WO2012109789A1 - 阵列式光谱感测设备 - Google Patents

阵列式光谱感测设备 Download PDF

Info

Publication number
WO2012109789A1
WO2012109789A1 PCT/CN2011/071034 CN2011071034W WO2012109789A1 WO 2012109789 A1 WO2012109789 A1 WO 2012109789A1 CN 2011071034 W CN2011071034 W CN 2011071034W WO 2012109789 A1 WO2012109789 A1 WO 2012109789A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
array
modules
sensing device
receiving
Prior art date
Application number
PCT/CN2011/071034
Other languages
English (en)
French (fr)
Inventor
柯正浩
康启原
Original Assignee
台湾超微光学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台湾超微光学股份有限公司 filed Critical 台湾超微光学股份有限公司
Priority to PCT/CN2011/071034 priority Critical patent/WO2012109789A1/zh
Priority to TW101104823A priority patent/TW201235658A/zh
Priority to CN2012100339030A priority patent/CN102645276A/zh
Publication of WO2012109789A1 publication Critical patent/WO2012109789A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4247Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources
    • G01J2001/4252Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources for testing LED's

Definitions

  • the present invention relates to an arrayed spectral sensing device, and more particularly to an arrayed spectral sensing device capable of sensing the spectrum of an array of light emitting elements. Background technique
  • LEDs Conventional light-emitting diodes
  • LEDs require multiple spectral and electrical characteristics during the manufacturing and packaging stages to ensure that the quality of the LEDs produced is good or as a basis for product quality classification. If the yield of LEDs on the entire wafer is found to be low during the manufacturing process, the entire wafer must be discarded or other screens can be used to find the particles that can be used to avoid wasting other costs on subsequent manufacturing processes and subsequent packaging. If the spectral characteristics of the LED are found to be poor after packaging, the LED must be rejected or sold at a lower price.
  • FIG. 9 shows two states of the application of a conventional integrating sphere.
  • an integrating sphere 110 is coupled to a spectrometer 100. Since the directivity of the LED is very strong, in the prior art, the integrating sphere 110 is used in conjunction with the spectrometer 100 to detect the spectral characteristics of the light source (LED) 120 on the semiconductor wafer 130.
  • One of the LEDs 120 is illuminated by laser excitation or energization, and the emitted light enters the integrating sphere 110 to be homogenized and finally output to the spectrometer 100.
  • the advantage of this detection configuration is that the alignment of the LED 120 with the integrating sphere 110 does not need to be accurate. As shown in Fig.
  • the present invention provides an array type spectral sensing apparatus comprising N light receiving modules, N optical transmission media, and N spectral sensing modules.
  • the N light receiving modules receive light emitted by N light sources, where N is a positive integer greater than one.
  • N optical transmission media are respectively connected to N light collection modules.
  • the N spectral sensing modules receive the light emitted by the N light sources through the N optical transmission mediums and the N light receiving modules, and separate the light emitted by each light source into a plurality of spectral components to obtain corresponding spectral components. A spectral signal for further testing.
  • the invention adopts a method of receiving light at a large angle, and even uses a lens to collect more light to the optical fiber, which can save the use of the traditional expensive and space-consuming integrating sphere, and can still achieve a good detection effect.
  • FIG. 1 shows an exploded perspective view of a spectral sensing module applied to the present invention.
  • FIG. 2 shows a schematic diagram of an arrayed spectral sensing device in accordance with a first embodiment of the present invention.
  • FIGS 3 through 5 show two examples of the light collection module.
  • 6A to 6C are diagrams showing the operation of three examples of the array type spectral sensing apparatus of the present invention.
  • FIG. 7A and 7B are schematic views showing two examples of an array type spectral sensing apparatus according to a second embodiment of the present invention.
  • FIGS. 7C and 7D show cross-sectional views of two examples along the line 7C-7C of Figs. 7A and 7B.
  • Fig. 8 shows a partial enlarged view of Figs. 7A and 7B.
  • Figures 9 and 10 show two states of the application of a conventional integrating sphere.
  • Integrating sphere 120 Light source / LED
  • the array type spectral sensing device 1 of the present invention comprises N light receiving modules 10, N optical transmission media 20, and N spectral sensing modules 30.
  • the N light-receiving modules 10 respectively receive the light OS emitted by the N light sources 2, where N is a positive integer greater than 1, and in this example, N is 8, that is, 8 light-receiving modules.
  • N is a positive integer greater than 1
  • N is 8, that is, 8 light-receiving modules.
  • the N light collection modules 10 can be arranged in a one-dimensional array or a two-dimensional array.
  • N optical transmission media 20 are connected to N light collection modules 10, respectively.
  • Each optical transmission medium 20 can be an optical fiber or other medium.
  • a light-collecting port end 21 of the optical transmission medium 20 is coupled to the light-receiving module 10, and another light-emitting port end 22 of the optical transmission medium 20 is coupled to the spectrum sensing module 30.
  • the N spectral sensing modules 30 respectively receive the light OS emitted by the N light sources 2 through the N optical transmission media 20 and the N light receiving modules 10, and separate the light OS emitted by each light source 2 into multiple wavelengths according to the wavelength.
  • the spectral components SC are obtained to obtain a spectral signal S1 corresponding to the spectral components SC, and the light OS emitted by each of the light sources 2 can be sent to a computer or an independent analysis system after being converted into the spectral signals S1, respectively.
  • the detection of the light source characteristics is performed based on the spectral signal S1 to determine whether to reject the light source 2, confirm the quality level, or make other decisions.
