WO2012109930A1 - 基带数据的传输方法、装置及*** - Google Patents

基带数据的传输方法、装置及*** Download PDF

Info

Publication number
WO2012109930A1
WO2012109930A1 PCT/CN2011/082246 CN2011082246W WO2012109930A1 WO 2012109930 A1 WO2012109930 A1 WO 2012109930A1 CN 2011082246 W CN2011082246 W CN 2011082246W WO 2012109930 A1 WO2012109930 A1 WO 2012109930A1
Authority
WO
WIPO (PCT)
Prior art keywords
baseband data
rru
different
data
rrus
Prior art date
Application number
PCT/CN2011/082246
Other languages
English (en)
French (fr)
Inventor
李萍
江海
魏继东
张娜
高明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012109930A1 publication Critical patent/WO2012109930A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to the field of communications, and in particular to a method, device, and system for transmitting baseband data.
  • the Generation Partnership Project (3GPP) is a technology development project initiated to improve and enhance the air access technology of the third generation (3G) mobile communication technology.
  • LTE has more technical advantages, such as higher user data rate, packet transmission, lower system delay, improved system capacity and coverage, and lower operating costs.
  • the LTE downlink adopts Orthogonal Frequency Division Multiplexing (OFDM) technology.
  • the OFDM technology has the characteristics of high spectrum utilization and anti-multipath interference.
  • the OFDM system can effectively resist the influence of the wireless channel.
  • the LTE uplink transmission scheme uses a single carrier frequency division multiple access (SC-FDMA) system with a cyclic prefix to use DFT in an uplink SC-FDMA transmission scheme with a cyclic prefix.
  • SC-FDMA single carrier frequency division multiple access
  • the frequency domain signal is obtained, and then the zero symbol is inserted for spectrum shifting, and the shifted signal is further subjected to Fast Fourier Transform (IFFT) to reduce the peak-to-average power ratio of the transmitting terminal.
  • IFFT Fast Fourier Transform
  • the offset of the carrier frequency can cause interference between the sub-channels.
  • Due to the movement of the terminal a Doppler shift is generated between the base station and the terminal, and this frequency shift is particularly noticeable in a mobile communication system, particularly in a high speed scene. The Doppler shift will cause a frequency error between the receiver and the transmitter, causing the received signal to shift in the frequency domain, introducing inter-carrier interference, and degrading the BER performance of the system.
  • the LTE system guarantees the best mobile subscriber system characteristics for mobile terminals at speeds of 15km/h and below, and provides high-performance services for mobile users of 15 ⁇ 120km/h, maintaining the service of mobile users of 120 ⁇ 350km/h, higher than Mobile users of 350km/h do not drop the network.
  • the base station and the terminal must support sufficiently good channel estimation and frequency offset compensation techniques to meet the quality of service requirements.
  • a receiver of an OFDM system a superimposed signal of a plurality of ports is received.
  • the terminal performs channel estimation, frequency offset estimation and compensation, equalization, and the like based on the multi-port reference signal and the superimposed data to implement demodulation of the data block.
  • the LTE system uses the Radio Remote Unit (RRU) to increase network coverage, increase system capacity, and improve service quality.
  • RRU Radio Remote Unit
  • a baseband unit (BBU) + RRU is used to provide network coverage, and one BBU is connected to multiple RRUs, so that one terminal can receive signals of multiple RRUs.
  • the relative movement direction of the terminal and the RRU is different, and a frequency offset of positive and negative is generated, and / is set. It is the transmission frequency of the RRU.
  • a negative frequency offset -/ d is generated.
  • the frequency received by the terminal is f 0 -f d .
  • the terminal When the terminal moves toward the RRU, it will generate positive Frequency offset / d , the frequency received by the terminal is /. + / d .
  • the terminal When the terminal moves between two RRUs, from one RRU to another, the terminal receives the same signal sent by multiple RRUs at the same time, and there will be a signal with positive and negative frequency offset superimposed. It has a great influence on the demodulation performance of the terminal.
  • the frequency offset increases, the accuracy of user channel estimation and frequency offset estimation will be significantly reduced. Excessive frequency offset will cause the communication quality to degrade, and in severe cases, the service will be interrupted. This phenomenon is especially noticeable in high-speed mobile environments. In view of the above problems in the related art, an effective solution has not yet been proposed.
  • the present invention provides a method, an apparatus, and a system for transmitting baseband data, so as to at least solve the related art, when a terminal receives a mixed pilot transmitted by multiple RRUs, a signal with positive and negative frequency offsets may appear. As a result, when the frequency offset increases, the accuracy of user channel estimation and frequency offset estimation decreases significantly. At the same time, excessive frequency offset will cause the communication quality to degrade, and in severe cases, service interruption and other problems may occur.
  • a method for transmitting baseband data including: a BBU transmitting baseband data of different ports in a set of cell setting ports to different radio remote modules RRU; and receiving different RRUs respectively Baseband data.
  • the BBU transmits the baseband data of different ports in the set of ports set by the cell to different ones.
  • the BBU maps the baseband data to different transmit ports.
  • the BBU transmits the baseband data on the transmit port to the RRU corresponding to the transmit port according to the preset correspondence.
  • the foregoing preset correspondence includes: one or more transmitting ports correspond to one RRU.
  • the baseband data includes: pilot and user data.
  • the method further includes: the terminal receiving pilot and user data from the RRU; and the terminal acquiring the pilot bit channel estimation value according to the local pilot and the received pilot.
  • the terminal calculates the data bit channel estimation value by using the pilot bit channel estimation value; the terminal demodulates the received user data by using the data bit channel estimation value.
  • a baseband data transmission apparatus comprising: a determining module, configured to determine baseband data transmitted to each radio remote module RRU, wherein the cell sets a baseband of a different port in the port set The data is transmitted to different RRUs; the transmission module is arranged to transmit the baseband data determined to be transmitted to each RRU to the corresponding RRU.
  • the determining module includes: a mapping unit configured to determine to map baseband data transmitted to different RRUs to different transmitting ports; and a transmitting unit configured to determine that the mapping unit is obtained according to the preset correspondence
