WO2012107705A1 - Antenne a base de guides a fentes annulaires - Google Patents

Antenne a base de guides a fentes annulaires Download PDF

Info

Publication number
WO2012107705A1
WO2012107705A1 PCT/FR2012/050311 FR2012050311W WO2012107705A1 WO 2012107705 A1 WO2012107705 A1 WO 2012107705A1 FR 2012050311 W FR2012050311 W FR 2012050311W WO 2012107705 A1 WO2012107705 A1 WO 2012107705A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
antenna element
antenna
annular slot
annular
Prior art date
Application number
PCT/FR2012/050311
Other languages
English (en)
Inventor
Philippe Ratajczak
Original Assignee
France Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom filed Critical France Telecom
Priority to EP12708914.2A priority Critical patent/EP2673842B1/fr
Priority to US13/985,013 priority patent/US20130321227A1/en
Publication of WO2012107705A1 publication Critical patent/WO2012107705A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/068Two dimensional planar arrays using parallel coplanar travelling wave or leaky wave aerial units

Definitions

  • the present invention relates to the field of telecommunications. Within this field, the invention relates more particularly to antennas intended to receive or transmit a telecommunication signal.
  • the antenna can be used in a variety of systems. Its design based on the technique of slot guides allows use in embedded systems, that is to say on a typically mobile support such as a train or an aircraft, for which the constraints of size, weight, consumption can be extremely severe.
  • the antenna is more particularly suitable for so-called “high-speed” or even “very high-speed” links, for example for satellite transmissions in the Ka band which extends in transmission from 27.5 to 31 GHz and in reception of 18.3 at 18.8 GHz and 19.7 at 20.2 GHz.
  • the antenna consists of base antenna elements associated in one dimension to form a slotted guide.
  • the antenna may be composed of several slot guides associated to form a network.
  • Figure la shows schematically a waveguide basic antenna element with a rectangular slot cut on one of the faces, generally the so-called upper face which is oriented in the direction of the element in communication with the antenna.
  • the slot is excited by the propagation of the field in the waveguide.
  • the basic antennal elements are associated in series along an axis to form a slotted guide as shown in FIG. 1b, then the slotted guides are associated in parallel to obtain an antenna as shown in FIG.
  • Such an association to form a network is described in article [2].
  • the arrangement of the slits as shown in FIG. 1a gives rise to radiation having a linear polarization.
  • a misalignment can be obtained mechanically by means of a mechanical movement of the antenna, controlled manually or by a motor.
  • Congestion constraints for example for systems embedded (installation of an antenna on a train, an airplane %) prohibit any mechanism of mechanical misalignment. Such misalignment must therefore be obtained electronically.
  • Article [5] describes how to control the radiation of an SIW antenna and how to detach the beam in the plane of networking by feeding in parallel each slot guide and controlling the phase of each feed point slotted guides.
  • the curves of FIG. 2c represent the radiation in site of this type of double slot guides corresponding to FIG. 2a or 2b for different planes offset by an angle Phi (0 °, 45 °, 90 °, 135 °) relative to at the axis of the guide, this angle Phi is said bearing angle.
  • the main circular polarization (right) radiation pattern corresponding to the DirRHCP lines is characterized by a maximum in the direction perpendicular to the slit surface. DirLHCP lines represent cross-polarized (left) radiation. An adjustment of the dimensions, positions and inclinations of the slots provides a low level of cross polarization in the direction of the maximum radiation.
  • the invention proposes an antenna element with a slotted waveguide which is an alternative to known antennal elements, of equivalent or even more efficient performance for certain configurations.
  • the subject of the invention is an antenna element with a slotted waveguide comprising at least one conducting surface provided with at least one annular slot which delimits at its central part a conducting zone and which electrically isolates this zone from the rest of the the face.
  • Such antennal element is typically obtained by means of SIW (Substrate Integrated Waveguide) technology.
  • SIW Substrate Integrated Waveguide
  • This technology makes it possible to print the slots by printing.
  • the annular shape of the slot makes it possible to obtain equivalent performances, even more interesting in certain configurations than the rectangular shape, while simplifying the manufacturing process, in particular in cases where a circular polarization must be obtained.
  • the printing mask has only one annular slot while according to the prior art at least two rectangular slots are required with positioning constraints of one with respect to the other.
  • the antenna element is such that the annular slot is offset with respect to the axis of the slot guide.
  • a slotted guide has a shape that is generally close to that of a parallelepiped, therefore characterized by at least one length.
  • the length is the dimension in the axis of the parallelepiped.
  • the offset of the annular slot with respect to the axis advantageously makes it possible to obtain a circular polarization.
  • only the offset of the print mask with respect to the axis is necessary to obtain a circular polarization.
  • the manufacture of a slit-fence antennal element which is of rectilinear polarization or circular polarization requires a different polarization-specific mask. Indeed, to obtain a circular polarization according to the prior art a double rectangular slot is necessary with a particular arrangement of the double slot.
  • the double slot consists of a cross centered relative to the axis of the guide with two weakly asymmetrical arms, or the double slot consists of a cross offset relative to the guide axis, or the double slot consists of two slots offset along the length and width of the guide and inclined by approximately 45 °.
  • the same mask makes it possible to obtain an antenna element according to the invention with either a linear polarization or a circular polarization, and this only by shifting the mask on the face of the substrate on which the slot must be printed.
  • the antennal element according to the invention generates radiation in circular polarization with an isolation between the main and crossed polarizations for angles greater than 40 °.
  • the antennal element is such that the distance between the inner and outer edges of the annular slot comprises along the perimeter of the slot significant variations which delimit out-breaks.
  • the offsets typically have the form of notches in the case of an annular slot of circular shape or the shape of triangles in the case of a square-shaped annular slot. These offsets are made on the central zone along the inner edge of the slot or on the outer portion along the outer edge of the slot, which part belongs to the rest of the face. These releases act as disrupters that alter the symmetry of the slot. Thus, even if the slot is wedged on the axis of the slotted guide, the offsets allow to obtain a circular polarization. If the slot is offset with respect to the axis of the slotted guide, the offsets allow to modify the radiation and to limit the frequency band with respect to the same slot without disconnection.
  • the antenna element is such that the distance between the inner and outer edges of the annular slot is variable along the periphery of the slot.
  • the variation in the width of the annular slot may result for example because the inner and outer edges of the slot are not concentric. This asymmetry advantageously makes it possible to modify the radiation of the slot relative to the same element with an invariable distance between the two edges of the slot.
  • This latter embodiment may or may not be combined with a previous mode to define another embodiment.
  • the antenna element comprises another annular slot surrounding the annular slot.
  • annular slot whose central portion includes the first annular slot provides a two-band antennal element.
  • the antennal element is said to have double annular slits.
  • the two annular slots are typically centered on the same central point.
  • the invention further relates to a slotted guide comprising a plurality of antenna elements conforming to the preceding object, arranged between them in a linear array.
  • the parallelepipedal shape of the antenna elements makes it possible to easily produce a linear network by placing them in series. Serialization makes it possible to obtain a network with performances superior to that of a single antenna element.
  • the invention further relates to a plane antenna comprising a plurality of slotted guides in accordance with the preceding object, arranged between them in a two-dimensional network.
  • An antenna according to the invention combines a small footprint and compatible radiation performance of use with misalignment which requires a large difference between the main polarization and cross polarization beyond the main axis.
  • the planar antenna comprises a means for feeding the slotted guides in parallel arranged to control the phases between the supply signals of the slot guides.
  • Figure la schematically shows an antennal element according to the prior art.
  • Figure 1b schematically shows a slot guide according to the prior art made with an assembly of antennal elements of Figure la.
  • FIG 1a schematically shows an antenna according to the prior art consisting of an array of slot guides of Figure 1b.
  • Figure 2a is an antennal element of the prior art with rectangular slots arranged in cross staggered from the axis of the slot guide to obtain a circular polarization.
  • Figure 2b is an antennal element of the prior art with rectangular slots offset along the length and width of the slot guide and inclined by about 45 ° to obtain a circular polarization.
  • Figure 2c shows the directivity curves in the right circular polarization curves
  • Figure 3a is a schematic representation of an embodiment of an antenna element according to the invention.
  • FIG. 3b gathers directivity curves in site in linear polarizations according to x
  • FIG. 4a is a schematic representation of an embodiment of an antenna element according to the invention in which the annular-shaped slot is offset with respect to the axis of the slot guide.
  • FIG. 4b gathers the directivity curves in the right circular (DirRHCP) and left (DirLHCP) polarizations at the frequency of 9.9 GHz of the antenna element corresponding to FIG. 5a for different planes offset by an angle Phi of deposit.
  • FIG. 5a is a diagrammatic representation of an embodiment of an antenna element according to the invention in which the distance between the inner and outer edges of the slot comprises, along the periphery of the slot, notable variations which delimit out-stops; at the metallized central part.
  • FIG. 5b gathers the directivity curves in the right circular (DirRHCP) and left (DirLHCP) polarizations at the frequency of 9.8 GHz of the antenna element corresponding to FIG. 5a for different planes offset by an angle Phi of deposit.
  • Figure 5c gives the curve of the ellipticity rate of the antenna element of Figure 5a.
  • FIG. 5d is a diagrammatic representation of an embodiment of an antenna element according to the invention in which the distance between the inner and outer edges of the slot comprises, along the periphery of the slot, notable variations which delimit outlets. to the rest of the face (outer part to the slot).
  • Figure 6a is a schematic representation of an embodiment of an antenna element according to the invention wherein the element has a double annular slot.
  • FIG. 6b gathers the directivity curves in the right circular (DirRHCP) and left (DirLHCP) polarizations at the 8.7 GHz frequency of the antennal element corresponding to FIG. 6a for different planes offset by an angle Phi of deposit.
  • Figure 6c gives the curve of the ellipticity rate of the antennal element of Figure 6a.
  • FIG. 7 illustrates an embodiment of an antenna element according to the invention with an annular slot of elliptical shape.
  • FIG. 8a illustrates an embodiment of an antenna element according to the invention with an annular slot of square shape.
  • FIG. 8b gathers directivity curves in site in linear polarizations according to x