  • the N spectral sensing modules 30 can be arranged in a one-dimensional array or a two-dimensional array, and can be used as the spectral sensing module 30 using a microchip micro spectrometer or other conventional spectrometers.
  • the arrays in which the spectral sensing modules 30 are arranged may be identical to the array in which the light-receiving modules 10 are arranged, or different from the array in which the light-receiving modules 10 are arranged, depending on the space configuration and design requirements.
  • FIG. 1 shows a spectral sensing module 30 using a microchip micro-spectrometer.
  • Each spectral sensing module 30 includes a body 31, an input portion 32, a diffraction grating 33, and a sensor 34.
  • the input portion 32 is mounted to the body 31 and coupled to the light exit end 22 of the optical transmission medium 20 to receive the light OS emitted by a light source.
  • the diffraction grating 33 is mounted to the body 31, and the light ray OS emitted by the light source is separated into the spectral components SC.
  • a sensor 34 is mounted to the body 31 and senses the spectral components SC to obtain a spectral signal S1.
  • each of the spectral sensing modules 30 may further include a sawtooth stray light filtering structure 35 and upper and lower waveguide sheets 36.
  • the stray light filtering structure 35 filters out stray light to prevent stray light from reaching the diffraction grating 33 and the sensor 34.
  • the waveguide sheet 36 can avoid light loss.
  • the diffraction structure of the diffraction grating 33 is formed by a semiconductor material through a semiconductor etching manufacturing process. As shown in FIG. 2, when the array type spectrum sensing device 1 senses the LED chip 3, the light source 2 is an LED die, and the array spectrum sensing device 1 may further include a driving mechanism 40 coupled.
  • the moving direction may include a horizontal direction (X, Y direction) and a vertical direction (Z direction), please refer to FIG. 6A to 6C at the same time, wherein Y
  • the direction is the direction perpendicular to the X and Z directions at the same time.
  • the horizontal movement is to align the light-receiving module 10 with the LED die 2, and the light-receiving module 10 performs stepwise movement or continuous movement after testing the LED die 2.
  • the vertical direction is to adjust the distance between the light-receiving module 10 and the LED die 2, so that the light emitted by the single LED die 2 can be transmitted in the single light-receiving module 10, avoiding the light of other light sources in a single light collection.
  • the driving unit 40 drives the N light-receiving modules 10 to move by a unit distance equal to the pitch p of the LED dies 2 after the N spectral sensing modules 30 perform one sensing. After driving (L-1) times to complete L times of sensing, it will jump to another section 4B to continue sensing.
  • each light-receiving module 10 can be a sleeve 11 having one end coupled to the light-receiving end 21 of the optical transmission medium 20 and the other end of the sleeve 11 being a free end.
  • the sleeve 11 has a through hole 12 through which the light OS emitted by the LED die 2 enters the light collecting module 10 .
  • the optical transmission medium 20 is an optical fiber having a core ( CO re) 23 having a diameter of about 600 microns and the LED die 2 having a diameter of about 200 microns.
  • the light absorbing material 11A may be applied to the inner wall of the sleeve 11 as necessary to prevent light or other stray light of other nearby LED dies 2 from being reflected into the optical transmission medium 20 via the inner wall of the sleeve 11.
  • each light receiving module 10 may further include a lens 13 disposed in the through hole 12 of the sleeve 11, and focus the light OS emitted by the LED die 2 to the light receiving medium 20. Near the center of the mouth 26 or the light collection port 26. In this way, a large angle of light can be taken to avoid light loss, or to reduce the influence of the orientation of the LED die 2 on the measurement.
  • the type and arrangement of the lens 13 are not particularly limited by the contents of the drawings.
  • each light-receiving module 10 may further include a collimating mirror 13' fixed in the fixing seat 13A, the fixing seat 13A being installed in the sleeve 11, or the fixing seat 13A may be integrally formed with the sleeve 11. So, by the LED die 2 The emitted light OS passes through the collimating mirror 13' and then becomes substantially parallel light and enters into the core 23 of the optical fiber for transmission.
  • the diameter of the through hole 12 can be designed to be approximately equal to the diameter of the core 23.
  • FIG. 6A to 6C are views showing the operation of three examples of the array type spectrum sensing device of the present invention.
  • the array spectrum sensing device 1 can also sense MxK LED dies 2 arranged on a semiconductor wafer 3 arranged in a two-dimensional array, and the NxQ light-receiving modules 10 can be sequentially along the X-axis and Y.
  • the axis moves, where K and Q are both positive integers greater than one.
  • the twelve light-receiving modules 10 are arranged in a 3 ⁇ 4 array, and each of the light-receiving modules 10 can be aligned with one LED die 2, and the X-axis direction is first completed by the light-receiving module 10 along the X-axis. After the sensing of the upper LED die 2, and then in the Y-axis direction, the LED die 2 of the next column is sensed, and the next column of LED dies 2 is sensed, and the translation is repeated along the X-axis and the Y-axis.
  • the characteristics of all the LED dies 2 can be sensed in sequence, which can be easily understood by those skilled in the art, so that detailed descriptions thereof are omitted herein, but it is specifically illustrated as a one-dimensional array as shown in FIG.
  • the sensing embodiment of the M LED dies 2 is also applicable here for the sensing of the MxK LED dies 2 arranged in a two-dimensional array, as long as the NxQ light collecting modules 10 are "in the Y-axis direction"
  • the operation of shifting up to the next row of LED dies 2" is simply considered as an operation in which the N light-receiving modules 10 of the embodiment of FIG. 2 "jump to another section 4B to continue sensing".
