WO2012111280A1 - 動力源装置及びこれを備えたハイブリッド建設機械 - Google Patents

動力源装置及びこれを備えたハイブリッド建設機械 Download PDF

Info

Publication number
WO2012111280A1
WO2012111280A1 PCT/JP2012/000851 JP2012000851W WO2012111280A1 WO 2012111280 A1 WO2012111280 A1 WO 2012111280A1 JP 2012000851 W JP2012000851 W JP 2012000851W WO 2012111280 A1 WO2012111280 A1 WO 2012111280A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic pump
flow rate
maximum
engine
Prior art date
Application number
PCT/JP2012/000851
Other languages
English (en)
French (fr)
Inventor
利雄 空
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Priority to US14/000,065 priority Critical patent/US9541103B2/en
Priority to CN201280009290.5A priority patent/CN103392060B/zh
Priority to EP12747861.8A priority patent/EP2677147B1/en
Publication of WO2012111280A1 publication Critical patent/WO2012111280A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2066Control of propulsion units of the type combustion engines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a power source apparatus for a hybrid construction machine that uses both engine power and electric power stored in an electric storage device.
  • horsepower control is performed to control the flow rate of the hydraulic pump in accordance with the load pressure of the hydraulic pump (the discharge force of the hydraulic pump).
  • the horsepower control is performed according to the characteristics shown in FIG. Specifically, the characteristics shown in FIG. 3 are set such that the maximum flow rate is obtained at the control start pressure (pressure section A in FIG. 3) and the minimum flow rate is obtained at the maximum pressure (relief pressure).
  • the set value of the maximum input of the hydraulic pump is set below the maximum output of the engine so that the engine is not overloaded.
  • the set value of the maximum input of the hydraulic pump is set to be a value that is substantially a constant value smaller than the maximum output of the engine.
  • Maximum engine output> Maximum hydraulic pump input Hydraulic pump discharge pressure x Flow rate (however, efficiency and coefficients are omitted)
  • the flow rate control and the horsepower control are used together.
  • the lower flow rate is selected from the flow rates calculated by the flow rate control and the horsepower control, and is commanded to the regulator of the hydraulic pump.
  • the flow rate control is a control method for controlling the flow rate of the hydraulic pump in accordance with the operation amount of the operation means for operating the hydraulic actuator (hereinafter sometimes referred to as lever operation amount).
  • the standby flow rate (flow rate determined in consideration of system responsiveness at the start of movement) is set when the operation means is neutral, while the maximum flow rate is set when the operation means is fully operated. Is done.
  • the maximum flow rate is set at the control start pressure, while the minimum flow rate is set at the relief pressure.
  • the flow rate of the hydraulic pump by the flow control according to the operation amount of the operating means is commanded, and in the pressure range of the hydraulic pump exceeding this section A, the flow rate of the hydraulic pump by the horsepower control is commanded.
  • the hybrid excavator includes a hydraulic pump that drives a hydraulic actuator, a generator motor that can operate as a generator and an electric motor, and an engine that is connected to the hydraulic pump and the generator motor.
  • the accumulator is charged by the operation of the generator motor as a generator, and the driving of the hydraulic pump is assisted by the generator motor operating as an electric motor by the discharging force of the accumulator.
  • the flow rate characteristics of the hydraulic pump in this hybrid excavator are basically set in the same manner as the normal excavator in order to maintain the mechanical performance of the normal excavator.
  • the power of the engine in the hybrid excavator is supplemented by the assist of the generator motor (capacitor) as described above. Therefore, as shown in FIG. 4, the maximum output of the engine in the hybrid excavator is set to a value (usually average power, which will be described in this case) lower than that of the normal excavator in consideration of the assist amount.
  • This hybrid excavator has the following two unique problems. First, when the charge amount of the battery is reduced, the assist ability is lowered, and when the remaining charge amount of the battery is below the limit, the assist ability is lost. As a result, the engine is overloaded and engine stall may occur.
  • Patent Document 1 a technique for limiting the maximum input of the hydraulic pump in accordance with the charge amount of the battery has been proposed (see, for example, Patent Document 1).
  • the control described in Patent Document 1 is a so-called symptomatic control in which the maximum input of the hydraulic pump is limited in accordance with a decrease in the charge amount of the battery, and the progress of discharge and rapid charge / discharge are suppressed. Therefore, the control described in Patent Document 1 is effective during normal work in which the consumption (discharge) of the battery is moderate.
  • An object of the present invention is to provide a power source device for a hybrid construction machine capable of suppressing the consumption of a capacitor during continuous operation of a hydraulic pump under high load pressure conditions and ensuring the assist capability during subsequent normal work. There is.
  • the present invention provides a power source device for a hydraulic actuator, a hydraulic pump for driving the hydraulic actuator, a generator and a generator motor operable as an electric motor, the hydraulic pump, and the power generator.
  • a generator motor operable as an electric motor, the hydraulic pump, and the power generator.
  • An accumulator that can be supplied to the electric motor, a pump pressure detector that detects a discharge pressure of the hydraulic pump as a load pressure of the hydraulic pump, a set value of a maximum input of the hydraulic pump, a discharge pressure of the hydraulic pump, and the hydraulic pump The hydraulic pressure based on the flow pressure characteristic defined by the flow rate and the discharge pressure detected by the pump pressure detector
  • a controller that controls the horsepower that determines the flow rate of the pump, and the set value of the maximum input of the hydraulic pump is greater than the maximum output of the engine in a state where the discharge pressure is a preset reference pressure
  • the flow rate pressure characteristic is set such that the discharge pressure gradually decreases from the reference pressure toward the high pressure, and the discharge pressure is lower than the maximum output of the engine at the maximum pressure.
  • the present invention provides a hybrid construction machine comprising a hydraulic actuator and the power source device that supplies power to the hydraulic actuator.
  • the present invention it is possible to suppress the consumption of the capacitor during the continuous operation of the hydraulic pump under a high load pressure condition and to secure the assist capability during the subsequent normal operation.
  • Embodiments according to the present invention will be described with reference to FIGS.
  • the embodiment is applied to a hybrid excavator.
  • FIG. 1 is a block diagram showing a configuration of the entire system.
  • the hybrid excavator according to the present embodiment includes a hydraulic actuator, a hydraulic pump 3 that drives the hydraulic actuator, a generator motor 2 that can operate as a generator and a motor, and an engine 1 to which the hydraulic pump 3 and the generator motor 2 are connected.
  • An accumulator 9 for charging electric power for assisting driving of the hydraulic pump 3, an inverter 8 for controlling the accumulator 9 and the generator motor 2, and a pump pressure sensor (pump pressure detection) for detecting the discharge pressure of the hydraulic pump 3.
  • a regulator 5 capable of adjusting the discharge amount of the hydraulic pump 3
  • a control valve 6 for controlling the supply and discharge of pressure oil to and from the hydraulic actuator
  • a remote control valve for generating a pilot pressure for operating the control valve 6 7, a pilot pressure sensor 10 for detecting a pilot pressure by the remote control valve 7, an inverter 8 and a regulator
  • a controller (controller) 4 that controls.
  • the hybrid excavator has a so-called parallel system and a series system as power supply systems for the hydraulic pump 3.
  • the present invention can be applied to both types.
  • the hydraulic pump 3 is a variable displacement pump. Specifically, the tilt of the hydraulic pump 3 is changed by controlling the regulator 5 by the controller 4. Thereby, the discharge amount (flow rate) of the hydraulic pump 3 changes. Pressure oil from the hydraulic pump 3 is supplied to a plurality of hydraulic actuators via the control valve 6. Examples of the hydraulic actuator include a boom cylinder, an arm cylinder, a bucket cylinder, and a traveling hydraulic motor in an excavator.
