WO2012098652A1 - 送風装置およびそれを備えた空気調和機の室外機 - Google Patents

送風装置およびそれを備えた空気調和機の室外機 Download PDF

Info

Publication number
WO2012098652A1
WO2012098652A1 PCT/JP2011/050844 JP2011050844W WO2012098652A1 WO 2012098652 A1 WO2012098652 A1 WO 2012098652A1 JP 2011050844 W JP2011050844 W JP 2011050844W WO 2012098652 A1 WO2012098652 A1 WO 2012098652A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller fan
blade
cylindrical portion
bell mouth
outer periphery
Prior art date
Application number
PCT/JP2011/050844
Other languages
English (en)
French (fr)
Inventor
岸谷 哲志
岩瀬 拓
裕太 橋本
八木 浩作
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to JP2012553500A priority Critical patent/JP5752714B2/ja
Priority to PCT/JP2011/050844 priority patent/WO2012098652A1/ja
Publication of WO2012098652A1 publication Critical patent/WO2012098652A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel

Definitions

  • the present invention relates to a blower and an outdoor unit of an air conditioner equipped with the blower.
  • Patent Document 1 describes a blower device in which a suction side arc portion is formed on the suction side of a bell mouth provided on the outer side in the radial direction of the propeller fan, and a blow side arc portion is formed on the blow side.
  • the propeller fan when the propeller fan is made of resin, the blades of the propeller fan are deformed by centrifugal force during rotation, so that there is a limit that the gap between the propeller fan and the bell mouth can be reduced.
  • the minimum clearance between the propeller fan and the bell mouth has been determined in consideration of the radial component of the deformation and the secular change so that the propeller fan and the bell mouth do not contact during rotation.
  • a means for improving the blowing performance is also generally known as a duct type in which the length of the bell mouth that overlaps (wraps) the propeller fan in the axial direction is increased.
  • the gap between the propeller fan and the bell mouth is about the gap between the propeller fan 109 and the bell mouth 500 as shown in FIG. Since the maximum value (the trailing edge side blade outer periphery 109g) of the radial deformation (see reference numeral 113) of the blade 109a in the lap range (the position of the cylindrical portion 501) in the axial direction G is determined in consideration, further improvement of the blowing performance can be expected. There was no problem.
  • the position (109g) on the trailing edge side of the wing outer periphery 109d is within the lap range of the propeller fan 109 and the bell mouth 500.
  • the radial deformation at is larger than the radial deformation of the bell mouth suction side (109f) blade 109a. Therefore, since the gap between the propeller fan and the bell mouth is determined based on the outer peripheral position of the blade on the trailing edge side, when it is desired to further reduce the gap between the propeller fan 109 and the bell mouth 500, the blade that reduces the deformation of the propeller fan.
  • the present invention provides a blower device including a resin-made propeller fan, a fan motor that rotates the propeller fan, and a cylindrical bell mouth that surrounds the propeller fan, as viewed from the rotation axis direction of the propeller fan.
  • the gap between the outer periphery of the blade of the propeller fan and the suction side cylindrical portion of the bell mouth is larger than the gap between the outer periphery of the blade and the outlet side cylindrical portion of the bell mouth, and
  • the suction-side cylindrical portion is formed to have a long axial length, and the clearance between the suction-side cylindrical portion and the blade outer periphery is deformed in the radial direction due to the rotation of the blade facing the suction-side cylindrical portion, manufacturing error, and assembly.
  • the blade outer periphery and the suction side cylindrical part are set to a value that does not contact
  • the gap between the blowout side cylindrical portion and the outer periphery of the blade is determined by taking into account all of radial deformation due to rotation of the blade facing the blowout side cylindrical portion, manufacturing error, assembly error, and deformation due to secular change. Even if there is a disturbance during the rotation of the fan, it is characterized by being 1.1 times or more of the value at which the outer periphery of the blade does not contact the blowout side cylindrical portion.
  • a design that does not make the user feel uneasy can be provided, and the fan performance can be improved.
  • FIG. 7 It is a front view which shows the air blower which concerns on 1st Embodiment. It is a perspective view which shows the air blower which concerns on 1st Embodiment. It is the P section enlarged view of FIG. It is QQ sectional drawing of FIG. It is sectional drawing which shows the air blower which concerns on 2nd Embodiment. It is sectional drawing which shows the air blower which concerns on 3rd Embodiment. It is a front view which shows the outdoor unit of the air conditioner which mounts the air blower which concerns on this embodiment. It is the schematic when the inside of the outdoor unit of FIG. 7 is seen from the upper part. It is sectional drawing which shows the conventional air blower. It is explanatory drawing which shows the problem in the outdoor unit of the air conditioner which mounts the conventional air blower.
  • the blower 101 ⁇ / b> A As shown in FIG. 1, the blower 101 ⁇ / b> A according to the first embodiment includes a fan motor 104 (see FIG. 2), a propeller fan 109, and a bell mouth 110.
  • the propeller fan 109 has a hub 109s connected to a motor shaft (not shown) formed on the fan motor 104, and blades (fan blades) 109a, 109a, 109a formed on the outer peripheral surface of the hub 109s. is doing.
  • the wings 109a are not limited to three but may be two or more than three.
  • the propeller fan 109 is rotated counterclockwise as indicated by a symbol W in FIG. 1, and the surface on the front side of the blade 109a becomes a pressure surface, and the surface on the back side becomes a negative pressure surface, thereby generating an air flow.
  • the wing 109a has a substantially sickle shape, and is formed so as to be obliquely connected to the peripheral surface of the hub 109s with respect to the axial direction G.
  • the front edge side 109b of the wing 109a is configured to protrude larger in the axial direction with respect to the hub 109s than the rear edge side 109c.
  • the bell mouth 110 is formed in a cylindrical shape so as to cover the outer periphery in the radial direction of the propeller fan 109, and is formed integrally with the plate-like bell mouth mounting plate 102 located in the front (front side) by press-molding a sheet metal.
  • the front edge side 109b (the back side in the figure) is the air suction side
  • the rear edge side 109c (the front side in the figure) is the air blowing side.
  • blower 101A is a gap 112 shown in the gap G B between the outlet side cylindrical portion 110c of the blade outer peripheral 109d bell mouth 110 of the propeller fan 109 is formed.
  • the air blower 101A is formed so that the gap 112 (gap G B ) is wider than the gap 111 (gap G A ).
  • FIG. 4 shows the bell mouth 110 in a QQ cross section and schematically shows the wing 109a so that the positional relationship between the bell mouth 110 and the wing outer periphery 109d becomes clear.
  • the suction-side cylindrical portion 110b of the bell mouth 110 is formed to have a length L A in the axial direction G.
  • the blowing side cylindrical portion 110c of the bell mouth 110 is formed to have a length L B in the axial direction G.
  • the length L A and the length L B are set so that L A > L B.
  • blow-side end portion of the blow-out side cylindrical portion 110c is substantially (approximately) positioned on the radial extension of the trailing edge-side blade outer periphery 109g of the blade 109a as indicated by a circle in FIG.
  • the bell mouth 110 has a suction R (suction curved surface) 110a formed on the suction side of the suction side cylindrical portion 110b.
  • the suction R110a is formed so as to increase in diameter with increasing distance from the suction-side cylindrical portion 110b with respect to the axial direction G.
  • the end portion on the suction side of the bell mouth 110 is an axial center blade outer periphery 109f that is substantially intermediate between the leading edge side blade outer periphery 109e and the trailing edge side blade outer periphery 109g of the blade outer periphery 109d. positioned.
  • the leading edge side blade outer periphery 109e is a portion located on the outermost peripheral side of the leading edge side 109b of the blade 109a, as indicated by a circle in FIG.
  • the bell mouth 110 has a tapered portion 110d formed at the boundary between the suction side cylindrical portion 110b and the blowout side cylindrical portion 110c.
  • the tapered portion 110d is formed so that the diameter of the bell mouth 110 gradually increases from the suction side to the blowout side.
  • the bell mouth 110 is described by taking as an example a configuration in which the tapered portion 110d is provided.
  • the configuration is not limited to such a shape, and the tapered portion 110d is not provided. May be. That is, the suction side cylindrical portion 110b and the blowout side cylindrical portion 110c may be connected to each other through a stepped portion.
  • the suction side cylindrical portion 110b and the blowout side cylindrical portion 110c so that the length L A > the length L B , as in the embodiment provided with the tapered portion 110d. Set the length of.
  • blowing part 110e larger than the diameter of the blowing side cylindrical part 110c is formed on the blowing side from the blowing side cylindrical part 110c.
  • the blowing part 110e is formed in an L-shaped cross section, the suction side is formed integrally with the blowing side of the blowing side cylindrical part 110c, and the blowing side is formed integrally with the bell mouth mounting plate 102.
  • the propeller fan 109 rotates, a centrifugal force determined by the mass and rotation speed of the blade 109a is generated, and stress is generated at a portion supporting the blade 109a, that is, a boundary portion between the blade 109a and the hub 109s.
  • the blade 109a is attached to the outer peripheral surface of the hub 109s obliquely with respect to the axial direction (see FIG. 2).
  • a force is generated that deforms the front edge side 109b and the rear edge side 109c in a horizontal direction.