  • the embodiment of the two-dimensional array can also be simultaneously sensed from different locations using the two sets of light-receiving modules 10 in the design selection.
  • the direction of movement is the same, and the timing of its movement can be synchronous or independent of each group.
  • Fig. 6C two sets of light-receiving modules 10 are used for simultaneous sensing from different positions, the moving directions of which are different, and the timing of the movement may be synchronous or independent of each group.
  • the light-receiving end of the optical fiber can be used to gather the light-collecting end of the plurality of optical fibers together, and directly to each optical fiber.
  • the light-receiving port is aligned with the LED die 2 to receive light without the need for an additional sleeve 11, lens 13, or collimating mirror 13'.
  • 7A, 7B and 8 show a second embodiment in which the LED die 2 is directly aligned with the light collecting port of the optical fiber to receive light.
  • FIGS. 7A and 7B show an array according to a second embodiment of the present invention.
  • FIG. 8 shows a partial enlarged view of FIG. 7A or 7B.
  • the second embodiment is similar to the first embodiment except that all optical transmission media 20' are used (in this embodiment, an optical fiber)
  • the light collecting end 21 is gathered together and directly aligned with the LED die 2 by the light collecting opening 26 of each optical fiber 20' to receive light.
  • the optical fiber 20' has a core 14 and a cladding layer 15 surrounding the core 14.
  • a fixing element 16 is surrounded by the cladding layer 15, and the light receiving end of the single optical fiber 20' is passed through each fixing component 16.
  • the fixing member 16 may be the optical fiber 20' own a protective layer (as shown in FIG. 7C), or an additional fixing mechanism (as shown in FIG. 7D, the light-receiving module 10' is a combination of the fixing member 16 and the light-receiving end 21 of the optical fiber 20'), or the optical fiber 20
  • the combination of the protective layer and the additional fixing mechanism is sufficient to fix the light-receiving end 21 of each of the optical fibers 20' so that the light-receiving opening is aligned with the LED die 2 for receiving light.
  • each of the optical fibers 20' in which the elements 16 are together forms a light-receiving module 10' having the same function as the light-receiving module 10 of FIGS. 2 to 5.
  • a frame 10F or other similar structure can be used to precisely position and fix all of the light-receiving modules 10' to form an array of light-receiving modules to achieve the effects of the present invention.
  • the refractive index of the core 14 In order for light to pass through the core 14, the refractive index of the core 14 must be greater than the refractive index of the cladding 15 to cause total reflection.
  • the angle of the light receiving vertebra of each of the optical fibers 20' is, for example, 24 degrees.
  • the middle core 14 is aligned with an LED die 2b, and the light source located inside the light-collecting vertebral AC is totally reflected at the core 14 and finally outputted to the spectral sensing module 30, and is located at the light-receiving module 30.
  • the light source outside the vertebral AC is refracted from the core 14 into the cladding 15 and cannot be returned to the core 14 and thus cannot be output from the exit end 22 of the fiber. Therefore, only one of the LED dies 2b will be totally reflected at the core 14, and the adjacent LED dies 2a and 2c will not be totally reflected at the core 14.
  • the sensing operation can be performed according to the characteristics of the receiving light of the optical fiber and the arrangement of the light-emitting diodes, and adjusting the distance between the light-receiving module 10' and the LED die.
  • the alignment of the light-receiving module 10' with the LED die also allows a considerable range of error, as long as the light-receiving AC can cover the LED die 2b but does not cover Adjacent LED dies 2a and 2c may be used.
  • the portion of the light-receiving end 21 of the optical fiber 20' that enters the frame 10F may have a protective layer 17 in design choice, Fig. 7C.
  • the protective layer 17 is directly gathered by the frame 10F, and the protective layer 17 in the frame 10F can be fixed as long as the material is properly selected (for example, some short straight fibers have an outer protective layer containing a metal material or a hard plastic).
  • the function of the light-receiving end 21 of the optical fiber 20' is such that the fixing element 16 in the vocabulary used in the present invention may also be the protective layer 17 of the optical fiber 20'.
  • FIG. 7C the portion of the light-receiving end 21 of the optical fiber 20' that enters the frame 10F may have a protective layer 17 in design choice, Fig. 7C.
  • the protective layer 17 is directly gathered by the frame 10F, and the protective layer 17 in the frame 10F can be fixed as long as the material is properly selected (for example, some short straight fibers have an outer protective layer
  • the protective layer of the optical fiber 20' since the protective layer of the optical fiber 20' does not actually have the optical transmission function, the portion of the optical port 20' that enters the frame 10F may not have a design choice.
  • the protective layer in addition to a fixing member 16 in the frame 10F, assists in fixing the light-receiving end 21 of each of the optical fibers 20'.
  • the protective layer is still retained in design choice, and the light-receiving end 21 of the optical fiber 20' is additionally fixed by a mechanism as shown in FIG. 7D. Living, in other words, is an integrated implementation of Figures 7C and 7D, and is also a design choice for a fixed component 16.
  • the detection time of many light sources such as LEDs can be effectively shortened, which is a great benefit for the improvement of the production capacity.
  • the invention adopts a method of receiving light at a large angle, and even uses a lens to gather most of the light to the optical fiber, which can save the use of the traditional expensive integrating sphere and still achieve a good detection effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

