WO2012098902A1 - Image display device and drive method for image display device - Google Patents

Image display device and drive method for image display device Download PDF

Info

Publication number
WO2012098902A1
WO2012098902A1 PCT/JP2012/000335 JP2012000335W WO2012098902A1 WO 2012098902 A1 WO2012098902 A1 WO 2012098902A1 JP 2012000335 W JP2012000335 W JP 2012000335W WO 2012098902 A1 WO2012098902 A1 WO 2012098902A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
subfield
gradation
image signal
gradation value
Prior art date
Application number
PCT/JP2012/000335
Other languages
French (fr)
Japanese (ja)
Inventor
広史 本田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012098902A1 publication Critical patent/WO2012098902A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2044Display of intermediate tones using dithering
    • G09G3/2051Display of intermediate tones using dithering with use of a spatial dither pattern
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge

Definitions

  • the present invention relates to an image display device that displays an image in an image display region by combining binary control of light emission and non-light emission in a light emitting element that constitutes a pixel, and a driving method of the image display device.
  • a plasma display panel (hereinafter abbreviated as “panel”) is a typical image display device that displays an image in an image display area by combining binary control of light emission and non-light emission in a light emitting element constituting a pixel. is there.
  • a large number of discharge cells which are light-emitting elements constituting pixels, are formed between a front substrate and a rear substrate that are arranged to face each other.
  • a plurality of pairs of display electrodes composed of a pair of scan electrodes and sustain electrodes are formed on the front glass substrate in parallel with each other.
  • a dielectric layer and a protective layer are formed so as to cover the display electrode pairs.
  • the back substrate has a plurality of parallel data electrodes formed on the glass substrate on the back side, a dielectric layer is formed so as to cover the data electrodes, and a plurality of barrier ribs are formed thereon in parallel with the data electrodes. ing. And the fluorescent substance layer is formed in the surface of a dielectric material layer, and the side surface of a partition.
  • the front substrate and the rear substrate are arranged opposite to each other and sealed so that the display electrode pair and the data electrode are three-dimensionally crossed.
  • a discharge gas containing xenon at a partial pressure ratio of 5% is sealed, and a discharge cell is formed in a portion where the display electrode pair and the data electrode face each other.
  • ultraviolet rays are generated by gas discharge in each discharge cell, and the phosphors of each color of red (R), green (G) and blue (B) are excited and emitted by the ultraviolet rays. Display an image.
  • a subfield method is generally used as a method for displaying an image in an image display region by combining binary control of light emission and non-light emission in a light emitting element.
  • each discharge cell In the subfield method, one field is divided into a plurality of subfields having different emission luminances.
  • each discharge cell light emission / non-light emission of each subfield is controlled by a combination according to a desired gradation value.
  • each discharge cell emits light with the emission luminance of one field set to a desired gradation value, and an image composed of various combinations of gradation values is displayed in the image display area of the panel.
  • each subfield has an address period and a sustain period.
  • the scan pulse is sequentially applied to the scan electrodes, and the address pulse is selectively applied to the data electrodes based on the image signal to be displayed.
  • an address discharge is generated between the scan electrode and the data electrode of the discharge cell to emit light, and a wall charge is formed in the discharge cell (hereinafter, these operations are also collectively referred to as “address”). ).
  • the number of sustain pulses based on the gradation weights determined for each subfield is alternately applied to the display electrode pairs composed of the scan electrodes and the sustain electrodes.
  • a sustain discharge is generated in the discharge cell that has generated the address discharge, and the phosphor layer of the discharge cell emits light (hereinafter referred to as “lighting” that the discharge cell emits light by the sustain discharge, and “non-emitting”). Also written as “lit”.)
  • each discharge cell is made to emit light with the luminance according to the gradation weight.
  • each discharge cell of the panel is caused to emit light with a luminance corresponding to the gradation value of the image signal, and an image is displayed in the image display area of the panel.
  • the plasma display device has an image signal processing circuit.
  • the image signal processing circuit converts an image signal (hereinafter simply referred to as “image signal”) input to the plasma display device into a subfield code indicating lighting / non-lighting for each subfield in each discharge cell.
  • the image signal processing circuit has a conversion table composed of a plurality of subfield codes.
  • one subfield code is associated with one gradation value. That is, when one gradation value is input, the conversion table outputs one subfield code associated with the gradation value.
  • the conversion table is stored in a semiconductor storage element such as a ROM and provided in the image signal processing circuit. Then, using the conversion table, the image signal processing circuit converts each gradation value of the image signal into a subfield code (data indicating light emission / non-light emission for each subfield) corresponding to each gradation value. Output to the circuit.
  • the number of gradation values that can be displayed on the panel is determined by the number of subfield codes constituting the conversion table. If the number of subfield codes constituting the conversion table is large, the number of gradation values that can be displayed on the panel increases, and if the number of subfield codes constituting the conversion table is small, the number of gradation values that can be displayed on the panel. Decrease.
  • the number of gradation values that can be displayed on the panel is related to the power consumption of the plasma display device, and the number of gradation values that can be displayed on the panel is relatively reduced when the power consumption is reduced. Therefore, the subfield codes constituting the conversion table are generally determined in consideration of the power consumption of the plasma display device, the smoothness of the image that can be displayed on the panel, and the like.
  • the gradation values that cannot be displayed on the panel increase. For example, if the conversion table includes the subfield code of gradation value “7” and gradation value “9” and does not include the subfield code of gradation value “8”, the gradation value “8” is displayed on the panel. "Cannot be displayed. However, gradation values that cannot be displayed on the panel can be displayed on the panel in a pseudo manner by using a generally known method such as a dither method or an error diffusion method.
  • this moving image pseudo contour changes according to the number of subfield codes constituting the conversion table, and when the number of subfield codes constituting the conversion table increases, the moving image pseudo contour is likely to occur. .
  • the plasma display device it is desirable to display the image with a smooth gradation change by increasing the gradation values that can be displayed on the panel as much as possible, while reducing the moving image pseudo contour as much as possible.
  • the plasma display device includes a plurality of conversion tables having different numbers and types of subfield codes constituting the conversion table, and the plurality of conversion tables. Has been disclosed (for example, see Patent Document 1).
  • a plasma display device includes a plurality of conversion tables. Then, a minimum value and an average value of the image signal are obtained, and a threshold value is calculated from the minimum value and the average value. Then, one conversion table is selected from a plurality of conversion tables based on this threshold value. Then, the image signal is converted into a subfield code based on the selected conversion table.
  • the number of conversion tables to be provided in the plasma display device is very large as compared with the conventional plasma display device. For this reason, it is difficult to configure an image signal processing circuit having such a large number of conversion tables and selecting an optimum one from a large number of conversion tables according to various conditions. It is coming.
  • the plasma display device includes a plurality of electrode driving circuits for driving each electrode, and the driving voltage waveforms necessary for displaying an image on the panel are respectively displayed using the plurality of electrode driving circuits. Apply to electrode.
  • the plurality of electrode drive circuits include a data electrode drive circuit for driving the data electrodes.
  • the data electrode driving circuit applies a write pulse for a write operation to each of the plurality of data electrodes according to the image signal. Therefore, the data electrode driving circuit is generally configured using a dedicated integrated circuit (IC) for generating an address pulse.
  • IC integrated circuit
  • the data electrode viewed from the data electrode driving circuit is a capacitive load having a stray capacitance between adjacent data electrodes, a stray capacitance between the scan electrodes, and a stray capacitance between the sustain electrodes. Therefore, in order to apply a drive voltage waveform to the data electrode, the data electrode drive circuit must charge and discharge this capacitor, and power consumption for that purpose is required.
  • a plurality of subfields having gradation weights constitute one field, and each of the plurality of subfields is expressed using a subfield code indicating a combination of light emission and non-light emission in each of the plurality of subfields.
  • This is an image display device that controls the light emission and non-light emission, displays a gradation value based on an image signal on each of a plurality of pixels constituting the image display area, and displays an image in the image display area.
  • This image display device includes an image signal processing circuit that outputs a display code that is a subfield code for displaying a gradation value based on an image signal on a pixel.
  • the image signal processing circuit includes a subfield code conversion circuit, a subfield code arrangement circuit, and a dither element output circuit.
  • the subfield code conversion circuit performs dither processing on the image signal and converts the image signal into a subfield code.
  • the subfield code array circuit calculates a predicted value of power consumption when performing a sequential write operation in the write period as sequential write power based on the subfield code for one field output from the subfield code conversion circuit and writes Calculate the predicted power consumption when performing the interlaced write operation in the period as the interlaced write power, select the write operation with the smaller predicted power consumption, and select the subfields in the order corresponding to the selected write operation. Rearrange the code.
  • the dither element output circuit selects a dither element based on the image signal from preset dither patterns, and the dither element amplitude when the interlaced write power is greater than the sequential write power, the interlaced write power is the sequential write power.
  • the dither value is calculated by multiplying the dither element by a predetermined amplification factor so as to be smaller than the amplitude of the dither element in the case of being smaller.
  • the conversion from the image signal to the subfield code can be performed by calculation using the calculation circuit. Therefore, even in an image display device that needs to cope with high functionality and multi-function, it is not necessary to provide a huge number of conversion tables for converting image signals into subfield codes. That is, it is not necessary to configure the image signal processing circuit so as to select an optimal one from a vast number of conversion tables according to various conditions. Furthermore, power consumption can be suppressed while preventing deterioration in image display quality in the image display device.
  • the predetermined amplification factor is calculated based on sequential write power and interlaced write power.
  • the image display device of the present invention includes a base code generation unit, a rule generation unit, an upper and lower code generation unit, and a display code selection unit.
  • the base code generation unit has a gradation value that is larger than the gradation value of the image signal at the target pixel and has the closest gradation value to the gradation value of the image signal at the target pixel, from among a plurality of basic subfield codes.
  • the field code is selected as the upper gradation base code.
  • the rule generation unit generates a rule for generating a new subfield code by changing the light-emitting subfield in the upper gradation base code to a non-light-emitting subfield based on the image signal at the target pixel.
  • the upper / lower code generation unit applies the above-described rule to the upper gradation base code, and the gradation of the image signal at the target pixel is larger than the gradation value of the image signal at the target pixel.
  • the subfield code having the gradation value closest to the value is selected as the upper gradation code, and the gradation value closest to the gradation value of the image signal at the target pixel is equal to or lower than the gradation value of the image signal at the target pixel.
  • the subfield code having the lower gradation code is selected as the lower gradation code.
  • the display code selection unit calculates a gradation value to be displayed on the target pixel by adding a predetermined value to the gradation value of the image signal in the target pixel, and the target pixel of the upper gradation code and the lower gradation code The one having a gradation value closer to the gradation value to be displayed is selected as a display code.
  • the above-mentioned predetermined value is an error generated by the above-described dither value and error diffusion processing.
  • the plurality of basic subfield codes described above are all subfields having the largest gradation weight among the subfields that emit light, and all having a gradation weight smaller than that subfield.
  • This is a sub-field code in which the sub-field emits light.
  • the present invention also comprises a plurality of subfields using a subfield code indicating a combination of light emission and non-light emission in each of the plurality of subfields, with a plurality of subfields having gradation weights defined.
  • Method for driving an image display apparatus for controlling each light emission and non-light emission of each of the image display, displaying a gradation value based on an image signal on each of a plurality of pixels constituting the image display area, and displaying an image on the image display area It is.
  • This driving method performs a dither process on an image signal and converts the image signal into a subfield code, and a predicted value of power consumption when performing a sequential write operation in a write period based on a subfield code for one field.
  • the step of rearranging the subfield codes in the order corresponding to the write operation, and the dither element when the dither element is selected from the preset dither pattern based on the image signal and the interlaced write power is sequentially larger than the write power
  • the amplitude of As it is smaller than the amplitude of the element and a step of calculating a dither value by multiplying the predetermined amplification factor in the dither element.
  • the conversion from the image signal to the subfield code can be performed by calculation using the calculation circuit. Therefore, even in an image display device that needs to cope with high functionality and multi-function, it is not necessary to provide a huge number of conversion tables for converting image signals into subfield codes. That is, it is not necessary to configure the image signal processing circuit so as to select an optimal one from a vast number of conversion tables according to various conditions. Furthermore, power consumption can be suppressed while preventing deterioration in image display quality in the image display device.
  • the driving method of the image display device is more than the gradation value of the image signal at the pixel of interest, and is the highest in the gradation value of the image signal at the pixel of interest, among a plurality of basic subfield codes.
  • a subfield code having a gradation value that is larger and closest to the gradation value of the image signal at the target pixel is defined as the upper gradation code.
  • the predetermined amplification factor is calculated based on the sequential write power and the interlaced write power, and the predetermined value is an error generated by the dither value and error diffusion processing. .
  • FIG. 1 is an exploded perspective view showing a structure of a panel used in an image display apparatus according to an embodiment of the present invention.
  • FIG. 2 is an electrode array diagram of a panel used in the image display apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing drive voltage waveforms applied to the respective electrodes of the panel used in the image display device according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of a code set when one field is composed of eight subfields.
  • FIG. 5 is a diagram schematically showing an example of a circuit block constituting the image display device according to the embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing a structure of a panel used in an image display apparatus according to an embodiment of the present invention.
  • FIG. 2 is an electrode array diagram of a panel used in the image display apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing drive voltage waveforms applied to the respective electrodes of the panel used
  • FIG. 6 is a diagram schematically showing an example of a circuit block constituting the image signal processing circuit of the image display apparatus according to the embodiment of the present invention.
  • FIG. 7 is a diagram schematically showing an example of a circuit block constituting the subfield code conversion circuit and the dither element output circuit of the image display device according to the embodiment of the present invention.
  • FIG. 8A is a diagram illustrating an example of a base code set used in the image display device according to the embodiment of the present invention.
  • FIG. 8B is a diagram showing another example of the base code set used in the image display device according to the embodiment of the present invention.
  • FIG. 8C is a diagram illustrating another example of the base code set used in the image display device according to the embodiment of the present invention.
  • FIG. 8A is a diagram illustrating an example of a base code set used in the image display device according to the embodiment of the present invention.
  • FIG. 8B is a diagram showing another example of the base code set used in the image display device according to the embodiment of the
  • FIG. 9A is a diagram illustrating an example of an intermediate code set generated by the intermediate code generation unit of the image display device according to the embodiment of the present invention.
  • FIG. 9B is a diagram showing another example of the intermediate code set generated by the intermediate code generation unit of the image display device according to the embodiment of the present invention.
  • FIG. 9C is a diagram showing another example of the intermediate code set generated by the intermediate code generation unit of the image display device according to the embodiment of the present invention.
  • FIG. 10A is a diagram showing an example of a dither pattern used in the image display device in one embodiment of the present invention.
  • FIG. 10B is a diagram showing another example of the dither pattern used in the image display device according to the embodiment of the present invention.
  • FIG. 11 is a diagram showing the error diffusion coefficient of the error diffusion unit of the image display device according to the embodiment of the present invention.
  • FIG. 12 is a flowchart showing the operation of the image signal processing circuit of the image display device according to the embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing the structure of panel 10 used in the image display apparatus according to the embodiment of the present invention.
  • a plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustaining electrode 13 are formed on a glass front substrate 11.
  • a dielectric layer 15 is formed so as to cover the scan electrode 12 and the sustain electrode 13, and a protective layer 16 is formed on the dielectric layer 15.
  • This protective layer 16 has been used as a panel material in order to lower the discharge start voltage in the discharge cell, and has a large secondary electron emission coefficient and durability when neon (Ne) and xenon (Xe) gas is sealed. It is made of a material mainly composed of magnesium oxide (MgO).
  • the protective layer 16 may be composed of a single layer or may be composed of a plurality of layers. Moreover, the structure which particle
  • a plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is further formed thereon.
  • a phosphor layer 25R that emits red (R)
  • a phosphor layer 25G that emits green (G)
  • a phosphor layer 25B that emits blue (B).
  • the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
  • the front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with a minute space therebetween, and a discharge space is provided in the gap between the front substrate 11 and the rear substrate 21.
  • the outer peripheral part is sealed with sealing materials, such as glass frit.
  • sealing materials such as glass frit.
  • a mixed gas of neon and xenon is sealed in the discharge space as a discharge gas.
  • the discharge space is partitioned into a plurality of sections by the barrier ribs 24, and discharge cells, which are light-emitting elements constituting the pixels, are formed at the intersections between the display electrode pairs 14 and the data electrodes 22.
  • one pixel is composed of three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends.
  • the three discharge cells are a discharge cell having a phosphor layer 25R and emitting red (R) (red discharge cell), and a discharge cell having a phosphor layer 25G and emitting green (G) (green). And a discharge cell having a phosphor layer 25B and emitting blue (B) light (blue discharge cell).
  • the structure of the panel 10 is not limited to the above-described structure, and may be, for example, provided with a stripe-shaped partition wall.
  • FIG. 2 is an electrode array diagram of panel 10 used in the plasma display device according to one embodiment of the present invention.
  • the panel 10 includes n scan electrodes SC1 to SCn (scan electrode 12 in FIG. 1) extended in the horizontal direction (row direction and line direction) and n sustain electrodes SU1 to SUn (FIG. 1).
  • the sustain electrodes 13) are arranged, and m data electrodes D1 to Dm (data electrodes 22 in FIG. 1) extending in the vertical direction (column direction) are arranged.
  • m discharge cells are formed on one pair of display electrodes 14 and m / 3 pixels are formed.
  • the plasma display device in the present embodiment drives the panel 10 by the subfield method.
  • the subfield method one field of an image signal is divided into a plurality of subfields on the time axis, and a gradation weight is set for each subfield. Therefore, each field has a plurality of subfields having different gradation weights.
  • Each subfield has an initialization period, an address period, and a sustain period. Based on the image signal, light emission / non-light emission of each discharge cell is controlled for each subfield. That is, a plurality of gradations based on the image signal are displayed on the panel 10 by combining the light-emitting subfield and the non-light-emitting subfield based on the image signal.
  • an initializing operation is performed in which initializing discharge is generated in the discharge cells and wall charges necessary for the address discharge in the subsequent address period are formed on each electrode.
  • Initialization operation includes “forced initialization operation” that forcibly generates an initializing discharge in all discharge cells regardless of the operation of the immediately preceding subfield and an addressing discharge that occurs in the addressing period of the immediately preceding subfield.
  • the forced initializing operation the rising ramp waveform voltage and the falling ramp waveform voltage are applied to the scan electrode 12 to generate an initializing discharge in the discharge cell.
  • the forced initializing operation is performed in all discharge cells in the initializing period of one subfield, and all the discharge cells are selected in the initializing period of the other subfield. Perform initialization.
  • force initialization period the initialization period in which the forced initialization operation is performed
  • subfield having the forced initialization period is referred to as “forced initialization subfield”.
  • An initialization period for performing the selective initialization operation is referred to as a “selective initialization period”
  • a subfield having the selective initialization period is referred to as a “selective initialization subfield”.
  • subfield SF1 is a forced initialization subfield
  • the other subfields are selected initialization subfields.
  • the present invention is not limited to the above-described subfields as subfields for forced initialization subfields and subfields for selective initialization subfields.
  • the structure which switches a subfield structure based on an image signal etc. may be sufficient.
  • a scan pulse is applied to the scan electrode 12 and an address pulse is selectively applied to the data electrode 22 to selectively generate an address discharge in the discharge cells to emit light. Then, an address operation is performed to form wall charges in the discharge cells for generating a sustain discharge in the subsequent sustain period.
  • sustain pulses of the number obtained by multiplying the gradation weight set in each subfield by a predetermined proportional constant are alternately applied to the scan electrode 12 and the sustain electrode 13 to generate an address discharge in the immediately preceding address period.
  • a sustain discharge is generated in the discharged discharge cell, and a sustain operation for emitting light from the discharge cell is performed.
  • This proportionality constant is a luminance multiple.
  • the gradation weight represents the ratio of the magnitude of the luminance displayed in each subfield, and the number of sustain pulses corresponding to the gradation weight is generated in the sustain period in each subfield. Therefore, for example, the subfield with the gradation weight “8” emits light with a luminance about eight times that of the subfield with the gradation weight “1”, and about four times as high as the subfield with the gradation weight “2”. Emits light. Therefore, for example, if the subfield with the gradation weight “8” and the subfield with the gradation weight “2” are emitted, the discharge cell can emit light with a luminance corresponding to the gradation value “10”.
  • each discharge cell emits light with various gradation values by selectively emitting light in each subfield by controlling light emission / non-light emission of each discharge cell for each subfield in a combination according to the image signal. That is, a gradation value corresponding to an image signal can be displayed on each discharge cell, and an image based on the image signal can be displayed on the panel 10.
  • one pixel includes three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends, that is, a red discharge cell, a green discharge cell, and a blue discharge.
  • a red discharge cell is also referred to as a “red pixel”, a green discharge cell as a “green pixel”, and a blue discharge cell as a “blue pixel”.
  • FIG. 3 is a diagram schematically showing drive voltage waveforms applied to the respective electrodes of panel 10 used in the plasma display device according to one embodiment of the present invention.
  • FIG. 3 shows data electrode D1 to data electrode Dm, scan electrode SC1 that performs the address operation first in the address period, scan electrode SCn that performs the address operation last in the address period (for example, scan electrode SC1080), sustain electrode SU1 to The drive voltage waveform applied to each of the sustain electrodes SUn is shown.
  • Scan electrode SCi, sustain electrode SUi, and data electrode Dk in the following represent electrodes selected based on image data (data indicating light emission / non-light emission for each subfield) from among the electrodes.
  • FIG. 3 shows a subfield SF1 that is a forced initialization subfield, and a subfield SF2 and a subfield SF3 that are selective initialization subfields.
  • the subfield SF1, the subfield SF2, and the subfield SF3 have different waveform shapes of the drive voltage applied to the scan electrode 12 in the initialization period.
  • each subfield except subfield SF1 is a selective initialization subfield, and substantially the same drive voltage waveform in each period except the number of sustain pulses. Is generated.
  • the voltage 0 (V) is applied to the data electrode D1 to the data electrode Dm and the sustain electrode SU1 to the sustain electrode SUn.
  • a voltage Vi1 is applied to scan electrode SC1 through scan electrode SCn after voltage 0 (V) is applied, and a ramp waveform voltage that gradually rises from voltage Vi1 to voltage Vi2 (hereinafter referred to as an “upward ramp waveform voltage”). ) Is applied.
  • voltage Vi1 is set to a voltage lower than the discharge start voltage for sustain electrode SU1 to sustain electrode SUn
  • voltage Vi2 is set to a voltage exceeding the discharge start voltage for sustain electrode SU1 to sustain electrode SUn.
  • the wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer covering the electrode, the protective layer, the phosphor layer, and the like.
  • the positive voltage Ve is applied to the sustain electrodes SU1 to SUn, and the voltage 0 (V) is applied to the data electrodes D1 to Dm.
  • a scan waveform SC1 to scan electrode SCn are applied with a ramp waveform voltage that gently falls from voltage Vi3 to negative voltage Vi4 (hereinafter referred to as “down ramp waveform voltage”).
  • Voltage Vi3 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn
  • voltage Vi4 is set to a voltage exceeding the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn.
  • the above voltage waveform is a forced initializing waveform that generates an initializing discharge in the discharge cell regardless of the operation of the immediately preceding subfield.
  • the operation for applying the forced initialization waveform to the scan electrode 12 is the forced initialization operation.
  • the forced initialization operation in the initialization period Ti1 of the forced initialization subfield ends.
  • initializing discharge is forcibly generated in all the discharge cells in the image display area of the panel 10.
  • either the “sequential writing operation” or the “interlace writing operation” is performed during the writing period.
  • the sequential address operation scan pulses are applied to scan electrode 12 in the order of scan electrode SC1, scan electrode SC2, scan electrode SC3, scan electrode SC4,..., Scan electrode SCn-1, and scan electrode SCn.
  • the sequential address operation is an address operation in which scan pulses are sequentially applied to the scan electrodes 12 in the order in which the scan electrodes 12 are arranged on the panel 10.
  • the interlaced write operation includes scan electrode SC1, scan electrode SC3, scan electrode SC5,..., Scan electrode SCn-3, scan electrode SCn-1, scan electrode SC2, scan electrode SC4, scan electrode SC6,.
  • a scan pulse is applied to scan electrode 12 in the order of electrode SCn-4, scan electrode SCn-2, and scan electrode SCn. That is, in the interlaced write operation, first, scan pulses are sequentially applied to the odd-numbered (or even-numbered) scan electrodes 12 in the order in which the scan electrodes 12 are arranged on the panel 10, and then the even-numbered (or odd-numbered). This is an address operation in which scan pulses are sequentially applied to the scan electrode 12.
  • the interlaced write operation is different from the sequential write operation only in the order in which the scan pulses are applied to the scan electrodes 12, and the other operations are the same as the sequential write operation, and thus description thereof is omitted.
  • voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn
  • voltage 0 (V) is applied to data electrode D1 through data electrode Dm
  • scan electrode SC1 through scan electrode SCn are applied. Applies a voltage Vc.
  • a negative scan pulse having a negative voltage Va is applied to the first (first row) scan electrode SC1 in terms of arrangement.
  • a positive address pulse of a positive voltage Vd is applied to the data electrode Dk of the discharge cell that should emit light in the first row of the data electrodes D1 to Dm.
  • sustain electrode SU1 since voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, sustain electrode SU1 in a region intersecting data electrode Dk is induced by a discharge generated between data electrode Dk and scan electrode SC1. Discharge also occurs between scan electrode SC1 and scan electrode SC1. Thus, address discharge is generated in the discharge cells (discharge cells to emit light) to which the scan pulse voltage Va and the address pulse voltage Vd are simultaneously applied.
  • a positive wall voltage is accumulated on the scan electrode SC1
  • a negative wall voltage is accumulated on the sustain electrode SU1
  • a negative wall voltage is also accumulated on the data electrode Dk.
  • the address operation in the discharge cells in the first row is completed.
  • the discharge cell having the data electrode Dh to which the address pulse is not applied the data electrode Dh is the data electrode D1 to the data electrode Dm excluding the data electrode Dk
  • the intersection of the data electrode Dh and the scan electrode SC1 Since the voltage of the portion does not exceed the discharge start voltage, the address discharge does not occur, and the wall voltage after the end of the initialization period Ti1 is maintained.
  • a scan pulse of the voltage Va is applied to the second (second row) scan electrode SC2 from the top, and the voltage Vd is applied to the data electrode Dk corresponding to the discharge cell to emit light in the second row. Apply the write pulse.
  • address discharge occurs in the discharge cells in the second row to which the scan pulse and address pulse are simultaneously applied.
  • the address operation in the discharge cells in the second row is performed.
  • the order in which the scan pulse is applied to the scan electrode 12 is not limited to the order described above. What is necessary is just to set arbitrarily the order which applies a scanning pulse to the scanning electrode 12 according to the specification etc. in an image display apparatus.
  • voltage Ve applied to sustain electrode SU1 through sustain electrode SUn in the second half of initialization period Ti1 and voltage Ve applied to sustain electrode SU1 through sustain electrode SUn in address period Tw1 may have different voltage values. .
  • Each data electrode 22 is driven by a data electrode driving circuit.
  • Each of the data electrodes 22 viewed from the data electrode driving circuit has a stray capacitance generated between the adjacent data electrodes 22, a stray capacitance generated between the scan electrodes 12, and a stray capacitance generated between the sustain electrodes 13. It has a capacitive load.
  • the data electrode driving circuit has the capacitance when the voltage applied to each data electrode 22 is switched from the voltage 0 (V) to the voltage Vd and from the voltage Vd to the voltage 0 (V) in the address period. Must be charged and discharged, and power consumption for that purpose is required.
  • the power consumption of the data electrode driving circuit is also relatively large. Conversely, in the address period in which the number of times of charging / discharging is relatively small, the power consumption of the data electrode driving circuit is relatively small. Therefore, the power consumption of the data electrode driving circuit can be suppressed by suppressing the number of times of charging / discharging.
  • the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn. Then, sustain pulse of positive voltage Vs is applied to scan electrode SC1 through scan electrode SCn.
  • the voltage difference between the scan electrode SCi and the sustain electrode SUi exceeds the discharge start voltage, and is maintained between the scan electrode SCi and the sustain electrode SUi. Discharge occurs.
  • the phosphor layer 25 of the discharge cell in which the sustain discharge has occurred emits light by the ultraviolet rays generated by the sustain discharge.
  • a negative wall voltage is accumulated on scan electrode SCi
  • a positive wall voltage is accumulated on sustain electrode SUi.
  • a positive wall voltage is also accumulated on the data electrode Dk.
  • the sustain discharge does not occur in the discharge cells in which the address discharge has not occurred in the address period Tw1.
  • the sustain pulses of the number obtained by multiplying the gradation weight by a predetermined luminance multiple are alternately applied to scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn.
  • the discharge cells that have generated the address discharge in the address period generate the sustain discharges the number of times corresponding to the gradation weight, and emit light with the luminance corresponding to the gradation weight.
  • scan electrode SC1 to scan are performed while voltage 0 (V) is applied to sustain electrode SU1 to sustain electrode SUn and data electrode D1 to data electrode Dm.
  • An upward ramp waveform voltage that gradually rises from voltage 0 (V) to voltage Vr is applied to electrode SCn.
  • the sustain of the discharge cell that has generated the sustain discharge is maintained while the rising ramp waveform voltage applied to scan electrode SC1 through scan electrode SCn exceeds the discharge start voltage.
  • a weak discharge (erase discharge) is continuously generated between the electrode SUi and the scan electrode SCi.
  • the charged particles generated by this weak discharge are accumulated as wall charges on the sustain electrode SUi and the scan electrode SCi so as to reduce the voltage difference between the sustain electrode SUi and the scan electrode SCi.
  • the wall voltage on scan electrode SCi and the wall voltage on sustain electrode SUi are weakened while the positive wall voltage on data electrode Dk remains.
  • unnecessary wall charges in the discharge cell are erased.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn.
  • Scan electrode SC1 to scan electrode SCn decrease from a voltage lower than the discharge start voltage (for example, voltage 0 (V)) toward negative voltage Vi4 at the same gradient as the downward ramp waveform voltage generated in initialization period Ti1. Apply a downward ramp waveform voltage.
  • the voltage Vi4 is set to a voltage exceeding the discharge start voltage.
  • the negative wall voltage on scan electrode SCi and the positive wall voltage on sustain electrode SUi are weakened.
  • an excessive portion of the positive wall voltage on the data electrode Dk is discharged.
  • the wall voltage in the discharge cell is adjusted to a wall voltage suitable for the address operation in the address period Tw2.
  • the voltage waveform described above is a selective initialization waveform in which an initializing discharge is selectively generated in a discharge cell that has performed an address operation in the address period (here, address period Tw1) of the immediately preceding subfield.
  • the operation of applying the selective initialization waveform to the scan electrode 12 is the selective initialization operation.
  • the same drive voltage waveform as that in the address period Tw1 of the subfield SF1 is applied to each electrode.
  • the number of sustain pulses corresponding to the gradation weights are alternately applied to the scan electrodes SC1 to SCn and the sustain electrodes SU1 to SUn.
  • each subfield after subfield SF3 the same drive voltage waveform as in subfield SF2 is applied to each electrode except for the number of sustain pulses generated in the sustain period.
  • Voltage Vc ⁇ 60 (V)
  • voltage Va ⁇ 200 (V)
  • voltage Vs 200 (V)
  • voltage Vr 200 (V)
  • voltage Ve 130 (V)
  • voltage Vd 70 (V)
  • the gradient of the rising ramp waveform voltage generated in the initialization period Ti1 is about 1.3 V / ⁇ sec
  • the gradient of the rising ramp waveform voltage generated in each sustain period is about 10 V / ⁇ sec.
  • the gradient of the generated downward ramp waveform voltage is about ⁇ 1.5 V / ⁇ sec.
  • the specific numerical values such as the voltage value and the gradient described above are merely examples, and the present invention is not limited to the numerical values described above for each voltage value and the gradient.
  • Each voltage value, gradient, and the like are preferably set optimally based on the discharge characteristics of the panel and the specifications of the plasma display device.
  • subfield SF1 is a forced initialization subfield for performing a forced initialization operation
  • other subfields are a selective initialization subfield for performing a selective initialization operation
  • the present invention is not limited to this configuration.
  • the subfield SF1 may be a selective initialization subfield and other subfields may be forced initialization subfields, or a plurality of subfields may be forced initialization subfields.
  • one field is composed of a plurality of subfields in which gradation weights are determined in advance. Then, by combining a subfield that is lit (lighting subfield) and a subfield that is not lit (non-lighting subfield), each discharge cell emits light with a light emission luminance corresponding to the magnitude of the gradation value based on the image signal. .
  • subfield code a combination of a lighting subfield and a non-lighting subfield
  • code set a set of a plurality of subfield codes
  • a subfield code is selected from a plurality of subfield codes constituting a code set according to a gradation value. Then, light emission / non-light emission of each subfield is controlled based on the subfield code, and the discharge cell is caused to emit light with a luminance corresponding to the magnitude of the gradation value, and an image is displayed on the panel 10.
  • the gradation value when displaying black (the gradation value when no sustain discharge occurs) is assumed to be “0”.
  • a gradation value corresponding to the gradation weight “N” is expressed as a gradation value “N”.
  • the gradation value displayed by the discharge cells that emit light only in the subfield SF1 having the gradation weight “1” is the gradation value “1”.
  • FIG. 4 is a diagram showing an example of a code set when one field is composed of eight subfields.
  • the numerical value shown immediately below the notation indicating each subfield represents the gradation weight of each subfield.
  • FIG. 4 includes eight subfields SF1 to SF8 in one field, and each subfield is “1”, “2”, “3”, “5”, “8”, respectively. ”,“ 13 ”,“ 21 ”, and“ 34 ”indicate code sets having gradation weights.
  • the light emitting subfield is indicated by “1”
  • the non-light emitting subfield is indicated by a blank
  • the leftmost column indicates the gradation value to be displayed in each subfield code.
  • the subfield code corresponding to the gradation value “2” is “01000000”.
  • subfield code data 0 or 1 is arranged in the order of subfield SF1, subfield SF2, subfield SF3, subfield SF4, subfield SF5, subfield SF6, subfield SF7, and subfield SF8 from the left.
  • binary numerical values shown as subfield codes are arranged in the order of subfield SF1, subfield SF2, subfield SF3,.
  • the subfield code corresponding to the gradation value “14” is “11101000”. Accordingly, in the discharge cell displaying the gradation value “14”, the subfield SF1, the subfield SF2, the subfield SF3, and the subfield SF5 emit light.
  • FIG. 5 is a diagram schematically showing an example of a circuit block constituting the image display device 30 according to the embodiment of the present invention.
  • the image display device 30 includes a panel 10 and a drive circuit that drives the panel 10.
  • the drive circuit includes an image signal processing circuit 31, a data electrode drive circuit 32, a scan electrode drive circuit 33, a sustain electrode drive circuit 34, a timing generation circuit 35, and a power supply circuit (not shown) that supplies necessary power to each circuit block. It has.
  • the image signals input to the image signal processing circuit 31 are a red image signal, a green image signal, and a blue image signal. Based on the red image signal, the green image signal, and the blue image signal, the image signal processing circuit 31 sets each gradation value of red, green, and blue (a gradation value expressed by one field) to each discharge cell. To do.
  • the input image signal includes a luminance signal (Y signal) and a saturation signal (C signal, or RY signal and BY signal, or u signal and v signal, etc.).
  • a red image signal, a green image signal, and a blue image signal are calculated based on the luminance signal and the saturation signal, and then, each gradation value of red, green, and blue is set in each discharge cell.
  • the red, green, and blue gradation values set for each discharge cell are subfield codes indicating lighting / non-lighting for each subfield (light emission / non-light emission corresponds to digital signals “1” and “0”).
  • the subfield code is output as a display code. That is, the image signal processing circuit 31 converts the red image signal, the green image signal, and the blue image signal into a red display code, a green display code, and a blue display code and outputs the converted signals.
  • the image signal processing circuit 31 in the present embodiment predicts the power consumption of the data electrode driving circuit 32 when performing sequential write operations and when performing interlaced write operations in the write period. Then, the write operation with the lower power consumption of the data electrode drive circuit 32 is selected. Then, the display code whose arrangement is changed in the order corresponding to the write operation of the selected one is output.
  • the image signal processing circuit 31 does not convert an image signal into a subfield code using a conversion table, but converts the image signal into a subfield code by a logical operation. Details of this will be described later.
  • the timing generation circuit 35 generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal.
  • the generated timing signal is supplied to each circuit block (data electrode drive circuit 32, scan electrode drive circuit 33, sustain electrode drive circuit 34, image signal processing circuit 31, etc.).
  • Scan electrode drive circuit 33 includes a ramp waveform generation unit, a sustain pulse generation unit, and a scan pulse generation unit (not shown in FIG. 5), and generates a drive voltage waveform based on a timing signal supplied from timing generation circuit 35. Then, the voltage is applied to each of scan electrode SC1 to scan electrode SCn.
  • the ramp waveform generator generates a forced initialization waveform and a selective initialization waveform to be applied to scan electrode SC1 through scan electrode SCn during the initialization period based on the timing signal.
  • the sustain pulse generator generates a sustain pulse to be applied to scan electrode SC1 through scan electrode SCn during the sustain period based on the timing signal.
  • the scan pulse generator includes a plurality of scan electrode drive ICs (scan ICs), and generates scan pulses to be applied to scan electrode SC1 through scan electrode SCn during the address period based on the timing signal.
  • Sustain electrode drive circuit 34 includes a sustain pulse generation unit and a circuit (not shown in FIG. 5) for generating voltage Ve, and generates and maintains a drive voltage waveform based on the timing signal supplied from timing generation circuit 35.
  • the voltage is applied to each of electrode SU1 through sustain electrode SUn.
  • a sustain pulse is generated based on the timing signal and applied to sustain electrode SU1 through sustain electrode SUn.
  • voltage Ve is generated based on the timing signal and applied to sustain electrode SU1 through sustain electrode SUn.
  • the data electrode drive circuit 32 includes the same number of switch circuits 36 as the data electrodes 22. In this embodiment, since the number of data electrodes 22 is “m”, the data electrode drive circuit 32 includes m switch circuits 36 (switch circuit 36 (1) to switch circuit 36 (m)). Each of the m switch circuits 36 (1) to 36 (m) corresponds to each of the m data electrodes D1 to Dm.
  • the data electrode drive circuit 32 generates an address pulse corresponding to each of the data electrodes D1 to Dm based on the display code of each color output from the image signal processing circuit 31 and the timing signal supplied from the timing generation circuit 35. .
  • the data electrode drive circuit 32 then writes a write pulse (write pulse voltage Vd or 0 (V) from the switch circuit 36 (1) to the switch circuit 36 (m) to the data electrode D1 to the data electrode Dm during the write period. )) Is applied.
  • the dedicated IC In order for the dedicated IC to operate normally, it is necessary to keep the power consumption, temperature, etc. within the predetermined range as the standard for the dedicated IC. For example, if the power consumption exceeds a predetermined upper limit of power consumption (allowable power loss), the dedicated IC may cause an abnormal operation. Therefore, in the image display device 30, the data electrode drive circuit 32 needs to operate so that the power consumption of the dedicated IC does not exceed a predetermined upper limit.
  • the display code is generated so as to reduce the power consumption of the data electrode driving circuit 32 while preventing the image display quality in the image display device 30 from deteriorating. Details of generation of the display code will be described later.
  • the object of the image signal processing circuit 31 in the present embodiment is to reduce the power consumption of the data electrode driving circuit 32 while preventing the image display quality in the image display device 30 from being deteriorated.
  • the image signal processing circuit 31 reduces the number of subfield codes used for displaying an image. Then, the image signal processing circuit 31 generates rules to be described later in order to reduce the number of subfield codes used for image display.
  • FIG. 6 is a diagram schematically showing an example of a circuit block constituting the image signal processing circuit 31 of the image display device 30 according to the embodiment of the present invention.
  • the image signal processing circuit 31 includes a subfield code conversion circuit 37, a subfield code arrangement circuit 38, and a dither element output circuit 39.
  • the subfield code conversion circuit 37 performs dither processing on an image signal (hereinafter simply referred to as “image signal”) input to the image signal processing circuit 31 and converts the image signal into a subfield code (display code). To do.
  • the subfield code conversion circuit 37 does not convert the image signal into the subfield code using the conversion table, but converts the image signal into the subfield code by a logical operation. Details of this will be described later.
  • the subfield code array circuit 38 calculates “sequential write power” and “interlaced write power” for the subfield code for one field output from the subfield code conversion circuit 37.
  • “Sequential write power” predicts the power consumption of the data electrode drive circuit 32 if a sequential write operation is performed based on the subfield code for one field output from the subfield code conversion circuit 37 in the write period. It is a predicted value (estimated value of power consumption).
  • Interlaced writing power predicted how the power consumption of the data electrode drive circuit 32 would be if the interlaced writing operation was performed based on the subfield code for one field output from the subfield code conversion circuit 37 in the writing period. It is a predicted value.
  • the subfield code array circuit 38 selects the write operation with the smaller predicted power consumption value of the data electrode drive circuit 32. Further, the subfield code array circuit 38 outputs from the subfield code conversion circuit 37 so that the write operation is performed in the correct order when the scan pulses are generated in the write period in the order based on the selected write operation. Change the array of subfield codes to be displayed.
  • the subfield code arrangement circuit 38 includes a sequential write arrangement unit 91, an interlaced write arrangement unit 92, a power prediction unit 93, a power prediction unit 94, and an arrangement selection unit 95.
  • the sequential write array unit 91 rearranges the array of subfield codes output from the subfield code conversion circuit 37 in the order corresponding to the sequential write operation.
  • the subfield code arrangement circuit 38 has a storage device (for example, a semiconductor storage device such as a RAM, not shown in FIG. 6) that stores a subfield code for one field and can read it arbitrarily.
  • a storage device for example, a semiconductor storage device such as a RAM, not shown in FIG. 6
  • the sequential write array unit 91 reads the subfield codes stored in the storage device so as to correspond to the order of scan electrode SC1, scan electrode SC2, scan electrode SC3,..., Scan electrode SCn, Output.
  • the interlaced write array unit 92 rearranges the array of subfield codes output from the subfield code conversion circuit 37 in the order corresponding to the interlaced write operation. That is, the interlaced address array unit 92 converts the subfield codes stored in the storage device into scan electrode SC1, scan electrode SC3, scan electrode SC5,..., Scan electrode SCn-3, scan electrode SCn-1, The electrodes SC2, the scan electrode SC4, the scan electrode SC6,..., The scan electrode SCn-4, the scan electrode SCn-2, and the scan electrode SCn are read and output in order.
  • each of the write array unit 91 and the interlaced write array unit 92 is configured to sequentially read in the order corresponding to each write operation. This is because the output of the sequential write array unit 91 and the output of the interlaced write array unit 92 are matched with each other.
  • the power predicting unit 93 calculates the power consumption of the data electrode driving circuit 32 based on the subfield codes sequentially output from the write array unit 91. This calculation result is a predicted value of the power consumption of the data electrode driving circuit 32 when the sequential address operation is performed based on the subfield code for one field output from the subfield code conversion circuit 37 in the address period.
  • the power prediction unit 93 outputs the calculation result as “sequential write power Pprg”.
  • the power predicting unit 94 calculates the power consumption of the data electrode driving circuit 32 based on the subfield code output from the interlaced writing array unit 92. This calculation result is a predicted value of the power consumption of the data electrode driving circuit 32 when performing the interlaced write operation based on the subfield code for one field output from the subfield code conversion circuit 37 in the write period. The power predicting unit 94 outputs the calculation result as “interlaced writing power Pint”.
  • the power consumption of the data electrode drive circuit 32 increases as the number of changes in voltage applied to each of the data electrodes 22 (from voltage 0 (V) to voltage Vd or from voltage Vd to voltage 0 (V)) increases. . Further, when the voltage applied to the adjacent data electrode 22 changes in the opposite phase, it further increases.
  • the “reverse phase” refers to, for example, when the voltage applied to the data electrode Dk changes from the voltage 0 (V) to the voltage Vd, the voltage applied to the data electrode Dk + 1 changes from the voltage Vd to the voltage 0 (V). Things that change.
  • the pixel of interest is a pixel that is an object of calculation at that time.
  • the “bit” described above is data constituting a subfield code, and the numerical value of 1 or 0 represented by each bit represents lighting or non-lighting in each subfield.
  • each of the power prediction unit 93 and the power prediction unit 94 calculates a predicted value of power consumption in the data electrode drive circuit 32.
  • the power predicting unit 93 calculates a predicted value of the power consumption of the data electrode driving circuit 32 when performing the sequential address operation in the address period. Therefore, the power prediction unit 93 performs an exclusive OR operation for each bit of the subfield code assigned to each pixel for each pixel of interest and each pixel adjacent to the top, bottom, left, and right of the pixel of interest, The sum of the calculation results is calculated.
  • the power predicting unit 94 calculates a predicted value of the power consumption of the data electrode driving circuit 32 when performing the interlaced address operation in the address period.
  • the power predicting unit 94 includes the pixel of interest arranged between the pixel of interest and one pixel between the pixel of interest, and the pixel arranged below with the pixel of interest interposed therebetween. For each of the pixels adjacent to the left and right of the target pixel, an exclusive OR operation is performed for each bit of the subfield code assigned to each pixel, and the sum of the operation results is calculated.
  • the power prediction unit 93 and the power prediction unit 94 perform an exclusive OR operation of “11110000” and “11001100” and an exclusive OR operation of “11110000” and “11000011”.
  • the calculation results are “00111100” and “00110011”, respectively. Therefore, the sum of these calculation results is “8”.
  • the power predicting unit 93 and the power predicting unit 94 perform the same calculation on the target pixel and each pixel arranged above and below the target pixel, and calculate the sum of them.
  • the power prediction unit 93 and the power prediction unit 94 calculate the predicted value of power consumption in the target pixel. Then, the power prediction unit 93 and the power prediction unit 94 perform the above-described calculation for all the pixels provided in the image display area, and calculate the sum of them.
  • each of the power prediction unit 93 and the power prediction unit 94 predicts the power consumption in the data electrode drive circuit 32 for each field.
  • pixels continuously arranged on one data electrode 22 are referred to as “vertically continuous pixels”.
  • pixels continuously arranged on one display electrode pair 14 are referred to as “horizontal pixels”. Therefore, the pixels adjacent above and below the pixel of interest are pixels adjacent to the pixel of interest on one data electrode 22.
  • the pixels adjacent to the left and right of the target pixel are pixels adjacent to the target pixel on one display electrode pair 14.
  • the vertical direction is a direction in which the data electrode 22 extends
  • the horizontal direction is a direction in which the display electrode pair 14 extends.
  • the array selection unit 95 sequentially compares the write power Pprg and the interlaced write power Pint, and selects the one with the smaller numerical value.
  • the sequential write power Pprg is selected
  • the subfield code output from the sequential write array unit 91 is output to the data electrode drive circuit 32.
  • the interlaced write power Pint is selected
  • the subfield code output from the interlaced write array unit 92 is output to the data electrode drive circuit 32. That is, the array selection unit 95 compares the sequential write operation and the interlaced write operation with respect to the subfield code for one field output from the subfield code conversion circuit 37, and the power consumption of the data electrode drive circuit 32 is smaller. Select one of the write operations.
  • the dither element output circuit 39 outputs a dither element based on the image signal. Further, the dither element output circuit 39 is configured so that the amplitude of the dither element when the interlaced write power Pint is larger than the sequential write power Pprg is smaller than the amplitude of the dither element when the interlaced write power Pint is smaller than the sequential write power Pprg. Limit the amplitude of the dither element.
  • FIG. 7 is a diagram schematically showing an example of circuit blocks constituting the subfield code conversion circuit 37 and the dither element output circuit 39 of the image display device 30 according to the embodiment of the present invention.
  • the subfield code conversion circuit 37 includes an attribute detection unit 41, a base code generation unit 50, a rule generation unit 61, an upper and lower code generation unit 70, and a display code selection unit 80.
  • the dither element output circuit 39 has a dither selector 82 and a dither amplitude limiter 83.
  • the attribute detection unit 41 specifies the relationship between the image signal and the position of the pixel displaying the image signal.
  • the time differentiation of the image signal corresponding to each pixel determines whether each pixel is in the moving image area or the still image area. Detect if there is any.
  • a change in brightness is detected by spatial differentiation of the image signal (detecting a change in the image signal between adjacent pixels), and it is detected whether or not each pixel corresponds to the contour portion of the image. Then, those detection results are output as attributes of the image signal corresponding to each pixel.
  • a subfield code that is basic in subsequent signal processing is referred to as a “basic code”, and a code set including the base code is referred to as a “basic code set”.
  • the base code is a subfield code generated by lighting one by one or two in order from the subfield having the smallest gradation weight. Therefore, the base code is a subfield code in which a subfield having the largest gradation weight among the subfields to emit light and all subfields having a gradation weight smaller than that subfield emit light.
  • the base code generation unit 50 converts the tone value (hereinafter referred to as “input tone”) of the image signal input to the image signal processing circuit 31 from the base code set including a plurality of base codes. Based on the above, select “upper tone base code”.
  • the upper tone base code is a base code having a tone value larger than the input tone and having a tone value closest to the input tone. Accordingly, in the upper gradation base code, the subfield having the largest gradation weight among the lighting subfields and all subfields having the gradation weight smaller than that subfield are the lighting subfields.
  • the base code generation unit 50 selects a base code having a gradation value larger than the input gradation and closest to the input gradation, and outputs it as an upper gradation base code.
  • FIG. 8A is a diagram illustrating an example of a base code set used in the image display device 30 according to an embodiment of the present invention.
  • FIG. 8B is a diagram showing another example of the base code set used in the image display device 30 according to the embodiment of the present invention.
  • FIG. 8C is a diagram illustrating another example of the base code set used in the image display device 30 according to the embodiment of the present invention.
  • the light-emitting subfield is “1”
  • the non-light-emitting subfield is blank
  • each subfield code (base) is displayed in the second column from the left.
  • Code) represents the gradation value to be displayed.
  • the numerical value written immediately below the notation indicating each subfield in each base code set represents the gradation weight of each subfield.
  • FIG. 8A shows an example of a base code set often used in the NTSC standard.
  • one field is composed of eight subfields, and each subfield is “1”, “2”, “3”, “5”, “ It has gradation weights of “8”, “13”, “21”, and “34”.
  • the first subfield (subfield SF1) of one field is set to the subfield having the smallest gradation weight, and thereafter, the subfields are arranged so that the gradation weight is sequentially increased. . And it is set as a lighting subfield one by one in an order from the subfield with the smallest gradation weight. Therefore, the number of base codes included in this base code set is (the number of subfields constituting one field + 1). For example, in the example of the base code set shown in FIG. 8A, the number of base codes is nine.
  • FIG. 8B shows an example of a base code set often used in the PAL standard.
  • one field includes 12 subfields, and each subfield is “1”, “2”, “4”, “9”, “9” in order from the subfield SF1. It has gradation weights of “18”, “36”, “65”, “5”, “7”, “15”, “33”, “60”.
  • the base code set shown in FIG. 8B has two subfield groups.
  • the first subfield group is composed of subfields SF1 to SF7, and the second subfield group is composed of subfields SF8 to SF12.
  • Each subfield group has the first subfield of each subfield group (subfield SF1 and subfield SF8 in the example shown in FIG. 8B) as the subfield having the smallest gradation weight in each subfield group. Thereafter, the subfields are arranged so that the gradation weights are sequentially increased. In each subfield group, one or two lighting subfields are set in order from the subfield having the smallest gradation weight. Therefore, the number of base codes included in this base code set is equal to or less than (the number of subfields constituting one field + 1). For example, in the example of the base code set shown in FIG. 8B, the number of base codes is 10.
  • FIG. 8C shows an example of a base code set used in a 3D display device (stereoscopic display device).
  • the base code set shown in FIG. 8C includes one sub-field consisting of five sub-fields, and each sub-field is “1”, “16”, “8”, “4”, “ 2 "gradation weight.
  • the first subfield (subfield SF1) of one field is the subfield having the smallest gradation weight
  • the second subfield (subfield SF2) is the subfield having the largest gradation weight.
  • the subfields are arranged so that the gradation weights are sequentially reduced. And it is set as a lighting subfield one by one in an order from the subfield with the smallest gradation weight. Therefore, the number of base codes included in this base code set is (the number of subfields constituting one field + 1). For example, in the example of the base code set shown in FIG. 8C, the number of base codes is 6.
  • the image display device 30 in the present embodiment generates a new code set based on the base code set as described above, and converts the input gradation into a subfield code using the code set.
  • the base code generation unit 50 includes a base code storage unit 52 and a base code selection unit 54.
  • the base code storage unit 52 stores a base code set and gradation values of a plurality of base codes constituting the base code set. Each base code and each gradation value of the base code are stored in the base code storage unit 52 in association with each other.
  • the base code selection unit 54 compares each tone value of the base code constituting the base code set with the input tone. Then, a base code having a gradation value larger than the input gradation and closest to the input gradation is selected. Then, the selected base code is output as an upper gradation base code.
  • a new subcode not included in the base code set is obtained.
  • the rule generation unit 61 generates a rule for generating this new subfield code.
  • the rule generation unit 61 generates a base code based on the image signal and the attribute (attribute associated with the image signal) detected by the attribute detection unit 41 in order to increase the number of subfield codes used for image display.
  • a rule for changing the lighting subfield in the upper gradation base code selected in the unit 50 to the non-lighting subfield is generated.
  • the rule generated by the rule generation unit 61 defines a rule for changing the lighting subfield in the upper gradation base code to the non-lighting subfield.
  • the rule generated by the rule generation unit 61 restricts subfields to be changed from lighting to non-lighting in the upper gradation base code. This is because the gradation value of the new subfield code created by changing the lighting subfield to the non-lighting subfield in the upper gradation base code is smaller than the upper gradation base code. This is in order not to fall below.
  • the upper gradation base code allows unlimited subfields to change from lighting to non-lighting, all lighting subfields become non-lighting subfields, and subfield codes with a gradation value of “0” are generated. This is because there is a possibility that it may occur.
  • the rule generation unit 61 generates a rule so that the subfield code generated based on the rule has the next gradation value.
  • the “lower gradation base code” is a base code having a gradation value that is equal to or lower than the input gradation and closest to the input gradation.
  • the rule generated by the rule generation unit 61 is composed of one or more of the following three rules. 1) A rule for setting the first subfield to be changed from the lighting subfield to the non-lighting subfield. 2) A rule for setting the second subfield to be changed from the lighting subfield to the non-lighting subfield. 3) A rule for setting a sub-field that prohibits non-lighting.
  • the upper / lower code generation unit 70 applies the rule generated by the rule generation unit 61 to the upper gradation base code output from the base code generation unit 50 to generate an upper gradation code and a lower gradation code.
  • the upper gradation code is a sub-field code that can be newly generated based on the rule generated by the rule generation unit 61 and has a gradation value larger than the input gradation and closest to the input gradation. It is a field code.
  • the lower gradation code has a gradation value that is equal to or lower than the input gradation and closest to the input gradation among subfield codes that can be newly generated based on the rule generated by the rule generation unit 61. It is a subfield code.
  • the upper / lower code generation unit 70 includes an intermediate code generation unit 72 and an upper / lower code selection unit 74.
  • the intermediate code generation unit 72 changes the lighting subfield in the upper gradation base code to the non-lighting subfield and generates a new subfield code.
  • the newly generated subfield code is referred to as “intermediate code”.
  • a set obtained by adding the original upper tone base code to these intermediate codes is referred to as an “intermediate code set”.
  • the intermediate code is a subfield code used when displaying an image on panel 10. Therefore, each discharge cell of panel 10 emits light with a luminance of a gradation value based on the intermediate code.
  • FIG. 9A is a diagram illustrating an example of an intermediate code set generated by the intermediate code generation unit 72 of the image display device 30 according to the embodiment of the present invention.
  • FIG. 9B is a diagram illustrating another example of the intermediate code set generated by the intermediate code generation unit 72 of the image display device 30 according to the embodiment of the present invention.
  • FIG. 9C is a diagram illustrating another example of the intermediate code set generated by the intermediate code generation unit 72 of the image display device 30 according to the embodiment of the present invention.
  • the light-emitting subfield is “1”
  • the non-light-emitting subfield is blank
  • the second column from the left is the subfield code (intermediate code).
  • Code represents the gradation value to be displayed.
  • the numerical value written immediately below the notation indicating each subfield in each intermediate code set represents the gradation weight of each subfield.
  • one field includes eight subfields, and each subfield is “1”, “2”, and “3” in order from the subfield SF1. , “5”, “8”, “13”, “21”, “34”.
  • FIG. 9A as an example of the intermediate code set, the above-described “1) rule for setting the first subfield to be changed from the lighting subfield to the non-lighting subfield” is shown in FIG.
  • An intermediate code set generated by applying to the base code “11111100” of the value “32” is shown.
  • rule 1 This “1) rule for setting the first subfield to be changed from a lighting subfield to a non-lighting subfield” is a rule that “one of the lighting subfields is changed to a non-lighting subfield”. (Hereinafter referred to as “rule 1”).
  • the subfield code “11111000” obtained by changing the subfield SF6 to the non-lighting subfield is equal to the base code (No. 6) of the gradation value “19” illustrated in FIG. 8A. Accordingly, five subfield codes excluding the subfield code “11111000” are newly generated intermediate codes.
  • FIG. 9B as an example of the intermediate code set, in addition to the above-described rule 1, “2) a rule for setting the second subfield to be changed from the lighting subfield to the non-lighting subfield” is shown in FIG.
  • Rule 2 for setting the second subfield to be changed from the lighting subfield to the non-lighting subfield is “the subfield code having the smallest gradation value among the newly generated intermediate codes”.
  • the sub-field SF2 is a non-lighting sub-field ”(hereinafter referred to as“ rule 2 ”).
  • FIG. 9C as an example of the intermediate code set, in addition to the above-described rule 1, “3) a rule for setting a subfield that prohibits non-lighting” is shown in the gradation value “A” a rule for setting a subfield that prohibits non-lighting” is shown in the gradation value “A” a rule for setting a subfield that prohibits non-lighting” is shown in the gradation value “A” a rule for setting a subfield that prohibits non-lighting” is shown in the gradation value “ An intermediate code set generated by applying to the base code “11111100” of “32” is shown.
  • rule for setting a subfield that prohibits non-lighting is a rule that “subfield SF1 and subfield SF2 are prohibited from being non-lighting subfield” (hereinafter “rule”). 3 ”).
  • sub-field code in which sub-field SF1 or sub-field SF2 is a non-lighting sub-field has a sub-field code “10111100” with a gradation value “30” and a gradation value “ 31 ”is a sub-field code“ 01111100 ”.
  • the subfield codes having the gradation value “30” and the gradation value “31” are excluded from the intermediate code set.
  • the intermediate code generation unit 72 applies the rule generated by the rule generation unit 61 to the upper gradation base code output from the base code generation unit 50 to generate an intermediate code, and the intermediate code set Is generated.
  • rule 1 and rule 3 are used when generating intermediate code.
  • rule 2 may be added when generating intermediate code.
  • the image display device 30 displays an image with relatively low power consumption, or when an image with relatively little occurrence of moving image pseudo contour is displayed, the number of intermediate codes generated can be increased. It is. Then, by increasing the number of intermediate codes generated, an image can be displayed with a smoother gradation change.
  • the upper / lower code selection unit 74 compares each gradation value of the subfield code constituting the intermediate code set generated by the intermediate code generation unit 72 with the input gradation. Then, the upper / lower code selection unit 74 selects a subfield code having a gradation value larger than the input gradation and closest to the input gradation, and outputs it as an upper gradation code. In addition, the upper / lower code selection unit 74 selects a subfield code having a gradation value equal to or lower than the input gradation and closest to the input gradation, and outputs it as a lower gradation code.
  • the display code selection unit 80 calculates a gradation value to be displayed on the target pixel by adding a predetermined value to the input gradation. Then, the display code selection unit 80 selects one of the upper gradation code and the lower gradation code that has a gradation value closer to the gradation value to be displayed on the target pixel, and outputs it as a display code.
  • the pixel of interest is a pixel that is a target of calculation of a gradation value at that time.
  • the predetermined value described above includes at least a dither value calculated by dither processing.
  • the dither element output circuit 39 outputs a dither element based on the image signal. Further, the dither element output circuit 39 makes the amplitude of the dither element when the interlaced write power Pint is larger than the sequential write power Pprg smaller than the amplitude of the dither element when the interlaced write power Pint is smaller than the sequential write power Pprg. Limit the amplitude of the dither element.
  • the dither element output circuit 39 has a dither selector 82 and a dither amplitude limiter 83.
  • the dither selection unit 82 stores a plurality of dither patterns. Then, one dither pattern is selected from a plurality of stored dither patterns based on the image signal and the attribute detected by the attribute detection unit 41.
  • the dither selection unit 82 selects and outputs a dither element corresponding to the position of the pixel from the selected dither pattern based on the position of the pixel displaying the image signal.
  • FIG. 10A is a diagram illustrating an example of a dither pattern used in the image display device 30 according to an embodiment of the present invention.
  • FIG. 10B is a diagram showing another example of the dither pattern used in the image display device 30 according to the embodiment of the present invention.
  • one column represents one pixel.
  • FIG. 10A shows the simplest binary dither.
  • “+0.25” and “ ⁇ 0.25” are arranged in a checkered pattern as dither elements.
  • FIG. 10B is a diagram showing an example of quaternary dither. In FIG. 10B, dither elements “+0.375”, “+0.125”, “ ⁇ 0.375” and “ ⁇ 0.125” are arranged.
  • the dither selection unit 82 stores, for example, the two types of dither patterns shown in FIGS. 10A and 10B, and selects either one of the dither patterns based on the image signal and the attribute detected by the attribute detection unit 41. .
  • the dither pattern shown in FIG. 10A is selected, the dither element is either “+0.25” or “ ⁇ 0.25”.
  • the dither element shown in FIG. 10B is selected, the dither element is “+0”. .375 ”,“ +0.125 ”,“ ⁇ 0.375 ”, and“ ⁇ 0.125 ”.
  • the dither selection unit 82 selects any one of these dither elements based on the position of the pixel displaying the image signal.
  • the dither amplitude limiter 83 receives the gradation value of the upper gradation code and the gradation value of the lower gradation code, and further outputs the sequential writing power Pprg and the skipping of the previous field output from the subfield code array circuit 38.
  • Write power Pint is input, and power control signal Cnt is input.
  • the dither amplitude limiting unit 83 calculates an amplification factor A for limiting the amplitude of the dither element based on these input signals.
  • This amplification factor A is a predetermined amplification factor.
  • the dither value output from the dither selector 82 is multiplied by the amplification factor A to calculate the dither value.
  • the amplitude of the dither element is a difference (absolute value) between the maximum value and the minimum value of the dither value (a numerical value obtained by multiplying the dither element by the amplification factor A).
  • the magnitude of the dither value changes. Therefore, if the amplification factor A becomes relatively large, the amplitude of the dither element becomes relatively large, and the amplification factor A becomes relatively large. The smaller the amplitude, the smaller the dither element amplitude.
  • the amplification factor A is calculated by the following equation.
  • A Max (0, upper / lower gradation difference ⁇ K ⁇ Min (Cnt, IP))
  • Cnt is a power control signal Cnt input to the dither element output circuit 39 from the outside of the image signal processing circuit 31.
  • K is a constant.
  • IP is a power ratio between the sequential write power Pprg and the interlaced write power Pint, and is calculated by the following equation.
  • the power ratio IP Pint / (Pint + Pprg)
  • the power ratio IP is a numerical value in a range from “0” to “1”. If the power ratio IP is a numerical value relatively close to “0”, it indicates that the write power Pprg is sequentially larger than the interlaced write power Pint. Further, if the power ratio IP is a numerical value relatively close to “1”, it indicates that the interlaced write power Pint is larger than the sequential write power Pprg.
  • Min (x, y) is a function for obtaining the smaller one of x and y (including the case where they are equal), and Max (x, y) is the larger one of x and y (equal). (Including cases).
  • the amplification factor A is substantially equal to the upper / lower gradation difference, and the image signal processing circuit 31 performs normal dither processing.
  • the power ratio IP is relatively large, the amplification factor A is relatively small, the dither value is also relatively small, and the dither processing is suppressed. The reason why the dither processing is controlled using the power ratio IP will be described below.
  • Dither processing and error diffusion processing are methods of displaying on the panel 10 pseudo gradation values not included in the display code.
  • fine patterns appearing on the panel 10 are generated by performing these processing, although they are not included in the image signal.
  • the dither pattern is devised to prevent the pattern from being recognized by the user. That is, as shown in FIGS. 10A and 10B, the dither pattern is set in a checkered pattern, or the dither pattern is set so that the frequency in the vertical and horizontal directions of the pattern is increased.
  • the array selecting unit 95 selects the interlaced write operation. Therefore, even if the dither processing is performed with the amplification factor A set to a relatively large value, an increase in power consumption of the data electrode driving circuit 32 is suppressed.
  • the array selecting unit 95 sequentially selects the write operation. Therefore, in such a case, the amplification factor A is set to a relatively small numerical value to suppress the effect of the dithering process. As a result, when an image is displayed on the panel 10, the influence of the error diffusion process is greater than that of the dither process.
  • the error diffusion process is set to have a lower frequency in the vertical direction of the pattern appearing on the panel 10 when each process is performed than the dither process. Therefore, even if the error diffusion process is performed when the sequential write operation is selected, an increase in power consumption of the data electrode driving circuit 32 can be suppressed. Details of this will be described later.
  • the power control signal Cnt is a control signal provided to limit the upper limit value of the power ratio IP. If the power control signal Cnt is set to a small value, the dither process can always be performed regardless of the magnitude of the power ratio IP.
  • the display code selection unit 80 calculates a gradation value to be displayed on the target pixel by adding a predetermined value to the input gradation. Then, of the upper gradation code and the lower gradation code, the one having a gradation value closer to the gradation value to be displayed on the target pixel is selected and output as a display code.
  • the above-described predetermined value added to the input gradation is an error diffused by the error diffusion process and a dither value calculated by the dither process. Therefore, the display code selection unit 80 adds the error and the dither value to the input gradation to calculate the gradation value to be displayed on the target pixel, and selects the target pixel from the upper gradation code and the lower gradation code. The one having a gradation value closer to the gradation value to be displayed is selected as a display code. Further, the display code selection unit 80 calculates the difference between the gradation value to be displayed on the target pixel and the gradation value of the display code, and diffuses the difference as an error to surrounding pixels.
  • the display code selection unit 80 includes an error diffusion unit 84 and a display code determination unit 86.
  • the error diffusion unit 84 outputs an error to be added to the target pixel to the display code determination unit 86 and diffuses the error output from the display code determination unit 86 to the peripheral pixels of the target pixel.
  • FIG. 11 is a diagram showing error diffusion coefficients of the error diffusion unit 84 of the image display device 30 according to the embodiment of the present invention.
  • one column represents one pixel.
  • the middle column in FIG. 11 represents a pixel (target pixel) that is a target of error diffusion processing.
  • the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged at the upper left of the target pixel by the diffusion coefficient k1 to the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged on the target pixel by the diffusion coefficient k2 to the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged at the upper right of the target pixel by the diffusion coefficient k3 to the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged on the left of the target pixel by the diffusion coefficient k4 to the target pixel.
  • the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k4 to the pixel arranged on the right side of the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k3 to the pixel arranged at the lower left of the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k2 to the pixel arranged below the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k1 to the pixel arranged at the lower right of the target pixel.
  • which diffusion coefficient is selected is determined using a random number generated by a random number generator (not shown).
  • each diffusion coefficient in the error diffusion process is set to the above-described numerical value.
  • the error diffusion processing is performed by the panel rather than the dither processing using the checkered dither pattern.
  • the two-dimensional frequency of the pattern displayed in 10 (not included in the image signal, but a fine pattern appearing on the panel 10 by performing these processes) can be lowered in the vertical direction. The reason will be described below.
  • the user averages and observes the gradation values displayed on adjacent pixels.
  • this phenomenon is used, and the gradation values not included in the intermediate code set are displayed on the panel 10 in a pseudo manner using a plurality of gradation values included in the intermediate code set. That is, by displaying a plurality of gradation values included in the intermediate code set on a plurality of adjacent pixels, the user averages and observes the gradation values displayed on those pixels, and the intermediate code set It is perceived that gradation values not included in the screen are displayed on the panel 10. Therefore, even if the number of gradation values that can be displayed by individual pixels is limited, an image can be displayed on the panel 10 using a larger number of gradation values than the limited number.
  • a pixel that displays a gradation value higher than the gradation value based on the image signal and a gradation value lower than the gradation value based on the image signal are displayed.
  • the pixels to be arranged are arranged in a certain pattern. This pattern depends on the diffusion coefficients k1 to k4 used in the error diffusion process. This pattern may be perceived by the user as a fine pattern (pattern) appearing on the panel 10 by the error diffusion process.
  • the diffusion coefficient k2 for diffusing the error in the vertical direction and the diffusion coefficient k4 for diffusing the error in the diagonal direction are set by relatively setting a diffusion coefficient k2 for diffusing the error in the vertical direction and the diffusion coefficient k4 for diffusing the error in the horizontal direction.
  • the coefficient k3 is set to a relatively small value, a checkered pattern is likely to occur on the panel 10.
  • the voltage applied to the data electrode 22 is changed from the voltage 0 (V) to the voltage Vd, or from the voltage Vd to the voltage 0 (V).
  • the number of times of switching is relatively increased, and the power consumption of the data electrode drive circuit 32 is relatively likely to increase.
  • the diffusion coefficient k1 and diffusion coefficient k3 for diffusing errors in the oblique direction and the diffusion coefficient k4 for diffusing errors in the horizontal direction are set to relatively large values, and the errors are diffused in the vertical direction. If the diffusion coefficient k2 is set to a relatively small numerical value, a vertical line pattern is likely to occur on the panel 10.
  • Such a vertical line pattern can relatively suppress the power consumption of the data electrode drive circuit 32, but the pattern is easily perceived by the user, and the image display quality is likely to be deteriorated.
  • the diffusion coefficient k2 for diffusing the error in the vertical direction, and the diffusion coefficient k1 and the diffusion coefficient k3 for diffusing the error in the oblique direction are set to relatively similar numerical values. is doing.
  • the number (frequency) of switching the voltage applied to the data electrode 22 from the voltage 0 (V) to the voltage Vd or from the voltage Vd to the voltage 0 (V) in the sequential write operation is checked. About half of the dither processing using a dither pattern.
  • the display code determination unit 86 Based on the input gradation, the dither value output from the dither amplitude limiting unit 83, and the error output from the error diffusion unit 84, the display code determination unit 86 converts the display code actually used for image display into the upper gradation. Either a code or a lower gradation code is determined.
  • the display code determination unit 86 calculates a gradation value to be displayed on the target pixel by adding the dither value and the error to the input gradation.
  • the display code is selected as the display code.
  • the display code determination unit 86 calculates the difference between the gradation value to be displayed on the target pixel and the gradation value of the display code, and outputs the difference to the error diffusion unit 84 as a newly generated error.
  • the image signal processing circuit 31 operates based on the following conditions. 1)
  • the base code set shown in FIG. 8A is used as the base code set. 2)
  • the rules used in the description of FIG. 9A are used. That is, rule 1 “change any one of the lighting subfields to a non-lighting subfield” is used. 3) Based on the attribute accompanying the image signal, “Rule for setting sub-field forbidden to turn off” (rule 3) is added to rule 1.
  • FIG. 12 is a flowchart showing the operation of the image signal processing circuit 31 of the image display device 30 according to the embodiment of the present invention.
  • the image signal processing circuit 31 executes the following series of steps.
  • Step S41 An image signal corresponding to one pixel (target pixel) is input to the image signal processing circuit 31.
  • the attribute detection unit 41 detects an attribute associated with the image signal.
  • the image signal corresponding to the target pixel has a gradation value (input gradation) of “25”, and the attribute detection unit 41 detects that the attribute associated with the image signal is a moving image and a contour portion.
  • the description will be given on the assumption that it was obtained.
  • Step S50 The base code generation unit 50 selects an upper tone base code corresponding to the image signal.
  • step S50 the sub-field code having a gradation value that is larger than the gradation value of the image signal at the target pixel and closest to the gradation value of the image signal at the target pixel is selected from the plurality of basic sub-field codes.
  • the field code is selected as the upper gradation base code.
  • the base code generation unit 50 compares each tone value of the base code constituting the base code set stored in the base code storage unit 52 with the input tone. Then, a base code having a gradation value larger than the input gradation and closest to the input gradation is selected and output as an upper gradation base code.
  • the base code generation unit 50 selects the base code “11111100” having the gradation value “32” and outputs it as the upper gradation base code.
  • Step S61 The rule generation unit 61 generates a rule for generating an intermediate code set.
  • step S61 a rule for generating a new subfield code by changing the light emitting subfield in the upper gradation base code to a non-light emitting subfield is generated based on the image signal at the target pixel.
  • the rule generation unit 61 performs a basic rule (rule 1) “change any one of the lighting subfields to the non-lighting subfield” if the attribute attached to the image signal is a still image. ) Is generated.
  • the rule generation unit 61 restricts the subfield codes that can be used for displaying the image in order to suppress the moving image pseudo contour.
  • the subfield codes include those that have a high effect of suppressing moving image pseudo contours and those that do not.
  • the base codes shown in FIGS. 8A to 8C are subfield codes that have a high effect of suppressing the moving image pseudo contour.
  • the appearance of the moving image pseudo contour depends on the subfield code that can be used to display the image, and the image is displayed using the subfield code that is highly effective in suppressing the moving image pseudo contour.
  • the moving image pseudo contour can be suppressed.
  • the subfield code that can be used for displaying an image is limited as compared with the case where the suppression of the moving image pseudo contour is unnecessary. This is the reason why the rule generation unit 61 restricts the subfield codes that can be used for image display in order to suppress the moving image pseudo contour.
  • the rule generating unit 61 sets “a subfield that prohibits non-lighting” in the basic rule 1 in order to suppress the moving image pseudo contour. Add “When the rule”.
  • This additional rule is, for example, rule 3 described with reference to FIG. 9C, that “subfield SF1 and subfield SF2 are prohibited from being non-lighting subfields”.
  • the rule generation unit 61 limits the subfield codes that can be used for displaying an image.
  • the rule generated by the rule generation unit 61 is that the attribute attached to the image signal is a still image.
  • the rule generation unit 61 includes a rule that is generated when the image signal at the target pixel is a still image.
  • Step S72 The intermediate code generation unit 72 generates an intermediate code set.
  • the intermediate code generation unit 72 generates an intermediate code from the upper gradation base code based on the rules generated by the rule generation unit 61, and generates an intermediate code set.
  • step S50 For example, if the upper tone base code selected in step S50 is the base code “11111100” having the tone value “32” and the rules generated by the rule generation unit 61 are rule 1 and rule 3, intermediate code generation is performed.
  • the unit 72 applies the rules 1 and 3 generated by the rule generation unit 61 to the base code “11111100” to generate a new intermediate code.
  • the subfields SF1 to SF6 which are the lighting subfields of the base code “11111100”
  • the subfields (subfield SF3 to subfield are excluded based on rule 3 except for subfield SF1 and subfield SF2).
  • SF6 is to be replaced with a non-lighting subfield.
  • the subfields SF3 to SF6 are set to non-lighting subfields.
  • the intermediate code generation unit 72 generates four intermediate codes “11111000”, “11110100”, “11101100”, and “11011100”.
  • the intermediate code set thus obtained is, for example, the intermediate code set shown in FIG. 9C.
  • the upper / lower code selection unit 74 selects an upper gradation code and a lower gradation code.
  • step S74 the tone value of the image signal at the target pixel is larger than the tone value of the image signal at the target pixel from the intermediate code set generated by applying the above-described rule to the upper tone base code.
  • the subfield code having the closest gradation value is selected as the upper gradation code, and the subfield code having the gradation value closest to the gradation value of the image signal at the target pixel is equal to or smaller than the gradation value of the image signal at the target pixel.
  • Select the field code as the lower gradation code.
  • the upper / lower code selection unit 74 compares each gradation value of the subfield code constituting the intermediate code set with the input gradation. Then, a subfield code having a gradation value larger than the input gradation and closest to the input gradation is selected and output as an upper gradation code. Also, a subfield code having a gradation value that is equal to or lower than the input gradation and closest to the input gradation is selected, and is output as a lower gradation code.
  • the subfield code corresponding to the upper gradation code is gradation. It is a subfield code of value “27”.
  • the subfield code corresponding to the lower gradation code is a subfield code having a gradation value of “24”. Therefore, the upper / lower code selection unit 74 selects the subfield code “11101100” having the gradation value “27” as the upper gradation code, and the subfield code “11110100” having the gradation value “24” as the lower gradation code. ”Is selected.
  • Step S82 The dither selection unit 82 selects a dither element based on the attribute of the image signal.
  • the dither selection unit 82 uses the attribute detected by the image signal and attribute detection unit 41. Based on the above, one of the dither patterns is selected.
  • the dither pattern shown in FIG. 10A is selected. If the attribute attached to the image signal is not a contour portion, the dither pattern shown in FIG. 10B is selected. If the selection unit 82 is set, when the attribute attached to the image signal is a contour portion, the dither selection unit 82 selects the dither pattern shown in FIG. 10A. Then, the dither selection unit 82 selects one of the dither elements set in the dither pattern based on the position of the target pixel. For example, the dither selection unit 82 selects “0.25” as the dither element based on the dither pattern shown in FIG. 10A.
  • Step S83 The dither amplitude limiter 83 calculates a dither value.
  • the dither amplitude limiter 83 receives the gradation value of the upper gradation code and the gradation value of the lower gradation code, sequentially receives the write power Pprg and the interlaced write power Pint, and further receives the power control signal Cnt. The Then, the dither amplitude limiting unit 83 calculates an amplification factor A for limiting the amplitude of the dither element based on these input signals. Then, the dither value output from the dither selector 82 is multiplied by the amplification factor A to calculate the dither value.
  • the dither amplitude limiting unit 83 sets the amplification factor A to a relatively small numerical value, thereby reducing the dither value to a relatively small numerical value, and suppresses the effect of the dither processing. By doing so, an increase in power consumption of the data electrode drive circuit 32 is suppressed.
  • Step S86 The display code determination unit 86 calculates a gradation value to be displayed on the target pixel.
  • step S86 a predetermined value is added to the gradation value of the image signal at the target pixel to calculate the gradation value to be displayed on the target pixel.
  • the display code determination unit 86 adds the dither value calculated in step S83 to the input gradation, and further adds the error output from the error diffusion unit 84 based on the calculation result in step S88.
  • the gradation value to be displayed on the target pixel is calculated. Therefore, the predetermined value described above is a numerical value obtained by adding the dither value output from the dither selection unit 82 and the error output from the error diffusion unit 84.
  • the input gradation is the gradation value “25”
  • the dither value calculated in step S83 is “0.25”
  • the input gradation is the gradation value “25”
  • the dither value calculated in step S83 is “0.25”
  • the error output from the error diffusion unit 84 based on the calculation result in step S88 is “ +0.4 ”
  • 25 + 0.25 + 0.4 25.65. Therefore, the gradation value to be displayed on the target pixel is “25.65”.
  • Step S87 The display code determining unit 86 determines a display code to be used when displaying the gradation value on the target pixel.
  • step S87 the upper gradation code and the lower gradation code having the gradation value closer to the gradation value to be displayed on the target pixel is selected as the display code.
  • the display code determination unit 86 compares the gradation value to be displayed on the target pixel with the gradation value of the upper gradation code and the gradation value of the lower gradation code. If the gradation value to be displayed on the target pixel is closer to the gradation value of the upper gradation code than the gradation value of the lower gradation code, the display used when displaying the gradation value on the attention pixel Select the upper gradation code as the code and output it. Further, when the gradation value to be displayed on the target pixel is closer to the gradation value of the lower gradation code than the gradation value of the upper gradation code, it is used when displaying the gradation value on the attention pixel. The lower gradation code is selected as the display code and is output.
  • the display code determination unit 86 outputs the lower gradation code “11110100” having the gradation value “24” as the display code.
  • the display code determination unit 86 outputs the lower gradation code “11101100” having the gradation value “27” as the display code.
  • Step S88 The display code determination unit 86 calculates the error and outputs it to the error diffusion unit 84.
  • the display code determination unit 86 subtracts the gradation value of the display code from the gradation value to be displayed on the target pixel, and outputs the subtraction result to the error diffusion unit 84 as a newly generated error.
  • the display code determination unit 86 outputs this “0.85” as an error to the error diffusion unit 84.
  • the display code determination unit 86 outputs this “ ⁇ 1.35” as an error to the error diffusion unit 84.
  • step S88 When step S88 is completed, the process returns to step S41. In this way, a series of steps from step S41 to step S88 are repeatedly executed.
  • the sequential writing array unit 91 rearranges the array of subfield codes for the image signal of one field output from the subfield code conversion circuit 37 in the order corresponding to the sequential writing operation.
  • the interlaced writing array unit 92 rearranges the array of subfield codes for the image signal of one field output from the subfield code conversion circuit 37 in the order corresponding to the interlaced writing operation.
  • the power predicting unit 93 calculates the sequential write power Pprg of the data electrode driving circuit 32 based on the subfield code output from the sequential write array unit 91.
  • the power predicting unit 94 calculates the interlaced write power Pint of the data electrode drive circuit 32 based on the subfield code output from the interlaced write array unit 92.
  • the array selection unit 95 sequentially compares the write power Pprg and the interlaced write power Pint, and selects the one with the smaller numerical value.
  • the sequential write power Pprg is selected, the subfield code output from the sequential write array unit 91 is output to the data electrode drive circuit 32.
  • the interlaced write power Pint is selected, the subfield code output from the interlaced write array unit 92 is output to the data electrode drive circuit 32.
  • conversion from an image signal to a display code can be performed by calculation using an arithmetic circuit. Therefore, even in such an image display device, it is not necessary to provide a huge number of conversion tables, and a minimum necessary table (for example, the base code set shown in FIGS. 8A, 8B, and 8C) and an image signal It is only necessary to provide an arithmetic circuit for converting from to display code.
  • the write operation is performed by either the sequential write operation or the interlaced write operation. Further, the amplitude of the dither value used for the dither process is controlled according to the selected write operation. As a result, an increase in power consumption in the data electrode drive circuit 32 is suppressed while using both error diffusion processing and dither processing.
  • the conversion from the image signal to the subfield code can be performed by the logical operation, and the data electrode drive circuit is prevented while preventing the image display quality from being deteriorated.
  • the power consumption in 32 can be suppressed.
  • the configuration in which the base code generation unit 50 has the base code storage unit 52 and the base code set is stored in advance in the base code storage unit 52 has been described.
  • the present invention is not limited to this configuration.
  • a configuration may be adopted in which a rule for generating a base code is determined in advance and the base code is generated based on the rule.
  • the upper / lower code generation unit 70 selects the upper gradation code and the lower gradation code by the upper / lower code selection unit 74 after the intermediate code set is generated by the intermediate code generation unit 72.
  • the present invention is not limited to this configuration.
  • an intermediate code is generated in order of increasing gradation value, and at the same time, the intermediate code and the input gradation are sequentially compared to select the upper gradation code and the lower gradation code.
  • dither processing and error diffusion processing are performed after setting a subfield for prohibiting the write operation. Therefore, even in the image display device 30 that selects a display code from an intermediate code set having a limited number of subfield codes and uses it to display an image, it is possible to prevent a decrease in image display quality.
  • the present invention is not necessarily limited to this configuration.
  • the error diffusion unit 84 may be omitted when the error diffusion process is not performed.
  • the number of subfields constituting one field, the subfields that are forced initialization subfields, the gradation weights of each subfield, and the like are not limited to the above-described numerical values. Moreover, the structure which switches a subfield structure based on an image signal etc. may be sufficient.
  • the drive voltage waveform shown in FIG. 3 is merely an example in the embodiment of the present invention, and the present invention is not limited to this drive voltage waveform.
  • circuit configurations shown in FIGS. 5, 6, and 7 are merely examples in the embodiment of the present invention, and the present invention is not limited to these circuit configurations.
  • each circuit block shown in the embodiment of the present invention may be configured as an electric circuit that performs each operation shown in the embodiment, or a microcomputer that is programmed to perform the same operation. May be used.
  • the number of subfields constituting one field is not limited to the above number.
  • the number of gradations that can be displayed on the panel 10 can be further increased.
  • the time required for driving panel 10 can be shortened by reducing the number of subfields.
  • one pixel is constituted by discharge cells of three colors of red, green, and blue.
  • a panel in which one pixel is constituted by discharge cells of four colors or more has been described.
  • the specific numerical values shown in the embodiment of the present invention are set based on the characteristics of the panel 10 having a screen size of 50 inches and the number of display electrode pairs 14 of 1024. It is just an example.
  • the present invention is not limited to these numerical values, and each numerical value is desirably set optimally in accordance with panel specifications, panel characteristics, plasma display device specifications, and the like. Each of these numerical values is allowed to vary within a range where the above-described effect can be obtained.
  • the number of subfields constituting one field, the gradation weight of each subfield, and the like are not limited to the values shown in the embodiment of the present invention, and the subfield configuration is based on an image signal or the like. May be configured to switch.
  • the present invention since conversion from an image signal to a subfield code can be performed by calculation, it is not necessary to use a conversion table composed of a large number of subfield codes, and power consumption can be prevented while preventing deterioration in image display quality. Therefore, the present invention is useful as an image display device that displays an image in an image display region by combining binary control of light emission and non-light emission in a light emitting element that constitutes a pixel, and a driving method of the image display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Conversion from an image signal to a subfield code in an image display device is computed without using a conversion table. To this end, the image display device has a subfield code conversion circuit (37), a subfield code array circuit (38), and a dither element output circuit (39). The subfield code conversion circuit (37) dither processes an image signal and converts the image signal into a subfield code. The subfield code array circuit (38) selects either a sequential write operation or a skip write operation on the basis of a comparison between sequential write power and skip write power, and rearranges the subfield code in an order corresponding to the selected write operation. The dither element output circuit (39) calculates a dither value by multiplying a dither element by a prescribed amplitude factor, in a manner such that the amplitude of the dither element in the case that the skip write power is greater than the sequential write power, is smaller than the amplitude of the dither element in the case that the skip write power is less than the sequential write power.