  • the baseband data on the transmitting port is transmitted to the RRU corresponding to the transmitting port; and the transmitting module is configured to transmit the baseband data determined by the transmitting unit to the RRU to the RRU.
  • the foregoing preset correspondence includes: one or more transmitting ports corresponding to one RRU.
  • the baseband data includes: pilot and user data.
  • a baseband data transmission system comprising: the apparatus and the RRU described above, wherein the RRU is configured to transmit baseband data from the apparatus.
  • the technical means of using different port baseband data sent by multiple RRUs solves the problem that when the terminal receives the mixed pilots sent by multiple RRUs in the related art, signals with different characteristics are superimposed (for example, positive and negative frequency).
  • the partial superposition causes the channel estimation accuracy of the user to be significantly degraded when the characteristics (such as the frequency offset) are large.
  • the excessive channel estimation bias will cause the communication quality to decrease, and in severe cases, the service interruption and the like may be caused.
  • Improves user channel estimation and demodulation performance thereby improving system demodulation performance and system
  • FIG. 1 is a flowchart of a method for transmitting baseband data according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a topology of multiple RRU network overlays according to an example of the present invention
  • 3 is a block diagram showing the structure of a baseband data transmission apparatus according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a baseband data transmission apparatus according to a preferred embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • 1 is a flow chart of a method of transmitting baseband data according to an embodiment of the present invention. As shown in FIG. 1, the method includes: Step S102: A BBU transmits baseband data of different ports in a port set set by a cell to different RRUs.
  • Step S104 Different RRUs send respective received baseband data.
  • the terminal on the receiving side does not receive the same baseband data (signal) at the same time, so that signal superposition with large difference in characteristics can be avoided (such as positive and negative frequency offset).
  • signal superposition or large frequency offset and small frequency offset superimposed
  • the characteristics are greatly different, which leads to problems such as user channel estimation and frequency offset estimation accuracy, which can improve user channel estimation and frequency offset estimation accuracy. , thereby improving the demodulation performance and system capacity of the system.
  • the BBU transmits the baseband data of different ports in the port set set by the cell to different RRUs, and may include the following processing: the BBU maps different baseband data to different transmit ports; The correspondence is performed to transmit the baseband data on the transmitting port to the RRU corresponding to the transmitting port.
  • the baseband data to be sent may be transmitted to the RRU in other manners, for example, the baseband data to be sent is directly transmitted to the RRU, and may be flexibly set according to actual needs, and details are not described herein.
  • the foregoing preset correspondence may include: one or more transmitting ports correspond to one RRU.
  • an RRU can send baseband data on one port, and can also send baseband data on multiple (for example, 2, 3, etc.) ports.
  • the transmitting ports corresponding to different RRUs may not overlap or overlap each other.
  • any two RRUs in a cell The ports corresponding to the baseband data sent may be overlapped or not overlapped, that is, the corresponding transmit ports of the two RRUs may or may not overlap.
  • the transmitting ports corresponding to different RRUs may be set to be mutually non-coincident, such that the transmitting ports corresponding to each RRU are different, and the transmitted baseband data is also Different, the above problems in the related art can be more effectively solved.
  • the specific configuration can be selected according to the actual network planning and signal characteristics.
  • the above baseband data includes: pilot and user data.
  • the above baseband data may further include control information, since the baseband data includes control information is well known to those skilled in the art, and the present invention mainly focuses on how the receiving side terminal utilizes the received pilot after the RRU transmits the received baseband data.
  • Example 1 This example provides a method for overlaying an orthogonal frequency division multiplexing system.
  • the method is to map different physical location RRUs in a BBU to different ports to solve the solution of downlink channel estimation and frequency offset estimation.
  • the performance of the adjustment is degraded, so that the capacity increase of the radio remote module network system under one baseband processing unit is limited.
  • a BBU has multiple RRUs, and different port data of the same BBU is transmitted through different RRUs.
  • the specific process is as follows: (1) Perform transmit port mapping according to the set port. (2), transmitting data of different ports to the corresponding radio remote module to transmit.
  • the standard is to distribute the total number of ports on the baseband to different RRUs.
  • the number of ports sent by different RRUs may be the same or different.
  • the baseband data transmitted by the RRU is different due to the corresponding port.
  • the network coverage method can be divided into a transmitter processing process and a receiving end processing flow.
  • the processing process of the transmitting end includes: Step 1: The baseband processing unit maps the user pilot and the user data to multiple ports on the baseband according to the current mode configuration; Step 2: Transfer the baseband data of different ports to the corresponding radio remote module of the port; Step 3: Each radio remote module processes the baseband data into radio frequency data; Step 4: The radio remote module passes the antenna. Radio frequency data transmission; wherein, the receiving end processing flow includes: Step 1: Receive a multi-port signal; Step 2: Extract pilots of each port in the frequency domain; Step 3: Use receiving pilots for each port The local pilot performs pilot bit channel estimation and obtains a pilot channel channel channel estimation value.
  • Step 4 Calculate the data bit channel channel estimate using the pilot bit channel estimation value
  • Step 5 Use the data bit channel estimation value pair to receive data Perform demodulation.
  • Example 2 As shown in FIG. 2, two RRUs are selected from multiple RRUs in one cell in FIG. 2, and are mapped to different downlink two ports, and the cell reference pilot is divided into two ports and mapped on different resource locations. The data is mapped to the resource location according to the mapping mode of each port, and is sent to the terminal through the corresponding RRU. Two RRUs, one corresponding to port 0 and the other corresponding to port 1. For the same cell, other RRUs may also correspond to port 0 or port 1, or may not transmit signals.