阵列式光谱感测设备 技术领域
本发明涉及一种阵列式光谱感测设备, 尤其涉及一种能感测阵列式发光元件的光谱 的阵列式光谱感测设备。 背景技术
传统的发光二极体 (LED)在制造及封装阶段中, 需要经过多次的光谱及电气特性的 侦测, 以确保所制造出的 LED的品质良好, 或做为产品品质分类的依据。 若在制造过程 中发现整个晶片上的 LED的良率不高, 则整个晶片必须被报废掉, 或者进行其他筛选找 出堪用的颗粒, 以免浪费其他成本在后续制造工艺及后续封装上。 若在封装后发现 LED 的光谱特性不佳, 则此 LED必须被剔除掉, 或者以较低价格出售。
图 9与 10显示传统的积分球的应用的两种状态。 如图 9所示, 一积分球 110耦接至 一光谱仪 100。 因为 LED的指向性很强, 所以已知技术中, 主要利用积分球 110搭配光 谱仪 100来检测半导体晶片 130上的光源 (LED)120的光谱特性。 利用雷射激发或通电的 方式使其中一颗 LED 120发光, 所发出的光线进入积分球 110而被均匀化, 最后输出至 光谱仪 100。 这种检测配置的优点是 LED 120与积分球 110的对位不需很准, 如图 10所 示, 在有积分球 110有偏移的情况下, 仍能获得接近的光谱特性。 然而, 这种配置一次 仅能检测一个 LED 的光谱特性。 以四吋的晶片来说, 其上长出的 LED 的数目大约是 8*103颗, 实务上每颗的光谱特性的测试时间约为 70毫秒 (ms), 所以一片四吋晶片上全 部 LED的检测时间为 70ms*8*103=560秒, 亦即将近 10分钟左右的时间。
由于 LED的需求越来越高, 目前以四吋晶片生产 LED的主流制造工艺已经渐感不 敷使用, 故以 8吋晶片来制造 LED的技术正在世界各国加紧研发之中。 目前估算, 配合 制造工艺的进步, 8吋晶片上所成长的 LED的数目将可达 200*103颗, 如同样以每颗花 费 70 毫秒的光谱检测时间计算, 一片 8 吋晶片上全部的 LED 的检测时间约为 70ms*200*103=14,000秒, 亦即将近四小时之久。 由于 LED从长晶、 配上电极、 切割、 到封装等等的制造工艺上的多个环节需要多次光谱检测, 因此, 传统的检测设备并不适 合未来大量的 LED的检测。 发明内容
因此, 本发明的一个目的是提供一种能有效缩短检测时间的阵列式光谱感测设备。 为达上述目的, 本发明提供一种阵列式光谱感测设备, 其包含 N个收光模块、 N个 光传输媒介以及 N个光谱感测模块。 N个收光模块接收 N个光源所发出的光线, 其中 N 为大于 1的正整数。 N个光传输媒介分别连接至 N个收光模块。 N个光谱感测模块通过 N个光传输媒介及 N个收光模块接收 N个光源所发出的光线, 并将各光源所发出的光线 分离成多个光谱分量, 以获得对应于此等光谱分量的一光谱信号, 供进一步检测使用。
藉此, 可以有效缩短 LED等众多光源的检测时间, 对于产能的提升是一大助益。 本 发明采取较大角度收光的方式, 甚至利用透镜来聚集较多的光线到光纤, 可以省去传统 昂贵且占空间的积分球的使用, 仍能达到良好的检测效果。
为让本发明的上述内容能更明显易懂, 下文特举数较佳实施例, 并配合所附图式, 作详细说明如下。 附图说明
图 1显示应用于本发明的光谱感测模块的立体分解图。
图 2显示依据本发明第一实施例的阵列式光谱感测设备的示意图。
图 3至图 5分别显示收光模块的两个例子。
图 6A至图 6C显示本发明的阵列式光谱感测设备的三个例子的操作示意图。
图 7A与图 7B显示依据本发明第二实施例的阵列式光谱感测设备的两个例子的示意 图。
图 7C与图 7D显示沿着图 7A与图 7B的线 7C-7C的两个例子的剖面图。
图 8显示图 7A与图 7B的局部放大图。
图 9与图 10显示传统的积分球的应用的两种状态。
主要元件符号说明:
AC: 收光椎
OS: 光线
S1 : 光谱信号
SC: 光谱分量
1: 阵列式光谱感测设备
2: 光源 /LED晶粒
2a、 2b、 2c: 发光二极体
3: 半导体晶片 10、 10': 收光模块
10F: 框架
11: 套筒
11A: 吸光材料
12: 贯通孔
13: 透镜
13': 准直镜
13A: 固定座
14: 核心
15: 包覆层
16: 固定元件
17: 保护层
20、 20': 光传输媒介 /光纤
21: 收光口端
22: 出光口端
23: 核心
24: 包覆层
25: 保护层
26: 收光口
30: 光谱感测模块
31: 本体
32: 输入部
33: 绕射光栅
34: 感测器
35: 杂散光滤除结构
36: 波导片
0: 驱动机构
100: 光谱仪
110: 积分球 120: 光源 /LED
130: 半导体晶片 具体实施方式
图 1显示应用于本发明的光谱感测模块的立体分解图。 图 2显示依据本发明第一实 施例的阵列式光谱感测设备的示意图。 如图 1与 2所示, 本发明的阵列式光谱感测设备 1包含 N个收光模块 10、 N个光传输媒介 20以及 N个光谱感测模块 30。
N个收光模块 10各别接收 N个光源 2所发出的光线 OS, 其中 N为大于 1的正整 数, 于本例子中, N等于 8, 亦即, 8个收光模块。 然而本发明并未受限于此。 N个收光 模块 10可以排成一维阵列或二维阵列。
N个光传输媒介 20分别连接至 N个收光模块 10。 各光传输媒介 20可以是光纤或其 他媒介。 光传输媒介 20的一收光口端 21耦接至收光模块 10, 光传输媒介 20的另一出 光口端 22耦接至光谱感测模块 30。