Description

画像表示装置および画像表示装置の駆動方法Image display device and driving method of image display device
 本発明は、画素を構成する発光素子における発光と非発光との2値制御を組み合わせて画像表示領域に画像を表示する画像表示装置および画像表示装置の駆動方法に関する。 The present invention relates to an image display device that displays an image in an image display region by combining binary control of light emission and non-light emission in a light emitting element that constitutes a pixel, and a driving method of the image display device.
 画素を構成する発光素子における発光と非発光との2値制御を組み合わせて画像表示領域に画像を表示する画像表示装置として代表的なものにプラズマディスプレイパネル(以下、「パネル」と略記する)がある。 A plasma display panel (hereinafter abbreviated as “panel”) is a typical image display device that displays an image in an image display area by combining binary control of light emission and non-light emission in a light emitting element constituting a pixel. is there.
 パネルは、対向配置された前面基板と背面基板との間に、画素を構成する発光素子である放電セルが多数形成されている。前面基板は、1対の走査電極と維持電極とからなる表示電極対が前面側のガラス基板上に互いに平行に複数対形成されている。そして、それら表示電極対を覆うように誘電体層および保護層が形成されている。 In the panel, a large number of discharge cells, which are light-emitting elements constituting pixels, are formed between a front substrate and a rear substrate that are arranged to face each other. In the front substrate, a plurality of pairs of display electrodes composed of a pair of scan electrodes and sustain electrodes are formed on the front glass substrate in parallel with each other. A dielectric layer and a protective layer are formed so as to cover the display electrode pairs.
 背面基板は、背面側のガラス基板上に複数の平行なデータ電極が形成され、それらデータ電極を覆うように誘電体層が形成され、さらにその上にデータ電極と平行に複数の隔壁が形成されている。そして、誘電体層の表面と隔壁の側面とに蛍光体層が形成されている。 The back substrate has a plurality of parallel data electrodes formed on the glass substrate on the back side, a dielectric layer is formed so as to cover the data electrodes, and a plurality of barrier ribs are formed thereon in parallel with the data electrodes. ing. And the fluorescent substance layer is formed in the surface of a dielectric material layer, and the side surface of a partition.
 そして、表示電極対とデータ電極とが立体交差するように、前面基板と背面基板とを対向配置して密封する。密封された内部の放電空間には、例えば分圧比で5%のキセノンを含む放電ガスを封入し、表示電極対とデータ電極とが対向する部分に放電セルを形成する。このような構成のパネルにおいて、各放電セル内でガス放電により紫外線を発生し、この紫外線で赤色(R)、緑色(G)および青色(B)の各色の蛍光体を励起発光してカラーの画像表示を行う。 Then, the front substrate and the rear substrate are arranged opposite to each other and sealed so that the display electrode pair and the data electrode are three-dimensionally crossed. In the sealed internal discharge space, for example, a discharge gas containing xenon at a partial pressure ratio of 5% is sealed, and a discharge cell is formed in a portion where the display electrode pair and the data electrode face each other. In the panel having such a configuration, ultraviolet rays are generated by gas discharge in each discharge cell, and the phosphors of each color of red (R), green (G) and blue (B) are excited and emitted by the ultraviolet rays. Display an image.
 発光素子における発光と非発光との2値制御を組み合わせて画像表示領域に画像を表示する方法としては一般にサブフィールド法が用いられている。 A subfield method is generally used as a method for displaying an image in an image display region by combining binary control of light emission and non-light emission in a light emitting element.
 サブフィールド法では、1フィールドを、発光輝度が互いに異なる複数のサブフィールドに分割する。そして、各放電セルでは、所望の階調値に応じた組合せで各サブフィールドの発光・非発光を制御する。これにより1フィールドの発光輝度を所望の階調値にして各放電セルを発光し、パネルの画像表示領域に、様々な階調値の組合せで構成された画像を表示する。 In the subfield method, one field is divided into a plurality of subfields having different emission luminances. In each discharge cell, light emission / non-light emission of each subfield is controlled by a combination according to a desired gradation value. Thus, each discharge cell emits light with the emission luminance of one field set to a desired gradation value, and an image composed of various combinations of gradation values is displayed in the image display area of the panel.
 サブフィールド法において、各サブフィールドは、書込み期間および維持期間を有する。 In the subfield method, each subfield has an address period and a sustain period.
 書込み期間では、走査電極に走査パルスを順次印加するとともに、データ電極には表示すべき画像信号にもとづき選択的に書込みパルスを印加する。これにより、発光を行うべき放電セルの走査電極とデータ電極との間に書込み放電を発生し、その放電セル内に壁電荷を形成する(以下、これらの動作を総称して「書込み」とも記す)。 In the address period, the scan pulse is sequentially applied to the scan electrodes, and the address pulse is selectively applied to the data electrodes based on the image signal to be displayed. As a result, an address discharge is generated between the scan electrode and the data electrode of the discharge cell to emit light, and a wall charge is formed in the discharge cell (hereinafter, these operations are also collectively referred to as “address”). ).
 維持期間では、サブフィールド毎に定められた階調重みにもとづく数の維持パルスを走査電極と維持電極とからなる表示電極対に交互に印加する。これにより、書込み放電を発生した放電セルで維持放電を発生し、その放電セルの蛍光体層を発光させる(以下、放電セルを維持放電により発光させることを「点灯」、発光させないことを「非点灯」とも記す)。これにより、各サブフィールドにおいて、各放電セルを、階調重みに応じた輝度で発光させる。このようにして、パネルの各放電セルを画像信号の階調値に応じた輝度で発光させて、パネルの画像表示領域に画像を表示する。 In the sustain period, the number of sustain pulses based on the gradation weights determined for each subfield is alternately applied to the display electrode pairs composed of the scan electrodes and the sustain electrodes. As a result, a sustain discharge is generated in the discharge cell that has generated the address discharge, and the phosphor layer of the discharge cell emits light (hereinafter referred to as “lighting” that the discharge cell emits light by the sustain discharge, and “non-emitting”). Also written as “lit”.) Thereby, in each subfield, each discharge cell is made to emit light with the luminance according to the gradation weight. In this way, each discharge cell of the panel is caused to emit light with a luminance corresponding to the gradation value of the image signal, and an image is displayed in the image display area of the panel.
 プラズマディスプレイ装置は、画像信号処理回路を備えている。画像信号処理回路は、プラズマディスプレイ装置に入力される画像信号(以下、単に「画像信号」と記す)を、各放電セルにおけるサブフィールド毎の点灯・非点灯を示すサブフィールドコードに変換する。 The plasma display device has an image signal processing circuit. The image signal processing circuit converts an image signal (hereinafter simply referred to as “image signal”) input to the plasma display device into a subfield code indicating lighting / non-lighting for each subfield in each discharge cell.
 画像信号処理回路は、複数のサブフィールドコードで構成された変換テーブルを有する。変換テーブルでは、1つの階調値に1つのサブフィールドコードが対応付けられている。すなわち、変換テーブルは、1つの階調値が入力されると、その階調値に対応付けられた1つのサブフィールドコードを出力する。 The image signal processing circuit has a conversion table composed of a plurality of subfield codes. In the conversion table, one subfield code is associated with one gradation value. That is, when one gradation value is input, the conversion table outputs one subfield code associated with the gradation value.
 変換テーブルは、例えば、ROM等の半導体記憶素子に記憶されて、画像信号処理回路に備えられる。そして、画像信号処理回路は、その変換テーブルを用いて、画像信号の各階調値を、各階調値に対応したサブフィールドコード(サブフィールド毎の発光・非発光を示すデータ)に変換し、後段の回路に出力する。 The conversion table is stored in a semiconductor storage element such as a ROM and provided in the image signal processing circuit. Then, using the conversion table, the image signal processing circuit converts each gradation value of the image signal into a subfield code (data indicating light emission / non-light emission for each subfield) corresponding to each gradation value. Output to the circuit.
 したがって、プラズマディスプレイ装置において、パネルに表示できる階調値の数は、変換テーブルを構成するサブフィールドコードの数によって決まる。変換テーブルを構成するサブフィールドコードの数が多ければ、パネルに表示できる階調値の数は増加し、変換テーブルを構成するサブフィールドコードの数が少なければ、パネルに表示できる階調値の数は減少する。 Therefore, in the plasma display device, the number of gradation values that can be displayed on the panel is determined by the number of subfield codes constituting the conversion table. If the number of subfield codes constituting the conversion table is large, the number of gradation values that can be displayed on the panel increases, and if the number of subfield codes constituting the conversion table is small, the number of gradation values that can be displayed on the panel. Decrease.
 パネルに表示できる階調値の数とプラズマディスプレイ装置の消費電力とは関連性があり、消費電力を減少させようとすると、パネルに表示できる階調値の数は相対的に減少する。したがって、変換テーブルを構成するサブフィールドコードは、一般的には、プラズマディスプレイ装置の消費電力や、パネルに表示できる画像の滑らかさ等を考慮して決められる。 The number of gradation values that can be displayed on the panel is related to the power consumption of the plasma display device, and the number of gradation values that can be displayed on the panel is relatively reduced when the power consumption is reduced. Therefore, the subfield codes constituting the conversion table are generally determined in consideration of the power consumption of the plasma display device, the smoothness of the image that can be displayed on the panel, and the like.
 パネルに表示できる階調値の数が減少すると、パネルに表示できない階調値が増加する。例えば、変換テーブルに階調値「7」、階調値「9」のサブフィールドコードが含まれ、階調値「8」のサブフィールドコードが含まれていなければ、パネルに階調値「8」は表示できない。しかし、パネルに表示できない階調値は、一般に知られたディザ法や誤差拡散法といった手法を用いることで、擬似的にパネルに表示することができる。 When the number of gradation values that can be displayed on the panel decreases, the gradation values that cannot be displayed on the panel increase. For example, if the conversion table includes the subfield code of gradation value “7” and gradation value “9” and does not include the subfield code of gradation value “8”, the gradation value “8” is displayed on the panel. "Cannot be displayed. However, gradation values that cannot be displayed on the panel can be displayed on the panel in a pseudo manner by using a generally known method such as a dither method or an error diffusion method.
 プラズマディスプレイ装置では、動画像をパネルに表示する際に、元の画像信号には含まれない偽の輪郭が使用者に観測されることがある。この偽の輪郭は、一般に、動画擬似輪郭と呼ばれている。この動画擬似輪郭は、変換テーブルを構成するサブフィールドコードの数に応じて変化することが知られており、変換テーブルを構成するサブフィールドコードの数が増えると、動画擬似輪郭は発生しやすくなる。 In the plasma display device, when a moving image is displayed on the panel, a false contour that is not included in the original image signal may be observed by the user. This false contour is generally called a moving image pseudo contour. It is known that this moving image pseudo contour changes according to the number of subfield codes constituting the conversion table, and when the number of subfield codes constituting the conversion table increases, the moving image pseudo contour is likely to occur. .
 プラズマディスプレイ装置においては、パネルに表示できる階調値をできるだけ多くして滑らかな階調の変化で画像を表示することが望ましく、一方、動画擬似輪郭はできるだけ低減することが望ましい。そして、滑らかな階調表示と動画擬似輪郭の抑制とを両立するために、変換テーブルを構成するサブフィールドコードの数や種類が異なる複数の変換テーブルをプラズマディスプレイ装置に備え、それら複数の変換テーブルを画像信号に応じて切り替えて用いる技術が開示されている(例えば、特許文献1参照)。 In the plasma display device, it is desirable to display the image with a smooth gradation change by increasing the gradation values that can be displayed on the panel as much as possible, while reducing the moving image pseudo contour as much as possible. In order to achieve both smooth gradation display and suppression of moving image pseudo contour, the plasma display device includes a plurality of conversion tables having different numbers and types of subfield codes constituting the conversion table, and the plurality of conversion tables. Has been disclosed (for example, see Patent Document 1).
 特許文献1に記載された技術では、プラズマディスプレイ装置に複数の変換テーブルを備える。そして、画像信号の最小値および平均値を求め、この最小値および平均値からしきい値を算出する。そして、このしきい値にもとづき複数の変換テーブルの中から1つの変換テーブルを選択する。そして、選択した変換テーブルにもとづき画像信号をサブフィールドコードに変換する。 In the technique described in Patent Document 1, a plasma display device includes a plurality of conversion tables. Then, a minimum value and an average value of the image signal are obtained, and a threshold value is calculated from the minimum value and the average value. Then, one conversion table is selected from a plurality of conversion tables based on this threshold value. Then, the image signal is converted into a subfield code based on the selected conversion table.
 しかしながら、パネルの大画面化、高精細度化、画像表示品質のさらなる向上、放送方式の多様化、立体視用の3D画像の表示機能等の多機能化、等へプラズマディスプレイ装置を対応させるためには、プラズマディスプレイ装置に備えるべき変換テーブルの数が、従来のプラズマディスプレイ装置と比較して非常に多くなる。そのため、そのような膨大な数の変換テーブルを備え、様々な条件に応じて膨大な数の変換テーブルの中から最適な1つを選択するように画像信号処理回路を構成することが困難になってきている。 However, in order to make the plasma display device compatible with a larger screen, higher definition, further improvement of image display quality, diversification of broadcasting methods, multi-functionality such as 3D image display function for stereoscopic viewing, etc. In this case, the number of conversion tables to be provided in the plasma display device is very large as compared with the conventional plasma display device. For this reason, it is difficult to configure an image signal processing circuit having such a large number of conversion tables and selecting an optimum one from a large number of conversion tables according to various conditions. It is coming.
 また、プラズマディスプレイ装置は、各電極を駆動するために複数の電極駆動回路を備えており、その複数の電極駆動回路を用いて、パネルに画像を表示するために必要な駆動電圧波形をそれぞれの電極に印加する。 In addition, the plasma display device includes a plurality of electrode driving circuits for driving each electrode, and the driving voltage waveforms necessary for displaying an image on the panel are respectively displayed using the plurality of electrode driving circuits. Apply to electrode.
 それら複数の電極駆動回路には、データ電極を駆動するためのデータ電極駆動回路が含まれる。 The plurality of electrode drive circuits include a data electrode drive circuit for driving the data electrodes.
 データ電極駆動回路は、複数のデータ電極のそれぞれに、書込み動作のための書込みパルスを画像信号に応じて印加する。そのため、データ電極駆動回路は、一般的には、書込みパルスを発生するための専用の集積回路(IC)を用いて構成される。 The data electrode driving circuit applies a write pulse for a write operation to each of the plurality of data electrodes according to the image signal. Therefore, the data electrode driving circuit is generally configured using a dedicated integrated circuit (IC) for generating an address pulse.
 データ電極駆動回路から見たデータ電極は、隣接するデータ電極間の浮遊容量、走査電極との間の浮遊容量、および維持電極との間の浮遊容量を有する容量性の負荷である。したがって、データ電極駆動回路は、データ電極に駆動電圧波形を印加するために、この容量を充放電しなければならず、そのための消費電力が必要となる。 The data electrode viewed from the data electrode driving circuit is a capacitive load having a stray capacitance between adjacent data electrodes, a stray capacitance between the scan electrodes, and a stray capacitance between the sustain electrodes. Therefore, in order to apply a drive voltage waveform to the data electrode, the data electrode drive circuit must charge and discharge this capacitor, and power consumption for that purpose is required.
 ICを用いてデータ電極駆動回路を構成するためには、データ電極駆動回路の消費電力をできるだけ低減することが望ましい。そこで、データ電極駆動回路の消費電力を低減する技術が開示されている(例えば、特許文献2参照)。 In order to configure a data electrode driving circuit using an IC, it is desirable to reduce the power consumption of the data electrode driving circuit as much as possible. Therefore, a technique for reducing the power consumption of the data electrode driving circuit is disclosed (for example, see Patent Document 2).
 特許文献2に記載された技術では、データ電極に印加する書込みパルスの順序を変更して充放電電流を減らす。こうして、データ電極駆動回路の消費電力を制限する。 In the technique described in Patent Document 2, the charge / discharge current is reduced by changing the order of address pulses applied to the data electrodes. Thus, the power consumption of the data electrode driving circuit is limited.
 しかしながら、パネルを大画面化、高精細度化したプラズマディスプレイ装置では、データ電極駆動回路での消費電力が増加する傾向にある。そのため、データ電極に印加する書込みパルスの順序を変更するだけでは、データ電極駆動回路の消費電力を抑制する効果が十分ではなくなってきている。 However, in a plasma display device with a large panel and high definition, power consumption in the data electrode drive circuit tends to increase. Therefore, the effect of suppressing the power consumption of the data electrode driving circuit is not sufficient only by changing the order of the address pulses applied to the data electrodes.
特開2000-098959号公報JP 2000-098959 A 特開2009-180977号公報JP 2009-180977 A
 本発明は、階調重みが定められた複数のサブフィールドで1フィールドを構成し、複数のサブフィールドのそれぞれにおける発光と非発光との組合せを示すサブフィールドコードを用いて複数のサブフィールドのそれぞれの発光と非発光とを制御して、画像表示領域を構成する複数の画素のそれぞれに画像信号にもとづく階調値を表示して画像表示領域に画像を表示する画像表示装置である。この画像表示装置は、画像信号にもとづく階調値を画素に表示するためのサブフィールドコードである表示コードを出力する画像信号処理回路を備える。画像信号処理回路は、サブフィールドコード変換回路と、サブフィールドコード配列回路と、ディザ要素出力回路とを有する。サブフィールドコード変換回路は、画像信号にディザ処理を行うとともに画像信号をサブフィールドコードに変換する。サブフィールドコード配列回路は、サブフィールドコード変換回路から出力される1フィールド分のサブフィールドコードにもとづき、書込み期間において順次書込み動作を行うときの消費電力の予測値を順次書込み電力として算出するとともに書込み期間において飛越書込み動作を行うときの消費電力の予測値を飛越書込み電力として算出し、消費電力の予測値が小さい方の書込み動作を選択し、選択した方の書込み動作に対応した順番にサブフィールドコードを配列し直す。ディザ要素出力回路は、あらかじめ設定されたディザパターンの中から、画像信号にもとづきディザ要素を選択し、飛越書込み電力が順次書込み電力より大きい場合のディザ要素の振幅が、飛越書込み電力が順次書込み電力より小さい場合のディザ要素の振幅よりも小さくなるように、ディザ要素に所定の増幅率を乗算してディザ値を算出する。 In the present invention, a plurality of subfields having gradation weights constitute one field, and each of the plurality of subfields is expressed using a subfield code indicating a combination of light emission and non-light emission in each of the plurality of subfields. This is an image display device that controls the light emission and non-light emission, displays a gradation value based on an image signal on each of a plurality of pixels constituting the image display area, and displays an image in the image display area. This image display device includes an image signal processing circuit that outputs a display code that is a subfield code for displaying a gradation value based on an image signal on a pixel. The image signal processing circuit includes a subfield code conversion circuit, a subfield code arrangement circuit, and a dither element output circuit. The subfield code conversion circuit performs dither processing on the image signal and converts the image signal into a subfield code. The subfield code array circuit calculates a predicted value of power consumption when performing a sequential write operation in the write period as sequential write power based on the subfield code for one field output from the subfield code conversion circuit and writes Calculate the predicted power consumption when performing the interlaced write operation in the period as the interlaced write power, select the write operation with the smaller predicted power consumption, and select the subfields in the order corresponding to the selected write operation. Rearrange the code. The dither element output circuit selects a dither element based on the image signal from preset dither patterns, and the dither element amplitude when the interlaced write power is greater than the sequential write power, the interlaced write power is the sequential write power. The dither value is calculated by multiplying the dither element by a predetermined amplification factor so as to be smaller than the amplitude of the dither element in the case of being smaller.
 これにより、画像信号からサブフィールドコードへの変換を、演算回路を用いた演算によって行うことができるようになる。したがって、高機能化や多機能化等への対応が必要な画像表示装置においても、画像信号からサブフィールドコードへの変換を行う膨大な数の変換テーブルを備える必要がなくなる。すなわち、様々な条件に応じて膨大な数の変換テーブルの中から最適な1つを選択するように画像信号処理回路を構成する必要がなくなる。さらに、画像表示装置における画像表示品質の低下を防止しつつ、消費電力を抑制することができる。 Thus, the conversion from the image signal to the subfield code can be performed by calculation using the calculation circuit. Therefore, even in an image display device that needs to cope with high functionality and multi-function, it is not necessary to provide a huge number of conversion tables for converting image signals into subfield codes. That is, it is not necessary to configure the image signal processing circuit so as to select an optimal one from a vast number of conversion tables according to various conditions. Furthermore, power consumption can be suppressed while preventing deterioration in image display quality in the image display device.
 また、本発明の画像表示装置において、上述の所定の増幅率は、順次書込み電力と飛越書込み電力とにもとづき算出される。 In the image display device of the present invention, the predetermined amplification factor is calculated based on sequential write power and interlaced write power.
 また、本発明の画像表示装置は、基底コード生成部と、ルール生成部と、上下コード生成部と、表示コード選択部とを有する。基底コード生成部は、複数の基本となるサブフィールドコードの中から、注目画素における画像信号の階調値よりも大きく、かつ注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調基底コードとして選択する。ルール生成部は、注目画素における画像信号にもとづき、上階調基底コードにおける発光するサブフィールドを非発光のサブフィールドに変更して新たなサブフィールドコードを生成するためのルールを生成する。上下コード生成部は、上階調基底コードに上述のルールを適用して新たに生成されるサブフィールドコードの中から、注目画素における画像信号の階調値より大きく注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調コードとして選択し、かつ、注目画素における画像信号の階調値以下で注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを下階調コードとして選択する。表示コード選択部は、注目画素における画像信号の階調値に、所定の値を加算して注目画素に表示すべき階調値を算出し、上階調コードおよび下階調コードのうち注目画素に表示すべき階調値により近い階調値を有する方を表示コードとして選択する。 Also, the image display device of the present invention includes a base code generation unit, a rule generation unit, an upper and lower code generation unit, and a display code selection unit. The base code generation unit has a gradation value that is larger than the gradation value of the image signal at the target pixel and has the closest gradation value to the gradation value of the image signal at the target pixel, from among a plurality of basic subfield codes. The field code is selected as the upper gradation base code. The rule generation unit generates a rule for generating a new subfield code by changing the light-emitting subfield in the upper gradation base code to a non-light-emitting subfield based on the image signal at the target pixel. The upper / lower code generation unit applies the above-described rule to the upper gradation base code, and the gradation of the image signal at the target pixel is larger than the gradation value of the image signal at the target pixel. The subfield code having the gradation value closest to the value is selected as the upper gradation code, and the gradation value closest to the gradation value of the image signal at the target pixel is equal to or lower than the gradation value of the image signal at the target pixel. The subfield code having the lower gradation code is selected as the lower gradation code. The display code selection unit calculates a gradation value to be displayed on the target pixel by adding a predetermined value to the gradation value of the image signal in the target pixel, and the target pixel of the upper gradation code and the lower gradation code The one having a gradation value closer to the gradation value to be displayed is selected as a display code.
 また、本発明の画像表示装置において、上述した所定の値は、上述したディザ値および誤差拡散処理により発生する誤差である。 Further, in the image display device of the present invention, the above-mentioned predetermined value is an error generated by the above-described dither value and error diffusion processing.
 また、本発明の画像表示装置において、上述した複数の基本となるサブフィールドコードは、発光するサブフィールドのうち最も階調重みが大きいサブフィールドと、そのサブフィールドよりも小さい階調重みを有する全てのサブフィールドが発光するサブフィールドコードである。 In the image display device of the present invention, the plurality of basic subfield codes described above are all subfields having the largest gradation weight among the subfields that emit light, and all having a gradation weight smaller than that subfield. This is a sub-field code in which the sub-field emits light.
 また、本発明は、階調重みが定められた複数のサブフィールドで1フィールドを構成し、複数のサブフィールドのそれぞれにおける発光と非発光との組合せを示すサブフィールドコードを用いて複数のサブフィールドのそれぞれの発光と非発光とを制御して、画像表示領域を構成する複数の画素のそれぞれに画像信号にもとづく階調値を表示して画像表示領域に画像を表示する画像表示装置の駆動方法である。この駆動方法は、画像信号にディザ処理を行うとともに画像信号をサブフィールドコードに変換するステップと、1フィールド分のサブフィールドコードにもとづき、書込み期間において順次書込み動作を行うときの消費電力の予測値を順次書込み電力として算出するとともに書込み期間において飛越書込み動作を行うときの消費電力の予測値を飛越書込み電力として算出し、消費電力の予測値が小さい方の書込み動作を選択し、選択した方の書込み動作に対応した順番にサブフィールドコードを配列し直すステップと、あらかじめ設定されたディザパターンの中から、画像信号にもとづきディザ要素を選択し、飛越書込み電力が順次書込み電力より大きい場合のディザ要素の振幅が、飛越書込み電力が順次書込み電力より小さい場合のディザ要素の振幅よりも小さくなるように、ディザ要素に所定の増幅率を乗算してディザ値を算出するステップとを有する。 The present invention also comprises a plurality of subfields using a subfield code indicating a combination of light emission and non-light emission in each of the plurality of subfields, with a plurality of subfields having gradation weights defined. Method for driving an image display apparatus for controlling each light emission and non-light emission of each of the image display, displaying a gradation value based on an image signal on each of a plurality of pixels constituting the image display area, and displaying an image on the image display area It is. This driving method performs a dither process on an image signal and converts the image signal into a subfield code, and a predicted value of power consumption when performing a sequential write operation in a write period based on a subfield code for one field. Are calculated as sequential write power, and the predicted value of power consumption when performing the interlaced write operation during the write period is calculated as the interlaced write power, and the write operation with the smaller predicted power consumption is selected and the selected one is selected. The step of rearranging the subfield codes in the order corresponding to the write operation, and the dither element when the dither element is selected from the preset dither pattern based on the image signal and the interlaced write power is sequentially larger than the write power When the interlaced write power is smaller than the sequential write power, the amplitude of As it is smaller than the amplitude of the element, and a step of calculating a dither value by multiplying the predetermined amplification factor in the dither element.
 これにより、画像信号からサブフィールドコードへの変換を、演算回路を用いた演算によって行うことができるようになる。したがって、高機能化や多機能化等への対応が必要な画像表示装置においても、画像信号からサブフィールドコードへの変換を行う膨大な数の変換テーブルを備える必要がなくなる。すなわち、様々な条件に応じて膨大な数の変換テーブルの中から最適な1つを選択するように画像信号処理回路を構成する必要がなくなる。さらに、画像表示装置における画像表示品質の低下を防止しつつ、消費電力を抑制することができる。 Thus, the conversion from the image signal to the subfield code can be performed by calculation using the calculation circuit. Therefore, even in an image display device that needs to cope with high functionality and multi-function, it is not necessary to provide a huge number of conversion tables for converting image signals into subfield codes. That is, it is not necessary to configure the image signal processing circuit so as to select an optimal one from a vast number of conversion tables according to various conditions. Furthermore, power consumption can be suppressed while preventing deterioration in image display quality in the image display device.
 また、本発明の画像表示装置の駆動方法は、複数の基本となるサブフィールドコードの中から、注目画素における画像信号の階調値よりも大きく、かつ注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調基底コードとして選択するステップと、注目画素における画像信号にもとづき、上階調基底コードにおける発光するサブフィールドを非発光のサブフィールドに変更して新たなサブフィールドコードを生成するためのルールを生成するステップと、上階調基底コードに上述のルールを適用して新たに生成されるサブフィールドコードの中から、注目画素における画像信号の階調値より大きく注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調コードとして選択し、かつ、注目画素における画像信号の階調値以下で注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを下階調コードとして選択するステップと、注目画素における画像信号の階調値に所定の値を加算して注目画素に表示すべき階調値を算出するステップと、上階調コードおよび下階調コードのうち注目画素に表示すべき階調値により近い階調値を有する方を、画像信号にもとづく階調値を注目画素に表示するためのサブフィールドコードである表示コードとして選択するステップとを有する。 In addition, the driving method of the image display device according to the present invention is more than the gradation value of the image signal at the pixel of interest, and is the highest in the gradation value of the image signal at the pixel of interest, among a plurality of basic subfield codes. A step of selecting a subfield code having a close gradation value as an upper gradation base code, and changing a light emitting subfield in the upper gradation base code to a non-light emitting subfield based on an image signal in a target pixel Generating a rule for generating a sub-field code, and the gradation value of the image signal at the target pixel from the newly generated sub-field code by applying the above-described rule to the upper gradation base code A subfield code having a gradation value that is larger and closest to the gradation value of the image signal at the target pixel is defined as the upper gradation code. Selecting a subfield code having a gradation value that is equal to or lower than the gradation value of the image signal at the target pixel and that is equal to or lower than the gradation value of the image signal at the target pixel; A step of calculating a gradation value to be displayed on the target pixel by adding a predetermined value to the gradation value of the image signal, and a gradation value to be displayed on the target pixel among the upper gradation code and the lower gradation code. Selecting the one having a near gradation value as a display code which is a subfield code for displaying the gradation value based on the image signal on the target pixel.
 また、本発明の画像表示装置の駆動方法においては、所定の増幅率は、順次書込み電力と飛越書込み電力とにもとづき算出され、所定の値は、ディザ値および誤差拡散処理により発生する誤差である。 In the image display device driving method of the present invention, the predetermined amplification factor is calculated based on the sequential write power and the interlaced write power, and the predetermined value is an error generated by the dither value and error diffusion processing. .
図1は、本発明の一実施の形態における画像表示装置に用いるパネルの構造を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a structure of a panel used in an image display apparatus according to an embodiment of the present invention. 図2は、本発明の一実施の形態における画像表示装置に用いるパネルの電極配列図である。FIG. 2 is an electrode array diagram of a panel used in the image display apparatus according to the embodiment of the present invention. 図3は、本発明の一実施の形態における画像表示装置に用いるパネルの各電極に印加する駆動電圧波形を概略的に示す図である。FIG. 3 is a diagram schematically showing drive voltage waveforms applied to the respective electrodes of the panel used in the image display device according to the embodiment of the present invention. 図4は、1フィールドを8個のサブフィールドで構成するときのコードセットの一例を示す図である。FIG. 4 is a diagram showing an example of a code set when one field is composed of eight subfields. 図5は、本発明の一実施の形態における画像表示装置を構成する回路ブロックの一例を概略的に示す図である。FIG. 5 is a diagram schematically showing an example of a circuit block constituting the image display device according to the embodiment of the present invention. 図6は、本発明の一実施の形態における画像表示装置の画像信号処理回路を構成する回路ブロックの一例を概略的に示す図である。FIG. 6 is a diagram schematically showing an example of a circuit block constituting the image signal processing circuit of the image display apparatus according to the embodiment of the present invention. 図7は、本発明の一実施の形態における画像表示装置のサブフィールドコード変換回路およびディザ要素出力回路を構成する回路ブロックの一例を概略的に示す図である。FIG. 7 is a diagram schematically showing an example of a circuit block constituting the subfield code conversion circuit and the dither element output circuit of the image display device according to the embodiment of the present invention. 図8Aは、本発明の一実施の形態における画像表示装置に用いる基底コードセットの一例を示す図である。FIG. 8A is a diagram illustrating an example of a base code set used in the image display device according to the embodiment of the present invention. 図8Bは、本発明の一実施の形態における画像表示装置に用いる基底コードセットの他の一例を示す図である。FIG. 8B is a diagram showing another example of the base code set used in the image display device according to the embodiment of the present invention. 図8Cは、本発明の一実施の形態における画像表示装置に用いる基底コードセットの他の一例を示す図である。FIG. 8C is a diagram illustrating another example of the base code set used in the image display device according to the embodiment of the present invention. 図9Aは、本発明の一実施の形態における画像表示装置の中間コード生成部において生成される中間コードセットの一例を示す図である。FIG. 9A is a diagram illustrating an example of an intermediate code set generated by the intermediate code generation unit of the image display device according to the embodiment of the present invention. 図9Bは、本発明の一実施の形態における画像表示装置の中間コード生成部において生成される中間コードセットの他の一例を示す図である。FIG. 9B is a diagram showing another example of the intermediate code set generated by the intermediate code generation unit of the image display device according to the embodiment of the present invention. 図9Cは、本発明の一実施の形態における画像表示装置の中間コード生成部において生成される中間コードセットの他の一例を示す図である。FIG. 9C is a diagram showing another example of the intermediate code set generated by the intermediate code generation unit of the image display device according to the embodiment of the present invention. 図10Aは、本発明の一実施の形態における画像表示装置で使用するディザパターンの一例を示す図である。FIG. 10A is a diagram showing an example of a dither pattern used in the image display device in one embodiment of the present invention. 図10Bは、本発明の一実施の形態における画像表示装置で使用するディザパターンの他の一例を示す図である。FIG. 10B is a diagram showing another example of the dither pattern used in the image display device according to the embodiment of the present invention. 図11は、本発明の一実施の形態における画像表示装置の誤差拡散部の誤差拡散係数を示す図である。FIG. 11 is a diagram showing the error diffusion coefficient of the error diffusion unit of the image display device according to the embodiment of the present invention. 図12は、本発明の一実施の形態における画像表示装置の画像信号処理回路の動作を示すフローチャートである。FIG. 12 is a flowchart showing the operation of the image signal processing circuit of the image display device according to the embodiment of the present invention.
 以下、本発明の実施の形態における画像表示装置について、プラズマディスプレイパネルを用いたプラズマディスプレイ装置を例に挙げて、図面を用いて説明する。 Hereinafter, an image display apparatus according to an embodiment of the present invention will be described with reference to the drawings, taking a plasma display apparatus using a plasma display panel as an example.
 (実施の形態)
 図1は、本発明の一実施の形態における画像表示装置に用いるパネル10の構造を示す分解斜視図である。
(Embodiment)
FIG. 1 is an exploded perspective view showing the structure of panel 10 used in the image display apparatus according to the embodiment of the present invention.
 ガラス製の前面基板11上には、走査電極12と維持電極13とからなる表示電極対14が複数形成されている。そして、走査電極12と維持電極13とを覆うように誘電体層15が形成され、その誘電体層15上に保護層16が形成されている。 A plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustaining electrode 13 are formed on a glass front substrate 11. A dielectric layer 15 is formed so as to cover the scan electrode 12 and the sustain electrode 13, and a protective layer 16 is formed on the dielectric layer 15.
 この保護層16は、放電セルにおける放電開始電圧を下げるために、パネルの材料として使用実績があり、ネオン(Ne)およびキセノン(Xe)ガスを封入した場合に2次電子放出係数が大きく耐久性に優れた酸化マグネシウム(MgO)を主成分とする材料で形成されている。 This protective layer 16 has been used as a panel material in order to lower the discharge start voltage in the discharge cell, and has a large secondary electron emission coefficient and durability when neon (Ne) and xenon (Xe) gas is sealed. It is made of a material mainly composed of magnesium oxide (MgO).
 保護層16は、一つの層で構成されていてもよく、あるいは複数の層で構成されていてもよい。また、層の上に粒子が存在する構成であってもよい。 The protective layer 16 may be composed of a single layer or may be composed of a plurality of layers. Moreover, the structure which particle | grains exist on a layer may be sufficient.
 背面基板21上にはデータ電極22が複数形成され、データ電極22を覆うように誘電体層23が形成され、さらにその上に井桁状の隔壁24が形成されている。そして、隔壁24の側面および誘電体層23上には赤色(R)に発光する蛍光体層25R、緑色(G)に発光する蛍光体層25G、および青色(B)に発光する蛍光体層25Bが設けられている。以下、蛍光体層25R、蛍光体層25G、蛍光体層25Bをまとめて蛍光体層25とも記す。 A plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is further formed thereon. On the side surfaces of the barrier ribs 24 and on the dielectric layer 23, a phosphor layer 25R that emits red (R), a phosphor layer 25G that emits green (G), and a phosphor layer 25B that emits blue (B). Is provided. Hereinafter, the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
 これら前面基板11と背面基板21とを、微小な空間を挟んで表示電極対14とデータ電極22とが交差するように対向配置し、前面基板11と背面基板21との間隙に放電空間を設ける。そして、その外周部をガラスフリット等の封着材によって封着する。その放電空間には、例えばネオンとキセノンの混合ガスを放電ガスとして封入する。 The front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with a minute space therebetween, and a discharge space is provided in the gap between the front substrate 11 and the rear substrate 21. . And the outer peripheral part is sealed with sealing materials, such as glass frit. For example, a mixed gas of neon and xenon is sealed in the discharge space as a discharge gas.
 放電空間は隔壁24によって複数の区画に仕切られており、表示電極対14とデータ電極22とが交差する部分に、画素を構成する発光素子である放電セルが形成される。 The discharge space is partitioned into a plurality of sections by the barrier ribs 24, and discharge cells, which are light-emitting elements constituting the pixels, are formed at the intersections between the display electrode pairs 14 and the data electrodes 22.
 そして、これらの放電セルで放電を発生し、放電セルの蛍光体層25を発光(放電セルを点灯)することにより、パネル10にカラーの画像を表示する。 Then, a discharge is generated in these discharge cells, and the phosphor layer 25 of the discharge cells emits light (lights the discharge cells), thereby displaying a color image on the panel 10.
 なお、パネル10においては、表示電極対14が延伸する方向に配列された連続する3つの放電セルで1つの画素を構成する。この3つの放電セルとは、蛍光体層25Rを有し赤色(R)に発光する放電セル(赤の放電セル)と、蛍光体層25Gを有し緑色(G)に発光する放電セル(緑の放電セル)と、蛍光体層25Bを有し青色(B)に発光する放電セル(青の放電セル)である。 In the panel 10, one pixel is composed of three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends. The three discharge cells are a discharge cell having a phosphor layer 25R and emitting red (R) (red discharge cell), and a discharge cell having a phosphor layer 25G and emitting green (G) (green). And a discharge cell having a phosphor layer 25B and emitting blue (B) light (blue discharge cell).
 なお、パネル10の構造は上述したものに限られるわけではなく、例えばストライプ状の隔壁を備えたものであってもよい。 Note that the structure of the panel 10 is not limited to the above-described structure, and may be, for example, provided with a stripe-shaped partition wall.
 図2は、本発明の一実施の形態におけるプラズマディスプレイ装置に用いるパネル10の電極配列図である。 FIG. 2 is an electrode array diagram of panel 10 used in the plasma display device according to one embodiment of the present invention.
 パネル10には、水平方向(行方向、ライン方向)に延長されたn本の走査電極SC1~走査電極SCn(図1の走査電極12)およびn本の維持電極SU1~維持電極SUn(図1の維持電極13)が配列され、垂直方向(列方向)に延長されたm本のデータ電極D1~データ電極Dm(図1のデータ電極22)が配列されている。 The panel 10 includes n scan electrodes SC1 to SCn (scan electrode 12 in FIG. 1) extended in the horizontal direction (row direction and line direction) and n sustain electrodes SU1 to SUn (FIG. 1). The sustain electrodes 13) are arranged, and m data electrodes D1 to Dm (data electrodes 22 in FIG. 1) extending in the vertical direction (column direction) are arranged.
 そして、1対の走査電極SCi(i=1~n)および維持電極SUiと1つのデータ電極Dj(j=1~m)とが交差した領域に発光素子としての放電セルが1つ形成される。すなわち、1対の表示電極対14上には、m個の放電セルが形成され、m/3個の画素が形成される。そして、放電セルは放電空間内にm×n個形成され、m×n個の放電セルが形成された領域がパネル10の画像表示領域となる。例えば、画素数が1920×1080個のパネルでは、m=1920×3となり、n=1080となる。 One discharge cell as a light emitting element is formed in a region where a pair of scan electrode SCi (i = 1 to n) and sustain electrode SUi intersects with one data electrode Dj (j = 1 to m). . In other words, m discharge cells are formed on one pair of display electrodes 14 and m / 3 pixels are formed. Then, m × n discharge cells are formed in the discharge space, and an area where m × n discharge cells are formed becomes an image display area of the panel 10. For example, in a panel having 1920 × 1080 pixels, m = 1920 × 3 and n = 1080.
 次に、パネル10を駆動するための駆動電圧波形とその動作の概要について説明する。 Next, a driving voltage waveform for driving the panel 10 and an outline of its operation will be described.
 本実施の形態におけるプラズマディスプレイ装置は、サブフィールド法によってパネル10を駆動する。サブフィールド法では、画像信号の1フィールドを時間軸上で複数のサブフィールドに分割し、各サブフィールドに階調重みをそれぞれ設定する。したがって、各フィールドは階調重みが異なる複数のサブフィールドを有する。 The plasma display device in the present embodiment drives the panel 10 by the subfield method. In the subfield method, one field of an image signal is divided into a plurality of subfields on the time axis, and a gradation weight is set for each subfield. Therefore, each field has a plurality of subfields having different gradation weights.