  • the baseband processing unit maps the user pilot and user data to the baseband two ports according to the current mode configuration, respectively port 0 and port 1; and transmits the baseband data of the different ports to the RRU corresponding to the port. , data of one RRU transmitting port 0, data of one RRU transmitting port 1; receiving side processing: The demodulation algorithm of the terminal is performed according to a multi-port number composed of multiple RRUs, that is, a demodulation algorithm corresponding to two ports.
  • Embodiment 3 Select four RRUs from multiple RRUs in one cell shown in FIG. 2, and map them to different downlink four ports.
  • the cell reference pilots are divided into four ports and mapped on different resource locations, and data is used according to each port.
  • the mapping mode is mapped to the resource location and sent to the terminal through the corresponding RRU.
  • the four RRUs have mapped ports of 0, 1, 2, and 3. For the same cell, other RRUs may correspond to port 0, port 1, port 2, and port 3, respectively. Of course, no signal may be transmitted.
  • the demodulation algorithm of the terminal is performed according to a multi-port number composed of a plurality of RRUs, that is, a demodulation algorithm corresponding to four ports.
  • Transmitter processing The baseband processing unit maps user pilot and user data to four baseband ports according to the current mode configuration, namely port 0, port 1, port 2, and port 3, which are transmitted through four different RRUs.
  • the demodulation algorithm of the terminal is performed according to the multi-port number composed of multiple RRUs, that is, the demodulation algorithm corresponding to the four ports.
  • the specific processing is similar to the receiving end processing in the example 1 and the example 2. For details, refer to the contents in the example 1 and the example 2, and details are not described herein.
  • Embodiment 4 Select two RRUs from multiple RRUs in one cell in FIG. 2, and map them to different downlink four ports.
  • the cell reference pilots are divided into four ports and mapped on different resource locations, and data is mapped according to each port. Maps to the resource location and sends it to the endpoint over the corresponding RRU.
  • the two RRUs have mapped ports of (0, 1) and (2, 3), respectively, or (0, 2) and (1, 3), respectively, or (0, 3) and (1, 2).
  • other RRUs may correspond to ports (0, 1), (2, 3), (0, 2), (1, 3), (0, 3) or (1, 2).
  • the above two port combinations are taken as an example, but are not limited to these port combinations, and may of course be set to not transmit signals.
  • the demodulation algorithm of the terminal is performed according to a multi-port number composed of a plurality of RRUs, that is, a demodulation algorithm corresponding to four ports.
  • Transmitter processing The baseband processing unit maps user pilot and user data to four baseband ports, respectively, according to the current mode configuration, which are ports (0, 1) and (2, 3) or (0, 2) and (1,3) or (0, 3) and (1, 2), any two or two combinations of 4 ports, transmitted through two different RRUs; transmit baseband data of different ports to the corresponding radio pull of the port Far module, data of one RRU transmit port (0, 1), data of one RRU transmit port (2, 3), or any combination of two ports; Receiver processing: specific processing and instance 1 and instance The receiving process in the second embodiment is similar.
  • FIG. 3 is a block diagram showing the structure of a baseband data transmission apparatus according to an embodiment of the present invention. As shown in FIG.
  • the apparatus includes: a determining module 30, configured to determine baseband data transmitted to a different radio remote module RRU, wherein the baseband data is baseband data of different ports in a port set set by a cell;
  • the transmission module 32 is connected to the determining module 30 and configured to transmit the baseband data determined to be transmitted to each RRU to the corresponding RRU.
  • the determining module 30 may include: a mapping unit 302 configured to determine to map baseband data transmitted to different RRUs to different transmitting ports; a transmitting unit 304, and a mapping The unit 302 is connected to determine that the baseband data on the transmitting port obtained by the mapping unit 302 is transmitted to the RRU corresponding to the transmitting port according to the preset correspondence.
  • the transmitting module 32 is configured to determine the transmission by the transmitting unit 304.
  • the baseband data to the RRU is transmitted to the RRU.
  • the preset correspondence relationship by the foregoing transmission unit 304 may include: one or more transmitting ports corresponding to one RRU.
  • the transmitting ports corresponding to different RRUs may not overlap or overlap each other.
  • any two RRUs in a cell may be overlapped or not overlapped, that is, the corresponding transmit ports of the two RRUs may or may not overlap.
  • the above baseband data includes: pilot and user data. Since the foregoing device is generally applied to a transmission system in a specific application, the embodiment provides a baseband data transmission system, including: the above device and a radio remote module RRU, the RRU is set to be from the above The baseband data of the device is sent out. It should be noted that the preferred working manners of the related modules in the foregoing devices may be specifically described in the foregoing method embodiments, and details are not described herein again.
  • the foregoing embodiment adopts the networking coverage method of the Orthogonal Frequency Division Multiplexing (OFDM) system of the present embodiment, and the receiving end receives the pilot of each port on a different resource unit (Resource Element, referred to as RE,).
  • RE resource unit
  • the pilots of the respective ports used for channel estimation are not interfered by other ports, and the data can be correctly demodulated, and the demodulation performance is not received by the two.
  • the influence of the frequency offset feature on the port can improve the accuracy of the user channel estimation and frequency offset estimation, thereby improving the demodulation performance and system capacity of the system.
  • the technical solution described in the foregoing embodiment enables the receiver to perform channel estimation and frequency offset correction accurately and stably, especially when there is a large frequency offset in the link of the high-speed mobile environment, which provides a reliable guarantee for the communication service quality.
  • the RRU of the transmitter is slightly modified, but the hardware and software costs are not increased much; there is no impact on the receiver, and the number of ports and the transmission mode set by the originator can be demodulated, especially in the case of large frequency offset.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种基带数据的传输方法、装置及***,其中,上述方法包括:基带处理单元BBU将小区设定的端口集合中不同端口的基带数据传输到不同的射频拉远模块RRU上;不同的RRU发送各自接收到的基带数据。采用本发明提供的上述技术方案,解决了相关技术中终端接收到多个RRU发送的混合导频时,会出现有不同特性叠加的信号情况,导致当特性相差较大时,用户信道估计精度明显下降,同时,过大的信道估计偏差量会造成通信质量下降,严重时会导致服务中断等问题,进而达到了提高用户信道估计和解调性能的效果,从而提高了***的解调性能和***容量。