N个光谱感测模块 30分别通过 N个光传输媒介 20及 N个收光模块 10分别接收 N 个光源 2所发出的光线 OS, 并将各光源 2所发出的光线 OS依波长大小分离成多个光谱 分量 SC, 以获得对应于此等光谱分量 SC的一光谱信号 Sl, 各光源 2所发出的光线 OS 在分别被转换为光谱信号 S1之后就可以被送至电脑或独立的分析*** (未显示)中根据所 述光谱信号 S1 进行光源特性的检测判断, 以决定是否剔除所述光源 2、 确认其品质等 级、 或做成其他决定。
N个光谱感测模块 30可以排成一维阵列或二维阵列, 且可使用微晶片式微型光谱仪 或其他各式传统光谱仪来当作光谱感测模块 30。 光谱感测模块 30所排列成的阵列可以 是相同于收光模块 10所排列成的阵列, 或不同于收光模块 10所排列成的阵列, 端视空 间配置及设计需求而决定。
图 1所示是采用一微晶片式微型光谱仪的光谱感测模块 30, 各光谱感测模块 30包 含一本体 31、 一输入部 32、 一绕射光栅 33 以及一感测器 34。 输入部 32装设至本体 31 , 并耦合至光传输媒介 20的出光口端 22, 以接收一光源所发出的光线 OS。 绕射光栅 33装设至本体 31, 并将上述光源所发出的光线 OS分离成此等光谱分量 SC。 感测器 34 装设至本体 31, 并感测此等光谱分量 SC以获得光谱信号 Sl。 此外, 各光谱感测模块 30 可以更包含一锯齿状的杂散光滤除结构 35及上、 下波导片 36。 杂散光滤除结构 35滤除 杂散光, 避免杂散光到达绕射光栅 33及感测器 34。 波导片 36可避免光损失。 于本实施 例中, 绕射光栅 33的绕射结构是由半导体材料通过半导体刻蚀制造工艺所形成。 如图 2所示, 当上述阵列式光谱感测设备 1感测 LED晶片 3时, 上述光源 2即为 LED晶粒, 所述阵列式光谱感测设备 1可以更包含一驱动机构 40, 耦接至 N个收光模 块 10, 并驱动此等收光模块 10移动, 移动的方向可以包含水平方向 (X、 Y方向)及铅直 方向 (Z方向), 请同时参考图 6A至 6C, 其中 Y方向为同时与 X与 Z方向垂直的方向。 水平方向的移动是为了使收光模块 10对准 LED晶粒 2, 并使收光模块 10在测试 LED晶 粒 2后进行步进式移动或连续性移动。 铅直方向的移动是为了调整收光模块 10与 LED 晶粒 2的距离, 以容许单一 LED晶粒 2所发出的光线能在单一收光模块 10中传输, 避 免其他光源的光线在单一收光模块 10中传输。 此阵列式光谱感测设备 1可以感测排列成 一维阵列的 M个 LED晶粒 2, M为大于或等于 N的正整数。 假设相邻两个待测 LED晶 粒 2的中心点彼此间的距离 (节距)为 p、 相邻两个收光模块 10间的中心点间的距离 (节距) 为 P, 则于图 2的例子中相邻两个收光模块 10的节距 P等于 L*p, L为大于或等于 1的 正整数, 于本实施例中 L等于 2, 所以 P=2p。 在一个区段 4A中, 驱动机构 40于所述 N 个光谱感测模块 30完成一次的感测之后会驱动 N个收光模块 10移动的单位距离等于此 等 LED晶粒 2的节距 p, 驱动 (L-1)次以完成 L次感测后则会跳至另一区段 4B继续进行 感测。
图 3至 5分别显示收光模块 10的三个例子。 如图 3所示, 各收光模块 10可以是一 套筒 11, 其一端耦接至光传输媒介 20的收光口端 21, 套筒 11的另一端为自由端。 套筒 11具有一贯通孔 12, LED晶粒 2所发出的光线 OS经由贯通孔 12进入收光模块 10中。 于一例子中, 光传输媒介 20为一光纤, 光纤的核心 (COre)23的直径大约是 600微米, 而 LED晶粒 2的直径大约是 200微米。 于图 3的实施例中, 围绕在核心 23周边的是包覆层 (cladding)24, 包覆层 24的折射率小于核心 23的折射率, 保护层 25包覆此包覆层 24, 并提供保护的作用。 另外, 必要时可于套筒 11的内壁涂布吸光材料 11A, 以避免附近其 他 LED晶粒 2的光线或其他杂散光经由套筒 11的内壁反射进入光传输媒介 20之中。
如图 4所示, 各收光模块 10可以更包含一透镜 13, 装设于套筒 11 的贯通孔 12 中, 并将 LED晶粒 2所发出的光线 OS聚焦至光传输媒介 20的收光口 26或收光口 26的 中心附近。 如此一来, 可以进行较大角度的收光, 以避免光损, 或减少 LED晶粒 2的指 向性对量测的影响。 透镜 13的型式及摆设位置并不特别受限于图式的内容。
如图 5中, 各收光模块 10也可以更包含一准直镜 13'固定于固定座 13A中, 固定座 13A安装于套筒 11内, 或者, 固定座 13A可与套筒 11一体成型。 如此, 由 LED晶粒 2 所发出的光线 OS通过准直镜 13'以后, 会变成实质上平行的光而进入到光纤的核心 23 中传输。 于此例子中, 贯通孔 12的直径可以被设计成约等于核心 23的直径。
图 6A至 6C显示本发明的阵列式光谱感测设备的三个例子的操作示意图。 如图 6A 所示, 阵列式光谱感测设备 1亦可以感测排列成二维阵列的半导体晶片 3上的 MxK个 LED晶粒 2, NxQ个收光模块 10可以依序沿着 X轴及 Y轴移动, 其中 K与 Q都是大于 1的正整数。 于本例子中, 12个收光模块 10排成一个 3x4的阵列, 每个收光模块 10恰 好可以对准一个 LED晶粒 2, 先通过收光模块 10沿着 X轴平移依次完成 X轴方向上的 LED晶粒 2的感测之后、 再于 Y轴方向上平移到下一列的 LED晶粒 2, 对下一列 LED 晶粒 2进行感测, 并重复如此沿着 X轴及 Y轴平移, 即可以依序感测所有 LED晶粒 2 的特性, 这可以轻易由熟***移到下一列的 LED晶粒 2」 的动作简单的视为图 2实施例里 N个收 光模块 10 「跳至另一区段 4B继续进行感测」 的动作即可。
