Defect or deformation in metal mold
  • compositions of nanoimprint curable compositions for resin molds of Examples 8 to 15 and Comparative Example 3 show the results of evaluation of resin molded product pattern transferability.
  • (A1) is an abbreviation for polysiloxane segment (a1). * 1 Content (%) of the polysiloxane segment (a1) with respect to the total solid content (including additives) of the curable resin composition. * 2 Content of the polysiloxane segment (a1) relative to the total solid content of the composite resin (A).
  • PETA Pentaerythritol triacrylate.
  • DPHA dipentaerythritol hexaacrylate.
  • DN-902S Burnock 902S [isocyanate compound DIC Corporation solid content 100%].
  • 17-806 Burnock 17-806 [Urethane acrylate manufactured by DIC Corporation, solid content 80%].
  • I-184 Irgacure 184.
  • BY16-201 Release agent [bifunctional carbinol-modified silicone, manufactured by Toray Dow Corning Co., Ltd.].
  • the resin mold composition for metal mold preparation evaluated in Comparative Example 3 (ratio 1) is an example of urethane acrylate, but has both alkali solubility, peelability from the metal mold and resin molded product, and peelability. inferior.
  • Example 16 (Preparation example of wet etching resist film) 40.0 parts of composite resin (A-10) obtained in Synthesis Example 15, 14.7 parts of dipentaerythritol hexaacrylate (DPHA), Irgacure 184 (photopolymerization initiator, manufactured by Ciba Specialty Chemicals Co., Ltd.) By mixing 39 parts, a nanoimprint curable composition-16 for wet etching resist film (Composition-16) was obtained.
  • DPHA dipentaerythritol hexaacrylate
  • Irgacure 184 photopolymerization initiator, manufactured by Ciba Specialty Chemicals Co., Ltd.
  • Composition-16 was coated on a quartz glass substrate with a spin coater, heated on a hot plate at 80 ° C. for 1 minute, and then an LED light source having a peak wavelength of 375 nm ⁇ 5 from the photoresist composition side (manufactured by Immac Co., Ltd.) Then, the resist film was cured by irradiating with a light amount of 1000 mJ / cm 2 to obtain a wet etching resist film (16-1) having a uniform thickness of 0.5 ⁇ m on the substrate surface.
  • Composition-16 was applied onto a 50 mm ⁇ 50 mm ⁇ 0.7 mm quartz glass substrate with a spin coater and heated on a hot plate at 80 ° C. for 1 minute, and then the surface had a width of 200 nm, a pitch of 200 nm and a height of 200 nm.
  • a flat mold made of quartz glass having a line-and-space structure is pressed, and light is irradiated with a light amount of 1000 mJ / cm 2 from the master mold side with an LED light source (manufactured by Immac Co., Ltd.) having a peak wavelength of 375 nm ⁇ 5 Then, the mold and the quartz glass substrate were peeled off to obtain a wet etching resist film (16-2) having a line-and-space pattern.
  • an LED light source manufactured by Immac Co., Ltd.
  • Example 17 to 18 and Comparative Example 4 Based on the formulation shown in Table 7, nanoimprint curable composition for wet etching resist film-17 (Composition-17) and nanoimprint curable composition for wet etching resist film, respectively, in the same manner as in Example 16- 18 (composition-18) and comparative nanoimprint curable composition-4 (specific composition-4) were prepared. Similarly to Example 16, a resist film for wet etching 17-1, a resist film for wet etching 17-2, a resist film for wet etching 18-1, a resist film for wet etching 18-2, and a comparative wet etching film Resist film H4-1 and wet etching resist film H4-2 were obtained.
  • the wet etching resist film is wet etched using BHF (buffered hydrofluoric acid) as an etchant to form a cylindrical concavo-convex structure on the quartz glass substrate, which is a substrate, and a fine structure is formed.
  • a patterned product made of quartz glass was prepared.
  • the resist film subjected to the etching treatment was evaluated by visual appearance as follows. Here, the resist film appearance is cloudy or peeled off, and there are no abnormalities such as cracks, ⁇ , the resist film appearance is fine cracks etc. X indicates that there was an abnormality such as crack or crack and pattern transfer to the pattern formed product could not be performed normally.
  • a resist film for wet etching for evaluation was sprayed with a 5 wt% aqueous potassium hydroxide solution at a shower pressure of 0.2 MPa for 60 seconds, and the resist film remaining rate was less than 1% by weight.
  • a sample having a rate of 1% to 3% by weight was rated as ⁇ , and a sample having more than 3% by weight was evaluated as ⁇ .
  • Table 7 shows each composition and evaluation results.
  • (A1) is an abbreviation for polysiloxane segment (a1).
  • PETA Pentaerythritol triacrylate.
  • DPHA dipentaerythritol hexaacrylate.
  • DN-902S Burnock 902S [isocyanate compound manufactured by DIC Corporation].
  • 17-806 Barnock 17-806 [made by urethane acrylate DIC Corporation].
  • I-184 Irgacure 184.
  • Nanoimprint cured products using the curable composition for nanoimprints of the present invention, and pattern formed products, replica molds, and resin molded products obtained from the nanoimprint cured products are used in various applications such as mold films, nano / micro optical elements, Optical elements, display elements, electronic paper, storage, MEMS / PCB packaging materials, trace biochemical analysis and trace chemical synthesis, high-performance three-dimensional nano / micro channels for bio applications, next-generation electronic elements, DNA chips, etc. It can also be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Silicon Polymers (AREA)

Abstract

 本発明は、ナノインプリント用モールドを押圧して微細な凹凸パターンを転写する「ナノインプリント」に使用される、シラノール基及び/又は加水分解性シリル基、並びに重合性二重結合を有するポリシロキサンセグメントと、該ポリシロキサン以外の重合体セグメントとを有する複合樹脂を含有するナノインプリント用硬化性組成物を提供するものである。また、該ナノインプリント組成物を使用したナノインプリント成形体、レジスト膜、樹脂モールド、及びパターン形成方法を提供するものである。