  • FIG. 9a is a schematic representation of an embodiment of an antenna element according to the invention wherein the square shaped annular slot is offset from the slit guide.
  • FIG. 9b gathers the directivity curves in the right circular (DirRHCP) and left (DirLHCP) polarizations at the frequency of 10 GHz of the antenna element corresponding to FIG. 9a for different planes offset by a bearing angle Phi.
  • FIG. 9c gives the curve of the ellipticity ratio of the antennal element of FIG. 9a.
  • FIG. 10a is a schematic representation of an embodiment of an antenna element according to the invention in which the square-shaped annular slot is offset with respect to the axis of the slot guide and is rotated to finally obtain an annular slot having the shape of a rhombus.
  • FIG. 10b gathers the directivity curves in the right circular (DirRHCP) and left (DirLHCP) polarizations at the frequency of 10 GHz of the antenna element corresponding to FIG. 10a for different planes offset by a bearing angle Phi.
  • FIG. 11a corresponds to the case of a square-shaped annular slot which comprises two disrupters in the form of intersected inner corners arranged symmetrically.
  • FIG. 11b collects directivity curves in site in right circular polarizations
  • Figure 11c gives the curve of the ellipticity rate of the antenna element of Figure 11a.
  • Figure 12 illustrates an embodiment of an antenna element according to the invention wherein the distance d between the inner and outer edges of the annular slot is variable along the periphery of the slot.
  • FIG. 13 illustrates a planar dielectric substrate comprising a series of metallized holes connecting the two metal faces of the substrate before cutting on the upper face of an annular slot according to the invention.
  • Figure 14 is a schematic representation of an embodiment of an antenna element according to the invention obtained by implementing a conventional technology with a charged metal waveguide or no dielectric.
  • FIG 3a is a schematic representation of an embodiment of an antenna element El A according to the invention.
  • the antenna element E1A slot guide according to the invention comprises at least one conductive face Fs provided with at least one annular slot Fan.
  • An annular slot within the meaning of the invention is a slot which has the particularity of delimiting a conducting central zone Zc and of isolating it electrically from the remainder of the upper face Fs conducting.
  • the annular slot is delimited by an inner edge and an outer edge separated by a distance d.
  • the depth of the slot is at least that of the thickness of the metallized layer of the upper face Fs to electrically isolate the central zone Zc from the remainder of the face Fs.
  • the curves of FIG. 3b represent the radiation in site of this antenna element corresponding to FIG. 3a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis. of the guide.
  • the main linear polarization radiation pattern (following x) corresponding to the DirL lines is characterized by a maximum in the direction perpendicular to the slit surface.
  • the lines DirR represent the radiation in crossed linear polarization (following y).
  • FIG. 4a is a schematic representation of an embodiment of an antenna element E1A according to the invention in which the annular-shaped slot is offset with respect to the axis of the slot guide.
  • the offset with respect to the axis of the slotted guide makes it possible to obtain a circular polarization.
  • the curves of FIG. 4b represent the radiation in site of this antenna element corresponding to FIG. 4a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis. of the guide.
  • the main circular polarization (right) radiation pattern corresponding to the DirRHCP lines is characterized by a maximum in the direction perpendicular to the slit surface.
  • the DirLHCP lines represent the radiation in circular cross polarization (left).
  • FIG. 5a is a schematic representation of an embodiment of an antenna element E1A according to the invention in which the distance between the inner and outer edges of the slot comprises along the periphery of the slot significant variations which delimit unhitching at the metallic central part.
  • the jolts are made on the outer contour of the slot. These offsets play the role of disrupters which allow to modify the symmetry of the annular slot and to obtain a circular polarization even if the slot is wedged on the axis of the slot guide.
  • FIG. 5a corresponds to the case of an annular slot of circular shape which comprises two disruptors in the form of notches arranged symmetrically.
  • the curves of FIG. 5b represent the radiation in site of this antenna element corresponding to FIG. 5a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis. of the guide.
  • the main circular polarization radiation pattern (right) corresponding to DirRHCP lines is characterized by a maximum in the direction perpendicular to the surface where the slot is located.
  • the DirLHCP lines represent the radiation in circular cross polarization (left).
  • FIG. 6a is a schematic representation of an embodiment of an antenna element ElA according to the invention in which the element comprises a double annular slot which advantageously makes it possible to obtain dual band operation.
  • the double annular slot has a circular shape.
  • the two slots are typically centered on the same central point.
  • the curves of FIG. 6b represent the radiation in site of this antenna element corresponding to FIG. 6a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis of the guide.
  • the main circular polarization (right) radiation pattern corresponding to the DirRHCP lines is characterized by a maximum in the direction perpendicular to the surface where the double slot is located.
  • the DirLHCP lines represent the radiation in circular cross polarization (left).
  • the annular slot can have very variable shapes which is similar to that of a ring.
  • the shape can be regular and belong to the list including circular, oval, elliptical, square, rectangular shapes.
  • FIG. 7 illustrates an embodiment of an antenna element according to the invention with an annular slot of elliptical shape.
  • FIG. 8a illustrates an embodiment of an antenna element according to the invention with an annular slot of square shape.
  • the curves of FIG. 8b represent the radiation in site of this antenna element corresponding to FIG. 8a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis of the guide.
  • the main linear polarization radiation pattern (along x) corresponding to the DirR lines is characterized by a maximum in the direction perpendicular to the slit surface.
  • the DirL lines represent the radiation in crossed linear polarization (following y).
  • FIG. 9a is a schematic representation of an embodiment of an antenna element ElA according to the invention in which the square-shaped annular slot is offset with respect to the axis of the slot guide.
  • the offset with respect to the axis of the slotted guide makes it possible to obtain a circular polarization.
  • the curves of FIG. 9b represent the radiation in site of this antenna element corresponding to FIG. 9a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis. of the guide.
  • the main circular polarization (right) radiation pattern corresponding to the DirRHCP lines is characterized by a maximum in the direction perpendicular to the slit surface.
  • the DirLHCP lines represent the radiation in circular cross polarization (left).
  • FIG. 10a is a schematic representation of an embodiment of an antenna element E1A according to the invention in which the square-shaped annular slot is offset with respect to the axis of the slot guide and is rotated for the final obtain an annular slot in the shape of a rhombus.
  • the offset with respect to the axis of the slotted guide makes it possible to obtain a circular polarization.
  • the curves of FIG. 10b represent the radiation in elevation of this antenna element corresponding to FIG. 10a for various planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis of the guide.
  • the main circular polarization (right) radiation pattern corresponding to the DirRHCP lines is characterized by a maximum in the direction perpendicular to the slit surface.
  • the DirLHCP lines represent the radiation in circular cross polarization (left).
  • FIG. 11a is a schematic representation of an embodiment of an antenna element E1A according to the invention in which the distance between the inner and outer edges of the slot comprises along the periphery of the slot significant variations which delimit out of the metallized central part or in another mode on the outer contour of the slot. These offsets play the role of disrupters which allow to modify the symmetry of the annular slot and to obtain a circular polarization even if the slot is wedged on the axis of the slot guide.
  • FIG. 11a corresponds to the case of a square-shaped annular slot which comprises two disrupters in the form of intersected inner corners arranged symmetrically.
  • the curves of FIG. 11b represent the radiation in elevation of this antenna element corresponding to FIG. 11a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) relative to the axis of the guide.
  • the main circular polarization (left) radiation pattern corresponding to the DirRHCP lines is characterized by a maximum in the direction perpendicular to the slit surface.
  • the DirLHCP lines represent the radiation in circular cross polarization (right).
  • the shape of the annular slot may just as well not be regular and have a variable distance d between these edges, the shape may for example be of the potatooid type.
  • Figure 12 illustrates an embodiment of an antenna element according to the invention wherein the distance d between the inner and outer edges of the annular slot is variable along the periphery of the slot.
  • a particular embodiment is to provide an annular slot with two circular and non-concentric inner and outer edges as shown in FIG.
  • its thickness or depth is such that the metallized layer of the surface Fs on which the slot is printed is removed on the space occupied by the slot Fan.
  • the slot breaks the electrical continuity that existed on the face Fs hosting the slot.
  • the annular slot defines two zones on the surface Fs: the zone lying inside the slot or central zone Zc at the slot, delimited by the inner edge of the slot, and the zone outside the slot or remainder of the face, delimited by the outer edge of the slot. These two areas that are part of the face are electrically insulated from each other by the annular slot.
  • the antennal element can be obtained by implementing SIW technology.
  • SIW technology as described in [6] makes it possible to produce waveguides from planar dielectric substrates.
  • This technology typically implements a conventional technique for producing a printed circuit (in the English terminology Printed Circuit Board, PCB).
  • PCB Printed Circuit Board
  • the two metallized faces Fs, Fi of the Sub substrate form the upper and lower sides of the guide.
  • the upper side Fs is typically the side that is oriented in the direction of the transmitted or received signal.
  • the vertical metal walls of the short sides of the guide are made by a series of metallized holes Tr connecting the two faces Fs, Fi metal of the substrate.
  • This printed technology is advantageous because it makes it possible to produce low thickness and low cost antennas as described in [5].
  • annular slot delimits a central zone and electrically isolates it from the remainder of the upper face.
  • Figure 14 is a schematic representation of an embodiment of an antenna element E1A according to the invention obtained by implementing a conventional technology with a charged metal waveguide or no dielectric.
  • the central portion is maintained at the lower face by means of a pin or pad Pi which can be made of dielectric and optionally metallized.
  • the antennal elements according to the invention can be associated in one dimension, in the same way as the antenna elements of the prior art, to form a slotted guide. These latter slot guides can themselves be networked in the same way as the slotted guides of the prior art to form a planar antenna.
  • the antenna may be associated with a means for supplying the slot guides in parallel.
  • the control of the relative phases between the feed points of the slotted guides makes it possible to maximize the overall radiation and thus to control the misalignment of the antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