  • the deformation of the front edge side 109b of the wing 109a is deformed as shown by a two-dot chain line 113 in FIG. , Larger than the deformation of the trailing edge 109c of the wing 109a.
  • the axial center blade outer periphery 109f of the blade 109a is a position that overlaps with the boundary between the blade 109a and the hub 109s in the radial direction and is close to the center of gravity of the blade 109a, so that deformation is minimized.
  • a gap 111 (gap G A ) between the suction-side cylindrical portion 110b and the blade outer periphery 109d includes a deformation F1, a manufacturing error F2, an assembly error F3, and a deformation F4 due to the secular change of the blade 109a facing the suction-side cylindrical portion 110b.
  • the blade outer periphery 109d is set to a value (distance) at which the suction side cylindrical portion 110b does not contact.
  • the deformation F1 due to rotation refers to deformation generated by centrifugal force generated by the rotation of the propeller fan 109 in the W direction (see FIG. 1).
  • the centrifugal force is determined by mass m ⁇ radius r ⁇ rotational speed ⁇ 2 .
  • Manufacturing error F2 refers to an error that occurs when molding is performed using a mold, for example. Note that the manufacturing error F2 includes not only an error that occurs when a mold is used, but also an error that occurs when a method that does not use a mold, for example, cutting and manufacturing.
  • the assembly error F3 is an error that occurs when the propeller fan 109 is attached to the fan motor 104, an error that occurs when the fan motor 104 is attached to the motor clamp 103, and the motor clamp 103 is installed in the unit (an outdoor unit 401 described later). Including errors in
  • the deformation F4 due to secular change includes, for example, deformation due to temperature change as well as deformation due to resin deterioration.
  • deformation due to temperature change As well as deformation due to resin deterioration.
  • the wing 109a is deformed during rotation by being repeatedly used between summer and winter or by being used for a long time (reference numeral 113 in FIG. 4). It has the property of approaching. For example, after five years, the initial shape of the wing 109a is not maintained, and it becomes an extended shape.
  • the disturbance F5 means a gap for preventing the propeller fan 109 from contacting the bell mouth 110 even if the wing 109a is missing during the rotation of the propeller fan 109. That is, even if the blades 109a are missing during the rotation of the propeller fan 109, the propeller fan 109 continues to rotate. At this time, the motor clamp 103 supporting the fan motor 104 also vibrates. 110 may come into contact.
  • the gap is determined in consideration of such disturbance F5.
  • the disturbance F5 includes not only the case described above but also a case where an impact (within the range of common sense) is given by the user to the outdoor unit 401 as described later.
  • the necessary minimum gap 111 between the suction side cylindrical portion 110b and the blade outer periphery 109d is determined based on an expression represented by (F1 + F2 + F3 + F4 + F5 + G1).
  • G1 in the above formula is a gap necessary for the case where (F1 + F2 + F3 + F4 + F5) is considered that the wing 109a and the bell mouth 110 are in contact with each other and the bell mouth 110 and the wing 109a are not in contact with each other.
  • the gap 112 (gap G B ) between the blowout-side cylindrical portion 110c and the blade outer periphery 109d is caused by the deformation F1, the manufacturing error F2, the assembly error F3, and the secular change due to the rotation of the blade 109a facing the blowout-side cylindrical portion 110c.
  • F4 even if there is a disturbance F5 during the rotation of the propeller fan 109, it is set to 1.1 times or more of the value (distance) at which the blade outer periphery 109d does not contact the suction side cylindrical portion 110b.
  • F1, F2, F3, F4, F5, and G1 are set based on the same conditions as in the case of the gap 111 described above.
  • the necessary minimum gap 112 between the blowout side cylindrical portion 110c and the blade outer periphery 109d is determined based on an expression expressed by (F1 + F2 + F3 + F4 + F5 + G1) ⁇ 1.1 or more.
  • “1.1 (times) or more” shown in the above expression is solved that the user feels uneasy that the propeller fan 109 is in contact with the bell mouth 110 while the propeller fan 109 is rotating. It is a value (multiple) necessary to do.
  • the blowout side cylindrical part 110c is positioned on the near side of the suction side cylindrical part 110b, so that the blower side cylindrical part 110c and the propeller fan 109 are The gap 112 is the closest position. For this reason, the user's impression of how far the bell mouth 110 is from the propeller fan 109 depends on the gap 112. Therefore, while the gap 111 between the suction side cylindrical portion 110b and the blade outer periphery 109d is set to (F1 + F2 + F3 + F4 + F5 + G1), the clearance 112 between the blowout side cylindrical portion 110c and the blade outer periphery 109d is for giving a sense of security.
  • the upper limit value of the multiple to be multiplied by (F1 + F2 + F3 + F4 + F5 + G1) for the gap 112 between the blowout-side cylindrical portion 110c and the blade outer periphery 109d can be set as appropriate within a range in which improvement in fan performance can be achieved.
  • the air blower 101A includes the blade outer periphery 109d of the propeller fan 109 and the suction side cylindrical portion 110b of the bell mouth 110 when viewed from the rotation axis direction (axial direction G) of the propeller fan 109.
  • the gap 112 between the blade outer periphery 109d and the blowout cylindrical portion 110c of the bell mouth 110 is formed larger than the gap 111.
  • This gap 111 can be made smaller than the gap 115 (gap G C , see FIG. 9) conventionally determined by the outer periphery 109g of the trailing edge side wing.
  • the air blower 101A according to the first embodiment is configured such that the suction side cylindrical portion 110b having a small gap 111 is longer in the axial direction than the blowout side cylindrical portion 110c, the effect of the duct type bell mouth 110 is achieved. It is possible to improve the air blowing performance.
  • the gap 111 between the suction side cylindrical portion 110b and the blade outer periphery 109d is deformed F1, production error F2, and assembly error due to the rotation of the blade 109a facing the suction side cylindrical portion 110b.
  • the blade outer periphery 109d and the suction side cylindrical portion 110b are set to a value that does not contact, and the blowout side cylinder
  • the gap between the portion 110c and the blade outer periphery 109d takes into account all of the deformation F1, the manufacturing error F2, the assembly error F3, and the deformation F4 due to secular change of the blade facing the blowout cylindrical portion, and the propeller fan.
  • the blade outer periphery 109d and the blowout side cylindrical portion 110c are set to be 1.1 times or more than the value at which they do not contact.
  • the gap 112 of the blow-out side cylindrical portion 110c is formed to be larger than the gap 111 of the suction-side cylindrical portion 110b, the user can move the propeller fan 109 and the bell mouth 110 during the rotation of the propeller fan 109. You can eliminate feelings of anxiety about contact.
  • the design which does not make a user feel uneasy can be provided.
  • the suction-side gap 111 (gap G A ) is formed even if the blowing-side gap 112 (gap G B ) is formed wider than before so as not to make the user feel uneasy. Since the length L A of the suction side cylindrical portion 110b is longer than the length L B of the blowout side cylindrical portion 110c, the fan performance can be improved.
  • FIG. 5 is a cross-sectional view showing a blower according to the second embodiment.
  • the blower 101B according to the second embodiment has a configuration in which a bell mouth 200 is used instead of the bell mouth 110 of the blower 101A according to the first embodiment.
  • symbol is attached
  • the bell mouth 200 gradually increases the diameter (diameter ⁇ B of the bell mouth 110) of the blowout side cylindrical portion 110c of the first embodiment from the suction side to the blowout side of the blowout side cylindrical portion 110c.
  • the blowout side round cylindrical portion 201c is used.
  • the round shape R1 facing the blade outer periphery 109d of the blow-off round cylindrical portion 201c is desirably formed so as to follow the radial deformation of the blade 109a of the propeller fan 109 indicated by a two-dot chain line 113 in FIG.
  • the suction side cylindrical portion 201b is formed on the suction side of the blowout side round cylindrical portion 201c as in the first embodiment, and the suction R201a is formed on the suction side of the suction side cylindrical portion 201b.
  • a blowout R201e having a diameter increasing (the diameter from the center O of the propeller fan 109 is enlarged) from the blowout side of the blowout round cylindrical portion 201c to the bellmouth mounting plate 102 is formed. .
  • standard of the blowing side of the blowing side round cylindrical part 201c is set to the position which substantially overlaps with the trailing edge side blade
  • the tapered portion 201d is formed between the suction side cylindrical portion 201b and the blowout side round cylindrical portion 201c. However, as described in the first embodiment, the tapered portion 201d is not provided. There may be.
  • a gap 112 (gap G B ) between the blowing-side round cylindrical portion 201c and the propeller fan 109 (blade outer periphery 109d) is opposite to the bell mouth 200 and the propeller facing each other at the position S1 on the most blowing side of the blade outer periphery 109d of the propeller fan 109. It is set with the fan 109.
  • the position of “opposing bell mouth 200” is a position S1 on the radial extension of the trailing edge side blade outer periphery 109g of the blade 109a.
  • the gap 112 is disturbed during the rotation of the propeller fan 109 in consideration of all of the radial deformation F1 due to the rotation of the blade 109a at the position S1, the manufacturing error F2, the assembly error F3, and the deformation F4 due to secular change. Even if there is F5, it is set to 1.1 times or more of the value at which the blade outer periphery 109d and the blowout side round cylindrical portion 201c do not contact.
  • the suction side cylindrical portion 201b is provided at a position facing a portion where the radial deformation (see reference numeral 113 in FIG. 5) of the blade 109a of the propeller fan 109 is small, thereby