 それぞれのサブフィールドは初期化期間、書込み期間および維持期間を有する。そして、画像信号にもとづき、サブフィールド毎に各放電セルの発光・非発光を制御する。すなわち、画像信号にもとづき、発光するサブフィールドと非発光のサブフィールドとを組み合わせることによって、画像信号にもとづく複数の階調をパネル10に表示する。 Each subfield has an initialization period, an address period, and a sustain period. Based on the image signal, light emission / non-light emission of each discharge cell is controlled for each subfield. That is, a plurality of gradations based on the image signal are displayed on the panel 10 by combining the light-emitting subfield and the non-light-emitting subfield based on the image signal.
 初期化期間では、放電セルに初期化放電を発生し、続く書込み期間における書込み放電に必要な壁電荷を各電極上に形成する初期化動作を行う。 In the initializing period, an initializing operation is performed in which initializing discharge is generated in the discharge cells and wall charges necessary for the address discharge in the subsequent address period are formed on each electrode.
 初期化動作には、直前のサブフィールドの動作にかかわらず全ての放電セルに強制的に初期化放電を発生する「強制初期化動作」と、直前のサブフィールドの書込み期間で書込み放電を発生した放電セルだけに選択的に初期化放電を発生する「選択初期化動作」とがある。強制初期化動作では、上昇する傾斜波形電圧および下降する傾斜波形電圧を走査電極12に印加して、放電セルに初期化放電を発生する。 Initialization operation includes “forced initialization operation” that forcibly generates an initializing discharge in all discharge cells regardless of the operation of the immediately preceding subfield and an addressing discharge that occurs in the addressing period of the immediately preceding subfield. There is a “selective initialization operation” in which initializing discharge is selectively generated only in the discharge cells. In the forced initializing operation, the rising ramp waveform voltage and the falling ramp waveform voltage are applied to the scan electrode 12 to generate an initializing discharge in the discharge cell.
 そして、1フィールドを構成する複数のサブフィールドのうち、1つのサブフィールドの初期化期間では全ての放電セルで強制初期化動作を行い、他のサブフィールドの初期化期間では全ての放電セルで選択初期化動作を行う。 Then, among the plurality of subfields constituting one field, the forced initializing operation is performed in all discharge cells in the initializing period of one subfield, and all the discharge cells are selected in the initializing period of the other subfield. Perform initialization.
 以下、強制初期化動作を行う初期化期間を「強制初期化期間」と呼称し、強制初期化期間を有するサブフィールドを「強制初期化サブフィールド」と呼称する。また、選択初期化動作を行う初期化期間を「選択初期化期間」と呼称し、選択初期化期間を有するサブフィールドを「選択初期化サブフィールド」と呼称する。 Hereinafter, the initialization period in which the forced initialization operation is performed is referred to as “forced initialization period”, and the subfield having the forced initialization period is referred to as “forced initialization subfield”. An initialization period for performing the selective initialization operation is referred to as a “selective initialization period”, and a subfield having the selective initialization period is referred to as a “selective initialization subfield”.
 なお、本実施の形態では、サブフィールドSF1を強制初期化サブフィールドとし、他のサブフィールド(サブフィールドSF2以降のサブフィールド)を選択初期化サブフィールドとする。しかし、本発明は、強制初期化サブフィールドとするサブフィールドおよび選択初期化サブフィールドとするサブフィールドが何ら上述したサブフィールドに限定されるものではない。また、画像信号等にもとづいてサブフィールド構成を切り換える構成であってもよい。 In the present embodiment, subfield SF1 is a forced initialization subfield, and the other subfields (subfields subsequent to subfield SF2) are selected initialization subfields. However, the present invention is not limited to the above-described subfields as subfields for forced initialization subfields and subfields for selective initialization subfields. Moreover, the structure which switches a subfield structure based on an image signal etc. may be sufficient.
 書込み期間では、走査電極12に走査パルスを印加するとともにデータ電極22に選択的に書込みパルスを印加し、発光するべき放電セルに選択的に書込み放電を発生する。そして、続く維持期間で維持放電を発生するための壁電荷をその放電セル内に形成する書込み動作を行う。 In the address period, a scan pulse is applied to the scan electrode 12 and an address pulse is selectively applied to the data electrode 22 to selectively generate an address discharge in the discharge cells to emit light. Then, an address operation is performed to form wall charges in the discharge cells for generating a sustain discharge in the subsequent sustain period.
 維持期間では、それぞれのサブフィールドに設定された階調重みに所定の比例定数を乗じた数の維持パルスを走査電極12および維持電極13に交互に印加し、直前の書込み期間に書込み放電を発生した放電セルで維持放電を発生し、その放電セルを発光する維持動作を行う。この比例定数が輝度倍数である。 In the sustain period, sustain pulses of the number obtained by multiplying the gradation weight set in each subfield by a predetermined proportional constant are alternately applied to the scan electrode 12 and the sustain electrode 13 to generate an address discharge in the immediately preceding address period. A sustain discharge is generated in the discharged discharge cell, and a sustain operation for emitting light from the discharge cell is performed. This proportionality constant is a luminance multiple.
 階調重みとは、各サブフィールドで表示する輝度の大きさの比を表すものであり、各サブフィールドでは階調重みに応じた数の維持パルスを維持期間に発生する。そのため、例えば、階調重み「8」のサブフィールドは、階調重み「1」のサブフィールドの約8倍の輝度で発光し、階調重み「2」のサブフィールドの約4倍の輝度で発光する。したがって、例えば、階調重み「8」のサブフィールドと階調重み「2」のサブフィールドを発光すれば、階調値「10」に相当する輝度で放電セルを発光することができる。 The gradation weight represents the ratio of the magnitude of the luminance displayed in each subfield, and the number of sustain pulses corresponding to the gradation weight is generated in the sustain period in each subfield. Therefore, for example, the subfield with the gradation weight “8” emits light with a luminance about eight times that of the subfield with the gradation weight “1”, and about four times as high as the subfield with the gradation weight “2”. Emits light. Therefore, for example, if the subfield with the gradation weight “8” and the subfield with the gradation weight “2” are emitted, the discharge cell can emit light with a luminance corresponding to the gradation value “10”.
 こうして、画像信号に応じた組合せでサブフィールド毎に各放電セルの発光・非発光を制御して各サブフィールドを選択的に発光することにより、様々な階調値で各放電セルを発光する。すなわち、各放電セルに画像信号に応じた階調値を表示し、画像信号にもとづく画像をパネル10に表示することができる。 Thus, each discharge cell emits light with various gradation values by selectively emitting light in each subfield by controlling light emission / non-light emission of each discharge cell for each subfield in a combination according to the image signal. That is, a gradation value corresponding to an image signal can be displayed on each discharge cell, and an image based on the image signal can be displayed on the panel 10.
 なお、パネル10において、1つの画素は、上述したように、表示電極対14が延伸する方向に配列された連続する3つの放電セル、すなわち、赤の放電セル、緑の放電セル、青の放電セルで構成されるが、本実施の形態では、以下、赤の放電セルを「赤の画素」、緑の放電セルを「緑の画素」、青の放電セルを「青の画素」とも記す。 In the panel 10, as described above, one pixel includes three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends, that is, a red discharge cell, a green discharge cell, and a blue discharge. In the present embodiment, a red discharge cell is also referred to as a “red pixel”, a green discharge cell as a “green pixel”, and a blue discharge cell as a “blue pixel”.
 図3は、本発明の一実施の形態におけるプラズマディスプレイ装置に用いるパネル10の各電極に印加する駆動電圧波形を概略的に示す図である。 FIG. 3 is a diagram schematically showing drive voltage waveforms applied to the respective electrodes of panel 10 used in the plasma display device according to one embodiment of the present invention.
 図3には、データ電極D1~データ電極Dm、書込み期間において最初に書込み動作を行う走査電極SC1、書込み期間において最後に書込み動作を行う走査電極SCn(例えば、走査電極SC1080)、維持電極SU1~維持電極SUnのそれぞれに印加する駆動電圧波形を示す。また、以下における走査電極SCi、維持電極SUi、データ電極Dkは、各電極の中から画像データ(サブフィールド毎の発光・非発光を示すデータ)にもとづき選択された電極を表す。 FIG. 3 shows data electrode D1 to data electrode Dm, scan electrode SC1 that performs the address operation first in the address period, scan electrode SCn that performs the address operation last in the address period (for example, scan electrode SC1080), sustain electrode SU1 to The drive voltage waveform applied to each of the sustain electrodes SUn is shown. Scan electrode SCi, sustain electrode SUi, and data electrode Dk in the following represent electrodes selected based on image data (data indicating light emission / non-light emission for each subfield) from among the electrodes.
 また、図3には、強制初期化サブフィールドであるサブフィールドSF1と、選択初期化サブフィールドであるサブフィールドSF2およびサブフィールドSF3を示す。サブフィールドSF1と、サブフィールドSF2およびサブフィールドSF3とでは、初期化期間に走査電極12に印加する駆動電圧の波形形状が異なる。 FIG. 3 shows a subfield SF1 that is a forced initialization subfield, and a subfield SF2 and a subfield SF3 that are selective initialization subfields. The subfield SF1, the subfield SF2, and the subfield SF3 have different waveform shapes of the drive voltage applied to the scan electrode 12 in the initialization period.
 なお、サブフィールドSF4以降のサブフィールドは図示していないが、サブフィールドSF1を除く各サブフィールドは選択初期化サブフィールドであり、維持パルスの発生数を除き、各期間でほぼ同様の駆動電圧波形を発生する。 Although the subfields after subfield SF4 are not shown, each subfield except subfield SF1 is a selective initialization subfield, and substantially the same drive voltage waveform in each period except the number of sustain pulses. Is generated.
 まず、強制初期化サブフィールドであるサブフィールドSF1について説明する。 First, the subfield SF1, which is a forced initialization subfield, will be described.
 強制初期化動作を行うサブフィールドSF1の初期化期間Ti1の前半部では、データ電極D1~データ電極Dm、維持電極SU1~維持電極SUnには、それぞれ電圧0(V)を印加する。走査電極SC1~走査電極SCnには、電圧0(V)を印加した後に電圧Vi1を印加し、電圧Vi1から電圧Vi2まで緩やかに上昇する傾斜波形電圧(以下、「上り傾斜波形電圧」と呼称する)を印加する。このとき、電圧Vi1は、維持電極SU1~維持電極SUnに対して放電開始電圧よりも低い電圧に設定し、電圧Vi2は、維持電極SU1~維持電極SUnに対して放電開始電圧を超える電圧に設定する。 In the first half of the initialization period Ti1 of the subfield SF1 in which the forced initialization operation is performed, the voltage 0 (V) is applied to the data electrode D1 to the data electrode Dm and the sustain electrode SU1 to the sustain electrode SUn. A voltage Vi1 is applied to scan electrode SC1 through scan electrode SCn after voltage 0 (V) is applied, and a ramp waveform voltage that gradually rises from voltage Vi1 to voltage Vi2 (hereinafter referred to as an “upward ramp waveform voltage”). ) Is applied. At this time, voltage Vi1 is set to a voltage lower than the discharge start voltage for sustain electrode SU1 to sustain electrode SUn, and voltage Vi2 is set to a voltage exceeding the discharge start voltage for sustain electrode SU1 to sustain electrode SUn. To do.
 この上り傾斜波形電圧が上昇する間に、各放電セルの走査電極SC1~走査電極SCnと維持電極SU1~維持電極SUnとの間、および走査電極SC1~走査電極SCnとデータ電極D1~データ電極Dmとの間に、それぞれ微弱な初期化放電が持続して発生する。そして、走査電極SC1~走査電極SCn上に負の壁電圧が蓄積され、データ電極D1~データ電極Dm上および維持電極SU1~維持電極SUn上には正の壁電圧が蓄積される。この電極上の壁電圧とは、電極を覆う誘電体層上、保護層上、蛍光体層上等に蓄積された壁電荷により生じる電圧を表す。 While the rising ramp waveform voltage rises, scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn, and scan electrode SC1 through scan electrode SCn and data electrode D1 through data electrode Dm of each discharge cell. In between, weak initializing discharges are continuously generated. Negative wall voltage is accumulated on scan electrode SC1 through scan electrode SCn, and positive wall voltage is accumulated on data electrode D1 through data electrode Dm and sustain electrode SU1 through sustain electrode SUn. The wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer covering the electrode, the protective layer, the phosphor layer, and the like.
 サブフィールドSF1の初期化期間Ti1の後半部では、維持電極SU1~維持電極SUnには正の電圧Veを印加し、データ電極D1~データ電極Dmには電圧0(V)を印加する。走査電極SC1~走査電極SCnには、電圧Vi3から負の電圧Vi4まで緩やかに下降する傾斜波形電圧(以下、「下り傾斜波形電圧」と呼称する)を印加する。電圧Vi3は、維持電極SU1~維持電極SUnに対して放電開始電圧未満の電圧に設定し、電圧Vi4は、維持電極SU1~維持電極SUnに対して放電開始電圧を超える電圧に設定する。 In the latter half of the initialization period Ti1 of the subfield SF1, the positive voltage Ve is applied to the sustain electrodes SU1 to SUn, and the voltage 0 (V) is applied to the data electrodes D1 to Dm. A scan waveform SC1 to scan electrode SCn are applied with a ramp waveform voltage that gently falls from voltage Vi3 to negative voltage Vi4 (hereinafter referred to as “down ramp waveform voltage”). Voltage Vi3 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn, and voltage Vi4 is set to a voltage exceeding the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn.
 この下り傾斜波形電圧を走査電極SC1~走査電極SCnに印加する間に、各放電セルの走査電極SC1~走査電極SCnと維持電極SU1~維持電極SUnとの間、および走査電極SC1~走査電極SCnとデータ電極D1~データ電極Dmとの間に、それぞれ微弱な初期化放電が発生する。これにより、走査電極SC1~走査電極SCn上の負の壁電圧および維持電極SU1~維持電極SUn上の正の壁電圧が弱められ、データ電極D1~データ電極Dm上の正の壁電圧は、書込み期間Tw1での書込み動作に適した電圧に調整される。 While this downward ramp waveform voltage is applied to scan electrode SC1 through scan electrode SCn, between discharge electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn of each discharge cell, and scan electrode SC1 through scan electrode SCn. Between the data electrode D1 and the data electrode Dm, a weak initializing discharge is generated. As a result, the negative wall voltage on scan electrode SC1 through scan electrode SCn and the positive wall voltage on sustain electrode SU1 through sustain electrode SUn are weakened, and the positive wall voltage on data electrode D1 through data electrode Dm is written. The voltage is adjusted to a voltage suitable for the writing operation in the period Tw1.
 以上の電圧波形が、直前のサブフィールドの動作にかかわらず放電セルに初期化放電を発生する強制初期化波形である。そして、強制初期化波形を走査電極12に印加する動作が強制初期化動作である。 The above voltage waveform is a forced initializing waveform that generates an initializing discharge in the discharge cell regardless of the operation of the immediately preceding subfield. The operation for applying the forced initialization waveform to the scan electrode 12 is the forced initialization operation.
 以上により、強制初期化サブフィールド(サブフィールドSF1)の初期化期間Ti1における強制初期化動作が終了する。そして、強制初期化サブフィールドの初期化期間Ti1では、パネル10の画像表示領域における全ての放電セルで強制的に初期化放電を発生する。 Thus, the forced initialization operation in the initialization period Ti1 of the forced initialization subfield (subfield SF1) ends. In the initializing period Ti1 of the forced initializing subfield, initializing discharge is forcibly generated in all the discharge cells in the image display area of the panel 10.
 次に、書込み期間について説明する。 Next, the writing period will be described.
 本実施の形態における画像表示装置では、書込み期間において「順次書込み動作」または「飛越書込み動作」のいずれかの書込み動作を行う。 In the image display apparatus according to the present embodiment, either the “sequential writing operation” or the “interlace writing operation” is performed during the writing period.
 順次書込み動作では、走査電極SC1、走査電極SC2、走査電極SC3、走査電極SC4、・・・、走査電極SCn-1、走査電極SCnという順番で走査電極12に走査パルスを印加する。すなわち、順次書込み動作は、走査電極12がパネル10に配列された順番で走査電極12に走査パルスを順次印加する書込み動作である。 In the sequential address operation, scan pulses are applied to scan electrode 12 in the order of scan electrode SC1, scan electrode SC2, scan electrode SC3, scan electrode SC4,..., Scan electrode SCn-1, and scan electrode SCn. In other words, the sequential address operation is an address operation in which scan pulses are sequentially applied to the scan electrodes 12 in the order in which the scan electrodes 12 are arranged on the panel 10.
 飛越書込み動作は、走査電極SC1、走査電極SC3、走査電極SC5、・・・、走査電極SCn-3、走査電極SCn-1、走査電極SC2、走査電極SC4、走査電極SC6、・・・、走査電極SCn-4、走査電極SCn-2、走査電極SCnという順番で走査電極12に走査パルスを印加する。すなわち、飛越書込み動作は、走査電極12がパネル10に配列された順番に対して、まず奇数番目(もしくは偶数番目)の走査電極12に走査パルスを順次印加し、次に、偶数番目(もしくは奇数番目)の走査電極12に走査パルスを順次印加する書込み動作である。 The interlaced write operation includes scan electrode SC1, scan electrode SC3, scan electrode SC5,..., Scan electrode SCn-3, scan electrode SCn-1, scan electrode SC2, scan electrode SC4, scan electrode SC6,. A scan pulse is applied to scan electrode 12 in the order of electrode SCn-4, scan electrode SCn-2, and scan electrode SCn. That is, in the interlaced write operation, first, scan pulses are sequentially applied to the odd-numbered (or even-numbered) scan electrodes 12 in the order in which the scan electrodes 12 are arranged on the panel 10, and then the even-numbered (or odd-numbered). This is an address operation in which scan pulses are sequentially applied to the scan electrode 12.
 以下、順次書込み動作を行うときの書込み期間について説明する。なお、飛越書込み動作は、走査電極12に走査パルスを印加する順番が順次書込み動作と異なるだけであり、それ以外の動作は順次書込み動作と同じであるため、説明を省略する。 Hereinafter, the writing period when the sequential writing operation is performed will be described. Note that the interlaced write operation is different from the sequential write operation only in the order in which the scan pulses are applied to the scan electrodes 12, and the other operations are the same as the sequential write operation, and thus description thereof is omitted.
 サブフィールドSF1の書込み期間Tw1では、維持電極SU1~維持電極SUnには電圧Veを印加し、データ電極D1~データ電極Dmには電圧0(V)を印加し、走査電極SC1~走査電極SCnには電圧Vcを印加する。 In address period Tw1 of subfield SF1, voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, voltage 0 (V) is applied to data electrode D1 through data electrode Dm, and scan electrode SC1 through scan electrode SCn are applied. Applies a voltage Vc.
 次に、配置的に見て上から1番目(1行目)の走査電極SC1に負の電圧Vaの負極性の走査パルスを印加する。そして、データ電極D1~データ電極Dmのうちの1行目において発光するべき放電セルのデータ電極Dkに正の電圧Vdの正極性の書込みパルスを印加する。 Next, a negative scan pulse having a negative voltage Va is applied to the first (first row) scan electrode SC1 in terms of arrangement. Then, a positive address pulse of a positive voltage Vd is applied to the data electrode Dk of the discharge cell that should emit light in the first row of the data electrodes D1 to Dm.
 書込みパルスの電圧Vdを印加したデータ電極Dkと走査パルスの電圧Vaを印加した走査電極SC1との交差部にある放電セルでは、データ電極Dkと走査電極SC1との電圧差が放電開始電圧を超え、データ電極Dkと走査電極SC1との間に放電が発生する。 In the discharge cell at the intersection of the data electrode Dk to which the address pulse voltage Vd is applied and the scan electrode SC1 to which the scan pulse voltage Va is applied, the voltage difference between the data electrode Dk and the scan electrode SC1 exceeds the discharge start voltage. A discharge occurs between the data electrode Dk and the scan electrode SC1.
 また、維持電極SU1~維持電極SUnに電圧Veを印加しているため、データ電極Dkと走査電極SC1との間に発生する放電に誘発されて、データ電極Dkと交差する領域にある維持電極SU1と走査電極SC1との間にも放電が発生する。こうして、走査パルスの電圧Vaと書込みパルスの電圧Vdとが同時に印加された放電セル(発光するべき放電セル)に書込み放電が発生する。 In addition, since voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, sustain electrode SU1 in a region intersecting data electrode Dk is induced by a discharge generated between data electrode Dk and scan electrode SC1. Discharge also occurs between scan electrode SC1 and scan electrode SC1. Thus, address discharge is generated in the discharge cells (discharge cells to emit light) to which the scan pulse voltage Va and the address pulse voltage Vd are simultaneously applied.
 書込み放電が発生した放電セルでは、走査電極SC1上に正の壁電圧が蓄積され、維持電極SU1上に負の壁電圧が蓄積され、データ電極Dk上にも負の壁電圧が蓄積される。 In the discharge cell in which the address discharge has occurred, a positive wall voltage is accumulated on the scan electrode SC1, a negative wall voltage is accumulated on the sustain electrode SU1, and a negative wall voltage is also accumulated on the data electrode Dk.
 このようにして、1行目の放電セルにおける書込み動作が終了する。なお、書込みパルスを印加しなかったデータ電極Dh(データ電極Dhはデータ電極D1~データ電極Dmのうちデータ電極Dkを除いたもの)を有する放電セルでは、データ電極Dhと走査電極SC1との交差部の電圧は放電開始電圧を超えないので、書込み放電は発生せず、初期化期間Ti1終了後の壁電圧が保たれる。 In this way, the address operation in the discharge cells in the first row is completed. In the discharge cell having the data electrode Dh to which the address pulse is not applied (the data electrode Dh is the data electrode D1 to the data electrode Dm excluding the data electrode Dk), the intersection of the data electrode Dh and the scan electrode SC1. Since the voltage of the portion does not exceed the discharge start voltage, the address discharge does not occur, and the wall voltage after the end of the initialization period Ti1 is maintained.
 次に、配置的に見て上から2番目(2行目)の走査電極SC2に電圧Vaの走査パルスを印加するとともに、2行目に発光するべき放電セルに対応するデータ電極Dkに電圧Vdの書込みパルスを印加する。これにより、走査パルスと書込みパルスとが同時に印加された2行目の放電セルでは書込み放電が発生する。こうして、2行目の放電セルにおける書込み動作を行う。 Next, a scan pulse of the voltage Va is applied to the second (second row) scan electrode SC2 from the top, and the voltage Vd is applied to the data electrode Dk corresponding to the discharge cell to emit light in the second row. Apply the write pulse. As a result, address discharge occurs in the discharge cells in the second row to which the scan pulse and address pulse are simultaneously applied. Thus, the address operation in the discharge cells in the second row is performed.
 同様の書込み動作を、走査電極SC3、走査電極SC4、・・・、走査電極SCnという順番で、n行目の放電セルに至るまで順次行い、サブフィールドSF1の書込み期間Tw1が終了する。このようにして、書込み期間Tw1では、発光するべき放電セルに選択的に書込み放電を発生し、その放電セルに維持放電のための壁電荷を形成する。 The same address operation is sequentially performed in the order of scan electrode SC3, scan electrode SC4,..., Scan electrode SCn until reaching the discharge cell in the n-th row, and the address period Tw1 of the subfield SF1 ends. In this manner, in the address period Tw1, address discharge is selectively generated in the discharge cells to emit light, and wall charges for sustain discharge are formed in the discharge cells.
 なお、本発明は、走査電極12に走査パルスを印加する順番が何ら上述した順番に限定されるものではない。走査電極12に走査パルスを印加する順番は、画像表示装置における仕様等に応じて任意に設定すればよい。 In the present invention, the order in which the scan pulse is applied to the scan electrode 12 is not limited to the order described above. What is necessary is just to set arbitrarily the order which applies a scanning pulse to the scanning electrode 12 according to the specification etc. in an image display apparatus.
 なお、初期化期間Ti1の後半に維持電極SU1~維持電極SUnに印加する電圧Veと、書込み期間Tw1に維持電極SU1~維持電極SUnに印加する電圧Veとは互いに異なる電圧値であってもよい。 Note that voltage Ve applied to sustain electrode SU1 through sustain electrode SUn in the second half of initialization period Ti1 and voltage Ve applied to sustain electrode SU1 through sustain electrode SUn in address period Tw1 may have different voltage values. .
 なお、各データ電極22は、データ電極駆動回路によって駆動される。そして、データ電極駆動回路から見たデータ電極22のそれぞれは、隣接するデータ電極22間に生じる浮遊容量、走査電極12との間に生じる浮遊容量、および維持電極13との間に生じる浮遊容量を有する容量性の負荷である。 Each data electrode 22 is driven by a data electrode driving circuit. Each of the data electrodes 22 viewed from the data electrode driving circuit has a stray capacitance generated between the adjacent data electrodes 22, a stray capacitance generated between the scan electrodes 12, and a stray capacitance generated between the sustain electrodes 13. It has a capacitive load.
 したがって、データ電極駆動回路は、書込み期間において、各データ電極22に印加する電圧を、電圧0(V)から電圧Vdへ切り替えるとき、および電圧Vdから電圧0(V)へ切り替えるときに、この容量を充放電しなければならず、そのための消費電力が必要となる。 Therefore, the data electrode driving circuit has the capacitance when the voltage applied to each data electrode 22 is switched from the voltage 0 (V) to the voltage Vd and from the voltage Vd to the voltage 0 (V) in the address period. Must be charged and discharged, and power consumption for that purpose is required.
 この充放電の回数が相対的に多い書込み期間では、データ電極駆動回路の消費電力も相対的に多くなる。逆に、この充放電の回数が相対的に少ない書込み期間では、データ電極駆動回路の消費電力も相対的に少なくなる。したがって、この充放電の回数を抑えることで、データ電極駆動回路の消費電力を抑制することができる。 In the address period in which the number of times of charging / discharging is relatively large, the power consumption of the data electrode driving circuit is also relatively large. Conversely, in the address period in which the number of times of charging / discharging is relatively small, the power consumption of the data electrode driving circuit is relatively small. Therefore, the power consumption of the data electrode driving circuit can be suppressed by suppressing the number of times of charging / discharging.
 次に、維持期間について説明する。 Next, the maintenance period will be described.
 サブフィールドSF1の維持期間Ts1では、まず維持電極SU1~維持電極SUnに電圧0(V)を印加する。そして、走査電極SC1~走査電極SCnに正の電圧Vsの維持パルスを印加する。 In the sustain period Ts1 of the subfield SF1, first, the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn. Then, sustain pulse of positive voltage Vs is applied to scan electrode SC1 through scan electrode SCn.
 この維持パルスの印加により、書込み期間Tw1に書込み放電を発生した放電セルでは、走査電極SCiと維持電極SUiとの電圧差が放電開始電圧を超え、走査電極SCiと維持電極SUiとの間に維持放電が発生する。そして、この維持放電により発生した紫外線により、維持放電が発生した放電セルの蛍光体層25が発光する。また、この維持放電により、走査電極SCi上に負の壁電圧が蓄積され、維持電極SUi上に正の壁電圧が蓄積される。さらに、データ電極Dk上にも正の壁電圧が蓄積される。ただし、書込み期間Tw1において書込み放電が発生しなかった放電セルでは維持放電は発生しない。 In the discharge cell in which the address discharge is generated in the address period Tw1 by the application of the sustain pulse, the voltage difference between the scan electrode SCi and the sustain electrode SUi exceeds the discharge start voltage, and is maintained between the scan electrode SCi and the sustain electrode SUi. Discharge occurs. The phosphor layer 25 of the discharge cell in which the sustain discharge has occurred emits light by the ultraviolet rays generated by the sustain discharge. In addition, due to the sustain discharge, a negative wall voltage is accumulated on scan electrode SCi, and a positive wall voltage is accumulated on sustain electrode SUi. Furthermore, a positive wall voltage is also accumulated on the data electrode Dk. However, the sustain discharge does not occur in the discharge cells in which the address discharge has not occurred in the address period Tw1.
 続いて、走査電極SC1~走査電極SCnに電圧0(V)を印加し、維持電極SU1~維持電極SUnに電圧Vsの維持パルスを印加する。直前に維持放電を発生した放電セルでは再び維持放電が発生し、維持電極SUi上に負の壁電圧が蓄積され、走査電極SCi上に正の壁電圧が蓄積される。 Subsequently, voltage 0 (V) is applied to scan electrode SC1 through scan electrode SCn, and a sustain pulse of voltage Vs is applied to sustain electrode SU1 through sustain electrode SUn. In the discharge cell that has generated a sustain discharge immediately before, a sustain discharge occurs again, a negative wall voltage is accumulated on sustain electrode SUi, and a positive wall voltage is accumulated on scan electrode SCi.
 以降同様に、走査電極SC1~走査電極SCnと維持電極SU1~維持電極SUnとに、階調重みに所定の輝度倍数を乗じた数の維持パルスを交互に印加する。こうして、書込み期間において書込み放電を発生した放電セルは、階調重みに応じた回数の維持放電を発生し、階調重みに応じた輝度で発光する。 Thereafter, similarly, the sustain pulses of the number obtained by multiplying the gradation weight by a predetermined luminance multiple are alternately applied to scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn. Thus, the discharge cells that have generated the address discharge in the address period generate the sustain discharges the number of times corresponding to the gradation weight, and emit light with the luminance corresponding to the gradation weight.
 そして、維持期間Ts1における維持パルスの発生後(維持期間の最後)に、維持電極SU1~維持電極SUnおよびデータ電極D1~データ電極Dmに電圧0(V)を印加したまま、走査電極SC1~走査電極SCnに電圧0(V)から電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加する。 After generation of the sustain pulse in sustain period Ts1 (the end of the sustain period), scan electrode SC1 to scan are performed while voltage 0 (V) is applied to sustain electrode SU1 to sustain electrode SUn and data electrode D1 to data electrode Dm. An upward ramp waveform voltage that gradually rises from voltage 0 (V) to voltage Vr is applied to electrode SCn.
 電圧Vrを放電開始電圧を超える電圧に設定することで、走査電極SC1~走査電極SCnへ印加する上り傾斜波形電圧が放電開始電圧を超えて上昇する間に、維持放電を発生した放電セルの維持電極SUiと走査電極SCiとの間に、微弱な放電(消去放電)が持続して発生する。 By setting the voltage Vr to a voltage exceeding the discharge start voltage, the sustain of the discharge cell that has generated the sustain discharge is maintained while the rising ramp waveform voltage applied to scan electrode SC1 through scan electrode SCn exceeds the discharge start voltage. A weak discharge (erase discharge) is continuously generated between the electrode SUi and the scan electrode SCi.
 この微弱な放電で発生した荷電粒子は、維持電極SUiと走査電極SCiとの間の電圧差を緩和するように、維持電極SUi上および走査電極SCi上に壁電荷となって蓄積される。これにより、データ電極Dk上の正の壁電圧を残したまま、走査電極SCi上の壁電圧および維持電極SUi上の壁電圧が弱められる。こうして、放電セル内における不要な壁電荷が消去される。 The charged particles generated by this weak discharge are accumulated as wall charges on the sustain electrode SUi and the scan electrode SCi so as to reduce the voltage difference between the sustain electrode SUi and the scan electrode SCi. Thereby, the wall voltage on scan electrode SCi and the wall voltage on sustain electrode SUi are weakened while the positive wall voltage on data electrode Dk remains. Thus, unnecessary wall charges in the discharge cell are erased.
 走査電極SC1~走査電極SCnに印加する電圧が電圧Vrに到達したら、走査電極SC1~走査電極SCnへの印加電圧を電圧0(V)まで下降する。こうして、サブフィールドSF1の維持期間Ts1における維持動作が終了する。 When the voltage applied to scan electrode SC1 through scan electrode SCn reaches voltage Vr, the voltage applied to scan electrode SC1 through scan electrode SCn is lowered to voltage 0 (V). Thus, the sustain operation in subfield SF1 during sustain period Ts1 ends.
 以上により、サブフィールドSF1が終了する。 Thus, subfield SF1 is completed.
 次に、選択初期化サブフィールドについてサブフィールドSF2を例に挙げて説明する。 Next, the selective initialization subfield will be described by taking the subfield SF2 as an example.
 サブフィールドSF2の初期化期間Ti2では、データ電極D1~データ電極Dmに電圧0(V)を印加し、維持電極SU1~維持電極SUnには正の電圧Veを印加する。 In the initialization period Ti2 of the subfield SF2, the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn.
 走査電極SC1~走査電極SCnには放電開始電圧未満となる電圧(例えば、電圧0(V))から負の電圧Vi4に向かって、初期化期間Ti1で発生した下り傾斜波形電圧と同じ勾配で下降する下り傾斜波形電圧を印加する。電圧Vi4は、放電開始電圧を超える電圧に設定する。 Scan electrode SC1 to scan electrode SCn decrease from a voltage lower than the discharge start voltage (for example, voltage 0 (V)) toward negative voltage Vi4 at the same gradient as the downward ramp waveform voltage generated in initialization period Ti1. Apply a downward ramp waveform voltage. The voltage Vi4 is set to a voltage exceeding the discharge start voltage.
 この下り傾斜波形電圧を走査電極SC1~走査電極SCnに印加する間に、直前のサブフィールド(図3では、サブフィールドSF1)の維持期間Ts1に維持放電を発生した放電セルでは、走査電極SCiと維持電極SUiとの間、および走査電極SCiとデータ電極Dkとの間でそれぞれ微弱な初期化放電が発生する。 In the discharge cell in which the sustain discharge is generated in the sustain period Ts1 of the immediately preceding subfield (subfield SF1 in FIG. 3) while the downward ramp waveform voltage is applied to scan electrode SC1 through scan electrode SCn, scan electrode SCi and A weak initializing discharge is generated between sustain electrode SUi and between scan electrode SCi and data electrode Dk.
 そして、この初期化放電により、走査電極SCi上の負の壁電圧および維持電極SUi上の正の壁電圧が弱められる。また、データ電極Dk上の正の壁電圧の過剰な部分が放電される。こうして、放電セル内の壁電圧は書込み期間Tw2における書込み動作に適した壁電圧に調整される。 And, by this initializing discharge, the negative wall voltage on scan electrode SCi and the positive wall voltage on sustain electrode SUi are weakened. In addition, an excessive portion of the positive wall voltage on the data electrode Dk is discharged. Thus, the wall voltage in the discharge cell is adjusted to a wall voltage suitable for the address operation in the address period Tw2.
 一方、直前のサブフィールド(サブフィールドSF1)の維持期間Ts1に維持放電を発生しなかった放電セルでは、初期化放電は発生せず、それ以前の壁電圧が保たれる。 On the other hand, in the discharge cells that did not generate the sustain discharge in the sustain period Ts1 of the immediately preceding subfield (subfield SF1), the initializing discharge does not occur and the previous wall voltage is maintained.
 上述の電圧波形が、直前のサブフィールドの書込み期間(ここでは、書込み期間Tw1)で書込み動作を行った放電セルで選択的に初期化放電を発生する選択初期化波形である。そして、選択初期化波形を走査電極12に印加する動作が選択初期化動作である。 The voltage waveform described above is a selective initialization waveform in which an initializing discharge is selectively generated in a discharge cell that has performed an address operation in the address period (here, address period Tw1) of the immediately preceding subfield. The operation of applying the selective initialization waveform to the scan electrode 12 is the selective initialization operation.
 以上により、選択初期化サブフィールドであるサブフィールドSF2の初期化期間Ti2における選択初期化動作が終了する。 Thus, the selective initialization operation in the initialization period Ti2 of the subfield SF2, which is the selective initialization subfield, is completed.
 サブフィールドSF2の書込み期間Tw2では、サブフィールドSF1の書込み期間Tw1と同様の駆動電圧波形を各電極に印加する。続く維持期間Ts2も、サブフィールドSF1の維持期間Ts1と同様に、階調重みに応じた数の維持パルスを走査電極SC1~走査電極SCnと維持電極SU1~維持電極SUnとに交互に印加する。 In the address period Tw2 of the subfield SF2, the same drive voltage waveform as that in the address period Tw1 of the subfield SF1 is applied to each electrode. In the subsequent sustain period Ts2, similarly to the sustain period Ts1 of the subfield SF1, the number of sustain pulses corresponding to the gradation weights are alternately applied to the scan electrodes SC1 to SCn and the sustain electrodes SU1 to SUn.
 サブフィールドSF3以降の各サブフィールドでは、維持期間に発生する維持パルスの数を除き、サブフィールドSF2と同様の駆動電圧波形を各電極に印加する。 In each subfield after subfield SF3, the same drive voltage waveform as in subfield SF2 is applied to each electrode except for the number of sustain pulses generated in the sustain period.
 以上が、本実施の形態においてパネル10の各電極に印加する駆動電圧波形の概要である。 The above is the outline of the drive voltage waveform applied to each electrode of panel 10 in the present embodiment.
 なお、本実施の形態において各電極に印加する電圧値は、例えば、電圧Vi1=140(V)、電圧Vi2=340(V)、電圧Vi3=200(V)、電圧Vi4=-190(V)、電圧Vc=-60(V)、電圧Va=-200(V)、電圧Vs=200(V)、電圧Vr=200(V)、電圧Ve=130(V)、電圧Vd=70(V)である。また、初期化期間Ti1に発生する上り傾斜波形電圧の勾配は約1.3V/μsecであり、各維持期間に発生する上り傾斜波形電圧の勾配は約10V/μsecであり、各初期化期間に発生する下り傾斜波形電圧の勾配は約-1.5V/μsecである。 In this embodiment, the voltage values applied to the electrodes are, for example, the voltage Vi1 = 140 (V), the voltage Vi2 = 340 (V), the voltage Vi3 = 200 (V), and the voltage Vi4 = −190 (V). , Voltage Vc = −60 (V), voltage Va = −200 (V), voltage Vs = 200 (V), voltage Vr = 200 (V), voltage Ve = 130 (V), voltage Vd = 70 (V) It is. Further, the gradient of the rising ramp waveform voltage generated in the initialization period Ti1 is about 1.3 V / μsec, and the gradient of the rising ramp waveform voltage generated in each sustain period is about 10 V / μsec. The gradient of the generated downward ramp waveform voltage is about −1.5 V / μsec.
 なお、本実施の形態において、上述した電圧値や勾配等の具体的な数値は単なる一例に過ぎず、本発明は、各電圧値や勾配等が上述した数値に限定されるものではない。各電圧値や勾配等は、パネルの放電特性やプラズマディスプレイ装置の仕様等にもとづき最適に設定することが望ましい。 In the present embodiment, the specific numerical values such as the voltage value and the gradient described above are merely examples, and the present invention is not limited to the numerical values described above for each voltage value and the gradient. Each voltage value, gradient, and the like are preferably set optimally based on the discharge characteristics of the panel and the specifications of the plasma display device.
 なお、本実施の形態では、サブフィールドSF1を強制初期化動作を行う強制初期化サブフィールドとし、他のサブフィールド(サブフィールドSF2以降のサブフィールド)を選択初期化動作を行う選択初期化サブフィールドとしたが、本発明は何らこの構成に限定されるものではない。例えば、サブフィールドSF1を選択初期化サブフィールドにして他のサブフィールドを強制初期化サブフィールドにしたり、あるいは複数のサブフィールドを強制初期化サブフィールドとしてもよい。 In the present embodiment, subfield SF1 is a forced initialization subfield for performing a forced initialization operation, and other subfields (subfields subsequent to subfield SF2) are a selective initialization subfield for performing a selective initialization operation. However, the present invention is not limited to this configuration. For example, the subfield SF1 may be a selective initialization subfield and other subfields may be forced initialization subfields, or a plurality of subfields may be forced initialization subfields.
 上述したように、サブフィールド法では、あらかじめ階調重みを定めた複数のサブフィールドで1フィールドを構成する。そして、点灯するサブフィールド(点灯サブフィールド)と点灯しないサブフィールド(非点灯サブフィールド)とを組み合わせて、各放電セルを、画像信号にもとづく階調値の大きさに応じた発光輝度で発光する。 As described above, in the subfield method, one field is composed of a plurality of subfields in which gradation weights are determined in advance. Then, by combining a subfield that is lit (lighting subfield) and a subfield that is not lit (non-lighting subfield), each discharge cell emits light with a light emission luminance corresponding to the magnitude of the gradation value based on the image signal. .
 以下、点灯サブフィールドと非点灯サブフィールドの組合せを「サブフィールドコード」または単に「コード」と呼称し、複数のサブフィールドコードの集合を「コードセット」と呼称する。 Hereinafter, a combination of a lighting subfield and a non-lighting subfield is referred to as a “subfield code” or simply “code”, and a set of a plurality of subfield codes is referred to as a “code set”.
 本実施の形態では、コードセットを構成する複数のサブフィールドコードの中から、階調値に応じてサブフィールドコードを選択する。そして、サブフィールドコードにもとづき各サブフィールドの発光・非発光を制御し、放電セルを階調値の大きさに応じた輝度で発光させて、パネル10に画像を表示する。 In this embodiment, a subfield code is selected from a plurality of subfield codes constituting a code set according to a gradation value. Then, light emission / non-light emission of each subfield is controlled based on the subfield code, and the discharge cell is caused to emit light with a luminance corresponding to the magnitude of the gradation value, and an image is displayed on the panel 10.
 次に、本実施の形態において用いるコードセットについて説明する。 Next, a code set used in this embodiment will be described.
 なお、以下の説明では、黒を表示するときの階調値(維持放電が発生しないときの階調値)を「0」とする。また、階調重み「N」に対応する階調値を階調値「N」と表記する。 In the following description, the gradation value when displaying black (the gradation value when no sustain discharge occurs) is assumed to be “0”. A gradation value corresponding to the gradation weight “N” is expressed as a gradation value “N”.
 したがって、例えば、階調重み「1」のサブフィールドSF1だけが発光する放電セルが表示する階調値は階調値「1」となる。また、階調重み「1」のサブフィールドSF1と階調重み「2」のサブフィールドSF2だけが発光する放電セルが表示する階調値は、1+2=3なので階調値「3」となる。 Therefore, for example, the gradation value displayed by the discharge cells that emit light only in the subfield SF1 having the gradation weight “1” is the gradation value “1”. The gradation value displayed by the discharge cells that emit light only in the subfield SF1 having the gradation weight “1” and the subfield SF2 having the gradation weight “2” is 1 + 2 = 3, so the gradation value is “3”.
 図4は、1フィールドを8個のサブフィールドで構成するときのコードセットの一例を示す図である。 FIG. 4 is a diagram showing an example of a code set when one field is composed of eight subfields.
 なお、以降の図面では、「階調重み」を単に「重み」と記し、「階調値」を単に「階調」と記す。 In the following drawings, “gradation weight” is simply referred to as “weight”, and “gradation value” is simply referred to as “gradation”.
 図4に示すコードセットにおいて各サブフィールドを示す表記の直下に記された数値は、各サブフィールドの階調重みを表す。 In the code set shown in FIG. 4, the numerical value shown immediately below the notation indicating each subfield represents the gradation weight of each subfield.
 なお、図4には、サブフィールドSF1からサブフィールドSF8までの8つのサブフィールドを1フィールドに有し、各サブフィールドはそれぞれ「1」、「2」、「3」、「5」、「8」、「13」、「21」、「34」の階調重みを有するコードセットを示す。 FIG. 4 includes eight subfields SF1 to SF8 in one field, and each subfield is “1”, “2”, “3”, “5”, “8”, respectively. ”,“ 13 ”,“ 21 ”, and“ 34 ”indicate code sets having gradation weights.
 図4に示すコードセットには、発光するサブフィールドを「1」、非発光のサブフィールドを空欄で示し、最も左の列には、各サブフィールドコードにおいて表示する階調値を表す。 In the code set shown in FIG. 4, the light emitting subfield is indicated by “1”, the non-light emitting subfield is indicated by a blank, and the leftmost column indicates the gradation value to be displayed in each subfield code.
 例えば、図4に示すコードセットにもとづけば、階調値「2」に対応するサブフィールドコードは「01000000」である。 For example, based on the code set shown in FIG. 4, the subfield code corresponding to the gradation value “2” is “01000000”.
 したがって、階調値「2」を表示する放電セルではサブフィールドSF2だけが発光する。 Therefore, only the subfield SF2 emits light in the discharge cell displaying the gradation value “2”.