La présente invention se rapporte à un élément antennaire (ElA) à guide à fente comportant au moins une face conductrice (Fs) pourvue d'au moins une fente (Fan) annulaire qui délimite en sa partie centrale une zone conductrice (Zc) et qui isole électriquement cette zone (Zc) du reste de la face (Fs).

Description

Antenne à base de guides à fentes annulaires
Domaine de l'invention
La présente invention se rapporte au domaine des télécommunications. Au sein de ce domaine, l'invention se rapporte plus particulièrement aux antennes destinées à recevoir ou émettre un signal de télécommunication.
L'antenne peut être utilisée dans des systèmes variés. Sa conception basée sur la technique des guides à fentes permet une utilisation dans des systèmes embarqués, c'est-à-dire sur un support typiquement mobile tel qu'un train ou un avion, pour lesquels les contraintes d'encombrement, de poids, de consommation peuvent être extrêmement sévères. L'antenne est plus particulièrement adaptée pour des liaisons dites « haut débit » voire « très haut débit », par exemple pour des transmissions par satellite dans la bande Ka qui s'étend en émission de 27,5 à 31 GHz et en réception de 18,3 à 18,8 GHz et de 19,7 à 20,2 GHz.
L'antenne se compose d'éléments antennaires de base associés selon une dimension pour former un guide à fentes. L'antenne peut être composée de plusieurs guides à fentes associés pour fonner un réseau.
Art antérieur
La théorie des fentes dans les guides dits guides à fente, a été initialement décrite par A.F.Stevenson dans l'article [1] dans un contexte de polarisation uniquement linéaire. Le guide d'ondes qui sert normalement au transport de l'énergie, est transformé en système rayonnant en découpant sur une des faces du guide généralement rectangulaire, des fentes fines par rapport à la longueur d'onde, judicieusement placées.
La figure la représente schématiquement un élément antennaire de base à guide d'onde avec une fente rectangulaire découpée sur une des faces, généralement la face dite supérieure qui est orientée dans la direction de l'élément en communication avec l'antenne. La fente est excitée par la propagation du champ dans le guide d'onde. Pour améliorer les performances, les éléments antennaires de base sont associés en série selon un axe pour former un guide à fentes comme représenté figure lb, puis les guides à fentes sont associés en parallèle pour obtenir une antenne comme représenté à la figure l e. Une telle association pour former un réseau est décrite dans l'article [2]. La disposition des fentes telle que représentées sur les figures l a- le donne lieu à un rayonnement ayant une polarisation linéaire.
Certaines utilisations, notamment les communications avec un satellite, nécessitent un dépointage d'antenne pour que le faisceau pointe dans la direction du satellite. Un dépointage peut être obtenu de manière mécanique au moyen d'un déplacement mécanique de l'antenne, piloté manuellement ou par un moteur. Des contraintes d'encombrement, par exemple pour des systèmes embarqués (installation d'une antenne sur un train, un avion...) interdisent tout mécanisme de dépointage mécanique. Un tel dépointage doit donc être obtenu de manière électronique.
L'article [5] décrit comment contrôler le rayonnement d'une antenne en technologie SIW et comment dépointer le faisceau dans le plan de la mise en réseau en alimentant en parallèle chaque guide à fentes et en contrôlant la phase de chaque point d'alimentation des guides à fentes.
Compte tenu que la différence de polarisation entre le signal reçu (polarisation liée à l'antenne d'émission) et la polarisation de l'antenne de réception peut conduire à une atténuation du signal reçu, totale si les deux polarisations sont croisées, il est alors nécessaire de faire appel à une polarisation circulaire qui permet d'éviter ce phénomène d'atténuation totale pour certaines utilisations. En particulier, un tel choix est ainsi fait dans les cas où l'orientation de l'antenne de « réception » fixe ou mobile (antenne qui peut aussi servir d'antenne d'émission) doit évoluer dans le temps et suivre l'antenne « d'émission » mobile (antenne qui peut aussi servir d'antenne de réception), cas qui se rencontrent avec des satellites défilants (non géostationnaires) ou avec des systèmes embarqués destinés à communiquer avec un satellite.
L'obtention d'une polarisation circulaire nécessite d'utiliser des guides à double fentes rectangulaires formées par :
une croix centrée par rapport à l'axe du guide avec deux bras faiblement dissymétriques, une croix décalée par rapport à l'axe de guide comme décrit dans [3] et illustré par la figure 2a ou
- deux fentes décalées suivant la longueur et la largeur du guide et inclinées d'environ 45° comme décrit dans [4] et illustré par la figure 2b.
Les courbes de la figure 2c représentent le rayonnement en site de ce type de guides à double fente correspondant à la figure 2a ou 2b pour différents plans décalés d'un angle Phi (0°, 45°, 90°, 135°) par rapport à l'axe du guide, cet angle Phi est dit angle de gisement. Le diagramme de rayonnement en polarisation circulaire principale (droite) correspondant aux lignes DirRHCP se caractérise par un maximum dans la direction perpendiculaire à la surface où se trouve les fentes. Les lignes DirLHCP représentent le rayonnement en polarisation croisée (gauche). Un ajustement des dimensions, positions et inclinaisons des fentes permet d'obtenir un faible niveau de polarisation croisée dans la direction du maximum de rayonnement. Toutefois, en dehors de cet axe, le niveau de la polarisation croisée remonte rapidement et rejoint le niveau de la polarisation principale, aux alentours de 40°, selon l'illustration de la figure 2c. Cette remontée est principalement due à la géométrie des fentes qui génèrent individuellement des plans E et H dissymétriques qui, après recombinaison en amplitude et en phase, créent un niveau important de polarisation circulaire croisée en dehors de l'axe.
Ce niveau important de polarisation croisée limite les performances des antennes à base de guide à fentes rectangulaires lors d'une utilisation avec un dépointage de faisceau. En effet, lors du dépointage du faisceau à un angle donné, le niveau de polarisation croisée du faisceau est celui de l 'élément de base. Ainsi, dans le cas de l 'exemple illustré par la figure 2c), si l'angle de dépointage du faisceau est fixé à 40° alors le niveau de polarisation croisée est équivalent à celui de la polarisation principale. Un tel comportement de l'antenne est rédhibitoire pour une utilisation qui nécessite d'avoir un grand écart entre polarisation principale et croisée.
Exposé de l'invention
L'invention propose un élément antennaire à guide d'onde à fente qui soit une alternative aux éléments antennaire connus, de performances équivalentes voire plus performants pour certaines configurations.
Ainsi, l'invention a pour objet un élément antennaire à guide d'onde à fente comportant au moins une face conductrice pourvue d'au moins une fente annulaire qui délimite en sa partie centrale une zone conductrice et qui isole électriquement cette zone du reste de la face.
Un tel élément antennaire est typiquement obtenu au moyen d'une technologie SIW (Substrate Integrated Waveguide). Cette technologie permet d'obtenir par impression les fentes. La forme annulaire de la fente permet d'obtenir des performances équivalentes, voire plus intéressantes dans certaines configurations que la forme rectangulaire tout en simplifiant le procédé de fabrication en particulier dans les cas où une polarisation circulaire doit être obtenue. En effet, dans ces cas, le masque d'impression ne comporte qu'une fente annulaire alors que selon l'art antérieur au moins deux fentes rectangulaires sont nécessaires avec des contraintes de positionnement de l'une par rapport à l'autre.
Selon un mode de réalisation de l'invention, l'élément antennaire est tel que la fente annulaire est décalée par rapport à l'axe du guide à fente.