Description

基带数据的传输方法、 装置及*** 技术领域 本发明涉及通信领域, 具体而言, 涉及一种基带数据的传输方法、 装置及***。 背景技术 长期演进 (Long Term Evolution, 简称为 LTE) 项目第三代合作伙伴计划 (3rd
Generation Partnership Project, 简称为 3GPP) 启动的技术研发项目, 它改进并增强了 第三代(3rd Generation, 简称为 3G)移动通信技术的空中接入技术。与 3G相比, LTE 更具技术优势, 体现在更高的用户数据速率、 分组传送、 降低***延迟、 ***容量和 覆盖的改善以及运营成本的降低等方面。 LTE下行链路采用正交频分复用 ( Orthogonal Frequency Division Multiplexing, 简 称为 OFDM)技术, OFDM技术具有频谱利用率高、 抗多径干扰等特点, OFDM*** 能够有效地抵抗无线信道带来的影响。 LTE上行链路传输方案采用带循环前缀的单载 波频分多址接入 ( Single Carrier Frequency Division Multiple Access,简称为 SC-FDMA) ***在上行采用带循环前缀的 SC-FDMA传输方案中, 使用 DFT获得频域信号, 然后 ***零符号进行频谱搬移, 搬移后的信号再通过快速傅里叶反变换 (Fast Fourier Transform, 简称为 IFFT), 可以降低发射终端的峰均功率比。 对于多载波***来说, 载波频率的偏移会导致子信道之间产生干扰。 OFDM*** 内存在多个正交子载波, 输出信号是多个子信道信号的叠加, 由于子信道互相覆盖, 这就对载波间的正交性有较高的要求。 由于终端的移动, 会在基站和终端之间产生多普勒频移, 在移动通信***中, 特 别是高速场景下, 这种频移尤其明显。 多普勒频移将使接收机和发射机之间产生频率 误差, 导致接收信号在频域内发生偏移, 引入载波间干扰, 使得***的误码率性能恶 化。
LTE***对于移动终端,保证 15km/h及以下速率的移动用户***特性最优,而对 15~120km/h的移动用户可提供高性能服务, 保持 120~350km/h移动用户的服务, 高于 350km/h移动用户不掉网。 在此速度范围内, 基站和终端必须支持足够好的信道估计 与频偏补偿技术才能满足业务质量要求。 对于 OFDM***的接收机来说, 会接收到多个端口的叠加信号。终端基于多端口 的参考信号和叠加数据做信道估计、 频偏估计与补偿、 均衡等处理, 来实现数据块的 解调。 在未来的网络中, LTE***中使用射频拉远模块(Radio Remote Unit,简称为 RRU) 增加网络覆盖, 提高***容量, 提高服务质量的需求与日倶增。 这种网络结构中, 采 用基带处理单元 (Base band Unit, 简称为 BBU) +RRU的方式提供网络覆盖, 一个 BBU下连接多个 RRU, 这样一个终端可以接收多个 RRU的信号。 终端和 RRU的相对运动方向不同, 会产生正负不同的频偏, 设/。是 RRU的发射 频率, 当终端向远离 RRU 的方向运动时, 会产生负频偏 -/d, 终端接收到的频率是 f0 -fd , 当终端向靠近 RRU 的方向运动时, 会产生正频偏/ d, 终端接收到的频率是 /。+ /d。 当终端在两个 RRU之间运动, 从一个 RRU驶向另一个 RRU的时候, 终端 同时收到多个 RRU下发的相同信号,会出现有正负频偏叠加的信号情况,这样的叠加 信号对终端解调性能有很大影响。 频偏增大时, 用户信道估计和频偏估计精度会明显 下降, 过大的频率偏移量会造成通信质量下降, 严重的时候会导致服务中断, 该现象 在高速移动环境下尤为明显。 针对相关技术中的上述问题, 目前尚未提出有效的解决 方案。 发明内容 本发明提供了一种基带数据的传输方法、 装置及***, 以至少解决相关技术中, 终端接收到多个 RRU发送的混合导频时,会出现有正负频偏叠加的信号情况,导致当 频偏增大时, 用户信道估计和频偏估计精度明显下降, 同时, 过大的频率偏移量会造 成通信质量下降, 严重的时候会导致服务中断等问题。 根据本发明的一个方面, 提供了一种基带数据的传输方法, 包括: BBU将小区设 定端口集合中不同端口的基带数据传输到不同的射频拉远模块 RRU上; 不同的 RRU 发送各自接收到的基带数据。 在上述方法中, BBU将小区设定的端口集合中不同端口的基带数据传输到不同的
RRU上, 包括: BBU将基带数据映射到不同的发射端口上; BBU根据预设对应关系 将发射端口上的基带数据传输到与该发射端口对应的 RRU上。 在上述方法中, 上述预设对应关系包括: 一个或多个发射端口对应于一个 RRU。 在上述方法中, 上述基带数据包括: 导频和用户数据。 在上述方法中, 不同的 RRU发送各自接收到的基带数据之后, 还包括: 终端接收 来自于 RRU的导频和用户数据;终端根据本地导频和接收到的导频获取导频位信道估 计值; 终端采用导频位信道估计值计算数据位信道估计值; 终端使用数据位信道估计 值对接收到的用户数据进行解调。 根据本发明的另一方面, 提供了一种基带数据的传输装置, 包括: 确定模块, 设 置为确定传输给各个射频拉远模块 RRU的基带数据,其中,小区设定端口集合中不同 端口的基带数据传输给不同的 RRU; 传输模块, 设置为将确定传输给各个 RRU的基 带数据传输到对应的 RRU上。 