  • the regulator 5 may be directly operated by an electrical signal from the controller 4.
  • the regulator 5 may be operated by a hydraulic pressure from the electromagnetic valve by operating the electromagnetic valve with a signal from the controller 4.
  • the remote control valve 7 generates a pilot pressure corresponding to the operation amount (lever operation amount).
  • the control valve 6 operates according to the pilot pressure from the remote control valve 7.
  • the control valve 6 controls the supply and discharge of pressure oil to the hydraulic actuator (the operation direction and speed of the hydraulic actuator) according to the operating state.
  • the generator motor 2 is connected to the battery 9 via the inverter 8.
  • the inverter 8 controls switching between the operation of the generator motor 2 as a generator and the operation as a motor. Further, the inverter 8 controls the current to the generator motor 2 or the torque of the generator motor 2. Further, the inverter 8 controls charging and discharging of the battery 9 according to the operating state of the generator motor 2.
  • the capacitor 9 can be charged by the operation of the generator motor 2 as a generator. Further, the battery 9 can supply the charged electric power to the generator motor 2. Thereby, the generator motor 2 operates as an electric motor, and the drive of the hydraulic pump 3 is assisted.
  • the pilot pressure sensor 10 detects the pilot pressure (lever operation amount) of the remote control valve 7 for flow control according to the lever operation amount.
  • the flow rate control is a control method for controlling the flow rate of the hydraulic pump 3 in accordance with the lever operation amount of the operating means for operating the hydraulic actuator (the magnitude of the pilot pressure by the remote control valve 7).
  • the pump pressure sensor 11 detects the discharge pressure of the hydraulic pump 3 as the load pressure of the hydraulic pump 3 for horsepower control.
  • the controller 4 calculates the flow rate of the hydraulic pump 3 by flow control and horsepower control based on the lever operation amount detected by the sensors 10 and 11 and the discharge pressure of the hydraulic pump 3. Specifically, the controller 4 selects a lower flow rate among the flow rate of the hydraulic pump 3 determined by the flow rate control and the flow rate of the hydraulic pump 3 determined by the horsepower control. Then, the controller 4 controls the regulator 5 so that the obtained flow rate of the hydraulic pump 3 is obtained.
  • the set value of the maximum input of the hydraulic pump 3 in the horsepower control is set as shown in FIG.
  • the set value of the maximum input of the hydraulic pump 3 is defined by the discharge pressure of the hydraulic pump 3 and the flow rate of the hydraulic pump 3.
  • the set value of the maximum input of the hydraulic pump 3 is larger than the maximum output of the engine when the discharge pressure of the hydraulic pump 3 is at the discharge pressure Pp1 (reference pressure), and the discharge pressure increases from the discharge pressure Pp1 toward the high pressure side. It is set so that it gradually decreases and becomes smaller than the engine maximum output when the discharge pressure is at the maximum pressure (relief pressure).
  • the “maximum input of the hydraulic pump” is obtained by multiplying the discharge pressure of the hydraulic pump 3 and the flow rate (however, efficiency and coefficient are omitted).
  • the discharge pressure Pp1 is a pressure set in advance as the maximum discharge pressure that can maximize the flow rate.
  • the controller 4 determines the flow rate of the hydraulic pump 3 based on this characteristic and the discharge pressure detected by the pump pressure sensor 11, and controls the flow rate of the hydraulic pump 3 via the regulator 5 so as to be this flow rate. To do.
  • discharge pressure (reverse pressure) Pp2 in FIG. 2 is the pressure of the hydraulic pump 3 as a reversal boundary point. That is, the following relationship is established at the discharge pressure Pp2.
  • the set value of the maximum input of the hydraulic pump 3 shown in FIG. 2 is larger than the maximum output of the engine 1 in all pressure ranges from the discharge pressure Pp1 to the discharge pressure Pp2, and from the discharge pressure Pp2 to the maximum pressure. It is smaller than the maximum output of the engine 1 in all pressure ranges.
  • the continuous operation under a high load condition means an operation in which the hydraulic pump 3 is continuously operated in full operation, such as a warm-up operation immediately after engine start in cold weather or a rock excavation operation. .
  • the flow rate is determined using the flow rate characteristic shown in FIG.
  • the processing by the controller 4 can be simplified.
  • the present invention is not limited to the excavator, and can be widely applied to other hybrid construction machines such as a dismantling machine and a crusher configured with the excavator as a base.
  • the present invention is a power source device of a hydraulic actuator, a hydraulic pump that drives the hydraulic actuator, a generator motor that can operate as a generator and a motor, an engine to which the hydraulic pump and the generator motor are connected, A capacitor that is charged by the operation of the generator motor as a generator and that can supply the charged motor to the generator motor in order to operate the generator motor as an electric motor so as to assist in driving the hydraulic pump; A pump pressure detector that detects the discharge pressure of the hydraulic pump as a load pressure of the hydraulic pump, and a flow pressure that defines a set value of the maximum input of the hydraulic pump by the discharge pressure of the hydraulic pump and the flow rate of the hydraulic pump
  • the horsepower control that determines the flow rate of the hydraulic pump based on the characteristics and the discharge pressure detected by the pump pressure detector.
  • a set value of the maximum input of the hydraulic pump is greater than the maximum output of the engine in a state where the discharge pressure is set in advance and the discharge pressure is greater than the reference pressure.
  • a power source device is provided in which the flow rate and pressure characteristics are set so that the pressure gradually decreases as the pressure increases and the discharge pressure becomes smaller than the maximum output of the engine in the state of the highest pressure.
  • the flow rate is determined on the basis of the flow pressure characteristic that defines the set value of the maximum input of the hydraulic pump by the discharge pressure and the flow rate, and the discharge pressure detected by the pump pressure detector.
  • the set value of the maximum input of the hydraulic pump is larger than the maximum output of the engine when the discharge pressure is at the reference pressure, and gradually decreases as the discharge pressure goes from the reference pressure toward the high pressure side.
  • the discharge pressure is set to be smaller than the maximum output of the engine at the maximum pressure.
  • the continuous operation under high load pressure means that the hydraulic pump is continuously operating at full capacity, such as during warm-up immediately after engine startup in cold weather or during rock excavation work. .
  • the energy saving effect can be enhanced because the hybrid system always works effectively during normal work at medium and low loads.
  • frequent high-level charge / discharge of the battery can be avoided, so that deterioration of the battery can be suppressed.
  • the controller stores in advance the flow rate pressure characteristic in which the flow rate continuously decreases from the reference pressure toward the maximum pressure.
  • the flow rate is determined using a flow rate pressure characteristic stored in advance.
  • the process by a controller can be simplified compared with the case where a flow rate is calculated using the pressure detected by the pump pressure detector.
  • the set value of the maximum input of the hydraulic pump is greater than the maximum output of the engine in the pressure range of the flow rate and pressure characteristics in all pressure ranges from the reference pressure to a preset reverse pressure, and It is preferable that the pressure is smaller than the maximum output of the engine in the entire pressure range from the reverse pressure to the maximum pressure.
  • the reference pressure can be set in advance as the maximum discharge pressure at which the flow rate can be set to the maximum flow rate.
  • the present invention provides a hybrid construction machine comprising a hydraulic actuator and the power source device that supplies power to the hydraulic actuator.
  • the present invention it is possible to suppress the consumption of the capacitor during the continuous operation of the hydraulic pump under a high load pressure condition and to secure the assist capability during the subsequent normal operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