Un guide à fente a une forme qui est généralement proche de celle d'un parallélépipède, donc caractérisée au moins par une longueur. La longueur est la dimension dans l'axe du parallélépipède. Le décalage de la fente annulaire par rapport à l'axe permet avantageusement d'obtenir une polarisation circulaire. Ainsi, par rapport à l'art antérieur, seul le décalage du masque d'impression par rapport à l'axe est nécessaire pour obtenir une polarisation circulaire. Selon l'art antérieur, la fabrication d'un élément antennaire à guide à fente qui soit de polarisation rectiligne ou de polarisation circulaire nécessite un masque différent spécifique à la polarisation. En effet, pour obtenir une polarisation circulaire selon l'art antérieur une double fente rectangulaire est nécessaire avec un agencement particulier de la double fente. C'est-à-dire, soit la double fente consiste en une croix centrée par rapport à l'axe du guide avec deux bras faiblement dissymétriques, soit la double fente consiste en une croix décalée par rapport à l'axe de guide, soit la double fente consiste en deux fentes décalées suivant la longueur et la largeur du guide et inclinées d'environ 45°. Contrairement à l'art antérieur qui nécessite donc de changer de masque en fonction de la polarisation désirée, un même masque permet d'obtenir un élément antennaire selon l'invention avec soit une polarisation rectiligne, soit une polarisation circulaire et ce, uniquement en décalant le masque sur la face du substrat sur lequel doit être imprimée la fente. L'élément antennaire selon l'invention génère un rayonnement en polarisation circulaire avec une isolation entre les polarisations principales et croisées pour des angles supérieurs à 40° beaucoup plus importante que celle obtenue avec des fentes rectangulaires. Notamment, dans le plan perpendiculaire à l'axe du guide à fente, cette isolation peut atteindre des niveaux supérieurs à 15 dB alors qu'avec un élément antennaire de l'art antérieur cette isolation est quasiment imperceptible. Cette différence notable traduit le fait qu'un élément antennaire selon l'invention est particulièrement mieux adapté pour des utilisations où un dépointage est nécessaire comme dans le cas d'une transmission entre un support mobile tel un train ou un avion et un satellite que les éléments antennaires connus.
Selon un mode de réalisation de l'invention, l'élément antennaire est tel que la distance entre les bords intérieur et extérieur de la fente annulaire comporte le long du pourtour de la fente des variations notables qui délimitent des décochements.
Les décochements ont typiquement la forme d'encoches dans le cas d'une fente annulaire de forme circulaire ou la forme de triangles dans le cas d'une fente annulaire de forme carrée. Ces décochements sont réalisés sur la zone centrale le long du bord intérieur de la fente ou sur la partie extérieure le long du bord extérieur de la fente, partie qui appartient au reste de la face. Ces décochements jouent le rôle de perturbateurs qui modifient la symétrie de la fente. Ainsi, même si la fente est calée sur l'axe du guide à fente, les décochements pennettent d'obtenir une polarisation circulaire. Si la fente est décalée par rapport à l'axe du guide à fente, les décochements pennettent de modifier le rayonnement et de limiter la bande fréquentielle par rapport à la même fente sans décochement.
Les différents modes de réalisation précédents peuvent être combinés ou pas entre eux pour définir un autre mode de réalisation.
Selon un mode de réalisation de l'invention, l'élément antennaire est tel que la distance entre les bords intérieur et extérieur de la fente annulaire est variable le long du pourtour de la fente.
La variation de la largeur de la fente annulaire peut résulter par exemple du fait que les bords intérieur et extérieur de la fente ne sont pas concentriques. Cette dissymétrie permet avantageusement de modifier le rayonnement de la fente par rapport au même élément avec une distance invariable entre les deux bords de la fente.
Ce dernier mode de réalisation peut être combiné ou pas avec un mode précédent pour définir un autre mode de réalisation.
Selon un mode de réalisation de l'invention, l'élément antennaire comprend une autre fente annulaire entourant la fente annulaire.
La présence d'une seconde fente annulaire dont la partie centrale inclue la première fente annulaire permet d'obtenir un élément antennaire bi-bandes. L'élément antennaire est dit à double fentes annulaires. Dans le cas où les fentes annulaires sont circulaires, les deux fentes annulaires sont typiquement centrées sur un même point central.
Ce dernier mode de réalisation peut être combiné ou pas avec un mode précédent pour définir un autre mode de réalisation. L'invention a en outre pour objet un guide à fentes comprenant plusieurs éléments antennaires conformes à l'objet précédent, agencés entre eux en réseau linéaire.
La forme parallélépipédique des éléments antennaires permet de réaliser facilement un réseau linéaire en les disposant en série. La mise en série permet d'obtenir un réseau avec des performances supérieures à celle d'un seul élément antennaire.
L'invention a en outre pour objet une antenne plane comprenant plusieurs guides à fentes conformes à l'objet précédent, agencés entre eux en réseau bi-dimensionnel.
Une antenne selon l'invention allie un faible encombrement et des performances de rayonnement compatibles d'une utilisation avec dépointage qui nécessite un écart important entre polarisation principale et polarisation croisée au-delà de l'axe principal.
Selon un mode de réalisation de l'invention, l'antenne plane comprend un moyen d'alimentation en parallèle des guides à fente agencé pour piloter les phases entre les signaux d'alimentation des guides à fente.
Le contrôle des phases entre chaque point d'alimentation des guides à fente permet de contrôler leur déphasage relatif et donc de maximiser le rayonnement global avec un dépointage contrôlé.
Liste des figures
D'autres caractéristiques et avantages de l'invention apparaîtront lors de la description qui suit faite en regard de figures annexées données à titre d'exemples non limitatifs.
La figure la représente schématiquement un élément antennaire selon l'art antérieur.
La figure lb représente schématiquement un guide à fente selon l'art antérieur réalisé avec un assemblage d'éléments antennaires de la figure la.
La figure le représente schématiquement une antenne selon l'art antérieur consistant en un réseau de guides à fente de la figure lb.
La figure 2a) est un élément antennaire de l'art antérieur à fentes rectangulaires disposées en croix décalées de l'axe du guide à fente permettant d'obtenir une polarisation circulaire.
La figure 2b) est un élément antennaire de l'art antérieur à fentes rectangulaires décalées suivant la longueur et la largeur du guide à fente et inclinées d'environ 45° permettant d'obtenir une polarisation circulaire.
La figure 2c) représente des courbes de directivité en site en polarisations circulaires droite
(DirRHCP) et gauche (DirLHCP) à la fréquence de 9GHz de l'élément antennaire de la figure 2b) pour différents angles Phi de gisement.
La figure 3a est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention.
La figure 3b rassemble des courbes de directivité en site en polarisations linéaires suivant x
(DirL) et suivant y (DirR) à la fréquence de 8,55 GHz de l'élément antennaire correspondant à la figure
3a pour différents plans décalés d'un angle Phi de gisement. La figure 4a est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention dans lequel la fente de forme annulaire est décalée par rapport à l'axe du guide à fente.
La figure 4b rassemble des courbes de directivité en site en polarisations circulaires droite (DirRHCP) et gauche (DirLHCP) à la fréquence de 9,9 GHz de l'élément antennaire correspondant à la figure 5a pour différents plans décalés d'un angle Phi de gisement.
La figure 4c donne la courbe du taux d'ellipticité de l'élément antennaire de la figure 5a. La figure 5a est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention dans lequel la distance entre les bords intérieur et extérieur de la fente comporte le long du pourtour de la fente des variations notables qui délimitent des décochements à la partie centrale métallisée.
La figure 5b rassemble des courbes de directivité en site en polarisations circulaires droite (DirRHCP) et gauche (DirLHCP) à la fréquence de 9,8 GHz de l'élément antennaire correspondant à la figure 5a pour différents plans décalés d'un angle Phi de gisement.
La figure 5c donne la courbe du taux d'ellipticité de l'élément antennaire de la figure 5a.
La figure 5d est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention dans lequel la distance entre les bords intérieur et extérieur de la fente comporte le long du pourtour de la fente des variations notables qui délimitent des décochements au reste de la face (partie extérieure à la fente).
La figure 6a est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention dans lequel l'élément comporte une double fente annulaire.
La figure 6b rassemble des courbes de directivité en site en polarisations circulaires droite (DirRHCP) et gauche (DirLHCP) à la fréquence de 8,7 GHz de l'élément antennaire correspondant à la figure 6a pour différents plans décalés d'un angle Phi de gisement.
La figure 6c donne la courbe du taux d'ellipticité de l'élément antennaire de la figure 6a.