在上述装置中, 确定模块包括: 映射单元, 设置为确定将传输到不同的 RRU上的 基带数据映射到不同的发射端口上; 传输单元, 设置为确定根据预设对应关系将通过 映射单元得到的发射端口上的基带数据传输到与该发射端口对应的 RRU上; 传输模 块, 设置为将传输单元确定传输到 RRU上的基带数据传输到 RRU。 在上述装置中, 上述预设对应关系包括: 一个或多个发射端口对应于一个 RRU。 在上述装置中, 上述基带数据包括: 导频和用户数据。 根据本发明的再一方面, 提供了一种基带数据的传输***, 包括: 以上所述的装 置和 RRU, 其中, 该 RRU, 设置为将来自于上述装置的基带数据发送出去。 通过本发明,采用多个 RRU发送的不同端口基带数据的技术手段,解决了相关技 术中终端接收到多个 RRU发送的混合导频时,会出现有不同特性叠加的信号情况(例 如正负频偏叠加), 导致当特性(例如频偏)相差较大时,用户信道估计精度明显下降, 同时, 过大的信道估计偏差量会造成通信质量下降, 严重时会导致服务中断等问题, 进而达到了提高用户信道估计和解调性能的效果, 从而提高了***的解调性能和***
附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1为根据本发明实施例的基带数据的传输方法的流程图; 图 2为根据本发明实例的多个 RRU组网覆盖的拓扑示意图; 图 3为根据本发明实施例的基带数据的传输装置的结构框图; 图 4为根据本发明优选实施例的基带数据的传输装置的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 1为根据本发明实施例的基带数据的传输方法的流程图。 如图 1所示, 该方法 包括: 步骤 S102,BBU将小区设定的端口集合中不同端口的基带数据传输到不同的 RRU 上; 步骤 S104, 不同的 RRU发送各自接收到的基带数据。 上述实施例由于不同端口的基带数据最终通过不同的 RRU发送,因此接收侧的终 端不会同时接收到相同的基带数据 (信号),因此可以避免特性差异较大的信号叠加(如 正负频偏叠加, 或者大频偏与小频偏叠加) 而使特性 (如频偏) 相差较大, 进而导致 用户信道估计和频偏估计精度明显下降等问题, 从而可以提高用户信道估计和频偏估 计精度, 进而提高***的解调性能和***容量。 在具体实施过程中,上述 BBU将小区设定的端口集合中不同端口的基带数据传输 到不同的 RRU上, 可以包括以下处理: BBU将不同的基带数据映射到不同的发射端 口上; BBU根据预设对应关系将发射端口上的基带数据传输到与该发射端口对应的 RRU上。 需要说明的是, 在具体应用时, 上述待发送的基带数据还可以通过其它方式 传送给 RRU, 例如直接将待发送的基带数据传给 RRU等, 可以根据实际需要灵活设 置, 此处不再赘述。 在具体应用时, 上述预设对应关系可以包括: 一个或多个发射端口对应于一个 RRU。 即一个 RRU可以发送一个端口上的基带数据, 也可以发送多个 (例如 2个、 3 个等) 端口上的基带数据。 对于多个发射端口对应于一个 RRU, 不同 RRU对应的发 射端口可以互不重合, 也可以重合, 例如, 在具体应用过程中, 发送多个端口上的基 带数据时,一个小区中任意两个 RRU中发送的基带数据所对应的端口可以重合,也可 以不重合, 即上述两个 RRU所对应的发射端口可以重合, 也可以不重合。 当然, 在上述实施例的优选实施过程中, 对于发射端口对应于一个 RRU, 不同 RRU对应的发射端口可以设置为互不重合,这样每个 RRU对应的发射端口均不相同, 发射的基带数据也不相同, 可以更有效解决相关技术中的上述问题。 具体配置情况, 可以根据网络实际规划和信号特性进行选择。 在具体应用过程中, 上述基带数据包括: 导频和用户数据。 需要指出的是上述基 带数据还可以包括控制信息, 由于基带数据包括控制信息为本领域技术人员所熟知, 且本发明主要关注 RRU发送其接收到的基带数据之后接收侧终端如何利用接收的导 频解调用户数据, 因此此处不予描述。 具体应用过程中, 接收侧对接收到的基带数据进行处理的具体流程如下: (1 )、终 端接收来自于 RRU的导频和用户数据; (2)、 终端根据本地导频和接收到的导频获取 导频位信道估计值; (3 )、 终端采用导频位信道估计值计算数据位信道估计值; (4)、 终端使用数据位信道估计值对接收到的用户数据进行解调。 上述处理过程在具体应用 时设置在各个 RRU发送其接收到的基带数据之后。 为了更好地理解上述实施例, 以下结合图 2及具体实例详细说明。 实例 1 本实例提供一种正交频分复用***的组网覆盖方法,该方法是将一个 BBU下的不 同物理位置 RRU映射为不同的端口,来解决下行信道估计和频偏估计带来解调性能下 降, 从而一个基带处理单元下的射频拉远模块网络***的容量提升受限制的问题。 本实例中, 如图 2所示, 一个 BBU下带有多个 RRU, 且将同一个 BBU下不同端 口数据通过不同的 RRU发射; 具体过程如下: (1 )、 按照设定端口进行发射端口映射; (2)、 将不同端口的数据 传输到对应的射频拉远模块发射出去。