 高負荷圧条件下における油圧ポンプの連続運転時の蓄電器の消耗を抑えて、その後の通常作業時のアシスト能力を確保する。ポンプ圧検出センサにより検出された油圧ポンプの吐出圧に応じて油圧ポンプの流量を決める馬力制御を行なうコントローラを備え、コントローラは、馬力制御において、吐出圧と流量とで定義される油圧ポンプの最大入力の設定値が、吐出圧が吐出圧Pp1の状態でエンジンの最大出力よりも大きく、吐出圧が吐出圧Pp1から高圧に向かうに従い徐々に小さくなり、吐出圧が吐出圧Pp3の状態でエンジンの最大出力よりも小さくなるように、流量を決定する。

Description

動力源装置及びこれを備えたハイブリッド建設機械
 本発明は、エンジンの動力と蓄電器の電力とを併用するハイブリッド建設機械の動力源装置に関するものである。
 ショベルを例にとって背景技術を説明する。
 エンジンのみを動力源とする通常ショベルにおいては、油圧ポンプの負荷圧(油圧ポンプの吐出力)に応じて油圧ポンプの流量を制御する馬力制御が行われる。上記馬力制御は、図3に示すような特性に従って行なわれる。具体的に、図3に示す特性は、制御開始圧(図3中のAの圧力区間)で最大流量となり、最高圧(リリーフ圧)で最小流量となるように設定されている。
 図3に示す特性では、エンジンが過負荷とならないように、油圧ポンプの最大入力の設定値がエンジンの最大出力以下に設定されている。具体的に、油圧ポンプの最大入力の設定値は、エンジンの最大出力よりもほぼ一定値だけ小さな値となるように設定されている。
 すなわち、図3に示す特性では、次の関係が成立する。
  エンジンの最大出力>油圧ポンプの最大入力=油圧ポンプの吐出圧×流量
  (但し、効率と係数は省略)
 なお、油圧ポンプの流量の制御に関して、一般的には、流量制御と上記馬力制御とが併用される。具体的に、流量制御及び馬力制御によってそれぞれ演算される流量のうち低位側の流量が選択され、油圧ポンプのレギュレータに指令される。上記流量制御は、油圧アクチュエータを操作する操作手段の操作量(以下、レバー操作量という場合がある)に応じて油圧ポンプの流量を制御する制御方式である。
 上記流量制御では、操作手段が中立の状態でスタンバイ流量(動き始めのシステム応答性を考慮して決定される流量)に設定される一方、操作手段がフルに操作された状態で最大流量に設定される。
 これに対し、上記馬力制御では、制御開始圧で最大流量に設定される一方、リリーフ圧で最小流量に設定される。
 従って、上記圧力区間Aでは操作手段の操作量に応じた流量制御による油圧ポンプの流量が指令され、この区間Aを超える油圧ポンプの圧力範囲では馬力制御による油圧ポンプの流量が指令される。
 一方、ハイブリッドショベルは、油圧アクチュエータを駆動する油圧ポンプと、発電機及び電動機として作動可能な発電電動機と、油圧ポンプ及び発電電動機とが接続されたエンジンとを備えている。このハイブリッドショベルでは、発電電動機の発電機としての作動によって蓄電器が充電されるとともに、この蓄電器の放電力により発電電動機が電動機として作動することにより油圧ポンプの駆動がアシストされる。
 このハイブリッドショベルにおける油圧ポンプの流量特性は、通常ショベルの機械的な性能を維持するために、基本的に通常ショベルと同様に設定される。
 但し、ハイブリッドショベルにおけるエンジンの動力には、上記のように発電電動機(蓄電器)のアシスト分がプラスされる。そのため、図4に示すように、ハイブリッドショベルにおけるエンジンの最大出力は、上記アシスト分を考慮して通常ショベルのそれよりも低い値(通常は平均動力。以下、この場合で説明する)に設定される。
 すなわち、図4に示す特性では、次の関係が成立する。
    エンジンの最大出力<油圧ポンプの最大入力
 さらに、図4に示す特性では、次の関係も成立する。
   (エンジンの最大出力+最大アシスト力)>油圧ポンプの最大入力
 このハイブリッドショベルには、次に示す2つの固有の問題点が存在する。第1に、蓄電器の充電量が減少すると上記アシスト能力が低下し、蓄電器の充電量の残量が限界を下回るとアシスト能力が喪失する。これにより、エンジンが過負荷となり、エンストのおそれがある。
 第2に、頻繁な高レベルの充放電が行われると蓄電器の劣化が激しくなる。
 これらの問題の対応策として、蓄電器の充電量に応じて油圧ポンプの最大入力を制限する技術が提案されている(例えば、特許文献1参照)。
 上記特許文献1に記載の制御は、蓄電器の充電量の減少に応じて油圧ポンプの最大入力を制限し、放電の進行と急激な充放電を抑えるという、いわば対症療法的な制御である。そのため、蓄電器の消耗(放電)が緩やかな通常作業時において、特許文献1に記載の制御は、有効である。