La figure 7 illustre un mode de réalisation d'un élément antennaire selon l'invention avec une fente annulaire de forme elliptique.
La figure 8a illustre un mode de réalisation d'un élément antennaire selon l'invention avec une fente annulaire de forme carrée.
La figure 8b rassemble des courbes de directivité en site en polarisations linéaires suivant x
(DirR) et suivant y (DirL) à la fréquence de 10 GHz de l'élément antennaire correspondant à la figure 8a pour différents plans décalés d'un angle Phi de gisement.
La figure 9a est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention dans lequel la fente annulaire de forme carrée est décalée par rapport à Taxe du guide à fente. La figure 9b rassemble des courbes de directivité en site en polarisations circulaires droite (DirRHCP) et gauche (DirLHCP) à la fréquence de 10 GHz de l'élément antennaire correspondant à la figure 9a pour différents plans décalés d'un angle Phi de gisement.
La figure 9c donne la courbe du taux d'ellipticité de l'élément antennaire de la figure 9a. La figure 10a est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention dans lequel la fente annulaire de forme carrée est décalée par rapport à l'axe du guide à fente et subie une rotation pour au finale obtenir une fente annulaire ayant la forme d'un losange.
La figure 10b rassemble des courbes de directivité en site en polarisations circulaires droite (DirRHCP) et gauche (DirLHCP) à la fréquence de 10 GHz de l'élément antennaire correspondant à la figure 10a pour différents plans décalés d'un angle Phi de gisement.
La figure 10c donne la courbe du taux d'ellipticité de l'élément antennaire de la figure 10a. La figure l ia correspond au cas d'une fente annulaire de forme carrée qui comprend deux perturbateurs sous forme de coins intérieurs coupés disposés symétriquement.
La figure 1 1b rassemble des courbes de directivité en site en polarisations circulaires droite
(DirLHCP) et gauche (DirRHCP) à la fréquence de 10 GHz de l'élément antennaire correspondant à la figure 1 la pour différents plans décalés d'un angle Phi de gisement.
La figure 1 1c donne la courbe du taux d'ellipticité de l'élément antennaire de la figure l ia. La figure 12 illustre un mode de réalisation d'un élément antennaire selon l'invention dans lequel la distance d entre les bords intérieur et extérieur de la fente annulaire est variable le long du pourtour de la fente.
La figure 13 illustre un substrat diélectrique plan comprenant une série de trous métallisés reliant les deux faces métalliques du substrat avant découpe sur la face supérieure d'une fente annulaire selon l'invention.
La figure 14 est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention obtenu en mettant en œuvre une technologie classique avec un guide d'onde métallique chargé ou pas de diélectrique.
Description d'un mode de réalisation de l'invention
La figure 3a est une représentation schématique d'un mode de réalisation d'un élément antennaire El A selon l 'invention. L'élément antennaire E1A à guide à fente selon l'invention comporte au moins une face conductrice Fs pourvue d'au moins une fente annulaire Fan. Une fente annulaire au sens de l'invention est une fente qui a la particularité de délimiter une zone centrale Zc conductrice et de l'isoler électriquement du reste de la face supérieure Fs conductrice.
La fente annulaire est délimitée par un bord intérieur et un bord extérieur séparés par une distance d. La profondeur de la fente est au moins celle de l'épaisseur de la couche métallisé de la face supérieure Fs pour isoler électriquement la zone centrale Zc du reste de la face Fs. Les courbes de la figure 3b représentent le rayonnement en site de cet élément antennaire correspondant à la figure 3a pour différents plans décalés d'un angle Phi de gisement (0°, 45°, 90°, 135°) par rapport à l'axe du guide. Le diagramme de rayonnement en polarisation linéaire principale (suivant x) correspondant aux lignes DirL se caractérise par un maximum dans la direction perpendiculaire à la surface où se trouve la fente. Les lignes DirR représentent le rayonnement en polarisation linéaire croisée (suivant y).
La figure 4a est une représentation schématique d'un mode de réalisation d'un élément antennaire E1A selon l'invention dans lequel la fente de forme annulaire est décalée par rapport à l'axe du guide à fente. Le décalage par rapport à l'axe du guide à fente permet d'obtenir une polarisation circulaire.
Les courbes de la figure 4b représentent le rayonnement en site de cet élément antennaire correspondant à la figure 4a pour différents plans décalés d'un angle Phi de gisement (0°, 45°, 90°, 135°) par rapport à l'axe du guide. Le diagramme de rayonnement en polarisation circulaire principale (droite) correspondant aux lignes DirRHCP se caractérise par un maximum dans la direction perpendiculaire à la surface où se trouve la fente. Les lignes DirLHCP représentent le rayonnement en polarisation circulaire croisée (gauche).
Les courbes de la figure 4b permettent d'illustrer le gain important en isolation entre les polarisations principale et croisée pour des angles supérieurs à 40° obtenu avec un élément antennaire à fente annulaire selon l'invention comparativement à un élément antennaire de l'art antérieur à fentes rectangulaires dont le rayonnement est illustré par la figure 2c. Notamment, dans le plan perpendiculaire à l'axe du guide (Phi=90°) cette isolation peut atteindre des niveaux supérieurs à 15 dB alors que sur la figure 2c cette isolation est au mieux de 3dB.
Cette amélioration notable permet l'utilisation de l'élément antennaire selon l'invention pour des utilisations qui nécessite un certain dépointage.
Le décalage de la fente annulaire par rapport à l'axe du guide permet de générer une polarisation circulaire droite si la fente est à gauche suivant la propagation du champ et inversement.
La figure 5a est une représentation schématique d'un mode de réalisation d'un élément antennaire E1A selon l'invention dans lequel la distance entre les bords intérieur et extérieur de la fente comporte le long du pourtour de la fente des variations notables qui délimitent des décochements à la partie centrale métallisée. Selon un autre mode de réalisation illustré par la figure 5d, les décochements sont réalisés sur le contour extérieur de la fente. Ces décochements jouent le rôle de perturbateurs qui permettent de modifier la symétrie de la fente annulaire et d'obtenir une polarisation circulaire même si la fente est calée sur l'axe du guide à fente. La figure 5a correspond au cas d'une fente annulaire de forme circulaire qui comprend deux perturbateurs sous forme d'encoches disposées symétriquement.
Les courbes de la figure 5b représentent le rayonnement en site de cet élément antennaire correspondant à la figure 5a pour différents plans décalés d'un angle Phi de gisement (0°, 45°, 90°, 135°) par rapport à l 'axe du guide. Le diagramme de rayonnement en polarisation circulaire principale (droite) correspondant aux lignes DirRHCP se caractérise par un maximum dans la direction perpendiculaire à la surface où se trouve la fente. Les lignes DirLHCP représentent le rayonnement en polarisation circulaire croisée (gauche). Compte tenu que les décochements permettent de modifier le rayonnement et de limiter la bande fréquentielle par rapport à la même fente sans décochement, limitation qui apparaît en comparant les courbes de taux d'ellipticité des figures 4c et 5c, le choix entre le mode de réalisation avec décochements et le mode sans décochements peut être guidé en fonction de la bande fréquentielle de fonctionnement souhaitée.
La figure 6a est une représentation schématique d'un mode de réalisation d'un élément antennaire ElA selon l'invention dans lequel l'élément comporte une double fente annulaire qui permet avantageusement d'obtenir un fonctionnement bi bande. Selon l'illustration, la double fente annulaire a une forme circulaire. Dans ce cas, les deux fentes sont typiquement centrées sur un même point central.
Les courbes de la figure 6b représentent le rayonnement en site de cet élément antennaire correspondant à la figure 6a pour différents plans décalés d'un angle Phi de gisement (0°, 45°, 90°, 135°) par rapport à l'axe du guide. Le diagramme de rayonnement en polarisation circulaire principale (droite) correspondant aux lignes DirRHCP se caractérise par un maximum dans la direction perpendiculaire à la surface où se trouve la double fente. Les lignes DirLHCP représentent le rayonnement en polarisation circulaire croisée (gauche).
Le fonctionnement bi-bandes est révélé par la figure 6c du taux d'ellipticité qui présente deux creux.
La fente annulaire peut avoir des formes très variables qui s'apparente à celle d'un anneau. La forme peut être régulière et appartenir à la liste comprenant les formes circulaires, ovales, elliptiques, carrées, rectangulaires.