准则为将基带总的端口数分在不同的 RRU上下 发, 不同 RRU下发的端口数可以相同, 也可以不同。 由于对应端口不同, RRU发射 的基带数据也就不同。 本实例中, 组网覆盖方法可分为发射端处理流程和接收端处理流程。 其中, 发射端处理流程包括: 第一步: 基带处理单元根据当前模式配置, 将用户导频和用户数据分别映射到基 带多个端口上; 第二步: 将不同端口的基带数据传输到该端口对应的射频拉远模块; 第三步: 各个射频拉远模块将基带数据处理为射频数据; 第四步: 射频拉远模块通过天线该端***频数据发射; 其中, 接收端处理流程包括: 第一步: 接收多端口的信号; 第二步: 在频域提取收到各个端口的导频; 第三步: 对各个端口使用接收导频和本地导频进行导频位信道估计并得到行导频 位信道估计值; 第四步: 用导频位信道估计值计算数据位信道估计值; 第五步: 使用数据位信道估计值对接收数据进行解调。 实例 2 如图 2所示, 在图 2中一个小区中多个 RRU中选择其中的两个 RRU, 映射为不 同的下行两端口, 小区参考导频分为两端口映射在不同的资源位置上, 数据按照各个 端口的映射方式映射到资源位置上, 并通过相对应的 RRU上发送给终端。 两个 RRU, 其中一个对应端口 0, 另外一个对应端口 1。 对于同一小区内, 其它的 RRU也可以对应端口 0或端口 1, 也可以不发射信号。 发射侧处理过程: 基带处理单元根据当前模式配置, 将用户导频和用户数据分别映射到基带两个端 口上, 分别是端口 0和端口 1 ; 将不同端口的基带数据传输到该端口对应的 RRU, 一 个 RRU发射端口 0的数据, 一个 RRU发射端口 1的数据; 接收侧处理过程: 终端的解调算法按照多个 RRU组成的多端口数目, 即两端口对应的解调算法进 行。 终端侧接收两端口的信号; 在频域提取收到各个端口的导频; 对各个端口使用接 收导频和本地导频做导频位信道估计; 用导频位信道估计计算数据位信道估计; 使用 数据位信道估计值对接收数据进行解调。 由于接收侧的具体处理过程可以在相关技术 中查询得知, 此处不再详细赘述。 实施例 3 从图 2中所示的一个小区中多个 RRU中选择四个 RRU, 映射为不同的下行四端 口, 小区参考导频分为四端口映射在不同的资源位置上, 数据按照各个端口的映射方 式映射到资源位置上, 并通过相对应的 RRU上发送给终端。 四个 RRU, 其映射的端口分别是 0, 1, 2, 3。 对于同一小区内, 其它的 RRU可以分别对应端口 0, 端口 1, 端口 2, 端口 3, 当 然也可以不发射信号。 终端的解调算法按照多个 RRU组成的多端口数目, 即四端口对应的解调算法进 行。 发射端处理过程: 基带处理单元根据当前模式配置, 将用户导频和用户数据分别映射到基带四个端 口上, 分别是端口 0、 端口 1、 端口 2和端口 3, 通过四个不同的 RRU发射出去; 将 不同端口的基带数据传输到该端口对应的射频拉远模块,一个 RRU发射端口 0的数据, 一个 RRU发射端口 1的数据, 一个 RRU发射端口 2的数据, 一个 RRU发射端口 3 的数据; 接收端处理过程: 终端的解调算法按照多个 RRU组成的多端口数目, 即四端口对应的解调算法进 行。 具体处理过程与实例 1和实例 2中的接收端处理过程类似, 具体可参见实例 1和 实例 2中内容, 此处不予赘述。 实施例 4 从图 2中一个小区中多个 RRU中选择两个 RRU, 映射为不同的下行四端口, 小 区参考导频分为四端口映射在不同的资源位置上, 数据按照各个端口的映射方式映射 到资源位置上, 并通过相对应的 RRU上发送给终端。 两个 RRU, 其映射的端口分别是 (0, 1 ) 和 (2, 3 ), 也可以是分别是 (0, 2) 和 (1,3 ), 也可以是分别是 (0, 3 ) 和 (1, 2)。 对于同一小区内, 其它的 RRU可以对应端口 (0, 1 ), (2, 3 ), (0, 2), (1,3 ), (0, 3 )或者 (1, 2)。 以上两端口组合为例, 但不限于这些端口组合, 当然也可以设 置为不发射信号。终端的解调算法按照多个 RRU组成的多端口数目, 即四端口对应的 解调算法进行。 发射端处理过程: 基带处理单元根据当前模式配置, 将用户导频和用户数据分别映射到基带四个端 口上, 分别是端口 (0, 1 )和 (2, 3 )或者(0, 2)和 (1,3 )或者(0, 3 )和 (1, 2), 4个端口的任意两两组合, 通过两个不同的 RRU发射出去; 将不同端口的基带数据传 输到该端口对应的射频拉远模块, 一个 RRU发射端口 (0, 1 ) 的数据, 一个 RRU发 射端口 (2, 3 ) 的数据, 或者 4个端口的任意两两组合; 接收端处理过程: 具体处理过程与实例 1和实例 2中的接收端处理过程类似, 具体可参见实例 1和 实例 2中内容, 此处不予赘述。 需要说明的是,上述各个实例中仅列出几种具体组合方式,发射端口与 RRU的对 应关系还可以采用其它对应方式,例如:两个 RRU分别对应以下端口组合:(0、 1、2)、 (3 ) 等, 此处不再赘述。 图 3为根据本发明实施例的基带数据的传输装置的结构框图。 如图 3所示, 该装 置包括: 确定模块 30, 设置为确定传输到不同的射频拉远模块 RRU上的基带数据, 其中, 该基带数据为小区设定的端口集合中不同端口的基带数据; 传输模块 32, 与确定模块 30相连, 设置为将确定传输给各个 RRU的基带数据传 输到对应的 RRU上。 