 なお、このサブフィールドコードは、左からサブフィールドSF1、サブフィールドSF2、サブフィールドSF3、サブフィールドSF4、サブフィールドSF5、サブフィールドSF6、サブフィールドSF7、サブフィールドSF8の順に0または1のデータが並んでいるものとする。また、以下、サブフィールドコードとして示す2値の数値は、左からサブフィールドSF1、サブフィールドSF2、サブフィールドSF3、・・・・の順にデータが並んでいるものとする。 In this subfield code, data 0 or 1 is arranged in the order of subfield SF1, subfield SF2, subfield SF3, subfield SF4, subfield SF5, subfield SF6, subfield SF7, and subfield SF8 from the left. Suppose that In the following description, it is assumed that binary numerical values shown as subfield codes are arranged in the order of subfield SF1, subfield SF2, subfield SF3,.
 また、図4に示すコードセットにもとづけば、階調値「14」に対応するサブフィールドコードは「11101000」である。したがって、階調値「14」を表示する放電セルではサブフィールドSF1、サブフィールドSF2、サブフィールドSF3およびサブフィールドSF5が発光する。 Further, based on the code set shown in FIG. 4, the subfield code corresponding to the gradation value “14” is “11101000”. Accordingly, in the discharge cell displaying the gradation value “14”, the subfield SF1, the subfield SF2, the subfield SF3, and the subfield SF5 emit light.
 次に、本実施の形態におけるプラズマディスプレイ装置の構成について説明する。 Next, the configuration of the plasma display device in the present embodiment will be described.
 図5は、本発明の一実施の形態における画像表示装置30を構成する回路ブロックの一例を概略的に示す図である。 FIG. 5 is a diagram schematically showing an example of a circuit block constituting the image display device 30 according to the embodiment of the present invention.
 画像表示装置30は、パネル10と、パネル10を駆動する駆動回路とを備えている。駆動回路は、画像信号処理回路31、データ電極駆動回路32、走査電極駆動回路33、維持電極駆動回路34、タイミング発生回路35および各回路ブロックに必要な電源を供給する電源回路(図示せず)を備えている。 The image display device 30 includes a panel 10 and a drive circuit that drives the panel 10. The drive circuit includes an image signal processing circuit 31, a data electrode drive circuit 32, a scan electrode drive circuit 33, a sustain electrode drive circuit 34, a timing generation circuit 35, and a power supply circuit (not shown) that supplies necessary power to each circuit block. It has.
 画像信号処理回路31に入力される画像信号は、赤の画像信号、緑の画像信号、青の画像信号である。画像信号処理回路31は、赤の画像信号、緑の画像信号、青の画像信号にもとづき、各放電セルに赤、緑、青の各階調値(1フィールドで表現される階調値)を設定する。なお、画像信号処理回路31は、入力される画像信号が輝度信号(Y信号)および彩度信号(C信号、またはR-Y信号およびB-Y信号、またはu信号およびv信号等)を含むときには、その輝度信号および彩度信号にもとづき赤の画像信号、緑の画像信号、青の画像信号を算出し、その後、各放電セルに赤、緑、青の各階調値を設定する。そして、各放電セルに設定した赤、緑、青の階調値を、サブフィールド毎の点灯・非点灯を示すサブフィールドコード(発光・非発光をデジタル信号の「1」、「0」に対応させたデータのこと)に変換し、そのサブフィールドコードを表示コードとして出力する。すなわち、画像信号処理回路31は、赤の画像信号、緑の画像信号、青の画像信号を、赤の表示コード、緑の表示コード、青の表示コードに変換して出力する。 The image signals input to the image signal processing circuit 31 are a red image signal, a green image signal, and a blue image signal. Based on the red image signal, the green image signal, and the blue image signal, the image signal processing circuit 31 sets each gradation value of red, green, and blue (a gradation value expressed by one field) to each discharge cell. To do. In the image signal processing circuit 31, the input image signal includes a luminance signal (Y signal) and a saturation signal (C signal, or RY signal and BY signal, or u signal and v signal, etc.). In some cases, a red image signal, a green image signal, and a blue image signal are calculated based on the luminance signal and the saturation signal, and then, each gradation value of red, green, and blue is set in each discharge cell. The red, green, and blue gradation values set for each discharge cell are subfield codes indicating lighting / non-lighting for each subfield (light emission / non-light emission corresponds to digital signals “1” and “0”). The subfield code is output as a display code. That is, the image signal processing circuit 31 converts the red image signal, the green image signal, and the blue image signal into a red display code, a green display code, and a blue display code and outputs the converted signals.
 本実施の形態における画像信号処理回路31は、書込み期間において順次書込み動作を行うときと飛越書込み動作を行うときとのそれぞれでデータ電極駆動回路32の消費電力を予測する。そして、データ電極駆動回路32の消費電力がより少ない方の書込み動作を選択する。そして、選択した方の書込み動作に応じた順序に配列を変更した表示コードを出力する。 The image signal processing circuit 31 in the present embodiment predicts the power consumption of the data electrode driving circuit 32 when performing sequential write operations and when performing interlaced write operations in the write period. Then, the write operation with the lower power consumption of the data electrode drive circuit 32 is selected. Then, the display code whose arrangement is changed in the order corresponding to the write operation of the selected one is output.
 なお、本実施の形態において、画像信号処理回路31は、変換テーブルを用いて画像信号をサブフィールドコードへ変換するのではなく、論理演算によって画像信号をサブフィールドコードへ変換する。この詳細は後述する。 In the present embodiment, the image signal processing circuit 31 does not convert an image signal into a subfield code using a conversion table, but converts the image signal into a subfield code by a logical operation. Details of this will be described later.
 タイミング発生回路35は、水平同期信号および垂直同期信号にもとづき、各回路ブロックの動作を制御する各種のタイミング信号を発生する。そして、発生したタイミング信号をそれぞれの回路ブロック(データ電極駆動回路32、走査電極駆動回路33、維持電極駆動回路34、および画像信号処理回路31等)へ供給する。 The timing generation circuit 35 generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal. The generated timing signal is supplied to each circuit block (data electrode drive circuit 32, scan electrode drive circuit 33, sustain electrode drive circuit 34, image signal processing circuit 31, etc.).
 走査電極駆動回路33は、傾斜波形発生部、維持パルス発生部、走査パルス発生部(図5には示さず)を備え、タイミング発生回路35から供給されるタイミング信号にもとづいて駆動電圧波形を作成し、走査電極SC1~走査電極SCnのそれぞれに印加する。傾斜波形発生部は、タイミング信号にもとづき、初期化期間に走査電極SC1~走査電極SCnに印加する強制初期化波形および選択初期化波形を発生する。維持パルス発生部は、タイミング信号にもとづき、維持期間に走査電極SC1~走査電極SCnに印加する維持パルスを発生する。走査パルス発生部は、複数の走査電極駆動IC(走査IC)を備え、タイミング信号にもとづき、書込み期間に走査電極SC1~走査電極SCnに印加する走査パルスを発生する。 Scan electrode drive circuit 33 includes a ramp waveform generation unit, a sustain pulse generation unit, and a scan pulse generation unit (not shown in FIG. 5), and generates a drive voltage waveform based on a timing signal supplied from timing generation circuit 35. Then, the voltage is applied to each of scan electrode SC1 to scan electrode SCn. The ramp waveform generator generates a forced initialization waveform and a selective initialization waveform to be applied to scan electrode SC1 through scan electrode SCn during the initialization period based on the timing signal. The sustain pulse generator generates a sustain pulse to be applied to scan electrode SC1 through scan electrode SCn during the sustain period based on the timing signal. The scan pulse generator includes a plurality of scan electrode drive ICs (scan ICs), and generates scan pulses to be applied to scan electrode SC1 through scan electrode SCn during the address period based on the timing signal.
 維持電極駆動回路34は、維持パルス発生部、電圧Veを発生する回路(図5には示さず)を備え、タイミング発生回路35から供給されるタイミング信号にもとづいて駆動電圧波形を作成し、維持電極SU1~維持電極SUnのそれぞれに印加する。維持期間では、タイミング信号にもとづいて維持パルスを発生し、維持電極SU1~維持電極SUnに印加する。初期化期間および書込み期間では、タイミング信号にもとづいて電圧Veを発生し、維持電極SU1~維持電極SUnに印加する。 Sustain electrode drive circuit 34 includes a sustain pulse generation unit and a circuit (not shown in FIG. 5) for generating voltage Ve, and generates and maintains a drive voltage waveform based on the timing signal supplied from timing generation circuit 35. The voltage is applied to each of electrode SU1 through sustain electrode SUn. In the sustain period, a sustain pulse is generated based on the timing signal and applied to sustain electrode SU1 through sustain electrode SUn. In the initialization period and the address period, voltage Ve is generated based on the timing signal and applied to sustain electrode SU1 through sustain electrode SUn.
 データ電極駆動回路32は、データ電極22と同数のスイッチ回路36を備える。本実施の形態においてデータ電極22の本数は「m」であるので、データ電極駆動回路32は、m個のスイッチ回路36(スイッチ回路36(1)~スイッチ回路36(m))を有する。そして、m個のスイッチ回路36(1)~スイッチ回路36(m)のそれぞれは、m本のデータ電極D1~データ電極Dmのそれぞれに対応している。 The data electrode drive circuit 32 includes the same number of switch circuits 36 as the data electrodes 22. In this embodiment, since the number of data electrodes 22 is “m”, the data electrode drive circuit 32 includes m switch circuits 36 (switch circuit 36 (1) to switch circuit 36 (m)). Each of the m switch circuits 36 (1) to 36 (m) corresponds to each of the m data electrodes D1 to Dm.
 データ電極駆動回路32は、画像信号処理回路31から出力される各色の表示コードおよびタイミング発生回路35から供給されるタイミング信号にもとづき、各データ電極D1~データ電極Dmに対応する書込みパルスを発生する。そして、データ電極駆動回路32は、書込み期間に、スイッチ回路36(1)~スイッチ回路36(m)のそれぞれからデータ電極D1~データ電極Dmのそれぞれに書込みパルス(書込みパルス電圧Vdまたは0(V))を印加する。 The data electrode drive circuit 32 generates an address pulse corresponding to each of the data electrodes D1 to Dm based on the display code of each color output from the image signal processing circuit 31 and the timing signal supplied from the timing generation circuit 35. . The data electrode drive circuit 32 then writes a write pulse (write pulse voltage Vd or 0 (V) from the switch circuit 36 (1) to the switch circuit 36 (m) to the data electrode D1 to the data electrode Dm during the write period. )) Is applied.
 なお、データ電極駆動回路32は、複数個のスイッチ回路36を集積化した集積回路(専用IC)を複数用いて構成されている。例えば、画素数が1920×1080個のパネルでは、m=1920×3となる。したがって、そのような多数のデータ電極22に書込みパルスを印加するためには、データ電極駆動回路32を構成する回路素子も膨大な数になる。しかし、それらの回路を集積化して専用ICにすることにより、データ電極駆動回路32を小型化することができる。その結果、データ電極駆動回路32を回路基板に実装するときの実装面積を縮小し、画像表示装置30の製造にかかる費用を低減することができる。 The data electrode drive circuit 32 is configured by using a plurality of integrated circuits (dedicated ICs) in which a plurality of switch circuits 36 are integrated. For example, in a panel having 1920 × 1080 pixels, m = 1920 × 3. Therefore, in order to apply the write pulse to such a large number of data electrodes 22, the number of circuit elements constituting the data electrode driving circuit 32 is enormous. However, the data electrode drive circuit 32 can be reduced in size by integrating these circuits into a dedicated IC. As a result, the mounting area when the data electrode driving circuit 32 is mounted on the circuit board can be reduced, and the cost for manufacturing the image display device 30 can be reduced.
 専用ICを正常に動作させるためには、消費電力や温度等を、専用ICの規格としてあらかじめ定められた範囲内に納める必要がある。例えば、消費電力が、あらかじめ定められた消費電力の上限(許容損失:Allowable power dissipation)を超えると、専用ICは異常動作を起こすおそれがある。したがって、画像表示装置30において、データ電極駆動回路32は、専用ICの消費電力があらかじめ定められた上限を超えないように動作する必要がある。 In order for the dedicated IC to operate normally, it is necessary to keep the power consumption, temperature, etc. within the predetermined range as the standard for the dedicated IC. For example, if the power consumption exceeds a predetermined upper limit of power consumption (allowable power loss), the dedicated IC may cause an abnormal operation. Therefore, in the image display device 30, the data electrode drive circuit 32 needs to operate so that the power consumption of the dedicated IC does not exceed a predetermined upper limit.
 そして、本実施の形態では、画像表示装置30における画像表示品質の低下を防止しつつデータ電極駆動回路32の消費電力を低減するように表示コードを発生する。表示コードの発生の詳細は後述する。 In the present embodiment, the display code is generated so as to reduce the power consumption of the data electrode driving circuit 32 while preventing the image display quality in the image display device 30 from deteriorating. Details of generation of the display code will be described later.
 次に、画像信号処理回路31の詳細とその動作について説明する。 Next, details of the image signal processing circuit 31 and its operation will be described.
 本実施の形態における画像信号処理回路31は、画像表示装置30における画像表示品質の低下を防止しつつ、データ電極駆動回路32の消費電力を削減することを目的とする。その目的のために、画像信号処理回路31は、画像の表示に用いるサブフィールドコードの数を削減する。そして、画像信号処理回路31は、画像の表示に用いるサブフィールドコードの数を削減するために、後述するルールを生成する。 The object of the image signal processing circuit 31 in the present embodiment is to reduce the power consumption of the data electrode driving circuit 32 while preventing the image display quality in the image display device 30 from being deteriorated. For that purpose, the image signal processing circuit 31 reduces the number of subfield codes used for displaying an image. Then, the image signal processing circuit 31 generates rules to be described later in order to reduce the number of subfield codes used for image display.
 図6は、本発明の一実施の形態における画像表示装置30の画像信号処理回路31を構成する回路ブロックの一例を概略的に示す図である。 FIG. 6 is a diagram schematically showing an example of a circuit block constituting the image signal processing circuit 31 of the image display device 30 according to the embodiment of the present invention.
 画像信号処理回路31は、サブフィールドコード変換回路37、サブフィールドコード配列回路38、およびディザ要素出力回路39を有する。 The image signal processing circuit 31 includes a subfield code conversion circuit 37, a subfield code arrangement circuit 38, and a dither element output circuit 39.
 サブフィールドコード変換回路37は、画像信号処理回路31に入力された画像信号(以下、単に「画像信号」と記す)にディザ処理を行うとともに、その画像信号をサブフィールドコード(表示コード)に変換する。 The subfield code conversion circuit 37 performs dither processing on an image signal (hereinafter simply referred to as “image signal”) input to the image signal processing circuit 31 and converts the image signal into a subfield code (display code). To do.
 なお、サブフィールドコード変換回路37は、変換テーブルを用いて画像信号をサブフィールドコードへ変換するのではなく、論理演算によって画像信号をサブフィールドコードへ変換する。この詳細は後述する。 Note that the subfield code conversion circuit 37 does not convert the image signal into the subfield code using the conversion table, but converts the image signal into the subfield code by a logical operation. Details of this will be described later.
 サブフィールドコード配列回路38は、サブフィールドコード変換回路37から出力される1フィールド分のサブフィールドコードに関して、「順次書込み電力」と「飛越書込み電力」とを算出する。 The subfield code array circuit 38 calculates “sequential write power” and “interlaced write power” for the subfield code for one field output from the subfield code conversion circuit 37.
 「順次書込み電力」は、書込み期間において、サブフィールドコード変換回路37から出力される1フィールド分のサブフィールドコードにもとづき順次書込み動作を行えばデータ電極駆動回路32の消費電力がどうなるかを予測した予測値(消費電力の見積もり値)である。 “Sequential write power” predicts the power consumption of the data electrode drive circuit 32 if a sequential write operation is performed based on the subfield code for one field output from the subfield code conversion circuit 37 in the write period. It is a predicted value (estimated value of power consumption).
 「飛越書込み電力」は、書込み期間において、サブフィールドコード変換回路37から出力される1フィールド分のサブフィールドコードにもとづき飛越書込み動作を行えばデータ電極駆動回路32の消費電力がどうなるかを予測した予測値である。 “Interlaced writing power” predicted how the power consumption of the data electrode drive circuit 32 would be if the interlaced writing operation was performed based on the subfield code for one field output from the subfield code conversion circuit 37 in the writing period. It is a predicted value.
 そして、サブフィールドコード配列回路38は、データ電極駆動回路32の消費電力の予測値がより少ない方の書込み動作を選択する。さらに、サブフィールドコード配列回路38は、選択した方の書込み動作にもとづく順番で書込み期間に走査パルスが発生するときに、正しい順番で書込み動作がなされるように、サブフィールドコード変換回路37から出力されるサブフィールドコードの配列を変更する。 Then, the subfield code array circuit 38 selects the write operation with the smaller predicted power consumption value of the data electrode drive circuit 32. Further, the subfield code array circuit 38 outputs from the subfield code conversion circuit 37 so that the write operation is performed in the correct order when the scan pulses are generated in the write period in the order based on the selected write operation. Change the array of subfield codes to be displayed.
 サブフィールドコード配列回路38は、順次書込み配列部91、飛越書込み配列部92、電力予測部93、電力予測部94、および配列選択部95を有する。 The subfield code arrangement circuit 38 includes a sequential write arrangement unit 91, an interlaced write arrangement unit 92, a power prediction unit 93, a power prediction unit 94, and an arrangement selection unit 95.
 順次書込み配列部91は、サブフィールドコード変換回路37から出力されるサブフィールドコードの配列を、順次書込み動作に対応した順番に配列し直す。 The sequential write array unit 91 rearranges the array of subfield codes output from the subfield code conversion circuit 37 in the order corresponding to the sequential write operation.
 サブフィールドコード配列回路38は、1フィールド分のサブフィールドコードを記憶し、任意に読み出すことができる記憶装置(例えば、RAM等の半導体記憶装置。図6には示さず)を有する。 The subfield code arrangement circuit 38 has a storage device (for example, a semiconductor storage device such as a RAM, not shown in FIG. 6) that stores a subfield code for one field and can read it arbitrarily.
 そして、順次書込み配列部91は、この記憶装置に記憶されたサブフィールドコードを、走査電極SC1、走査電極SC2、走査電極SC3、・・・、走査電極SCnという順番に対応するように読み出して、出力する。 Then, the sequential write array unit 91 reads the subfield codes stored in the storage device so as to correspond to the order of scan electrode SC1, scan electrode SC2, scan electrode SC3,..., Scan electrode SCn, Output.
 飛越書込み配列部92は、サブフィールドコード変換回路37から出力されるサブフィールドコードの配列を、飛越書込み動作に対応した順番に配列し直す。すなわち、飛越書込み配列部92は、この記憶装置に記憶されたサブフィールドコードを、走査電極SC1、走査電極SC3、走査電極SC5、・・・、走査電極SCn-3、走査電極SCn-1、走査電極SC2、走査電極SC4、走査電極SC6、・・・、走査電極SCn-4、走査電極SCn-2、走査電極SCnという順番に対応するように読み出して、出力する。 The interlaced write array unit 92 rearranges the array of subfield codes output from the subfield code conversion circuit 37 in the order corresponding to the interlaced write operation. That is, the interlaced address array unit 92 converts the subfield codes stored in the storage device into scan electrode SC1, scan electrode SC3, scan electrode SC5,..., Scan electrode SCn-3, scan electrode SCn-1, The electrodes SC2, the scan electrode SC4, the scan electrode SC6,..., The scan electrode SCn-4, the scan electrode SCn-2, and the scan electrode SCn are read and output in order.
 本実施の形態において、1フィールド分のサブフィールドコードをこの記憶装置に記憶し、順次書込み配列部91および飛越書込み配列部92のそれぞれが、各書込み動作に応じた順番で読み出すように構成する。これは、順次書込み配列部91の出力と飛越書込み配列部92の出力との位相を互いに合わせるためである。 In this embodiment, a subfield code for one field is stored in this storage device, and each of the write array unit 91 and the interlaced write array unit 92 is configured to sequentially read in the order corresponding to each write operation. This is because the output of the sequential write array unit 91 and the output of the interlaced write array unit 92 are matched with each other.
 電力予測部93は、順次書込み配列部91から出力されるサブフィールドコードにもとづき、データ電極駆動回路32の消費電力を算出する。この算出結果は、書込み期間において、サブフィールドコード変換回路37から出力される1フィールド分のサブフィールドコードにもとづき順次書込み動作を行うときのデータ電極駆動回路32の消費電力の予測値となる。電力予測部93は、この算出結果を、「順次書込み電力Pprg」として出力する。 The power predicting unit 93 calculates the power consumption of the data electrode driving circuit 32 based on the subfield codes sequentially output from the write array unit 91. This calculation result is a predicted value of the power consumption of the data electrode driving circuit 32 when the sequential address operation is performed based on the subfield code for one field output from the subfield code conversion circuit 37 in the address period. The power prediction unit 93 outputs the calculation result as “sequential write power Pprg”.
 電力予測部94は、飛越書込み配列部92から出力されるサブフィールドコードにもとづき、データ電極駆動回路32の消費電力を算出する。この算出結果は、書込み期間において、サブフィールドコード変換回路37から出力される1フィールド分のサブフィールドコードにもとづき飛越書込み動作を行うときのデータ電極駆動回路32の消費電力の予測値となる。電力予測部94は、この算出結果を、「飛越書込み電力Pint」として出力する。 The power predicting unit 94 calculates the power consumption of the data electrode driving circuit 32 based on the subfield code output from the interlaced writing array unit 92. This calculation result is a predicted value of the power consumption of the data electrode driving circuit 32 when performing the interlaced write operation based on the subfield code for one field output from the subfield code conversion circuit 37 in the write period. The power predicting unit 94 outputs the calculation result as “interlaced writing power Pint”.
 データ電極駆動回路32の消費電力は、データ電極22のそれぞれに印加する電圧の変化(電圧0(V)から電圧Vdへ、または電圧Vdから電圧0(V)へ)の回数が多くなると増加する。また、隣接するデータ電極22に印加する電圧が逆位相で変化するとさらに増加する。なお、この「逆位相」とは、例えば、データ電極Dkに印加する電圧が電圧0(V)から電圧Vdへ変化するときに、データ電極Dk+1に印加する電圧が電圧Vdから電圧0(V)へ変化するようなことをいう。 The power consumption of the data electrode drive circuit 32 increases as the number of changes in voltage applied to each of the data electrodes 22 (from voltage 0 (V) to voltage Vd or from voltage Vd to voltage 0 (V)) increases. . Further, when the voltage applied to the adjacent data electrode 22 changes in the opposite phase, it further increases. The “reverse phase” refers to, for example, when the voltage applied to the data electrode Dk changes from the voltage 0 (V) to the voltage Vd, the voltage applied to the data electrode Dk + 1 changes from the voltage Vd to the voltage 0 (V). Things that change.
 このことから、注目画素と、注目画素の上下左右に隣接する各画素とのそれぞれに関して、各画素に割り当てられるサブフィールドコードの各ビット毎に排他的論理和演算をそれぞれ行い、その演算結果の総和を算出すれば、データ電極駆動回路32における消費電力を予測することができる。 For this reason, an exclusive OR operation is performed for each bit of the subfield code assigned to each pixel for the target pixel and each pixel adjacent to the target pixel in the top, bottom, left, and right directions, and the sum of the calculation results. Is calculated, the power consumption in the data electrode drive circuit 32 can be predicted.
 なお、注目画素とは、その時点で演算の対象となっている画素のことである。また、上述した「ビット」とは、サブフィールドコードを構成するデータのことであり、各ビットが表す1または0の数値は、各サブフィールドにおける点灯または非点灯を表す。 Note that the pixel of interest is a pixel that is an object of calculation at that time. The “bit” described above is data constituting a subfield code, and the numerical value of 1 or 0 represented by each bit represents lighting or non-lighting in each subfield.
 本実施の形態では、上述した考え方にもとづき、電力予測部93および電力予測部94のそれぞれにおいて、データ電極駆動回路32における消費電力の予測値を算出する。 In the present embodiment, based on the above-described concept, each of the power prediction unit 93 and the power prediction unit 94 calculates a predicted value of power consumption in the data electrode drive circuit 32.
 電力予測部93は、書込み期間において順次書込み動作を行うときのデータ電極駆動回路32の消費電力の予測値を算出する。そのために、電力予測部93は、注目画素と、注目画素の上下左右に隣接する各画素とのそれぞれに関して、各画素に割り当てられるサブフィールドコードの各ビット毎に排他的論理和演算をそれぞれ行い、その演算結果の総和を算出する。 The power predicting unit 93 calculates a predicted value of the power consumption of the data electrode driving circuit 32 when performing the sequential address operation in the address period. Therefore, the power prediction unit 93 performs an exclusive OR operation for each bit of the subfield code assigned to each pixel for each pixel of interest and each pixel adjacent to the top, bottom, left, and right of the pixel of interest, The sum of the calculation results is calculated.
 電力予測部94は、書込み期間において飛越書込み動作を行うときのデータ電極駆動回路32の消費電力の予測値を算出する。そのために、電力予測部94は、注目画素と、注目画素との間に画素を1つ挟んで上に配置された画素、注目画素との間に画素を1つ挟んで下に配置された画素、注目画素の左右に隣接する画素の各画素とのそれぞれに関して、各画素に割り当てられるサブフィールドコードの各ビット毎に排他的論理和演算をそれぞれ行い、その演算結果の総和を算出する。 The power predicting unit 94 calculates a predicted value of the power consumption of the data electrode driving circuit 32 when performing the interlaced address operation in the address period. For this purpose, the power predicting unit 94 includes the pixel of interest arranged between the pixel of interest and one pixel between the pixel of interest, and the pixel arranged below with the pixel of interest interposed therebetween. For each of the pixels adjacent to the left and right of the target pixel, an exclusive OR operation is performed for each bit of the subfield code assigned to each pixel, and the sum of the operation results is calculated.
 例えば、注目画素に割り当てられたサブフィールドコードが「11110000」であり、注目画素の左右に隣接する各画素に割り当てられたサブフィールドコードがそれぞれ「11001100」と「11000011」であれば、電力予測部93および電力予測部94は、「11110000」と「11001100」との排他的論理和演算と、「11110000」と「11000011」との排他的論理和演算を行う。演算結果はそれぞれ「00111100」、「00110011」となる。したがって、これらの演算結果の総和は「8」となる。電力予測部93および電力予測部94は、注目画素と、注目画素の上下に配置された各画素に関しても同様の演算を行い、それらの総和を算出する。こうして、電力予測部93および電力予測部94は、注目画素における消費電力の予測値を算出する。そして、電力予測部93および電力予測部94は、画像表示領域に設けられた全ての画素に関して、上述の演算を行い、それらの総和を算出する。 For example, if the subfield code assigned to the pixel of interest is “11110000” and the subfield codes assigned to the pixels adjacent to the left and right of the pixel of interest are “11001100” and “111000011”, respectively, the power prediction unit 93 and the power prediction unit 94 perform an exclusive OR operation of “11110000” and “11001100” and an exclusive OR operation of “11110000” and “11000011”. The calculation results are “00111100” and “00110011”, respectively. Therefore, the sum of these calculation results is “8”. The power predicting unit 93 and the power predicting unit 94 perform the same calculation on the target pixel and each pixel arranged above and below the target pixel, and calculate the sum of them. In this way, the power prediction unit 93 and the power prediction unit 94 calculate the predicted value of power consumption in the target pixel. Then, the power prediction unit 93 and the power prediction unit 94 perform the above-described calculation for all the pixels provided in the image display area, and calculate the sum of them.
 こうして、電力予測部93および電力予測部94のそれぞれは、データ電極駆動回路32における消費電力をフィールド毎に予測する。 Thus, each of the power prediction unit 93 and the power prediction unit 94 predicts the power consumption in the data electrode drive circuit 32 for each field.
 なお、本実施の形態では、1つのデータ電極22上に連続して配置された画素(列方向に連続して配置された画素)を、「縦に連続する画素」とする。また、1つの表示電極対14上に連続して配置された画素(行方向に連続して配置された画素)を、「横に連続する画素」とする。したがって、注目画素の上下に隣接する画素とは、注目画素に対して1つのデータ電極22上で隣接する画素のことである。また、注目画素の左右に隣接する画素とは、注目画素に対して1つの表示電極対14上で隣接する画素のことである。また、縦方向とはデータ電極22が延伸する方向のことであり、横方向とは表示電極対14が延伸する方向のことである。 In the present embodiment, pixels continuously arranged on one data electrode 22 (pixels continuously arranged in the column direction) are referred to as “vertically continuous pixels”. Further, pixels continuously arranged on one display electrode pair 14 (pixels continuously arranged in the row direction) are referred to as “horizontal pixels”. Therefore, the pixels adjacent above and below the pixel of interest are pixels adjacent to the pixel of interest on one data electrode 22. Further, the pixels adjacent to the left and right of the target pixel are pixels adjacent to the target pixel on one display electrode pair 14. The vertical direction is a direction in which the data electrode 22 extends, and the horizontal direction is a direction in which the display electrode pair 14 extends.
 配列選択部95は、順次書込み電力Pprgと飛越書込み電力Pintとを比較し、数値が小さい方を選択する。そして、順次書込み電力Pprgを選択したときには、順次書込み配列部91から出力されるサブフィールドコードをデータ電極駆動回路32に出力する。飛越書込み電力Pintを選択したときには、飛越書込み配列部92から出力されるサブフィールドコードをデータ電極駆動回路32に出力する。すなわち、配列選択部95では、サブフィールドコード変換回路37から出力される1フィールド分のサブフィールドコードに関して、順次書込み動作と飛越書込み動作とを比較し、データ電極駆動回路32の消費電力がより少ない方の書込み動作を選択する。 The array selection unit 95 sequentially compares the write power Pprg and the interlaced write power Pint, and selects the one with the smaller numerical value. When the sequential write power Pprg is selected, the subfield code output from the sequential write array unit 91 is output to the data electrode drive circuit 32. When the interlaced write power Pint is selected, the subfield code output from the interlaced write array unit 92 is output to the data electrode drive circuit 32. That is, the array selection unit 95 compares the sequential write operation and the interlaced write operation with respect to the subfield code for one field output from the subfield code conversion circuit 37, and the power consumption of the data electrode drive circuit 32 is smaller. Select one of the write operations.
 ディザ要素出力回路39は、画像信号にもとづきディザ要素を出力する。また、ディザ要素出力回路39は、飛越書込み電力Pintが順次書込み電力Pprgより大きいときのディザ要素の振幅が、飛越書込み電力Pintが順次書込み電力Pprgより小さいときのディザ要素の振幅よりも小さくなるように、ディザ要素の振幅を制限する。 The dither element output circuit 39 outputs a dither element based on the image signal. Further, the dither element output circuit 39 is configured so that the amplitude of the dither element when the interlaced write power Pint is larger than the sequential write power Pprg is smaller than the amplitude of the dither element when the interlaced write power Pint is smaller than the sequential write power Pprg. Limit the amplitude of the dither element.
 図7は、本発明の一実施の形態における画像表示装置30のサブフィールドコード変換回路37およびディザ要素出力回路39を構成する回路ブロックの一例を概略的に示す図である。 FIG. 7 is a diagram schematically showing an example of circuit blocks constituting the subfield code conversion circuit 37 and the dither element output circuit 39 of the image display device 30 according to the embodiment of the present invention.
 サブフィールドコード変換回路37は、属性検出部41、基底コード生成部50、ルール生成部61、上下コード生成部70、および表示コード選択部80を有する。 The subfield code conversion circuit 37 includes an attribute detection unit 41, a base code generation unit 50, a rule generation unit 61, an upper and lower code generation unit 70, and a display code selection unit 80.
 ディザ要素出力回路39は、ディザ選択部82、およびディザ振幅制限部83を有する。 The dither element output circuit 39 has a dither selector 82 and a dither amplitude limiter 83.
 属性検出部41は、画像信号とその画像信号を表示する画素の位置との関係を特定する。また、各画素に対応する画像信号の時間微分(同一画素に関して、現フィールドと次フィールドとの間で画像信号の変化を検出すること)によって、各画素が動画領域にあるのか、静止画領域にあるのかの検出を行う。また、画像信号の空間微分(隣接する画素間で画像信号の変化を検出すること)によって明るさの変化を検出し、各画素が画像の輪郭部にあたるのかどうかの検出を行う。そして、それらの検出結果を各画素に対応する画像信号の属性として出力する。 The attribute detection unit 41 specifies the relationship between the image signal and the position of the pixel displaying the image signal. In addition, the time differentiation of the image signal corresponding to each pixel (detecting a change in the image signal between the current field and the next field with respect to the same pixel) determines whether each pixel is in the moving image area or the still image area. Detect if there is any. Further, a change in brightness is detected by spatial differentiation of the image signal (detecting a change in the image signal between adjacent pixels), and it is detected whether or not each pixel corresponds to the contour portion of the image. Then, those detection results are output as attributes of the image signal corresponding to each pixel.
 本実施の形態では、以降の信号処理において基本となるサブフィールドコードを「基底コード」と呼称し、基底コードから成るコードセットを「基底コードセット」と呼称する。基底コードは、階調重みの小さいサブフィールドから順に1つずつまたは2つずつ点灯させて生成したサブフィールドコードである。したがって、基底コードは、発光するサブフィールドのうち最も階調重みが大きいサブフィールドと、そのサブフィールドよりも小さい階調重みを有する全てのサブフィールドが発光するサブフィールドコードである。 In the present embodiment, a subfield code that is basic in subsequent signal processing is referred to as a “basic code”, and a code set including the base code is referred to as a “basic code set”. The base code is a subfield code generated by lighting one by one or two in order from the subfield having the smallest gradation weight. Therefore, the base code is a subfield code in which a subfield having the largest gradation weight among the subfields to emit light and all subfields having a gradation weight smaller than that subfield emit light.
 そして、基底コード生成部50は、複数の基底コードから成る基底コードセットの中から、画像信号処理回路31に入力された画像信号の階調値(以下、「入力階調」と呼称する)にもとづき、「上階調基底コード」を選択する。 Then, the base code generation unit 50 converts the tone value (hereinafter referred to as “input tone”) of the image signal input to the image signal processing circuit 31 from the base code set including a plurality of base codes. Based on the above, select “upper tone base code”.
 上階調基底コードは、入力階調よりも大きい階調値であり、かつ入力階調に最も近い階調値を有する基底コードである。したがって、上階調基底コードは、点灯サブフィールドのうち最も階調重みの大きいサブフィールドと、そのサブフィールドよりも階調重みが小さい全てのサブフィールドが点灯サブフィールドとなる。 The upper tone base code is a base code having a tone value larger than the input tone and having a tone value closest to the input tone. Accordingly, in the upper gradation base code, the subfield having the largest gradation weight among the lighting subfields and all subfields having the gradation weight smaller than that subfield are the lighting subfields.
 このように、基底コード生成部50は、入力階調よりも大きく、かつ入力階調に最も近い階調値を有する基底コードを選択し、それを上階調基底コードとして出力する。 As described above, the base code generation unit 50 selects a base code having a gradation value larger than the input gradation and closest to the input gradation, and outputs it as an upper gradation base code.
 以下、基底コードセットの一例を図面を用いて説明する。 Hereinafter, an example of the base code set will be described with reference to the drawings.
 図8Aは、本発明の一実施の形態における画像表示装置30に用いる基底コードセットの一例を示す図である。 FIG. 8A is a diagram illustrating an example of a base code set used in the image display device 30 according to an embodiment of the present invention.
 図8Bは、本発明の一実施の形態における画像表示装置30に用いる基底コードセットの他の一例を示す図である。 FIG. 8B is a diagram showing another example of the base code set used in the image display device 30 according to the embodiment of the present invention.
 図8Cは、本発明の一実施の形態における画像表示装置30に用いる基底コードセットの他の一例を示す図である。 FIG. 8C is a diagram illustrating another example of the base code set used in the image display device 30 according to the embodiment of the present invention.
 図8A、図8B、図8Cに示す基底コードセットには、発光するサブフィールドを「1」、非発光のサブフィールドを空欄で示し、左から2番目の列には、各サブフィールドコード(基底コード)において表示する階調値を表す。また、各基底コードセットにおいて各サブフィールドを示す表記の直下に記された数値は、各サブフィールドの階調重みを表す。 In the base code sets shown in FIGS. 8A, 8B, and 8C, the light-emitting subfield is “1”, the non-light-emitting subfield is blank, and each subfield code (base) is displayed in the second column from the left. Code) represents the gradation value to be displayed. Also, the numerical value written immediately below the notation indicating each subfield in each base code set represents the gradation weight of each subfield.
 図8Aには、NTSC規格で用いられることが多い基底コードセットの一例を示す。図8Aに示す基底コードセットは、1フィールドを8個のサブフィールドで構成し、各サブフィールドは、サブフィールドSF1から順に、それぞれ「1」、「2」、「3」、「5」、「8」、「13」、「21」、「34」の階調重みを有する。 FIG. 8A shows an example of a base code set often used in the NTSC standard. In the base code set shown in FIG. 8A, one field is composed of eight subfields, and each subfield is “1”, “2”, “3”, “5”, “ It has gradation weights of “8”, “13”, “21”, and “34”.
 図8Aに示す基底コードセットでは、1フィールドの先頭サブフィールド(サブフィールドSF1)を階調重みが最も小さいサブフィールドにし、それ以降は、順次階調重みが大きくなるように各サブフィールドを配列する。そして、階調重みが最も小さいサブフィールドから順に1つずつ点灯サブフィールドとする。したがってこの基底コードセットに含まれる基底コードの数は、(1フィールドを構成するサブフィールドの数+1)である。例えば、図8Aに示す基底コードセットの例では、基底コードの数は9となる。 In the base code set shown in FIG. 8A, the first subfield (subfield SF1) of one field is set to the subfield having the smallest gradation weight, and thereafter, the subfields are arranged so that the gradation weight is sequentially increased. . And it is set as a lighting subfield one by one in an order from the subfield with the smallest gradation weight. Therefore, the number of base codes included in this base code set is (the number of subfields constituting one field + 1). For example, in the example of the base code set shown in FIG. 8A, the number of base codes is nine.
 図8Bには、PAL規格で用いられることが多い基底コードセットの一例を示す。図8Bに示す基底コードセットは、1フィールドを12個のサブフィールドで構成し、各サブフィールドは、サブフィールドSF1から順に、それぞれ「1」、「2」、「4」、「9」、「18」、「36」、「65」、「5」、「7」、「15」、「33」、「60」の階調重みを有する。 FIG. 8B shows an example of a base code set often used in the PAL standard. In the base code set shown in FIG. 8B, one field includes 12 subfields, and each subfield is “1”, “2”, “4”, “9”, “9” in order from the subfield SF1. It has gradation weights of “18”, “36”, “65”, “5”, “7”, “15”, “33”, “60”.
 図8Bに示す基底コードセットは、2つのサブフィールド群を有する。1つ目のサブフィールド群はサブフィールドSF1~サブフィールドSF7で構成され、2つ目のサブフィールド群はサブフィールドSF8~サブフィールドSF12で構成される。 The base code set shown in FIG. 8B has two subfield groups. The first subfield group is composed of subfields SF1 to SF7, and the second subfield group is composed of subfields SF8 to SF12.
 それぞれのサブフィールド群は、各サブフィールド群の先頭サブフィールド(図8Bに示す例では、サブフィールドSF1とサブフィールドSF8)を、それぞれのサブフィールド群で階調重みが最も小さいサブフィールドにし、それ以降は、順次階調重みが大きくなるように各サブフィールドを配列する。そして、それぞれのサブフィールド群で、階調重みが最も小さいサブフィールドから順に1つずつまたは2つずつ点灯サブフィールドとする。したがってこの基底コードセットに含まれる基底コードの数は、(1フィールドを構成するサブフィールドの数+1)以下である。例えば、図8Bに示す基底コードセットの例では、基底コードの数は10となる。 Each subfield group has the first subfield of each subfield group (subfield SF1 and subfield SF8 in the example shown in FIG. 8B) as the subfield having the smallest gradation weight in each subfield group. Thereafter, the subfields are arranged so that the gradation weights are sequentially increased. In each subfield group, one or two lighting subfields are set in order from the subfield having the smallest gradation weight. Therefore, the number of base codes included in this base code set is equal to or less than (the number of subfields constituting one field + 1). For example, in the example of the base code set shown in FIG. 8B, the number of base codes is 10.
 図8Cには、3D用ディスプレイ装置(立体視用ディスプレイ装置)で用いられる基底コードセットの一例を示す。図8Cに示す基底コードセットは、1フィールドを5個のサブフィールドで構成し、各サブフィールドは、サブフィールドSF1から順に、それぞれ「1」、「16」、「8」、「4」、「2」の階調重みを有する。 FIG. 8C shows an example of a base code set used in a 3D display device (stereoscopic display device). The base code set shown in FIG. 8C includes one sub-field consisting of five sub-fields, and each sub-field is “1”, “16”, “8”, “4”, “ 2 "gradation weight.
 図8Cに示す基底コードセットでは、1フィールドの先頭サブフィールド(サブフィールドSF1)を階調重みが最も小さいサブフィールドにし、2番目のサブフィールド(サブフィールドSF2)を階調重みが最も大きいサブフィールドにし、それ以降は、順次階調重みが小さくなるように各サブフィールドを配列する。そして、階調重みが最も小さいサブフィールドから順に1つずつ点灯サブフィールドとする。したがってこの基底コードセットに含まれる基底コードの数は、(1フィールドを構成するサブフィールドの数+1)である。例えば、図8Cに示す基底コードセットの例では、基底コードの数は6となる。 In the base code set shown in FIG. 8C, the first subfield (subfield SF1) of one field is the subfield having the smallest gradation weight, and the second subfield (subfield SF2) is the subfield having the largest gradation weight. After that, the subfields are arranged so that the gradation weights are sequentially reduced. And it is set as a lighting subfield one by one in an order from the subfield with the smallest gradation weight. Therefore, the number of base codes included in this base code set is (the number of subfields constituting one field + 1). For example, in the example of the base code set shown in FIG. 8C, the number of base codes is 6.
 本実施の形態における画像表示装置30は、以上のような基底コードセットにもとづき新たなコードセットを生成し、そのコードセットを用いて入力階調をサブフィールドコードに変換する。 The image display device 30 in the present embodiment generates a new code set based on the base code set as described above, and converts the input gradation into a subfield code using the code set.
 基底コード生成部50は、基底コード記憶部52および基底コード選択部54を有する。 The base code generation unit 50 includes a base code storage unit 52 and a base code selection unit 54.
 基底コード記憶部52は、基底コードセットと、基底コードセットを構成する複数の基底コードの各階調値を記憶する。各基底コードと、基底コードの各階調値とは互いに関連付けされて基底コード記憶部52に記憶される。 The base code storage unit 52 stores a base code set and gradation values of a plurality of base codes constituting the base code set. Each base code and each gradation value of the base code are stored in the base code storage unit 52 in association with each other.
 基底コード選択部54は、基底コードセットを構成する基底コードの各階調値と入力階調とを比較する。そして、入力階調より大きく、かつ入力階調に最も近い階調値を有する基底コードを選択する。そして、選択した基底コードを上階調基底コードとして出力する。 The base code selection unit 54 compares each tone value of the base code constituting the base code set with the input tone. Then, a base code having a gradation value larger than the input gradation and closest to the input gradation is selected. Then, the selected base code is output as an upper gradation base code.
 本実施の形態では、画像信号処理回路31に入力された画像信号にもとづき、上階調基底コードにおける点灯サブフィールドを非点灯サブフィールドに変更することで、基底コードセットに含まれない新たなサブフィールドコードを生成する。ルール生成部61では、この新たなサブフィールドコードを生成するためのルールを生成する。 In the present embodiment, based on the image signal input to the image signal processing circuit 31, by changing the lighting subfield in the upper gradation base code to the non-lighting subfield, a new subcode not included in the base code set is obtained. Generate field codes. The rule generation unit 61 generates a rule for generating this new subfield code.