La figure 7 illustre un mode de réalisation d'un élément antennaire selon l'invention avec une fente annulaire de forme elliptique.
La figure 8a illustre un mode de réalisation d'un élément antennaire selon l'invention avec une fente annulaire de forme carrée.
Les courbes de la figure 8b représentent le rayonnement en site de cet élément antennaire correspondant à la figure 8a pour différents plans décalés d'un angle Phi de gisement (0°, 45°, 90°, 135°) par rapport à l'axe du guide. Le diagramme de rayonnement en polarisation linéaire principale (suivant x) correspondant aux lignes DirR se caractérise par un maximum dans la direction perpendiculaire à la surface où se trouvent les fentes. Les lignes DirL représentent le rayonnement en polarisation linéaire croisée (suivant y).
La figure 9a est une représentation schématique d'un mode de réalisation d'un élément antennaire ElA selon l'invention dans lequel la fente annulaire de forme carrée est décalée par rapport à l'axe du guide à fente. Le décalage par rapport à l'axe du guide à fente permet d'obtenir une polarisation circulaire. Les courbes de la figure 9b représentent le rayonnement en site de cet élément antennaire correspondant à la figure 9a pour différents plans décalés d'un angle Phi de gisement (0°, 45°, 90°, 135°) par rapport à l'axe du guide. Le diagramme de rayonnement en polarisation circulaire principale (droite) correspondant aux lignes DirRHCP se caractérise par un maximum dans la direction perpendiculaire à la surface où se trouve la fente. Les lignes DirLHCP représentent le rayonnement en polarisation circulaire croisée (gauche).
La figure 10a est une représentation schématique d'un mode de réalisation d'un élément antennaire E1A selon l'invention dans lequel la fente annulaire de forme carrée est décalée par rapport à l'axe du guide à fente et subie une rotation pour au finale obtenir une fente annulaire ayant la forme d'un losange. Le décalage par rapport à l'axe du guide à fente permet d'obtenir une polarisation circulaire.
Les courbes de la figure 10b représentent le rayonnement en site de cet élément antennaire correspondant à la figure 10a pour différents plans décalés d'un angle Phi de gisement (0°, 45°, 90°, 135°) par rapport à l'axe du guide. Le diagramme de rayonnement en polarisation circulaire principale (droite) correspondant aux lignes DirRHCP se caractérise par un maximum dans la direction perpendiculaire à la surface où se trouve la fente. Les lignes DirLHCP représentent le rayonnement en polarisation circulaire croisée (gauche).
La figure l ia est une représentation schématique d'un mode de réalisation d'un élément antennaire E1A selon l'invention dans lequel la distance entre les bords intérieur et extérieur de la fente comporte le long du pourtour de la fente des variations notables qui délimitent des décochements à la partie centrale métallisée ou selon un autre mode sur le contour extérieur de la fente. Ces décochements jouent le rôle de perturbateurs qui permettent de modifier la symétrie de la fente annulaire et d'obtenir une polarisation circulaire même si la fente est calée sur l'axe du guide à fente. La figure l ia correspond au cas d'une fente annulaire de forme carrée qui comprend deux perturbateurs sous forme de coins intérieurs coupés disposés symétriquement.
Les courbes de la figure 1 1b représentent le rayonnement en site de cet élément antennaire correspondant à la figure l ia pour différents plans décalés d'un angle Phi de gisement (0°, 45°, 90°, 135°) par rapport à l'axe du guide. Le diagramme de rayonnement en polarisation circulaire principale (gauche) correspondant aux lignes DirRHCP se caractérise par un maximum dans la direction perpendiculaire à la surface où se trouve la fente. Les lignes DirLHCP représentent le rayonnement en polarisation circulaire croisée (droite).
La forme de la fente annulaire peut tout aussi bien ne pas être régulière et présenter une distance d variable entre ces bords, la forme peut par exemple être de type patatoïde.
La figure 12 illustre un mode de réalisation d'un élément antennaire selon l'invention dans lequel la distance d entre les bords intérieur et extérieur de la fente annulaire est variable le long du pourtour de la fente. Un cas particulier de réalisation consiste à réaliser une fente annulaire avec deux bords intérieur et extérieur circulaires et non concentriques comme illustré par la figure 12. Quelle que soit la forme de la fente annulaire, son épaisseur ou profondeur est telle que la couche métallisée de la surface Fs sur laquelle est imprimée la fente est retirée sur l'espace occupé par la fente Fan. En d'autres termes, la fente rompt la continuité électrique qui existait sur la face Fs accueillant la fente. Ainsi, la fente annulaire délimite deux zones sur la surface Fs : la zone comprise à l'intérieure de la fente ou zone centrale Zc à la fente, délimitée par le bord intérieur de la fente, et la zone à l'extérieure de la fente ou reste de la face, délimitée par le bord extérieur de la fente. Ces deux zones qui font partie de la face sont isolées électriquement l'une de l'autre par la fente annulaire.
L'élément antennaire peut être obtenu en mettant en œuvre une technologie SIW. La technologie SIW comme décrit dans [6] permet de réaliser des guides d'ondes à partir de substrats diélectriques plans. Cette technologie met typiquement en œuvre une technique classique de réalisation de circuit imprimée (selon la terminologie anglosaxonne Printed Circuit Board, PCB). Comme illustré par la figure 13, les deux faces Fs, Fi métallisées du substrat Sub forment les grands cotés supérieurs et inférieurs du guide. Le côté supérieur Fs est typiquement le côté qui est orienté dans la direction du signal émis ou reçu. Les murs métalliques verticaux des petits cotés du guide sont réalisés par des séries de trous métallisés Tr reliant les deux faces Fs, Fi métalliques du substrat. Cette technologie imprimée est avantageuse car elle permet de réaliser des antennes à faibles épaisseur et à faible coût comme décrit dans [5].
Une telle technologie est particulièrement bien adaptée pour l'obtention d'un élément antennaire avec fente annulaire conforme à l'invention car elle permet de réaliser des fentes annulaires en imprimant leur motif sur une face de l'élément antennaire. Une telle technique d'impression est bien connue de l'homme du métier, connue par exemple sous la dénomination anglo-saxonne PCB, et n'est donc pas décrite. A l'issue du procédé PCB, la fente annulaire délimite une zone centrale et l'isole électriquement du reste de la face supérieure.
La figure 14 est une représentation schématique d'un mode de réalisation d'un élément antennaire E1A selon l'invention obtenu en mettant en œuvre une technologie classique avec un guide d'onde métallique chargé ou pas de diélectrique. Dans le cas où le guide d'onde n'est pas chargé la partie centrale est maintenue à la face inférieure au moyen d'un pion ou plot Pi qui peut être réalisé en diélectrique et éventuellement métallisé.
Les éléments antennaires selon l'invention peuvent être associés selon une dimension, de la même manière que les éléments antennaires de l'art antérieur, pour former un guide à fentes. Ces derniers guides à fentes peuvent eux-mêmes être associés en réseau, de la même manière que les guides à fentes de l'art antérieur, pour former une antenne plane.
L'antenne peut être associée à un moyen d'alimentation en parallèle des guides à fentes. Le pilotage des phases relatives entre les points d'alimentation des guides à fentes permet de maximiser le rayonnement global et donc de contrôler le dépointage de l'antenne. [1]A. F.Stevenson, « Theory of slots in rectangular waveguides », Journal of applied Physics, vol.19, pp 24-28, Jan.1948.
[2] R.S. Elliot, L.A. Kurtz, "The design of small Slot Arrays", IEEE trans. AP, vol. 26, n° 2, pp214- 219, March 1978.
[3] A.J. Simmons, "Circularly Polarized Slot Radiaors" LRE trans AP, Vol. 5, n° 1, PP31 -36, Jan. 1957.
[4] G. Montisci,, M. Musa, G. Mazzarella, "Waveguide Slot Antennas for Circularly Polarized Radiated Field", IEEE trans. AP, vol. 52, n° 2, pp 61 -623, Feb. 2004.
[5] Y.J. Cheng, W. Hong, K? Wu, Z. Q. Kuai, C. Yu, J.X. Chen, J. Y. Zhou, H. J. Tang, Substrate Integrated Waveguide (SIW) Rotman Lens and Its Ka-Band Multibeam Array Antenna Applications", ΓΕΕΕ trans. AP, vol. 56, n° 8, pp 2504-2 13, Aug. 2008.
[6] K. Wu, D. Deslandes, Y. Cassivi, "The Substrate Integrated Circuit - A New Concept for High- Frequency Electronics and Optoelectronics" Proc. 6th Int. Conf. Telecomm. Modem Satellite, Cable and Boadcasting Service, Vol. 1 , pp3-5, Oct. 2003.

Claims

REVENDICATIONS
1. Elément antennaire (ElA) de type guide d'onde à fente dont une des faces conductrices (Fs) est pourvue d'au moins une fente excitée par la propagation du champs dans le guide d'onde qui délimite en sa partie centrale une zone conductrice (Zc) et isole électriquement cette zone (Zc) du reste de la face (Fs) caractérisé en ce que la fente (Fan) est annulaire.
2. Elément antennaire (ElA) selon la revendication 1 , dans lequel la fente annulaire est décalée par rapport à l'axe du guide d'onde.
3. Elément antennaire (ElA) selon l'une des revendications 1 et 2, dans lequel la distance entre les bords intérieur et extérieur de la fente annulaire comporte le long du pourtour de la fente des décochements.
4. Elément antennaire (ElA) selon Tune des revendications 1 à 3, dans lequel la distance entre les bords intérieur et extérieur de la fente annulaire est variable le long du pourtour de la fente.
5. Elément antennaire (ElA) selon l'une des revendications 1 à 4, comportant au moins une autre fente annulaire entourant la fente annulaire.
6. Guide à fentes comprenant plusieurs éléments antennaires conformes à l'une des revendications précédentes, agencés entre eux en réseau linéaire.
7. Antenne plane comprenant plusieurs guides à fentes conformes à la revendication précédente, agencés entre eux en réseau bi-dimensionnel.
8. Antenne plane selon la revendication précédente comprenant un moyen d'alimentation en parallèle des guides à fentes agencé pour piloter les phases entre les signaux d'alimentation des guides à fentes.
PCT/FR2012/050311 2011-02-11 2012-02-13 Antenne a base de guides a fentes annulaires WO2012107705A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12708914.2A EP2673842B1 (fr) 2011-02-11 2012-02-13 Antenne a base de guides a fentes annulaires
US13/985,013 US20130321227A1 (en) 2011-02-11 2012-02-13 Waveguide Antenna Having Annular Slots

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1151122 2011-02-11
FR1151122A FR2971631A1 (fr) 2011-02-11 2011-02-11 Antenne a base de guides a fentes annulaires

Publications (1)

Publication Number Publication Date
WO2012107705A1 true WO2012107705A1 (fr) 2012-08-16

Family

ID=45833465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050311 WO2012107705A1 (fr) 2011-02-11 2012-02-13 Antenne a base de guides a fentes annulaires

Country Status (4)

Country Link
US (1) US20130321227A1 (fr)
EP (1) EP2673842B1 (fr)
FR (1) FR2971631A1 (fr)
WO (1) WO2012107705A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9991601B2 (en) 2015-09-30 2018-06-05 The Mitre Corporation Coplanar waveguide transition for multi-band impedance matching
US10205240B2 (en) 2015-09-30 2019-02-12 The Mitre Corporation Shorted annular patch antenna with shunted stubs
US10613216B2 (en) 2016-05-31 2020-04-07 Honeywell International Inc. Integrated digital active phased array antenna and wingtip collision avoidance system
US10050336B2 (en) 2016-05-31 2018-08-14 Honeywell International Inc. Integrated digital active phased array antenna and wingtip collision avoidance system
US10627503B2 (en) 2017-03-30 2020-04-21 Honeywell International Inc. Combined degraded visual environment vision system with wide field of regard hazardous fire detection system
JP6989320B2 (ja) * 2017-08-21 2022-01-05 株式会社Soken アンテナ装置
CN108417993A (zh) * 2018-01-25 2018-08-17 瑞声科技(南京)有限公司 天线***及通讯终端
US11011815B2 (en) * 2018-04-25 2021-05-18 Texas Instruments Incorporated Circularly-polarized dielectric waveguide launch for millimeter-wave data communication
CN112436294B (zh) * 2020-12-02 2022-03-01 东南大学 具有高隔离度和低剖面的毫米波双频双极化共口径天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971125A (en) * 1975-03-03 1976-07-27 Raytheon Company Method of making an antenna array using printed circuit techniques
US4208660A (en) * 1977-11-11 1980-06-17 Raytheon Company Radio frequency ring-shaped slot antenna
CA1136267A (fr) * 1979-07-25 1982-11-23 Bahman Azarbar Arrangement de fentes annulaires a excitation de modes de guide d'ondes radial
EP0497249A1 (fr) * 1991-02-01 1992-08-05 Alcatel Espace Antenne réseau notamment pour application spatiale
WO2007060782A1 (fr) * 2005-11-24 2007-05-31 National University Corporation Saitama University Antenne microruban multifréquence
US20090066597A1 (en) * 2007-09-07 2009-03-12 Songnan Yang Substrate Integrated Waveguide Antenna Array

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2908001A (en) * 1957-07-01 1959-10-06 Hughes Aircraft Co Wave energy radiator
GB1392452A (en) * 1971-08-02 1975-04-30 Nat Res Dev Waveguides
US4994817A (en) * 1989-07-24 1991-02-19 Ball Corporation Annular slot antenna
FR2651926B1 (fr) * 1989-09-11 1991-12-13 Alcatel Espace Antenne plane.
FR2692404B1 (fr) * 1992-06-16 1994-09-16 Aerospatiale Motif élémentaire d'antenne à large bande passante et antenne-réseau le comportant.
US5394163A (en) * 1992-08-26 1995-02-28 Hughes Missile Systems Company Annular slot patch excited array
US5892487A (en) * 1993-02-28 1999-04-06 Thomson Multimedia S.A. Antenna system
DE69417106T2 (de) * 1993-07-01 1999-07-01 The Commonwealth Scientific And Industrial Research Organization, Campbell Ebene Antenne
EP1479130B1 (fr) * 2002-02-21 2008-05-07 Matsushita Electric Industrial Co., Ltd. Antenne reseau de combinaison a onde progressive
US6693605B1 (en) * 2002-08-30 2004-02-17 Raytheon Company Variable quasioptical wave plate system and methods of making and using
TWI352455B (en) * 2008-04-09 2011-11-11 Univ Nat Taiwan Dual-band coupling device
JP5486382B2 (ja) * 2010-04-09 2014-05-07 古野電気株式会社 2次元スロットアレイアンテナ、給電用導波管、及びレーダ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971125A (en) * 1975-03-03 1976-07-27 Raytheon Company Method of making an antenna array using printed circuit techniques
US4208660A (en) * 1977-11-11 1980-06-17 Raytheon Company Radio frequency ring-shaped slot antenna
CA1136267A (fr) * 1979-07-25 1982-11-23 Bahman Azarbar Arrangement de fentes annulaires a excitation de modes de guide d'ondes radial
EP0497249A1 (fr) * 1991-02-01 1992-08-05 Alcatel Espace Antenne réseau notamment pour application spatiale
WO2007060782A1 (fr) * 2005-11-24 2007-05-31 National University Corporation Saitama University Antenne microruban multifréquence
US20090066597A1 (en) * 2007-09-07 2009-03-12 Songnan Yang Substrate Integrated Waveguide Antenna Array

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A.F. STEVENSON: "Theory of slots in rectangular waveguides", JOURNAL OF APPLIED PHYSICS, vol. 19, January 1948 (1948-01-01), pages 24 - 28
A.J. SIMMONS: "Circularly Polarized Slot Radiaors", IRE TRANS AP, vol. 5, no. 1, January 1957 (1957-01-01), pages 31 - 36
G. MONTISCI; M. MUSA; G. MAZZARELLA: "Waveguide Slot Antennas for Circularly Polarized Radiated Field", IEEE TRANS. AP, vol. 52, no. 2, February 2004 (2004-02-01), pages 619 - 623
K. WU; D. DESLANDES; Y. CASSIVI: "The Substrate Integrated Circuit - A New Concept for High-Frequency Electronics and Optoelectronics", PROC. 6TH INT. CONF. TELECOMM. MODEM SATELLITE, CABLE AND BOADCASTING SERVICE, vol. 1, October 2003 (2003-10-01), pages 3 - 5
R.S. ELLIOT; L.A. KURTZ: "The design of small Slot Arrays", IEEE TRANS. AP, vol. 26, no. 2, March 1978 (1978-03-01), pages 214 - 219
Y.J. CHENG; W. HONG; K? WU; Z. Q. KUAI; C. YU; J.X. CHEN; J. Y. ZHOU; H. J. TANG: "Substrate Integrated Waveguide (SIW) Rotman Lens and Its Ka-Band Multibeam Array Antenna Applications", IEEE TRANS. AP, vol. 56, no. 8, August 2008 (2008-08-01), pages 2504 - 2513

Also Published As

Publication number Publication date
US20130321227A1 (en) 2013-12-05
FR2971631A1 (fr) 2012-08-17
EP2673842B1 (fr) 2017-08-09
EP2673842A1 (fr) 2013-12-18

Similar Documents

Publication Publication Date Title
EP2673842B1 (fr) Antenne a base de guides a fentes annulaires
EP3392959B1 (fr) Cellule élémentaire d'un reseau transmetteur pour une antenne reconfigurable
EP3125362B1 (fr) Cellule elementaire d'un reseau transmetteur pour une antenne reconfigurable
EP2532046B1 (fr) Antenne plane à balayage pour application mobile terrestre, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
EP2532050B1 (fr) Antenne plane directive embarquée, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
EP0542595A1 (fr) Dispositif d'antenne microruban perfectionné, notamment pour transmissions téléphoniques par satellite
EP0497702B1 (fr) Dispositif rayonnant pour antenne plane
WO2011134666A1 (fr) Element rayonnant compact a cavites resonantes
EP3843202B1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
EP2571098A1 (fr) Cellule déphaseuse rayonnante reconfigurable basée sur des résonances fentes et microrubans complémentaires
WO2012156424A1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
EP1466384B1 (fr) Dispositif pour la reception et/ou l emission d ondes e lectromagnetiques a diversite de rayonnement
WO2012095365A1 (fr) Antenne a resonateur dielectrique
EP1188202B1 (fr) Dispositif d'emission et/ou de reception de signaux
EP2637254B1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aéroporté et système de télécommunication par satellite comportant au moins une telle antenne
EP0520908B1 (fr) Antenne réseau linéaire
EP3840116B1 (fr) Antenne reconfigurable à réseau transmetteur avec intégration monolithique des cellules élémentaires
EP3840115A1 (fr) Antenne à cavité résonante compacte
FR2724491A1 (fr) Antenne plaquee miniaturisee, a double polarisation, a tres large bande
FR2705167A1 (fr) Antenne plaquée large bande à encombrement réduit, et dispositif d'émission/réception correspondant.
EP2889955B1 (fr) Structure antennaire compacte pour télécommunications par satellites
EP4099498A1 (fr) Empilement pour fabriquer un circuit intégré destiné à assurer une fonction de lentille électromagnétique pour une antenne reconfigurable à réseau transmetteur
FR2943464A1 (fr) Element rayonnant bas cout, notamment pour antenne active a balayage electronique
FR2981514A1 (fr) Systeme antennaire a une ou plusieurs spirale(s) et reconfigurable
EP3075031A2 (fr) Agencement de structures antennaires pour télécommunications par satellites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12708914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13985013

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012708914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012708914

Country of ref document: EP