在优选实施过程中, 如图 4所示, 上述确定模块 30可以包括: 映射单元 302, 设 置为确定将传输到不同的 RRU上的基带数据映射到不同的发射端口上;传输单元 304, 与映射单元 302相连, 设置为确定根据预设对应关系将通过映射单元 302得到的发射 端口上的基带数据传输到与该发射端口对应的 RRU上; 则上述传输模块 32, 设置为 将传输单元 304确定传输到 RRU上的基带数据传输到 RRU。 在具体应用过程中, 上述传输单元 304所依据的预设对应关系可以包括: 一个或 多个发射端口对应于一个 RRU。 对于多个发射端口对应于一个 RRU, 不同 RRU对应 的发射端口可以互不重合, 也可以重合, 例如, 在具体应用过程中, 发送多个端口上 的基带数据时, 一个小区中任意两个 RRU中发送的基带数据所对应的端口可以重合, 也可以不重合, 即上述两个 RRU所对应的发射端口可以重合, 也可以不重合。 在具体应用过程中, 上述基带数据包括: 导频和用户数据。 由于上述装置在具体应用时, 一般应用于一种传输***中, 因此本实施例提供一 种基带数据的传输***, 包括: 以上装置和射频拉远模块 RRU, 该 RRU, 设置为将 来自于上述装置的基带数据发送出去。 需要注意的是, 上述装置中的各模块相关结合的优选工作方式具体可以参见上述 方法实施例的描述, 此处不再赘述。 综上所述, 上述实施例采用本实例的正交频分复用***的组网覆盖方法, 接收端 收到各个端口的导频在不同的资源单元(Resource Element, 简称为 RE,)上, 即使接 收的数据在每个 RE上都是各个端口发射信号的叠加, 但信道估计使用的各个端口的 导频没有受到其他端口的干扰, 可以正确解调数据, 解调性能不受接收的两个端口上 频偏特征的影响, 可以提高用户信道估计和频偏估计精度, 从而提高***的解调性能 和***容量。 上述实施例所述技术方案使接收机能准确的、 稳定的进行信道估计与频 偏校正, 尤其是高速移动环境链路中存在大频偏时, 为通信服务质量提供了可靠的保 障。对发射端的 RRU稍有改动, 但软硬件成本都增加不大; 对接收机没有影响, 按照 发端设定的端口数和发射模式解调即可, 尤其在大频偏下性能提升显著。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种基带数据的传输方法, 包括:
基带处理单元 BBU将小区设定的端口集合中不同端口的基带数据传输到 不同的射频拉远模块 RRU上;
所述不同的 RRU发送各自接收到的所述基带数据。
2. 根据权利要求 1所述的方法, 其中, 所述 BBU将小区设定的端口集合中不同 端口的基带数据传输到不同的 RRU上, 包括:
所述 BBU将所述基带数据映射到不同的发射端口上;
所述 BBU根据预设对应关系将所述发射端口上的基带数据传输到与该发 射端口对应的所述 RRU上。
3. 根据权利要求 2所述的方法, 其中, 所述预设对应关系包括:
一个或多个所述发射端口对应于一个所述 RRU。
4. 根据权利要求 1至 3任一项所述的方法, 其中, 所述基带数据包括: 导频和用户数据。
5. 根据权利要求 4所述的方法, 其中, 所述不同的 RRU发送各自接收到的所述 基带数据之后, 还包括:
终端接收来自于所述 RRU的所述导频和用户数据;
所述终端根据本地导频和接收到的所述导频获取导频位信道估计值; 所述终端采用所述导频位信道估计值计算数据位信道估计值; 所述终端使用所述数据位信道估计值对接收到的所述用户数据进行解调。
6. 一种基带数据的传输装置, 应用于基带处理单元 BBU中, 包括:
确定模块, 设置为确定传输到不同的射频拉远模块 RRU上的基带数据, 其中, 该基带数据为小区设定的端口集合中不同端口的基带数据;
传输模块, 设置为将确定传输给各个 RRU的基带数据传输到对应的 RRU 上。 根据权利要求 6所述的装置, 其中, 所述确定模块包括:
映射单元, 设置为确定将传输到所述不同的 RRU上的基带数据映射到不 同的发射端口上;
传输单元, 设置为确定根据预设对应关系将通过所述映射单元得到的所述 发射端口上的基带数据传输到与该发射端口对应的所述 RRU上;
所述传输模块, 设置为将所述传输单元确定传输到所述 RRU上的所述基 带数据传输到所述 RRU。 根据权利要求 7所述的装置, 其中, 所述预设对应关系包括:
一个或多个所述发射端口对应于一个所述 RRU。 根据权利要求 6至 8任一项所述的装置, 其中, 所述基带数据包括: 导频和用 户数据。 一种基带数据的传输***,包括:权利要求 9所述的装置和射频拉远模块 RRU, 所述 RRU, 设置为将来自于所述装置的基带数据发送出去。
PCT/CN2011/082246 2011-02-17 2011-11-15 基带数据的传输方法、装置及*** WO2012109930A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110040206.3A CN102647371B (zh) 2011-02-17 2011-02-17 基带数据的传输方法、装置及***
CN201110040206.3 2011-02-17

Publications (1)

Publication Number Publication Date
WO2012109930A1 true WO2012109930A1 (zh) 2012-08-23

Family

ID=46659953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082246 WO2012109930A1 (zh) 2011-02-17 2011-11-15 基带数据的传输方法、装置及***

Country Status (2)

Country Link
CN (1) CN102647371B (zh)
WO (1) WO2012109930A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103338464B (zh) * 2013-06-26 2016-12-28 华为技术有限公司 通信方法及设备
MX2018001758A (es) * 2015-08-12 2018-06-06 Huawei Tech Co Ltd Metodo de estimacion de canal, estacion base, equipo de usuario, y sistema.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805566A (zh) * 2005-01-12 2006-07-19 华为技术有限公司 分体式基站***及其组网方法和基带单元
CN101425838A (zh) * 2007-10-30 2009-05-06 大唐移动通信设备有限公司 一种数据通道配置方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805566A (zh) * 2005-01-12 2006-07-19 华为技术有限公司 分体式基站***及其组网方法和基带单元
CN101425838A (zh) * 2007-10-30 2009-05-06 大唐移动通信设备有限公司 一种数据通道配置方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG GENG ET AL.: "Discussion on Networking Models of BBU + RRU Distributed Base - station", COMMUNICATIONS TECHNOLOGY, vol. 43, no. 11, 10 November 2010 (2010-11-10), pages 2010 *

Also Published As

Publication number Publication date
CN102647371B (zh) 2015-07-22
CN102647371A (zh) 2012-08-22

Similar Documents

Publication Publication Date Title
WO2018143402A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2018143405A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
US8780798B2 (en) Method and devices for providing enhanced signaling
WO2018199243A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2018116788A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
US8964676B2 (en) Method and apparatus for transmitting system information in a mobile communication system
KR101147492B1 (ko) 광대역 무선 통신에서의 신호 생성과 정보 전송 방법, 시스템 및 장치
KR20190138859A (ko) 신호 전송 방법, 장치 및 시스템
US20160380689A1 (en) Method and apparatus of signal transmission and reception in a filter bank multiple carrier system
WO2018123468A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2018116817A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
US9473326B2 (en) Multiple-input multiple-output orthogonal frequency division multiplexing communication system and method for signal compensation
WO2018082457A1 (zh) 配置参考信号的方法和装置
WO2018059488A1 (zh) 一种参考信号传输方法和装置
JP5059970B2 (ja) ターゲットセルに対する、加速されたワイヤレス通信ハンドオーバのための方法及びシステム
WO2018143345A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2019052494A1 (zh) 传输方法和传输装置
WO2014101040A1 (zh) 信号处理方法和设备
CN109392115B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN101369882B (zh) 一种基于发送端预纠正的频率同步方法
WO2018024127A1 (zh) 一种传输信号的方法及网络设备
US10128995B2 (en) Filter bank multicarrier modulation-based signal transmitting method, signal receiving method and device
WO2019047090A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
KR102599769B1 (ko) 필터 뱅크 멀티 캐리어 변조 기반 신호 송신 방법, 신호 수신 방법 및 디바이스
CN114450906B (zh) 用于自适应dmrs模式的网络接入节点和客户端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858594

Country of ref document: EP

Kind code of ref document: A1