 すなわち、ルール生成部61は、画像の表示に用いるサブフィールドコードの数を増やすために、画像信号、および属性検出部41において検出された属性(画像信号に付随する属性)にもとづき、基底コード生成部50において選択された上階調基底コードにおける点灯サブフィールドを非点灯サブフィールドに変更するときのルールを生成する。 That is, the rule generation unit 61 generates a base code based on the image signal and the attribute (attribute associated with the image signal) detected by the attribute detection unit 41 in order to increase the number of subfield codes used for image display. A rule for changing the lighting subfield in the upper gradation base code selected in the unit 50 to the non-lighting subfield is generated.
 言い換えると、本実施の形態においてルール生成部61で生成されるルールは、上階調基底コードにおける点灯サブフィールドを非点灯サブフィールドに変更する法則を規定したものである。 In other words, in the present embodiment, the rule generated by the rule generation unit 61 defines a rule for changing the lighting subfield in the upper gradation base code to the non-lighting subfield.
 ルール生成部61で生成するルールでは、上階調基底コードにおいて点灯から非点灯に変更するサブフィールドを制限する。これは、上階調基底コードにおいて点灯サブフィールドを非点灯サブフィールドに変更して作成した新たなサブフィールドコードの階調値が、その上階調基底コードよりも小さい基底コードの階調値を下回らないようにするためである。 The rule generated by the rule generation unit 61 restricts subfields to be changed from lighting to non-lighting in the upper gradation base code. This is because the gradation value of the new subfield code created by changing the lighting subfield to the non-lighting subfield in the upper gradation base code is smaller than the upper gradation base code. This is in order not to fall below.
 例えば、上階調基底コードにおいて点灯から非点灯に変更するサブフィールドを無制限に許可すると、全ての点灯サブフィールドが非点灯サブフィールドとなり、階調値が「0」となるサブフィールドコードが生成されることもあり得るためである。 For example, if the upper gradation base code allows unlimited subfields to change from lighting to non-lighting, all lighting subfields become non-lighting subfields, and subfield codes with a gradation value of “0” are generated. This is because there is a possibility that it may occur.
 ルール生成部61においては、ルールにもとづき生成されるサブフィールドコードが次の階調値を有するようにルールを生成する。
1)上階調基底コードの階調値以下の階調値。
2)下階調基底コードの階調値以上の階調値。
なお、「下階調基底コード」とは、入力階調以下であり、かつ入力階調に最も近い階調値を有する基底コードのことである。
The rule generation unit 61 generates a rule so that the subfield code generated based on the rule has the next gradation value.
1) A gradation value equal to or lower than the gradation value of the upper gradation base code.
2) A gradation value equal to or higher than the gradation value of the lower gradation base code.
The “lower gradation base code” is a base code having a gradation value that is equal to or lower than the input gradation and closest to the input gradation.
 具体的には、ルール生成部61で生成されるルールは、次の3つのルールのうちの1つもしくは複数から成る。
1)点灯サブフィールドから非点灯サブフィールドに変更する1つ目のサブフィールドを設定するときのルール。
2)点灯サブフィールドから非点灯サブフィールドに変更する2つ目のサブフィールドを設定するときのルール。
3)非点灯となることを禁止するサブフィールドを設定するときのルール。
Specifically, the rule generated by the rule generation unit 61 is composed of one or more of the following three rules.
1) A rule for setting the first subfield to be changed from the lighting subfield to the non-lighting subfield.
2) A rule for setting the second subfield to be changed from the lighting subfield to the non-lighting subfield.
3) A rule for setting a sub-field that prohibits non-lighting.
 上下コード生成部70は、基底コード生成部50から出力される上階調基底コードに、ルール生成部61で生成したルールを適用して、上階調コードと下階調コードとを生成する。 The upper / lower code generation unit 70 applies the rule generated by the rule generation unit 61 to the upper gradation base code output from the base code generation unit 50 to generate an upper gradation code and a lower gradation code.
 上階調コードとは、ルール生成部61で生成したルールにもとづいて新たに生成することができるサブフィールドコードの中で、入力階調より大きくかつ入力階調に最も近い階調値を有するサブフィールドコードのことである。 The upper gradation code is a sub-field code that can be newly generated based on the rule generated by the rule generation unit 61 and has a gradation value larger than the input gradation and closest to the input gradation. It is a field code.
 下階調コードとは、ルール生成部61で生成したルールにもとづいて新たに生成することができるサブフィールドコードの中で、入力階調以下でありかつ入力階調に最も近い階調値を有するサブフィールドコードのことである。 The lower gradation code has a gradation value that is equal to or lower than the input gradation and closest to the input gradation among subfield codes that can be newly generated based on the rule generated by the rule generation unit 61. It is a subfield code.
 上下コード生成部70は、中間コード生成部72、および上下コード選択部74を有する。 The upper / lower code generation unit 70 includes an intermediate code generation unit 72 and an upper / lower code selection unit 74.
 中間コード生成部72は、ルール生成部61において生成されたルールにもとづき、上階調基底コードにおける点灯サブフィールドを非点灯サブフィールドに変更して新たなサブフィールドコードを生成する。以下、新たに生成されたサブフィールドコードを「中間コード」と呼称する。また、それらの中間コードに元の上階調基底コードを加えた集合を「中間コードセット」と呼称する。本実施の形態において、中間コードは、パネル10に画像を表示する際に使用するサブフィールドコードである。したがって、パネル10の各放電セルは、中間コードにもとづく階調値の輝度で発光する。 Based on the rules generated by the rule generation unit 61, the intermediate code generation unit 72 changes the lighting subfield in the upper gradation base code to the non-lighting subfield and generates a new subfield code. Hereinafter, the newly generated subfield code is referred to as “intermediate code”. A set obtained by adding the original upper tone base code to these intermediate codes is referred to as an “intermediate code set”. In the present embodiment, the intermediate code is a subfield code used when displaying an image on panel 10. Therefore, each discharge cell of panel 10 emits light with a luminance of a gradation value based on the intermediate code.
 以下、中間コードの一例を図面を用いて説明する。 Hereinafter, an example of the intermediate code will be described with reference to the drawings.
 図9Aは、本発明の一実施の形態における画像表示装置30の中間コード生成部72において生成される中間コードセットの一例を示す図である。 FIG. 9A is a diagram illustrating an example of an intermediate code set generated by the intermediate code generation unit 72 of the image display device 30 according to the embodiment of the present invention.
 図9Bは、本発明の一実施の形態における画像表示装置30の中間コード生成部72において生成される中間コードセットの他の一例を示す図である。 FIG. 9B is a diagram illustrating another example of the intermediate code set generated by the intermediate code generation unit 72 of the image display device 30 according to the embodiment of the present invention.
 図9Cは、本発明の一実施の形態における画像表示装置30の中間コード生成部72において生成される中間コードセットの他の一例を示す図である。 FIG. 9C is a diagram illustrating another example of the intermediate code set generated by the intermediate code generation unit 72 of the image display device 30 according to the embodiment of the present invention.
 図9A、図9B、図9Cに示す中間コードセットには、発光するサブフィールドを「1」、非発光のサブフィールドを空欄で示し、左から2番目の列には、各サブフィールドコード(中間コード)において表示する階調値を表す。また、各中間コードセットにおいて各サブフィールドを示す表記の直下に記された数値は、各サブフィールドの階調重みを表す。 In the intermediate code sets shown in FIGS. 9A, 9B, and 9C, the light-emitting subfield is “1”, the non-light-emitting subfield is blank, and the second column from the left is the subfield code (intermediate code). Code) represents the gradation value to be displayed. Also, the numerical value written immediately below the notation indicating each subfield in each intermediate code set represents the gradation weight of each subfield.
 図9A、図9B、図9Cに示す中間コードセットは、1フィールドを8個のサブフィールドで構成し、各サブフィールドは、サブフィールドSF1から順に、それぞれ「1」、「2」、「3」、「5」、「8」、「13」、「21」、「34」の階調重みを有する。 In the intermediate code set shown in FIGS. 9A, 9B, and 9C, one field includes eight subfields, and each subfield is “1”, “2”, and “3” in order from the subfield SF1. , “5”, “8”, “13”, “21”, “34”.
 図9Aには、中間コードセットの一例として、上述した「1)点灯サブフィールドから非点灯サブフィールドに変更する1つ目のサブフィールドを設定するときのルール」を、図8Aに示した階調値「32」の基底コード「11111100」に適用して生成した中間コードセットを示す。 In FIG. 9A, as an example of the intermediate code set, the above-described “1) rule for setting the first subfield to be changed from the lighting subfield to the non-lighting subfield” is shown in FIG. An intermediate code set generated by applying to the base code “11111100” of the value “32” is shown.
 この「1)点灯サブフィールドから非点灯サブフィールドに変更する1つ目のサブフィールドを設定するときのルール」は、「点灯サブフィールドのいずれか1つを非点灯サブフィールドに変更する」というルール(以下、「ルール1」と記す)である。 This “1) rule for setting the first subfield to be changed from a lighting subfield to a non-lighting subfield” is a rule that “one of the lighting subfields is changed to a non-lighting subfield”. (Hereinafter referred to as “rule 1”).
 図8Aに示した階調値「32」の基底コード「11111100」(No.7)では、サブフィールドSF1からサブフィールドSF6までの6つのサブフィールドが点灯サブフィールドとなる。 In the base code “11111100” (No. 7) of the gradation value “32” shown in FIG. 8A, six subfields from the subfield SF1 to the subfield SF6 are lighting subfields.
 したがって、ルール1にもとづき、これら6つの点灯サブフィールドのいずれか1つを非点灯サブフィールドに変更することによって、図9Aに示すように、6個のサブフィールドコード、「11111000」、「11110100」、「11101100」、「11011100」、「10111100」、「01111100」を生成することができる。 Therefore, based on rule 1, by changing any one of these six lighting subfields to a non-lighting subfield, as shown in FIG. 9A, six subfield codes “11111000”, “11110100” , “11101100”, “11011100”, “10111100”, and “01111100” can be generated.
 ただし、サブフィールドSF6を非点灯サブフィールドに変更したサブフィールドコード「11111000」は、図8Aに示した階調値「19」の基底コード(No.6)に等しい。したがって、サブフィールドコード「11111000」を除く5個のサブフィールドコードが新たに生成された中間コードとなる。 However, the subfield code “11111000” obtained by changing the subfield SF6 to the non-lighting subfield is equal to the base code (No. 6) of the gradation value “19” illustrated in FIG. 8A. Accordingly, five subfield codes excluding the subfield code “11111000” are newly generated intermediate codes.
 すなわち、上述したルール1を、図8Aに示した階調値「32」の基底コード「11111100」に適用すれば、新たに5個のサブフィールドコードを中間コードとして生成することができる。 That is, if the above-described rule 1 is applied to the base code “11111100” of the gradation value “32” shown in FIG. 8A, five new subfield codes can be generated as intermediate codes.
 図9Bには、中間コードセットの一例として、上述したルール1に加え、「2)点灯サブフィールドから非点灯サブフィールドに変更する2つ目のサブフィールドを設定するときのルール」を、図8Aに示した階調値「32」の基底コード「11111100」に適用して生成した中間コードセットを示す。 In FIG. 9B, as an example of the intermediate code set, in addition to the above-described rule 1, “2) a rule for setting the second subfield to be changed from the lighting subfield to the non-lighting subfield” is shown in FIG. An intermediate code set generated by applying to the base code “11111100” having the gradation value “32” shown in FIG.
 この「2)点灯サブフィールドから非点灯サブフィールドに変更する2つ目のサブフィールドを設定するときのルール」は、「新たに生成された中間コードのうち階調値が最も小さいサブフィールドコードのサブフィールドSF2を非点灯サブフィールドにする」というルール(以下、「ルール2」と記す)である。 This “2) Rule for setting the second subfield to be changed from the lighting subfield to the non-lighting subfield” is “the subfield code having the smallest gradation value among the newly generated intermediate codes”. The sub-field SF2 is a non-lighting sub-field ”(hereinafter referred to as“ rule 2 ”).
 図8Aに示した階調値「32」の基底コード「11111100」(No.7)にルール1を適用することで、図9Aに示したように、新たに5個のサブフィールドコードが生成される。これら5個のサブフィールドコードのうち「新たに生成された中間コードのうち階調値が最も小さいサブフィールドコード」は、階調値「24」のサブフィールドコード「11110100」である。 By applying rule 1 to the base code “11111100” (No. 7) of the gradation value “32” shown in FIG. 8A, five new subfield codes are generated as shown in FIG. 9A. The Among these five subfield codes, the “subfield code with the smallest gradation value among the newly generated intermediate codes” is the subfield code “11110100” with the gradation value “24”.
 したがって、ルール2にもとづき、階調値「24」のサブフィールドコードのサブフィールドSF2を非点灯サブフィールドに変更することによって、図9Bに示すように、新たに階調値「22」のサブフィールドコード「10110100」を生成することができる。 Therefore, by changing the subfield SF2 of the subfield code of the gradation value “24” to the non-lighting subfield based on the rule 2, as shown in FIG. 9B, a new subfield of the gradation value “22” is obtained. The code “10110100” can be generated.
 すなわち、上述したルール1およびルール2を、図8Aに示した階調値「32」の基底コード「11111100」に適用すれば、新たに6個のサブフィールドコードを中間コードとして生成することができる。 That is, if the above-described rule 1 and rule 2 are applied to the base code “11111100” of the gradation value “32” shown in FIG. 8A, six new subfield codes can be generated as intermediate codes. .
 図9Cには、中間コードセットの一例として、上述したルール1に加え、「3)非点灯となることを禁止するサブフィールドを設定するときのルール」を、図8Aに示した階調値「32」の基底コード「11111100」に適用して生成した中間コードセットを示す。 In FIG. 9C, as an example of the intermediate code set, in addition to the above-described rule 1, “3) a rule for setting a subfield that prohibits non-lighting” is shown in the gradation value “ An intermediate code set generated by applying to the base code “11111100” of “32” is shown.
 この「3)非点灯となることを禁止するサブフィールドを設定するときのルール」は、「サブフィールドSF1、サブフィールドSF2を非点灯サブフィールドにすることを禁止する」というルール(以下、「ルール3」と記す)である。 This “3) rule for setting a subfield that prohibits non-lighting” is a rule that “subfield SF1 and subfield SF2 are prohibited from being non-lighting subfield” (hereinafter “rule”). 3 ”).
 図8Aに示した階調値「32」の基底コード「11111100」(No.7)にルール1を適用することで、図9Aに示したように、新たに5個のサブフィールドコードが生成される。これら5個のサブフィールドコードのうち「サブフィールドSF1、またはサブフィールドSF2が非点灯サブフィールドであるサブフィールドコード」は、階調値「30」のサブフィールドコード「10111100」と、階調値「31」のサブフィールドコード「01111100」である。 By applying rule 1 to the base code “11111100” (No. 7) of the gradation value “32” shown in FIG. 8A, five new subfield codes are generated as shown in FIG. 9A. The Among these five sub-field codes, “sub-field code in which sub-field SF1 or sub-field SF2 is a non-lighting sub-field” has a sub-field code “10111100” with a gradation value “30” and a gradation value “ 31 ”is a sub-field code“ 01111100 ”.
 したがって、ルール3にもとづくことで、階調値「30」および階調値「31」のサブフィールドコードは、中間コードセットから除外される。 Therefore, based on the rule 3, the subfield codes having the gradation value “30” and the gradation value “31” are excluded from the intermediate code set.
 すなわち、上述したルール1およびルール3を、図8Aに示した階調値「32」の基底コード「11111100」に適用すれば、新たに3個のサブフィールドコードを中間コードとして生成することができる。 That is, if the above-described rule 1 and rule 3 are applied to the base code “11111100” having the gradation value “32” shown in FIG. 8A, three new subfield codes can be generated as intermediate codes. .
 このように、中間コード生成部72は、基底コード生成部50から出力される上階調基底コードに、ルール生成部61で生成されたルールを適用して、中間コードを生成し、中間コードセットを生成する。 As described above, the intermediate code generation unit 72 applies the rule generated by the rule generation unit 61 to the upper gradation base code output from the base code generation unit 50 to generate an intermediate code, and the intermediate code set Is generated.
 なお、以下では、中間コードを生成する際にルール1とルール3を用いる例を説明するが、中間コードの生成数を増やしたいときには、中間コードを生成する際にルール2を追加すればよい。例えば、画像表示装置30において、消費電力が比較的少ない画像が表示されるときや、動画擬似輪郭の発生が比較的少ない画像が表示されるとき等は、中間コードの生成数を増やすことが可能である。そして、中間コードの生成数を増やすことで、より滑らかな階調の変化で画像を表示することができる。 In the following, an example in which rule 1 and rule 3 are used when generating intermediate code will be described. However, if the number of intermediate codes to be generated is increased, rule 2 may be added when generating intermediate code. For example, when the image display device 30 displays an image with relatively low power consumption, or when an image with relatively little occurrence of moving image pseudo contour is displayed, the number of intermediate codes generated can be increased. It is. Then, by increasing the number of intermediate codes generated, an image can be displayed with a smoother gradation change.
 上下コード選択部74は、中間コード生成部72で生成した中間コードセットを構成するサブフィールドコードの各階調値と、入力階調とを比較する。そして、上下コード選択部74は、入力階調より大きく、かつ入力階調に最も近い階調値を有するサブフィールドコードを選択し、それを上階調コードとして出力する。また、上下コード選択部74は、入力階調以下で、かつ入力階調に最も近い階調値を有するサブフィールドコードを選択し、それを下階調コードとして出力する。 The upper / lower code selection unit 74 compares each gradation value of the subfield code constituting the intermediate code set generated by the intermediate code generation unit 72 with the input gradation. Then, the upper / lower code selection unit 74 selects a subfield code having a gradation value larger than the input gradation and closest to the input gradation, and outputs it as an upper gradation code. In addition, the upper / lower code selection unit 74 selects a subfield code having a gradation value equal to or lower than the input gradation and closest to the input gradation, and outputs it as a lower gradation code.
 表示コード選択部80は、入力階調に所定の値を加算して、注目画素に表示すべき階調値を算出する。そして、表示コード選択部80は、上階調コードおよび下階調コードのうち、注目画素に表示すべき階調値により近い階調値を有する方を選択し、それを表示コードとして出力する。 The display code selection unit 80 calculates a gradation value to be displayed on the target pixel by adding a predetermined value to the input gradation. Then, the display code selection unit 80 selects one of the upper gradation code and the lower gradation code that has a gradation value closer to the gradation value to be displayed on the target pixel, and outputs it as a display code.
 なお、注目画素とは、その時点で階調値の演算の対象となっている画素のことである。 Note that the pixel of interest is a pixel that is a target of calculation of a gradation value at that time.
 また、上述した所定の値には、少なくとも、ディザ処理により算出されるディザ値が含まれる。 Further, the predetermined value described above includes at least a dither value calculated by dither processing.
 表示コード選択部80の詳細については後述する。 Details of the display code selection unit 80 will be described later.
 ディザ要素出力回路39は、画像信号にもとづきディザ要素を出力する。また、ディザ要素出力回路39は、飛越書込み電力Pintが順次書込み電力Pprgより大きい場合のディザ要素の振幅が、飛越書込み電力Pintが順次書込み電力Pprgより小さい場合のディザ要素の振幅よりも小さくなるように、ディザ要素の振幅を制限する。 The dither element output circuit 39 outputs a dither element based on the image signal. Further, the dither element output circuit 39 makes the amplitude of the dither element when the interlaced write power Pint is larger than the sequential write power Pprg smaller than the amplitude of the dither element when the interlaced write power Pint is smaller than the sequential write power Pprg. Limit the amplitude of the dither element.
 ディザ要素出力回路39は、ディザ選択部82およびディザ振幅制限部83を有する。 The dither element output circuit 39 has a dither selector 82 and a dither amplitude limiter 83.
 ディザ選択部82は、複数のディザパターンを記憶している。そして、記憶している複数のディザパターンの中から、画像信号および属性検出部41において検出された属性にもとづき1つのディザパターンを選択する。 The dither selection unit 82 stores a plurality of dither patterns. Then, one dither pattern is selected from a plurality of stored dither patterns based on the image signal and the attribute detected by the attribute detection unit 41.
 また、ディザ選択部82は、その画像信号を表示する画素の位置にもとづき、選択したディザパターンから、その画素の位置に対応するディザ要素を選択して出力する。 Also, the dither selection unit 82 selects and outputs a dither element corresponding to the position of the pixel from the selected dither pattern based on the position of the pixel displaying the image signal.
 これらの動作の一例を、図面を用いて説明する。 An example of these operations will be described with reference to the drawings.
 図10Aは、本発明の一実施の形態における画像表示装置30で使用するディザパターンの一例を示す図である。 FIG. 10A is a diagram illustrating an example of a dither pattern used in the image display device 30 according to an embodiment of the present invention.
 図10Bは、本発明の一実施の形態における画像表示装置30で使用するディザパターンの他の一例を示す図である。 FIG. 10B is a diagram showing another example of the dither pattern used in the image display device 30 according to the embodiment of the present invention.
 なお、図10A、図10Bにおいて、1つの欄は1つの画素を表している。 In FIGS. 10A and 10B, one column represents one pixel.
 図10Aは最も単純な2値ディザを示した図であり、図10Aではディザ要素として「+0.25」と「-0.25」とが市松状に配列されている。また、図10Bは4値ディザの一例を示した図であり、図10Bでは2画素×2画素で構成された1つのブロックの各画素にディザ要素「+0.375」、「+0.125」、「-0.375」、および「-0.125」が配列されている。 FIG. 10A shows the simplest binary dither. In FIG. 10A, “+0.25” and “−0.25” are arranged in a checkered pattern as dither elements. FIG. 10B is a diagram showing an example of quaternary dither. In FIG. 10B, dither elements “+0.375”, “+0.125”, “−0.375” and “−0.125” are arranged.
 そして、ディザ選択部82は、例えば、図10A、図10Bに示した2種類のディザパターンを記憶し、画像信号および属性検出部41において検出された属性にもとづきいずれか一方のディザパターンを選択する。図10Aに示すディザパターンが選択されたときには、ディザ要素は「+0.25」および「-0.25」のいずれかであり、図10Bに示すディザパターンが選択されたときには、ディザ要素は「+0.375」、「+0.125」、「-0.375」、および「-0.125」のいずれかである。 Then, the dither selection unit 82 stores, for example, the two types of dither patterns shown in FIGS. 10A and 10B, and selects either one of the dither patterns based on the image signal and the attribute detected by the attribute detection unit 41. . When the dither pattern shown in FIG. 10A is selected, the dither element is either “+0.25” or “−0.25”. When the dither pattern shown in FIG. 10B is selected, the dither element is “+0”. .375 ”,“ +0.125 ”,“ −0.375 ”, and“ −0.125 ”.
 そして、ディザ選択部82は、これらのディザ要素のいずれか1つを、画像信号を表示する画素の位置にもとづき選択する。 Then, the dither selection unit 82 selects any one of these dither elements based on the position of the pixel displaying the image signal.
 ディザ振幅制限部83には、上階調コードの階調値および下階調コードの階調値が入力され、さらにサブフィールドコード配列回路38から出力される1フィールド前の順次書込み電力Pprgおよび飛越書込み電力Pintが入力され、電力制御信号Cntが入力される。そして、ディザ振幅制限部83は、それらの入力信号にもとづきディザ要素の振幅を制限するための増幅率Aを算出する。この増幅率Aが所定の増幅率である。そして、ディザ選択部82から出力されるディザ要素に増幅率Aを乗算してディザ値を算出する。 The dither amplitude limiter 83 receives the gradation value of the upper gradation code and the gradation value of the lower gradation code, and further outputs the sequential writing power Pprg and the skipping of the previous field output from the subfield code array circuit 38. Write power Pint is input, and power control signal Cnt is input. Then, the dither amplitude limiting unit 83 calculates an amplification factor A for limiting the amplitude of the dither element based on these input signals. This amplification factor A is a predetermined amplification factor. Then, the dither value output from the dither selector 82 is multiplied by the amplification factor A to calculate the dither value.
 なお、ディザ要素の振幅とは、ディザ値(ディザ要素に増幅率Aを乗算した結果の数値)の最大値と最小値との差分(絶対値)のことである。ディザ要素に増幅率Aを乗算することで、ディザ値の大きさは変化するので、増幅率Aが相対的に大きくなればディザ要素の振幅は相対的に大きくなり、増幅率Aが相対的に小さくなればディザ要素の振幅は相対的に小さくなる。 The amplitude of the dither element is a difference (absolute value) between the maximum value and the minimum value of the dither value (a numerical value obtained by multiplying the dither element by the amplification factor A). By multiplying the dither element by the amplification factor A, the magnitude of the dither value changes. Therefore, if the amplification factor A becomes relatively large, the amplitude of the dither element becomes relatively large, and the amplification factor A becomes relatively large. The smaller the amplitude, the smaller the dither element amplitude.
 本実施の形態においては、増幅率Aを、以下の式により算出する。
A=Max(0,上下階調差-K×Min(Cnt,IP))
 上述の式において、上下階調差とは、(上階調コードの階調値-下階調コードの階調値)のことである。Cntとは、画像信号処理回路31の外部からディザ要素出力回路39に入力される電力制御信号Cntのことである。Kは定数である。IPは、順次書込み電力Pprgと飛越書込み電力Pintとの電力比のことであり、以下の式により算出する。
IP=Pint/(Pint+Pprg)
 電力比IPは、「0」以上「1」以下の範囲の数値である。電力比IPが相対的に「0」に近い数値であれば、それは飛越書込み電力Pintよりも順次書込み電力Pprgの方が大きいことを表す。また、電力比IPが相対的に「1」に近い数値であれば、それは順次書込み電力Pprgよりも飛越書込み電力Pintの方が大きいことを表す。
In the present embodiment, the amplification factor A is calculated by the following equation.
A = Max (0, upper / lower gradation difference−K × Min (Cnt, IP))
In the above formula, the difference between the upper and lower gradations means (the gradation value of the upper gradation code−the gradation value of the lower gradation code). Cnt is a power control signal Cnt input to the dither element output circuit 39 from the outside of the image signal processing circuit 31. K is a constant. IP is a power ratio between the sequential write power Pprg and the interlaced write power Pint, and is calculated by the following equation.
IP = Pint / (Pint + Pprg)
The power ratio IP is a numerical value in a range from “0” to “1”. If the power ratio IP is a numerical value relatively close to “0”, it indicates that the write power Pprg is sequentially larger than the interlaced write power Pint. Further, if the power ratio IP is a numerical value relatively close to “1”, it indicates that the interlaced write power Pint is larger than the sequential write power Pprg.
 また、Min(x、y)はxおよびyのうちの値が小さい方(等しい場合を含む)を得る関数であり、Max(x、y)はxおよびyのうちの値が大きい方(等しい場合を含む)を得る関数である。 Min (x, y) is a function for obtaining the smaller one of x and y (including the case where they are equal), and Max (x, y) is the larger one of x and y (equal). (Including cases).
 電力比IPが「0」に近い数値であれば、増幅率Aは上下階調差にほぼ等しくなり、画像信号処理回路31では通常のディザ処理が行われる。しかし、電力比IPが相対的に大きくなると、増幅率Aは相対的に小さくなり、ディザ値も相対的に小さくなって、ディザ処理は抑制される。このように電力比IPを用いてディザ処理を制御する理由を、以下に説明する。 If the power ratio IP is a value close to “0”, the amplification factor A is substantially equal to the upper / lower gradation difference, and the image signal processing circuit 31 performs normal dither processing. However, when the power ratio IP is relatively large, the amplification factor A is relatively small, the dither value is also relatively small, and the dither processing is suppressed. The reason why the dither processing is controlled using the power ratio IP will be described below.
 ディザ処理や誤差拡散処理は、表示コードに含まれない階調値を擬似的にパネル10に表示する方法である。しかし、ディザ処理や誤差拡散処理をすると、画像信号には含まれていないが、それらの処理をすることでパネル10に現れる細かい模様(パターン)が生じる。そして、ディザパターンには、そのパターンが使用者に認識されること防止をするための工夫がなされている。それは、図10A、図10Bに示したように、ディザパターンを市松状に設定することや、あるいはパターンの縦方向および横方向に関する周波数が高くなるようにディザパターンを設定することである。 Dither processing and error diffusion processing are methods of displaying on the panel 10 pseudo gradation values not included in the display code. However, when dither processing or error diffusion processing is performed, fine patterns appearing on the panel 10 are generated by performing these processing, although they are not included in the image signal. The dither pattern is devised to prevent the pattern from being recognized by the user. That is, as shown in FIGS. 10A and 10B, the dither pattern is set in a checkered pattern, or the dither pattern is set so that the frequency in the vertical and horizontal directions of the pattern is increased.
 しかし、その結果、書込み期間において順次書込み動作を行うときには、ディザ処理を行うことで、データ電極22に印加する電圧を切り替える回数が相対的に多くなり、データ電極駆動回路32の消費電力が相対的に増加しやすくなっている。一方、書込み期間において飛越書込み動作を行うときには、順次書込み動作を行うときと比較して、ディザ処理を行うときのデータ電極駆動回路32の消費電力の増加は、抑制される傾向にある。したがって、データ電極駆動回路32の消費電力の増加を抑制するためには、ディザ処理を行うときに、書込み期間において飛越書込み動作を行うことが望ましい。 However, as a result, when performing the sequential address operation in the address period, the number of times of switching the voltage applied to the data electrode 22 is relatively increased by performing the dither process, and the power consumption of the data electrode driving circuit 32 is relatively increased. It is easy to increase. On the other hand, when performing the interlaced address operation in the address period, an increase in power consumption of the data electrode driving circuit 32 when performing the dither process tends to be suppressed as compared to when performing the sequential address operation. Therefore, in order to suppress an increase in power consumption of the data electrode driving circuit 32, it is desirable to perform an interlaced address operation during the address period when performing dither processing.
 飛越書込み電力Pintが相対的に小さく、電力比IPが相対的に小さいときには、配列選択部95は飛越書込み動作を選択する。したがって、増幅率Aを相対的に大きい数値に設定してディザ処理を行っても、データ電極駆動回路32の消費電力の増加は抑制される。 When the interlaced write power Pint is relatively small and the power ratio IP is relatively small, the array selecting unit 95 selects the interlaced write operation. Therefore, even if the dither processing is performed with the amplification factor A set to a relatively large value, an increase in power consumption of the data electrode driving circuit 32 is suppressed.
 一方、飛越書込み電力Pintが相対的に大きく、電力比IPが相対的に大きいときには、配列選択部95は順次書込み動作を選択する。したがって、そのようなときには、増幅率Aを相対的に小さい数値に設定し、ディザ処理の効果を抑制する。その結果、パネル10に画像を表示する際に、ディザ処理よりも誤差拡散処理による影響の方が大きくなる。 On the other hand, when the interlaced write power Pint is relatively large and the power ratio IP is relatively large, the array selecting unit 95 sequentially selects the write operation. Therefore, in such a case, the amplification factor A is set to a relatively small numerical value to suppress the effect of the dithering process. As a result, when an image is displayed on the panel 10, the influence of the error diffusion process is greater than that of the dither process.
 本実施形態では、ディザ処理よりも誤差拡散処理の方が、各処理を行ったときにパネル10に現れるパターンの縦方向の周波数が低くなるように設定されている。そのため、順次書込み動作を選択するときに誤差拡散処理を行っても、データ電極駆動回路32の消費電力が増加することを抑制することができる。この詳細は後述する。 In the present embodiment, the error diffusion process is set to have a lower frequency in the vertical direction of the pattern appearing on the panel 10 when each process is performed than the dither process. Therefore, even if the error diffusion process is performed when the sequential write operation is selected, an increase in power consumption of the data electrode driving circuit 32 can be suppressed. Details of this will be described later.
 なお、電力制御信号Cntは、電力比IPの上限値を制限するために設けられた制御信号である。電力制御信号Cntを小さな数値に設定すれば、電力比IPの大きさにかかわらず、常にディザ処理を行うことができる。 The power control signal Cnt is a control signal provided to limit the upper limit value of the power ratio IP. If the power control signal Cnt is set to a small value, the dither process can always be performed regardless of the magnitude of the power ratio IP.
 次に、サブフィールドコード変換回路37の表示コード選択部80の詳細について説明する。 Next, details of the display code selection unit 80 of the subfield code conversion circuit 37 will be described.
 表示コード選択部80は、入力階調に所定の値を加算して、注目画素に表示すべき階調値を算出する。そして、上階調コードおよび下階調コードのうち、注目画素に表示すべき階調値により近い階調値を有する方を選択し、それを表示コードとして出力する。 The display code selection unit 80 calculates a gradation value to be displayed on the target pixel by adding a predetermined value to the input gradation. Then, of the upper gradation code and the lower gradation code, the one having a gradation value closer to the gradation value to be displayed on the target pixel is selected and output as a display code.
 本実施の形態において、入力階調に加算する上述した所定の値は、誤差拡散処理により拡散される誤差およびディザ処理により算出されるディザ値である。したがって、表示コード選択部80は、入力階調に、誤差およびディザ値を加算して、注目画素に表示すべき階調値を算出し、上階調コードおよび下階調コードのうち、注目画素に表示すべき階調値により近い階調値を有する方を表示コードとして選択する。さらに、表示コード選択部80は、注目画素に表示すべき階調値と表示コードの階調値との差を算出し、その差を誤差として周辺画素に拡散する。 In the present embodiment, the above-described predetermined value added to the input gradation is an error diffused by the error diffusion process and a dither value calculated by the dither process. Therefore, the display code selection unit 80 adds the error and the dither value to the input gradation to calculate the gradation value to be displayed on the target pixel, and selects the target pixel from the upper gradation code and the lower gradation code. The one having a gradation value closer to the gradation value to be displayed is selected as a display code. Further, the display code selection unit 80 calculates the difference between the gradation value to be displayed on the target pixel and the gradation value of the display code, and diffuses the difference as an error to surrounding pixels.
 表示コード選択部80は、誤差拡散部84および表示コード決定部86を有する。 The display code selection unit 80 includes an error diffusion unit 84 and a display code determination unit 86.
 誤差拡散部84は、注目画素に加算するための誤差を表示コード決定部86に出力するとともに、表示コード決定部86から出力される誤差を注目画素の周辺画素に拡散する。 The error diffusion unit 84 outputs an error to be added to the target pixel to the display code determination unit 86 and diffuses the error output from the display code determination unit 86 to the peripheral pixels of the target pixel.
 図11は、本発明の実施の形態における画像表示装置30の誤差拡散部84の誤差拡散係数を示す図である。 FIG. 11 is a diagram showing error diffusion coefficients of the error diffusion unit 84 of the image display device 30 according to the embodiment of the present invention.
 図11において、1つの欄は1つの画素を表している。そして、図11における中央の欄は誤差拡散処理の対象となる画素(注目画素)を表す。 In FIG. 11, one column represents one pixel. The middle column in FIG. 11 represents a pixel (target pixel) that is a target of error diffusion processing.
 誤差拡散部84は、注目画素に、注目画素の左上に配置された画素で発生した誤差に拡散係数k1を乗算した値を拡散(加算)する。また、誤差拡散部84は、注目画素に、注目画素の上に配置された画素で発生した誤差に拡散係数k2を乗算した値を拡散(加算)する。また、誤差拡散部84は、注目画素に、注目画素の右上に配置された画素で発生した誤差に拡散係数k3を乗算した値を拡散(加算)する。また、誤差拡散部84は、注目画素に、注目画素の左に配置された画素で発生した誤差に拡散係数k4を乗算した値を拡散(加算)する。 The error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged at the upper left of the target pixel by the diffusion coefficient k1 to the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged on the target pixel by the diffusion coefficient k2 to the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged at the upper right of the target pixel by the diffusion coefficient k3 to the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged on the left of the target pixel by the diffusion coefficient k4 to the target pixel.
 そして、誤差拡散部84は、注目画素で発生した誤差に拡散係数k4を乗算した値を、注目画素の右に配置された画素に拡散(加算)する。また、誤差拡散部84は、注目画素で発生した誤差に拡散係数k3を乗算した値を、注目画素の左下に配置された画素に拡散(加算)する。また、誤差拡散部84は、注目画素で発生した誤差に拡散係数k2を乗算した値を、注目画素の下に配置された画素に拡散(加算)する。また、誤差拡散部84は、注目画素で発生した誤差に拡散係数k1を乗算した値を、注目画素の右下に配置された画素に拡散(加算)する。 Then, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k4 to the pixel arranged on the right side of the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k3 to the pixel arranged at the lower left of the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k2 to the pixel arranged below the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k1 to the pixel arranged at the lower right of the target pixel.
 本実施の形態において、各拡散係数は、k1=1/16、k2=4/16、k3=3/16、およびk4=8/16とする。または、k1=3/16、k2=4/16、k3=1/16、およびk4=8/16とする。本実施の形態では、どちらの拡散係数を選択するかを、乱数発生器(図示せず)によって発生する乱数を用いて決定している。 In this embodiment, the diffusion coefficients are k1 = 1/16, k2 = 4/16, k3 = 3/16, and k4 = 8/16. Alternatively, k1 = 3/16, k2 = 4/16, k3 = 1/16, and k4 = 8/16. In the present embodiment, which diffusion coefficient is selected is determined using a random number generated by a random number generator (not shown).
 本実施の形態では、誤差拡散処理における各拡散係数を上述した数値に設定する。これにより、中間コードセットに含まれない階調値をパネル10に擬似的に表示するときに、市松状のディザパターンを用いたディザ処理よりも、誤差拡散処理の方が、それらの処理によってパネル10に表示されるパターン(画像信号には含まれていないが、それらの処理をすることでパネル10に現れる細かい模様)の2次元的な周波数を、縦方向に関して低くすることができる。以下にその理由について説明する。 In this embodiment, each diffusion coefficient in the error diffusion process is set to the above-described numerical value. As a result, when the gradation values not included in the intermediate code set are displayed on the panel 10 in a pseudo manner, the error diffusion processing is performed by the panel rather than the dither processing using the checkered dither pattern. The two-dimensional frequency of the pattern displayed in 10 (not included in the image signal, but a fine pattern appearing on the panel 10 by performing these processes) can be lowered in the vertical direction. The reason will be described below.
 使用者は、近接する画素に表示される階調値を平均化して観測する。誤差拡散処理では、この現象を利用し、中間コードセットに含まれる複数の階調値を用いて、中間コードセットに含まれない階調値を擬似的にパネル10に表示する。すなわち、中間コードセットに含まれる複数の階調値を、隣接する複数の画素に表示することで、使用者は、それらの画素に表示される階調値を平均化して観測し、中間コードセットに含まれない階調値があたかもパネル10に表示されている様に知覚する。したがって、個々の画素で表示できる階調値の数が制限されていても、その制限された数よりも多い数の階調値を用いてパネル10に画像を表示することができる。 The user averages and observes the gradation values displayed on adjacent pixels. In the error diffusion process, this phenomenon is used, and the gradation values not included in the intermediate code set are displayed on the panel 10 in a pseudo manner using a plurality of gradation values included in the intermediate code set. That is, by displaying a plurality of gradation values included in the intermediate code set on a plurality of adjacent pixels, the user averages and observes the gradation values displayed on those pixels, and the intermediate code set It is perceived that gradation values not included in the screen are displayed on the panel 10. Therefore, even if the number of gradation values that can be displayed by individual pixels is limited, an image can be displayed on the panel 10 using a larger number of gradation values than the limited number.
 しかし、パネル10に表示される画像を局所的に見ると、画像信号にもとづく階調値よりも高い階調値を表示する画素や、画像信号にもとづく階調値よりも低い階調値を表示する画素が、あるパターンで配列している。このパターンは、誤差拡散処理において用いられる拡散係数k1~散係数k4に依存する。そして、このパターンが、誤差拡散処理によりパネル10に現れる細かい模様(パターン)として、使用者に知覚されることがある。 However, when the image displayed on the panel 10 is viewed locally, a pixel that displays a gradation value higher than the gradation value based on the image signal and a gradation value lower than the gradation value based on the image signal are displayed. The pixels to be arranged are arranged in a certain pattern. This pattern depends on the diffusion coefficients k1 to k4 used in the error diffusion process. This pattern may be perceived by the user as a fine pattern (pattern) appearing on the panel 10 by the error diffusion process.
 縦方向に誤差を拡散するための拡散係数k2、および横方向に誤差を拡散するための拡散係数k4を相対的に大きい数値に設定し、斜め方向に誤差を拡散するための拡散係数k1および拡散係数k3を相対的に小さい数値に設定すると、パネル10には市松状のパターンが発生しやすい。 The diffusion coefficient k2 for diffusing the error in the vertical direction and the diffusion coefficient k4 for diffusing the error in the diagonal direction are set by relatively setting a diffusion coefficient k2 for diffusing the error in the vertical direction and the diffusion coefficient k4 for diffusing the error in the horizontal direction. When the coefficient k3 is set to a relatively small value, a checkered pattern is likely to occur on the panel 10.
 そして、このような市松状のパターンが発生した状態で順次書込み動作を行うと、データ電極22に印加する電圧を、電圧0(V)から電圧Vdへ、または電圧Vdから電圧0(V)へ切り替える回数が相対的に多くなり、データ電極駆動回路32の消費電力が相対的に増加しやすくなる。 When the write operation is sequentially performed in a state where such a checkered pattern is generated, the voltage applied to the data electrode 22 is changed from the voltage 0 (V) to the voltage Vd, or from the voltage Vd to the voltage 0 (V). The number of times of switching is relatively increased, and the power consumption of the data electrode drive circuit 32 is relatively likely to increase.
 一方、斜め方向に誤差を拡散するための拡散係数k1と拡散係数k3、および横方向に誤差を拡散するための拡散係数k4を相対的に大きい数値に設定し、縦方向に誤差を拡散するための拡散係数k2を相対的に小さい数値に設定すると、パネル10には縦線状のパターンが発生しやすい。 On the other hand, the diffusion coefficient k1 and diffusion coefficient k3 for diffusing errors in the oblique direction and the diffusion coefficient k4 for diffusing errors in the horizontal direction are set to relatively large values, and the errors are diffused in the vertical direction. If the diffusion coefficient k2 is set to a relatively small numerical value, a vertical line pattern is likely to occur on the panel 10.
 このような縦線状のパターンは、データ電極駆動回路32の消費電力を相対的に抑制できるが、使用者にそのパターンが知覚されやすく、画像表示品質の低下を招きやすい。 Such a vertical line pattern can relatively suppress the power consumption of the data electrode drive circuit 32, but the pattern is easily perceived by the user, and the image display quality is likely to be deteriorated.
 そのため、本実施の形態においては、縦方向に誤差を拡散するための拡散係数k2と、斜め方向に誤差を拡散するための拡散係数k1および拡散係数k3とを、比較的同程度の数値に設定している。 Therefore, in the present embodiment, the diffusion coefficient k2 for diffusing the error in the vertical direction, and the diffusion coefficient k1 and the diffusion coefficient k3 for diffusing the error in the oblique direction are set to relatively similar numerical values. is doing.