 しかし、寒冷時のエンジンの始動直後の暖機運転時又は岩石の掘り起こし作業時のような高負荷圧(特にリリーフ圧)条件下において、油圧ポンプを連続運転する場合、つまり、油圧ポンプが連続してフル稼働する場合、蓄電器が高レベルで急速に消耗(放電)する。このような状況では、特許文献1に記載の制御を行なっても、蓄電器の消耗を抑えることができず、蓄電器のアシスト能力が急速に低下する。これにより、その後の通常作業時にアシスト能力が不足し、又はアシスト不能な状態となり、作業に支障を来たすことになる。
特開2005-83242号公報
 本発明の目的は、高負荷圧条件下における油圧ポンプの連続運転時の蓄電器の消耗を抑えて、その後の通常作業時のアシスト能力を確保することができるハイブリッド建設機械の動力源装置を提供することにある。
 上記課題を解決するために、本発明は、油圧アクチュエータの動力源装置であって、上記油圧アクチュエータを駆動する油圧ポンプと、発電機及び電動機として作動可能な発電電動機と、上記油圧ポンプ及び上記発電電動機が接続されたエンジンと、上記発電電動機の発電機としての作動によって充電されるとともに、油圧ポンプの駆動をアシストするように上記発電電動機を電動機として作動させるために、充電された電力を上記発電電動機に供給可能な蓄電器と、上記油圧ポンプの負荷圧として上記油圧ポンプの吐出圧を検出するポンプ圧検出器と、上記油圧ポンプの最大入力の設定値を上記油圧ポンプの吐出圧と上記油圧ポンプの流量とで定義する流量圧力特性と、上記ポンプ圧検出器により検出された吐出圧とに基づいて上記油圧ポンプの流量を決める馬力制御を行う制御器と、を備え、上記油圧ポンプの最大入力の設定値が、上記吐出圧が予め設定された基準圧力の状態で上記エンジンの最大出力よりも大きく、上記吐出圧が上記基準圧力から高圧に向かうに従い徐々に小さくなり、上記吐出圧が最高圧力の状態で上記エンジンの最大出力よりも小さくなるように、上記流量圧力特性は、設定されている、動力源装置を提供する。
 また、本発明は、油圧アクチュエータと、上記油圧アクチュエータに動力を供給する、前記動力源装置と、を備えている、ハイブリッド建設機械を提供する。
 本発明によれば、高負荷圧条件下における油圧ポンプの連続運転時の蓄電器の消耗を抑えて、その後の通常作業時のアシスト能力を確保することができる。
本発明の実施形態に係る動力源装置の全体構成を示すブロック図である。 油圧ポンプの吐出圧と油圧ポンプの流量との関係を示すグラフである。 通常ショベルにおける油圧ポンプの吐出圧と油圧ポンプの流量の関係を示すグラフである。 従来のハイブリッドショベルにおける油圧ポンプの吐出圧と油圧ポンプの流量との関係を示すグラフである。
 以下添付図面を参照しながら、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
 本発明に係る実施形態を図1及び図2を参照して説明する。実施形態は、ハイブリッドショベルを適用対象としている。
 図1は、システム全体の構成を示すブロック図である。本実施形態に係るハイブリッドショベルは、油圧アクチュエータと、油圧アクチュエータを駆動する油圧ポンプ3と、発電機及び電動機として作動可能な発電電動機2と、油圧ポンプ3及び発電電動機2が接続されるエンジン1と、油圧ポンプ3の駆動をアシストするための電力を充電する蓄電器9と、蓄電器9及び発電電動機2を制御するためのインバータ8と、油圧ポンプ3の吐出圧を検出するポンプ圧センサ(ポンプ圧検出器)11と、油圧ポンプ3の吐出量を調整可能なレギュレータ5と、油圧アクチュエータに対する圧油の給排を制御する制御弁6と、制御弁6を作動させるためのパイロット圧を生じさせるリモコン弁7と、リモコン弁7によるパイロット圧を検出するパイロット圧センサ10と、インバータ8及びレギュレータ5を制御するコントローラ(制御器)4とを備えている。
 なお、ハイブリッドショベルには、油圧ポンプ3に対する動力の供給方式として所謂パラレル方式とシリーズ方式とがある。本発明は、両方式のいずれにも適用することができる。
 油圧ポンプ3は、可変容量式のポンプである。具体的に、油圧ポンプ3の傾転は、コントローラ4によりレギュレータ5が制御されることにより変更される。これにより、油圧ポンプ3の吐出量(流量)が変化する。油圧ポンプ3からの圧油は、制御弁6を介して複数の油圧アクチュエータに供給される。油圧アクチュエータには、例えば、ショベルにおけるブームシリンダ、アームシリンダ、バケットシリンダ、及び走行用の油圧モータが含まれる。
 レギュレータ5は、コントローラ4からの電気信号によって直接作動するものを用いてもよい。また、レギュレータ5は、コントローラ4からの信号で電磁弁を作動させ、この電磁弁からの油圧によって作動するものでもよい。
 リモコン弁7は、その操作量(レバー操作量)に応じたパイロット圧を生じさせる。制御弁6は、リモコン弁7からのパイロット圧に応じて作動する。そして、制御弁6は、その作動状態に応じて、油圧アクチュエータに対する圧油の給排(油圧アクチュエータの動作方向と速度)を制御する。
 発電電動機2は、インバータ8を介して蓄電器9に接続されている。