  • the gap 111 between the side cylindrical portion 201b and the propeller fan 109 can be made smaller than before.
  • the length L A of the small suction-side cylindrical portion 201b of the gap 111 since it is configured to be longer in the axial direction than the outlet side round cylindrical portion 201c, the duct type bellmouth 200 The improvement of the ventilation performance which is the effect of this can be aimed at.
  • the gap 112 of the blow-out side round cylindrical portion 201c is formed to be larger than the gap 111 of the suction-side cylindrical portion 201b, so that the user can rotate the propeller fan 109 while the propeller fan 109 is rotating. It is possible to eliminate the feeling of anxiety that the bell mouth 110 may come into contact. That is, according to the second embodiment, as in the first embodiment, it is possible to provide a design that does not make the user feel uneasy, and it is possible to improve fan performance.
  • FIG. 6 is a cross-sectional view showing a blower according to the third embodiment.
  • the blower 101C according to the third embodiment has a configuration in which a bell mouth 300 is used instead of the bell mouth 110 of the blower 101A according to the first embodiment.
  • symbol is attached
  • the bell mouth 300 has a round cylinder in which the diameter (inner diameter) of the bell mouth 300 facing the wing outer periphery 109 d of the propeller fan 109 gradually increases from the suction side to the outlet side of the bell mouth 300.
  • Part 301b a suction R301a is formed on the suction side of the round cylindrical portion 301b as in the first and second embodiments, and a round cylindrical portion is provided on the outlet side of the round cylindrical portion 301b as in the second embodiment.
  • a blowout R301c is formed that expands from the blowout side of 301b to the bell mouth mounting plate 102 (the diameter from the center O of the propeller fan 109 increases).
  • the gap 112 (gap G B ) between the round cylindrical portion 301b and the propeller fan 109 (blade outer periphery 109d) is the bell mouth 300 and the propeller fan 109 that are opposed to each other at the position S2 on the most blowing side of the blade outer periphery 109d of the propeller fan 109. And set between.
  • the position of the “opposing bell mouth 300” is the position of the bell mouth 300 that wraps (overlaps) in the axial direction G with the blade outer periphery 109d from the leading edge side blade outer periphery 109e to the trailing edge side blade outer periphery 109g. It is position S2 on the most blowing side among the portions.
  • the gap 112 is disturbed during the rotation of the propeller fan 109 in consideration of all of the radial deformation F1, the manufacturing error F2, the assembly error F3, and the deformation F4 due to aging due to the rotation of the blade 109a at the position S2. Even if there is F5, it is set to 1.1 times or more the value at which the blade outer periphery 109d and the round cylindrical portion 301b do not contact each other.
  • the round cylindrical portion 301b is not a cylindrical shape having the same diameter in the axial direction like the suction side cylindrical portion 110b and the blowout side cylindrical portion 110c of the first embodiment, but the deformation of the propeller fan 109 (blade 109a) or the like ( F1 + F2 + F3 + F4 + F5 + G1) is a substantially round shape R2.
  • the gap between the blade outer periphery 109d and the round cylindrical portion 301b is constant at any position in the axial direction during the rotation of the propeller fan 109.
  • the anxiety that the propeller fan 109 and the bell mouth 300 are in contact with each other cannot be resolved.
  • the clearance between the trailing edge side blade outer periphery 109g of the blade 109a and the round cylindrical portion 301b is set based on the formula ((F1 + F2 + F3 + F4 + F5 + G1) ⁇ 1.1 or more).
  • the clearance between the round cylindrical portion 301b upstream of the trailing edge side blade outer periphery 109g and the propeller fan 109 includes all of the radial deformation F1, the manufacturing error F2, the assembly error F3 due to the rotation of the blade 109a, and the deformation F4 due to secular change.
  • the value be set to less than 1.1 times the value at which the blade outer periphery 109d does not contact the round cylindrical portion 301b even if there is a disturbance F5 during the rotation of the propeller fan 109.
  • the substantially round shape R2 is not limited to a circular arc (R) having a strict cross section, but includes a substantially R shape formed from a curve, a taper, or the like.
  • the blower 101C according to the third embodiment is configured such that the diameter of the bell mouth 300 facing the blade outer periphery 109d of the propeller fan 109 gradually increases from the suction side to the blow side of the bell mouth 300, and The clearance between the bell mouth 300 and the propeller fan 109 at the position S2 on the most blowing side of the bell mouth 300 facing the blade outer periphery 109d of the propeller fan 109 is formed into a radial deformation F1 due to the rotation of the blade 109a at the position S2.
  • the assembly error F3, and the deformation F4 due to secular change 1.1 times the value at which the blade outer periphery 109d does not contact the round cylindrical portion 301b even if there is a disturbance F5 during the rotation of the propeller fan 109 That's it.
  • the clearance gap between the round cylindrical part 301b and the propeller fan 109 is made smaller than before, and the ventilation performance which is the effect of the duct type bell mouth 300 can be aimed at.
  • the gap at the position S2 on the most blown side of the round cylindrical portion 301b is formed to be larger than the gap on the upstream side of the position S2, so that the rotation of the propeller fan 109 is performed.
  • the outdoor unit 401 of the air conditioner provided with the blower 101A will be described with reference to FIGS. 7 and 8, the illustration of the fan guard is omitted.
  • the case where the blower 101A of the present embodiment is applied to the lateral blow type outdoor unit 401 will be described as an example, but the present invention can be applied to an upper blow type outdoor unit, and the same effect can be obtained. Obtainable.
  • FIGS. 7 and 8 the case where the blower 101 ⁇ / b> A is applied is described as an example, but the blowers 101 ⁇ / b> B and 101 ⁇ / b> C of the other embodiments described above can be similarly applied.
  • the bottom plate 402, the top plate 403, the front plate 404, the back plate 405 (see FIG. 8), and the side plates 406 and 406 constitute the outer wall 410 of the outdoor unit 401.
  • the bell mouth 110 of the present embodiment described above is integrally configured by sheet metal molding with the front plate 404 of the outer wall 410.
  • the cost can be reduced compared to the case where the front plate 404 and the bell mouth 110 are configured separately.
  • a heat exchanger 407 As shown in FIG. 8, in the outer wall 410, a heat exchanger 407, a propeller fan 109, a fan motor 104 that rotates the propeller fan 109, a compressor 408, a control device that controls the fan motor 104 and the compressor 408 ( Etc.) are arranged.
  • the heat exchanger 407 is formed in an L shape when viewed from above on the back surface and one side surface in the outer wall 410, so that the heat exchange performance can be improved.
  • the heat exchange performance of the heat exchanger 407 provided on the side surface is impaired by providing the suction side position of the bell mouth 110 at a substantially intermediate portion in the axial direction G (see FIG. 2) of the propeller fan 109. Can be reduced.
  • the heat exchanger 407, the propeller fan 109, the fan motor 104, and the like constitute a blower chamber 411
  • the compressor 408, a control device (not shown), and the like constitute a machine room 412.
  • the blower chamber 411 and the machine chamber 412 are partitioned by a partition plate 413.
  • an indoor unit (not shown) connected to the outdoor unit 401 is configured with a known unit including an indoor heat exchanger, an expansion valve, and the like, and is connected to the outdoor unit 401 via a refrigerant pipe.
  • the air blowing performance can be improved as compared with the case where the conventional bell mouth 500 (see FIG. 9) is applied.
  • the rotation speed of the propeller fan 109 can be reduced as compared with the conventional one, and thus the blowing noise can be reduced.
  • the rainwater 602 is at the position of the bell mouth 500. Flows and hangs down on the trailing edge of the propeller fan 109.
  • the outside air temperature becomes 0 ° C. or lower, there is a possibility that the space between the bell mouth 500 and the rear edge side blade outer periphery 109g is frozen (603).
  • the propeller fan 109 may break as soon as the propeller fan 109 rotates (because it is made of resin).
  • such icing phenomenon is caused by the fact that the temperature of the propeller fan 109 is 0 ° C. or lower even when it rains when the outside air temperature is approximately 0 ° C. during winter operation. It also occurs during frost operation. That is, during the heating operation, very cold wind is emitted from the outdoor unit 510. Therefore, when the outside air temperature is 0 ° C. or lower, if air or rain is sucked from the heat exchanger 507 side, the heat exchanger 507 is frozen. Will do. If icing is performed in this way, heating operation cannot be performed, so defrosting operation must be performed. Since the heat exchanger 507 is heated during the defrosting operation, the ice melts. At this time, since the propeller fan 109 is stopped, an icicle is generated, and the gap between the propeller fan 109 and the bell mouth 500 is filled. Thereafter, when the propeller fan 109 rotates, the propeller fan (blade) may break.
  • the air blower 101A of the present embodiment (the same applies to the air blowers 101B and 101C) to the outdoor unit 401 of the air conditioner, the rear edge side wing outer periphery 109g of the propeller fan 109 and the bell mouth 110 opposed thereto are provided.
  • the gap 112 (see FIG. 4) is 1.1 times or more the gap 115 (see FIG. 9) between the conventional bell mouth 500 and the propeller fan 109, which is the minimum necessary gap. It becomes possible to enhance the effect.
  • the outdoor unit 401 of the air conditioner has been described as an example.
  • the present invention is not limited to this and may be applied to a ventilation fan or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