二维阵列的实施例在设计选择上也可以如图 6B所示, 使用两组的收光模块 10从不 同位置同时进行感测, 图 6B的实施例中每组各有 4个收光模块 10, 其移动方向是一样 的, 其移动的时序 (timing)可以是同步也可以各组各自独立。 于图 6C中, 使用两组的收 光模块 10从不同位置同时进行感测, 其移动方向是不同的, 其移动的时序 (timing)可以 是同步也可以各组各自独立。
值得注意的是, 关于收光模块 10的设计, 经过精细的制作, 也可以利用光纤的收光 椎 (acceptance cone)的特性将多条光纤的收光口端聚集在一起, 并直接以各光纤的收光口 对准 LED晶粒 2收光, 而不需要额外的套筒 11、 透镜 13、 或准直镜 13'。 图 7A、 7B与 图 8显示的就是直接以光纤的收光口对准 LED晶粒 2来收光的一第二实施例, 其中, 图 7A与 7B显示依据本发明第二实施例的阵列式光谱感测设备的两个例子的示意图, 图 8 则显示图 7A或 7B的局部放大图。 如图 7A、 7B、 与图 8所示, 并请同时参考图 7C与 7D, 第二实施例类似于第一实施例, 不同之处在于将所有光传输媒介 20' (于本实施例为 光纤)的收光口端 21聚集在一起, 并直接以各光纤 20'的收光口 26对准 LED晶粒 2来收 光。 此光纤 20'具有一核心 14、 及一包围核心 14的包覆层 15, 在包覆层 15的外则包围 有一固定元件 16, 通过每一个固定元件 16将单一光纤 20'的收光口端 21 固定住以便与 其他光纤 20'的收光口端 21聚集在一起, 其中所述固定元件 16可以是各光纤 20'自己的 保护层 (如图 7C所示)、 或者另外外加的固定机构 (如图 7D所示, 收光模块 10'为固定元 件 16与光纤 20'的收光口端 21的组合)、 或者是光纤 20'的保护层与另外外加的固定机构 两者的结合, 只要足以将各光纤 20'的收光口端 21固定使其收光口对准 LED晶粒 2进行 收光即可, 此时连同固定元件 16在一起的各光纤 20'的收光口端 21即形成与图 2至图 5 的收光模块 10具有相同作用的收光模块 10'。 此外, 于必要时, 可以再利用一框架 10F 或其他类似的结构来将所有收光模块 10'精密定位并固定住而形成一个收光模块阵列, 以 达成本发明的功效。 为使光线能在核心 14中传递, 核心 14的折射射率须大于包覆层 15 的折射率, 才能造成全反射。 各光纤 20'的收光椎的角度譬如是 24度。
进一步分析, 于图 8中, 中间的核心 14对准一 LED晶粒 2b, 位于收光椎 AC里面 的光源都会在核心 14进行全反射最终输出到光谱感测模块 30之中, 而位于收光椎 AC 外面的光源则会从核心 14折射进入包覆层 15, 而无法再回到核心 14, 因而无法从光纤 的出光口端 22输出。 因此, 只有一个 LED晶粒 2b的光线会在核心 14进行全反射, 而 相邻的 LED晶粒 2a及 2c的光线并无法在核心 14进行全反射。 如此一来, 依据光纤的 收光椎的特性以及发光二极体的配置、 配合调整收光模块 10'与 LED晶粒的距离, 即可 进行感测工作。 值得注意的是, 从图 8的配置中可看出, 收光模块 10'与 LED晶粒的对 位亦容许相当程度的误差范围, 只要使收光椎 AC能涵盖 LED晶粒 2b但不涵盖相邻的 LED晶粒 2a及 2c即可。
需进一步说明者是关于固定元件 16在设计上的选择, 如图 7C所示, 光纤 20'的收光 口端 21进入到框架 10F里的部份在设计选择上可以具有保护层 17, 图 7C中的保护层 17是被框架 10F直接聚集在一起, 框架 10F里的保护层 17只要材质选定适当 (例如有些 短直光纤其外部保护层包含有金属材质或硬塑胶)也可具有协助固定各光纤 20'的收光口 端 21 的作用, 因而在本发明使用的词汇里的固定元件 16也可以是光纤 20'的保护层 17。 另外, 如图 7D所示, 由于光纤 20'的保护层实际上不具有光学传输的作用, 因此光 纤 20'的收光口端 21进入到框架 10F里的部份在设计选择上也可以不具有保护层, 而另 以一固定元件 16在框架 10F里面协助固定各光纤 20'的收光口端 21。 当然, 如果光纤 20'的收光口端 21进入到框架 10F里的部份在设计选择上仍保有保护层, 并且另外再以 一如图 7D的机构将光纤 20'的收光口端 21固定住, 换言之即为结合图 7C与图 7D的综 合实施方式, 也不失为一个固定元件 16的设计选择。 这些例子都是可以被利用来实施于 本发明的感测设备。 通过本发明的阵列式光谱感测设备, 可以有效缩短 LED等众多光源的检测时间, 对 于产能的提升是一大助益。 以上述 8吋晶片的检测而言, 若 N等于 8, 则所需的检测时 间为 14000/8=1750秒, 整体时间缩短成 1/8。 本发明采取较大角度收光的方式, 甚至利 用透镜来聚集大部分的光线到光纤, 可以省去传统的昂贵积分球的使用, 仍能达到良好 的检测效果。
在较佳实施例的详细说明中所提出的具体实施例仅方便说明本发明的技术内容, 而 非将本发明狭义地限制于上述实施例, 在不超出本发明的权利要求范围的情况, 所做的 种种变化实施, 皆属于本发明的范围。