 インバータ8は、発電電動機2の発電機としての作動と、電動機としての作動との切換えを制御する。また、インバータ8は、発電電動機2に対する電流又は発電電動機2のトルクを制御する。さらに、インバータ8は、発電電動機2の作動状態に応じて蓄電器9の充電及び放電を制御する。
 蓄電器9は、発電電動機2の発電機としての作動によって充電可能である。また、蓄電器9は、充電された電力を発電電動機2に供給可能である。これにより、発電電動機2が電動機として作動して、油圧ポンプ3の駆動がアシストされる。
 パイロット圧センサ10は、上記レバー操作量に応じた流量制御のためにリモコン弁7のパイロット圧(レバー操作量)を検出する。上記流量制御は、油圧アクチュエータを操作する操作手段のレバー操作量(リモコン弁7によるパイロット圧の大きさ)に応じて油圧ポンプ3の流量を制御する制御方式である。
 ポンプ圧センサ11は、馬力制御のために、油圧ポンプ3の負荷圧として油圧ポンプ3の吐出圧を検出する。
 コントローラ4は、両センサ10、11によって検出されたレバー操作量及び油圧ポンプ3の吐出圧に基づいて、流量制御及び馬力制御による油圧ポンプ3の流量を演算で求める。具体的に、コントローラ4は、流量制御により決定された油圧ポンプ3の流量、馬力制御により決定された油圧ポンプ3の流量のうち低位側の流量を選択する。そして、コントローラ4は、求められた油圧ポンプ3の流量が得られるようにレギュレータ5を制御する。
 本実施形態に係る動力源装置では、馬力制御における油圧ポンプ3の最大入力の設定値が図2に示すように設定されている。具体的に、油圧ポンプ3の最大入力の設定値は、油圧ポンプ3の吐出圧と油圧ポンプ3の流量とで定義される。そして、油圧ポンプ3の最大入力の設定値は、油圧ポンプ3の吐出圧が吐出圧Pp1(基準圧力)の状態でエンジンの最大出力よりも大きく、吐出圧が吐出圧Pp1から高圧側に向かうに従い徐々に小さくなり、吐出圧が最高圧力(リリーフ圧)の状態でエンジン最大出力よりも小さくなるように定められている。なお、『油圧ポンプの最大入力』とは、油圧ポンプ3の吐出圧と流量とを乗じて得られるもの(但し、効率と係数は省略)である。
 すなわち、馬力制御による最大流量点である吐出圧Pp1では、次の関係が成立する。
   エンジンの最大出力<油圧ポンプの最大入力
 なお、吐出圧Pp1は、流量を最大にすることができる最大の吐出圧として予め設定された圧力である。
 一方、馬力制御による最小流量点である最高吐出圧Pp3(リリーフ圧)では、次の関係に示すように、上記関係が反転する。
   エンジンの最大出力>油圧ポンプの最大入力
 そして、コントローラ4には、上記吐出圧Pp1と吐出圧Pp3との間の中間域で油圧ポンプ3の最大入力の設定値が滑らかに変化する特性が予め設定及び記憶されている。また、コントローラ4は、この特性とポンプ圧センサ11により検出された吐出圧とに基づいて油圧ポンプ3の流量を決定し、この流量となるようにレギュレータ5を介して油圧ポンプ3の流量を制御する。
 なお、図2中の吐出圧(反転圧力)Pp2は、反転の境界点としての油圧ポンプ3の圧力である。つまり、吐出圧Pp2では、次の関係が成立する。
   エンジンの最大出力=油圧ポンプの最大入力
 つまり、図2に示す油圧ポンプ3の最大入力の設定値は、吐出圧Pp1から吐出圧Pp2までの全ての圧力範囲でエンジン1の最大出力よりも大きく、かつ、吐出圧Pp2から最高圧力までの全ての圧力範囲でエンジン1の最大出力よりも小さい。
 油圧ポンプ3の最大入力の設定値をこのように定めることにより、高負荷圧条件下(Pp2~Pp3)での連続運転時に、油圧ポンプ3の最大入力の大半をエンジン1の出力で負担することができるため、蓄電器9の消耗を抑えることができる。これにより、高負荷圧条件下(Pp2~Pp3)での連続運転時にアシスト能力を温存し、その後の通常作業時に十分なアシスト能力を発揮させることができる。なお、高負荷条件下での連続運転時とは、寒冷時のエンジン始動直後の暖機運転時又は岩石の掘り起こし作業時のように、油圧ポンプ3が連続してフル稼働する運転時を意味する。
 これにより、通常作業時に常にハイブリッドシステムが有効に働くため、省エネルギー効果を高めることができる。一方、高負荷圧条件下での連続運転時には、蓄電器9の急速な放電とその後の充電という高レベルでの充放電を回避できるため、蓄電器9の劣化を抑制することができる。
 しかも、高負荷圧条件下での運転時は、本来、力(圧力)を必要とするが速度(流量)の必要性は少ない。そのため、吐出圧Pp3の状態で油圧ポンプ3の最大入力の設定値がエンジン1の最大出力よりも小さくなる設定によるデメリットは、小さい。また、流量を徐々に低下させるため、操作上の違和感も生じない。
 以上の点で、特に、中負荷~低負荷作業が通常作業となることが圧倒的に多く、重負荷作業が少ない小型機において有利となる。
 前記実施形態では、予め設定された図2に示す流量特性を用いて流量を決定する。これにより、ポンプ圧センサ11により検出された圧力を用いて流量を算出する場合と比較して、コントローラ4による処理を簡素化することができる。