Description

ナノインプリント用硬化性組成物、ナノインプリント成形体及びパターン形成方法
 本発明は、ナノインプリント用モールドを押圧して微細な凹凸パターンを転写する「ナノインプリント」に使用される硬化性組成物およびこれを使用したナノインプリント成形体、レジスト膜、樹脂モールド、及びパターン形成方法に関する。
 従来、プリント配線板、液晶表示素子、プラズマディスプレイ、大規模集積回路、薄型トランジスタ、半導体パッケージ、カラーフィルター、有機エレクトロルミネッセンス等における導体回路や電極加工基板等の形成、あるいは金属の精密加工等には、ソルダーレジスト、エッチングレジスト又はめっきレジスト等のレジスト材料として感光性組成物及びそれを用いたドライフィルムレジスト材を使用することが知られている。近年これらは軽薄短小化に伴い、搭載されるプリント配線板やリードフレーム、BGA、CSP等のパッケージには微細パターンが要求されている。
 パターン形成方法としては従来リソグラフィー法やレーザー直接描画法が行われてきたが、リソグラフィー法は光の波長以下の分解能を持たないため、例えば100nm以下の微細構造の作成は困難であった。一方レーザー直接描画法で100nm以下レベルの加工が可能ではあるが、スループットの悪さが問題となる。
 そこで近年、スループット性を改善する手法として、ナノインプリントリソグラフィー技術が研究されている。ナノインプリントリソグラフィー技術は、あらかじめ電子線リソグラフィー等により所定の微細凹凸パターンを作成したナノインプリント用マスターモールドを、ナノインプリント用樹脂を塗布した基板に押し付け、ナノインプリント用マスターモールドの凹凸を基板のナノインプリント用樹脂に転写する手法である。一回の処理にかかる時間は、例えば1平方インチ以上の領域においては、レーザー直接描画法と比較して非常に短くて済むという特徴がある。近年では、該ナノインプリントリソグラフィー技術に適用した樹脂組成物も提案されている。(例えば特許文献1参照)
 ナノインプリントリソグラフィー技術に適用できる組成物は、微細凹凸パターンを形成する必要があることからパターン形成性に優れ、且つ、硬化後のパターン即ちナノインプリント硬化物から残膜を除去した後のパターン形状保持性、又はモールドからの剥離性、あるいは得られたナノインプリント硬化物の透明性、耐熱性、耐光性、耐水性、耐溶剤性、耐酸性等に優れたものであること等の性能が要求される。
特開2011-766号公報
 本発明が解決しようとする課題は、パターン成形性及びパターン保持性に優れ、ナノインプリントに使用可能なナノインプリント用硬化性組成物、およびこれを使用したナノインプリント成形体を提供することにある。
 さらに、エッチング耐性に優れた上記ナノインプリント成形体からなるレジスト膜、及びレジスト膜をエッチングして得られるパターン成形物を提供することにある。
 さらに、ナノオーダーの微細パターンの転写が可能で、かつ剥離性に優れた上記ナノインプリント成形体からなる樹脂モールド、及び該樹脂モールドを用いて製造されるレプリカモールドを提供することにある。
 本発明者らは、鋭意検討の結果、シラノール基及び/又は加水分解性シリル基、並びに重合性二重結合を有するポリシロキサンセグメントと、該ポリシロキサン以外の重合体セグメントとを有する複合樹脂を含有するナノインプリント用硬化性組成物が、特にパターン形成性とパターン形状保持性とに優れることを見出し、上記課題を解決した。
 すなわち本発明は、一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、ビニル系重合体セグメント(a2)とが、一般式(3)で表される結合により結合された複合樹脂(A)と、光重合開始剤を含有するナノインプリント用硬化性組成物を提供する。
Figure JPOXMLDOC01-appb-C000004
       (1)
Figure JPOXMLDOC01-appb-C000005
       (2)
(一般式(1)及び(2)中、R、R及びRは、それぞれ独立して、-R-CH=CH、-R-C(CH)=CH、-R-O-CO-C(CH)=CH、及び-R-O-CO-CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1~6のアルキレン基を表す。)、炭素原子数が1~6のアルキル基、炭素原子数が3~8のシクロアルキル基、アリール基、または炭素原子数が7~12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である)
Figure JPOXMLDOC01-appb-C000006
         (3)
(一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする)
 また本発明は、前記記載のナノインプリント用硬化性組成物を硬化して得られるナノインプリント成形体を提供する。
 また本発明は、前記記載のナノインプリント成形体が、基板に積層されていることを特徴とする、ナノインプリント積層物を提供する。
 また本発明は、レジスト膜である前記記載のナノインプリント成形体を提供する。
 また本発明は、樹脂モールドである前記記載のナノインプリント成形体を提供する。
 また本発明は、前記記載の樹脂モールドを用いて作成することを特徴とする、レプリカモールドを提供する。
 また本発明は、前記記載のナノインプリント用硬化性組成物を基材に塗布して膜を形成する工程と、凹凸構造を有するモールドを押し付けて、この状態でナノインプリント用硬化性組成物に活性エネルギー線硬化させる工程と、その後モールドを剥離する工程とを有するパターン形成方法を提供する。
 また本発明は、前記記載のナノインプリント積層体に積層されたレジスト膜に形成されたパターンをマスクとして、基板をドライエッチングすることにより基板にパターンを形成することを特徴とする、パターン形成方法を提供する。
 また本発明は、前記記載のナノインプリント積層体に積層されたレジスト膜に形成されたパターンをマスクとして、基板をウエットエッチングすることにより基板にパターンを形成することを特徴とする、パターン形成方法を提供する。
 また本発明は、(1)前記記載のナノインプリント用硬化性組成物の塗膜を形成する工程と、(2)該塗膜にマスターモールドを押し当て、活性エネルギー線を照射して硬化し、ナノインプリント成形物である樹脂モールドを形成する工程と、(3)該樹脂モールド上に金属層を形成する工程と、(4)該金属層から樹脂モールドを剥離し、金属モールドを得る工程とを含むことを特徴とする、金属モールドの製造方法を提供する。
 また本発明は、(1)前記記載のナノインプリント用硬化性組成物の塗膜を形成する工程と、(2)該塗膜にマスターモールドを押し当て、活性エネルギー線を照射して硬化し、ナノインプリント成形物である樹脂モールドを形成する工程と、(5)該樹脂モールド上に第2樹脂層を形成し、該第2樹脂層を硬化させる工程と、(6)該第2樹脂層から樹脂モールドを剥離し、樹脂成形体を得る工程とを含むことを特徴とする、樹脂成形体の製造方法を提供する。
 本発明により、ナノインプリントに使用可能であり、且つパターン形成とパターン形状保持性とに優れるナノインプリント成形体を与えるナノインプリント用硬化性組成物を提供することができる。
 また本発明により、エッチング耐性に優れ、エッチングによる基板に対する微細なパターンの再現性が良好な、ナノインプリント成形体からなるレジスト膜、及びナノインプリント積層体を得ることができる。 
 また本発明により、ナノオーダーサイズのパターンでも転写が可能で、マスターモールド及びレプリカモールドからの剥離性に優れた、ナノインプリント成形体からなる樹脂モールド、及び該樹脂モールドを使用したレプリカモールドを得ることができる。 
(複合樹脂(A)) 
 本発明で使用する複合樹脂(A)は、前記一般式(1)および/または前記一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)(以下単にポリシロキサンセグメント(a1)と称す)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)(以下単にビニル系重合体セグメント(a2)と称す)とが、前記一般式(3)で表される結合により結合された複合樹脂(A)である。
Figure JPOXMLDOC01-appb-C000007
        (3)
 後述のポリシロキサンセグメント(a1)が有するシラノール基および/または加水分解性シリル基と、後述のビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基とが脱水縮合反応して、前記一般式(3)で表される結合が生じる。従って前記一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする。
 複合樹脂(A)の形態は、例えば、前記ポリシロキサンセグメント(a1)が前記重合体セグメント(a2)の側鎖として化学的に結合したグラフト構造を有する複合樹脂や、前記重合体セグメント(a2)と前記ポリシロキサンセグメント(a1)とが化学的に結合したブロック構造を有する複合樹脂等が挙げられる。
(ポリシロキサンセグメント(a1))
 本発明におけるポリシロキサンセグメント(a1)は、一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有すセグメントである。一般式(1)および/または一般式(2)で表される構造単位中には重合性二重結合を有する基が含まれている。
(一般式(1)および/または一般式(2)で表される構造単位)
 前記一般式(1)および/または前記一般式(2)で表される構造単位は、重合性二重結合を有する基を必須成分として有している。具体的には、前記一般式(1)及び(2)におけるR、R及びRは、それぞれ独立して、-R-CH=CH、-R-C(CH)=CH、-R-O-CO-C(CH)=CH、及び-R-O-CO-CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1~6のアルキレン基を表す)、炭素原子数が1~6のアルキル基、炭素原子が3~8のシクロアルキル基、アリール基または炭素原子が7~12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である。また前記Rにおける前記炭素原子数が1~6のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、ペンチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基、1-メチルブチレン基、2-メチルブチレン基、1,2-ジメチルプロピレン基、1-エチルプロピレン基、ヘキシレン基、イソヘシレン基、1-メチルペンチレン基、2-メチルペンチレン基、3-メチルペンチレン基、1,1-ジメチルブチレン基、1,2-ジメチルブチレン基、2,2-ジメチルブチレン基、1-エチルブチレン基、1,1,2-トリメチルプロピレン基、1,2,2-トリメチルプロピレン基、1-エチル-2-メチルプロピレン基、1-エチル-1-メチルプロピレン基等が挙げられる。中でもRは、原料の入手の容易さから単結合または炭素原子数が2~4のアルキレン基が好ましい。
 また、前記炭素原子数が1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。また、前記炭素原子数が3~8のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。また、前記アリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。また、前記炭素原子数が7~12のアラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
 また、R、R及びRの少なくとも1つは前記重合性二重結合を有する基であるとは、具体的には、ポリシロキサンセグメント(a1)が一般式(1)で表される構造単位のみを有する場合にはRが前記重合性二重結合を有する基であり、ポリシロキサンセグメント(a1)が一般式(2)で表される構造単位のみを有する場合にはR及び/又はRが前記重合性二重結合を有する基であり、ポリシロキサンセグメント(a1)が一般式(1)と一般式(2)で表される構造単位の両方を有する場合には、R、R及びRの少なくとも1つが重合性二重結合を有する基であることを示す。
 本発明においては、前記重合性二重結合は、ポリシロキサンセグメント(a1)中に2つ以上存在することが好ましく、3~200個存在することがより好ましく、3~50個存在することが更に好ましく、パターン成形性及びパターン保持性に優れたナノインプリント用硬化性組成物を得ることができる。具体的には、前記ポリシロキサンセグメント(a1)中の重合性二重結合の含有率が3~20重量%であれば、所望のパターン成形性及びパターン保持性を得ることができる。尚、ここでいう重合性二重結合とは、ビニル基、ビニリデン基もしくはビニレン基のうち、フリーラジカルによる生長反応を行うことができる基の総称である。また、重合性二重結合の含有率とは、当該ビニル基、ビニリデン基もしくはビニレン基のポリシロキサンセグメント中における重量%を示すものである。
 重合性二重結合を有する基としては、当該ビニル基、ビニリデン基、ビニレン基を含有してなる公知の全ての官能基を使用することができるが、中でも-R-C(CH)=CHや-R-O-CO-C(CH)=CHで表される(メタ)アクリロイル基は、紫外線硬化の際の反応性に富むことや、後述のビニル系重合体セグメント(a2)との相溶性が良好である。
 前記一般式(1)および/または前記一般式(2)で表される構造単位は、ケイ素の結合手のうち2または3つが架橋に関与した、三次元網目状のポリシロキサン構造単位である。三次元網目構造を形成しながらも密な網目構造を形成しないので、製造中にゲル化等を生じることもなく保存安定性も良好となる。
(シラノール基および/または加水分解性シリル基)
 本発明においてシラノール基とは、珪素原子に直接結合した水酸基を有する珪素含有基である。該シラノール基は具体的には、前記一般式(1)および/または前記一般式(2)で表される構造単位の、結合手を有する酸素原子が水素原子と結合して生じたシラノール基であることが好ましい。
 また本発明において加水分解性シリル基とは、珪素原子に直接結合した加水分解性基を有する珪素含有基であり、具体的には、例えば一般式(4)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000008
       (4)
(一般式(4)中、Rはアルキル基、アリール基又はアラルキル基等の1価の有機基を、Rはハロゲン原子、アルコキシ基、アシロキシ基、フェノキシ基、アリールオキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基及びアルケニルオキシ基からなる群から選ばれる加水分解性基である。またbは0~2の整数である。)
 前記Rにおいて、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。またアリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。またアラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
 前記Rにおいて、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二ブトキシ基、第三ブトキシ基等が挙げられる。またアシロキシ基としては、例えば、ホルミルオキシ、アセトキシ、プロパノイルオキシ、ブタノイルオキシ、ピバロイルオキシ、ペンタノイルオキシ、フェニルアセトキシ、アセトアセトキシ、ベンゾイルオキシ、ナフトイルオキシ等が挙げられる。
またアリールオキシ基としては、例えば、フェニルオキシ、ナフチルオキシ等が挙げられる。アルケニルオキシ基としては、例えば、ビニルオキシ基、アリールオキシ基、1-プロペニルオキシ基、イソプロペニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、2-ペテニルオキシ基、3-メチル-3-ブテニルオキシ基、2-ヘキセニルオキシ基等が挙げられる。
 前記Rで表される加水分解性基が加水分解されることにより、一般式(4)で表される加水分解性シリル基はシラノール基となる。加水分解性に優れることから、中でも、メトキシ基およびエトキシ基が好ましい。また前記加水分解性シリル基は具体的には、前記一般式(1)および/または前記一般式(2)で表される構造単位の、結合手を有する酸素原子が前記加水分解性基と結合もしくは置換されている加水分解性シリル基であることが好ましい。
 前記シラノール基や前記加水分解性シリル基は、前記重合性二重結合を有する基の硬化反応による塗膜形成の際に、該硬化反応と平行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行するので、得られる塗膜のポリシロキサン構造の架橋密度が高まり、耐溶剤性等に優れた塗膜を形成することができる。また、前記シラノール基や前記加水分解性シリル基を含むポリシロキサンセグメント(a1)と後述のビニル系重合体セグメント(a2)とを、前記一般式(3)で表される結合を介して結合させる際に使用する。
 ポリシロキサンセグメント(a1)は、前記一般式(1)および/または前記一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有する以外は特に限定はなく、他の基を含んでいてもよい。例えば、前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(1)におけるRがメチル等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(1)におけるRがメチル基等のアルキル基である構造単位と、前記一般式(2)におけるR及びRがメチル基等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(2)におけるR及びRがメチル基等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、特に限定はない。
 具体的には、ポリシロキサンセグメント(a1)としては、例えば以下の構造を有するもの等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 本発明においては、前記ポリシロキサンセグメント(a1)を、前記複合樹脂(A)の全固形分量に対して10~90重量%含むことが好ましく、高度なエッチング耐性とガラス等の基板密着性の性質を両立させることが可能となる。中でも10~60重量%含むことが好ましい。
(ビニル系重合体セグメント(a2))
 本発明におけるビニル系重合体セグメント(a2)は、アクリル系重合体、フルオロオレフィン系重合体、ビニルエステル系重合体、芳香族系ビニル系重合体、ポリオレフィン系重合体等のビニル重合体セグメントである。
 アクリル系重合性セグメントは、汎用の(メタ)アクリルモノマーを重合または共重合させて得られる。(メタ)アクリルモノマーとしては特に限定はなく、またビニルモノマーも共重合可能である。例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素原子数が1~22のアルキル基を有するアルキル(メタ)アクリレート類;ベンジル(メタ)アクリレート、2-フェニルエチル(メタ)アクリレート等のアラルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;2-メトキシエチル(メタ)アクリレート、4-メトキシブチル(メタ)アクリレート等のω-アルコキシアルキル(メタ)アクリレート類;スチレン、p-tert-ブチルスチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル系モノマー類;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル等のカルボン酸ビニルエステル類;クロトン酸メチル、クロトン酸エチル等のクロトン酸のアルキルエステル類;ジメチルマレート、ジ-n-ブチルマレート、ジメチルフマレート、ジメチルイタコネート等の不飽和二塩基酸のジアルキルエステル類;エチレン、プロピレン等のα-オレフィン類;フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のフルオロオレフィン類;エチルビニルエーテル、n-ブチルビニルエーテル等のアルキルビニルエーテル類;シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル類;N,N-ジメチル(メタ)アクリルアミド、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピロリジン、N-ビニルピロリドン等の3級アミド基含有モノマー類等が挙げられる。
 また、本発明におけるナノインプリント成形体からなるレジスト膜においてドライエッチング耐性を高くしたい場合、本発明におけるビニル系重合体セグメント(a2)に対して、芳香環または環状炭化水素基を有する(メタ)アクリル繰り返し単位を導入するとよい。前記芳香環または環状炭化水素基を有する(メタ)アクリル繰り返し単位として好ましくは、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートなどの芳香環を有する(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、シクロペンタニル(メタ) アクリレート、アダマンチル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、テトラシクロドデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、エチレングリコールジ(メタ) アクリレート、イソボルニルアクリレート、などの環状炭化水素基を有する(メタ)アクリレートが挙げられる。使用するモノマーとしては、エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、1,4-シクロヘキサンジメタノールジアクリレート、シクロデカンジメタノールジ(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカンジメタノール(メタ)アクリレート、ジシクロペンテニルジ(メタ)アクリレート、1,4-ベンゼンジメタノールジ(メタ)アクリレート、水添ビスフェノールAジ(メタ)アクリレート、1,3-アダマンタンジオールジ(メタ)アクリレート等が挙げられる。これらは単独で又は2種以上を組み合わせても用いることができる。
(フッ素含有モノマー)
 前記複合樹脂(A)において、フッ素含有モノマーを共重合させることができる。フッ素が存在させると、ナノインプリント時のモールドの離型性が優れるため、好ましい。また、ナノインプリント成形体を樹脂モールドとする場合には、離型性がより要求されるため、フッ素含有モノマーを共重合させることがとくに好ましい。
 ビニル系重合体セグメント(a2)にフッ素含有モノマーを共重合させる場合、フッ素化アルキル基を含有する(メタ)アクリルモノマーを用いることが好ましい。
(フッ素化アルキル基を有する(メタ)アクリルモノマー)
フッ素化アルキル基(フッ素原子1~3個が結合している炭素原子1個又は2個以上が連結された官能基、フッ素化アルキル基中の炭素原子が不飽和結合であるもの、フッ素化アルキル基中の炭素原子が酸素原子によるエーテル結合によって連結されたものなど)を有する(メタ)アクリルモノマーとしては、例えば、下記一般式(5)で表されるモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000018
(上記一般式(5)中、Rは水素原子、フッ素原子、メチル基、シアノ基、フェニル基、ベンジル基又は-CnH2n-Rf’(nは1~8の整数を表し、Rf’は下記式(Rf-1)~(Rf-7)のいずれか1つの基を表す。)を表し、R’は、下記式(R’-1)~(R’-10)のいずれか1つの基を表し、Rfは下記式(Rf-1)~(Rf-7)のいずれか1つの基を表す。)
Figure JPOXMLDOC01-appb-C000019
(上記式(R’-1)、(R’-3)、(R’-5)、(R’-6)及び(R’-7)中のnは1~8の整数を表す。上記式(R’-8)、(R’-9)及び(R’-10)中のmは1~8の整数を表し、nは0~8の整数を表す。上記式(R’-6)及び(R’-7)中のRf’’は下記式(Rf-1)~(Rf-7)のいずれか1つの基を表す。)
Figure JPOXMLDOC01-appb-C000020
(上記式(Rf-1)及び(Rf-2)中のnは1~6の整数を表す。上記式(Rf-3)中のnは2~6の整数を表す。上記式(Rf-4)中のnは4~6の整数を表す。上記式(Rf-5)中のmは1~5の整数であり、nは0~4の整数であり、かつm及びnの合計は1~5である。上記式(Rf-6)中のmは0~4の整数であり、nは1~4の整数であり、pは0~4の整数であり、かつm、n及びpの合計は1~5である。)
 上記一般式(1)で表される単量体中でも、フッ素化アルキル基の炭素原子数が4~6のものが撥液性の優れる点で好ましい。好ましいモノマー(f1)のより具体的な例として、下記の単量体(f1-1)~(f1-15)が挙げられる。
Figure JPOXMLDOC01-appb-C000021
(上記の式(f1-6)、(f1-7)、(f1-13)、(f1-14)及び(f1-13)中のnは、3又は5を表す。)
 また、ポリ(パーフルオロアルキレンエーテル)鎖とその両末端にラジカル重合性基を有する構造部位を有する化合物を用いても良い。
Figure JPOXMLDOC01-appb-C000022
 上記構造式F-1~F-10で表されるものが挙げられる。なお、上記の各構造式中における「-PFPE-」は、ポリ(パーフルオロアルキレンエーテル)鎖を示す。
(酸基を有するビニル系重合体セグメント(a2))
 本発明におけるナノインプリント成形体をレジスト膜とする場合、あるいは樹脂モールドとする場合、レジスト膜あるいは樹脂モールドの残膜をアルカリ洗浄する場合がある。その場合、ナノインプリント成形体をアルカリ溶解性にすることが好ましい。
 ナノイン成形体をアルカリ洗浄可能なアルカリ溶解性とするために、本発明におけるビニル系重合体セグメント(a2)は、酸基を有するアクリル重合体、フルオロオレフィン重合体、ビニルエステル重合体、芳香族系ビニル重合体及びポリオレフィン重合体等のビニル重合体セグメントとすると良い。中でも酸基を有する(メタ)アクリルモノマーを共重合させたアクリル系重合体セグメントが、得られる塗膜の優れた透明性の点から好ましい。
 酸基を含有する(メタ)アクリルモノマーとしては、(メタ)アクリル酸、2-カルボキシエチル(メタ)アクリレート、クロトン酸、イタコン酸、マレイン酸またはフマル酸等の、各種の不飽和カルボン酸類;イタコン酸モノメチル、イタコン酸モノ-n-ブチル、マレイン酸モノメチル、マレイン酸モノ-n-ブチル、フマル酸モノメチル、フマル酸モノ-n-ブチル等の、飽和ジカルボン酸類と、飽和1価アルコール類との各種のモノエステル類(ハーフエステル類);アジピン酸モノビニルまたはコハク酸モノビニル等の、各種の飽和ジカルボン酸のモノビニルエステル類;無水コハク酸、無水グルタル酸、無水フタル酸または無水トリメリット酸等の、各種の飽和ポリカルボン酸の無水物類、等が挙げられる。中でも(メタ)アクリル酸が、反応が容易であり好ましい。
 前記した酸基の含有量は、複合樹脂(A)の酸価に換算して30~400KOHmg/gの範囲となるように含有することが好ましい。30KOHmg/g以上であればアルカリ溶解性に優れ、400KOHmg/gを以下であると合成時のゲル化が抑えられる為、好ましい。特に40~300KOHmg/g以下であると、アルカリ溶解性と樹脂モールドの剥離性が両立できる為、特に好ましい。
(ビニル系重合体セグメント(a2)の重合)
 前記モノマーを共重合させる際の重合方法、溶剤、あるいは重合開始剤にも特に限定はなく、公知の方法によりビニル系重合体セグメント(a2)を得ることができる。例えば、塊状ラジカル重合法、溶液ラジカル重合法、非水分散ラジカル重合法等の種々の重合法により、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルパーオキシカーボネート等の重合開始剤を使用してビニル系重合体セグメント(a2)を得ることができる。
 前記ビニル系重合体セグメント(a2)の数平均分子量としては、数平均分子量(以下Mnと略す)に換算して500~200,000の範囲であることが好ましく、前記複合樹脂(A)を製造する際の増粘やゲル化を防止でき、且つ耐久性に優れる。Mnは中でも700~100,000の範囲がより好ましく、1,000~50,000の範囲が好ましい。
 また前記ビニル系重合体セグメント(a2)は、前記ポリシロキサンセグメント(a1)と一般式(3)で表される結合により結合された複合樹脂(A)とするために、ビニル系重合体セグメント(a2)中の炭素結合に直接結合したシラノール基および/または加水分解性シリル基を有する。これらのシラノール基および/または加水分解性シリル基は、後述の複合樹脂(A)の製造において一般式(3)で表される結合となってしまうために、最終生成物である複合樹脂(A)中のビニル系重合体セグメント(a2)には殆ど存在しない。しかしながらビニル系重合体セグメント(a2)にシラノール基および/または加水分解性シリル基が残存していても何ら問題はなく、前記重合性二重結合を有する基の硬化反応による塗膜形成の際に、該硬化反応と平行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行するので、得られる塗膜のポリシロキサン構造の架橋密度が高まり、耐溶剤性等に優れたレジスト膜を形成することができる。
 炭素結合に直接結合したシラノール基および/または加水分解性シリル基を有するビニル系重合体セグメント(a2)は、具体的には、前記汎用モノマー、及び、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとを共重合させて得る。
 炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとしては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリ(2-メトキシエトキシ)シラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、2-トリメトキシシリルエチルビニルエーテル、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリクロロシラン等が挙げられる。中でも、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去することができることからビニルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
 また、後述のポリイソシアネート(B)を含有する際には、前記ビニル系重合体セグメント(a2)はアルコール性水酸基を有することが好ましい。アルコール性水酸基を有するビニル系重合体セグメント(a2)は、アルコール水酸基を有する(メタ)アクリルモノマーを共重合させて得ることができる。アルコール水酸基を有する(メタ)アクリルモノマーとしては、具体的には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、ジ-2-ヒドロキシエチルフマレート、モノ-2-ヒドロキシエチルモノブチルフマレート、ポリエチレングルコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、「プラクセルFMもしくはプラクセルFA」〔ダイセル化学(株)製のカプロラクトン付加モノマー〕等の各種α、β-エチレン性不飽和カルボン酸のヒドロキシアルキルエステル類、またはこれらとε-カプロラクトンとの付加物、等が挙げられる。
中でも2-ヒドロキシエチル(メタ)アクリレートが、反応が容易であり好ましい。
 前記アルコール性水酸基量は、後述のポリイソシアネート(B)の添加量から算出して適宜決定するのが好ましい。
 また、後述の通り本発明においてはアルコール性水酸基を有する活性エネルギー線硬化性モノマーを併用してもよく好ましい。従ってアルコール性水酸基を有するビニル系重合体セグメント(a2)中のアルコール性水酸基量は、併用するアルコール性水酸基を有する活性エネルギー線硬化性モノマーの量まで加味して決定することができる。実質的にはビニル系重合体セグメント(a2)の水酸基価に換算して30~300の範囲となるように含有することが好ましい。
(複合樹脂(A)の製造方法)
 本発明で用いる複合樹脂(A)は、具体的には下記(方法1)~(方法3)に示す方法で製造する。
 (方法1)前記汎用の(メタ)アクリルモノマー等、及び、前記炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとを共重合させて炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。これに、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる。
 該方法においては、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物のシラノール基あるいは加水分解性シリル基と、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基とが加水分解縮合反応し、前記ポリシロキサンセグメント(a1)が形成されると共に、前記ポリシロキサンセグメント(a1)と、ビニル系重合体セグメント(a2)とが前記一般式(3)で表される結合により複合化された複合樹脂(A)が得られる。
 (方法2)方法1と同様にして、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。
一方、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物を加水分解縮合反応させ、ポリシロキサンセグメント(a1)を得る。そして、ビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基と、とポリシロキサンセグメント(a1)とが有するシラノール基および/または加水分解性シリル基とを加水分解縮合反応をさせる。
(方法3)方法1と同様に、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。一方、方法2と同様にしてポリシロキサンセグメント(a1)を得る。更に重合性二重結合を併有するシラン化合物を含有するシラン化合物と、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる。
 前記(方法1)~(方法3)で使用する、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物としては、具体的には、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリ(2-メトキシエトキシ)シラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、2-トリメトキシシリルエチルビニルエーテル、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリクロロシラン等が挙げられる。中でも、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去することができることからビニルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
 また、前記(方法1)~(方法3)で使用する、汎用のシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-ブトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、iso-ブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等の各種のオルガノトリアルコキシシラン類;ジメチルジメ01トキシシラン、ジメチルジエトキシシラン、ジメチルジ-n-ブトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルシクロヘキシルジメトキシシランもしくはメチルフェニルジメトキシシラン等の、各種のジオルガノジアルコキシシラン類;メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、ビニルトリクロロシラン、ジメチルジクロロシラン、ジエチルジクロロシランもしくはジフェニルジクロロシラン等のクロロシラン類が挙げられる。中でも、加水分解反応が容易に進行し、また反応後の副生成物を容易に除去することが可能なオルガノトリアルコキシシランやジオルガノジアルコキシシランが好ましい。
また、エポキシ基含有シラン化合物を使用することもできる。エポキシ基含有シラン化合物としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシエトキシシラン、γ-グリシドキシプロピルトリアセトキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシエトキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリアセトキシシラン、γ-グリシドキシプロピルジメトキシメチルシラン、γ-グリシドキシプロピルジエトキシメチルシラン、γ-グリシドキシプロピルジメトキシエトキシメチルシラン、γ-グリシドキシプロピルジアセトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジメトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジエトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジメトキシエトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジアセトキシメチルシラン、γ-グリシドキシプロピルジメトキシエチルシラン、γ-グリシドキシプロピルジエトキシエチルシラン、γ-グリシドキシプロピルジメトキシエトキシエチルシラン、γ-グリシドキシプロピルジアセトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジメトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジエトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジメトキシエトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジアセトキシエチルシラン、γ-グリシドキシプロピルジメトキシイソプロピルシラン、γ-グリシドキシプロピルジエトキシイソプロピルシラン、γ-グリシドキシプロピルジメトキシエトキシイソプロピルシラン、γ-グリシドキシプロピルジアセトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルジエトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルジエトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルジメトキシエトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルジアセトキシイソプロピルシラン、γ-グリシドキシプロピルメトキシジメチルシラン、γ-グリシドキシプロピルエトキシジメチルシラン、γ-グリシドキシプロピルメトキシエトキシジメチルシラン、γ-グリシドキシプロピルアセトキシジメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシジメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルエトキシジメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシエトキシジメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルアセトキシジメチルシラン、γ-グリシドキシプロピルメトキシジエチルシラン、γ-グリシドキシプロピルエトキシジエチルシラン、γ-グリシドキシプロピルメトキシエトキシジエチルシラン、γ-グリシドキシプロピルアセトキシジエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシジエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルエトキシジエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシエトキシジエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルアセトキシジエチルシラン、γ-グリシドキシプロピルメトキシジイソプロピルシラン、γ-グリシドキシプロピルエトキシジイソプロピルシラン、γ-グリシドキシプロピルメトキシエトキシジイソプロピルシラン、γ-グリシドキシプロピルアセトキシジイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシジイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルエトキシジイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシエトキシジイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルアセトキシジイソプロピルシラン、γ-グリシドキシプロピルメトキシエトキシメチルシラン、γ-グリシドキシプロピルアセトキシメトキシメチルシラン、γ-グリシドキシプロピルアセトキシエトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシエトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシアセトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルエトキシアセトキシメチルシラン、γ-グリシドキシプロピルメトキシエトキシエチルシラン、γ-グリシドキシプロピルアセトキシメトキシエチルシラン、γ-グリシドキシプロピルアセトキシエトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシエトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシアセトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルエトキシアセトキシエチルシラン、γ-グリシドキシプロピルメトキシエトキシイソプロピルシラン、γ-グリシドキシプロピルアセトキシメトキシイソプロピルシラン、γ-グリシドキシプロピルアセトキシエトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシエトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシアセトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルエトキシアセトキシイソプロピルシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシメチルトリメトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシメチルトリメトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、グリシドキシメチルメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジメトキシエトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルエチルジプロポキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン等が挙げられる。
 また、フッ素化アルキル基を有するシランカップリング剤も使用することができ、例えば、トリフルオロプロピルトリメトキシシラン等があげられ、市販品としては、信越化学(株)のKBM-7013などが挙げられる。前記複合樹脂(A)がフッ素原子を含む場合、得られる樹脂モールドの離型性に優れるため、特に好ましい。
また、テトラメトキシシラン、テトラエトキシシランもしくはテトラn-プロポキシシラン等の4官能アルコキシシラン化合物や該4官能アルコキシシラン化合物の部分加水分解縮合物を、本発明の効果を損なわない範囲で併用することもできる。前記4官能アルコキシシラン化合物又はその部分加水分解縮合物を併用する場合には、前記ポリシロキサンセグメント(a1)を構成する全珪素原子に対して、該4官能アルコキシシラン化合物の有する珪素原子が20モル%を超えない範囲となるように併用することが好ましい。
また前記シラン化合物には、ホウ素、チタン、ジルコニウムあるいはアルミニウム等の珪素原子以外の金属アルコキシド化合物を、本発明の効果を損なわない範囲で併用することもできる。例えば、ポリシロキサンセグメント(a1)を構成する全珪素原子に対して、上述の金属アルコキシド化合物の有する金属原子が、25モル%を超えない範囲で、併用することが好ましい。
前記(方法1)~(方法3)における加水分解縮合反応は、前記加水分解性基の一部が水等の影響で加水分解され水酸基を形成し、次いで該水酸基同士、あるいは該水酸基と加水分解性基との間で進行する進行する縮合反応をいう。該加水分解縮合反応は、公知の方法で反応を進行させることができるが、前記製造工程で水と触媒とを供給することで反応を進行させる方法が簡便で好ましい。
 使用する触媒としては、例えば、塩酸、硫酸、燐酸等の無機酸類;p-トルエンスルホン酸、燐酸モノイソプロピル、酢酸等の有機酸類;水酸化ナトリウム又は水酸化カリウム等の無機塩基類;テトライソプロピルチタネート、テトラブチルチタネート等のチタン酸エステル類;1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ-n-ブチルアミン、ジメチルベンジルアミン、モノエタノールアミン、イミダゾール、1-メチルイミダゾール等の各種の塩基性窒素原子を含有する化合物類;テトラメチルアンモニウム塩、テトラブチルアンモニウム塩、ジラウリルジメチルアンモニウム塩等の各種の4級アンモニウム塩類であって、対アニオンとして、クロライド、ブロマイド、カルボキシレートもしくはハイドロオキサイド等を有する4級アンモニウム塩類;ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫ジアセチルアセトナート、オクチル酸錫又はステアリン酸錫等錫カルボン酸塩等が挙げられる。触媒は単独で使用しても良いし、2種以上併用しても良い。
 前記触媒の添加量に特に限定はないが、一般的には前記シラノール基または加水分解性シリル基を有する各々の化合物全量に対して、0.0001~10重量%の範囲で使用することが好ましく、0.0005~3重量%の範囲で使用することがより好ましく、0.001~1重量%の範囲で使用することが特に好ましい。
また、供給する水の量は、前記シラノール基または加水分解性シリル基を有する各々の化合物が有するシラノール基または加水分解性シリル基1モルに対して0.05モル以上が好ましく、0.1モル以上がより好ましく、特に好ましくは、0.5モル以上である。これらの触媒及び水は、一括供給でも逐次供給であってもよく、触媒と水とを予め混合したものを供給しても良い。
 前記(方法1)~(方法3)における加水分解縮合反応を行う際の反応温度は、0℃~150℃の範囲が適切であり、好ましくは、20℃~100℃の範囲内である。また、反応の圧力としては、常圧、加圧下又は減圧下の、いずれの条件においても行うことができる。また、前記加水分解縮合反応において生成しうる副生成物であるアルコールや水は、必要に応じ蒸留等の方法により除去してもよい。
 前記(方法1)~(方法3)における各々の化合物の仕込み比率は、所望とする本発明で使用する複合樹脂(A)の構造により適宜選択される。中でも、得られる塗膜の耐久性が優れることから、ポリシロキサンゼグメント(a1)の含有率が30~95重量%となるよう複合樹脂(A)を得るのが好ましく、30~75重量%が更に好ましい。
 前記(方法1)~(方法3)において、ポリシロキサンセグメントとビニル系重合体セグメントをブロック状に複合化する具体的な方法としては、ポリマー鎖の片末端あるいは両末端のみに前記したシラノール基および/または加水分解性シリル基を有するような構造のビニル系重合体セグメントを中間体として使用し、例えば、(方法1)であれば、当該ビニル系重合体セグメントに、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる方法が挙げられる。
 一方、前記(方法1)~(方法3)において、ビニル系重合体セグメントに対してポリシロキサンセグメントをグラフト状に複合化させる具体的な方法としては、ビニル系重合体セグメントの主鎖に対し、前記したシラノール基および/または加水分解性シリル基をランダムに分布させた構造を有するビニル系重合体セグメントを中間体として使用し、例えば、(方法2)であれば、当該ビニル系重合体セグメントが有するシラノール基および/または加水分解性シリル基と、前記したポリシロキサンセグメントが有するシラノール基および/または加水分解性シリル基とを加水分解縮合反応をさせる方法を挙げることができる。
(ポリイソシアネート(B))
 前記複合樹脂(A)における前記ビニル系重合体セグメント(a2)がアルコール性水酸基を有する場合は、ポリイソシアネート(B)を併用することが好ましい。
 使用するポリイソシアネート(B)としては特に限定はなく公知のものを使用することができる。例えば、トリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート等の芳香族ジイソシアネート類や、メタ-キシリレンジイソシアネート、α,α,α’,α’-テトラメチル-メタ-キシリレンジイソシアネート等のアラルキルジイソシアネート類を主原料とするポリイソシアネート、テトラメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート(以下「HDI」と略す)、2,2,4-(又は、2,4,4-トリメチル-1,6-ヘキサメチレンジイソイシアネート、リジンイソシアネート、イソホロンジイソシアネート、水添キシレンジイソシアネート、水添ジフェニルメタンジイソシアネート、1,4-ジイソシアネートシクロヘキサン、1,3-ビス(ジイソシアネートメチル)シクロヘキサン、4,4’-ジシクロヘキシルメタンジイソシアネート、アロファネート型ポリイソシアネート、ビウレット型ポリイソシアネート、アダクト型ポリイソシアネート及びイソシアヌレート型ポリイソシアネートが挙げられる。
 なお、前記したポリイソシアネートとしては、種々のブロック剤でブロック化された、いわゆるブロックポリイソシアネート化合物を使用することもできる。ブロック剤としては、例えばメタノール、エタノール、乳酸エステル等のアルコール類;フェノール、サリチル酸エステル等のフェノール性水酸基含有化合物類;ε-カプロラクタム、2-ピロリドン等のアマイド類;アセトンオキシム、メチルエチルケトオキシム等のオキシム類;アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等の活性メチレン化合物類等を使用することができる。
ポリイソシアネートと系中の水酸基(これは、前記ビニル系重合体セグメント(a2)中の水酸基や後述のアルコール性水酸基を有する前記活性エネルギー線硬化性モノマー中の水酸基である)との反応は、特に加熱等は必要なく、例えば硬化形態が紫外線である場合には、塗装、紫外線照射後室温に放置することで徐徐に反応していく。また必要に応じて、紫外線照射後、80℃で数分間~数時間(20分~4時間)加熱して、アルコール性水酸基とイソシアネートの反応を促進してもよい。その場合は、必要に応じて公知のウレタン化触媒を使用してもよい。ウレタン化触媒は、所望する反応温度に応じて適宜選択する。
(ナノインプリント用硬化性組成物) 
本発明のナノインプリント用硬化性組成物は光重合開始剤を含有する。光重合開始剤としては光硬化性組成物において公知のものを使用すればよく、例えば、アセトフェノン類、ベンジルケタール類、ベンゾフェノン類からなる群から選ばれる一種以上を好ましく用いることができる。前記アセトフェノン類としては、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン等が挙げられる。前記ベンジルケタール類としては、例えば、1-ヒドロキシシクロヘキシル-フェニルケトン、ベンジルジメチルケタール等が挙げられる。前記ベンゾフェノン類としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル等が挙げられる。前記ベンゾイン類等としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。光重合開始剤は単独で使用しても良いし、2種以上を併用してもよい。
 前記光重合開始剤の使用量は、前記複合樹脂(A)100重量%に対して、1~15重量%が好ましく、2~10重量%がより好ましい。
 また、前記複合樹脂(A)にビニルエーテル基やエポキシ基などの光カチオン重合性基を有する場合は、光カチオン開始剤を併用することができる。光カチオン開始剤としては、ルイス酸のジアゾニウム塩、ルイス酸のヨードニウム塩、ルイス酸のスルホニウム塩等が挙げられ、これらはカチオン部分がそれぞれ芳香族ジアゾニウム、芳香族ヨードニウム、芳香族スルホニウムであり、アニオン部分がBF4-、PF6-、SbF6-、[BY4]-(ただし、Yは少なくとも2つ以上のフッ素原子又はトリフルオロメチル基で置換されたフェニル基)等により構成されたオニウム塩であるが好ましくは、安定性の観点よりリン系化合物であるカチオン重合開始剤である。具体的には四フッ化ホウ素のフェニルジアゾニウム塩、六フッ化リンのジフェニルヨードニウム塩、六フッ化アンチモンのジフェニルヨードニウム塩、六フッ化ヒ素のトリ-4-メチルフェニルスルホニウム塩、四フッ化アンチモンのトリ-4-メチルフェニルスルホニウム塩、テトラキス(ペンタフルオロフェニル)ホウ素のジフェニルヨードニウム塩、アセチルアセトンアルミニウム塩とオルトニトロベンジルシリルエーテル混合体、フェニルチオピリジウム塩、六フッ化リンアレン-鉄錯体等を挙げることができる。
 また、紫外線硬化させる場合は、必要に応じて多官能(メタ)アクリレートを含有するのが好ましい。多官能(メタ)アクリレートは、ポリイソシアネート(B)と反応させる場合はアルコール性水酸基を有するものが好ましい。例えば、1,2-エタンジオールジアクリレート、1,2-プロパンジオールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、ジプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリス(2-アクリロイルオキシ)イソシアヌレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジ(トリメチロールプロパン)テトラアクリレート、ジ(ペンタエリスリトール)ペンタアクリレート、ジ(ペンタエリスリトール)ヘキサアクリレート等の1分子中に2個以上の重合性2重結合を有する多官能(メタ)アクリレート等が挙げられる。また、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート等も多官能アクリレートとして例示することができる。これらは単独で使用しても良いし、2種以上併用しても良い。
 中でも、ペンタエリスリトールトリアクリレート及びジペンタエリスリトールペンタアクリレートが好ましい。
 また、前記多官能(メタ)アクリレートに併用して、単官能(メタ)アクリレートを併用することもできる。例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性ヒドロキシ(メタ)アクリレート(例えばダイセル化学工業(株)製商品名「プラクセル」)、フタル酸とプロピレングリコールとから得られるポリエステルジオールのモノ(メタ)アクリレート、コハク酸とプロピレングリコールとから得られるポリエステルジオールのモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、各種エポキシエステルの(メタ)アクリル酸付加物、等の水酸基含有(メタ)アクリル酸エステル;(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、等のカルボキシル基含有ビニル単量体;ビニルスルホン酸、スチレンスルホン酸、スルホエチル(メタ)アクリレート等のスルホン酸基含有ビニル単量体;2-(メタ)アクリロイルオキシエチルアシッドホスフェート、2-(メタ)アクリロイルオキシプロピルアシッドホスフェート、2-(メタ)アクリロイルオキシ-3-クロロ-プロピルアシッドホスフェート、2-メタクリロイルオキシエチルフェニルリン酸等の酸性リン酸エステル系ビニル単量体;N-メチロール(メタ)アクリルアミド等のメチロール基を有するビニル単量体等を挙げることができる。これらは1種又は2種以上を用いることができる。
 前記多官能アクリレート(C)を用いる場合の使用量としては、本発明のナノインプリント用硬化性組成物の全固形分量に対して1~85重量%が好ましく、5~80重量%がより好ましい。前記多官能アクリレートを前記範囲内で使用することによって、パターン成形性及びパターン保持性を改善することができる。
 本発明のナノインプリント用硬化性組成物は、任意の方法で成形することが可能である。塗工等の方法で塗膜化後、マスターモールドを使用してナノインプリント成形体とする場合、有機溶媒で粘度調整を行うことが好ましい。塗布性(例えば、塗布および溶媒除去後の膜厚が所望の範囲内に収まること、当該膜厚が被加工表面全体に均一性であること、被加工表面に多少の凹凸があっても当該凹凸に追随して均一な厚みの塗膜が形成されること、等)等を考慮すると、該固形分濃度は0.1質量%以上10質量%以下であることが好ましく、より好ましくは0.4質量%以上5質量%以下であり、更に好ましくは0.7質量%以上2質量%以下である。具体的には、塗膜の膜厚が10nm~50μmとなるように調整すればよく、より好ましくは50nm~5μmである。
 使用する溶媒としては、発明の効果の損ねない範囲であれば公知の有機溶媒を用いることができ、例えば、n-ヘキサン、n-ヘプタン、n-オクタン、シクロヘキサン、シクロペンタン等の脂肪族系又は脂環族系の炭化水素類;トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;メタノール、エタノール、n-ブタノール、エチレングルコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類;酢酸エチル、酢酸ブチル、酢酸n-ブチル、酢酸n-アミル、エチレングリコールモノメチルエーテルアセテート、プロピレングルコールモノメチルエーテルアセテート等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルn-アミルケトン、シクロヘキサノン等のケトン類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等のポリアルキレングリコールジアルキルエーテル類;1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類;N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド又はエチレンカーボネートを単独で使用又は2種以上を併用して使用することができる。
(パターン形成方法)
 本発明のナノインプリント法を使用したパターン形成方法は、任意の方法で可能である。例えば、本発明のナノインプリント用硬化性組成物を基材に塗布して膜を形成したのち、マスターモールドを押し付けた状態で硬化してもよいし、成形型にナノインプリント用硬化性組成物を注入したうえ、マスターモールドを押し付けた状態で硬化してもよい。また、注入用の成形型自体にナノサイズの凹凸を作成しておき、型自体をマスターモールドとした状態でナノインプリント用硬化性組成物を注入したうえ、硬化してもよい。成形のハイスループット性などから、ナノインプリント用硬化性組成物を基材に塗布して膜を形成したのち、マスターモールドを押し付けた状態で硬化する方法が、特に好ましい。
 以下、本発明のナノインプリント用硬化性組成物を基材に塗布して膜を形成する工程と、凹凸構造を有するナノインプリント用モールドを押し付けて、この状態で硬化性樹脂組成物に活性エネルギー線硬化させる工程と、その後モールドを剥離することを特徴とするパターン形成方法について詳細に記述する。
 本発明のナノインプリント用硬化性組成物を基材に塗布して塗膜を形成する工程は、前述の通り所望の粘度に希釈した本発明のナノインプリント用硬化性組成物を、公知の方法にてフィルム状に成膜あるいは塗布膜を形成することが好ましい。
 フィルム状に成膜する方法としては、押し出し法、あるいは仮支持フィルム上に塗布し乾燥させ、必要に応じて、形成されたナノインプリント用硬化性組成物層表面を被覆フィルムで覆った、処理対象となる表面に加熱圧着し積層するものであってもよい。この時使用する仮支持フィルムとしては、例えば、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等の従来公知のフィルムが用いられる。その際、それらのフィルムが塗膜の作製時に必要な耐溶剤性や耐熱性等を有しているものであるときは、それらの仮支持フィルム上に直接に本発明のナノインプリント用硬化性組成物を塗布し乾燥させて塗膜を作製することができ、また、それらのフィルムが耐溶剤性や耐熱性等の低いものであっても、例えば、ポリテトラフルオロエチレンフィルムや離型フィルム等の離型性を有するフィルム上に先ず本発明のナノインプリント用硬化性組成物を形成した後、その層上に耐溶剤性や耐熱性等の低い仮支持フィルムを積層し、しかる後、離型性を有するフィルムを剥離することにより、塗膜を作製することもできる。 
 また塗膜を形成する方法としては、本発明のナノインプリント用硬化性組成物を、処理対象となる表面上に塗布し、溶媒を揮発させて除くことにより形成する塗布膜であってもよい。塗布方法としては、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法等を挙げることができる。生産性に優れ膜厚のコントロールが容易であるという点でスピンコート法を用いることが好ましい。
(基材)
 本発明における積層体で使用する基材は、本発明のナノインプリント硬化物の使用目的に応じて適宜選択される。例えば石英、サファイア、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Al、Ni、Cu、Cr、Fe、ステンレス等の金属基材、スクリーンメッシュ、紙、木材、シリコン等の合成樹脂、SOG(Spin On Glass)、ポリエステルフイルム、ポリカーボネートフィルム、ポリイミドフィルム等のポリマー基材、TFTアレイ基材、サファイアやGaN等の発光ダイオード(LED)基材、ガラスや透明プラスチック基材、インジウム錫オキサイド(ITO)や金属等の導電性基材、絶縁性基材、シリコン、窒化シリコン、ポリシリコーン、酸化シリコン、アモルファスシリコン等の半導体作製基材等が挙げられる。これらのものは光透過性でも非光透過性であってもよい。また、基材の形状も特に限定はなく、平板、シート状、あるいは3次元形状全面にまたは一部に曲率を有するもの等目的に応じた任意の形状であってよい。また基材の硬度、厚み等にも特に制限はない。膜厚は所望する凹凸の深さに大きく依存するが、0.001~300μm以下であることが好ましい。
 前記方法にて作製した膜に、凹凸構造を有するナノインプリント用のマスターモールドを押し付ける工程は、具体的には、ナノインプリント用のマスターモールドを押圧しながら、前記ナノインプリント用硬化性組成物層をマスターモールドの微細形状に押入する。その際、マスターモールドの微細形状に対して前記ナノインプリント用硬化性組成物がより追従するように、加熱して粘度を下げながら押圧することもできる。その後、紫外線を照射して前記ナノインプリント用硬化性組成物層を硬化してからマスターモールドを分離することによって、マスターモールドに形成されている微細形状が前記ナノインプリント用硬化性組成物表面に形成されたレジスト膜を得ることができる。
 具体的には、基材表面に設けたナノインプリント用硬化性組成物層上にナノインプリント用のマスターモールドを押し付けるように接触させ、狭持する。ナノインプリント用のマスターモールドは大面積の成形体を効率よく製造する方法として、ロールプロセスに適合するような平面状原版のアップダウン方式、ベルト状原版の貼り合わせ方式、ロール状原版のロール転写方式、ロールベルト状原版のロール転写方式等の方法で接触させる方法も好ましい。マスターモールドの材質としては、光を透過する材質として、石英ガラス、紫外線透過ガラス、サファイア、ダイアモンド、ポリジメチルシロキサン等のシリコン材料、フッ素樹脂、その他光を透過する樹脂材料等が挙げられる。また、使用する基材が光を透過する材質であれば、マスターモールドは光を透過しない材質でもよい。光を透過しない材質としては、金属、シリコン、SiC、マイカ等が挙げられる。
 マスターモールドは前述の通り平面状、ベルト状、ロール状、ロールベルト状等の任意の形態のものを選択できる。浮遊ゴミ等による原版の汚染防止等の目的で、転写面に従来公知の離型処理を施すことは好ましい。
(硬化工程)
 硬化の方法は、マスターモールドが光を透過する材質の場合はマスターモールド側から光を照射する方法や、基材が光を透過する材質の場合は基材側から光を照射する方法が挙げられ、モールド・基材共に光透過性の場合には、両側から光を照射してもかまわない。光照射に用いる光としては、光重合開始剤が反応する光であればよく、中でも、光重合開始剤が容易に反応し、より低温で硬化させることができる面から、450nm以下の波長の光(紫外線、X線、γ線等の活性エネルギー線)が好ましい。操作性の面から200から450nmの波長の光が特に好ましい。具体的には、前述の紫外線硬化させる際に使用する光を使用することができる。
 また、凹凸構造塗布膜への塗布膜の追従性に不具合があれば、光照射時に十分な流動性が得られる温度まで加熱させてもよい。加熱する場合の温度は、300℃以下が好ましく、0℃から200℃がより好ましく、0℃から150℃がさらに好ましく、25℃から80℃が特に好ましい。該温度範囲において、前記硬化性樹脂組成物層に形成される微細パターン形状の精度が高く保持される。
 上記のいずれの方式についても、大面積の成形体を効率よく製造する方法として、ロールプロセスに適合するように反応機内を搬送する方法で硬化する方法も好ましい。
(離型工程)
 硬化工程後、成形体をマスターモールドから剥離することにより、マスターモールドの凹凸パターンを転写した凸凹パターンが前記硬化性樹脂組成物層の硬化物の表面に形成されたレジスト膜が得られる。基材の反り等の変形を抑えたり、凸凹パターンの精度を高めたりする面で、剥離工程の温度としては、ナノインプリント成形体の温度が常温(25℃)付近まで冷却した後に実施する方法や、ナノインプリント成形体がまだ加熱状態の時に剥離する場合であっても、ナノインプリント成形体に一定の張力を与えた状態で常温(25℃)付近まで冷却する方法が好ましい。
〔ドライエッチングレジスト〕
 上記方法によりパターンが形成されたレジスト膜を有する積層体をドライエッチングすることで、パターンを基板に良好に形成することが可能であり、ドライエッチングにより基板にパターンが形成されたパターン形成物を得ることができる。
 本発明のドライエッチングレジスト材料からなるレジスト膜は、ドライエッチング耐性に優れるため、該エッチングの際にもパターン等が崩れることがなく、微細なエッチングパターンを供することができる。それにより、レジストに形成されたパターンを精度良く基板に転写できることから、得られるパターン形成物はパターン再現性に優れたパターン形成物を得ることができる。
 ドライエッチングに使用するガスとしては、公知慣用のものを用いればよく、例え場酸素、一酸化炭素、二酸化炭素などの酸素原子含有ガス、ヘリウム、窒素、ある強盗の不活性ガス、塩素、塩化ホウ素などの塩素系ガス、フッ素系ガス、水素ガス、アンモニアガス等を使用することができ、これらのガスは単独でも、適時混合して用いてもかまわない。
 これらのエッチングガスを用いてエッチングすることにより、基材上に所望のパターンを形成することができる。
〔ウエットエッチングレジスト〕
 上記方法によりパターンが形成されたレジスト膜を有する積層体をウエットエッチングすることによっても、パターンを基板に良好に形成することが可能であり、ウエットエッチングにより、基板にパターンが形成されたパターン形成物を得ることができる。
 本願のナノインプリント用硬化性組成物は耐酸性に優れるので、該ウエットエッチングの際にもパターン等が崩れることがなく、微細なエッチングパターンを供することができる。ウエットエッチングに使用するエッチング液としては、公知慣用のエッチング液を用いればよく、強アルカリや強酸(例えば塩化第二銅、塩化第二鉄、銅アンモニア錯体溶液、硫酸/過酸化水素水溶液、過硫酸アンモニウム、フッ酸、硫酸、フッ化アンモニウム、硫酸/フッ酸水溶液等)が挙げられる。
 ウエットエッチングによりパターン形成物を得るには、レジスト膜がすべてなくなるまでエッチングを行えばよい。レジスト膜が残膜する状態でウエットエッチングを終了する場合、酸素プラズマ等のエッチングガスによって、残膜を除去してもよい。
 また、本発明のナノインプリント用硬化性樹脂組成物において、ビニル系重合体セグメント(a2)に酸価を導入し、複合樹脂(A)の全体の酸価を30~400KOHmg/gの範囲となるように調整することによって、アルカリ洗浄を行うことができる。
 アルカリ洗浄に用いるアルカリ洗浄液は、本発明の発明を損なわない範囲であれば、公知慣用のアルカリ洗浄液から、用途と基板の種類によって適時選択すればよい。例えば、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムハイドロオキサイド等の水溶液が挙げられる。
〔ナノインプリント成形体からなる樹脂モールド〕
 本発明のナノインプリント成形体は、樹脂モールドとして使用することもできる。樹脂モールドは、製造したナノインプリント成形体をさらに複製するために用いるための鋳型であり、該樹脂モールドから転写されるモールドを、レプリカモールドという。
 一般的に、マスターモールドと呼ばれる最初の鋳型を作成し、該マスターモールドから直接樹脂成形物を作成したり、マスターモールドを金属モールドに転写後、樹脂成形物を作成することができる。
 しかし、最初の鋳型として用いるマスターモールドは、石英やシリコン製であり、電子線描画法などで作製されるが、製造には非常にコストかかかることが知られている。特にナノオーダーの微細パターンを形成した、ナノインプリント用のマスターモールドの場合、高価なだけでなく微細パターンの形成に非常に時間がかかる。
 特に、マスターモールドから金属製レプリカモールドを作成する場合、金属めっき後にレプリカモールドを取り出す際には、マスターモールドを破壊する必要があり、コストの面から問題であった。また、レプリカモールドとして樹脂成形体を作成した場合では、マスターモールドからの剥離性が不十分であることから、マスターモールドの微細パターンが欠損したり、変形したりと、その後の転写性に問題があった。
 しかし本発明により、ナノオーダーサイズのパターンでも転写が可能で、マスターモールド及びレプリカモールドからの剥離性に優れた、ナノインプリント成形体からなる樹脂モールド、及び該樹脂モールドを使用したレプリカモールドを得ることができる。 
(樹脂モールド)
 マスターモールドに対し、本発明の用硬化性樹脂組成物にパターンを転写し、硬化することで、本発明のナノインプリント成形体である樹脂モールドを得ることができる。
 樹脂モールドを作製する際には、基板上に塗布したナノインプリント用硬化性樹脂組成物の塗膜に対し、マスターモールドを押し付けて、硬化したうえで、硬化した樹脂モールドをマスターモールドから剥離することで得ることができる。
 また、マスターモールドに対しナノインプリント用硬化性樹脂組成物を直接塗工し、その上から基板を密着させた上で硬化し、樹脂モールドを作製してもよい。
〔(1)塗膜を形成する工程〕
 ナノインプリント用硬化性樹脂組成物が基板に密着した、塗膜を形成する工程については、公知慣用の方法を用いればよく、例えば基材表面に液状のナノインプリント用硬化性樹脂組成物を塗布することで得ることができる。液状のナノインプリント用硬化性樹脂組成物とする場合、ナノインプリント用硬化性樹脂組成物中の全固形分の濃度は、塗布性(例えば、塗布および溶媒除去後の膜厚が所望の範囲内に収まること、当該膜厚が被加工表面全体に均一性であること、被加工表面に多少の凹凸があっても当該凹凸に追随して均一な厚みの塗膜が形成されること、等)等を考慮すると、0.1質量%以上10質量%以下であることが好ましく、より好ましくは0.4質量%以上5質量%以下であり、更に好ましくは0.7質量%以上2質量%以下である。具体的には、塗膜の膜厚が10nm~50μmとなるように調整すればよく、より好ましくは50nm~5μmである
 使用する溶媒としては、公知の硬化性樹脂組成物に使用される有機溶媒であればよく、例えば、n-ヘキサン、n-ヘプタン、n-オクタン、シクロヘキサン、シクロペンタン等の脂肪族系又は脂環族系の炭化水素類;トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;メタノール、エタノール、n-ブタノール、エチレングルコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類;酢酸エチル、酢酸n-ブチル、酢酸イソブチル、酢酸n-アミル、エチレングリコールモノメチルエーテルアセテート、プロピレングルコールモノメチルエーテルアセテート等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルn-アミルケトン、シクロヘキサノン等のケトン類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等のポリアルキレングリコールジアルキルエーテル類;1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類;N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド又はエチレンカーボネートを単独で使用又は2種以上を併用して使用することができる。
 本発明のナノインプリント用硬化性樹脂組成物の塗膜は、本発明のナノインプリント用硬化性樹脂組成物を、押出成形等の公知の成形方法でフィルム状に成膜し、あるいは仮支持フィルム上に塗布し乾燥させ、必要に応じて、形成されたナノインプリント用硬化性樹脂組成物表面を被覆フィルムで覆った、処理対象となる表面に加熱圧着し積層するものであってもよい。この時使用する仮支持フィルムとしては、例えば、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等の従来公知のフィルムが用いられる。その際、それらのフィルムがレジスト膜の作製時に必要な耐溶剤性や耐熱性等を有しているものであるときは、それらの仮支持フィルム上に直接に本発明のナノインプリント用硬化性樹脂組成物を塗布し乾燥させて塗膜を作製することができ、また、それらのフィルムが耐溶剤性や耐熱性等の低いものであっても、例えば、ポリテトラフルオロエチレンフィルムや離型フィルム等の離型性を有するフィルム上に先ず本発明のナノインプリント用硬化性樹脂組成物を形成した後、その層上に耐溶剤性や耐熱性等の低い仮支持フィルムを積層し、しかる後、離型性を有するフィルムを剥離することにより、ナノインプリント用硬化性樹脂組成物の塗膜を作製することもできる。 
 また本発明のナノインプリント用硬化性樹脂組成物の塗膜は、本発明のナノインプリント用硬化性樹脂組成物を、処理対象となる表面上に塗布し、溶媒を蒸発させて除くことにより形成する塗布膜であってもよい。塗布方法としては、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法等を挙げることができる。生産性に優れ膜厚のコントロールが容易であるという点でスピンコート法を用いることが好ましい。
 本発明の樹脂モールド用基材は、本発明の樹脂モールドの目的に応じて適宜選択される。例えば石英、サファイア、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Al、Ni、Cu、Cr、Fe、ステンレス等の金属基材、スクリーンメッシュ、紙、木材、シリコン等の合成樹脂、SOG(Spin On Glass)、ポリエステルフイルム、ポリカーボネートフィルム、ポリイミドフィルム等のポリマー基材、TFTアレイ基材、サファイアやGaN等の発光ダイオード(LED)基材、ガラスや透明プラスチック基材、インジウム錫オキサイド(ITO)や金属等の導電性基材、絶縁性基材、シリコン、窒化シリコン、ポリシリコーン、酸化シリコン、アモルファスシリコン等の半導体作製基材等が挙げられる。これらのものは光透過性でも非光透過性であってもよい。また、基材の形状も特に限定はなく、平板、シート状、あるいは3次元形状全面にまたは一部に曲率を有するもの等目的に応じた任意の形状であってよい。また基材の硬度、厚み等にも特に制限はない。
〔(2)樹脂モールドを形成する工程〕
前記方法にて作製したナノインプリント用硬化性樹脂組成物の塗膜に、マスターモールドを押し付ける工程は、具体的には、マスターモールドを押圧しながら、前記ナノインプリント用硬化性樹脂組成物層をモールドの微細形状に押入する。その際モールドの微細形状に対して前記ナノインプリント用硬化性樹脂組成物がより追従するように、加熱して粘度を下げながら押圧することもできる。その後、活性エネルギー線を照射して前記ナノインプリント用硬化性樹脂組成物層を硬化してからマスターモールドを分離することによって、マスターモールドに形成されている微細形状が前記ナノインプリント用硬化性樹脂組成物表面に形成された樹脂モールドを得ることができる。
 具体的には、基材表面に設けナノインプリント用硬化性組成物層上にマスターモールドを押し付けるように接触させ、狭持する。マスターモールドは大面積の成形体を効率よく製造する方法として、ロールプロセスに適合するような平面状原版のアップダウン方式、ベルト状原版の貼り合わせ方式、ロール状原版のロール転写方式、ロールベルト状原版のロール転写方式等の方法で接触させる方法も好ましい。マスターモールドの材質としては、光を透過する材質として、石英ガラス、紫外線透過ガラス、サファイア、ダイアモンド、ポリジメチルシロキサン等のシリコン材料、フッ素樹脂、その他光を透過する樹脂材料等が挙げられる。また、使用する基材が光を透過する材質であれば、マスターモールドは光を透過しない材質でもよい。光を透過しない材質としては、金属、シリコン、SiC、マイカ等が挙げられる。
 マスターモールドは前述の通り平面状、ベルト状、ロール状、ロールベルト状等の任意の形態のものを選択できる。浮遊ゴミ等による原版の汚染防止等の目的で、転写面に従来公知の離型処理を施すことは好ましい。
 硬化の方法は、マスターモールドが光を透過する材質の場合はマスターモールド側から光を照射する方法や、基材が光を透過する材質の場合は基材側から光を照射する方法が挙げられ、モールド・基材共に光透過性の場合には、両側から光を照射してもかまわない。光照射に用いる光としては、光重合開始剤が反応する光であればよく、中でも、光重合開始剤が容易に反応し、より低温で硬化させることができる面から、450nm以下の波長の光(紫外線、X線、γ線等の活性エネルギー線)が好ましい。操作性の面から200から450nmの波長の光が特に好ましい。具体的には、前述の紫外線硬化させる際に使用する光を使用することができる。
 また、凹凸構造塗布膜への塗布膜の追従性に不具合があれば、光照射時に十分な流動性が得られる温度まで加熱させてもよい。加熱する場合の温度は、300℃以下が好ましく、0℃から200℃がより好ましく、0℃から150℃がさらに好ましく、25℃から80℃が特に好ましい。該温度範囲において、前記ナノインプリント用硬化性樹脂組成物層に形成される微細パターン形状の精度が高く保持される。
 上記のいずれの方式についても、大面積の成形体を効率よく製造する方法として、ロールプロセスに適合するように反応機内を搬送する方法で硬化する方法も好ましい。
(離型工程)
 硬化工程後、樹脂モールドをマスターモールドから剥離することにより、モールドの凹凸パターンを転写した凸凹パターンが前記ナノインプリント用硬化性樹脂組成物層の硬化物の表面に形成された樹脂モールドが得られる。基材の反り等の変形を抑えたり、凸凹パターンの精度を高めたりする面で、剥離工程の温度としては、樹脂モールドの温度が常温(25℃)付近まで冷却した後に実施する方法や、樹脂モールドがまだ加熱状態の時に剥離する場合であっても、樹脂モールドに一定の張力を与えた状態で常温(25℃)付近まで冷却する方法が好ましい。
(レプリカモールド)
 本発明の樹脂モールドを鋳型として、レプリカモールドを作成することができる。レプリカモールドとしては、ニッケルなどの金属モールドと、樹脂組成物からなる樹脂成形体とが挙げられる。
(金属モールド)
 マスターモールドから樹脂モールドを経て金属モールドを作製することで、マスターモールドを傷つけずに金属モールドを作成することができる。また、同じマスターモールドから複数の金属モールドを作成できることから、同じ金属モールドを同時に使用でき、さらなるハイスループット性に優れた成型加工を行うことが可能となる。
((3)金属層を形成する工程)
 本発明の金属モールドを作成するには、樹脂モールド表面に金属層を形成し、得られた金属層から樹脂モールドを剥離すればよい。
 金属層の形成は、公知慣用の方法を用いればよく、
(3-1)樹脂モールド表面に導電層を形成
(3-2)導電層の表面に電気鋳造にて金属層を積層
という工程がよく用いられる。
(3-1)樹脂モールド表面に導電層を形成
 導電層の形成方法としては、物理蒸着法及び無電解めっき法が挙げられる。物理蒸着法としては、スパッタ法、真空蒸着法、イオンプレーティング法が挙げられる。無電解めっき法では、触媒として金属微粒子、コロイド、有機金属錯体などを用い、無電解めっき液としては、ニッケル、銅、コバルト、金、白金、銀等の塩を用いることができる。
(3-2)導電層の表面に電気鋳造にて金属層を積層
 表面に導電層を形成した樹脂モールドを、電解めっき液に浸漬し、通電することで、導電層に金属を析出させ、金属層を形成する。金属層に使用する金属としては、ニッケル、銅、クロム、アルミニウム、チタン、タングステン、モリブデン、白金、及びこれらの合金を使用することができる。
 ((4)樹脂モールドを剥離し、金属モールドを得る工程)
 上記工程にて得られた、金属層を積層した樹脂モールドから、樹脂モールドと導電層の界面部分から剥離することにより、金属層を分離し、金属モールドとすることができる。
 本発明のナノインプリント用硬化性樹脂組成物を硬化して得られる樹脂モールドは、剥離性に優れるため、金属モールドから剥離した際にも微細パターンの欠損や変形がおきにくいため、再度樹脂モールドからレプリカモールドを作製することができる。また、微細パターンの形状や金属の種類等により、レプリカモールドに残膜してしまう場合には、ナノインプリント用硬化性樹脂組成物が含有する複合樹脂(A)の酸価を30~400KOHmg/gとすることで、アルカリ洗浄が可能となる。
 本発明における金属モールドを鋳型として、さらに樹脂組成物にインプリントすることで、三次成形体である、樹脂成形物を得ることも可能である。使用する樹脂組成物としては公知慣用のものでよく、後述する熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂等を用いることができる。
(樹脂成形体)
 本発明のレプリカモールドは、樹脂成形体であっても良い。
 本発明の樹脂モールドに対し、(5)第2樹脂層を形成し、第2樹脂層を硬化させたうえで、(6)樹脂モールドを剥離することで、微細パターンが転写された樹脂成形体を得ることができる。
 得られた樹脂成形体は、第2の樹脂モールドとして用いても良く、そのまま製品として用いてもかまわない。
 第2樹脂層を構成する樹脂は、本発明の効果を損ねない範囲であればどのようなものを用いても良く、例えば熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂等を用いることができる。
 熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂、ポリウレタン樹脂、グアナミン樹脂等が挙げられる。 熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアクリロニトリル系樹脂、ポリアミド系樹脂、ポリエーテルイミド、ポリアミドイミド、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂、酢酸ビニル樹脂、ポリビニルアセタール、熱可塑性ポリウレタンエラストマー、アクリル系樹脂、ポリフェニレン系樹脂、フッ素樹脂、ポリビニルアルコール、ポリビニルピロリドン、セルロース誘導体、フェノール樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂、ポリウレタン樹脂、グアナミン樹脂等が挙げられる。 
 光硬化性樹脂としては、例えば、紫外線硬化性樹脂及び電子線硬化性樹脂のいずれであってもよい。紫外線硬化型樹脂又は電子線硬化型樹脂としては、公知の様々なものが使用でき、アクリル樹脂、シリコーン樹脂、エステル樹脂等があげられる。代表的なものとしては、分子中にアクリロイル基を有する紫外線硬化型樹脂であり、エポキシアクリレート系,ウレタンアクリレート系,ポリエステルアクリレート系,ポリオールアクリレート系のオリゴマー、ポリマーと単官能・2官能・あるいは多官能重合性(メタ)アクリル系モノマー、例えばテトラヒドロフルフリルアクリレート,2-ヒドロキシエチルアクリレート,2-ヒドロキシ-3-フェノキシプロピルアクリレート,ポリエチレングリコールジアクリレート,ポリプロピレングリコールジアクリレート,トリメチロールプロパントリアクリレート,ペンタエリトリトールトリアクリレート,ペンタエリトリトールテトラアクリレートなどのモノマー、オリゴマー、ポリマーなどの混合物が使用される。なお、光硬化性樹脂には、通常配合される光重合開始剤等を配合してもよい。
 これらの樹脂は、単独でも2種以上を同時に使用してもかまわない。
(5)第2樹脂層の形成及び硬化する工程
 第2樹脂層の形成及び硬化方法としては、第2樹脂用の基板上に塗布した第2樹脂層に対し、樹脂モールドを押し付けて、硬化してもよいし、
 また、樹脂モールドに対し第2樹脂層用樹脂を直接塗工し、その上から基板を密着させた上で硬化してもよい。
 第2樹脂層用樹脂は、必要に応じて有機溶剤、無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、界面活性剤、安定剤、流動調整剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、又は可塑剤等の種々の添加剤等を使用することもできる。また、シランカップリング剤からなる接着性助剤、タルク、マイカ、クレー、シリカ、アルミナ、セリサイト、ホワイトカーボン、石膏、雲母、硫酸バリウム、炭酸バリウムや炭酸マグネシウム等の無機微粒子、顔料や染料等の着色物質、退色防止剤、酸化防止剤、UV吸収剤、可塑剤や潤滑剤等の塗料添加剤を配合してもかまわない。
(6)樹脂モールドの剥離及び樹脂成形体を得る工程
 上記工程(5)において、第2樹脂層に樹脂モールドを押し付けた状態で第2樹脂層を硬化させた後、樹脂モールドを硬化した第2樹脂層から剥離することで、樹脂モールドの微細構造が転写された、レプリカモールドである樹脂成形体を得ることができる。樹脂成形体は、そのまま製品として用いてもよいし、さらにモールドとして用いることもできる。
 次に、本発明を、実施例及び比較例により具体的に説明をする。例中断りのない限り、「部」「%」は重量規準である。
 (合成例1〔ポリシロキサン(a1-1)の調整例〕)
 攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、メチルトリメトキシシラン(MTMS) 415部、3-メタクリロイルオキシプロピルトリメトキシシラン(MPTS)756部を仕込んで、窒素ガスの通気下、攪拌しながら、60℃まで昇温した。次いで、「PhoslexA-3」〔堺化学(株)製のiso-プロピルアシッドホスフェート〕 0.1部と脱イオン水 121部からなる混合物を5分間で滴下した。滴下終了後、反応容器中を80℃まで昇温し、4時間攪拌することにより加水分解縮合反応を行い、反応生成物を得た。
 得られた反応生成物中に含まれるメタノールおよび水を、1~30キロパスカル(kPa)の減圧下、40~60℃の条件で除去することにより、数平均分子量が1000で、有効成分が75.0%であるポリシロキサン(a1-1) 1000部を得た。
尚、「有効成分」とは、使用したシランモノマーのメトキシ基が全て加水分解縮合反応した場合の理論収量(重量部)を、加水分解縮合反応後の実収量(重量部)で除した値、即ち、〔シランモノマーのメトキシ基が全て加水分解縮合反応した場合の理論収量(重量部)/加水分解縮合反応後の実収量(重量部)〕の式により算出したものである。
(合成例2〔ポリシロキサン(a1-2)の調整例〕)
 合成例1と同様の反応容器に、MTMS 442部、3-アクリロイルオキシプロピルトリメトキシシラン(APTS) 760部を仕込んで、窒素ガスの通気下、攪拌しながら、60℃まで昇温した。次いで、「PhoslexA-3」 0.1部と脱イオン水 129部からなる混合物を5分間で滴下した。滴下終了後、反応容器中を80℃まで昇温し、4時間攪拌することにより加水分解縮合反応を行い、反応生成物を得た。得られた反応生成物中に含まれるメタノールおよび水を、1~30キロパスカル(kPa)の減圧下、40~60℃の条件で除去することにより、数平均分子量が1000で、有効成分が75.0%であるポリシロキサン(a1-2) 1000部を得た。
 (合成例3〔ビニル系重合体(a2-1)の調製例〕)
 合成例1と同様の反応容器に、フェニルトリメトキシシラン(PTMS) 20.1部、ジメチルジメトキシシラン(DMDMS) 24.4部、酢酸n-ブチル 107.7部を仕込んで、窒素ガスの通気下、攪拌しながら、80℃まで昇温した。次いで、メチルメタクリレート(MMA) 15部、n-ブチルメタクリレート(BMA) 45部、2-エチルヘキシルメタクリレート(EHMA) 39部、アクリル酸(AA) 1.5部、MPTS 4.5部、2-ヒドロキシエチルメタクリレート(HEMA) 45部、酢酸n-ブチル 15部、tert-ブチルパーオキシ-2-エチルヘキサノエート(TBPEH) 15部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「PhoslexA-3」 0.05部と脱イオン水 12.8部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、H-NMRで分析したところ、前記反応容器中のシランモノマーが有するトリメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物であるビニル系重合体(a2-1)が得られた。
 (合成例4[ビニル系重合体(a2-2)の調製例])
 合成例1と同様の反応容器に、フェニルトリメトキシシラン(PTMS) 20.1部、ジメチルジメトキシシラン(DMDMS) 24.4部、酢酸n-ブチル 107.7部を仕込んで、窒素ガスの通気下、攪拌しながら、80℃まで昇温した。次いで、メチルメタクリレート(MMA) 14.5部、n-ブチルメタクリレート(BMA) 2部、シクロヘキシルメタクリレート(CHMA) 105部、アクリル酸(AA) 7.5部、MPTS 4.5部、2-ヒドロキシエチルメタクリレート(HEMA) 15部、酢酸n-ブチル 15部、tert-ブチルパーオキシ-2-エチルヘキサノエート(TBPEH) 6部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「PhoslexA-3」 0.05部と脱イオン水 12.8部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、H-NMRで分析したところ、前記反応容器中のシランモノマーが有するトリメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物であるビニル系重合体(a2-2)が得られた。
 (合成例5〔ビニル系重合体(a2-3)の調製例〕)
 合成例1と同様の反応容器に、フェニルトリメトキシシラン(PTMS) 20.1部、ジメチルジメトキシシラン(DMDMS) 24.4部、酢酸n-ブチル 107.7部を仕込んで、窒素ガスの通気下、攪拌しながら、80℃まで昇温した。次いで、メチルメタクリレート(MMA) 15部、n-ブチルメタクリレート(BMA) 45部、2-エチルヘキシルメタクリレート(EHMA) 39部、アクリル酸(AA) 1.5部、MPTS 4.5部、2-ヒドロキシエチルメタクリレート(HEMA) 45部、酢酸n-ブチル 15部、tert-ブチルパーオキシ-2-エチルヘキサノエート(TBPEH) 15部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「PhoslexA-3」 0.05部と脱イオン水 12.8部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、H-NMRで分析したところ、前記反応容器中のシランモノマーが有するトリメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物であるビニル系重合体(a2-3)が得られた。
 (合成例6〔複合樹脂(A-1)の調製例〕)
 合成例1と同様の反応容器に、フェニルトリメトキシシラン(PTMS) 20.1部、ジメチルジメトキシシラン(DMDMS) 24.4部、酢酸n-ブチル 107.7部を仕込んで、窒素ガスの通気下、攪拌しながら、80℃まで昇温した。次いで、メチルメタクリレート(MMA) 15部、n-ブチルメタクリレート(BMA) 45部、2-エチルヘキシルメタクリレート(EHMA) 39部、アクリル酸(AA) 1.5部、MPTS 4.5部、2-ヒドロキシエチルメタクリレート(HEMA) 45部、酢酸n-ブチル 15部、tert-ブチルパーオキシ-2-エチルヘキサノエート(TBPEH) 15部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「PhoslexA-3」 0.05部と脱イオン水 12.8部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、H-NMRで分析したところ、前記反応容器中のシランモノマーが有するトリメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物が得られた。尚、TBPEHの残存量は、ヨウ素滴定法により測定した。
次いで、前記反応生成物に、合成例1で得られたポリシロキサン(a1-1) 162.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、メチルエチルケトン(MEK) 150部、酢酸n-ブチル 27.3部を添加し、不揮発分が50.0%であるポリシロキサンセグメントとビニル重合体セグメントからなる複合樹脂(A-1) 600部を得た。
 (合成例7[複合樹脂(A-2)の調製例])
 合成例1と同様の反応容器に、PTMS 20.1部、DMDMS 24.4部、酢酸n-ブチル 107.7部を仕込んで、窒素ガスの通気下、攪拌しながら、80℃まで昇温した。次いで、MMA 15部、BMA 45部、EHMA 39部、AA 1.5部、MPTS 4.5部、HEMA 45部、酢酸n-ブチル 15部、TBPEH 15部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「PhoslexA-3」 0.05部と脱イオン水 12.8部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、H-NMRで分析したところ、前記反応容器中のシランモノマーが有するトリメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物が得られた。尚、TBPEHの残存量は、ヨウ素滴定法により測定した。
次いで、前記反応生成物に、合成例1で得られたポリシロキサン(a1-1) 562.5部を添加して、5分間攪拌したのち、脱イオン水 80.0部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、MEK 128.6部、酢酸n-ブチル 5.8部を添加し、不揮発分が70.0%であるポリシロキサンセグメントとビニル重合体セグメントからなる複合樹脂(A-2) 857部を得た。
 (合成例8[複合樹脂(A-3)の調製例])
 合成例1と同様の反応容器に、PTMS 20.1部、DMDMS 24.4部、酢酸n-ブチル 107.7部を仕込んで、窒素ガスの通気下、攪拌しながら、80℃まで昇温した。次いで、MMA 15部、BMA 45部、EHMA 39部、AA 1.5部、MPTS 4.5部、HEMA 45部、酢酸n-ブチル 15部、TBPEH 15部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「PhoslexA-3」 0.05部と脱イオン水 12.8部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、H-NMRで分析したところ、前記反応容器中のシランモノマーが有するトリメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物が得られた。尚、TBPEHの残存量は、ヨウ素滴定法により測定した。
 次いで、前記反応生成物に、合成例2で得られたポリシロキサン(a1-2) 162.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、MEK 150部、酢酸n-ブチル 27.3部を添加し、不揮発分が50.0%であるポリシロキサンセグメントとビニル重合体セグメントからなる複合樹脂(A-3) 600部を得た。
 (合成例9[複合樹脂(A-4)の調製例])
 合成例1と同様の反応容器に、PTMS 17.6部、DMDMS 21.3部、酢酸n-ブチル 129.0部を仕込んで、窒素ガスの通気下攪拌しながら、80℃まで昇温した。次いで、MMA 21部、BMA 63部、EHMA 54.6部、AA 2.1部、MPTS 6.3部、HEMA 63部、酢酸n-ブチル 21部、TBPEH 21部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「PhoslexA-3」 0.04部と脱イオン水 11.2部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、H-NMRで分析したところ、前記反応容器中のシランモノマーが有するトリメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物が得られた。尚、TBPEHの残存量はヨウ素滴定法により測定した。
 次いで、前記反応生成物に、合成例1で得られたポリシロキサン(a1-1)87.3部を添加して、5分間攪拌したのち、脱イオン水 12.6部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、MEK 150部を添加し、不揮発分が50.0%であるポリシロキサンセグメントとビニル重合体セグメントからなる複合樹脂(A-4) 600部を得た。
 (合成例10[複合樹脂(A-5)の調製例])
 前記合成例3得たビニル系重合体(a2-1)346部に、n-ブチルメタクリレートを148部添加、そして合成例1で得られたポリシロキサン(a1-1) 162.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、不揮発分が72%であるポリシロキサンセグメント(a1-1)とビニル系重合体セグメント(a2-1)とを有する複合樹脂(A-5) 400部を得た。
 (合成例11〔複合樹脂(A-6)の調製例〕)
 前記合成例3得たビニル系重合体(a2-1)307部に、合成例1で得られたポリシロキサン(a1-1) 162.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、メチルエチルケトン(MEK) 150部、酢酸n-ブチル 27.3部を添加し、不揮発分が50.0%であるポリシロキサンセグメント(a1-1)とビニル系重合体セグメント(a2-1)とを有する複合樹脂(A-6) 600部を得た。
 (合成例12[複合樹脂(A-7)の調製例])
 前記合成例3で得たビニル系重合体(a2-2)307部に、合成例1で得られたポリシロキサン(a1-1) 162.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、メチルエチルケトン(MEK) 150部、酢酸n-ブチル 27.3部を添加し、不揮発分が50.0%であるポリシロキサンセグメント(a1-1)とビニル系重合体セグメント(a2-2)とを有する複合樹脂(A-7)600部を得た。
 (合成例13〔複合樹脂(A-8)の調製例〕)
 前記合成例5で得たビニル系重合体(a2-3)307部に、合成例1で得られたポリシロキサン(a1-1) 162.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、メチルエチルケトン(MEK) 150部、酢酸n-ブチル 27.3部を添加し、不揮発分が50.0%であるポリシロキサンセグメント(a1-1)とビニル系重合体セグメント(a2-3)とを有する複合樹脂(A-8) 600部を得た。
 (合成例14〔複合樹脂(A-9)の調製例〕)
 合成例1と同様の反応容器に、フェニルトリメトキシシラン(PTMS) 20.1部、ジメチルジメトキシシラン(DMDMS) 24.4部、酢酸n-ブチル 106.4部を仕込んで、窒素ガスの通気下、攪拌しながら、95℃まで昇温した。次いで、メチルメタクリレート(MMA) 105.8部、n-ブチルアクリレート(BA) 19.7部、アクリル酸(AA) 19.3部、MPTS 4.5部、2-ヒドロキシエチルメタクリレート(HEMA) 0.8部、酢酸n-ブチル 15部、tert-ブチルパーオキシ-2-エチルヘキサノエート(TBPEH) 15部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「Phoslex A-3」0.05部と脱イオン水 12.8部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、H-NMRで分析したところ、前記反応容器中のシランモノマーが有するメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物が得られた。尚、TBPEHの残存量は、ヨウ素滴定法により測定した。
 次いで、前記反応生成物に、合成例1で得られたポリシロキサン(a1-1) 162.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、メチルエチルケトン(MEK) 150部、酢酸n-ブチル 28.6部を添加し、不揮発分が50.0%であるポリシロキサンセグメントとビニル重合体セグメントからなる複合樹脂(A-9) 600部を得た。
 得られた複合樹脂(A-9)の酸価〔試料1g中に含まれる酸性成分を中和するのに要する水酸化カリウムのミリグラム(mg)数〕を、JIS K2501-2003に準拠し、フェノールフタレインを使用した指示薬滴定法により測定した。複合樹脂(A-9)の固形分の酸価は50.2 KOHmg/gであった。
 (合成例15(複合樹脂(A-10)の調製例)
 合成例1と同様の反応容器に、PTMS 20.1部、DMDMS 24.4部、酢酸n-ブチル 107.7部を仕込んで、窒素ガスの通気下、攪拌しながら、95℃まで昇温した。次いで、MMA 66.4部、BA 1.2部、AA 77.1部、MPTS 4.5部、HEMA 0.8部、酢酸n-ブチル 15部、TBPEH 15部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「Phoslex A-3」0.05部と脱イオン水 12.8部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、H-NMRで分析したところ、前記反応容器中のシランモノマーが有するメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物が得られた。尚、TBPEHの残存量は、ヨウ素滴定法により測定した。
次いで、前記反応生成物に、合成例1で得られたポリシロキサン(a1-1) 562.5部を添加して、5分間攪拌したのち、脱イオン水80.0部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いでMEK 128.6部、酢酸n-ブチル 5.9部を添加し、不揮発分が70.0%であるポリシロキサンセグメントとビニル重合体セグメントからなる複合樹脂(A-10)857部を得た。
得られた複合樹脂(A-10)の酸価を、JIS K2501-2003に準拠しフェノールフタレインを使用した指示薬滴定法により測定した。複合樹脂(A-10)の固形分の酸価は100.2 KOHmg/gであった。
 (合成例16(複合樹脂(A-11)の調製例))
 合成例1と同様の反応容器に、PTMS 5.0部、DMDMS 6.1部、酢酸n-ブチル 107.7部を仕込んで、窒素ガスの通気下、攪拌しながら、95℃まで昇温した。次いで、MMA 57.8部、BA 0.4部、AA 86.6部、MPTS 4.5部、HEMA 0.8部、酢酸n-ブチル 15部、TBPEH 15部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「Phoslex A-3」0.05部と脱イオン水 3.2部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、H-NMRで分析したところ、前記反応容器中のシランモノマーが有するメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物が得られた。尚、TBPEHの残存量は、ヨウ素滴定法により測定した。
次いで、前記反応生成物に、合成例2で得られたポリシロキサン(a1-2)40.6部を添加して5分間攪拌したのち、脱イオン水10.2部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、MEK37.5部、酢酸n-ブチル27.3部を添加し、不揮発分が50.0%であるポリシロキサンセグメントとビニル重合体セグメントからなる複合樹脂(A-11)375.0部を得た。
得られた複合樹脂(A-11)の酸価を、JIS K2501-2003に準拠しフェノールフタレインを使用した指示薬滴定法により測定した。複合樹脂(A-11)の固形分の酸価は360.4 KOHmg/gであった。
 (合成例17(複合樹脂(A-12)の調製例)
 合成例1と同様の反応容器に、PTMS 20.1部、DMDMS 24.4部、酢酸n-ブチル 107.7部を仕込んで、窒素ガスの通気下、攪拌しながら、95℃まで昇温した。次いで、MMA 53.1部、BA 1.6部、AA 90.0部、MPTS 4.5部、HEMA 0.8部、酢酸n-ブチル 15部、TBPEH 15部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。同温度で1時間攪拌した時点で反応溶液の粘度が急激に上昇し、数分間でゲル化した。
 ゲル化に至った前記樹脂溶液のビニル重合体セグメントの酸価は、AAの含有量から、467.5 KOHmg/gであったと推算される。
以下、実施例を示して本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1 ナノインプリント用硬化性組成物、及びレジスト膜の製造例)
 合成例1で得られた複合樹脂(A-1) 40.0部、ペンタエリスリトールトリアクリレート(PETA) 7.0部、イルガキュア184[光重合開始剤 チバ・ジャパン株式会社製] 1.08部、チヌビン400[ヒドロキシフェニルトリアジン系紫外線吸収剤 チバ・ジャパン株式会社製] 0.67部、チヌビン123[ヒンダードアミン系光安定化剤(HALS) チバ・ジャパン株式会社製] 0.34部を混合することによってナノインプリント用硬化性組成物(以下、組成物と称する)-1を得た。
次に、組成物-1をサファイア基材上に塗布し、表面に幅200nm、ピッチ200nm、高さ200nmのラインアンドスペース構造を有する石英ガラス製の平板状のモールドを押し付けて、ピーク波長375nm±5のLED光源(株式会社イマック製)により、この状態で樹脂組成物側から1000mJ/cmの光量で光照射して硬化させ、その後モールドとサファイア基材を剥離し、ラインアンドスペース状のパターンを有するレジスト膜(1)を得た。
(実施例2~5)
 第1表に示した配合に基づき、実施例1と同様の方法でナノインプリント用硬化性組成物として、(組成物-2)~(組成物-5)を得た。
実施例1と同様にして、ラインアンドスペース状のパターンを有するレジスト膜(2)~(5)を得た。
(比較例1)
第2表に示した配合に基づき、実施例1と同様の方法で比較用ナノインプリント用硬化性組成物(比組成物-1)を得た。実施例1と同様にして、ラインアンドスペース状のパターンを有する比較レジスト膜(H1)を得た。
(評価)
 前記実施例1~5及び比較例1で得た、レジスト膜(1)~(5)、比較レジスト膜
(H1)の評価は次の通り行った。
(パターン形成の評価)
 得られたレジスト膜のパターンを、走査顕微鏡(日本電子(株)製:JSM-7500F)にて10万倍の倍率で観察し、以下のように評価した。
○:パターン上部に丸み等の欠けがなく、モールドに忠実な凹凸パターンが得られている。
△:パターン上部に若干の丸み等の欠けがあるが、モールドに忠実な凹凸パターンが得られている。
×:パターン上部に丸み等の欠けがあり、モールドに忠実な凹凸パターンが得られずカマボコ状のラインパターンになっている。
(パターン形状保持性の評価)
 得られたレジスト膜に酸素プラズマで残膜を除去した後のパターンの形状保持性を、走査型顕微鏡(日本電子(株)製:JSM-7500F)にて10万倍の倍率で観察し以下のように評価した。
○:モールド幅200nmに対する残膜除去後のパターン幅の比が0.8以上
△:モールド幅200nmに対する残膜除去後のパターン幅の比が0.5以上0.8未満
×:モールド幅200nmに対する残膜除去後のパターン幅の比が0.5未満
実施例1~5及び比較例1のナノインプリント用硬化性組成物の組成、及び得られたレジスト膜の評価結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000023

Figure JPOXMLDOC01-appb-T000024
表1~2の略語について。
(a1)はポリシロキサンセグメント(a1)の略である。
※1 硬化性樹脂組成物の全固形分量(添加剤も含む)に対するポリシロキサンセグメント(a1)の含有率(%)である。
※2 複合樹脂(A)の全固形分量に対するポリシロキサンセグメント(a1)の含有率である。
17-813:ユニディック17-813[ウレタンアクリレート DIC株式会社製]である。
PETA:ペンタエリスリトールトリアクリレートである。
I-184:イルガキュア184[光重合開始剤 チバ・ジャパン株式会社製]である。
I-127:イルガキュア127[光重合開始剤 チバ・ジャパン株式会社製]である。
チヌビン479:[ヒドロキシフェニルトリアジン系紫外線吸収剤 チバ・ジャパン株式会社製]である。
チヌビン123:[ヒンダードアミン系光安定化剤(HALS) チバ・ジャパン株式会社製]である。
チヌビン152:[ヒンダードアミン系光安定化剤(HALS) チバ・ジャパン株式会社製]である。
 この結果、実施例1~5で評価したナノインプリント用硬化性樹脂組成物(組成物-1)~(組成物-5)を使用したレジスト膜(1)~(5)は、いずれも、パターン形成性、パターン形状保持性に優れていた。
 比較例1で得た比較レジスト膜(H1)は複合樹脂(A)を含まない例であるが、パターン形状保持性が劣っていた。
(実施例6)
(ドライエッチングレジスト膜の調製例)
 合成例6で得られた複合樹脂(A-1) 108.5部、ペンタエリスリトールトリアクリレート(PETA) 20.2部、イルガキュア184[光重合開始剤 チバ・ジャパン株式会社製]3.2部、チヌビン123[ヒンダードアミン系光安定化剤(HALS) チバ・ジャパン株式会社製] 0.74部を混合することによってドライエッチングレジスト膜用ナノインプリント硬化性組成物-6(組成物-6)を得た。
(均一塗布レジスト膜の作製例)
組成物-6をシリコンウエハ基材上にスピンコーターで塗布し、ホットプレート上で80℃、1分間加熱した後、レジスト組成物側からピーク波長375nm±5のLED光源(株式会社イマック製)により、1000mJ/cmの光量で光照射してレジスト膜を硬化させ、基材面上に0.5μmの均一な厚みのレジスト膜(6-1)を得た。同様な方法により、白板ガラス基材上に均一塗布レジスト膜(6-2)、石英ガラス基材上に均一塗布レジスト膜(6-3)、サファイア基材面上に均一塗布レジスト膜(6-4)を得た。
(パターンレジスト膜の作製方法)
組成物-6をシリコンウエハ基材上にスピンコーターで塗布し、ホットプレート上で80℃、1分間加熱した後、表面に幅200nm、ピッチ200nm、高さ200nmのラインアンドスペース構造を有する石英ガラス製の平板状のモールドを押し付けて、ピーク波長375nm±5のLED光源(株式会社イマック製)により、この状態でレジスト組成物側から1000mJ/cmの光量で光照射して硬化させ、その後モールドとシリコンウエハ基材を剥離し、ラインアンドスペース状のパターンを有するレジスト膜(6-5)を得た。同様な方法により、白板ガラス基材上にパターンレジスト膜(6-6)、石英ガラス基材上にパターンレジスト膜(6-7)、サファイア基材上にパターンレジスト膜(6-8)を得た。
(実施例7)
第1表に示した配合に基づき、実施例6と同様の方法で組成物-7を得た。
実施例6と同様にして、均一塗布レジスト膜(7-1)~(7-4)及びパターンレジスト膜(7-5)~(7-8)を得た。
(比較例2)
第2表に示した配合に基づき、実施例6と同様の方法でレジスト膜用比較ナノインプリント硬化性組成物(比組成物-2)を得た。
実施例1と同様にして、比較均一塗布レジスト膜(H2-1)~(H2-4)及びパターンレジスト膜(H2-5)~(H2-8)を得た。
(評価)
前記実施例6、7及び比較例2の評価は次の通り行った。
(ドライエッチング耐性)
得られたシリコンウエハ基材上のレジスト膜(6-1)、(6-5)、(7-1)、(7-5)、(H2-1)、(H2-5)に対し、株式会社ユーテック社製デスクトップシリーズ Plasma Etchingを用いてCF4/02の混合系ガスをそれぞれ40sccm及び10sccmの流量で供給し、0.8Paの真空下で1分間プラズマドライエッチングを行った後、残存膜厚を測定し、1分間当たりのエッチング速度を算出した。
 得られた白板ガラス基材上のレジスト膜(6-2)、(6-6)、(7-2)、(7-6)、(H2-2)、(H2-6)に対し、株式会社エリオニクス社製EIS-700を用いてSF6/C4F8の混合系ガスをそれぞれ20sccm及び5sccmの流量で供給し、0.4Paの真空下で1分間プラズマエッチングを行った後、残存膜厚を測定し、1分間当たりのエッチング速度を算出した。
 得られた石英ガラス基材上のレジスト膜(6-3)、(6-7)、(7-3)、(7-7)、(H2-3)、(H2-7)に対し、株式会社エリオニクス社製EIS-700を用いてSF6/C4F8の混合系ガスをそれぞれ20sccm及び5sccmの流量で供給し、0.4Paの真空下で1分間プラズマエッチングを行った後、残存膜厚を測定し、1分間当たりのエッチング速度を算出した。
 得られたサファイア基材上のレジスト膜(6-4)、(6-8)、(7-4)、(7-8)、(H2-4)、(H2-8)に対し、SAMCO株式会社製RIE-101iPHを用いてBCl3/Cl2/Arの混合系をそれぞれ20sccm、15sccm及び20sccmの流量で供給し、0.7Paの真空下で1分間プラズマエッチングを行った後、残存膜厚を測定し、1分間当たりのエッチング速度を算出した。
得られたエッチング速度を比較例1の値が1となるように規格化した。規格値が小さい程、ドライエッチング耐性に優れていることを示しており、以下のように評価した。
◎:規格化したエッチング速度が0以上、0.3未満
○:規格化したエッチング速度が0.3以上、0.6未満
△:規格化したエッチング速度が0.6以上、1未満
×:規格化したエッチング速度が1以上
(パターン再現性評価)
パターンレジスト膜(6-5)~(6-8)、(7-5)~(7-8)、(H2-5)~(H2-8)のパターンの、ドライエッチング後の基板への転写後の精度の再現性を以下のように評価した。
○:パターン側壁の垂直性が高く、矩形性の高い断面形状であるもの
×:パターン側壁の垂直性が悪く、矩形性に劣るもの
実施例6、7及び比較例2のレジスト組成物の組成、及び得られたレジスト膜のエッチング速度の評価結果を表3及び表4に示す。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
表3~4の略語について。
(a1)はポリシロキサンセグメント(a1)の略である。
※1 硬化性樹脂組成物の全固形分量(添加剤も含む)に対するポリシロキサンセグメント(a1)の含有率(%)である。
※2 複合樹脂(A)の全固形分量に対するポリシロキサンセグメント(a1)の含有率である。
PETA:ペンタエリスリトールトリアクリレートである。
I-184:イルガキュア184[光重合開始剤 チバ・ジャパン株式会社製]である。
チヌビン123:[ヒンダードアミン系光安定化剤(HALS) チバ・ジャパン株式会社製]である。
この結果、実施例6、7で評価したナノインプリント用硬化性組成物(組成物-6)~(組成物-7)を使用したレジスト膜(6-1)~(6-8)、(7-1)~(7-8)はいずれもドライエッチング耐性に優れていた。比較例2で得たレジスト膜は複合樹脂(A)を含まない例であるが、ドライエッチング耐性が劣っていた。
(実施例8)
(樹脂モールド組成物-1の調製例)
 合成例16で得られた複合樹脂(A-11) 40.0部、ジペンタエリスリトールヘキサアクリレート(DPHA) 14.7部、イルガキュア184(光重合開始剤 チバ・スペシャリティ・ケミカルズ株式会社製) 1.39部を混合することによって樹脂モールド用のナノインプリント硬化性組成物-8(組成物-8)を得た。
(樹脂モールドの作製例)
組成物-1をシリコンウエハ基材上にスピンコーターで塗布し、ホットプレート上で80℃1分間加熱した後、表面に直径230nm、高さ200nm、ピッチ460nmの正三角格子の円柱構造を有する石英ガラス製の平板状のマスターモールドを押し付けて、ピーク波長375nm±5のLED光源(株式会社イマック製)により、この状態でマスターモールド側から300mJ/cmの光量で光照射して硬化させ、その後マスターモールドとシリコンウエハ基材を剥離し、円柱状のパターンを有する樹脂モールド-1を得た。
(樹脂モールドアルカリ可溶による金属モールドの作製例)
 得られた樹脂モールドの円柱状パターン面に、スパッタリングによりニッケルの導電層を形成する。その後、導電層が付与された樹脂モールドを、下記組成のニッケル電鋳浴に浸漬させて、電鋳処理を行い、その後、30℃の20wt%水酸化カリウム水溶液に300秒浸漬して、ニッケル層から樹脂モールドを溶解し、金属モールド1-1を得た。
(樹脂モールド引き剥がしによる金属モールドの作製例)
 得られた樹脂モールドの円柱状パターン面に、スパッタリングにより導電層を形成する。その後、導電層が付与された樹脂モールドを、下記組成のニッケル電鋳浴に浸漬させて、電鋳処理を行い、その後、ニッケル層と樹脂モールドを引き剥がし、金属モールド1-2を得た。
(金属モールドからの樹脂成形物の作製例)
組成物―8を光学用易接着PETフィルム基材(東洋紡株式会社製A-4300;125μm)上にバーコーターで塗布し、80℃、4分間加熱した後、表面に直径230nm、高さ200nm、ピッチ460nmの正三角格子の円柱構造を有する上記で作製した金属モールド1-2を押し付けて、ピーク波長375nm±5のLED光源(株式会社イマック製)により、この状態で塗膜側から300mJ/cmの光量で光照射して硬化させ、その後金属モールド1-2とPETフィルム基材を引き剥がし、円柱状のパターンを有する樹脂成形物1を得た。
(ニッケル電鋳浴組成及び温度)
  スルファミン酸ニッケル・・・450g/L
  塩化ニッケル・・・5g/L
  ホウ酸・・・40g/L
  ピット防止剤・・・3g/L
  pH調製剤・・・適量
  PH=4.0
  温度=50℃
(実施例9)
 第5表に示した配合に基づき、実施例8と同様の方法で樹脂モールド用のナノインプリント硬化性組成物-9(組成物-9)を得た。
実施例8と同様にして、樹脂モールド2、樹脂モールドアルカリ可溶による金属モールド2-1、樹脂モールド引き剥がしによる金属モールド2-2、及び樹脂成形物2を得た。
(実施例10)
 第5表に示した配合に基づき、実施例8と同様の方法で樹脂モールド用のナノインプリント硬化性組成物-10(組成物-10)を得た。
実施例8と同様にして、樹脂モールド3、樹脂モールドアルカリ可溶による金属モールド3-1、樹脂モールド引き剥がしによる金属モールド3-2、及び樹脂成形物3を得た。
(実施例11)
 第5表に示した配合に基づき、実施例8と同様の方法で樹脂モールド用のナノインプリント硬化性組成物-11(組成物-11)を得た。
実施例8と同様にして、樹脂モールド4、樹脂モールドアルカリ可溶による金属モールド4-1、樹脂モールド引き剥がしによる金属モールド4-2、及び樹脂成形物4を得た。
(実施例12)
 第5表に示した配合に基づき、実施例8と同様の方法で樹脂モールド用のナノインプリント硬化性組成物-12(組成物-12)を得た。
実施例8と同様にして、樹脂モールド5、樹脂モールドアルカリ可溶による金属モールド5-1、樹脂モールド引き剥がしによる金属モールド5-2、及び樹脂成形物5を得た。
(実施例13)
 第5表に示した配合に基づき、実施例8と同様の方法で樹樹脂モールド用のナノインプリント硬化性組成物-13(組成物-13)を得た。
実施例8と同様にして、樹脂モールド6、樹脂モールドアルカリ可溶による金属モールド6-1、樹脂モールド引き剥がしによる金属モールド6-2、及び樹脂成形物6を得た。
(実施例14)
 第5表に示した配合に基づき、実施例8と同様の方法で樹脂モールド用のナノインプリント硬化性組成物-14(組成物-14)を得た。
実施例8と同様にして、樹脂モールド7、樹脂モールドアルカリ可溶による金属モールド7-1、樹脂モールド引き剥がしによる金属モールド7-2、及び樹脂成形物7を得た。
(実施例15)
 第5表に示した配合に基づき、実施例8と同様の方法で樹脂モールド用のナノインプリント硬化性組成物-15(組成物-15)を得た。
実施例8と同様にして、樹脂モールド8、樹脂モールドアルカリ可溶による金属モールド8-1、樹脂モールド引き剥がしによる金属モールド8-2、及び樹脂成形物8を得た。
(比較例3)
第6表に示した配合に基づき、実施例8と同様の方法で樹脂モールド用の比較ナノインプリント硬化性組成物(比組成物-3)を得た。
実施例8と同様にして、比較樹脂モールド-1、樹脂モールドアルカリ可溶による比較金属モールド1-1、樹脂モールド引き剥がしによる比較金属モールド1-2、及び比較樹脂成形物1を得た。
(評価)
前記実施例8~15及び比較例3で得た、金属モールド及び樹脂成形物の評価は次の通り行った。
(樹脂モールドアルカリ溶解性の評価)
 実施例において、アルカリ洗浄後に得られた金属モールド剥離面に残存した樹脂モールドの残存率が0重量%のものを○とし、樹脂モールドの残存率が0重量%を超えるものを×として、樹脂モールドのアルカリ洗浄による金属モールドからの剥離性を評価した。
(樹脂モールド引き剥がし性の評価)
 得られた金属モールド剥離面に残存した樹脂モールドの残存率が0重量%のものを◎とし、樹脂モールドの残存率が0重量%を超え、1重量%未満のものを○、1重量%以上、5重量%未満のものを△、5重量%以上ものを×として、樹脂モールドと金属モールドの引き剥がし性を評価した。
(金属モールドパターン転写性評価)
 得られた金属モールドのパターン転写性を、走査型顕微鏡(日本電子(株)製:JSM-7500F)にて10万倍の倍率で観察し以下のように評価した。
○:金属モールドに欠損や変形無し
×:金属モールドに欠陥や変形有り
(樹脂成形物パターン転写性評価)
 得られた樹脂成形物のパターン転写性を、走査型顕微鏡(日本電子(株)製:JSM-7500F)にて10万倍の倍率で観察し以下のように評価した。
○:金属モールドに欠損や変形無し
×:金属モールドに欠陥や変形有り
実施例実施例8~15及び比較例3の樹脂モールド用ナノインプリント硬化性組成物の組成、得られた金属モールドと樹脂モールドのアルカリ溶解性と引き剥がし性、金属モールドパターン転写性、及び得られた樹脂成形物パターン転写性評価結果を表5及び表6に示す。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
表5~6の略語について。
(a1)はポリシロキサンセグメント(a1)の略である。
※1 硬化性樹脂組成物の全固形分量(添加剤も含む)に対するポリシロキサンセグメント(a1)の含有率(%)である。
※2 複合樹脂(A)の全固形分量に対するポリシロキサンセグメント(a1)の含有率である。
PETA:ペンタエリスリトールトリアクリレートである。
DPHA:ジペンタエリスリトールヘキサアクリレートである。
DN-902S:バーノック 902S[イソシアネート化合物 DIC株式会社製 固形分100%]である。
17-806:バーノック 17-806[ウレタンアクリレート DIC株式会社製 固形分80%]である。
I-184:イルガキュア184である。
BY16-201:離型剤[2官能性カルビノール変性シリコーン 東レ・ダウコーニング株式会社製]である。
 この結果、比較例3で評価した金属モールド作製用樹脂モールド組成物(比1)は、ウレタンアクリレートの例であるが、アルカリ溶解性、金属モールド及び樹脂成形物との引き剥がし性ともに剥離性に劣った。
(実施例16)
(ウエットエッチングレジスト膜の調製例)
 合成例15で得られた複合樹脂(A-10) 40.0部、ジペンタエリスリトールヘキサアクリレート(DPHA) 14.7部、イルガキュア184(光重合開始剤 チバ・スペシャリティ・ケミカルズ株式会社製) 1.39部を混合することによってウエットエッチングレジスト膜用ナノインプリント硬化性組成物-16(組成物-16)を得た。
(均一塗布レジスト膜の作製例)
組成物-16を石英ガラス基材上にスピンコーターで塗布し、ホットプレート上で80℃、1分間加熱した後、フォトレジスト組成物側からピーク波長375nm±5のLED光源(株式会社イマック製)により、1000mJ/cmの光量で光照射してレジスト膜を硬化させ、基材面上に0.5μmの均一な厚みのウエットエッチング用レジスト膜(16-1)を得た。
(パターンレジスト膜の作製方法)
組成物-16を50mm×50mm×0.7mmの石英ガラス基材上にスピンコーターで塗布し、ホットプレート上で80℃、1分間加熱した後、表面に幅200nm、ピッチ200nm、高さ200nmのラインアンドスペース構造を有する石英ガラス製の平板状のモールドを押し付けて、ピーク波長375nm±5のLED光源(株式会社イマック製)により、この状態でマスターモールド側から1000mJ/cmの光量で光照射して硬化させ、その後モールドと石英ガラス基材を剥離し、ラインアンドスペース状のパターンを有するウエットエッチング用レジスト膜(16-2)を得た。
(実施例17~18と比較例4)
 第7表に示した配合に基づき、実施例16と同様の方法で、それぞれウエットエッチングレジスト膜用ナノインプリント硬化性組成物-17(組成物-17)、ウエットエッチングレジスト膜用ナノインプリント硬化性組成物-18(組成物-18)及び比較用ナノインプリント硬化性組成物-4(比組成物-4)を調製した。
 実施例16と同様にして、ウエットエッチング用レジスト膜17-1、ウエットエッチング用レジスト膜17-2、ウエットエッチング用レジスト膜18-1、ウエットエッチング用レジスト膜18-2、及び比較用ウエットエッチング用レジスト膜H4-1、ウエットエッチング用レジスト膜H4-2を得た。
(ウエットエッチング用レジスト膜評価方法)
 前記実施例16~18及び比較例4で得られるウエットエッチング用レジスト膜の評価は次の通り行った。
(ウエットエッチング用レジスト膜評価方法)
<エッチング耐性>
ウエットエッチング用レジスト膜に対し、エッチャントとしてBHF(バッファードフッ酸)を使用しウェットエッチングをすることにより、基板である石英ガラス基材上に円柱状の凹凸構造を形成させ、微細構造が形成された石英ガラスであるパターン形成物を作成した。エッチング処理をしたレジスト膜に対し、目視外観により以下のように評価を行った。
ここでは、レジスト膜外観に曇りや剥がれ、クラック等の異常が無いものを◎、レジスト膜外観に微細なクラック等が見られるもののパターン形成物には問題がないものを○、レジスト膜外観に剥がれやクラック等の異常がありパターン形成物に対するパターン転写が正常に行えないものを×とした。
<アルカリ解像性>
評価用ウエットエッチング用レジスト膜に対し、それぞれ5wt%の水酸化カリウム水溶液をシャワー圧0.2MPaで60秒噴霧し、レジスト膜の残存率が1重量%未満のものを◎とし、レジスト膜の残存率が1重量%~3重量%のものを○、3重量%より多く残存しているものを×とした。
 各々の組成と評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000029
表7の略語について。
(a1)はポリシロキサンセグメント(a1)の略である。
※1 硬化性樹脂組成物の全固形分量(添加剤も含む)に対するポリシロキサンセグメント(a1)の含有率(%)である。
※2 複合樹脂(A)の全固形分量に対するポリシロキサンセグメント(a1)の含有率である。
PETA:ペンタエリスリトールトリアクリレートである。
DPHA:ジペンタエリスリトールヘキサアクリレートである。
DN-902S:バーノック 902S[イソシアネート化合物 DIC株式会社製]である。
17-806:バーノック 17-806[ウレタンアクリレート DIC株式会社製]である。
I-184:イルガキュア184である。
 本発明のナノインプリント用硬化性組成物を使用したナノインプリント硬化物、及び該ナノインプリント硬化物から得られるパターン形成物、レプリカモールドおよび樹脂成形体は、様々な応用、例えばモールドフィルム、ナノ・マイクロ光学要素、光学素子、表示素子、電子ペーパー、ストレージ、MEMS・PCB実装材料、微量生化学分析や微量化学合成、バイオ応用を目的とした高機能3次元ナノ・マイクロ流路、次世代電子素子、DNAチップ等にも利用することが可能である。

Claims (17)

  1. 一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、ビニル系重合体セグメント(a2)とが、一般式(3)で表される結合により結合された複合樹脂(A)と、光重合開始剤を含有することを特徴とするナノインプリント用硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
           (1)
    Figure JPOXMLDOC01-appb-C000002

           (2)
    (一般式(1)及び(2)中、R、R及びRは、それぞれ独立して、-R-CH=CH、-R-C(CH)=CH、-R-O-CO-C(CH)=CH、及び-R-O-CO-CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1~6のアルキレン基を表す。)、炭素原子数が1~6のアルキル基、炭素原子数が3~8のシクロアルキル基、アリール基、または炭素原子数が7~12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である)
    Figure JPOXMLDOC01-appb-C000003

             (3)
    (一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする)
  2. 前記ポリシロキサンセグメント(a1)の含有率が、前記複合樹脂(A)に対して10~90重量%である請求項1に記載のナノインプリント用硬化性組成物。
  3. 前記ポリシロキサンセグメント(a1)中の重合性二重結合の含有率が、3~20重量%である請求項1又は2に記載のナノインプリント用硬化性組成物。
  4. 前記重合性二重結合を有する基が、-R-O-CO-C(CH)=CH、及び-R-O-CO-CH=CHらなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1~6のアルキレン基を表す)である請求項1~3のいずれかに記載のナノインプリント用硬化性組成物。
  5. 請求項1~4のいずれかに記載のナノインプリント用硬化性組成物を硬化して得られる、ナノインプリント成形体。
  6. 請求項5のナノインプリント成形体が、基板に積層されていることを特徴とする、ナノインプリント積層物。
  7. レジスト膜である、請求項5に記載のナノインプリント成形体。
  8. 樹脂モールドである、請求項5に記載のナノインプリント成形体。
  9. 請求項8に記載の樹脂モールドを用いて作成することを特徴とする、レプリカモールド。
  10. 金属モールドである、請求項9に記載のレプリカモールド。
  11. 樹脂成形体である、請求項9に記載のレプリカモールド。
  12. 請求項1~4のいずれかに記載のナノインプリント用硬化性組成物を基材に塗布して膜を形成する工程と、凹凸構造を有するマスターモールドを押し付けて、この状態でナノインプリント用硬化性組成物に活性エネルギー線硬化させる工程と、その後モールドを剥離する工程とを有することを特徴とするパターン形成方法。
  13. 請求項6に記載の積層体に積層されたナノインプリント成形体をレジスト膜とし、該レジスト膜に形成されたパターンをマスクとして、基板をドライエッチングすることにより基板にパターンを形成することを特徴とする、パターン形成方法。
  14. 請求項6に記載の積層体に積層されたナノインプリント成形体をレジスト膜とし、該レジスト膜に形成されたパターンをマスクとして、基板をウエットエッチングすることにより基板にパターンを形成することを特徴とする、パターン形成方法。
  15. 請求項13又は14に記載のパターン形成方法により基板にパターンが形成されたことを特徴とする、パターン形成物。
  16. (1)請求項1~4に記載のいずれかのナノインプリント用硬化性組成物の塗膜を形成する工程と、
     (2)該塗膜にマスターモールドを押し当て、活性エネルギー線を照射して硬化し、樹脂モールドであるナノインプリント成形体を形成する工程と、
     (3)該樹脂モールド上に金属層を形成する工程と、
     (4)該金属層から樹脂モールドを剥離し、金属モールドを得る工程とを含むことを特徴とする、金属モールドの製造方法。
  17. (1)請求項1~4に記載のいずれかのナノインプリント用硬化性組成物の塗膜を形成する工程と、
     (2)該塗膜にマスターモールドを押し当て、活性エネルギー線を照射して硬化し、樹脂モールドであるナノインプリント成形体を形成する工程と、
     (5)該樹脂モールド上に第2樹脂層を形成し、該第2樹脂層を硬化させる工程と、
     (6)該第2樹脂層から樹脂モールドを剥離し、樹脂成形体を得る工程とを含むことを特徴とする、樹脂成形体の製造方法。
PCT/JP2012/053373 2011-02-15 2012-02-14 ナノインプリント用硬化性組成物、ナノインプリント成形体及びパターン形成方法 WO2012111656A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137021333A KR20130115358A (ko) 2011-02-15 2012-02-14 나노임프린트용 경화성 조성물, 나노임프린트 성형체 및 패턴 형성 방법
DE112012000833.2T DE112012000833T8 (de) 2011-02-15 2012-02-14 Aushärtbare Nanoprägezusammensetzung, mittels Nanoprägelithografie hergestelltes Formprodukt und Verfahren zur Ausbildung einer Strukturierung
CN201280008915.6A CN103392221B (zh) 2011-02-15 2012-02-14 纳米压印用固化性组合物、纳米压印成形体以及图案形成方法
US13/985,792 US20140061970A1 (en) 2011-02-15 2012-02-14 Nanoimprint curable composition, nanoimprint-lithographic molded product, and method for forming pattern

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011029654 2011-02-15
JP2011-029654 2011-02-15
JP2011-166787 2011-07-29
JP2011166787 2011-07-29
JP2011-169221 2011-08-02
JP2011169221 2011-08-02

Publications (1)

Publication Number Publication Date
WO2012111656A1 true WO2012111656A1 (ja) 2012-08-23

Family

ID=46672574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053373 WO2012111656A1 (ja) 2011-02-15 2012-02-14 ナノインプリント用硬化性組成物、ナノインプリント成形体及びパターン形成方法

Country Status (6)

Country Link
US (1) US20140061970A1 (ja)
KR (1) KR20130115358A (ja)
CN (1) CN103392221B (ja)
DE (1) DE112012000833T8 (ja)
TW (1) TWI529487B (ja)
WO (1) WO2012111656A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225625A (ja) * 2012-04-23 2013-10-31 Tokuyama Corp 光硬化性ナノインプリント用組成物およびパターンの形成方法
WO2014061630A1 (ja) * 2012-10-15 2014-04-24 Dic株式会社 耐熱材料及び耐熱部材
WO2016072202A1 (ja) * 2014-11-07 2016-05-12 Dic株式会社 硬化性組成物、レジスト材料及びレジスト膜
JP2016108458A (ja) * 2014-12-08 2016-06-20 信越化学工業株式会社 透明樹脂組成物、該組成物からなる接着剤、該組成物からなるダイボンド材、該組成物を用いた導電接続方法、及び該方法によって得られた光半導体装置
JPWO2020022514A1 (ja) * 2018-07-27 2021-08-05 学校法人東京理科大学 成形物の製造方法、インプリント−電子描画の一括成形用レジスト、レプリカモールドの製造方法、デバイスの製造方法、及びインプリント材料

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10301488B2 (en) * 2012-03-29 2019-05-28 Dic Corporation Conductive ink composition, method for producing conductive patterns, and conductive circuit
JP5871203B1 (ja) * 2014-03-14 2016-03-01 Dic株式会社 酸素プラズマエッチング用レジスト材料、レジスト膜、及びそれを用いた積層体
CN104257008A (zh) * 2014-10-21 2015-01-07 常熟市任阳工艺鞋厂 新型抗菌鞋垫
WO2017130853A1 (ja) * 2016-01-25 2017-08-03 キヤノン株式会社 パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
KR102219155B1 (ko) * 2016-03-24 2021-02-23 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 조성물, 감활성광선성 또는 감방사선성 조성물의 제조 방법, 패턴 형성 방법, 및 전자 디바이스의 제조 방법
CN109195999B (zh) * 2016-05-11 2021-04-16 Dic株式会社 光压印用固化性组合物及使用其的图案形成方法
KR20180014287A (ko) 2016-07-28 2018-02-08 삼성디스플레이 주식회사 패터닝된 경화물의 제조 방법 및 패터닝된 경화물
CN106739629B (zh) * 2016-11-09 2018-11-09 武汉华工图像技术开发有限公司 一种激光全息防伪膜
US20190146343A1 (en) 2017-11-10 2019-05-16 Rohm And Haas Electronic Materials Llc Silicon-containing underlayers
KR102610160B1 (ko) * 2018-05-14 2023-12-05 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
JP6983123B2 (ja) * 2018-07-24 2021-12-17 信越化学工業株式会社 粘着性基材、粘着性基材を有する転写装置及び粘着性基材の製造方法
US20230159707A1 (en) * 2020-02-27 2023-05-25 Dic Corporation Coating composition for producing interlayer insulation film, interlayer insulation film, semiconductor element, and method for producing interlayer insulation film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207475A (ja) * 2007-02-27 2008-09-11 Institute Of Physical & Chemical Research レプリカモールドの製造方法およびレプリカモールド
JP4600608B2 (ja) * 2008-12-11 2010-12-15 Dic株式会社 硬化性樹脂組成物および塗料、それを積層してなるプラスチック成形体
JP2011021113A (ja) * 2009-07-16 2011-02-03 Fujifilm Corp インプリント用硬化性組成物、硬化物およびパターン形成方法
JP2011025677A (ja) * 2009-06-22 2011-02-10 Soken Chem & Eng Co Ltd 金属製モールドの製造方法ならびに該金属製モールドを製造するための樹脂モールドおよび樹脂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279408A (ja) * 1997-06-02 1999-10-12 Dainippon Ink & Chem Inc 水性樹脂の製造法、水性硬化性樹脂組成物および水性塗料
JP2001217380A (ja) * 2000-02-04 2001-08-10 Hitachi Ltd 半導体装置およびその製造方法
JP2002210745A (ja) * 2001-01-22 2002-07-30 Canon Inc 金型製造方法およびレプリカマスターならびに金型
JP5000112B2 (ja) * 2005-09-09 2012-08-15 東京応化工業株式会社 ナノインプリントリソグラフィによるパターン形成方法
US20110014499A1 (en) * 2008-03-07 2011-01-20 Showa Denko K.K. Uv nanoimprint method, resin replica mold and method for producing the same, magnetic recording medium and method for producing the same, and magnetic recording/reproducing apparatus
JP5393282B2 (ja) 2009-06-17 2014-01-22 東京応化工業株式会社 ナノインプリント用組成物およびパターン形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207475A (ja) * 2007-02-27 2008-09-11 Institute Of Physical & Chemical Research レプリカモールドの製造方法およびレプリカモールド
JP4600608B2 (ja) * 2008-12-11 2010-12-15 Dic株式会社 硬化性樹脂組成物および塗料、それを積層してなるプラスチック成形体
JP2011025677A (ja) * 2009-06-22 2011-02-10 Soken Chem & Eng Co Ltd 金属製モールドの製造方法ならびに該金属製モールドを製造するための樹脂モールドおよび樹脂
JP2011021113A (ja) * 2009-07-16 2011-02-03 Fujifilm Corp インプリント用硬化性組成物、硬化物およびパターン形成方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225625A (ja) * 2012-04-23 2013-10-31 Tokuyama Corp 光硬化性ナノインプリント用組成物およびパターンの形成方法
WO2014061630A1 (ja) * 2012-10-15 2014-04-24 Dic株式会社 耐熱材料及び耐熱部材
JPWO2014061630A1 (ja) * 2012-10-15 2016-09-05 Dic株式会社 耐熱材料及び耐熱部材
WO2016072202A1 (ja) * 2014-11-07 2016-05-12 Dic株式会社 硬化性組成物、レジスト材料及びレジスト膜
JP6090547B2 (ja) * 2014-11-07 2017-03-08 Dic株式会社 硬化性組成物、レジスト材料及びレジスト膜
KR20170081163A (ko) * 2014-11-07 2017-07-11 디아이씨 가부시끼가이샤 경화성 조성물, 레지스트 재료 및 레지스트막
US10197916B2 (en) 2014-11-07 2019-02-05 Dic Corporation Curable composition, resist material and resist film
KR102443876B1 (ko) 2014-11-07 2022-09-16 디아이씨 가부시끼가이샤 경화성 조성물, 레지스트 재료 및 레지스트막
JP2016108458A (ja) * 2014-12-08 2016-06-20 信越化学工業株式会社 透明樹脂組成物、該組成物からなる接着剤、該組成物からなるダイボンド材、該組成物を用いた導電接続方法、及び該方法によって得られた光半導体装置
JPWO2020022514A1 (ja) * 2018-07-27 2021-08-05 学校法人東京理科大学 成形物の製造方法、インプリント−電子描画の一括成形用レジスト、レプリカモールドの製造方法、デバイスの製造方法、及びインプリント材料
JP7357882B2 (ja) 2018-07-27 2023-10-10 学校法人東京理科大学 成形物の製造方法、レプリカモールドの製造方法及びデバイスの製造方法

Also Published As

Publication number Publication date
US20140061970A1 (en) 2014-03-06
DE112012000833T8 (de) 2014-01-02
DE112012000833T5 (de) 2013-12-12
CN103392221B (zh) 2016-08-10
TW201239528A (en) 2012-10-01
TWI529487B (zh) 2016-04-11
KR20130115358A (ko) 2013-10-21
CN103392221A (zh) 2013-11-13

Similar Documents

Publication Publication Date Title
WO2012111656A1 (ja) ナノインプリント用硬化性組成物、ナノインプリント成形体及びパターン形成方法
JP5871203B1 (ja) 酸素プラズマエッチング用レジスト材料、レジスト膜、及びそれを用いた積層体
JP4985879B2 (ja) 表面に微細な凹凸を有する成形体及びその製造方法
TW201817768A (zh) 具有異三聚氰骨格之新穎化合物以及包含其之組成物
KR101820200B1 (ko) 임프린트용 수지 몰드 재료 조성물
JP6288488B2 (ja) 絶縁材料、絶縁膜及びこれを用いたトランジスタ
KR20120039693A (ko) 나노 임프린트용 레지스트 하층막 형성 조성물
TW201445253A (zh) 硬化物
KR102263373B1 (ko) 광 임프린트용 경화성 조성물 및 그것을 사용한 패턴 전사 방법
TW202112895A (zh) 含氟異三聚氰酸化合物
JP5327341B2 (ja) ナノインプリント用硬化性組成物、ナノインプリント成形体及びパターン形成方法
JP5983151B2 (ja) ドライエッチングレジスト材料、レジスト膜及びパターン形成物
JP5787179B2 (ja) 樹脂モールド用硬化性樹脂組成物、樹脂モールド及びそれを用いて作製されたレプリカモールド
CN109475901B (zh) 防污性膜的制造方法
WO2013125574A1 (ja) ガラス基材、及びガラス積層物
JP6032461B2 (ja) フォトレジスト材料、及びフォトレジスト膜の形成方法
KR101772612B1 (ko) 임프린트 리소그래피용 광경화형 수지 몰드 조성물
JP2014047285A (ja) フッ素樹脂成形体用硬化性塗料組成物、及び積層硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137021333

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012000833

Country of ref document: DE

Ref document number: 1120120008332

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13985792

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12747414

Country of ref document: EP

Kind code of ref document: A1