使用者に不安を感じさせない意匠を提供でき、しかもファン性能向上を実現することができる送風装置およびそれを備えた空気調和機の室外機を提供する。プロペラファン(109)の回転軸方向から見て、プロペラファン(109)の翼外周(109d)と吸込側円筒部(110b)との隙間(111)より、翼外周(109d)と吹出側円筒部(110c)との隙間(112)を大きく形成し、かつ、吹出側円筒部(110c)より吸込側円筒部(110b)の軸方向(G)の長さを長く形成した。さらに、隙間(111)は、翼(109a)の回転による径方向変形、製作誤差、組立誤差、および経年変化による変形をすべて考慮した上にプロペラファン(109)の回転中に外乱があっても翼外周(109d)と吸込側円筒部(110b)とが接触しない値に設定され、かつ、隙間(112)は、前記隙間(111)の1.1倍以上とした。

Description

送風装置およびそれを備えた空気調和機の室外機
 本発明は、送風装置およびそれを備えた空気調和機の室外機に関する。
 特許文献1には、プロペラファンの径方向の外側に設けられたベルマウスの吸込側に吸込側円弧部、吹出側に吹出側円弧部をそれぞれ形成した送風装置が記載されている。これにより、プロペラファンの翼外周とベルマウスとの隙間における漏れ流れの成長を抑制することができ、翼端渦とファンガードとが衝突したときの騒音を低減できるようになっている。
特許第4140236号公報
 ところで、近年、省エネ化を目的として、送風装置を構成するプロペラファンの圧力性能向上、ファン効率(仕事率)向上、快適性向上のための騒音低減が課題として挙げられている。どの課題も密接に関係しており、性能向上を対象としたファンがある場合、どれか1つの課題を解決すれば少なからず他の課題に対しても良好な結果となることが知られている。このような状況の中、騒音低減の手段としては、特許文献1に記載の技術の他に、プロペラファンとベルマウスとの隙間を可能な限り縮め、漏れ流れを減らすことが一般的に知られている。しかし、プロペラファンが樹脂製の場合、回転中にプロペラファンの翼が遠心力で変形するため、プロペラファンとベルマウスとの隙間には縮められる限界がある。従来はプロペラファンとベルマウスとが回転中に接触しないように、その変形の径方向成分や経年変化等を考慮してプロペラファンとベルマウスの最小限の隙間を決めていた。また、その他にプロペラファンと、軸方向において重なる(ラップする)ベルマウスの長さを長くしたダクト型として、送風性能を向上させる手段も一般的に知られている。
 しかし、特許文献1に記載の技術では、ダクト型のベルマウスとしての効果は望めるものの、プロペラファンとベルマウスとの隙間については、図9に示すように、プロペラファン109とベルマウス500との軸方向Gのラップ範囲(円筒部501の位置)における翼109aの径方向変形(符号113参照)の最大値(後縁側翼外周109g)を考慮して決めていたため、送風性能のさらなる向上を望めないという問題があった。
 また、一般的な翼の前縁が鎌の形をしたプロペラファンにおいては、図9に示すように、プロペラファン109とベルマウス500のラップ範囲では、翼外周109dの後縁側における位置(109g)での径方向変形の方が、ベルマウス吸込側(109f)の翼109aの径方向変形より大きくなる。したがって、プロペラファンとベルマウスの隙間は後縁側における翼の外周位置を基準として決めていたため、プロペラファン109とベルマウス500との隙間をさらに縮めたいときはプロペラファンの変形を小さくするような翼の板厚アップや材料を選択する必要があり、コストアップにつながるという問題があった。しかし、そのような選択ができたとしても、使用者はプロペラファンとベルマウスの隙間が小さく見え、ファン回転中にプロペラファンとベルマウスとが接触するのではないかと不安になる問題もあった。
 本発明は前記従来の問題を解決するものであり、使用者に不安を感じさせない意匠を提供でき、しかもファン性能向上を実現することができる送風装置およびそれを備えた空気調和機の室外機を提供することを課題とする。
 本発明は、樹脂製のプロペラファンと、このプロペラファンを回転させるファンモータと、前記プロペラファンを囲う円筒形のベルマウスと、を備えた送風装置において、前記プロペラファンの回転軸方向から見て、前記プロペラファンの翼外周と前記ベルマウスの吸込側円筒部との隙間より、前記翼外周と前記ベルマウスの吹出側円筒部との隙間を大きく形成し、かつ、前記吹出側円筒部より前記吸込側円筒部の軸方向の長さを長く形成するとともに、前記吸込側円筒部と前記翼外周との隙間は、前記吸込側円筒部に対向する翼の回転による径方向変形、製作誤差、組立誤差、および経年変化による変形をすべて考慮した上に前記プロペラファンの回転中に外乱があっても前記翼外周と前記吸込側円筒部とが接触しない値に設定され、かつ、前記吹出側円筒部と前記翼外周との隙間は、前記吹出側円筒部に対向する翼の回転による径方向変形、製作誤差、組立誤差、および経年変化による変形をすべて考慮した上に前記プロペラファンの回転中に外乱があっても前記翼外周と前記吹出側円筒部とが接触しない値の1.1倍以上としたことを特徴とする。
 本発明によれば、使用者に不安を感じさせない意匠を提供でき、しかもファン性能向上を実現することができる。
第1実施形態に係る送風装置を示す正面図である。 第1実施形態に係る送風装置を示す斜視図である。 図1のP部拡大図である。 図1のQ-Q断面図である。 第2実施形態に係る送風装置を示す断面図である。 第3実施形態に係る送風装置を示す断面図である。 本実施形態に係る送風装置を搭載した空気調和機の室外機を示す正面図である。 図7の室外機の内部を上部から見たときの概略図である。 従来の送風装置を示す断面図である。 従来の送風装置を搭載した空気調和機の室外機における問題点を示す説明図である。
 以下、本実施形態の送風装置101A,101B,101Cおよびそれを備えた空気調和機の室外機401について図1ないし図8を参照して説明する。なお、図4ないし図6は、回転中のプロペラファン109とベルマウス110,200,300との位置関係を示し、図8は、プロペラファン109を簡略化して示している。また、以下に示す実施形態では、プロペラファン109の直径が約450~650mmで、プロペラファン109の回転速度の上限値が約1200回転/分であり、翼109aの肉厚が翼外周109dで約1~3mmであり、1200回転/分のときの後縁側翼外周109gの径方向の変形が約2~3mmのものを想定して説明している。
(第1実施形態)
 図1に示すように、第1実施形態に係る送風装置101Aは、ファンモータ104(図2参照)、プロペラファン109、ベルマウス110を含んで構成されている。
 ファンモータ104は、プロペラファン109を回転駆動させる駆動源となるものであり、モータクランプ103を介して後記する室外機401(図8参照)に固定されている。
 プロペラファン109は、ファンモータ104に形成されたモータシャフト(不図示)に連結固定されるハブ109sと、このハブ109sの外周面に形成された翼(ファンブレード)109a,109a,109aとを有している。なお、翼109aは、3枚に限定されるものではなく、2枚であってもよく、3枚を超えるものであってもよい。
 プロペラファン109のハブ109sには、モータシャフト(不図示)が連結固定される軸穴(不図示)が形成されている。なお、プロペラファン109は、ガラス繊維を含むAS樹脂(アクリロニトリル-スチレン共重合体)、ガラス繊維を含むPP樹脂(ポリプロピレン)などの樹脂製であり、射出成形などによって一体成形されている。
 なお、プロペラファン109は、図1において符号Wで示すように反時計回りに回転され、翼109aの表側の面が圧力面となり、裏側の面が負圧面となり、空気の流れを生じさせる。これにより空気は、翼109aの前縁側109bから後縁側109cに向かって流れるようになっている。
 図2に示すように、翼109aは、略鎌型形状であり、ハブ109sの周面に軸方向Gに対して斜めに連結されるように形成されている。また、翼109aの前縁側109bは、後縁側109cよりもハブ109sに対して軸方向に大きく迫り出すように構成されている。
 ベルマウス110は、プロペラファン109の径方向の外周を覆うように円筒状に形成され、板金をプレス成形することにより、正面(手前)に位置する板状のベルマウス取付板102と一体に形成されている。また、図2において、前縁側109b(図示奥側)が空気の吸込側となり、後縁側109c(図示手前側)が空気の吹出側となる。
 また、ベルマウス110は、吸込側円筒部110bと吹出側円筒部110cとを有し、直径がそれぞれφA,φB(φB>φA)で形成されている。吸込側円筒部110bおよび吹出側円筒部110cは、それぞれプロペラファン109の回転中心Oに対して同心円状に形成されている。
 図3に示すように、送風装置101Aは、プロペラファン109の翼外周109dとベルマウス110の吸込側円筒部110bとの間にギャップGで示す隙間111が形成されている。また、送風装置101Aは、プロペラファン109の翼外周109dとベルマウス110の吹出側円筒部110cとの間にギャップGで示す隙間112が形成されている。このように、送風装置101Aは、隙間111(ギャップG)よりも隙間112(ギャップG)が広くなるように形成されている。
 図4は、ベルマウス110と翼外周109dとの位置関係が明確になるようにベルマウス110をQ-Q断面で示し、翼109aを模式的に示したものである。図4に示すように、ベルマウス110の吸込側円筒部110bは、軸方向Gに長さLとなるように形成されている。また、ベルマウス110の吹出側円筒部110cは、軸方向Gに長さLとなるように形成されている。なお、長さLと長さLとは、L>Lとなるように設定されている。また、吹出側円筒部110cの吹出側の端部は、図4において丸印で示すように、翼109aの後縁側翼外周109gの径方向の延長上に略(おおよそ)位置している。
 また、ベルマウス110は、吸込側円筒部110bの吸込側に吸込R(吸込曲面)110aが形成されている。この吸込R110aは、軸方向Gに対して吸込側円筒部110bから離れるにしたがって拡径して形成されている。
 また、ベルマウス110の吸込側の端部は、図4において丸印で示すように、翼外周109dの前縁側翼外周109eと後縁側翼外周109gとのほぼ中間の軸方向中央翼外周109fに位置している。なお、前縁側翼外周109eとは、図4において丸印で示すように、翼109aの前縁側109bの最も外周側に位置する部分である。
 また、ベルマウス110は、吸込側円筒部110bと吹出側円筒部110cとの境界にテーパー部110dが形成されている。このテーパー部110dは、吸込側から吹出側にかけてベルマウス110の直径が徐々に拡径するように形成されている。
 なお、本実施形態では、ベルマウス110がテーパー部110dを備えた構成を例に挙げて説明しているが、このような形状に限定されるものではなく、テーパー部110dを設けない構成であってもよい。すなわち、吸込側円筒部110bと吹出側円筒部110cとが段差部を介して繋がるような形状でもよい。ただし、テーパー部110dを設けない場合であっても、テーパー部110dを備えた実施形態と同様に、長さL>長さLとなるように吸込側円筒部110bおよび吹出側円筒部110cの長さを設定する。
 また、吹出側円筒部110cよりも吹出側には、吹出側円筒部110cの直径よりも大きい吹出部110eが形成されている。この吹出部110eは、断面L字状に形成され、吸込側が吹出側円筒部110cの吹出側と一体に形成され、吹出側がベルマウス取付版102と一体に形成されている。
 ところで、送風装置101Aにおいては、プロペラファン109が回転すると、翼109aの質量と回転速度から決まる遠心力が発生し、これを支持する部位、即ち翼109aとハブ109sとの境界部に応力が発生する。翼109aはハブ109sの外周面に軸方向に対して斜めに取り付けられており(図2参照)、回転中は前縁側109bおよび後縁側109cが水平になる方向に変形する力が発生する。また、翼109aの前縁側109bは後縁側109cよりもハブ109sに対して軸方向に大きく迫り出しているため、図4において二点鎖線113で示すように、翼109aの前縁側109bの変形が、翼109aの後縁側109cの変形よりも大きくなる。なお、翼109aの軸方向中央翼外周109fは、翼109aとハブ109sとの境界部と径方向に重なる位置であり、かつ、翼109aの重心に近い位置であるため、変形が最も小さくなる。
 吸込側円筒部110bと翼外周109dとの隙間111(ギャップG)は、吸込側円筒部110bに対向する翼109aの回転による変形F1、製作誤差F2、組立誤差F3、および経年変化による変形F4をすべて考慮した上にプロペラファン109の回転中に外乱F5があっても翼外周109dと吸込側円筒部110bとが接触しない値(距離)に設定される。
 回転による変形F1とは、プロペラファン109がW方向(図1参照)へ回転することによって生じる遠心力により発生する変形をいう。なお、遠心力は、質量m×半径r×回転速度ωによって決定されるものである。
 製作誤差F2とは、例えば、金型を用いて成形する場合に発生する誤差をいう。なお、製作誤差F2は、金型を用いた場合に発生する誤差だけではなく、金型を用いない手法、例えば削り出して作製する場合に発生する誤差も含む。
 組立誤差F3とは、プロペラファン109をファンモータ104に取り付ける際に発生する誤差、ファンモータ104をモータクランプ103に取り付ける際に発生する誤差、モータクランプ103をユニット(後記する室外機401)に設置する際の誤差を含む。
 経年変化による変形F4とは、例えば、樹脂の劣化による変形だけではなく、温度変化による変形を含んでいる。例えば、日本の場合は四季があり、翼109aというのは、夏と冬との間において繰り返し使用されることで、あるいは長時間使用されることで、回転中の変形(図4の符号113)に近づく性質を有している。例えば5年後に初期の翼109aの形を維持していることはなく、延びた形になる。
 外乱F5とは、プロペラファン109の回転中に翼109aが欠けたとしても、プロペラファン109がベルマウス110に接触しないようにするためのギャップを意味している。すなわち、プロペラファン109の回転中に翼109aが欠けた場合でも、プロペラファン109は回転し続けており、このときファンモータ104を支えているモータクランプ103も振動するため、プロペラファン109がベルマウス110に接触するおそれがある。このような外乱F5も考慮してギャップを決めている。なお、外乱F5とは、前記した場合だけではなく、後記するように室外機401に対して使用者によって衝撃(常識の範囲内)が与えられた場合なども含む。
 このように吸込側円筒部110bと翼外周109dとの間の必要最小限の隙間111は、(F1+F2+F3+F4+F5+G1)で表わされる式に基づいて決定される。なお、前記式におけるG1とは、(F1+F2+F3+F4+F5)である場合、翼109aとベルマウス110とが接触すると考え、ベルマウス110と翼109aとが接触しないために必要なギャップである。
 一方、吹出側円筒部110cと翼外周109dとの隙間112(ギャップG)は、吹出側円筒部110cに対向する翼109aの回転による変形F1、製作誤差F2、組立誤差F3、および経年変化による変形F4をすべて考慮した上にプロペラファン109の回転中に外乱F5があっても翼外周109dと吸込側円筒部110bとが接触しない値(距離)の1.1倍以上に設定される。なお、F1,F2,F3,F4、F5およびG1については、前記した隙間111の場合と同様な条件に基づいて設定される。
 このように吹出側円筒部110cと翼外周109dとの間の必要最小限の隙間112は、(F1+F2+F3+F4+F5+G1)×1.1以上で表わされる式に基づいて決定される。なお、前記式に示す「1.1(倍)以上」とは、使用者が、プロペラファン109の回転中に該プロペラファン109がベルマウス110に接触するのではないかと不安に感じることを解消するために必要な値(倍数)である。
 すなわち、使用者が軸方向から送風装置101Aを見た場合、吹出側円筒部110cが吸込側円筒部110bより手前側に位置する関係上、使用者にとっては吹出側円筒部110cとプロペラファン109との隙間112が最も近い位置になる。そのため、ベルマウス110がプロペラファン109とどれだけ離れているか使用者が受ける印象としては、隙間112に依存する。そこで、吸込側円筒部110bと翼外周109dとの隙間111を(F1+F2+F3+F4+F5+G1)としたのに対して、吹出側円筒部110cと翼外周109dとの隙間112については、見た目の安心感を与えるために(F1+F2+F3+F4+F5+G1)×1.1以上として、吸込側の隙間111よりも吹出側の隙間112が広くなるように形成したものである。換言すると、隙間112は、隙間111の1.1倍以上である。なお、吹出側円筒部110cの隙間112を吸込側円筒部110bの隙間111の1.1倍以上にしたとしても、吸込側円筒部110bの隙間111については、従来よりも狭く形成することが可能になり、さらに吸込側円筒部110bの長さLが吹出側円筒部110cの長さLよりも長く形成されているので、従来よりもファン性能の向上を達成することができる。また、吹出側円筒部110cと翼外周109dとの隙間112について、(F1+F2+F3+F4+F5+G1)に掛け合わせる倍数の上限値としては、ファン性能の向上を達成できる範囲内において適宜設定することができる。
 以上説明したように第1実施形態に係る送風装置101Aは、プロペラファン109の回転軸方向(軸方向G)から見て、プロペラファン109の翼外周109dとベルマウス110の吸込側円筒部110bとの隙間111より、翼外周109dとベルマウス110の吹出側円筒部110cとの隙間112を大きく形成したものである。このように、プロペラファン109の翼109aの径方向変形(図4の符号113参照)が小さい部分に対向する位置に吸込側円筒部110bを設けることにより、吸込側円筒部110bとプロペラファン109との隙間111を、従来、後縁側翼外周109gで決めていた隙間115(ギャップG、図9参照)よりも小さくすることが可能になる。
 また、第1実施形態に係る送風装置101Aは、隙間111の小さい吸込側円筒部110bを、吹出側円筒部110cよりも軸方向に長くなるように構成したので、ダクトタイプのベルマウス110の効果である送風性能の向上が図れる。
 また、第1実施形態に係る送風装置101Aでは、吸込側円筒部110bと翼外周109dとの隙間111が、吸込側円筒部110bに対向する翼109aの回転による変形F1、製作誤差F2、組立誤差F3、および経年変化による変形F4をすべて考慮した上にプロペラファン109の回転中に外乱F5があっても翼外周109dと吸込側円筒部110bとが接触しない値に設定され、かつ、吹出側円筒部110cと翼外周109dとの隙間が、前記吹出側円筒部に対向する翼の径方向回転による変形F1、製作誤差F2、組立誤差F3、および経年変化による変形F4をすべて考慮した上にプロペラファン109の回転中に外乱F5があっても翼外周109dと吹出側円筒部110cとが接触しない値の1.1倍以上となるように設定したものである。このように、吹出側円筒部110cの隙間112を吸込側円筒部110bの隙間111よりも大きくなるように形成したので、プロペラファン109の回転中に使用者がプロペラファン109とベルマウス110とが接触するのではないかという不安を感じるのを解消することができる。
 このように、第1実施形態によれば、使用者に不安を感じさせない意匠を提供できる。しかも、第1実施形態によれば、吹出側の隙間112(ギャップG)について使用者に不安を感じさせないように従来よりも広く形成したとしても、吸込側の隙間111(ギャップG)を従来よりも狭く形成し、かつ、吸込側円筒部110bの長さLを吹出側円筒部110cの長さLよりも長く形成したので、ファン性能の向上を実現することが可能になる。
(第2実施形態)
 図5は第2実施形態に係る送風装置を示す断面図である。第2実施形態に係る送風装置101Bは、第1実施形態に係る送風装置101Aのベルマウス110に替えてベルマウス200にした構成である。なお、第1実施形態と同様の構成については、同一の符号を付して重複した説明を省略する。
 図5に示すように、ベルマウス200は、第1実施形態の吹出側円筒部110cを、吹出側円筒部110cの吸込側から吹出側にかけて径(ベルマウス110の直径φB)を徐々に大きくした吹出側ラウンド円筒部201cとしたものである。この吹出側ラウンド円筒部201cの翼外周109dに対向するラウンド形状R1は、例えば、図5において二点鎖線113で示すプロペラファン109の翼109aの径方向変形に沿うように形成することが望ましい。
 なお、ベルマウス200は、吹出側ラウンド円筒部201cの吸込側に第1実施形態と同様に吸込側円筒部201bが形成され、この吸込側円筒部201bの吸込側に吸込R201aが形成されている。なお、ベルマウス200の吹出側には、吹出側ラウンド円筒部201cの吹出側からベルマウス取付板102にかけて拡径(プロペラファン109の中心Oからの径が拡大)する吹出R201eが形成されている。
 また、吸込側円筒部201bの軸方向Gの長さをLとし、吹出側ラウンド円筒部201cの軸方向Gの長さをLとすると、L>Lとなるように形成されている。なお、吹出側ラウンド円筒部201cの吹出側の基準は、翼109aの後縁側翼外周109gと径方向において略(おおよそ)重なる位置に設定されている。なお、第2実施形態では、吸込側円筒部201bと吹出側ラウンド円筒部201cとの間にテーパー部201dを形成したが、第1実施形態で説明したように、テーパー部201dを設けない構成であってもよい。
 また、吹出側ラウンド円筒部201cとプロペラファン109(翼外周109d)との隙間112(ギャップG)は、プロペラファン109の翼外周109dの最も吹出側の位置S1において対向するベルマウス200とプロペラファン109との間で設定される。なお、ここでの「対向するベルマウス200」の位置とは、翼109aの後縁側翼外周109gの径方向の延長上の位置S1である。すなわち、前記隙間112は、前記位置S1での翼109aの回転による径方向変形F1、製作誤差F2、組立誤差F3、および経年変化による変形F4をすべて考慮した上にプロペラファン109の回転中に外乱F5があっても翼外周109dと吹出側ラウンド円筒部201cとが接触しない値の1.1倍以上に設定される。
 第2実施形態に係る送風装置101Bによれば、プロペラファン109の翼109aの径方向変形(図5の符号113参照)が小さい部分に対向する位置に吸込側円筒部201bを設けることにより、吸込側円筒部201bとプロペラファン109との隙間111を、従来よりも小さくすることが可能になる。さらに、送風装置101Bによれば、隙間111の小さい吸込側円筒部201bの長さLを、吹出側ラウンド円筒部201cよりも軸方向に長くなるように構成したので、ダクトタイプのベルマウス200の効果である送風性能の向上を図ることができる。さらに、送風装置101Bによれば、吹出側ラウンド円筒部201cの隙間112を吸込側円筒部201bの隙間111よりも大きくなるように形成したので、プロペラファン109の回転中に使用者がプロペラファン109とベルマウス110とが接触するのではないかという不安を感じるのを解消することができる。すなわち、第2実施形態によれば、第1実施形態と同様に、使用者に不安を感じさせない意匠を提供でき、しかもファン性能の向上を実現することが可能になる。
(第3実施形態)
 図6は第3実施形態に係る送風装置を示す断面図である。第3実施形態に係る送風装置101Cは、第1実施形態に係る送風装置101Aのベルマウス110に替えてベルマウス300にした構成である。なお、第1実施形態と同様の構成については、同一の符号を付して重複した説明を省略する。
 図6に示すように、ベルマウス300は、プロペラファン109の翼外周109dに対向するベルマウス300の径(内径)が、ベルマウス300の吸込側から吹出側に向かって徐々に大きくなるラウンド円筒部301bを有している。また、ラウンド円筒部301bの吸込側には、第1実施形態および第2実施形態と同様に吸込R301aが形成され、ラウンド円筒部301bの吹出側には、第2実施形態と同様にラウンド円筒部301bの吹出側からベルマウス取付板102にかけて拡径(プロペラファン109の中心Oからの径が拡大)する吹出R301cが形成されている。
 また、ラウンド円筒部301bとプロペラファン109(翼外周109d)との隙間112(ギャップG)は、プロペラファン109の翼外周109dの最も吹出側の位置S2において対向するベルマウス300とプロペラファン109との間で設定される。なお、ここでの「対向するベルマウス300」の位置とは、翼109aの前縁側翼外周109eから後縁側翼外周109gまでの翼外周109dと軸方向Gでラップする(重なる)ベルマウス300の部分のうち最も吹出側の位置S2である。すなわち、前記隙間112は、前記位置S2での翼109aの回転による径方向変形F1、製作誤差F2、組立誤差F3、および経年変化による変形F4をすべて考慮した上にプロペラファン109の回転中に外乱F5があっても翼外周109dとラウンド円筒部301bとが接触しない値の1.1倍以上に設定される。
 ところで、ラウンド円筒部301bは、第1実施形態の吸込側円筒部110bや吹出側円筒部110cのように軸方向において同一径を有する円筒形ではなく、プロペラファン109(翼109a)の変形等(F1+F2+F3+F4+F5+G1)に合わせた略ラウンド形状R2である。しかし、このような略ラウンド形状R2の場合、プロペラファン109の回転中に翼外周109dとラウンド円筒部301bとの隙間は軸方向のどの位置でも一定となるが、このような構成では、使用者がプロペラファン109とベルマウス300とが接触するのではないかという不安を解消することはできない。そこで、第3実施形態では、翼109aの後縁側翼外周109gとラウンド円筒部301bとの隙間を式((F1+F2+F3+F4+F5+G1)×1.1以上)に基づいて設定したものである。なお、後縁側翼外周109gより上流側のラウンド円筒部301bとプロペラファン109との隙間は、翼109aの回転による径方向変形F1、製作誤差F2、組立誤差F3、および経年変化による変形F4をすべて考慮した上にプロペラファン109の回転中に外乱F5があっても翼外周109dとラウンド円筒部301bとが接触しない値の1.1倍未満に設定されることが好ましい。なお、略ラウンド形状R2は、断面が厳密な円弧(R)に限定されるものではなく、曲線やテーパー等から形成される略R状の形状を含むものである。
 第3実施形態に係る送風装置101Cは、プロペラファン109の翼外周109dに対向するベルマウス300の径を、ベルマウス300の吸込側から吹出側に向かって徐々に大きくなるように構成し、かつ、プロペラファン109の翼外周109dに対向するベルマウス300の最も吹出側の位置S2におけるベルマウス300とプロペラファン109との隙間を、前記位置S2での翼109aの回転による径方向変形F1、製作誤差F2、組立誤差F3、および経年変化による変形F4をすべて考慮した上にプロペラファン109の回転中に外乱F5があっても翼外周109dとラウンド円筒部301bとが接触しない値の1.1倍以上としたものである。これにより、ラウンド円筒部301bとプロペラファン109との隙間を、従来よりも小さくすることが可能になり、ダクトタイプのベルマウス300の効果である送風性能の向上を図ることができる。さらに、送風装置101Cによれば、ラウンド円筒部301bの最も吹出側の位置S2での隙間を、前記位置S2よりも上流側での隙間よりも大きくなるように形成したので、プロペラファン109の回転中に使用者がプロペラファン109とベルマウス110とが接触するのではないかという不安を感じるのを解消することができる。すなわち、第3実施形態によれば、第1実施形態および第2実施形態と同様に、使用者に不安を感じさせない意匠を提供でき、しかもファン性能の向上を実現することが可能になる。
 次に、送風装置101Aを備えた空気調和機の室外機401について図7および図8を参照して説明する。なお、図7および図8では、いずれもファンガードの図示を省略している。なお、以下では、横吹きタイプの室外機401に本実施形態の送風装置101Aを適用した場合を例に挙げて説明するが、上吹きタイプの室外機に適用することもでき、同様の効果を得ることができる。また、図7および図8では、送風装置101Aを適用した場合を例に挙げて説明しているが、前記した他の実施形態の送風装置101B,101Cも同様にして適用できる。
 図7に示すように、室外機401は、底板402、天板403、正面板404、背板405(図8参照)、側板406,406によって室外機401の外壁410を構成している。また、前記した本実施形態のベルマウス110は、外壁410の正面板404と板金成形によって一体に構成されている。このように、正面板404とベルマウス110とを一体に形成することにより、正面板404とベルマウス110とを別体で構成する場合と比べて低コスト化を図ることが可能になる。
 図8に示すように、外壁410内には、熱交換器407、プロペラファン109、このプロペラファン109を回転させるファンモータ104、圧縮機408、ファンモータ104や圧縮機408を制御する制御装置(不図示)等が配置されている。このような室外機401では、熱交換器407が、外壁410内の背面および一方の側面にかけて上面視L字状に形成されているので、熱交換性能を向上させることができる。また、ベルマウス110の吸込側の位置をプロペラファン109の軸方向G(図2参照)の略中間部分に設けたことで、側面側に設けられた熱交換器407での熱交換性能が損なわれるのを低減することができる。
 なお、室外機401は、熱交換器407,プロペラファン109及びファンモータ104等で送風機室411を構成し、また、圧縮機408,制御装置(不図示)等で機械室412を構成している。また、送風機室411と機械室412とは仕切板413で仕切られている。また、室外機401と接続される図示しない室内機は、室内熱交換器や膨張弁等を備えた公知のもので構成され、冷媒配管を介して室外機401と接続されている。
 このように、本実施形態の送風装置101Aを適用した室外機401によれば、従来のベルマウス500(図9参照)を適用した場合よりも送風性能を向上できるため、必要風量を発生させる際のプロペラファン109の回転速度を従来よりも下げることができ、これにより送風騒音を低減することが可能になる。
 ところで、図10に示すように、例えば冬季における降雨601時には、室外機501の天板503や正面板504に溜まった(付着した)雨水602が流れたとき、ベルマウス500の位置に雨水602が流れ、プロペラファン109の後縁に垂れ落ちる。このとき、外気温度が0℃以下となった場合、ベルマウス500と後縁側翼外周109gの間が氷結(603)するおそれがある。このように氷結(603)した状態で室外機510の運転が開始されると、プロペラファン109が回転したとたんにプロペラファン109が割れる(樹脂製のため)おそれがある。
 また、このような氷結現象は、冬季運転中に外気温度が略0℃のときに雨が降った場合にも、プロペラファン109の吹出し温度が0℃以下となるため、熱交換器507の除霜運転時などにも発生する。つまり、暖房運転時には、室外機510からは非常に冷たい風が出ているので、外気温度が0℃以下の場合、熱交換器507側から空気や雨を吸い込むと、熱交換器等507が氷結することになる。このように氷結すると暖房運転ができなくなるので除霜運転を行う必要がある。除霜運転時には熱交換器507が熱くなるので、氷が溶け出すことになる。このときプロペラファン109は停止しているので、つらら状のものが発生して、プロペラファン109とベルマウス500との間のギャップを埋めてしまう。その後、プロペラファン109が回転するとプロペラファン(翼)が割れるおそれがある。
 そこで、本実施形態の送風装置101A(送風装置101B,101Cについても同様)を空気調和機の室外機401に適用することにより、プロペラファン109の後縁側翼外周109gとそれに対向するベルマウス110との隙間112(図4参照)を、必要最小限の隙間である従来のベルマウス500とプロペラファン109との隙間115(図9参照)に対して1.1倍以上とすることにより、氷結防止の効果を高めることが可能になる。
 なお、本実施形態では、空気調和機の室外機401を例に挙げて説明したが、これに限定されるものではなく、換気扇などに適用してもよい。
 101A,101B,101C 送風装置
 102 ベルマウス取付板
 103 モータクランプ
 104 ファンモータ
 109 プロペラファン
 109a 翼
 109b 前縁
 109c 後縁
 109d 翼外周
 109e 前縁側翼外周
 109g 後縁側翼外周
 109s ハブ
 110 ベルマウス
 110a 吸込R
 110b 吸込側円筒部
 110c 吹出側円筒部
 110d テーパー部
 110e 開口縁部
 111 翼外周とベルマウスの吸込側円筒部との隙間(G
 112 翼外周とベルマウスの吹出側円筒部との隙間(G
 113 回転中の翼外周形状を表した線
 200 ベルマウス
 201a 吸込R
 201b 吸込側円筒部
 201c 吹出側ラウンド円筒部
 201d テーパー部
 201e 吹出R
 300 ベルマウス
 301a 吸込R
 301b ラウンド円筒部
 301c 吹出R
 401 空気調和機の室外機
 402 底板
 403 天板
 404 正面板
 405 背面
 406 側面
 407 熱交換器
 408 圧縮機
 G   軸方向
 W   ファン回転方向

Claims (5)

  1.  樹脂製のプロペラファンと、このプロペラファンを回転させるファンモータと、前記プロペラファンを囲う円筒形のベルマウスと、を備えた送風装置において、
     前記プロペラファンの回転軸方向から見て、前記プロペラファンの翼外周と前記ベルマウスの吸込側円筒部との隙間より、前記翼外周と前記ベルマウスの吹出側円筒部との隙間を大きく形成し、かつ、前記吹出側円筒部より前記吸込側円筒部の軸方向の長さを長く形成するとともに、
     前記吸込側円筒部と前記翼外周との隙間は、前記吸込側円筒部に対向する翼の回転による径方向変形、製作誤差、組立誤差、および経年変化による変形をすべて考慮した上に前記プロペラファンの回転中に外乱があっても前記翼外周と前記吸込側円筒部とが接触しない値に設定され、かつ、
     前記吹出側円筒部と前記翼外周との隙間は、前記吹出側円筒部に対向する翼の回転による径方向変形、製作誤差、組立誤差、および経年変化による変形をすべて考慮した上に前記プロペラファンの回転中に外乱があっても前記翼外周と前記吹出側円筒部とが接触しない値の1.1倍以上としたことを特徴とする送風装置。
  2.  前記ベルマウスの吹出側円筒部は、この吹出側円筒部の吸込側から吹出側にかけて前記ベルマウスの径が徐々に大きくなるように形成され、かつ、
     前記プロペラファンの翼外周の最も吹出側の位置において対向する前記ベルマウスと前記プロペラファンとの隙間は、前記位置での前記翼の回転による径方向変形、製作誤差、組立誤差、および経年変化による変形をすべて考慮した上に前記プロペラファンの回転中に外乱があっても前記翼外周と前記吹出側円筒部とが接触しない値の1.1倍以上としたことを特徴とする請求の範囲第1項に記載の送風装置。
  3.  樹脂製のプロペラファンと、このプロペラファンを回転させるファンモータと、前記プロペラファンを囲う円筒形のベルマウスと、を備えた送風装置において、
     前記プロペラファンの翼外周に対向する前記ベルマウスの径は、前記ベルマウスの吸込側から吹出側に向かって徐々に大きくなるように構成され、かつ、
     前記プロペラファンの翼外周の最も吹出側の位置において対向する前記ベルマウスと前記プロペラファンとの隙間は、前記位置での翼の回転による径方向変形、製作誤差、組立誤差、および経年変化による変形をすべて考慮した上に前記プロペラファンの回転中に外乱があっても前記翼外周と前記吹出側円筒部とが接触しない値の1.1倍以上としたことを特徴とする送風装置。
  4.  請求の範囲第1項から請求の範囲第3項のいずれか1項に記載の送風装置を備えたことを特徴とする空気調和機の室外機。
  5.  前記ベルマウスと、室外機の外壁を構成する部品が板金成形により一体に構成されていることを特徴とする請求の範囲第4項に記載の空気調和機の室外機。
PCT/JP2011/050844 2011-01-19 2011-01-19 送風装置およびそれを備えた空気調和機の室外機 WO2012098652A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012553500A JP5752714B2 (ja) 2011-01-19 2011-01-19 送風装置およびそれを備えた空気調和機の室外機
PCT/JP2011/050844 WO2012098652A1 (ja) 2011-01-19 2011-01-19 送風装置およびそれを備えた空気調和機の室外機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/050844 WO2012098652A1 (ja) 2011-01-19 2011-01-19 送風装置およびそれを備えた空気調和機の室外機

Publications (1)

Publication Number Publication Date
WO2012098652A1 true WO2012098652A1 (ja) 2012-07-26

Family

ID=46515304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050844 WO2012098652A1 (ja) 2011-01-19 2011-01-19 送風装置およびそれを備えた空気調和機の室外機

Country Status (2)

Country Link
JP (1) JP5752714B2 (ja)
WO (1) WO2012098652A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173803A1 (ja) * 2017-03-24 2018-09-27 パナソニックIpマネジメント株式会社 送風装置
JPWO2018016012A1 (ja) * 2016-07-19 2019-02-28 三菱電機株式会社 熱源機及び冷凍サイクル装置
JP2019060320A (ja) * 2017-09-28 2019-04-18 日本電産株式会社 軸流ファン
WO2019186687A1 (ja) * 2018-03-27 2019-10-03 三菱電機株式会社 空気調和機の室外機
JPWO2021255882A1 (ja) * 2020-06-18 2021-12-23

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227497A (ja) * 2000-02-16 2001-08-24 Daikin Ind Ltd プロペラファン及び該ファンを備えた空気調和機
JP2005307793A (ja) * 2004-04-20 2005-11-04 Japan Servo Co Ltd 軸流ファン
JP2006017028A (ja) * 2004-07-01 2006-01-19 Yanmar Co Ltd 送風装置
JP2010236371A (ja) * 2009-03-30 2010-10-21 Daikin Ind Ltd 軸流送風機、空気調和機及び換気扇

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276297A (ja) * 1986-05-26 1987-12-01 Matsushita Electric Works Ltd モ−タフアン
JP2776926B2 (ja) * 1989-12-08 1998-07-16 株式会社日立製作所 プロペラファン装置
DE69333845T2 (de) * 1992-05-15 2006-04-27 Siemens Vdo Automotive Inc., Chatham Axiallüfter
JP3577739B2 (ja) * 1994-06-15 2004-10-13 松下電工株式会社 軸流ファン
JP4592907B2 (ja) * 2000-09-28 2010-12-08 株式会社ティラド ファンのシール構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227497A (ja) * 2000-02-16 2001-08-24 Daikin Ind Ltd プロペラファン及び該ファンを備えた空気調和機
JP2005307793A (ja) * 2004-04-20 2005-11-04 Japan Servo Co Ltd 軸流ファン
JP2006017028A (ja) * 2004-07-01 2006-01-19 Yanmar Co Ltd 送風装置
JP2010236371A (ja) * 2009-03-30 2010-10-21 Daikin Ind Ltd 軸流送風機、空気調和機及び換気扇

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018016012A1 (ja) * 2016-07-19 2019-02-28 三菱電機株式会社 熱源機及び冷凍サイクル装置
US10648681B2 (en) 2016-07-19 2020-05-12 Mitsubishi Electric Corporation Heat source unit and refrigeration cycle apparatus
WO2018173803A1 (ja) * 2017-03-24 2018-09-27 パナソニックIpマネジメント株式会社 送風装置
JP2019060320A (ja) * 2017-09-28 2019-04-18 日本電産株式会社 軸流ファン
WO2019186687A1 (ja) * 2018-03-27 2019-10-03 三菱電機株式会社 空気調和機の室外機
JPWO2019186687A1 (ja) * 2018-03-27 2021-01-14 三菱電機株式会社 空気調和機の室外機
JP7012827B2 (ja) 2018-03-27 2022-01-28 三菱電機株式会社 空気調和機の室外機
JPWO2021255882A1 (ja) * 2020-06-18 2021-12-23
JP7370466B2 (ja) 2020-06-18 2023-10-27 三菱電機株式会社 空気調和機の室外機

Also Published As

Publication number Publication date
JP5752714B2 (ja) 2015-07-22
JPWO2012098652A1 (ja) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5752714B2 (ja) 送風装置およびそれを備えた空気調和機の室外機
JP6415741B2 (ja) 送風機、および、それを備えた空気調和装置
JP6097127B2 (ja) 空気調和装置
KR101724294B1 (ko) 공기조화기의 실외기
JP2004204756A (ja) 遠心式送風機
JP2022500590A (ja) 正逆回転ファン
KR101493267B1 (ko) 차량용 공조장치의 송풍팬
JP6377172B2 (ja) プロペラファン、プロペラファン装置および空気調和装置用室外機
WO2015083371A1 (ja) 送風機、およびその送風機を搭載した室外ユニット
JP5079063B2 (ja) プロペラおよび送風機並びにヒートポンプ装置
KR20080054153A (ko) 터보팬 및 이를 구비하는 공기조화기
JP2008223741A (ja) 遠心送風機
JP5127854B2 (ja) 送風機及びヒートポンプ装置
KR20140142950A (ko) 차량용 공조장치의 송풍팬
JP6295414B2 (ja) 送風機、およびその送風機を搭載した室外ユニット
JP6379062B2 (ja) 空気調和機の室外ユニット及びそれに備えられるベルマウス
JP2007040617A (ja) 空調用室内機
CN100560984C (zh) 离心式多叶风扇
JPH0593523A (ja) 空気調和装置
JP2007051790A (ja) 空調用室内機
CN109539529B (zh) 风道件、风机风道组件和空调器
JP5935033B2 (ja) 軸流ファン
JP6710337B2 (ja) 空気調和機
JP3726386B2 (ja) 遠心式送風機
KR100550597B1 (ko) 다익송풍기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856485

Country of ref document: EP

Kind code of ref document: A1