 これにより、誤差拡散処理では、順次書込み動作時において、データ電極22に印加する電圧を電圧0(V)から電圧Vdへ、または電圧Vdから電圧0(V)へ切り替える回数(頻度)を、市松状のディザパターンを用いたディザ処理の半分程度に抑制している。 Thus, in the error diffusion process, the number (frequency) of switching the voltage applied to the data electrode 22 from the voltage 0 (V) to the voltage Vd or from the voltage Vd to the voltage 0 (V) in the sequential write operation is checked. About half of the dither processing using a dither pattern.
 表示コード決定部86は、入力階調、ディザ振幅制限部83から出力されたディザ値、および誤差拡散部84から出力された誤差にもとづき、画像の表示に実際に用いる表示コードを、上階調コードまたは下階調コードのいずれかに決定する。 Based on the input gradation, the dither value output from the dither amplitude limiting unit 83, and the error output from the error diffusion unit 84, the display code determination unit 86 converts the display code actually used for image display into the upper gradation. Either a code or a lower gradation code is determined.
 具体的には、表示コード決定部86は、入力階調に、ディザ値および誤差を加算して、注目画素に表示すべき階調値を算出する。そして、上階調コードおよび下階調コードのうち、注目画素に表示すべき階調値により近い階調値を有する方を表示コードとして選択する。 Specifically, the display code determination unit 86 calculates a gradation value to be displayed on the target pixel by adding the dither value and the error to the input gradation. Of the upper gradation code and the lower gradation code, the one having the gradation value closer to the gradation value to be displayed on the target pixel is selected as the display code.
 そして、表示コード決定部86は、注目画素に表示すべき階調値と表示コードの階調値との差分を算出し、その差分を、新しく発生した誤差として誤差拡散部84に出力する。 Then, the display code determination unit 86 calculates the difference between the gradation value to be displayed on the target pixel and the gradation value of the display code, and outputs the difference to the error diffusion unit 84 as a newly generated error.
 次に、画像信号処理回路31の動作について説明する。なお、以下では、次の条件にもとづき画像信号処理回路31が動作するものとして、説明を行う。
1)基底コードセットとして、図8Aに示した基底コードセットを使用する。
2)図9Aの説明に用いたルールを使用する。すなわち「点灯サブフィールドのいずれか1つを非点灯サブフィールドに変更する」というルール1を使用する。
3)画像信号に付随する属性にもとづき、「非点灯となることを禁止するサブフィールドを設定するときのルール」(ルール3)をルール1に追加する。
Next, the operation of the image signal processing circuit 31 will be described. In the following description, it is assumed that the image signal processing circuit 31 operates based on the following conditions.
1) The base code set shown in FIG. 8A is used as the base code set.
2) The rules used in the description of FIG. 9A are used. That is, rule 1 “change any one of the lighting subfields to a non-lighting subfield” is used.
3) Based on the attribute accompanying the image signal, “Rule for setting sub-field forbidden to turn off” (rule 3) is added to rule 1.
 図12は、本発明の一実施の形態における画像表示装置30の画像信号処理回路31の動作を示すフローチャートである。 FIG. 12 is a flowchart showing the operation of the image signal processing circuit 31 of the image display device 30 according to the embodiment of the present invention.
 画像信号処理回路31は、次の一連のステップを実行する。 The image signal processing circuit 31 executes the following series of steps.
 (ステップS41)
画像信号処理回路31に、1つの画素(注目画素)に対応する画像信号が入力される。属性検出部41は、その画像信号に付随する属性を検出する。
(Step S41)
An image signal corresponding to one pixel (target pixel) is input to the image signal processing circuit 31. The attribute detection unit 41 detects an attribute associated with the image signal.
 以下、注目画素に対応する画像信号は階調値(入力階調)が「25」であり、属性検出部41において、その画像信号に付随する属性は動画であり輪郭部であるという検出結果が得られたものとして説明を行う。 Hereinafter, the image signal corresponding to the target pixel has a gradation value (input gradation) of “25”, and the attribute detection unit 41 detects that the attribute associated with the image signal is a moving image and a contour portion. The description will be given on the assumption that it was obtained.
 (ステップS50)
基底コード生成部50は、その画像信号に対応する上階調基底コードを選択する。
(Step S50)
The base code generation unit 50 selects an upper tone base code corresponding to the image signal.
 すなわち、ステップS50では、複数の基本となるサブフィールドコードの中から、注目画素における画像信号の階調値よりも大きく、かつ注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調基底コードとして選択する。 That is, in step S50, the sub-field code having a gradation value that is larger than the gradation value of the image signal at the target pixel and closest to the gradation value of the image signal at the target pixel is selected from the plurality of basic sub-field codes. The field code is selected as the upper gradation base code.
 具体的には、基底コード生成部50は、基底コード記憶部52に記憶されている基底コードセットを構成する基底コードの各階調値と入力階調とを比較する。そして、入力階調よりも大きく、かつ入力階調に最も近い階調値を有する基底コードを選択し、それを上階調基底コードとして出力する。 Specifically, the base code generation unit 50 compares each tone value of the base code constituting the base code set stored in the base code storage unit 52 with the input tone. Then, a base code having a gradation value larger than the input gradation and closest to the input gradation is selected and output as an upper gradation base code.
 例えば、入力階調が階調値「25」であれば、図8Aに示した基底コードセットにおいて、階調値「25」よりも大きく、かつ階調値「25」に最も近い階調値を有する基底コードは、階調値「32」の基底コードである。したがって、基底コード生成部50は、階調値「32」の基底コード「11111100」を選択し、それを上階調基底コードとして出力する。 For example, if the input gradation is a gradation value “25”, the gradation value larger than the gradation value “25” and closest to the gradation value “25” in the base code set shown in FIG. The base code possessed is a base code having a gradation value of “32”. Therefore, the base code generation unit 50 selects the base code “11111100” having the gradation value “32” and outputs it as the upper gradation base code.
 (ステップS61)
ルール生成部61は、中間コードセット生成のためのルールを生成する。
(Step S61)
The rule generation unit 61 generates a rule for generating an intermediate code set.
 すなわち、ステップS61では、注目画素における画像信号にもとづき、上階調基底コードにおける発光するサブフィールドを非発光のサブフィールドに変更して新たなサブフィールドコードを生成するためのルールを生成する。 That is, in step S61, a rule for generating a new subfield code by changing the light emitting subfield in the upper gradation base code to a non-light emitting subfield is generated based on the image signal at the target pixel.
 具体的には、ルール生成部61は、画像信号に付随する属性が静止画であれば、「点灯サブフィールドのいずれか1つを非点灯サブフィールドに変更する」という基本的なルール(ルール1)を生成する。 Specifically, the rule generation unit 61 performs a basic rule (rule 1) “change any one of the lighting subfields to the non-lighting subfield” if the attribute attached to the image signal is a still image. ) Is generated.
 ルール生成部61は、画像信号に付随する属性が動画であれば、動画擬似輪郭を抑制するために、画像の表示に使用することができるサブフィールドコードを制限する。 If the attribute attached to the image signal is a moving image, the rule generation unit 61 restricts the subfield codes that can be used for displaying the image in order to suppress the moving image pseudo contour.
 パネル10を用いた画像表示装置30では、動画像をパネル10に表示する際に、元の画像信号には含まれない偽の輪郭が使用者に観測されることがある。この偽の輪郭が動画擬似輪郭である。そして、サブフィールドコードには、動画擬似輪郭を抑制する効果が高いものとそうでないものとがある。例えば、図8Aから図8Cに示した基底コードは動画擬似輪郭を抑制する効果が高いサブフィールドコードである。 In the image display device 30 using the panel 10, when a moving image is displayed on the panel 10, a false contour that is not included in the original image signal may be observed by the user. This false contour is a moving image pseudo contour. The subfield codes include those that have a high effect of suppressing moving image pseudo contours and those that do not. For example, the base codes shown in FIGS. 8A to 8C are subfield codes that have a high effect of suppressing the moving image pseudo contour.
 すなわち、動画擬似輪郭の見え方は、画像の表示に使用することができるサブフィールドコードに依存しており、動画擬似輪郭を抑制する効果が高いサブフィールドコードを用いて画像の表示を行うことで、動画擬似輪郭を抑制することができる。その場合、画像の表示に使用することができるサブフィールドコードは、動画擬似輪郭の抑制が不要な場合と比較して、制限される。これが、ルール生成部61において、動画擬似輪郭を抑制するために、画像の表示に使用することができるサブフィールドコードを制限する理由である。 In other words, the appearance of the moving image pseudo contour depends on the subfield code that can be used to display the image, and the image is displayed using the subfield code that is highly effective in suppressing the moving image pseudo contour. The moving image pseudo contour can be suppressed. In that case, the subfield code that can be used for displaying an image is limited as compared with the case where the suppression of the moving image pseudo contour is unnecessary. This is the reason why the rule generation unit 61 restricts the subfield codes that can be used for image display in order to suppress the moving image pseudo contour.
 そして、画像信号に付随する属性が動画であれば、ルール生成部61は、動画擬似輪郭を抑制するために、基本となるルール1に、「非点灯となることを禁止するサブフィールドを設定するときのルール」を追加する。この追加ルールは、例えば、図9Cを用いて説明した「サブフィールドSF1、サブフィールドSF2を非点灯サブフィールドにすることを禁止する」というルール3である。これにより、ルール生成部61は、画像の表示に使用することができるサブフィールドコードを制限する。 Then, if the attribute attached to the image signal is a moving image, the rule generating unit 61 sets “a subfield that prohibits non-lighting” in the basic rule 1 in order to suppress the moving image pseudo contour. Add “When the rule”. This additional rule is, for example, rule 3 described with reference to FIG. 9C, that “subfield SF1 and subfield SF2 are prohibited from being non-lighting subfields”. As a result, the rule generation unit 61 limits the subfield codes that can be used for displaying an image.
 したがって、画像信号に付随する属性が動画であるとき(すなわち、注目画素における画像信号が動画であるとき)にルール生成部61が生成するルールは、画像信号に付随する属性が静止画であるとき(すなわち、注目画素における画像信号が静止画であるとき)にルール生成部61が生成するルールを包含する。 Therefore, when the attribute attached to the image signal is a moving image (that is, when the image signal at the target pixel is a moving image), the rule generated by the rule generation unit 61 is that the attribute attached to the image signal is a still image. The rule generation unit 61 includes a rule that is generated when the image signal at the target pixel is a still image.
 (ステップS72)
中間コード生成部72は、中間コードセットを生成する。
(Step S72)
The intermediate code generation unit 72 generates an intermediate code set.
 具体的には、中間コード生成部72は、ルール生成部61が生成したルールにもとづき、上階調基底コードから中間コードを生成し、中間コードセットを生成する。 Specifically, the intermediate code generation unit 72 generates an intermediate code from the upper gradation base code based on the rules generated by the rule generation unit 61, and generates an intermediate code set.
 例えば、ステップS50において選択された上階調基底コードが階調値「32」の基底コード「11111100」であり、ルール生成部61が生成したルールがルール1およびルール3であれば、中間コード生成部72は、この基底コード「11111100」にルール生成部61が生成したルール1およびルール3を適用し、新たな中間コードを生成する。 For example, if the upper tone base code selected in step S50 is the base code “11111100” having the tone value “32” and the rules generated by the rule generation unit 61 are rule 1 and rule 3, intermediate code generation is performed. The unit 72 applies the rules 1 and 3 generated by the rule generation unit 61 to the base code “11111100” to generate a new intermediate code.
 具体的には、基底コード「11111100」の点灯サブフィールドであるサブフィールドSF1からサブフィールドSF6のうち、ルール3にもとづき、サブフィールドSF1、サブフィールドSF2を除いたサブフィールド(サブフィールドSF3からサブフィールドSF6)を、非点灯サブフィールドへの置き換えの対象とする。そして、ルール1にもとづき、サブフィールドSF3からサブフィールドSF6の各サブフィールドをそれぞれ非点灯サブフィールドにする。こうして、中間コード生成部72は、4つの中間コード「11111000」、「11110100」、「11101100」および「11011100」を生成する。このようにして得られた中間コードセットは、例えば、図9Cに示した中間コードセットである。 Specifically, among the subfields SF1 to SF6, which are the lighting subfields of the base code “11111100”, the subfields (subfield SF3 to subfield are excluded based on rule 3 except for subfield SF1 and subfield SF2). SF6) is to be replaced with a non-lighting subfield. Then, based on rule 1, the subfields SF3 to SF6 are set to non-lighting subfields. In this way, the intermediate code generation unit 72 generates four intermediate codes “11111000”, “11110100”, “11101100”, and “11011100”. The intermediate code set thus obtained is, for example, the intermediate code set shown in FIG. 9C.
 (ステップS74)
上下コード選択部74は、上階調コードと下階調コードを選択する。
(Step S74)
The upper / lower code selection unit 74 selects an upper gradation code and a lower gradation code.
 すなわち、ステップS74では、上階調基底コードに上述したルールを適用して生成される中間コードセットの中から、注目画素における画像信号の階調値より大きく注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調コードとして選択し、かつ、注目画素における画像信号の階調値以下で注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを下階調コードとして選択する。 That is, in step S74, the tone value of the image signal at the target pixel is larger than the tone value of the image signal at the target pixel from the intermediate code set generated by applying the above-described rule to the upper tone base code. The subfield code having the closest gradation value is selected as the upper gradation code, and the subfield code having the gradation value closest to the gradation value of the image signal at the target pixel is equal to or smaller than the gradation value of the image signal at the target pixel. Select the field code as the lower gradation code.
 具体的には、上下コード選択部74は、中間コードセットを構成するサブフィールドコードの各階調値と入力階調とを比較する。そして、入力階調よりも大きく、かつ入力階調に最も近い階調値を有するサブフィールドコードを選択し、それを上階調コードとして出力する。また、入力階調以下で、かつ入力階調に最も近い階調値を有するサブフィールドコードを選択し、それを下階調コードとして出力する。 Specifically, the upper / lower code selection unit 74 compares each gradation value of the subfield code constituting the intermediate code set with the input gradation. Then, a subfield code having a gradation value larger than the input gradation and closest to the input gradation is selected and output as an upper gradation code. Also, a subfield code having a gradation value that is equal to or lower than the input gradation and closest to the input gradation is selected, and is output as a lower gradation code.
 例えば、入力階調が階調値「25」であり、ステップS72において生成された中間コードセットが図9Cに示した中間コードセットであれば、上階調コードに該当するサブフィールドコードは階調値「27」のサブフィールドコードである。また、下階調コードに該当するサブフィールドコードは階調値「24」のサブフィールドコードである。したがって、上下コード選択部74は、上階調コードとして階調値「27」を有するサブフィールドコード「11101100」を選択し、下階調コードとして階調値「24」を有するサブフィールドコード「11110100」を選択する。 For example, if the input gradation is the gradation value “25” and the intermediate code set generated in step S72 is the intermediate code set shown in FIG. 9C, the subfield code corresponding to the upper gradation code is gradation. It is a subfield code of value “27”. The subfield code corresponding to the lower gradation code is a subfield code having a gradation value of “24”. Therefore, the upper / lower code selection unit 74 selects the subfield code “11101100” having the gradation value “27” as the upper gradation code, and the subfield code “11110100” having the gradation value “24” as the lower gradation code. ”Is selected.
 (ステップS82)
ディザ選択部82は、画像信号の属性にもとづきディザ要素を選択する。
(Step S82)
The dither selection unit 82 selects a dither element based on the attribute of the image signal.
 例えば、ディザ選択部82に、図10Aに示したディザパターンと、図10Bに示したディザパターンとが記憶されていれば、ディザ選択部82は、画像信号および属性検出部41において検出された属性にもとづき、いずれか一方のディザパターンを選択する。 For example, if the dither pattern shown in FIG. 10A and the dither pattern shown in FIG. 10B are stored in the dither selection unit 82, the dither selection unit 82 uses the attribute detected by the image signal and attribute detection unit 41. Based on the above, one of the dither patterns is selected.
 そして、画像信号に付随する属性が輪郭部であれば図10Aに示したディザパターンを選択し、画像信号に付随する属性が輪郭部でなければ図10Bに示したディザパターンを選択するようにディザ選択部82が設定してあれば、画像信号に付随する属性が輪郭部のときには、ディザ選択部82は、図10Aに示したディザパターンを選択する。そして、ディザ選択部82は、注目画素の位置にもとづき、ディザパターンに設定されたディザ要素の中からいずれか1つを選択する。例えば、ディザ選択部82は、図10Aに示したディザパターンにもとづき、ディザ要素として「0.25」を選択する。 If the attribute attached to the image signal is a contour portion, the dither pattern shown in FIG. 10A is selected. If the attribute attached to the image signal is not a contour portion, the dither pattern shown in FIG. 10B is selected. If the selection unit 82 is set, when the attribute attached to the image signal is a contour portion, the dither selection unit 82 selects the dither pattern shown in FIG. 10A. Then, the dither selection unit 82 selects one of the dither elements set in the dither pattern based on the position of the target pixel. For example, the dither selection unit 82 selects “0.25” as the dither element based on the dither pattern shown in FIG. 10A.
 (ステップS83)
ディザ振幅制限部83は、ディザ値を算出する。
(Step S83)
The dither amplitude limiter 83 calculates a dither value.
 ディザ振幅制限部83には、上階調コードの階調値および下階調コードの階調値が入力され、順次書込み電力Pprgおよび飛越書込み電力Pintが入力され、さらに電力制御信号Cntが入力される。そして、ディザ振幅制限部83は、それらの入力信号にもとづきディザ要素の振幅を制限するための増幅率Aを算出する。そして、ディザ選択部82から出力されるディザ要素に増幅率Aを乗算してディザ値を算出する。 The dither amplitude limiter 83 receives the gradation value of the upper gradation code and the gradation value of the lower gradation code, sequentially receives the write power Pprg and the interlaced write power Pint, and further receives the power control signal Cnt. The Then, the dither amplitude limiting unit 83 calculates an amplification factor A for limiting the amplitude of the dither element based on these input signals. Then, the dither value output from the dither selector 82 is multiplied by the amplification factor A to calculate the dither value.
 例えば、電力比IPが「0.8」であり、電力制御信号Cntが「1」であり、定数Kが「2.5」であったとする。上階調コードが階調値「27」であり、下階調コードが階調値「24」であれば、上下階調差は「3」である。したがって、このときの増幅率Aは、以下の数値となる。
A=Max(0,上下階調差-K×Min(Cnt,IP))
=Max(0,3-2)
=1
 したがって、ディザ要素として「0.25」が選択されていれば、ディザ値は、以下の数値となる。
0.25×1=0.25
 前フィールドでの電力比IPが「0.8」であれば、配列選択部95は順次書込み動作を選択する。したがって、現フィールドでも、配列選択部95は順次書込み動作を選択する可能性が高い。
For example, it is assumed that the power ratio IP is “0.8”, the power control signal Cnt is “1”, and the constant K is “2.5”. If the upper gradation code is the gradation value “27” and the lower gradation code is the gradation value “24”, the upper / lower gradation difference is “3”. Accordingly, the amplification factor A at this time is as follows.
A = Max (0, upper / lower gradation difference−K × Min (Cnt, IP))
= Max (0,3-2)
= 1
Therefore, if “0.25” is selected as the dither element, the dither value is as follows.
0.25 × 1 = 0.25
If the power ratio IP in the previous field is “0.8”, the array selection unit 95 sequentially selects the write operation. Therefore, there is a high possibility that the array selection unit 95 selects sequential write operations even in the current field.
 そのため、ディザ振幅制限部83は増幅率Aを相対的に小さい数値に設定してディザ値を相対的に小さい数値にし、ディザ処理の効果を抑制する。こうすることで、データ電極駆動回路32の消費電力が増加することを抑制している。 Therefore, the dither amplitude limiting unit 83 sets the amplification factor A to a relatively small numerical value, thereby reducing the dither value to a relatively small numerical value, and suppresses the effect of the dither processing. By doing so, an increase in power consumption of the data electrode drive circuit 32 is suppressed.
 (ステップS86)
表示コード決定部86は、注目画素に表示すべき階調値を算出する。
(Step S86)
The display code determination unit 86 calculates a gradation value to be displayed on the target pixel.
 すなわち、ステップS86では、注目画素における画像信号の階調値に所定の値を加算して注目画素に表示すべき階調値を算出する。 That is, in step S86, a predetermined value is added to the gradation value of the image signal at the target pixel to calculate the gradation value to be displayed on the target pixel.
 具体的には、表示コード決定部86は、入力階調に、ステップS83において算出されたディザ値を加算し、さらに、ステップS88における算出結果にもとづき誤差拡散部84から出力される誤差を加算して、注目画素に表示すべき階調値を算出する。したがって、上述の所定の値は、ディザ選択部82から出力されるディザ値と、誤差拡散部84から出力される誤差とをそれぞれ加算した数値である。 Specifically, the display code determination unit 86 adds the dither value calculated in step S83 to the input gradation, and further adds the error output from the error diffusion unit 84 based on the calculation result in step S88. Thus, the gradation value to be displayed on the target pixel is calculated. Therefore, the predetermined value described above is a numerical value obtained by adding the dither value output from the dither selection unit 82 and the error output from the error diffusion unit 84.
 例えば、入力階調が階調値「25」であり、ステップS83において算出されたディザ値が「0.25」であり、ステップS88における算出結果にもとづき誤差拡散部84から出力される誤差が「-0.4」であれば、25+0.25-0.4=24.85となる。したがって、注目画素に表示すべき階調値は「24.85」となる。 For example, the input gradation is the gradation value “25”, the dither value calculated in step S83 is “0.25”, and the error output from the error diffusion unit 84 based on the calculation result in step S88 is “ If “−0.4”, 25 + 0.25−0.4 = 24.85. Therefore, the gradation value to be displayed on the target pixel is “24.85”.
 あるいは、入力階調が階調値「25」であり、ステップS83において算出されたディザ値が「0.25」であり、ステップS88における算出結果にもとづき誤差拡散部84から出力される誤差が「+0.4」であれば、25+0.25+0.4=25.65となる。したがって、注目画素に表示すべき階調値は「25.65」となる。 Alternatively, the input gradation is the gradation value “25”, the dither value calculated in step S83 is “0.25”, and the error output from the error diffusion unit 84 based on the calculation result in step S88 is “ +0.4 ”, 25 + 0.25 + 0.4 = 25.65. Therefore, the gradation value to be displayed on the target pixel is “25.65”.
 (ステップS87)
表示コード決定部86は、注目画素に階調値を表示する際に使用する表示コードを決定する。
(Step S87)
The display code determining unit 86 determines a display code to be used when displaying the gradation value on the target pixel.
 すなわち、ステップS87では、上階調コードおよび下階調コードのうち注目画素に表示すべき階調値により近い階調値を有する方を表示コードとして選択する。 That is, in step S87, the upper gradation code and the lower gradation code having the gradation value closer to the gradation value to be displayed on the target pixel is selected as the display code.
 具体的には、表示コード決定部86は、注目画素に表示すべき階調値と、上階調コードの階調値および下階調コードの階調値とを比較する。そして注目画素に表示すべき階調値が下階調コードの階調値よりも上階調コードの階調値の方に近い場合は、注目画素に階調値を表示する際に使用する表示コードとして上階調コードを選択し、それを出力する。また、注目画素に表示すべき階調値が上階調コードの階調値よりも下階調コードの階調値の方に近い場合は、注目画素に階調値を表示する際に使用する表示コードとして下階調コードを選択し、それを出力する。 Specifically, the display code determination unit 86 compares the gradation value to be displayed on the target pixel with the gradation value of the upper gradation code and the gradation value of the lower gradation code. If the gradation value to be displayed on the target pixel is closer to the gradation value of the upper gradation code than the gradation value of the lower gradation code, the display used when displaying the gradation value on the attention pixel Select the upper gradation code as the code and output it. Further, when the gradation value to be displayed on the target pixel is closer to the gradation value of the lower gradation code than the gradation value of the upper gradation code, it is used when displaying the gradation value on the attention pixel. The lower gradation code is selected as the display code and is output.
 例えば、上階調コードの階調値が「27」であり、下階調コードの階調値が「24」であり、注目画素に表示すべき階調値が「24.85」であれば、上階調コードの階調値と注目画素に表示すべき階調値との差分は「2.15」となり、下階調コードの階調値と注目画素に表示すべき階調値との差分は「0.85」となる。したがって、この場合、表示コード決定部86は、階調値「24」を有する下階調コード「11110100」を表示コードとして出力する。 For example, if the gradation value of the upper gradation code is “27”, the gradation value of the lower gradation code is “24”, and the gradation value to be displayed on the target pixel is “24.85”. The difference between the gradation value of the upper gradation code and the gradation value to be displayed on the target pixel is “2.15”, and the difference between the gradation value of the lower gradation code and the gradation value to be displayed on the target pixel is The difference is “0.85”. Therefore, in this case, the display code determination unit 86 outputs the lower gradation code “11110100” having the gradation value “24” as the display code.
 あるいは、上階調コードの階調値が「27」であり、下階調コードの階調値が「24」であり、注目画素に表示すべき階調値が「25.65」であれば、上階調コードの階調値と注目画素に表示すべき階調値との差分は「0.35」となり、下階調コードの階調値と注目画素に表示すべき階調値との差分は「1.65」となる。したがって、この場合、表示コード決定部86は、階調値「27」を有する下階調コード「11101100」を表示コードとして出力する。 Alternatively, if the gradation value of the upper gradation code is “27”, the gradation value of the lower gradation code is “24”, and the gradation value to be displayed on the target pixel is “25.65”. The difference between the gradation value of the upper gradation code and the gradation value to be displayed on the target pixel is “0.35”, and the difference between the gradation value of the lower gradation code and the gradation value to be displayed on the target pixel is The difference is “1.65”. Therefore, in this case, the display code determination unit 86 outputs the lower gradation code “11101100” having the gradation value “27” as the display code.
 (ステップS88)
表示コード決定部86は、誤差を算出して誤差拡散部84に出力する。
(Step S88)
The display code determination unit 86 calculates the error and outputs it to the error diffusion unit 84.
 表示コード決定部86は、注目画素に表示すべき階調値から表示コードの階調値を減算し、その減算結果を新たに発生した誤差として誤差拡散部84に出力する。 The display code determination unit 86 subtracts the gradation value of the display code from the gradation value to be displayed on the target pixel, and outputs the subtraction result to the error diffusion unit 84 as a newly generated error.
 例えば、注目画素に表示すべき階調値が「24.85」であり、表示コードの階調値が「24」であれば、24.85-24=0.85である。したがって、表示コード決定部86は、この「0.85」を誤差として誤差拡散部84に出力する。 For example, if the gradation value to be displayed on the target pixel is “24.85” and the gradation value of the display code is “24”, then 24.85-24 = 0.85. Therefore, the display code determination unit 86 outputs this “0.85” as an error to the error diffusion unit 84.
 あるいは、注目画素に表示すべき階調値が「25.65」であり、表示コードの階調値が「27」であれば、25.65-27=-1.35である。したがって、表示コード決定部86は、この「-1.35」を誤差として誤差拡散部84に出力する。 Or, if the gradation value to be displayed on the target pixel is “25.65” and the gradation value of the display code is “27”, 25.65−27 = −1.35. Therefore, the display code determination unit 86 outputs this “−1.35” as an error to the error diffusion unit 84.
 ステップS88が終了したら、ステップS41に戻る。こうして、ステップS41からステップS88までの一連のステップを繰り返し実行する。 When step S88 is completed, the process returns to step S41. In this way, a series of steps from step S41 to step S88 are repeatedly executed.
 なお、順次書込み配列部91は、サブフィールドコード変換回路37から出力される1フィールドの画像信号に対するサブフィールドコードの配列を、順次書込み動作に対応した順番に配列し直す。 The sequential writing array unit 91 rearranges the array of subfield codes for the image signal of one field output from the subfield code conversion circuit 37 in the order corresponding to the sequential writing operation.
 飛越書込み配列部92は、サブフィールドコード変換回路37から出力される1フィールドの画像信号に対するサブフィールドコードの配列を、飛越書込み動作に対応した順番に配列し直す。 The interlaced writing array unit 92 rearranges the array of subfield codes for the image signal of one field output from the subfield code conversion circuit 37 in the order corresponding to the interlaced writing operation.
 電力予測部93は、順次書込み配列部91から出力されるサブフィールドコードにもとづき、データ電極駆動回路32の順次書込み電力Pprgを算出する。 The power predicting unit 93 calculates the sequential write power Pprg of the data electrode driving circuit 32 based on the subfield code output from the sequential write array unit 91.
 電力予測部94は、飛越書込み配列部92から出力されるサブフィールドコードにもとづき、データ電極駆動回路32の飛越書込み電力Pintを算出する。 The power predicting unit 94 calculates the interlaced write power Pint of the data electrode drive circuit 32 based on the subfield code output from the interlaced write array unit 92.
 そして、配列選択部95は、順次書込み電力Pprgと飛越書込み電力Pintとを比較し、数値が小さい方を選択する。そして、順次書込み電力Pprgを選択したときには、順次書込み配列部91から出力されるサブフィールドコードをデータ電極駆動回路32に出力する。飛越書込み電力Pintを選択したときには、飛越書込み配列部92から出力されるサブフィールドコードをデータ電極駆動回路32に出力する。 Then, the array selection unit 95 sequentially compares the write power Pprg and the interlaced write power Pint, and selects the one with the smaller numerical value. When the sequential write power Pprg is selected, the subfield code output from the sequential write array unit 91 is output to the data electrode drive circuit 32. When the interlaced write power Pint is selected, the subfield code output from the interlaced write array unit 92 is output to the data electrode drive circuit 32.
 本実施の形態では、上述したように画像信号処理回路31を構成することで、画像信号から表示コード(サブフィールドコード)への変換を、多数のサブフィールドコードから成る変換テーブルを用いて行うのではなく、演算回路によって行うことができる。 In the present embodiment, by configuring the image signal processing circuit 31 as described above, conversion from an image signal to a display code (subfield code) is performed using a conversion table including a number of subfield codes. Instead, it can be performed by an arithmetic circuit.
 すなわち、本実施の形態では、パネルの大画面化、高精細度化、画像表示品質の向上、放送方式の多様化、3D画像の表示機能等の多機能化、等への対応が必要な画像表示装置において、様々な条件に応じて膨大な数の変換テーブルの中から最適な1つを選択するように画像信号処理回路を構成する必要がなくなる。本実施の形態によれば、画像信号から表示コード(サブフィールドコード)への変換を、演算回路を用いて演算によって行うことができる。したがって、そのような画像表示装置においても、膨大な数の変換テーブルを備える必要はなく、必要最小限のテーブル(例えば、図8A、図8B、図8Cに示した基底コードセット)と、画像信号から表示コードへの変換のための演算回路を備えるだけでよい。 In other words, in this embodiment, an image that needs to cope with an increase in the screen size of the panel, higher definition, improvement in image display quality, diversification of broadcasting methods, multi-functionality such as a 3D image display function, and the like. In the display device, it is not necessary to configure an image signal processing circuit so as to select an optimum one from a vast number of conversion tables according to various conditions. According to the present embodiment, conversion from an image signal to a display code (subfield code) can be performed by calculation using an arithmetic circuit. Therefore, even in such an image display device, it is not necessary to provide a huge number of conversion tables, and a minimum necessary table (for example, the base code set shown in FIGS. 8A, 8B, and 8C) and an image signal It is only necessary to provide an arithmetic circuit for converting from to display code.
 また、本実施の形態においては、データ電極駆動回路32における消費電力の予測値にもとづき、順次書込み動作と飛越書込み動作のいずれかによって書込み動作を行う。さらに、選択した書込み動作に応じてディザ処理に使用するディザ値の振幅を制御する。これにより、誤差拡散処理とディザ処理とを併用しつつデータ電極駆動回路32における消費電力の増加を抑制している。 Further, in the present embodiment, based on the predicted value of power consumption in the data electrode drive circuit 32, the write operation is performed by either the sequential write operation or the interlaced write operation. Further, the amplitude of the dither value used for the dither process is controlled according to the selected write operation. As a result, an increase in power consumption in the data electrode drive circuit 32 is suppressed while using both error diffusion processing and dither processing.
 このように、本実施の形態によれば、画像表示装置30において、画像信号からサブフィールドコードへの変換を論理演算によって行うことができ、画像表示品質の低下を防止しつつ、データ電極駆動回路32における消費電力を抑制することができる。 As described above, according to the present embodiment, in the image display device 30, the conversion from the image signal to the subfield code can be performed by the logical operation, and the data electrode drive circuit is prevented while preventing the image display quality from being deteriorated. The power consumption in 32 can be suppressed.
 なお、本実施の形態では、基底コード生成部50は基底コード記憶部52を有し、基底コード記憶部52には基底コードセットがあらかじめ記憶されている、という構成を説明した。しかし、本発明は何らこの構成に限定されるものではない。例えば、基底コードを生成するルールをあらかじめ定めておき、そのルールにもとづき基底コードを生成する構成であってもよい。 In the present embodiment, the configuration in which the base code generation unit 50 has the base code storage unit 52 and the base code set is stored in advance in the base code storage unit 52 has been described. However, the present invention is not limited to this configuration. For example, a configuration may be adopted in which a rule for generating a base code is determined in advance and the base code is generated based on the rule.
 なお、本実施の形態では、上下コード生成部70は、中間コード生成部72で中間コードセットを生成した後に、上下コード選択部74で上階調コードおよび下階調コードを選択する、という構成を説明した。しかし、本発明は何らこの構成に限定されるものではない。例えば、階調値が大きくなる順に中間コードを生成し、それと同時に中間コードと入力階調とを逐次比較することで上階調コードおよび下階調コードを選択する構成であってもよい。 In the present embodiment, the upper / lower code generation unit 70 selects the upper gradation code and the lower gradation code by the upper / lower code selection unit 74 after the intermediate code set is generated by the intermediate code generation unit 72. Explained. However, the present invention is not limited to this configuration. For example, an intermediate code is generated in order of increasing gradation value, and at the same time, the intermediate code and the input gradation are sequentially compared to select the upper gradation code and the lower gradation code.
 なお、本実施の形態においては、書込み動作を禁止するサブフィールドを設定した後にディザ処理および誤差拡散処理を行う。そのため、制限された数のサブフィールドコードを有する中間コードセットから表示コードを選択して画像の表示に用いる画像表示装置30においても、画像表示品質の低下を防止することができる。 In the present embodiment, dither processing and error diffusion processing are performed after setting a subfield for prohibiting the write operation. Therefore, even in the image display device 30 that selects a display code from an intermediate code set having a limited number of subfield codes and uses it to display an image, it is possible to prevent a decrease in image display quality.
 なお、本実施の形態においては、表示コード決定部86が誤差拡散部84を有する構成を説明したが、本発明は必ずしもこの構成に限定されるものではない。例えば、誤差拡散処理を行わない場合には誤差拡散部84を省略してもよい。 In the present embodiment, the configuration in which the display code determination unit 86 includes the error diffusion unit 84 has been described. However, the present invention is not necessarily limited to this configuration. For example, the error diffusion unit 84 may be omitted when the error diffusion process is not performed.
 なお、本発明は1フィールドを構成するサブフィールドの数、強制初期化サブフィールドとするサブフィールド、各サブフィールドが有する階調重み等が上述した数値に限定されるものではない。また、画像信号等にもとづいてサブフィールド構成を切り換える構成であってもよい。 In the present invention, the number of subfields constituting one field, the subfields that are forced initialization subfields, the gradation weights of each subfield, and the like are not limited to the above-described numerical values. Moreover, the structure which switches a subfield structure based on an image signal etc. may be sufficient.
 なお、図3に示した駆動電圧波形は本発明の実施の形態における一例を示したものに過ぎず、本発明は何らこの駆動電圧波形に限定されるものではない。 The drive voltage waveform shown in FIG. 3 is merely an example in the embodiment of the present invention, and the present invention is not limited to this drive voltage waveform.
 また、図5、図6、図7に示した回路構成も本発明の実施の形態における一例を示したものに過ぎず、本発明は何らこれらの回路構成に限定されるものではない。 Further, the circuit configurations shown in FIGS. 5, 6, and 7 are merely examples in the embodiment of the present invention, and the present invention is not limited to these circuit configurations.
 なお、本発明における実施の形態に示した各回路ブロックは、実施の形態に示した各動作を行う電気回路として構成されてもよく、あるいは、同様の動作をするようにプログラミングされたマイクロコンピュータ等を用いて構成されてもよい。 Note that each circuit block shown in the embodiment of the present invention may be configured as an electric circuit that performs each operation shown in the embodiment, or a microcomputer that is programmed to perform the same operation. May be used.
 なお、本発明における実施の形態では、1つのフィールドを、5個のサブフィールドで構成する例、8個のサブフィールドで構成する例、および12個のサブフィールドで構成する例を説明した。しかし、本発明は1フィールドを構成するサブフィールドの数が何ら上記の数に限定されるものではない。例えば、サブフィールドの数をより多くすることで、パネル10に表示できる階調の数をさらに増加することができる。あるいは、サブフィールドの数をより少なくすることで、パネル10の駆動に要する時間を短縮することができる。 In the embodiment of the present invention, an example in which one field is composed of five subfields, an example composed of eight subfields, and an example composed of twelve subfields has been described. However, in the present invention, the number of subfields constituting one field is not limited to the above number. For example, by increasing the number of subfields, the number of gradations that can be displayed on the panel 10 can be further increased. Alternatively, the time required for driving panel 10 can be shortened by reducing the number of subfields.
 なお、本発明における実施の形態では、1画素を赤、緑、青の3色の放電セルで構成する例を説明したが、1画素を4色あるいはそれ以上の色の放電セルで構成するパネルにおいても、本発明における実施の形態に示した構成を適用することは可能であり、同様の効果を得ることができる。 In the embodiment of the present invention, an example in which one pixel is constituted by discharge cells of three colors of red, green, and blue has been described. However, a panel in which one pixel is constituted by discharge cells of four colors or more. However, it is possible to apply the configuration shown in the embodiment of the present invention, and the same effect can be obtained.
 なお、本発明の実施の形態において示した具体的な数値は、画面サイズが50インチ、表示電極対14の数が1024のパネル10の特性にもとづき設定したものであって、単に実施の形態における一例を示したものに過ぎない。本発明はこれらの数値に何ら限定されるものではなく、各数値はパネルの仕様やパネルの特性、およびプラズマディスプレイ装置の仕様等にあわせて最適に設定することが望ましい。また、これらの各数値は、上述した効果を得られる範囲でのばらつきを許容するものとする。また、1フィールドを構成するサブフィールドの数や各サブフィールドの階調重み等も本発明における実施の形態に示した値に限定されるものではなく、また、画像信号等にもとづいてサブフィールド構成を切り換える構成であってもよい。 The specific numerical values shown in the embodiment of the present invention are set based on the characteristics of the panel 10 having a screen size of 50 inches and the number of display electrode pairs 14 of 1024. It is just an example. The present invention is not limited to these numerical values, and each numerical value is desirably set optimally in accordance with panel specifications, panel characteristics, plasma display device specifications, and the like. Each of these numerical values is allowed to vary within a range where the above-described effect can be obtained. Further, the number of subfields constituting one field, the gradation weight of each subfield, and the like are not limited to the values shown in the embodiment of the present invention, and the subfield configuration is based on an image signal or the like. May be configured to switch.
 本発明は、画像信号からサブフィールドコードへの変換を演算によって行うことができるので、多数のサブフィールドコードから成る変換テーブルを用いる必要がなく、かつ、画像表示品質の低下を防止しつつ消費電力を抑制することができるので、画素を構成する発光素子における発光と非発光との2値制御を組み合わせて画像表示領域に画像を表示する画像表示装置および画像表示装置の駆動方法として有用である。 In the present invention, since conversion from an image signal to a subfield code can be performed by calculation, it is not necessary to use a conversion table composed of a large number of subfield codes, and power consumption can be prevented while preventing deterioration in image display quality. Therefore, the present invention is useful as an image display device that displays an image in an image display region by combining binary control of light emission and non-light emission in a light emitting element that constitutes a pixel, and a driving method of the image display device.
 10  パネル
 11  前面基板
 12  走査電極
 13  維持電極
 14  表示電極対
 15,23  誘電体層
 16  保護層
 21  背面基板
 22  データ電極
 24  隔壁
 25,25R,25G,25B  蛍光体層
 30  画像表示装置
 31  画像信号処理回路
 32  データ電極駆動回路
 33  走査電極駆動回路
 34  維持電極駆動回路
 35  タイミング発生回路
 36  スイッチ回路
 37  サブフィールドコード変換回路
 38  サブフィールドコード配列回路
 39  ディザ要素出力回路
 41  属性検出部
 50  基底コード生成部
 52  基底コード記憶部
 54  基底コード選択部
 61  ルール生成部
 70  上下コード生成部
 72  中間コード生成部
 74  上下コード選択部
 80  表示コード選択部
 82  ディザ選択部
 83  ディザ振幅制限部
 84  誤差拡散部
 86  表示コード決定部
 91  順次書込み配列部
 92  飛越書込み配列部
 93,94  電力予測部
 95  配列選択部
 Pprg  順次書込み電力
 Pint  飛越書込み電力
DESCRIPTION OF SYMBOLS 10 Panel 11 Front substrate 12 Scan electrode 13 Sustain electrode 14 Display electrode pair 15,23 Dielectric layer 16 Protective layer 21 Back substrate 22 Data electrode 24 Partition 25, 25R, 25G, 25B Phosphor layer 30 Image display device 31 Image signal processing Circuit 32 Data electrode drive circuit 33 Scan electrode drive circuit 34 Sustain electrode drive circuit 35 Timing generation circuit 36 Switch circuit 37 Subfield code conversion circuit 38 Subfield code arrangement circuit 39 Dither element output circuit 41 Attribute detection unit 50 Base code generation unit 52 Base code storage unit 54 Base code selection unit 61 Rule generation unit 70 Upper and lower code generation unit 72 Intermediate code generation unit 74 Upper and lower code selection unit 80 Display code selection unit 82 Dither selection unit 83 Dither amplitude limiting unit 84 Error diffusion unit 6 display code determining unit 91 sequentially write sequence unit 92 interlaced writing sequence 93, 94 power prediction unit 95 arranged selector Pprg sequentially write power Pint interlaced writing power