Claims

权利要求书
1.一种阵列式光谱感测设备, 其特征在于, 所述的设备包含:
N个收光模块, 其接收 N个光源所发出的光线, 其中 N为大于 1的正整数;
N个光传输媒介, 分别连接至所述 N个收光模块; 以及
N个光谱感测模块, 通过所述 N个光传输媒介及所述 N个收光模块接收所述 N个光 源所发出的光线, 并将各所述光源所发出的光线分离成多个光谱分量, 以获得对应于所 述的多个光谱分量的一光谱信号。
2.如权利要求 1所述的阵列式光谱感测设备, 其特征在于, 各所述收光模块包含: 一套筒, 其一端耦接至所述光传输媒介, 并具有一贯通孔, 所述光源经由所述贯通 孔进入所述收光模块中。
3.如权利要求 2所述的阵列式光谱感测设备, 其特征在于, 各所述收光模块更包 含:
一透镜, 装设于所述套筒的所述贯通孔中, 并将所述光源所发出的光线聚焦至所述 光传输媒介的一收光口。
4.如权利要求 2所述的阵列式光谱感测设备, 其特征在于, 各所述收光模块更包 含:
一准直镜, 装设于所述套筒的所述贯通孔中, 并使所述光源所发出的光线于通过所 述准直镜之后变成实质上平行的光而进入到所述光传输媒介之中。
5.如权利要求 1所述的阵列式光谱感测设备, 其特征在于, 各所述光传输媒介为一 光纤。
6.如权利要求 5所述的阵列式光谱感测设备, 其特征在于, 各所述收光模块为各所 述光纤的一收光口端。
7.如权利要求 6所述的阵列式光谱感测设备, 其特征在于, 各所述收光模块更包含 有一固定元件, 通过各所述固定元件将各所述光纤的收光口端固定住以便与其他光纤的 收光口端聚集在一起。
8.如权利要求 7所述的阵列式光谱感测设备, 其特征在于, 各所述固定元件各所述 光纤的一保护层。
9.如权利要求 7所述的阵列式光谱感测设备, 其特征在于, 所述的设备更包含: 一 框架, 其将此等收光模块固定住, 而形成一个收光模块阵列。
10.如权利要求 1所述的阵列式光谱感测设备, 其特征在于, 所述 N个收光模块排 成一阵列。
11.如权利要求 10所述的阵列式光谱感测设备, 其特征在于, 所述的设备更包含: 一驱动机构, 耦接至所述 N个收光模块, 并驱动所述的多个收光模块移动。
12.如权利要求 11所述的阵列式光谱感测设备, 其特征在于, 所述的设备用来感测 排列成阵列的 M个光源, 其中:
M为大于或等于 N的正整数;
所述 N个收光模块的节距等于所述 M个光源的节距的 L倍, L为大于或等于 1的正 整数; 且
所述驱动机构于所述 N个光谱感测模块完成一次的感测之后驱动所述 N个收光模块 移动的单位距离等于所述的多个光源的节距。
13.如权利要求 1所述的阵列式光谱感测设备, 其特征在于, 各所述光谱感测模块包 含:
一本体;
一输入部, 装设至所述本体, 并耦合至所述光传输媒介, 以接收所述光源所发出的 光线;
一绕射光栅, 装设至所述本体, 并将所述光源所发出的光线分离成所述的多个光谱 分量; 以及
一感测器, 装设至所述本体, 并感测所述的多个光谱分量以获得所述光谱信号。
PCT/CN2011/071034 2011-02-16 2011-02-16 阵列式光谱感测设备 WO2012109789A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2011/071034 WO2012109789A1 (zh) 2011-02-16 2011-02-16 阵列式光谱感测设备
TW101104823A TW201235658A (en) 2011-02-16 2012-02-15 Spectrometer sensing apparatus, system and method
CN2012100339030A CN102645276A (zh) 2011-02-16 2012-02-15 光谱感测设备、***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/071034 WO2012109789A1 (zh) 2011-02-16 2011-02-16 阵列式光谱感测设备