 ところで、本発明はショベルに限らず、例えば、ショベルを母体として構成される解体機や破砕機等の他のハイブリッド建設機械に広く適用することができる。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明は、油圧アクチュエータの動力源装置であって、上記油圧アクチュエータを駆動する油圧ポンプと、発電機及び電動機として作動可能な発電電動機と、上記油圧ポンプ及び上記発電電動機が接続されたエンジンと、上記発電電動機の発電機としての作動によって充電されるとともに、油圧ポンプの駆動をアシストするように上記発電電動機を電動機として作動させるために、充電された電力を上記発電電動機に供給可能な蓄電器と、上記油圧ポンプの負荷圧として上記油圧ポンプの吐出圧を検出するポンプ圧検出器と、上記油圧ポンプの最大入力の設定値を上記油圧ポンプの吐出圧と上記油圧ポンプの流量とで定義する流量圧力特性と、上記ポンプ圧検出器により検出された吐出圧とに基づいて上記油圧ポンプの流量を決める馬力制御を行う制御器と、を備え、上記油圧ポンプの最大入力の設定値が、上記吐出圧が予め設定された基準圧力の状態で上記エンジンの最大出力よりも大きく、上記吐出圧が上記基準圧力から高圧に向かうに従い徐々に小さくなり、上記吐出圧が最高圧力の状態で上記エンジンの最大出力よりも小さくなるように、上記流量圧力特性は、設定されている、動力源装置を提供する。
 本発明では、油圧ポンプの最大入力の設定値を吐出圧と流量とで定義する流量圧力特性と、ポンプ圧検出器により検出された吐出圧とに基づいて流量が決定される。ここで、上記流量圧力特性において、油圧ポンプの最大入力の設定値は、吐出圧が基準圧力の状態でエンジンの最大出力よりも大きく、吐出圧が基準圧力から高圧側に向かうに従い徐々に小さくなり、吐出圧が最高圧力の状態でエンジンの最大出力よりも小さくなるように設定されている。
 これにより、高負荷圧条件下での連続運転時に、油圧ポンプの最大入力の大半をエンジンの出力で負担することができるため、蓄電器の消耗を抑えることができる。これにより、高負荷条件下での連続運転時にアシスト能力を温存し、その後の通常作業時に十分なアシスト能力を発揮させることができる。なお、高負荷圧条件下での連続運転時とは、寒冷時のエンジン始動直後の暖機運転時又は岩石の掘り起こし作業時のように、油圧ポンプが連続してフル稼働する運転時を意味する。
 すなわち、中負荷及び低負荷での通常作業時には、常にハイブリッドシステムが有効に働くため、省エネルギー効果を高めることができる。一方、高負荷圧条件下での連続運転時には、蓄電器の頻繁な高レベルでの充放電を回避できるため、蓄電器の劣化を抑制することができる。
 しかも、高負荷圧条件下での運転時は、本来、力(圧力)を必要とするが速度(流量)の必要性は少ない。そのため、吐出圧が最高圧力の状態で油圧ポンプの最大入力の設定値がエンジンの最大出力よりも小さくなる設定によるデメリットは、小さい。また、流量を徐々に低下させるため、操作上の違和感も生じない。
 以上の点で、特に、中負荷~低負荷作業(低圧域~中間域の油圧ポンプの圧力での作業)が通常作業となる小型機において有利となる。
 上記動力源装置において、上記制御器は、上記基準圧力から上記最高圧力へ向けて上記流量が連続的に減少する上記流量圧力特性を予め記憶することが好ましい。
 上記態様では、予め記憶された流量圧力特性を用いて流量を決定する。これにより、ポンプ圧検出器により検出された圧力を用いて流量を算出する場合と比較して、制御器による処理を簡素化することができる。
 上記動力源装置において、上記油圧ポンプの最大入力の設定値は、上記流量圧力特性において、上記基準圧力から予め設定された反転圧力までの全ての圧力範囲で上記エンジンの最大出力よりも大きく、かつ、上記反転圧力から上記最高圧力までの全ての圧力範囲で上記エンジンの最大出力よりも小さいことが好ましい。
 上記態様によれば、反転圧力よりも低圧側で蓄電器によるアシストを有効に活用しつつ、吐出圧が反転圧力よりも高圧となる高圧作業時において、蓄電器の消耗を確実に抑制することができる。
 具体的に、上記基準圧力は、上記流量を最大流量に設定することができる最大の吐出圧として予め設定することができる。
 また、本発明は、油圧アクチュエータと、上記油圧アクチュエータに動力を供給する、前記動力源装置と、を備えている、ハイブリッド建設機械を提供する。
 本発明によれば、高負荷圧条件下における油圧ポンプの連続運転時の蓄電器の消耗を抑えて、その後の通常作業時のアシスト能力を確保することができる。
 Pp1 吐出圧(基準圧力)
 Pp2 吐出圧(反転圧力)
 Pp3 吐出圧(最高圧力)
 1 エンジン
 2 発電電動機
 3 油圧ポンプ
 4 コントローラ(制御器)
 9 蓄電器
 11 ポンプ圧センサ(ポンプ圧検出器)