Claims (8)

  1. 階調重みが定められた複数のサブフィールドで1フィールドを構成し、前記複数のサブフィールドのそれぞれにおける発光と非発光との組合せを示すサブフィールドコードを用いて前記複数のサブフィールドのそれぞれの発光と非発光とを制御して、画像表示領域を構成する複数の画素のそれぞれに画像信号にもとづく階調値を表示して前記画像表示領域に画像を表示する画像表示装置であって、
    前記画像信号にもとづく階調値を前記画素に表示するためのサブフィールドコードである表示コードを出力する画像信号処理回路を備え、
    前記画像信号処理回路は、
    画像信号にディザ処理を行うとともに画像信号をサブフィールドコードに変換するサブフィールドコード変換回路と、
    前記サブフィールドコード変換回路から出力される1フィールド分のサブフィールドコードにもとづき、書込み期間において順次書込み動作を行うときの消費電力の予測値を順次書込み電力として算出するとともに前記書込み期間において飛越書込み動作を行うときの消費電力の予測値を飛越書込み電力として算出し、消費電力の予測値が小さい方の書込み動作を選択し、選択した方の書込み動作に対応した順番に前記サブフィールドコードを配列し直すサブフィールドコード配列回路と、
    あらかじめ設定されたディザパターンの中から、前記画像信号にもとづきディザ要素を選択し、前記飛越書込み電力が前記順次書込み電力より大きい場合のディザ要素の振幅が、前記飛越書込み電力が前記順次書込み電力より小さい場合のディザ要素の振幅よりも小さくなるように、ディザ要素に所定の増幅率を乗算してディザ値を算出するディザ要素出力回路とを有する
    ことを特徴とする画像表示装置。
    Each of the plurality of subfields is formed using a subfield code indicating a combination of light emission and non-light emission in each of the plurality of subfields. An image display device that controls non-light emission and displays a gradation value based on an image signal on each of a plurality of pixels constituting the image display region and displays an image in the image display region,
    An image signal processing circuit that outputs a display code that is a subfield code for displaying a gradation value based on the image signal on the pixel;
    The image signal processing circuit includes:
    A subfield code conversion circuit that performs dither processing on the image signal and converts the image signal into a subfield code;
    Based on the subfield code for one field output from the subfield code conversion circuit, a predicted value of power consumption when performing sequential write operations in the write period is calculated as sequential write power, and interlaced write operations are performed in the write period. Calculate the predicted power consumption when performing the write operation as the interlaced write power, select the write operation with the smaller predicted power consumption, and arrange the subfield codes in the order corresponding to the selected write operation. A subfield code arrangement circuit to correct,
    A dither element is selected from the preset dither patterns based on the image signal, and the amplitude of the dither element when the interlaced write power is greater than the sequential write power, the interlaced write power is greater than the sequential write power. An image display apparatus comprising: a dither element output circuit that calculates a dither value by multiplying a dither element by a predetermined amplification factor so as to be smaller than an amplitude of the dither element in the case of being small.
  2. 前記所定の増幅率は、前記順次書込み電力と前記飛越書込み電力とにもとづき算出される
    ことを特徴とする請求項1に記載の画像表示装置。
    The image display apparatus according to claim 1, wherein the predetermined amplification factor is calculated based on the sequential write power and the interlaced write power.
  3. 前記画像信号処理回路は、
    複数の基本となるサブフィールドコードの中から、注目画素における画像信号の階調値よりも大きく、かつ前記注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調基底コードとして選択する基底コード生成部と、
    前記注目画素における画像信号にもとづき、前記上階調基底コードにおける発光するサブフィールドを非発光のサブフィールドに変更して新たなサブフィールドコードを生成するためのルールを生成するルール生成部と、
    前記上階調基底コードに前記ルールを適用して新たに生成されるサブフィールドコードの中から、前記注目画素における画像信号の階調値より大きく前記注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調コードとして選択し、かつ、前記注目画素における画像信号の階調値以下で前記注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを下階調コードとして選択する上下コード生成部と、
    前記注目画素における画像信号の階調値に、所定の値を加算して前記注目画素に表示すべき階調値を算出し、前記上階調コードおよび前記下階調コードのうち前記注目画素に表示すべき階調値により近い階調値を有する方を前記表示コードとして選択する表示コード選択部とを有する
    ことを特徴とする請求項1に記載の画像表示装置。
    The image signal processing circuit includes:
    Among the plurality of basic subfield codes, a subfield code having a gradation value that is larger than the gradation value of the image signal at the target pixel and that is closest to the gradation value of the image signal at the target pixel A base code generator to select as a key base code;
    A rule generation unit that generates a rule for generating a new subfield code by changing a light-emitting subfield in the upper gradation base code to a non-light-emitting subfield based on an image signal in the target pixel;
    Among sub-field codes newly generated by applying the rule to the upper gradation base code, the gradation value of the image signal at the target pixel is greater than the gradation value of the image signal at the target pixel and is closest A sub-field code having a gradation value is selected as an upper gradation code, and a sub-field code having a gradation value which is equal to or smaller than the gradation value of the image signal at the target pixel and which is equal to or smaller than the gradation value of the image signal at the target pixel. An upper / lower code generator for selecting a field code as a lower gradation code;
    A gradation value to be displayed on the target pixel is calculated by adding a predetermined value to the gradation value of the image signal in the target pixel, and the target pixel is selected from the upper gradation code and the lower gradation code. The image display apparatus according to claim 1, further comprising: a display code selection unit that selects, as the display code, one having a gradation value closer to a gradation value to be displayed.
  4. 前記所定の値は、前記ディザ値および誤差拡散処理により発生する誤差である
    ことを特徴とする請求項3に記載の画像表示装置。
    The image display apparatus according to claim 3, wherein the predetermined value is an error generated by the dither value and error diffusion processing.
  5. 前記複数の基本となるサブフィールドコードは、発光するサブフィールドのうち最も階調重みが大きいサブフィールドと、前記最も階調重みが大きいサブフィールドよりも小さい階調重みを有する全てのサブフィールドが発光するサブフィールドコードである
    ことを特徴とする請求項3に記載の画像表示装置。
    The plurality of basic subfield codes emit light from subfields having the largest gradation weight among the subfields to emit light and all subfields having gradation weights smaller than the subfield having the largest gradation weight. The image display device according to claim 3, wherein the image display device is a subfield code.
  6. 階調重みが定められた複数のサブフィールドで1フィールドを構成し、前記複数のサブフィールドのそれぞれにおける発光と非発光との組合せを示すサブフィールドコードを用いて前記複数のサブフィールドのそれぞれの発光と非発光とを制御して、画像表示領域を構成する複数の画素のそれぞれに画像信号にもとづく階調値を表示して前記画像表示領域に画像を表示する画像表示装置の駆動方法であって、
    画像信号にディザ処理を行うとともに画像信号をサブフィールドコードに変換するステップと、
    1フィールド分のサブフィールドコードにもとづき、書込み期間において順次書込み動作を行うときの消費電力の予測値を順次書込み電力として算出するとともに前記書込み期間において飛越書込み動作を行うときの消費電力の予測値を飛越書込み電力として算出し、消費電力の予測値が小さい方の書込み動作を選択し、選択した方の書込み動作に対応した順番に前記サブフィールドコードを配列し直すステップと、
    あらかじめ設定されたディザパターンの中から、前記画像信号にもとづきディザ要素を選択し、前記飛越書込み電力が前記順次書込み電力より大きい場合のディザ要素の振幅が、前記飛越書込み電力が前記順次書込み電力より小さい場合のディザ要素の振幅よりも小さくなるように、ディザ要素に所定の増幅率を乗算してディザ値を算出するステップとを有する
    ことを特徴とする画像表示装置の駆動方法。
    Each of the plurality of subfields is formed using a subfield code indicating a combination of light emission and non-light emission in each of the plurality of subfields. And a method of driving an image display device that controls gradation and non-light emission, displays a gradation value based on an image signal on each of a plurality of pixels constituting the image display area, and displays an image in the image display area. ,
    Performing dither processing on the image signal and converting the image signal into a subfield code;
    Based on the subfield code for one field, a predicted value of power consumption when performing sequential write operations in the write period is calculated as sequential write power, and a predicted value of power consumption when performing interlaced write operations in the write period is calculated. Calculating the interlaced write power, selecting a write operation with a smaller predicted power consumption, and rearranging the subfield codes in an order corresponding to the selected write operation;
    A dither element is selected from the preset dither patterns based on the image signal, and the amplitude of the dither element when the interlaced write power is greater than the sequential write power, the interlaced write power is greater than the sequential write power. And a step of calculating a dither value by multiplying the dither element by a predetermined amplification factor so as to be smaller than the amplitude of the dither element in the case of being small.
  7. 複数の基本となるサブフィールドコードの中から、注目画素における画像信号の階調値よりも大きく、かつ前記注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調基底コードとして選択するステップと、
    前記注目画素における画像信号にもとづき、前記上階調基底コードにおける発光するサブフィールドを非発光のサブフィールドに変更して新たなサブフィールドコードを生成するためのルールを生成するステップと、
    前記上階調基底コードに前記ルールを適用して新たに生成されるサブフィールドコードの中から、前記注目画素における画像信号の階調値より大きく前記注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調コードとして選択し、かつ、前記注目画素における画像信号の階調値以下で前記注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを下階調コードとして選択するステップと、
    前記注目画素における画像信号の階調値に所定の値を加算して前記注目画素に表示すべき階調値を算出するステップと、
    前記上階調コードおよび前記下階調コードのうち前記注目画素に表示すべき階調値により近い階調値を有する方を、画像信号にもとづく階調値を前記注目画素に表示するためのサブフィールドコードである表示コードとして選択するステップとを有する
    ことを特徴とする請求項6に記載の画像表示装置の駆動方法。
    Among the plurality of basic subfield codes, a subfield code having a gradation value that is larger than the gradation value of the image signal at the target pixel and that is closest to the gradation value of the image signal at the target pixel Selecting as a key code,
    Generating a rule for generating a new subfield code by changing a light-emitting subfield in the upper gradation base code to a non-light-emitting subfield based on an image signal in the target pixel;
    Among sub-field codes newly generated by applying the rule to the upper gradation base code, the gradation value of the image signal at the target pixel is greater than the gradation value of the image signal at the target pixel and is closest A sub-field code having a gradation value is selected as an upper gradation code, and a sub-field code having a gradation value which is equal to or smaller than the gradation value of the image signal at the target pixel and which is equal to or smaller than the gradation value of the image signal at the target pixel. Selecting a field code as a lower gradation code;
    Calculating a gradation value to be displayed on the target pixel by adding a predetermined value to the gradation value of the image signal in the target pixel;
    Of the upper gradation code and the lower gradation code, the one having a gradation value closer to the gradation value to be displayed on the target pixel is displayed on the subpixel for displaying the gradation value based on the image signal on the target pixel. The method according to claim 6, further comprising a step of selecting as a display code which is a field code.
  8. 前記所定の増幅率は、前記順次書込み電力と前記飛越書込み電力とにもとづき算出され、
    前記所定の値は、前記ディザ値および誤差拡散処理により発生する誤差である
    ことを特徴とする請求項7に記載の画像表示装置の駆動方法。
    The predetermined amplification factor is calculated based on the sequential write power and the interlaced write power,
    The image display device driving method according to claim 7, wherein the predetermined value is an error generated by the dither value and error diffusion processing.
PCT/JP2012/000335 2011-01-20 2012-01-20 Image display device and drive method for image display device WO2012098902A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-009644 2011-01-20
JP2011009644 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012098902A1 true WO2012098902A1 (en) 2012-07-26