Publications (1)

Publication Number Publication Date
WO2012109789A1 true WO2012109789A1 (zh) 2012-08-23

Family

ID=46671922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071034 WO2012109789A1 (zh) 2011-02-16 2011-02-16 阵列式光谱感测设备

Country Status (2)

Country Link
TW (1) TW201235658A (zh)
WO (1) WO2012109789A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481834B (zh) * 2012-10-31 2015-04-21 Oto Photonics Inc 光感測模組、光譜儀之光機構及光譜儀
TWI467141B (zh) * 2012-12-19 2015-01-01 Ind Tech Res Inst 量測裝置以及量測方法
CN104956193B (zh) 2013-01-30 2017-10-24 台湾超微光学股份有限公司 光感测模块、光谱仪的光机构及光谱仪
TW201331560A (zh) * 2013-04-02 2013-08-01 Hauman Technologies Corp 能增加收光量及角度之收光裝置
JP7402652B2 (ja) * 2019-10-04 2023-12-21 株式会社日本マイクロニクス 光プローブ、光プローブアレイ、検査システムおよび検査方法
TWI710754B (zh) * 2019-10-29 2020-11-21 光焱科技股份有限公司 光偵測方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2469440Y (zh) * 2001-03-15 2002-01-02 单凯 检测设备作直线运动的近红外谷物品质分析仪
CN2655229Y (zh) * 2003-09-03 2004-11-10 西北有色地质研究院 多通道原子荧光光谱仪
US20070281322A1 (en) * 2006-05-22 2007-12-06 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem
CN200989826Y (zh) * 2006-12-13 2007-12-12 中国兵器工业第二○五研究所 光谱色彩分析仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2469440Y (zh) * 2001-03-15 2002-01-02 单凯 检测设备作直线运动的近红外谷物品质分析仪
CN2655229Y (zh) * 2003-09-03 2004-11-10 西北有色地质研究院 多通道原子荧光光谱仪
US20070281322A1 (en) * 2006-05-22 2007-12-06 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem
CN200989826Y (zh) * 2006-12-13 2007-12-12 中国兵器工业第二○五研究所 光谱色彩分析仪

Also Published As

Publication number Publication date
TW201235658A (en) 2012-09-01

Similar Documents

Publication Publication Date Title
WO2012109789A1 (zh) 阵列式光谱感测设备
JP6410685B2 (ja) 光多重分離システム
US20230288313A1 (en) Methods for detecting fluorescent light with de-multiplexing imaging arrays of a compact detection module in a flow cytometer
JP4711009B2 (ja) 光学的測定装置
US9816911B2 (en) Flow cytometry optics
US9488577B2 (en) Miniature gas sensor
CN100507477C (zh) 一种基于微电子机械***技术的微型光谱仪
US8553224B2 (en) Fiber bundle for high efficiency, spatially resolved coupling
KR102491854B1 (ko) 분광기
US20090262346A1 (en) Optical apparatus of a stacked design, and method of producing same
JP2009544015A (ja) コンパクトな反射屈折分光計
KR20110008155A (ko) 분광모듈 및 분광모듈의 제조방법
JP4892118B1 (ja) 発光素子用受光モジュール及び発光素子用検査装置
WO2011134156A1 (zh) 具有锥状狭缝的微型光谱仪的光机模块及其狭缝结构
EP3431918A1 (en) Multichannel confocal sensor and related method for inspecting a sample
WO2017057035A1 (ja) 光レセプタクルおよび光モジュール
JPWO2012131812A1 (ja) 分光器
US20080043232A1 (en) Multi-angle and multi-channel inspecting device
JP2011128516A (ja) 分光フィルタ光学系および分光計測装置
US20180136041A1 (en) Optical analysis system with optical conduit light delivery
US7768706B1 (en) Optical fiber micro array lens
RU2186351C1 (ru) Устройство для измерения физических параметров, преимущественно температуры
CN117990659A (zh) 光谱检测装置
CN114112873A (zh) 用于流式细胞仪的片上荧光色散光路的波导设计
TW201512634A (zh) 可調式濾光元件及其製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858515

Country of ref document: EP

Kind code of ref document: A1