Claims (5)

  1.  油圧アクチュエータの動力源装置であって、
     上記油圧アクチュエータを駆動する油圧ポンプと、
     発電機及び電動機として作動可能な発電電動機と、
     上記油圧ポンプ及び上記発電電動機が接続されたエンジンと、
     上記発電電動機の発電機としての作動によって充電されるとともに、油圧ポンプの駆動をアシストするように上記発電電動機を電動機として作動させるために、充電された電力を上記発電電動機に供給可能な蓄電器と、
     上記油圧ポンプの負荷圧として上記油圧ポンプの吐出圧を検出するポンプ圧検出器と、
     上記油圧ポンプの最大入力の設定値を上記油圧ポンプの吐出圧と上記油圧ポンプの流量とで定義する流量圧力特性と、上記ポンプ圧検出器により検出された吐出圧とに基づいて上記油圧ポンプの流量を決める馬力制御を行う制御器と、を備え、
     上記油圧ポンプの最大入力の設定値が、上記吐出圧が予め設定された基準圧力の状態で上記エンジンの最大出力よりも大きく、上記吐出圧が上記基準圧力から高圧に向かうに従い徐々に小さくなり、上記吐出圧が最高圧力の状態で上記エンジンの最大出力よりも小さくなるように、上記流量圧力特性は、設定されている、動力源装置。
  2.  上記制御器は、上記基準圧力から上記最高圧力へ向けて上記流量が連続的に減少する上記流量圧力特性を予め記憶する、動力源装置。
  3.  上記油圧ポンプの最大入力の設定値は、上記流量圧力特性において、上記基準圧力から予め設定された反転圧力までの全ての圧力範囲で上記エンジンの最大出力よりも大きく、かつ、上記反転圧力から上記最高圧力までの全ての圧力範囲で上記エンジンの最大出力よりも小さい、請求項1又は2に記載の動力源装置。
  4.  上記基準圧力は、上記流量を最大流量に設定することができる最大の吐出圧として予め設定された圧力である、請求項1~3の何れか1項に記載の動力源装置。
  5.  油圧アクチュエータと、
     上記油圧アクチュエータに動力を供給する、請求項1~4の何れか1項に記載の動力源装置と、を備えている、ハイブリッド建設機械。
PCT/JP2012/000851 2011-02-17 2012-02-09 動力源装置及びこれを備えたハイブリッド建設機械 WO2012111280A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/000,065 US9541103B2 (en) 2011-02-17 2012-02-09 Power source apparatus and hybrid construction machine equipped with same
CN201280009290.5A CN103392060B (zh) 2011-02-17 2012-02-09 动力源装置及具备该动力源装置的混合动力工程机械
EP12747861.8A EP2677147B1 (en) 2011-02-17 2012-02-09 Power source apparatus and hybrid construction machine equipped with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-032011 2011-02-17
JP2011032011A JP5585487B2 (ja) 2011-02-17 2011-02-17 ハイブリッド建設機械の動力源装置

Publications (1)

Publication Number Publication Date
WO2012111280A1 true WO2012111280A1 (ja) 2012-08-23

Family

ID=46672227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000851 WO2012111280A1 (ja) 2011-02-17 2012-02-09 動力源装置及びこれを備えたハイブリッド建設機械

Country Status (5)

Country Link
US (1) US9541103B2 (ja)
EP (1) EP2677147B1 (ja)
JP (1) JP5585487B2 (ja)
CN (1) CN103392060B (ja)
WO (1) WO2012111280A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918281B (zh) * 2010-06-28 2015-07-29 沃尔沃建造设备有限公司 用于施工机械的液压泵的流动控制***
EP2597208B1 (en) 2010-07-19 2021-05-19 Volvo Construction Equipment AB System for controlling hydraulic pump in construction machine
JP5959874B2 (ja) * 2012-02-15 2016-08-02 日立建機株式会社 ハイブリッド式作業車両
JP6243856B2 (ja) * 2015-01-22 2017-12-06 日立建機株式会社 ハイブリッド建設機械
JP6488759B2 (ja) * 2015-02-26 2019-03-27 コベルコ建機株式会社 ハイブリッド建設機械
TWI620156B (zh) * 2016-11-15 2018-04-01 Emergency help intercom system
US10989052B2 (en) * 2017-02-14 2021-04-27 Kolberg-Pioneer, Inc. Apparatus and method for a dual power system
JP7396838B2 (ja) 2019-09-12 2023-12-12 住友建機株式会社 ショベル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150307A (ja) * 2002-10-29 2004-05-27 Komatsu Ltd エンジンの制御装置
JP2005083242A (ja) 2003-09-08 2005-03-31 Komatsu Ltd ハイブリッド作業機械の駆動制御装置
JP2005194978A (ja) * 2004-01-09 2005-07-21 Kobelco Contstruction Machinery Ltd 作業機械
JP2008163669A (ja) * 2006-12-28 2008-07-17 Hitachi Constr Mach Co Ltd 油圧式走行車両の走行制御装置
JP2011174468A (ja) * 2011-03-25 2011-09-08 Komatsu Ltd エンジン、油圧ポンプおよび発電電動機の制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174114A (en) * 1990-02-28 1992-12-29 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system for construction machine
DE60043729D1 (de) 1999-06-28 2010-03-11 Kobelco Constr Machinery Ltd Bagger mit hybrid-antriebsvorrichtung
JP4082935B2 (ja) * 2002-06-05 2008-04-30 株式会社小松製作所 ハイブリッド式建設機械
JP2005188674A (ja) 2003-12-26 2005-07-14 Hitachi Constr Mach Co Ltd 建設機械のポンプ制御装置
EP2123947B1 (en) 2006-12-28 2012-12-05 Hitachi Construction Machinery Co., Ltd Travel control device for hydraulic traveling vehicle
JP5362958B2 (ja) * 2007-01-24 2013-12-11 株式会社小松製作所 油圧駆動装置
US8020659B2 (en) * 2007-11-28 2011-09-20 Caterpillar Paving Products Inc. Hydrostatically driven vehicle and method therefor
DE602007012734D1 (de) 2007-12-21 2011-04-07 Caterpillar Inc Steuern der Antriebsgeschwindigkeit einer Maschine
JP5401992B2 (ja) * 2009-01-06 2014-01-29 コベルコ建機株式会社 ハイブリッド作業機械の動力源装置
JP5585488B2 (ja) * 2011-02-17 2014-09-10 コベルコ建機株式会社 ハイブリッド建設機械の動力源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150307A (ja) * 2002-10-29 2004-05-27 Komatsu Ltd エンジンの制御装置
JP2005083242A (ja) 2003-09-08 2005-03-31 Komatsu Ltd ハイブリッド作業機械の駆動制御装置
JP2005194978A (ja) * 2004-01-09 2005-07-21 Kobelco Contstruction Machinery Ltd 作業機械
JP2008163669A (ja) * 2006-12-28 2008-07-17 Hitachi Constr Mach Co Ltd 油圧式走行車両の走行制御装置
JP2011174468A (ja) * 2011-03-25 2011-09-08 Komatsu Ltd エンジン、油圧ポンプおよび発電電動機の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2677147A4

Also Published As

Publication number Publication date
JP5585487B2 (ja) 2014-09-10
US20140000252A1 (en) 2014-01-02
EP2677147A1 (en) 2013-12-25
US9541103B2 (en) 2017-01-10
EP2677147B1 (en) 2017-09-13
JP2012172520A (ja) 2012-09-10
CN103392060A (zh) 2013-11-13
CN103392060B (zh) 2016-01-20
EP2677147A4 (en) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2012111281A1 (ja) 動力源装置及びこれを備えたハイブリッド建設機械
WO2012111280A1 (ja) 動力源装置及びこれを備えたハイブリッド建設機械
JP5401992B2 (ja) ハイブリッド作業機械の動力源装置
EP2851475B1 (en) Hybrid construction machinery
KR101512207B1 (ko) 건설 기계의 엔진 제어 장치
EP1834854B1 (en) Hybrid construction machine
JP4725406B2 (ja) ハイブリッド式作業機械の動力源装置
JP5419572B2 (ja) ハイブリッド建設機械の制御装置
US20160340871A1 (en) Engine and Pump Control Device and Working Machine
EP2770119A1 (en) Hybrid-driven hydraulic work machine
WO2015133625A1 (ja) ショベル
US10160439B2 (en) Power efficiency control mechanism for a working machine
JP6232875B2 (ja) ハイブリッド建設機械の動力制御装置
JP5777961B2 (ja) ショベル
JP2012102801A (ja) 建設機械の油圧制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747861

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14000065

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012747861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012747861

Country of ref document: EP