Family

ID=46515537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000335 WO2012098902A1 (en) 2011-01-20 2012-01-20 Image display device and drive method for image display device

Country Status (1)

Country Link
WO (1) WO2012098902A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07200810A (en) * 1993-12-28 1995-08-04 Olympus Optical Co Ltd Image handling device
JP2002258793A (en) * 2001-02-27 2002-09-11 Nec Corp Plasma display device and its driving method
JP2006071774A (en) * 2004-08-31 2006-03-16 Lg Electronics Inc Driving device of display panel
JP2006079063A (en) * 2004-09-13 2006-03-23 Lg Electronics Inc Method and device for plasma display panel control
JP2009168952A (en) * 2008-01-11 2009-07-30 Hitachi Ltd Plasma display device
WO2009096186A1 (en) * 2008-01-31 2009-08-06 Panasonic Corporation Plasma display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07200810A (en) * 1993-12-28 1995-08-04 Olympus Optical Co Ltd Image handling device
JP2002258793A (en) * 2001-02-27 2002-09-11 Nec Corp Plasma display device and its driving method
JP2006071774A (en) * 2004-08-31 2006-03-16 Lg Electronics Inc Driving device of display panel
JP2006079063A (en) * 2004-09-13 2006-03-23 Lg Electronics Inc Method and device for plasma display panel control
JP2009168952A (en) * 2008-01-11 2009-07-30 Hitachi Ltd Plasma display device
WO2009096186A1 (en) * 2008-01-31 2009-08-06 Panasonic Corporation Plasma display device

Similar Documents

Publication Publication Date Title
JP2009145664A (en) Plasma display device
JP4867170B2 (en) Image display method
KR20110114719A (en) Plasma display panel drive method and plasma display device
JP2008197430A (en) Driving method of plasma display device
KR20110069167A (en) Plasma display device and plasma display panel driving method
KR101109919B1 (en) Plasma display device and drive method of plasma display panel
WO2012098902A1 (en) Image display device and drive method for image display device
JP5003664B2 (en) Driving method of plasma display device
WO2012098903A1 (en) Image display device and drive method for image display device
WO2012098884A1 (en) Image display device and drive method for image display device
WO2012098888A1 (en) Image display device and drive method for image display device
WO2012098885A1 (en) Image display device and drive method for image display device
WO2012098887A1 (en) Image display device and drive method for image display device
WO2012105227A1 (en) Plasma display device and method for driving plasma display device
KR101139208B1 (en) Method of driving plasma display device
KR101139177B1 (en) Plasma display device drive method
WO2012098886A1 (en) Image display device and drive method for image display device
WO2012098904A1 (en) Image display device and drive method for image display device
JP2014016441A (en) Plasma display device
WO2012049839A1 (en) Plasma display device drive method and plasma display device
JP2009192648A (en) Plasma display device and method of driving the same
WO2012049841A1 (en) Plasma display device drive method and plasma display device
JPWO2012090451A1 (en) Plasma display panel driving method and plasma display device
JP2013104940A (en) Image display device
WO2011089890A1 (en) Method for driving plasma display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP