WO2012096243A1 - Reference potential generation device - Google Patents

Reference potential generation device Download PDF

Info

Publication number
WO2012096243A1
WO2012096243A1 PCT/JP2012/050224 JP2012050224W WO2012096243A1 WO 2012096243 A1 WO2012096243 A1 WO 2012096243A1 JP 2012050224 W JP2012050224 W JP 2012050224W WO 2012096243 A1 WO2012096243 A1 WO 2012096243A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
signal
potential
electric field
reference potential
Prior art date
Application number
PCT/JP2012/050224
Other languages
French (fr)
Japanese (ja)
Inventor
清昭 滝口
賢司 河野
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2012552717A priority Critical patent/JP5499184B2/en
Publication of WO2012096243A1 publication Critical patent/WO2012096243A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00

Definitions

  • the present invention relates to a reference potential generating device and is suitable for a device that cannot be grounded.
  • four electrodes are arranged rotationally symmetrically around a reference electrode, and a signal is applied to one of the four electrodes adjacent to each other, and the phase of the signal is relative to the other. A signal shifted by 180 degrees is applied. As a result, the potential at the reference electrode in the electric field generated from the four electrodes falls within zero or in the vicinity thereof.
  • the present invention has been made in consideration of the above points, and intends to propose a reference potential generating device capable of providing a stable reference potential.
  • the present invention is a reference potential generation device, which is m (m is an even number of 4 or more) electrodes arranged in a rotational symmetry around a reference position, and m electrodes. And an applying unit that applies a signal having the same amplitude and wavelength as the signal but having a phase different by 180 degrees to one of the electrodes adjacent to each other.
  • the wavelength of the signal applied to the m electrodes is greater than or equal to the distance between the electrodes adjacent to each other.
  • the present invention also relates to a reference potential generating device, in which m (m is an even number of 4 or more) electrodes arranged in a rotational symmetry around a reference position and electrodes adjacent to each other in the m electrodes A signal is applied to one of the electrodes, and an application unit that applies a signal having the same amplitude and wavelength of the signal but having a phase different by 180 degrees to the other of the adjacent electrodes, and a position to be used as a reference or in the vicinity thereof Switching that switches the wavelength of the signal applied from the application unit when the fluctuation width per unit time of the conductors to be arranged and the signal obtained from the conductor is larger than the threshold value set as the maximum allowable fluctuation width.
  • m is an even number of 4 or more
  • a signal is applied to one of the electrodes adjacent to each other in the m electrodes that are rotationally symmetrical around the position to be the reference, and the signal is applied to the other of the adjacent electrodes.
  • a signal having the same amplitude and wavelength but having a phase difference of 180 degrees is applied.
  • the potential in the neighboring region including the position to be the reference is approximately 0 [V / m].
  • the wavelength of the signal applied to the m electrodes is equal to or greater than the distance between adjacent electrodes in the electrodes.
  • a neighboring region including a position to be a reference is formed as a stable region having a fluctuation range that can be accepted as 0 [V / m] or 0 [V / m].
  • the fluctuation range per unit time of a signal obtained from a conductor to be arranged at or near the reference position is larger than a threshold set as the allowable maximum value in the fluctuation range.
  • the wavelength of the signal applied from the application unit is switched.
  • “Q” in the equation (1) is an electric charge (unit is coulomb), and “l” is a distance between electric charges (however, “l” is compared with “r” by definition of a minute dipole.
  • “ ⁇ ” is a circular constant, “ ⁇ ” is a dielectric constant of a space including a minute dipole, “j” is an imaginary unit, and “k” is a wave number.
  • the electric fields E r and E ⁇ are the radiated electric field linearly inversely proportional to the distance from the electric field generation source (the third term of E ⁇ ) and the distance 2 from the electric field generation source.
  • the electric field can be classified into a radiation electric field, an induction electromagnetic field, and a quasi-electrostatic field in relation to the distance.
  • the third term relating to the radiation electric field is differentiated by the distance r. It can be expressed as
  • the ratio of the change in the electric field strength depending on the distance is the largest for the quasi-electrostatic field component. That is, it can be said that the quasi-electrostatic field has a high resolution with respect to the distance.
  • FIG. 1 shows the relationship between the relative strength and distance of each electric field at 1 [MHz] as an index.
  • an intensity boundary distance there is a distance (hereinafter referred to as an intensity boundary distance) at which the relative strengths of the radiation electric field, the induction electromagnetic field, and the quasi-electrostatic field are equal.
  • the radiated electric field is dominant (a state larger than the intensity of the induction electromagnetic field or the quasi-electrostatic field).
  • the quasi-electrostatic field is dominant (a state larger than the intensity of the radiated electric field and the induced electromagnetic field) in a space closer to the intensity boundary distance.
  • the intensity boundary distance is That is, that is, Can be expressed as
  • the intensity boundary distance is arranged by formulas (9) and (10). It becomes.
  • the higher the frequency the wider the quasi-electrostatic field dominant space (that is, the intensity boundary distance shown in FIG. 1 becomes longer as the frequency is lower (moves to the right)).
  • the higher the frequency the narrower the quasi-electrostatic field dominant space (that is, the intensity boundary distance shown in FIG. 1 becomes shorter as the frequency becomes higher (shifts to the left)).
  • the intensity of the quasi-electrostatic field at a point of 0.01 [m] from the electric field generation source is about 18.2 [dB] larger than the induction electromagnetic field. Therefore, the quasi-electrostatic field in this case can be regarded as having no influence of the induction electromagnetic field and the radiation electric field. That is, since a magnetic field is generated in the radiated electric field and the induction electromagnetic field, a current is distributed in the radiated electric field and the induction electromagnetic field, but the degree of interference with a secondary electric field due to this distribution is small.
  • the quasi-electrostatic field has a relationship superior to the induction electromagnetic field and the radiated electric field in a wider space from the electric field generation source as the lower frequency band is selected.
  • the degree of is small.
  • FIG. 3 shows a configuration of a reference potential generating device 1 to be mounted.
  • the reference potential generating apparatus 1 includes a circuit power supply unit 10, a singular region forming unit 20, a reference potential output unit 30, and a shielding unit 40.
  • the circuit power supply unit 10 generates a power supply voltage for driving the reference potential generation device 1 using a power source such as a battery of a device in which the reference potential generation device 1 is mounted, and uses the power supply voltage to generate the singular region forming unit 20 and the reference potential. This is given to the output unit 30.
  • the unique region forming unit 20 includes four electrodes 21A to 21D, a signal oscillation source 22, and an output adjusting unit 23.
  • the electrodes 21A to 21D have the same shape and the same size, and are arranged at the positions where the vertices of the square have the center of gravity as the reference position.
  • the signal oscillation source 22 oscillates a sine wave signal based on the drive voltage supplied from the circuit power supply unit 10.
  • the output adjustment unit 23 adjusts the frequency and amplitude of the sine wave signal oscillated from the signal oscillation source 22 as necessary according to the setting value input via the operation unit, and the sine wave signal is adjusted to each square.
  • the signals are output to the electrodes 21A and 21C arranged on one diagonal line.
  • the output adjusting unit 23 is a signal (hereinafter referred to as “this”) that is different from the electrodes 21B and 21D arranged on the other diagonal by 180 ° in phase and the same frequency and amplitude as the sine wave signals output to the electrodes 21A and 21C. Are also called inverted signals).
  • the frequency of the sine wave signal applied to the four electrodes 21A to 21D is set to a frequency satisfying “r ⁇ c / 2 ⁇ f” based on the above-described equation (11).
  • the distance between the centroid position of the electrodes 21A to 21D and the arrangement position of the electrodes 21A to 21D serving as the vertices of the square with the centroid position as a reference (hereinafter also referred to as the centroid vertex distance).
  • the distance between the centroid vertices is a linear distance from the position of the centroid of the electrodes 21A to 21D to a portion closest to the electrodes 21A to 21D, or an average distance.
  • the combined electric field of the radiated electric field, induced electromagnetic field, and quasi-electrostatic field generated from the electrodes 21A to 21D is formed as a space (quasi-electrostatic field dominant space) in which the intensity of the radiated electric field and the induction electromagnetic field is smaller than that of the quasi-electrostatic field. Since this space is a space where the degree of interference with a secondary electric field caused by a current distributed in the magnetic field generated in the radiated electric field or induced electromagnetic field is small, the intensity of the radiated electric field or induced electromagnetic field is quasi-electrostatic field. It becomes a stable state as compared with the case of larger than.
  • the intensity of the electric field formed on the electrodes 21A to 21D is 0 [V / m] or a value close to it on the Z axis (shown by a broken line) regardless of the passage of time.
  • a region having a fluctuation range that is permissible assuming that the potential is 0 [V / m] or 0 [V / m] is referred to as a singular region.
  • FIG. 5 and FIG. 6 show the mapping of the electric field in the xy plane obtained by superimposing the electric fields generated by the point charges shown in FIG.
  • FIG. 5A shows the electric field E [V / m] on a logarithmic scale
  • FIG. 5B shows the electric field E [V / m] on a linear scale
  • FIG. 5C shows a potential distribution corresponding to the electric field distributions of FIGS. 5A and 5B.
  • FIGS. 6A, 6B, and 6C are enlarged views of the singular regions in FIGS. 5A, 5B, and 5C, respectively. 5 and 6, the charge Q is 1 [C], and the distance between point charges is 0.01 [m].
  • the electric field strength at the electrodes 21A to 21D is steeply attenuated. Specifically, it attenuates by a power of 2 (number of electrodes) +1. That is, the range of the electric field generated from the electrodes 21A to 21D is in a very limited state.
  • the external coupling range with respect to the electrodes 21A to 21D is limited to the very vicinity. Therefore, the coupling between the electrodes 21A to 21D and other components included in the device on which the reference potential generating device 1 is to be mounted is reduced, and the potential variation at the center of gravity (singular region) of the electrodes 21A to 21D is greatly reduced. It will be suppressed. Further, the restriction on the space in which the reference potential generating device 1 is to be arranged is relaxed for the device on which the reference potential generating device 1 is to be mounted.
  • FIG. 7A shows the measurement position
  • FIG. 7B shows the measurement result at the measurement position
  • the vertical axis is 5 [mv / div]
  • the horizontal axis is 500 [ns / div. ].
  • a 5 [mm] acrylic plate was arranged as a spacer on the shield plate, and electrodes 21A to 21D were arranged on one surface of the acrylic plate.
  • the frequency of the sine wave signal or the inverted signal applied to the electrodes 21A to 21D was 1 [MHz], and the amplitude was 1 [V].
  • the electric field detection sensor is disposed at each measurement position shown in FIG.
  • FIG. 9 shows the result of measuring the electric field potential generated from the electrodes 21A to 21D by changing the wavelength of the signal applied to the electrodes 21A to 21D.
  • FIG. 9A shows the distance between adjacent electrodes 21A-21B, 21B-21D, 21D-21C, and 21C-21A to which a signal whose polarity is inverted is applied (hereinafter also referred to as an interelectrode distance). This shows a case where a signal (1 [MHz] in the figure) having a wavelength shorter than that is applied to the electrodes 21A to 21D.
  • FIG. 9B shows a case where a signal (1 [GHz] in the figure) larger than the wavelength for the same interelectrode distance as in FIG. 9A is applied to the electrodes 21A to 21D. .
  • the singular region becomes narrower as the wavelength of the signal applied to the electrodes 21A to 21D becomes smaller than the inter-electrode distance.
  • the width of the singular region can be adjusted by changing the wavelength (frequency) of the sine wave signal to be applied to the electrodes 21A to 21D by the output adjusting unit 23. If the singular region becomes too narrow, wraparound, multipath, reflection, or radiation will occur in the region due to the effect of wavelength, and it will no longer be a singular region. Therefore, it is extremely useful that the output adjustment unit 23 can adjust the width of the singular region.
  • the wavelength of the signal applied to the electrodes 21A to 21D may be set to be equal to or greater than the interelectrode distance. It was found.
  • the inter-electrode distance is specifically the maximum distance between the electrodes 21A, 21B, 21B, 21D, 21D, 21C, 21C, 21A (the linear distance between the parts that are farthest from each other) or the shortest distance (the closest to each other). Linear distance between parts) or the average of the maximum distance or the shortest distance.
  • the singular region forming unit 20 applies charges having opposite polarity and the same level at the positions adjacent to the electrodes 21A to 21D arranged at the positions of the respective vertices of the square, whereby the center of gravity of the electrodes 21A to 21D is obtained.
  • the position and its vicinity are formed as a region of 0 [V] (singular region).
  • the reference potential output unit 30 includes conductors (hereinafter also referred to as potential detectors) 31A and 31B, FETs (Field Effect Transistors) 32A and 32B, and a differential amplifier 33 for sensing the potential.
  • conductors hereinafter also referred to as potential detectors
  • FETs Field Effect Transistors
  • the potential detectors 31A and 31B have the same shape and size and are arranged in a specific region.
  • the arrangement positions of the potential detectors 31A and 31B in this embodiment are point-symmetric with respect to the center of gravity of the four electrodes 21A to 21D.
  • the gates of the FETs 32A and 32B are connected to the potential detectors 31A and 31B.
  • the drains of the FETs 32A and 32B are connected to the differential amplifier 33, and the sources are connected to a portion to be grounded.
  • the reference potential output unit 30 regards the signal as 0 [V / m] by outputting the difference between the signals obtained from the potential detectors 31A and 31B arranged in the singular region as a reference potential signal. Keep below acceptable value.
  • the shielding unit 40 is an insulating box that houses the circuit power supply unit 10, the specific region forming unit 20, and the reference potential output unit 30, and shields the influence of an external force field on each unit 10, 20, 30.
  • the shielding unit 40 is a common ground target for the circuit power supply unit 10, the singular region forming unit 20, and the reference potential output unit 30.
  • an insulating plate (hereinafter also referred to as a shielding plate) 41 that partitions a space surrounded by the shielding portion 40 into two spaces is provided inside the shielding portion 40. Electrodes 21A to 21D and potential detectors 31A and 31B are provided in one space with the shielding plate 41 as a boundary, and the circuit power supply unit 10, signal oscillation source 22, output adjustment unit 23, and FETs 32A and 32B are provided in the other space. And a differential amplifier 33 is provided.
  • the shielding part 40 the influence of radiation noise and the like generated from the electronic components in the reference potential generating device 1 is significantly reduced by the shielding plate 41 with respect to the singular region.
  • the fluctuation of the potential obtained as the difference between the signals obtained from the potential detectors 31A and 31B arranged in the specific region is greatly suppressed as compared with the case where the shielding plate 41 is not provided.
  • the electrodes 21A to 21D are arranged at a distance larger than the distance from which the quasi-electrostatic field dominant space should be formed from the inner wall of the shielding part 40 using an insulating spacer 42 such as an acrylic plate. .
  • the coupling between the other parts outside the shielding part 40 and the electrodes 21A to 21D is significantly reduced as compared with the case where the insulating spacer 42 is not used, and is obtained from the potential sensors 31A and 31B arranged in the specific region.
  • the fluctuation of the potential obtained as the difference between the obtained signals is greatly suppressed.
  • the adjacent polarities are inverted with respect to the electrodes 21A to 21D arranged at the positions corresponding to the vertices of the square having the position to be the reference as the center of gravity.
  • An electrode structure plane quadrupole structure that gives a signal of the same level as the relationship is adopted.
  • the electrode structure is not limited to this embodiment.
  • the same level where the adjacent polarities are inverted with respect to the electrodes arranged at the positions corresponding to the vertices of the positive 2n (n is an even number of 2 or more) square with the position to be the reference as the center of gravity. It is possible to apply an electrode structure (that is, a planar 2n-pole structure) that gives the signal
  • an electrode structure that is, a three-dimensional multipolar structure that provides a signal of the same level that is a relationship in which adjacent polarities are inverted can be applied.
  • FIG. 12 shows the relationship between the electrode position and the charge applied to the electrode in a three-dimensional octapole structure (regular hexahedron) and a three-dimensional 14-pole structure (truncated octahedron).
  • the electrode structure may be other than those described above.
  • m is an even number of 4 or more
  • m (m is an even number of 4 or more) electrodes that are rotationally symmetric are arranged around the position to be the reference.
  • m electrodes (m is an even number of 4 or more) may be used as a set, and a plurality of sets of electrodes may be arranged rotationally symmetrically around a reference position to be shared.
  • each of the three electrodes 51A to 51D, 52A to 52D, and 53A to 53D is self-similar with the reference position that should be common as the center of gravity. It is placed at the position to be the vertex.
  • the electrodes 51A to 51D are arranged at positions that are the vertices of the outermost square (hereinafter also referred to as the largest square).
  • the electrodes 52A to 52D are rotated 90 degrees around the center of gravity of the largest square and are arranged at positions that are the vertices of a square smaller than the largest square (hereinafter also referred to as an intermediate square).
  • the electrodes 53A to 53D are rotated by 90 degrees around the center of gravity of the intermediate square, and are arranged at positions that are the vertices of a square smaller than the intermediate square (hereinafter also referred to as the minimum square).
  • Three sets of electrodes 51A to 51D, 52A to 52D, and 53A to 53D include adjacent electrodes 51A and 51B, 51B and 51C, 51C and 51D, 51D and 51A, 52A and 52B, 52B and 52C, 52C and 52D, and 52D. And 52A, 53A and 53B, 53B and 53C, 53C and 53D, and 53D and 53A are charged at the same level. However, the level of electric charge to be given to each set of electrodes 51A to 51D, 52A to 52D, and 53A to 53D is not necessarily required to be the same level.
  • the electrodes 51A to 51D, 52A to 52D, and 53A to 53D are given the same level of charge so that the polarities of the electrodes adjacent to each other are directly opposed, the electrodes 51A to 51D, 52A
  • the vicinity including the center of gravity common to ⁇ 52D and 53A to 53D is formed as a singular region by the electric field generated from the electrodes 51A to 51D, 52A to 52D, and 53A to 53D.
  • the figure on which a plurality of sets of electrodes should be arranged with the common reference position as the center of gravity is not limited to a square.
  • any polygon that is rotationally symmetric with the position to be a reference as the center of gravity may be used.
  • the polygons in other words, the number of electrodes
  • the outermost electrode group, the intermediate electrode group, and the innermost electrode group should form may be different from each other.
  • m m is an even number of 4 or more
  • electrodes may be used as a set, and a plurality of sets of electrodes may be arranged at rotationally symmetric positions around a common reference position.
  • the two potential detectors 31A and 31B are arranged for the specific region, and the difference between signals obtained from these potential detectors 31A and 31B is set as the reference potential.
  • a signal obtained from the potential sensor is used as a reference potential.
  • the signal in the singular region is caused by the signal itself. The strength does not become unstable.
  • the signal obtained from the potential sensor A configuration in which the difference is used as a reference potential is preferable.
  • the number of potential sensors to be arranged in the specific region is not limited to one or two.
  • a form in which four potential sensors are arranged for a specific region can be applied.
  • the potential detectors 61A, 61B, 62A, 62B have the same shape and the same size, and the arrangement positions of the potential detectors 61A, 61B, 62A, 62B are four electrodes 21A to 21A. Point symmetry with respect to the center of gravity of 21D.
  • the arrangement positions of the potential detectors 61A, 61B, 62A, and 62B are such that the line connecting the centroids of the potential detectors 61A and 61B and the line connecting the centroids of the potential detectors 62A and 62B are orthogonal to each other.
  • the line segments have the same length.
  • These potential detectors 61A, 61B, 62A and 62B are connected to the gates of FETs 71 to 74 to be associated.
  • the drains (or sources) of the FETs 71 and 72 are connected to the differential amplifier 81, and the drains (or sources) of the FETs 73 and 74 are connected to the differential amplifier 82.
  • the output terminal of the differential amplifier 81 and the output terminal of the differential amplifier 82 are connected to the input terminal of the differential amplifier 83.
  • the potential fluctuation is detected by two sets of potential detectors 61A, 61B, 62A, and 62B arranged in an orthogonal state, and a difference between detection results in each pair corresponds. Amplified by first-stage differential amplifiers 81 and 82. Further, the difference between the amplification results of the differential amplifiers 81 and 82 is further amplified by the differential amplifier 83 at the second stage. Therefore, the output fluctuation from the differential amplifier 83 is further suppressed as compared with the above-described embodiment.
  • the number may be 2x (x is an integer) on the condition that it is provided in a specific region.
  • the number of potential detectors is a power of 2, and these are arranged in a symmetrical relationship with the position to be a reference as the center of gravity.
  • the differential amplifier is connected in a number of stages of 2x-1 with a tournament connection pattern, and the signal output from the last stage differential amplifier among the plurality of stage differential amplifiers is a reference potential. Signal. In this way, it is possible to achieve an effect that is more than the same effect as the above-described embodiment.
  • the position of the potential sensing element is symmetrical with respect to the center of gravity as the reference position, regardless of whether it is one or two or more. Good.
  • the wavelength of the signal applied to the four electrodes 21A to 21D is fixed.
  • a form in which the wavelength of a signal to be applied to the electrode can be switched may be applied.
  • a wavelength switching unit 90 is provided as shown in FIG. 15 in which parts corresponding to those in FIG.
  • the wavelength switching unit 90 measures a fluctuation range per unit time of a signal obtained from one or more potential sensing bodies.
  • the wavelength switching unit 90 detects that the fluctuation width is larger than a threshold value set as an allowable maximum value, the wavelength switching unit 90 applies an electrode arranged rotationally symmetrically around the position to be a reference.
  • the output adjustment unit 23 outputs a signal having a wavelength larger than the wavelength at the time of detection of the signal to be applied.
  • the shapes of the electrodes 21A to 21D and the potential detectors 31A, 31B, 51A, 51B, 52A, 52B are square.
  • the shape of these electrodes is not limited to this embodiment, and any shape can be adopted.
  • the sizes of the electrodes 21A to 21D and the potential detectors 31A, 31B, 51A, 51B, 52A, and 52B are not limited to the illustrated sizes, and may be formed integrally with the wiring.
  • the electrodes 21A to 21D and the potential detectors 31A, 31B, 51A, 51B, 52A, 52B are arranged on the same plane.
  • the electrodes need not necessarily be the same plane.
  • the grounding object common to the circuit power supply unit 10, the singular region forming unit 20, and the reference potential output unit 30 is the shielding unit 40.
  • the shielding plate 41 may be used instead of the shielding unit 40. Good.
  • the sources of the FETs 32A, 32B or 71 to 74 are connected to the shielding unit 40, but may be connected to the output terminal of the differential amplifier 33 or 83 instead of the shielding unit 40.
  • the external noise with respect to the FETs 32A, 32B or 71 to 74 is reduced and the detection sensitivity of the FETs 32A, 32B or 71 to 74 may be improved as compared with the case where the shield unit 40 is connected.
  • a singular region forming unit and a reference potential output unit are provided, and the output terminal of the differential amplifier in the reference potential output unit is connected to the FETs 32A, 32B or 71 to 74. If connected to the source, the detection sensitivity of the FETs 32A, 32B or 71 to 74 can be improved reliably.
  • the m electrodes may be enclosed in a dielectric having a dielectric constant larger than that of air.
  • the dielectric material include a resin and the like, and a conductive material may be blended, or two or more kinds of materials may be mixed.
  • FIGS. 17 and 18 the simulation results when the simulation model shown in FIG. 16 is used are shown in FIGS. 17 and 18, and the simulation results when the simulation model shown in FIG. 19 is used are shown in FIGS.
  • the simulator uses EEM-FDM Version 2.2 of Information and Mathematics Institute.
  • the size of the parallel plate electrode is 120 [mm] ⁇ 120 [mm]
  • the size of the dielectric is 100 [mm] ⁇ 100 [mm] ⁇ 100 [mm]
  • the plate electrode and the dielectric are They were spaced 5 [mm] apart. Then, in a state where an AC voltage of 1 [V] is applied to the parallel plate electrode as noise, the dielectric constant of the dielectric is changed in the range of 1 to 400, and the electric field strength at the measurement point that is the position of the center of gravity of the dielectric was measured. The measurement result is shown in FIG.
  • FIG. 17 the electric field strength distribution when the dielectric constant of the dielectric is 200 and an alternating voltage of 50 [MHz] is applied to the parallel plate electrodes is shown in FIG. As is clear from FIGS. 17 and 18, it can be seen that the higher the dielectric constant, the more the influence of noise inside the dielectric is suppressed.
  • the simulation model of FIG. 19 is a model in which each electrode having the planar quadrupole structure described above is enclosed in a solid dielectric in the simulation model shown in FIG.
  • the size of each electrode having a planar quadrupole structure in this simulation model was 20 [mm] ⁇ 20 [mm], and the distance between the electrodes was 4 [mm].
  • the signal applied to each electrode having a planar quadrupole structure is 1 [V], 10 [MHz], which is the same as the AC voltage applied to the parallel plate electrode, and the phase of the signal and the AC voltage is shifted by 90 °. It was in a state.
  • the dielectric constant of the dielectric was changed in the range of 1 to 400, and the electric field strength at the measurement point at the center of gravity of the dielectric was measured.
  • the measurement result is shown in FIG. 20, and the electric field strength distribution when the dielectric constant of the dielectric is 200 and an alternating voltage of 10 [MHz] is applied to the parallel plate electrodes is shown in FIG.
  • FIGS. 20 and 21 the tendency of suppressing the influence of noise inside the dielectric was confirmed.
  • a part of electronic parts and wirings constituting the singular region forming unit 20 or the reference potential output unit 30 may be encapsulated in a dielectric.
  • a part or the whole of the shielding unit 40 or the shielding plate 41 in the above-described embodiment can be a dielectric.
  • the shape of the dielectric enclosing at least m (m is an even number of 4 or more) electrodes is not particularly limited.
  • the shape of the dielectric enclosing m electrodes is a sheet, This is preferable from the viewpoint of thinning the body itself or the reference potential generating device 1 itself as a card.
  • the present invention can be used in, for example, agriculture, forestry, fishery, mining, construction, manufacturing, electrical, information and communication, transportation, or pharmaceutical industries, and of course, it can be widely used in all other industries. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Provided is a reference potential generation device capable of supplying a stable reference potential. The device is provided with: m-pieces of electrodes (21A to 21D) (m is an even number of 4 or more) arranged to be rotationally symmetric around a reference position; an application unit (20) which applies a signal to one of the adjacent electrodes among the m-pieces of electrodes (21A to 21D), and applies a signal having the same amplitude, same wavelength, and 180 degrees different phase, to the other electrode of the adjacent electrodes. The wavelength of the signal to be applied to the m-pieces of electrodes (21A to 21D) is larger than the distance between the adjacent electrodes among the m-pieces of electrodes (21A to 21D).

Description

基準電位生成装置Reference potential generator
 本発明は基準電位生成装置に関し、接地がとれない機器において好適なものである。 The present invention relates to a reference potential generating device and is suitable for a device that cannot be grounded.
 例えば通信端末機器等といった可搬型の機器では接地がとれないため、基準電位を得ることが困難となる。この問題を解決する技術として、本発明者によって提案されたものがある(特許文献1参照)。 For example, portable devices such as communication terminal devices cannot be grounded, making it difficult to obtain a reference potential. As a technique for solving this problem, there has been proposed by the present inventor (see Patent Document 1).
 この技術は、基準電極の周りに回転対称に例えば4つの電極を配し、これら4つの電極のうち、互いに隣り合う電極の一方に対して信号を印加するとともに他方に対して該信号の位相が180度ずれた信号を印加する。これにより4つの電極から生じる電界における基準電極での電位がゼロ又はその近傍範囲に納まる。 In this technique, for example, four electrodes are arranged rotationally symmetrically around a reference electrode, and a signal is applied to one of the four electrodes adjacent to each other, and the phase of the signal is relative to the other. A signal shifted by 180 degrees is applied. As a result, the potential at the reference electrode in the electric field generated from the four electrodes falls within zero or in the vicinity thereof.
特開2010-085230号JP 2010-085230
 ところで、上述の特許文献に示す出願後の実験によって、基準電極の周りに回転対称に配される電極に印加する信号自体に起因して特異領域が不安定になる場合があることが新たに分かった。 By the way, after the filing experiment shown in the above-mentioned patent document, it is newly found that the singular region may become unstable due to the signal itself applied to the electrodes arranged in a rotational symmetry around the reference electrode. It was.
 本発明は以上の点を考慮してなされたもので、安定した基準電位を提供し得る基準電位生成装置を提案しようとするものである。 The present invention has been made in consideration of the above points, and intends to propose a reference potential generating device capable of providing a stable reference potential.
課題を解決するための部Department for solving problems
 かかる課題を解決するため本発明は、基準電位生成装置であって、基準とすべき位置の周りに回転対称に配されるm個(mは4以上の偶数)の電極と、m個の電極において互いに隣り合う電極の一方に対して信号を印加し、該隣り合う電極の他方に対して、信号の振幅及び波長と同じで位相が180度異なる信号を印加する印加部とを備える。m個の電極に印加される信号の波長は、該電極において互いに隣り合う電極間の距離以上とされる。 In order to solve such a problem, the present invention is a reference potential generation device, which is m (m is an even number of 4 or more) electrodes arranged in a rotational symmetry around a reference position, and m electrodes. And an applying unit that applies a signal having the same amplitude and wavelength as the signal but having a phase different by 180 degrees to one of the electrodes adjacent to each other. The wavelength of the signal applied to the m electrodes is greater than or equal to the distance between the electrodes adjacent to each other.
 また本発明は、基準電位生成装置であって、基準とすべき位置の周りに回転対称に配されるm個(mは4以上の偶数)の電極と、m個の電極において互いに隣り合う電極の一方に対して信号を印加し、該隣り合う電極の他方に対して、信号の振幅及び波長と同じで位相が180度異なる信号を印加する印加部と、基準とすべき位置又はその近傍に配される導体と、導体から得られる信号の単位時間当たりの変動幅が、許容し得る最大値として変動幅に設定される閾値よりも大きい場合、印加部から印加される信号の波長を切り替える切替部とを備える。 The present invention also relates to a reference potential generating device, in which m (m is an even number of 4 or more) electrodes arranged in a rotational symmetry around a reference position and electrodes adjacent to each other in the m electrodes A signal is applied to one of the electrodes, and an application unit that applies a signal having the same amplitude and wavelength of the signal but having a phase different by 180 degrees to the other of the adjacent electrodes, and a position to be used as a reference or in the vicinity thereof Switching that switches the wavelength of the signal applied from the application unit when the fluctuation width per unit time of the conductors to be arranged and the signal obtained from the conductor is larger than the threshold value set as the maximum allowable fluctuation width. A part.
 本件発明では、基準とすべき位置の周りに回転対称に配されるm個の電極において互いに隣り合う電極の一方に対して信号が印加され、該隣り合う電極の他方に対して、該信号の振幅及び波長と同じで位相が180度異なる信号が印加される。この場合、m個の電極で形成される電界によって、基準とすべき位置を含む近傍の領域での電位がおおむね0[V/m]となる。 In the present invention, a signal is applied to one of the electrodes adjacent to each other in the m electrodes that are rotationally symmetrical around the position to be the reference, and the signal is applied to the other of the adjacent electrodes. A signal having the same amplitude and wavelength but having a phase difference of 180 degrees is applied. In this case, due to the electric field formed by the m electrodes, the potential in the neighboring region including the position to be the reference is approximately 0 [V / m].
 この領域は、m個の電極に印加される信号の波長よりも電極間距離が大きくなるほど、該電極から生じる電界自体が基準位置に回り込んで狭くなるということが、本発明者の鋭意な検討及び実験によって明らかとなった。 The inventor's earnest study that this region becomes narrower as the distance between the electrodes becomes larger than the wavelength of the signal applied to the m electrodes, and the electric field generated from the electrodes wraps around the reference position. And revealed by experiments.
 本件第1の発明では、m個の電極に印加される信号の波長が、該電極における隣り合う電極間の距離以上とされる。この条件下では、基準とすべき位置を含む近傍の領域が、0[V/m]、又は、0[V/m]とみなすものとして許容し得る変動幅となる安定した領域として形成されることが分かった。したがって本件第1の発明では、例えば、この領域から引き回される信号線を基準電位線として、安定した基準電位を提供することが可能となる。 In the first aspect of the present invention, the wavelength of the signal applied to the m electrodes is equal to or greater than the distance between adjacent electrodes in the electrodes. Under this condition, a neighboring region including a position to be a reference is formed as a stable region having a fluctuation range that can be accepted as 0 [V / m] or 0 [V / m]. I understood that. Accordingly, in the first invention, for example, it is possible to provide a stable reference potential by using a signal line routed from this region as a reference potential line.
 また本件第2の発明では、基準とすべき位置又はその近傍に配される導体から得られる信号の単位時間当たりの変動幅が、許容し得る最大値として変動幅に設定される閾値よりも大きい場合、印加部から印加される信号の波長が切り替えられる。このため、導体を含む領域を、0[V/m]、又は、0[V/m]とみなすものとして許容し得る変動幅となる安定した領域として形成することが可能となる。これに加えて、m個の電極で形成される電界に対する外部の力の場の影響や、電極の大きさ又は位置の誤差等の事項に起因する変動をも低減できる。したがって本件第2の発明では、例えば、この領域から引き回される信号線を基準電位線として、安定した基準電位を導体から提供することが可能となる。 In the second aspect of the present invention, the fluctuation range per unit time of a signal obtained from a conductor to be arranged at or near the reference position is larger than a threshold set as the allowable maximum value in the fluctuation range. In this case, the wavelength of the signal applied from the application unit is switched. For this reason, it is possible to form the region including the conductor as a stable region having a fluctuation range that can be accepted as 0 [V / m] or 0 [V / m]. In addition to this, it is possible to reduce fluctuations caused by matters such as the influence of an external force field on the electric field formed by the m electrodes and errors in the size or position of the electrodes. Therefore, in the second invention, for example, it is possible to provide a stable reference potential from a conductor using a signal line routed from this region as a reference potential line.
距離に応じた各電界の相対的な強度変化(1[MHz])を示すグラフである。It is a graph which shows the relative intensity change (1 [MHz]) of each electric field according to distance. 距離に応じた各電界の相対的な強度変化(10[MHz])を示すグラフである。It is a graph which shows the relative intensity | strength change (10 [MHz]) of each electric field according to distance. 基準電位生成装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of a reference electric potential production | generation apparatus. 電極位置と当該電極に与えられる電荷との関係を概略的に示す図である。It is a figure which shows roughly the relationship between an electrode position and the electric charge given to the said electrode. シミュレーションに基づく電界・電位分布(1)を示す図である。It is a figure which shows the electric field and electric potential distribution (1) based on simulation. シミュレーションに基づく電界・電位分布(2)を示す図である。It is a figure which shows the electric field and electric potential distribution (2) based on simulation. 測定位置と測定位置での出力波形を示す図である。It is a figure which shows the output waveform in a measurement position and a measurement position. 測定実験における基準電位生成装置の構成を示す図である。It is a figure which shows the structure of the reference electric potential production | generation apparatus in a measurement experiment. 同じ電極間距離のもとで電極に印加する波長を異ならせた場合の電界・電位分布を示す図である。It is a figure which shows electric field and electric potential distribution at the time of changing the wavelength applied to an electrode on the same distance between electrodes. 他の実施の形態における電極位置と当該電極に与えられる電荷との関係(1)を概略的に示す図である。It is a figure which shows roughly the relationship (1) of the electrode position in other embodiment and the electric charge given to the said electrode. 各電極構造での基準電極の距離と電位との関係を示すグラフである。It is a graph which shows the relationship between the distance of the reference electrode in each electrode structure, and an electric potential. 他の実施の形態における電極位置と当該電極に与えられる電荷との関係(2)を概略的に示す図である。It is a figure which shows schematically the relationship (2) of the electrode position in another embodiment and the electric charge given to the said electrode. 共通の基準位置を重心とする自己相似の各正方形における各頂点となる位置に配される電極群を示す図である。It is a figure which shows the electrode group distribute | arranged to the position used as each vertex in each self-similar square which makes a common reference position a gravity center. 他の実施の形態における基準電位出力部の構成を示す図である。It is a figure which shows the structure of the reference electric potential output part in other embodiment. 他の実施の形態における基準電位生成装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the reference electric potential production | generation apparatus in other embodiment. シミュレーションモデル(1)を概略的に示す図である。It is a figure which shows a simulation model (1) roughly. 図16のシミュレーションモデルにおける誘電体の誘電率と、当該誘電率内部の電界強度との関係を示すグラフである。It is a graph which shows the relationship between the dielectric constant of the dielectric material in the simulation model of FIG. 16, and the electric field strength inside the said dielectric constant. 図16のシミュレーションモデルに基づく電界強度分布を示す図である。It is a figure which shows electric field strength distribution based on the simulation model of FIG. シミュレーションモデル(2)を概略的に示す図である。It is a figure which shows a simulation model (2) roughly. 図19のシミュレーションモデルにおける誘電体の誘電率と、当該誘電率内部の電界強度との関係を示すグラフである。It is a graph which shows the relationship between the dielectric constant of the dielectric material in the simulation model of FIG. 19, and the electric field strength inside the said dielectric constant. 図19のシミュレーションモデルに基づく電界強度分布を示す図である。It is a figure which shows electric field strength distribution based on the simulation model of FIG.
 (1)電界
 本発明を実施するための形態を説明する前に、まずは、電界について各種観点から説明する。
(1) Electric field Before describing the form for implementing this invention, first, an electric field is demonstrated from various viewpoints.
 [1-1.電界の分類]
 電界発生源となる微小ダイポールからの距離をrとし、その距離rを隔てた位置をPとした場合、当該位置Pでの電界強度Eは、マックスウェル方程式より、次式
Figure JPOXMLDOC01-appb-M000001
のように曲座標(r,θ,δ)として表すことができる。
[1-1. Classification of electric field]
When r is a distance from a minute dipole serving as an electric field generation source and P is a position separated by the distance r, the electric field intensity E at the position P is expressed by the following equation from the Maxwell equation.
Figure JPOXMLDOC01-appb-M000001
It can be expressed as a music coordinate (r, θ, δ).
 なお、(1)式における「Q」は、電荷(単位はクーロン)であり、「l」は、電荷間の距離(但し、微小ダイポールの定義より、「l」は「r」に比して小さい)であり、「π」は、円周率、「ε」は、微小ダイポールを含む空間の誘電率、「j」は、虚数単位、「k」は、波数である。 In addition, “Q” in the equation (1) is an electric charge (unit is coulomb), and “l” is a distance between electric charges (however, “l” is compared with “r” by definition of a minute dipole. “Π” is a circular constant, “ε” is a dielectric constant of a space including a minute dipole, “j” is an imaginary unit, and “k” is a wave number.
 かかる(1)式を展開すると、次式
Figure JPOXMLDOC01-appb-M000002
となる。
When this equation (1) is expanded,
Figure JPOXMLDOC01-appb-M000002
It becomes.
 この(2)式からも分かるように、電界E及びEΘは、電界発生源からの距離に線形に反比例する放射電界(EΘの第3項)と、電界発生源からの距離の2乗に反比例する誘導電磁界(E、EΘの第2項)と、電界発生源からの距離の3乗に反比例する準静電界(E、EΘの第1項)との合成電界として発生する。 As can be seen from the equation (2), the electric fields E r and E Θ are the radiated electric field linearly inversely proportional to the distance from the electric field generation source (the third term of E Θ ) and the distance 2 from the electric field generation source. A combined electric field of an induction electromagnetic field (second term of E r , E Θ ) inversely proportional to the power and a quasi-electrostatic field (first term of E r , E Θ ) inversely proportional to the third power of the distance from the electric field source Occurs as.
 このように電界は、距離との関係では、放射電界、誘導電磁界及び準静電界に分類することができる。 Thus, the electric field can be classified into a radiation electric field, an induction electromagnetic field, and a quasi-electrostatic field in relation to the distance.
 [1-2.電界の分解能]
 ここで、電界発生源からの距離によって電界強度が変化する割合を、放射電界、誘導電磁界、準静電界で比較する。
[1-2. Electric field resolution]
Here, the ratio of the change in electric field strength depending on the distance from the electric field generation source is compared between the radiation electric field, the induction electromagnetic field, and the quasi-electrostatic field.
 (2)式における電界EΘのうち、放射電界に関する第3項を距離rで微分すると、次式
Figure JPOXMLDOC01-appb-M000003
のように表すことができる。
Of the electric field E Θ in the equation (2), the third term relating to the radiation electric field is differentiated by the distance r.
Figure JPOXMLDOC01-appb-M000003
It can be expressed as
 また(2)式における電界EΘのうち、誘導電磁界に関する第2項を距離rで微分すると、次式
Figure JPOXMLDOC01-appb-M000004
のように表すことができる。
Further, when the second term relating to the induction electromagnetic field in the electric field E Θ in the equation (2) is differentiated by the distance r, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000004
It can be expressed as
 さらに(2)式における電界EΘのうち、準静電界に関する第1項を距離rで微分すると、次式
Figure JPOXMLDOC01-appb-M000005
のように表すことができる。
Further, when the first term relating to the quasi-electrostatic field is differentiated by the distance r in the electric field E Θ in the equation (2), the following equation is obtained.
Figure JPOXMLDOC01-appb-M000005
It can be expressed as
 なお、(3)乃至(5)式の「T」は、単純化するために(2)式の一部分を次式
Figure JPOXMLDOC01-appb-M000006
のように置き換えている。
Note that “T” in the equations (3) to (5) is a part of the equation (2) for the sake of simplicity.
Figure JPOXMLDOC01-appb-M000006
It is replaced as follows.
 これら(3)乃至(5)式からも明らかなように、距離によって電界強度が変化する割合は準静電界に関する成分が最も大きい。つまり、準静電界は距離に対して高い分解能があるといえる。 As is clear from these formulas (3) to (5), the ratio of the change in the electric field strength depending on the distance is the largest for the quasi-electrostatic field component. That is, it can be said that the quasi-electrostatic field has a high resolution with respect to the distance.
 [1-3.電界強度と周波数との関係]
 ここで、これら放射電界、誘導電磁界及び準静電界それぞれの相対的な強度と、距離との関係を図1に示す。図1は、1[MHz]における各電界それぞれの相対的な強度と距離との関係を指数で示すものである。
[1-3. Relationship between electric field strength and frequency]
Here, the relationship between the relative intensity of each of the radiation electric field, the induction electromagnetic field and the quasi-electrostatic field and the distance is shown in FIG. FIG. 1 shows the relationship between the relative strength and distance of each electric field at 1 [MHz] as an index.
 この図1からも明らかなように、放射電界、誘導電磁界及び準静電界それぞれの相対的な強度が等しくなる距離(以下、これを強度境界距離と呼ぶ)が存在する。この強度境界距離よりも遠方の空間では放射電界が優位(誘導電磁界や準静電界の強度よりも大きい状態)となる。これに対して強度境界距離よりも近方の空間では準静電界が優位(放射電界や誘導電磁界の強度よりも大きい状態)となる。 As is clear from FIG. 1, there is a distance (hereinafter referred to as an intensity boundary distance) at which the relative strengths of the radiation electric field, the induction electromagnetic field, and the quasi-electrostatic field are equal. In a space far from the intensity boundary distance, the radiated electric field is dominant (a state larger than the intensity of the induction electromagnetic field or the quasi-electrostatic field). On the other hand, the quasi-electrostatic field is dominant (a state larger than the intensity of the radiated electric field and the induced electromagnetic field) in a space closer to the intensity boundary distance.
 この強度境界距離は、(2)式における電界EΘの各項(EΘ1、EΘ2、EΘ3)に対応する電界の各成分、すなわち次式
Figure JPOXMLDOC01-appb-M000007
が一致する(EΘ1=EΘ2=EΘ3)ということである。
This intensity boundary distance is the component of the electric field corresponding to each term (E Θ1 , E Θ2 , E Θ3 ) of the electric field E Θ in equation (2), that is, the following equation:
Figure JPOXMLDOC01-appb-M000007
(E Θ1 = E Θ2 = E Θ3 ).
 このことから、強度境界距離は、次式
Figure JPOXMLDOC01-appb-M000008
を充足する場合、つまり、次式
Figure JPOXMLDOC01-appb-M000009
として表すことができる。
From this, the intensity boundary distance is
Figure JPOXMLDOC01-appb-M000008
That is, that is,
Figure JPOXMLDOC01-appb-M000009
Can be expressed as
 この(9)式における波数kは、光速をc(c=3 ×108[m/s] )とし、周波数をf[Hz]とすると、次式
Figure JPOXMLDOC01-appb-M000010
として表すことができる。
The wave number k in the equation (9) is expressed as follows, assuming that the speed of light is c (c = 3 × 10 8 [m / s]) and the frequency is f [Hz].
Figure JPOXMLDOC01-appb-M000010
Can be expressed as
 したがって強度境界距離は(9)式と(10)式を整理し、次式
Figure JPOXMLDOC01-appb-M000011
となる。
Therefore, the intensity boundary distance is arranged by formulas (9) and (10).
Figure JPOXMLDOC01-appb-M000011
It becomes.
 この(11)式からも分かるように、放射電界及び誘導電磁界に比して強度の大きい状態にある準静電界の空間(以下、これを準静電界優位空間と呼ぶ)を広くする場合には周波数が密接に関係している。 As can be seen from equation (11), when the space of the quasi-electrostatic field that is stronger than the radiated electric field and the induction electromagnetic field (hereinafter referred to as the quasi-electrostatic field dominant space) is widened. Are closely related in frequency.
 具体的には、低い周波数であるほど、準静電界優位空間が広くなる(即ち、図1に示した強度境界距離は、周波数が低いほど長くなる(右に移ることになる))。これに対して高い周波数であるほど、準静電界優位空間が狭くなる(即ち、図1に示した強度境界距離は、周波数が高いほど短くなる(左に移ることになる))。 Specifically, the lower the frequency, the wider the quasi-electrostatic field dominant space (that is, the intensity boundary distance shown in FIG. 1 becomes longer as the frequency is lower (moves to the right)). On the other hand, the higher the frequency, the narrower the quasi-electrostatic field dominant space (that is, the intensity boundary distance shown in FIG. 1 becomes shorter as the frequency becomes higher (shifts to the left)).
 例えば10[MHz]を選定した場合、上述の(11)式により、4.775[m]よりも近方では準静電界が優位な空間となる。かかる10[MHz]を選定した場合に放射電界、誘導電磁界及び準静電界それぞれの相対的な強度と、距離との関係をグラフ化すると図2に示す結果となる。 For example, when 10 [MHz] is selected, a space where the quasi-electrostatic field is dominant nearer than 4.775 [m] according to the above equation (11). When such 10 [MHz] is selected, the relationship between the relative strength of each of the radiated electric field, the induction electromagnetic field, and the quasi-electrostatic field and the distance is graphed, and the result shown in FIG. 2 is obtained.
 この図2からも明らかなように、電界発生源から0.01[m]地点の準静電界の強度は、誘導電磁界に比しておよそ18.2[dB]大きくなる。従ってこの場合の準静電界は、誘導電磁界及び放射電界の影響がないものとみなすことができる。つまり、放射電界や誘導電磁界には磁界が発生するため、該放射電界や誘導電磁界では電流が分布するが、この分布に起因する副次的な電界との干渉の程度が小さい。 As is clear from FIG. 2, the intensity of the quasi-electrostatic field at a point of 0.01 [m] from the electric field generation source is about 18.2 [dB] larger than the induction electromagnetic field. Therefore, the quasi-electrostatic field in this case can be regarded as having no influence of the induction electromagnetic field and the radiation electric field. That is, since a magnetic field is generated in the radiated electric field and the induction electromagnetic field, a current is distributed in the radiated electric field and the induction electromagnetic field, but the degree of interference with a secondary electric field due to this distribution is small.
 このように準静電界は、低い周波数帯を選定するほど、電界発生源からより広い空間において、誘導電磁界及び放射電界に比して優位となる関係にあり、副次的な電界との干渉の程度が小さいものとなる。 As described above, the quasi-electrostatic field has a relationship superior to the induction electromagnetic field and the radiated electric field in a wider space from the electric field generation source as the lower frequency band is selected. The degree of is small.
 (2)本発明を実施するための形態
 図3において、携帯電話機等の可搬型の電子機器あるいは車等の車両に代表されるように、明示的な基準電位を確保し難いとされる装置に搭載すべき基準電位生成装置1の構成を示す。この基準電位生成装置1は、回路電源部10、特異領域形成部20、基準電位出力部30及び遮蔽部40を含む構成とされる。
(2) Mode for Carrying Out the Invention In FIG. 3, as represented by a portable electronic device such as a mobile phone or a vehicle such as a car, an apparatus that is difficult to secure an explicit reference potential. 1 shows a configuration of a reference potential generating device 1 to be mounted. The reference potential generating apparatus 1 includes a circuit power supply unit 10, a singular region forming unit 20, a reference potential output unit 30, and a shielding unit 40.
 回路電源部10は、基準電位生成装置1が搭載される装置のバッテリー等の電源を用いて基準電位生成装置1を駆動するための電源電圧を生成し、これを特異領域形成部20及び基準電位出力部30に与える。 The circuit power supply unit 10 generates a power supply voltage for driving the reference potential generation device 1 using a power source such as a battery of a device in which the reference potential generation device 1 is mounted, and uses the power supply voltage to generate the singular region forming unit 20 and the reference potential. This is given to the output unit 30.
 特異領域形成部20は、4つの電極21A~21D、信号発振源22及び出力調整部23を有する。 The unique region forming unit 20 includes four electrodes 21A to 21D, a signal oscillation source 22, and an output adjusting unit 23.
 電極21A~21Dは同形同大でなり、基準とすべき位置を重心とする正方形の各頂点となる位置に配される。信号発振源22は、回路電源部10から与えられる駆動電圧に基づいて正弦波信号を発振する。 The electrodes 21A to 21D have the same shape and the same size, and are arranged at the positions where the vertices of the square have the center of gravity as the reference position. The signal oscillation source 22 oscillates a sine wave signal based on the drive voltage supplied from the circuit power supply unit 10.
 出力調整部23は、信号発振源22から発振される正弦波信号の周波数及び振幅を、操作部を介して入力された設定値に必要に応じて調整し、当該正弦波信号を、正方形の各頂点となる位置に配される電極21A~21Dのうち、一方の対角線上に配される電極21A,21Cに出力する。 The output adjustment unit 23 adjusts the frequency and amplitude of the sine wave signal oscillated from the signal oscillation source 22 as necessary according to the setting value input via the operation unit, and the sine wave signal is adjusted to each square. Of the electrodes 21A to 21D arranged at the apex positions, the signals are output to the electrodes 21A and 21C arranged on one diagonal line.
 また出力調整部23は、他方の対角線上に配される電極21B,21Dに対して、電極21A,21Cに出力される正弦波信号と同じ周波数及び振幅で位相が180°異なる信号(以下、これを反転信号とも呼ぶ)を出力する。 In addition, the output adjusting unit 23 is a signal (hereinafter referred to as “this”) that is different from the electrodes 21B and 21D arranged on the other diagonal by 180 ° in phase and the same frequency and amplitude as the sine wave signals output to the electrodes 21A and 21C. Are also called inverted signals).
 4つの電極21A~21Dに印加される正弦波信号の周波数は、上述の(11)式に基づく「r<c/2πf」を充足する周波数とされる。具体的には、電極21A~21Dの重心位置と、その重心位置を基準とする正方形の各頂点となる電極21A~21Dの配置位置との間の距離(以下、これを重心頂点間距離とも呼ぶ)から、ハムノイズの周波数帯域(50~60[Hz]程度)等の周波数を考慮して、ノイズフロアとの差が明確となる周波数が選定される。なお、重心頂点間距離は、より具体的には、電極21A~21Dの重心位置から各電極21A~21Dに対して最も近い部位までの直線距離、あるいは、平均距離などとなる。 The frequency of the sine wave signal applied to the four electrodes 21A to 21D is set to a frequency satisfying “r <c / 2πf” based on the above-described equation (11). Specifically, the distance between the centroid position of the electrodes 21A to 21D and the arrangement position of the electrodes 21A to 21D serving as the vertices of the square with the centroid position as a reference (hereinafter also referred to as the centroid vertex distance). ) Is selected in consideration of the frequency of the hum noise frequency band (about 50 to 60 [Hz]), etc., so that the difference from the noise floor becomes clear. More specifically, the distance between the centroid vertices is a linear distance from the position of the centroid of the electrodes 21A to 21D to a portion closest to the electrodes 21A to 21D, or an average distance.
 したがって、電極21A~21Dに対して出力調整部23から信号(正弦波信号,反転信号)が印加された場合、該電極21A~21Dから発生する放射電界、誘導電磁界及び準静電界の合成電界は、放射電界及び誘導電磁界の強度が準静電界に比べて小さい空間(準静電界優位空間)として形成される。この空間は、放射電界や誘導電磁界に生じる磁界に分布する電流に起因する副次的な電界との干渉の程度が小さい空間であるため、該放射電界や誘導電磁界の強度が準静電界よりも大きい場合に比べて安定した状態となる。 Therefore, when a signal (sine wave signal, inverted signal) is applied to the electrodes 21A to 21D from the output adjusting unit 23, the combined electric field of the radiated electric field, induced electromagnetic field, and quasi-electrostatic field generated from the electrodes 21A to 21D. Is formed as a space (quasi-electrostatic field dominant space) in which the intensity of the radiated electric field and the induction electromagnetic field is smaller than that of the quasi-electrostatic field. Since this space is a space where the degree of interference with a secondary electric field caused by a current distributed in the magnetic field generated in the radiated electric field or induced electromagnetic field is small, the intensity of the radiated electric field or induced electromagnetic field is quasi-electrostatic field. It becomes a stable state as compared with the case of larger than.
 また電極21A~21Dには、隣り合う電極での極性が反転する同レベルの電荷が与えられるため、当該電荷により生じる電界は相互に打ち消しあう。したがって、図4に示すように、電極21A~21Dに形成される電界の強度はZ軸(破線で示す)では時間経過にかかわらず0[V/m]又はそれに近い値となる。以下、電位が0[V/m]、又は、0[V/m]とみなすものとして許容し得る変動幅となる領域を特異領域と呼ぶこととする。 In addition, since the electrodes 21A to 21D are given the same level of charge that reverses the polarity of the adjacent electrodes, the electric fields generated by the charges cancel each other. Therefore, as shown in FIG. 4, the intensity of the electric field formed on the electrodes 21A to 21D is 0 [V / m] or a value close to it on the Z axis (shown by a broken line) regardless of the passage of time. Hereinafter, a region having a fluctuation range that is permissible assuming that the potential is 0 [V / m] or 0 [V / m] is referred to as a singular region.
 ここで、図4に示す点電荷により生じる電界を重ねあわせたx-y平面での電界を計算してマッピングしたものを図5及び図6に示す。 Here, FIG. 5 and FIG. 6 show the mapping of the electric field in the xy plane obtained by superimposing the electric fields generated by the point charges shown in FIG.
 図5(A)は電界E[V/m]を対数尺度で示し、図5(B)は電界E[V/m]を線形尺度(リニアスケール)で示している。図5(C)は、図5(A)及び図5(B)の電界分布に対応する電位分布である。また図6(A),(B),(C)は、それぞれ、図5(A),(B),(C)における特異領域を拡大したものである。なお、図5及び図6では、電荷Qは1[C]とし、点電荷間の距離は0.01[m]とした。 5A shows the electric field E [V / m] on a logarithmic scale, and FIG. 5B shows the electric field E [V / m] on a linear scale. FIG. 5C shows a potential distribution corresponding to the electric field distributions of FIGS. 5A and 5B. FIGS. 6A, 6B, and 6C are enlarged views of the singular regions in FIGS. 5A, 5B, and 5C, respectively. 5 and 6, the charge Q is 1 [C], and the distance between point charges is 0.01 [m].
 図5及び図6に示されるとおり、x-y平面に存在する電極21A~21Dの重心位置及びその近傍は特異領域となっていることが分かる。 As shown in FIGS. 5 and 6, it can be seen that the positions of the centers of gravity of the electrodes 21A to 21D existing in the xy plane and the vicinity thereof are singular regions.
 また図5及び図6からも分かるように、電極21A~21Dでの電界強度は急峻に減衰する。具体的には2の累乗数(電極個数)+1で減衰する。つまり、電極21A~21Dから生じる電界の範囲はごく近傍に限局した状態にある。 Also, as can be seen from FIGS. 5 and 6, the electric field strength at the electrodes 21A to 21D is steeply attenuated. Specifically, it attenuates by a power of 2 (number of electrodes) +1. That is, the range of the electric field generated from the electrodes 21A to 21D is in a very limited state.
 このことは、電極21A~21Dに対する外部の結合範囲がごく近傍に限局されるということを意味する。したがって、この基準電位生成装置1を搭載すべき装置に含まれる他の部品と電極21A~21Dとの結合が低減され、該電極21A~21Dにおける重心(特異領域)での電位の変動は大幅に抑制されることとなる。また、この基準電位生成装置1を搭載すべき装置に対して、該基準電位生成装置1を配すべきスペースの制約が緩和されることにもなる。 This means that the external coupling range with respect to the electrodes 21A to 21D is limited to the very vicinity. Therefore, the coupling between the electrodes 21A to 21D and other components included in the device on which the reference potential generating device 1 is to be mounted is reduced, and the potential variation at the center of gravity (singular region) of the electrodes 21A to 21D is greatly reduced. It will be suppressed. Further, the restriction on the space in which the reference potential generating device 1 is to be arranged is relaxed for the device on which the reference potential generating device 1 is to be mounted.
 別の実験として、電極21A~21Dから生じる電界の電位を測定した結果を図7に示す。図7(A)は測定位置を示すものであり、図7(B)は測定位置での測定結果を示すもので、縦軸は5[mv/div]であり横軸は500[ns/div]である。 As another experiment, the result of measuring the electric potential of the electric field generated from the electrodes 21A to 21D is shown in FIG. 7A shows the measurement position, FIG. 7B shows the measurement result at the measurement position, the vertical axis is 5 [mv / div], and the horizontal axis is 500 [ns / div. ].
 この図7に示す測定では、図8に示すように、5[mm]のアクリル板がスペーサとしてシールド板上に配置され、該アクリル板の一面に電極21A~21Dが配置された。電極21A~21Dに対して印加した正弦波信号又は反転信号の周波数は1[MHz]とされ、振幅は1[V]とされた。なお、電界検出センサーは、図7(A)に示す各測定位置に配される。 In the measurement shown in FIG. 7, as shown in FIG. 8, a 5 [mm] acrylic plate was arranged as a spacer on the shield plate, and electrodes 21A to 21D were arranged on one surface of the acrylic plate. The frequency of the sine wave signal or the inverted signal applied to the electrodes 21A to 21D was 1 [MHz], and the amplitude was 1 [V]. The electric field detection sensor is disposed at each measurement position shown in FIG.
 図7に示す測定結果から、電極21A,21B,21C又は21Dの重心(D点)から、該電極21A~21Dの重心(A点)に近づくにしたがって電位変動は小さくなり、直流成分に近くなっていくことが分かる。 From the measurement results shown in FIG. 7, the potential fluctuations become smaller and closer to the DC component from the center of gravity (point D) of the electrode 21A, 21B, 21C or 21D to the center of gravity (point A) of the electrodes 21A to 21D. You can see that
 また別の実験として、電極21A~21Dから生じる電界の電位を、該電極21A~21Dに印加する信号の波長を変えて測定した結果を図9に示す。図9(A)は、極性の反転する信号を印加すべき隣り合う電極間21A-21B、21B-21D、21D-21C、21C-21Aの距離(以下、これを電極間距離とも呼ぶ)に対して波長以下となる信号(図では1[MHz])を、電極21A~21Dに印加した場合を示すものである。一方、図9(B)は、図9(A)と同じ電極間距離に対して波長よりも大きい信号(図では1[GHz])を、電極21A~21Dに印加した場合を示すものである。 As another experiment, FIG. 9 shows the result of measuring the electric field potential generated from the electrodes 21A to 21D by changing the wavelength of the signal applied to the electrodes 21A to 21D. FIG. 9A shows the distance between adjacent electrodes 21A-21B, 21B-21D, 21D-21C, and 21C-21A to which a signal whose polarity is inverted is applied (hereinafter also referred to as an interelectrode distance). This shows a case where a signal (1 [MHz] in the figure) having a wavelength shorter than that is applied to the electrodes 21A to 21D. On the other hand, FIG. 9B shows a case where a signal (1 [GHz] in the figure) larger than the wavelength for the same interelectrode distance as in FIG. 9A is applied to the electrodes 21A to 21D. .
 図9に示すように、電極間距離が電極21A~21Dに印加すべき波長以下となる関係にある場合(図9(A))には特異領域が重心位置を含めて広く確保されるが、電極間距離よりも大きい場合(図9(B))には重心位置に限局されていることが分かる。これは、図9に示す測定結果から分かるように、電極21A~21Dから生じる電界自体がより重心位置の近くにまで回りこむからである。この回り込みの程度は、電極21A~21Dに印加される信号の波長に依存する。 As shown in FIG. 9, when the distance between the electrodes is less than or equal to the wavelength to be applied to the electrodes 21A to 21D (FIG. 9A), the singular region is secured widely including the position of the center of gravity. It can be seen that when the distance is larger than the distance between the electrodes (FIG. 9B), it is limited to the position of the center of gravity. This is because, as can be seen from the measurement results shown in FIG. 9, the electric field itself generated from the electrodes 21A to 21D wraps closer to the position of the center of gravity. The degree of this wraparound depends on the wavelength of the signal applied to the electrodes 21A to 21D.
 すなわち、電極21A~21Dに印加される信号の波長が電極間距離よりも小さくなるほど、特異領域が狭くなるという関係があるということが分かった。このことは、電極21A~21Dに印加すべき正弦波信号の波長(周波数)を出力調整部23が可変することで、特異領域の広さを調整可能であることを意味する。特異領域があまりにも狭くなると、その領域では波長の効果による廻り込み、マルチパス、反射、又は、放射が発生することになり、もはや特異領域ではなくなってしまう。したがって、出力調整部23において特異領域の広さを調整可能であるということは極めて有用となる。 That is, it has been found that there is a relationship that the singular region becomes narrower as the wavelength of the signal applied to the electrodes 21A to 21D becomes smaller than the inter-electrode distance. This means that the width of the singular region can be adjusted by changing the wavelength (frequency) of the sine wave signal to be applied to the electrodes 21A to 21D by the output adjusting unit 23. If the singular region becomes too narrow, wraparound, multipath, reflection, or radiation will occur in the region due to the effect of wavelength, and it will no longer be a singular region. Therefore, it is extremely useful that the output adjustment unit 23 can adjust the width of the singular region.
 本発明者らの実験において、波長に起因する回りこみなどの影響がない特異領域を確保するためには、電極21A~21Dに印加される信号の波長を電極間距離以上とすればよいことが見出された。なお、電極間距離は、詳細には、電極21A,21B、21B,21D、21D,21C、21C,21A同士の最大距離(互いに最も離れる部位間の直線距離)、もしくは、最短距離(互いに最も近い部位間の直線距離)、又は、最大距離か最短距離の平均などとなる。 In the experiments by the present inventors, in order to secure a specific region that is not affected by the wraparound caused by the wavelength, the wavelength of the signal applied to the electrodes 21A to 21D may be set to be equal to or greater than the interelectrode distance. It was found. The inter-electrode distance is specifically the maximum distance between the electrodes 21A, 21B, 21B, 21D, 21D, 21C, 21C, 21A (the linear distance between the parts that are farthest from each other) or the shortest distance (the closest to each other). Linear distance between parts) or the average of the maximum distance or the shortest distance.
 このように特異領域形成部20は、正方形の各頂点となる位置に配される電極21A~21Dの隣り合う位置で逆極性かつ同レベルとなる電荷を与えることによって、当該電極21A~21Dの重心位置とその近傍をおおよそ0[V]の領域(特異領域)として形成する。 As described above, the singular region forming unit 20 applies charges having opposite polarity and the same level at the positions adjacent to the electrodes 21A to 21D arranged at the positions of the respective vertices of the square, whereby the center of gravity of the electrodes 21A to 21D is obtained. The position and its vicinity are formed as a region of 0 [V] (singular region).
 基準電位出力部30は、電位を感知するための導体(以下、これを電位感知体とも呼ぶ)31A,31B、FET(Field Effect Transistor)32A,32B及び差動アンプ33を有する。 The reference potential output unit 30 includes conductors (hereinafter also referred to as potential detectors) 31A and 31B, FETs (Field Effect Transistors) 32A and 32B, and a differential amplifier 33 for sensing the potential.
 電位感知体31A,31Bは同形同大でなり、特異領域に配される。この実施の形態における電位感知体31A,31Bの配置位置は、4つの電極21A~21Dの重心を基準として点対称とされる。 The potential detectors 31A and 31B have the same shape and size and are arranged in a specific region. The arrangement positions of the potential detectors 31A and 31B in this embodiment are point-symmetric with respect to the center of gravity of the four electrodes 21A to 21D.
 FET32A,32Bのゲートは電位感知体31A,31Bに接続される。またFET32A,32Bのドレインは差動アンプ33に接続され、ソースはグランドとすべき部位に接続される。 The gates of the FETs 32A and 32B are connected to the potential detectors 31A and 31B. The drains of the FETs 32A and 32B are connected to the differential amplifier 33, and the sources are connected to a portion to be grounded.
 電位感知体31A,31Bに電位変動が生じた場合、該電位変動は、FET32A,32Bにおけるドレイン-ソース間での電流変動としてそれぞれ検知され、これら検知結果の差分が差動アンプ33において増幅される。 When potential fluctuations occur in the potential detectors 31A and 31B, the potential fluctuations are detected as current fluctuations between the drain and source in the FETs 32A and 32B, respectively, and the difference between these detection results is amplified in the differential amplifier 33. .
 したがって、電極21A~21Dで形成される電界に対する外界における力の場の影響は打ち消され、この結果、差動アンプ33の出力の変動は抑制され、直流状態又はそれに近い状態となる。 Therefore, the influence of the force field in the external field on the electric field formed by the electrodes 21A to 21D is cancelled, and as a result, the fluctuation of the output of the differential amplifier 33 is suppressed and the DC state or a state close thereto is obtained.
 このように基準電位出力部30は、特異領域に配される電位感知体31A,31Bから得られる信号の差分を基準電位の信号として出力することによって、該信号を0[V/m]とみなすものとして許容し得る値以下に保持する。 In this way, the reference potential output unit 30 regards the signal as 0 [V / m] by outputting the difference between the signals obtained from the potential detectors 31A and 31B arranged in the singular region as a reference potential signal. Keep below acceptable value.
 なお、基準電位出力部30を設けたことによって、特異領域でわずかに生じるドリフトをもおおむね0[V/m]に抑制できたことが本発明者らの実験により確認されている。 Note that it has been confirmed by experiments of the present inventors that the drift that occurs slightly in the singular region can be suppressed to approximately 0 [V / m] by providing the reference potential output unit 30.
 遮蔽部40は、回路電源部10、特異領域形成部20及び基準電位出力部30を収める絶縁性の箱体でなり、各部10,20,30に対する外部における力の場の影響を遮蔽する。この遮蔽部40は、回路電源部10、特異領域形成部20及び基準電位出力部30に共通の接地対象とされる。 The shielding unit 40 is an insulating box that houses the circuit power supply unit 10, the specific region forming unit 20, and the reference potential output unit 30, and shields the influence of an external force field on each unit 10, 20, 30. The shielding unit 40 is a common ground target for the circuit power supply unit 10, the singular region forming unit 20, and the reference potential output unit 30.
 この実施の形態の場合、遮蔽部40の内部では、該遮蔽部40によって囲まれる空間を2つの空間に仕切る絶縁性の板(以下、これを遮蔽板とも呼ぶ)41が設けられる。遮蔽板41を境界とする一方の空間には電極21A~21D及び電位感知体31A,31Bが設けられ、他方の空間には回路電源部10、信号発振源22、出力調整部23、FET32A,32B及び差動アンプ33が設けられる。 In the case of this embodiment, an insulating plate (hereinafter also referred to as a shielding plate) 41 that partitions a space surrounded by the shielding portion 40 into two spaces is provided inside the shielding portion 40. Electrodes 21A to 21D and potential detectors 31A and 31B are provided in one space with the shielding plate 41 as a boundary, and the circuit power supply unit 10, signal oscillation source 22, output adjustment unit 23, and FETs 32A and 32B are provided in the other space. And a differential amplifier 33 is provided.
 したがってこの遮蔽部40では、特異領域に対して、基準電位生成装置1内の電子部品から生じる輻射ノイズ等の影響が遮蔽板41によって大幅に低減される。この結果、特異領域に配される電位感知体31A,31Bから得られる信号の差分として得られる電位の変動は、遮蔽板41を設けない場合に比べて大幅に抑制される。 Therefore, in the shielding part 40, the influence of radiation noise and the like generated from the electronic components in the reference potential generating device 1 is significantly reduced by the shielding plate 41 with respect to the singular region. As a result, the fluctuation of the potential obtained as the difference between the signals obtained from the potential detectors 31A and 31B arranged in the specific region is greatly suppressed as compared with the case where the shielding plate 41 is not provided.
 またこの遮蔽部40では、例えばアクリル板等の絶縁スペーサ42を用いて、遮蔽部40の内壁から準静電界優位空間を形成すべき距離よりも大きい距離を隔てて電極21A~21Dが配される。 Further, in this shielding part 40, the electrodes 21A to 21D are arranged at a distance larger than the distance from which the quasi-electrostatic field dominant space should be formed from the inner wall of the shielding part 40 using an insulating spacer 42 such as an acrylic plate. .
 したがって、遮蔽部40の外部における他の部品と電極21A~21Dとの結合が、絶縁スペーサ42を用いない場合に比べて大幅に低減され、特異領域に配される電位感知体31A,31Bから得られる信号の差分として得られる電位の変動は大幅に抑制される。 Therefore, the coupling between the other parts outside the shielding part 40 and the electrodes 21A to 21D is significantly reduced as compared with the case where the insulating spacer 42 is not used, and is obtained from the potential sensors 31A and 31B arranged in the specific region. The fluctuation of the potential obtained as the difference between the obtained signals is greatly suppressed.
 (3)他の実施の形態
 上述の実施の形態では、基準とすべき位置を重心とする正方形の各頂点の関係となる位置に配される電極21A~21Dに対して、隣り合う極性が反転する関係となる同レベルの信号を与える電極構造(平面4極構造)が採用された。しかしながら電極構造はこの実施の形態に限定されるものではない。
(3) Other Embodiments In the above-described embodiments, the adjacent polarities are inverted with respect to the electrodes 21A to 21D arranged at the positions corresponding to the vertices of the square having the position to be the reference as the center of gravity. An electrode structure (planar quadrupole structure) that gives a signal of the same level as the relationship is adopted. However, the electrode structure is not limited to this embodiment.
 例えば、基準とすべき位置を重心とする正2n(nは2以上の偶数)角形の各頂点の関係となる位置に配される電極に対して、隣り合う極性が反転する関係となる同レベルの信号を与える電極構造(すなわち平面2n極構造)が適用可能である。 For example, the same level where the adjacent polarities are inverted with respect to the electrodes arranged at the positions corresponding to the vertices of the positive 2n (n is an even number of 2 or more) square with the position to be the reference as the center of gravity. It is possible to apply an electrode structure (that is, a planar 2n-pole structure) that gives the signal
 ここで、平面6極構造(n=3)及び平面8極構造(n=4)における電極位置と、当該電極に与えられる電荷との関係を図10に示す。また平面4極構造(n=2)、平面6極構造及び平面8極構造での特異領域(基準電極が配される正2n角形の重心)からの距離と、電位との関係を図11に示す。 Here, FIG. 10 shows the relationship between the electrode position in the planar hexapole structure (n = 3) and the planar octupole structure (n = 4) and the charge applied to the electrode. FIG. 11 shows the relationship between the distance from the singular region (the center of gravity of a regular 2n square on which the reference electrode is arranged) and the potential in the planar quadrupole structure (n = 2), the planar hexapole structure, and the planar octupole structure. Show.
 図11からも分かるように、平面2n極構造ではnが大きい電極構造となるほど、正2n角形の重心近傍での電位の減衰の程度が大きくなる。これは、正2n角形の重心から各頂点までの距離が一定であれば、nが大きくなるほど、隣り合う電荷間の距離(すなわち多角形の辺の長さ)が小さくなり、当該電極から生じる電界が打ち消しあう効率が向上することによる。したがって、平面2n極構造としてnが大きい電極構造が採用されるほど、特異領域における電位の変動を抑制する程度を大きくすることができる。 As can be seen from FIG. 11, in the planar 2n-pole structure, the greater the electrode structure is, the greater the potential attenuation near the center of gravity of the regular 2n square. This is because if the distance from the center of gravity of the regular 2n square to each vertex is constant, the distance between adjacent charges (that is, the length of the side of the polygon) decreases as n increases, and the electric field generated from the electrode. This is because the efficiency of canceling out is improved. Therefore, as the electrode structure having a large n is adopted as the planar 2n-pole structure, the degree of suppressing the potential fluctuation in the specific region can be increased.
 また例えば、基準とすべき位置を重心とする正4面体以外の正多面体、もしくは、全ての面の形状が2n角形となる準正多面体の各頂点の関係となる位置に配される電極に対して、隣り合う極性が反転する関係となる同レベルの信号を与える電極構造(すなわち立体多極構造)が適用可能である。なお、立体8極構造(正6面体)、立体14極構造(切頂8面体)における電極位置と、当該電極に与えられる電荷との関係を図12に示す。 In addition, for example, for an electrode arranged at a position corresponding to each vertex of a regular polyhedron other than a regular tetrahedron whose center of gravity is a position to be a reference, or a quasi-regular polyhedron in which the shape of all surfaces is a 2n square Thus, an electrode structure (that is, a three-dimensional multipolar structure) that provides a signal of the same level that is a relationship in which adjacent polarities are inverted can be applied. FIG. 12 shows the relationship between the electrode position and the charge applied to the electrode in a three-dimensional octapole structure (regular hexahedron) and a three-dimensional 14-pole structure (truncated octahedron).
 なお、電極構造は上述した以外であってもよい。要するに、基準とすべき位置の周りに回転対称なm個(mは4以上の偶数)の電極に対して、隣り合う電極での極性が正対する関係となる同レベルの電荷が与えられる電極構造であればよい。なお、この多極構造自体の詳細等については本発明者が既に提案している特願2007-56954も参照されたい。 Note that the electrode structure may be other than those described above. In short, an electrode structure in which the same level of charge is applied so that the polarities of adjacent electrodes are directly opposed to m (m is an even number of 4 or more) electrodes that are rotationally symmetric around a position to be a reference. If it is. Refer to Japanese Patent Application No. 2007-56954 already proposed by the present inventor for details of the multipolar structure itself.
 上述の実施の形態では、基準とすべき位置の周りに回転対称なm個(mは4以上の偶数)の電極が配された。しかしながら、m個(mは4以上の偶数)の電極を組として、複数組の電極が、共通とすべき基準位置の周りに回転対称に配されていてもよい。 In the above-described embodiment, m (m is an even number of 4 or more) electrodes that are rotationally symmetric are arranged around the position to be the reference. However, m electrodes (m is an even number of 4 or more) may be used as a set, and a plurality of sets of electrodes may be arranged rotationally symmetrically around a reference position to be shared.
 例えば図13に示すように、4個の電極を組として、3組の電極51A~51D、52A~52D、53A~53Dが、共通とすべき基準位置を重心として、自己相似となる正方形の各頂点となる位置に配される。具体的には、最も外側とすべき正方形(以下、これを最大正方形とも呼ぶ)の各頂点となる位置に電極51A~51Dが配される。電極52A~52Dは、最大正方形の重心を中心として90度回転され、該最大正方形よりも小さい正方形(以下、これを中間正方形とも呼ぶ)の各頂点となる位置に配される。また電極53A~53Dは、中間正方形の重心を中心として90度回転され、該中間正方形よりも小さい正方形(以下、これを最小正方形とも呼ぶ)の各頂点となる位置に配される。 For example, as shown in FIG. 13, four electrodes are grouped, and each of the three electrodes 51A to 51D, 52A to 52D, and 53A to 53D is self-similar with the reference position that should be common as the center of gravity. It is placed at the position to be the vertex. Specifically, the electrodes 51A to 51D are arranged at positions that are the vertices of the outermost square (hereinafter also referred to as the largest square). The electrodes 52A to 52D are rotated 90 degrees around the center of gravity of the largest square and are arranged at positions that are the vertices of a square smaller than the largest square (hereinafter also referred to as an intermediate square). The electrodes 53A to 53D are rotated by 90 degrees around the center of gravity of the intermediate square, and are arranged at positions that are the vertices of a square smaller than the intermediate square (hereinafter also referred to as the minimum square).
 3組の電極51A~51D、52A~52D、53A~53Dには、隣り合う電極51Aと51B,51Bと51C,51Cと51D,51Dと51A,52Aと52B,52Bと52C,52Cと52D,52Dと52A,53Aと53B,53Bと53C,53Cと53D,53Dと53Aでの極性が正対する関係となる同レベルの電荷が与えられる。ただし、各組の電極51A~51D、52A~52D、53A~53Dに与えるべき電荷のレベルは、同じレベルであることを必須の条件とするものではない。 Three sets of electrodes 51A to 51D, 52A to 52D, and 53A to 53D include adjacent electrodes 51A and 51B, 51B and 51C, 51C and 51D, 51D and 51A, 52A and 52B, 52B and 52C, 52C and 52D, and 52D. And 52A, 53A and 53B, 53B and 53C, 53C and 53D, and 53D and 53A are charged at the same level. However, the level of electric charge to be given to each set of electrodes 51A to 51D, 52A to 52D, and 53A to 53D is not necessarily required to be the same level.
 これら3組の電極51A~51D、52A~52D、53A~53Dに対して、互いに隣り合う電極での極性が正対する関係となる同レベルの電荷が与えられた場合、該電極51A~51D、52A~52D、53A~53Dに共通となる重心を含む近傍は、該電極51A~51D、52A~52D、53A~53Dから発生する電界によって特異領域として形成される。 When these three sets of electrodes 51A to 51D, 52A to 52D, and 53A to 53D are given the same level of charge so that the polarities of the electrodes adjacent to each other are directly opposed, the electrodes 51A to 51D, 52A The vicinity including the center of gravity common to ˜52D and 53A to 53D is formed as a singular region by the electric field generated from the electrodes 51A to 51D, 52A to 52D, and 53A to 53D.
 この特異領域に電位感知体31A,31Bが配された場合、最外側の電極群51A~51Dと、中間の電極群52A~52Dと、最内側の電極群53A~53Dで形成される電界によって、電位感知体31A,31Bに対する外部との直接的な結合が抑制される。したがって、電極51A~51D、52A~52D又は53A~53Dだけが配される場合に比べて、特異領域に配される電位感知体31A,31Bに対する外部との直接的な結合が、大幅に抑制されることとなる。 When the potential detectors 31A and 31B are arranged in this specific region, the electric field formed by the outermost electrode groups 51A to 51D, the intermediate electrode groups 52A to 52D, and the innermost electrode groups 53A to 53D, Direct coupling with the outside of the potential sensors 31A and 31B is suppressed. Therefore, compared with the case where only the electrodes 51A to 51D, 52A to 52D, or 53A to 53D are arranged, the direct binding with the outside to the potential sensors 31A and 31B arranged in the specific region is greatly suppressed. The Rukoto.
 なお、共通となる基準位置を重心として複数組の電極を配すべき図形は正方形に限られない。上述したことからも分かるように、基準とすべき位置を重心として、回転対称な多角形であればよい。また、基準位置が同じであれば、最外側の電極群と、中間の電極群と、最内側の電極群が構成すべき多角形(いいかえれば電極数)はそれぞれ異なっていてもよい。要するに、m個(mは4以上の偶数)の電極を組として、複数組の電極が、共通とすべき基準位置の周りに回転対称となる位置に配されていればよい。 Note that the figure on which a plurality of sets of electrodes should be arranged with the common reference position as the center of gravity is not limited to a square. As can be understood from the above description, any polygon that is rotationally symmetric with the position to be a reference as the center of gravity may be used. Further, if the reference position is the same, the polygons (in other words, the number of electrodes) that the outermost electrode group, the intermediate electrode group, and the innermost electrode group should form may be different from each other. In short, m (m is an even number of 4 or more) electrodes may be used as a set, and a plurality of sets of electrodes may be arranged at rotationally symmetric positions around a common reference position.
 上述の実施の形態では、特異領域に対して2つの電位感知体31A,31Bが配され、これら電位感知体31A,31Bから得られる信号の差分が基準電位とされた。しかしながら、特異領域に配すべき電位感知体は1つであってもよい。電位感知体を1つとした場合、その電位感知体から得られる信号が基準電位とされる。この場合であっても、少なくとも、電極21A~21Dに印加される信号の波長が、該電極21A~21Dにおける電極間距離以上となる関係にあれば、その信号自体に起因して特異領域での強度が不安定になることはない。ただし、外界ノイズ(外部の力の場の影響)や、電極の大きさ又は位置の誤差等の事項に起因する特異領域での強度の変動を低減する観点では、電位感知体から得られる信号の差分を基準電位とする形態のほうが好ましい。 In the above-described embodiment, the two potential detectors 31A and 31B are arranged for the specific region, and the difference between signals obtained from these potential detectors 31A and 31B is set as the reference potential. However, there may be one potential sensor to be arranged in the specific region. When there is one potential sensor, a signal obtained from the potential sensor is used as a reference potential. Even in this case, if at least the wavelength of the signal applied to the electrodes 21A to 21D is greater than the distance between the electrodes in the electrodes 21A to 21D, the signal in the singular region is caused by the signal itself. The strength does not become unstable. However, from the viewpoint of reducing fluctuations in intensity in the singular region due to external noise (effects of external force fields) and electrode size or position errors, the signal obtained from the potential sensor A configuration in which the difference is used as a reference potential is preferable.
 また、特異領域に配すべき電位感知体は1つ又は2つに限るものではない。例えば、特異領域に対して4つの電位感知体を配する形態が適用可能である。 In addition, the number of potential sensors to be arranged in the specific region is not limited to one or two. For example, a form in which four potential sensors are arranged for a specific region can be applied.
 この形態では、図14に示すように、電位感知体61A,61B、62A,62Bは同形同大とされ、該電位感知体61A,61B、62A,62Bの配置位置は、4つの電極21A~21Dの重心を基準として点対称とされる。また電位感知体61A,61B、62A,62Bの配置位置は、電位感知体61A,61Bの重心を結ぶ線分と、電位感知体62A,62Bの重心を結ぶ線分とが直交する状態とされ、当該線分は同じ長さとされる。 In this embodiment, as shown in FIG. 14, the potential detectors 61A, 61B, 62A, 62B have the same shape and the same size, and the arrangement positions of the potential detectors 61A, 61B, 62A, 62B are four electrodes 21A to 21A. Point symmetry with respect to the center of gravity of 21D. The arrangement positions of the potential detectors 61A, 61B, 62A, and 62B are such that the line connecting the centroids of the potential detectors 61A and 61B and the line connecting the centroids of the potential detectors 62A and 62B are orthogonal to each other. The line segments have the same length.
 これら電位感知体61A,61B、62A,62Bには、対応させるべきFET71~74のゲートが接続される。FET71,72のドレイン(又はソース)は差動アンプ81に接続され、FET73,74のドレイン(又はソース)は差動アンプ82に接続される。差動アンプ81の出力端と、差動アンプ82の出力端とは、差動アンプ83の入力端に接続される。 These potential detectors 61A, 61B, 62A and 62B are connected to the gates of FETs 71 to 74 to be associated. The drains (or sources) of the FETs 71 and 72 are connected to the differential amplifier 81, and the drains (or sources) of the FETs 73 and 74 are connected to the differential amplifier 82. The output terminal of the differential amplifier 81 and the output terminal of the differential amplifier 82 are connected to the input terminal of the differential amplifier 83.
 特異領域において電位変動が生じた場合、該電位変動は、直交状態に配される2組の電位感知体61A,61B、62A,62Bで検知され、各組での検知結果の差分が、対応する1段目の差動アンプ81,82で増幅される。また差動アンプ81,82の増幅結果の差分が2段目の差動アンプ83でさらに増幅される。したがって、上述の実施の形態の場合に比べて、差動アンプ83からの出力変動はよりいっそう抑制される。 When a potential fluctuation occurs in the singular region, the potential fluctuation is detected by two sets of potential detectors 61A, 61B, 62A, and 62B arranged in an orthogonal state, and a difference between detection results in each pair corresponds. Amplified by first- stage differential amplifiers 81 and 82. Further, the difference between the amplification results of the differential amplifiers 81 and 82 is further amplified by the differential amplifier 83 at the second stage. Therefore, the output fluctuation from the differential amplifier 83 is further suppressed as compared with the above-described embodiment.
 なお、2つ以上の電位感知体を配する場合、特異領域に配することを条件に、2x(xは整数)となる数であればよい。ただし、均等なものとする観点では、電位感知体の数を2の冪乗とし、これらを、基準とすべき位置を重心として対称性をもつ関係で配されることが好ましい。この場合、差動アンプは、2x-1となる数を、トーナメント方式の接続パターンで複数段接続し、該複数段の差動アンプのうち最終段の差動アンプから出力される信号が基準電位の信号とされる。このようにすれば上述の実施の形態と同様の効果以上の効果を奏し得る。 In the case where two or more potential detectors are provided, the number may be 2x (x is an integer) on the condition that it is provided in a specific region. However, from the viewpoint of equalization, it is preferable that the number of potential detectors is a power of 2, and these are arranged in a symmetrical relationship with the position to be a reference as the center of gravity. In this case, the differential amplifier is connected in a number of stages of 2x-1 with a tournament connection pattern, and the signal output from the last stage differential amplifier among the plurality of stage differential amplifiers is a reference potential. Signal. In this way, it is possible to achieve an effect that is more than the same effect as the above-described embodiment.
 また、電位感知体の配置位置として、1つの場合であっても2つ以上の場合であっても、基準とすべき位置を重心として対称関係にあることが好ましいが、特異領域内であればよい。 In addition, it is preferable that the position of the potential sensing element is symmetrical with respect to the center of gravity as the reference position, regardless of whether it is one or two or more. Good.
 上述の実施の形態では、4つの電極21A~21Dに印加される信号の波長が固定とされた。しかしながら電極に印加すべき信号の波長を切替可能な形態が適用されてもよい。 In the above-described embodiment, the wavelength of the signal applied to the four electrodes 21A to 21D is fixed. However, a form in which the wavelength of a signal to be applied to the electrode can be switched may be applied.
 具体的には、例えば図3との対応部分に同一符号を付した図15に示すように、波長切替部90が設けられる。この波長切替部90は、1又は2以上の電位感知体から得られる信号の単位時間当たりの変動幅を測定する。波長切替部90は、この変動幅に対して、許容し得る最大値として設定される閾値よりも大きくなったことを検出した場合、基準とすべき位置の周りに回転対称に配される電極に印加すべき信号の波長を、検出時点の波長よりも大きい波長の信号を出力調整部23に出力させる。 Specifically, for example, a wavelength switching unit 90 is provided as shown in FIG. 15 in which parts corresponding to those in FIG. The wavelength switching unit 90 measures a fluctuation range per unit time of a signal obtained from one or more potential sensing bodies. When the wavelength switching unit 90 detects that the fluctuation width is larger than a threshold value set as an allowable maximum value, the wavelength switching unit 90 applies an electrode arranged rotationally symmetrically around the position to be a reference. The output adjustment unit 23 outputs a signal having a wavelength larger than the wavelength at the time of detection of the signal to be applied.
 この形態によれば、基準とすべき位置の周りに回転対称に配される電極に印加される信号自体に起因する特異領域での電位変動が低減できるのみならず、外界ノイズ(外部の力の場の影響)や、電極の大きさ又は位置の誤差等の事項に起因する特異領域での電位変動をも低減できる。また、基準とすべき位置の周りに回転対称に配される電極や、特異領域に配すべき電位感知体に課せられる制約が緩和される。 According to this aspect, not only can the potential fluctuation in the singular region caused by the signal itself applied to the electrodes arranged symmetrically around the position to be the reference be reduced, but also external noise (external force). (Effect of field) and potential fluctuations in a specific region due to matters such as electrode size or position errors can be reduced. Moreover, the restrictions imposed on the electrodes arranged in rotational symmetry around the position to be used as a reference and on the potential detector to be arranged in the specific region are alleviated.
 上述の実施の形態では、電極21A~21Dと、電位感知体31A,31B、51A,51B、52A,52Bとの形状が正方形とされた。しかしながらこれら電極の形状はこの実施の形態に限定されるものではなく、あらゆる形状を採用することが可能である。なお、電極21A~21Dと、電位感知体31A,31B、51A,51B、52A,52Bとの大きさは図示した大きさに限るものではなく、また配線と一体として形成されていてもよい。 In the above-described embodiment, the shapes of the electrodes 21A to 21D and the potential detectors 31A, 31B, 51A, 51B, 52A, 52B are square. However, the shape of these electrodes is not limited to this embodiment, and any shape can be adopted. The sizes of the electrodes 21A to 21D and the potential detectors 31A, 31B, 51A, 51B, 52A, and 52B are not limited to the illustrated sizes, and may be formed integrally with the wiring.
 また上述の実施の形態では、電極21A~21Dと、電位感知体31A,31B、51A,51B、52A,52Bとが同一平面に配されたが、必ず同一平面としなければならないものではない。 In the above-described embodiment, the electrodes 21A to 21D and the potential detectors 31A, 31B, 51A, 51B, 52A, 52B are arranged on the same plane. However, the electrodes need not necessarily be the same plane.
 上述の実施の形態では、回路電源部10、特異領域形成部20及び基準電位出力部30に共通の接地対象が遮蔽部40とされたが、該遮蔽部40に代えて、遮蔽板41としてもよい。 In the above embodiment, the grounding object common to the circuit power supply unit 10, the singular region forming unit 20, and the reference potential output unit 30 is the shielding unit 40. However, instead of the shielding unit 40, the shielding plate 41 may be used. Good.
 上述の実施の形態では、FET32A,32B又は71~74のソースが遮蔽部40に接続されたが、該遮蔽部40に代えて、差動アンプ33又は83の出力端に接続されてもよい。このようにすれば、遮蔽部40に接続するよりも、FET32A,32B又は71~74に対する外界ノイズが低減され、該FET32A,32B又は71~74の検知感度が向上する場合がある。 In the above-described embodiment, the sources of the FETs 32A, 32B or 71 to 74 are connected to the shielding unit 40, but may be connected to the output terminal of the differential amplifier 33 or 83 instead of the shielding unit 40. In this case, the external noise with respect to the FETs 32A, 32B or 71 to 74 is reduced and the detection sensitivity of the FETs 32A, 32B or 71 to 74 may be improved as compared with the case where the shield unit 40 is connected.
 また、特異領域形成部20及び基準電位出力部30とは別に、特異領域形成部及び基準電位出力部を設け、該基準電位出力部における差動アンプの出力端をFET32A,32B又は71~74のソースに接続すれば、確実に、該FET32A,32B又は71~74の検知感度を向上させることができる。 In addition to the singular region forming unit 20 and the reference potential output unit 30, a singular region forming unit and a reference potential output unit are provided, and the output terminal of the differential amplifier in the reference potential output unit is connected to the FETs 32A, 32B or 71 to 74. If connected to the source, the detection sensitivity of the FETs 32A, 32B or 71 to 74 can be improved reliably.
 また、上述のm個(mは4以上の偶数)の電極が、空気の誘電率よりも大きい誘電率となる誘電体に封入されていてもよい。この誘電体の材料は例えば樹脂等を挙げることができ、導電性材料が配合されていてもよく、2種類以上の材料が混合されたものであってもよい。このような誘電体で電極を封入した場合、当該電極に対するノイズの影響をより一段と抑えることができる。このことは、シミュレーションに基づく実験からも明らかとなっている。 Further, the m electrodes (m is an even number of 4 or more) may be enclosed in a dielectric having a dielectric constant larger than that of air. Examples of the dielectric material include a resin and the like, and a conductive material may be blended, or two or more kinds of materials may be mixed. When an electrode is sealed with such a dielectric, the influence of noise on the electrode can be further suppressed. This is also clear from experiments based on simulations.
 ここで、図16に示すシミュレーションモデルを用いた場合のシミュレーション結果を図17及び図18に示し、図19に示すシミュレーションモデルを用いた場合のシミュレーション結果を図20及び図21に示す。なお、シミュレーターは、情報数理研究所のEEM-FDM Version2.2を用いている。 Here, the simulation results when the simulation model shown in FIG. 16 is used are shown in FIGS. 17 and 18, and the simulation results when the simulation model shown in FIG. 19 is used are shown in FIGS. The simulator uses EEM-FDM Version 2.2 of Information and Mathematics Institute.
 図16のシミュレーションモデルは、平行平板電極の間に充実の誘電体を配置したモデルである。このシミュレーションモデルにおける平行平板電極のサイズは120[mm]×120[mm]とし、誘電体のサイズは100[mm]×100[mm]×100[mm]とし、当該平板電極と誘電体とは5[mm]隔てて配置した。そして、1[V]の交流電圧をノイズとして平行平板電極に印加した状態において、誘電体の誘電率を1から400までの範囲で変化させ、誘電体の重心位置となる計測点での電界強度を計測した。この計測結果が図17に示され、誘電体の誘電率が200であり50[MHz]の交番電圧が平行平板電極に印加されている場合の電界強度分布が図18に示されている。図17及び図18からも明らかなように、誘電率が高くなるほど誘電体内部でのノイズの影響が抑えられていることが分かる。 16 is a model in which a solid dielectric is disposed between parallel plate electrodes. In this simulation model, the size of the parallel plate electrode is 120 [mm] × 120 [mm], the size of the dielectric is 100 [mm] × 100 [mm] × 100 [mm], and the plate electrode and the dielectric are They were spaced 5 [mm] apart. Then, in a state where an AC voltage of 1 [V] is applied to the parallel plate electrode as noise, the dielectric constant of the dielectric is changed in the range of 1 to 400, and the electric field strength at the measurement point that is the position of the center of gravity of the dielectric Was measured. The measurement result is shown in FIG. 17, and the electric field strength distribution when the dielectric constant of the dielectric is 200 and an alternating voltage of 50 [MHz] is applied to the parallel plate electrodes is shown in FIG. As is clear from FIGS. 17 and 18, it can be seen that the higher the dielectric constant, the more the influence of noise inside the dielectric is suppressed.
 一方、図19のシミュレーションモデルは、上述した平面4極構造の各電極を、図16に示すシミュレーションモデルにおける充実の誘電体に封入したモデルである。このシミュレーションモデルにおける平面4極構造の各電極のサイズは20[mm]×20[mm]とし、電極間距離は4[mm]とした。また、平面4極構造の各電極に印加する信号は、平行平板電極に印加される交流電圧と同じ1[V]、10[MHz]とし、当該信号と交流電圧との位相は90°ずれた状態とした。そして、誘電体の誘電率を1から400までの範囲で変化させ、誘電体の重心位置となる計測点での電界強度を計測した。この計測結果が図20に示され、誘電体の誘電率が200であり10[MHz]の交番電圧が平行平板電極に印加されている場合の電界強度分布が図21に示されている。図20及び図21から明らかなように、誘電体内部でのノイズの影響が抑えられる傾向が確認できた。 On the other hand, the simulation model of FIG. 19 is a model in which each electrode having the planar quadrupole structure described above is enclosed in a solid dielectric in the simulation model shown in FIG. The size of each electrode having a planar quadrupole structure in this simulation model was 20 [mm] × 20 [mm], and the distance between the electrodes was 4 [mm]. The signal applied to each electrode having a planar quadrupole structure is 1 [V], 10 [MHz], which is the same as the AC voltage applied to the parallel plate electrode, and the phase of the signal and the AC voltage is shifted by 90 °. It was in a state. Then, the dielectric constant of the dielectric was changed in the range of 1 to 400, and the electric field strength at the measurement point at the center of gravity of the dielectric was measured. The measurement result is shown in FIG. 20, and the electric field strength distribution when the dielectric constant of the dielectric is 200 and an alternating voltage of 10 [MHz] is applied to the parallel plate electrodes is shown in FIG. As can be seen from FIGS. 20 and 21, the tendency of suppressing the influence of noise inside the dielectric was confirmed.
 なお、ここでは図示しないが、平面4極構造の各電極に印加する信号の周波数を変えると、最も電界強度が小さくなるときの誘電率に違いはあるものの、誘電体内部でのノイズの影響が抑えられる傾向が確認できた。また、m個(mは4以上の偶数)の電極に印加する信号の周波数に応じた誘電率の誘電体にそれら電極を封入することで、当該誘電体に電極を封入しない場合に比べて、特異領域における変動幅を10分の1近くにまで抑えられることが分かった。 Although not shown here, if the frequency of the signal applied to each electrode of the planar quadrupole structure is changed, there is a difference in the dielectric constant when the electric field strength is the smallest, but the influence of noise inside the dielectric is affected. The tendency to be suppressed was confirmed. In addition, by encapsulating the electrodes in a dielectric having a dielectric constant corresponding to the frequency of the signal applied to m electrodes (m is an even number of 4 or more), compared to the case where the electrodes are not encapsulated in the dielectric, It was found that the fluctuation range in the singular region can be suppressed to nearly 1/10.
 ところで、m個(mは4以上の偶数)の電極に加えて、特異領域形成部20又は基準電位出力部30を構成する電子部品や配線の一部が誘電体に封入されていてもよい。また、上述の実施の形態における遮蔽部40又は遮蔽板41の一部又は全体を誘電体とすることも可能である。なお、少なくともm個(mは4以上の偶数)の電極を封入する誘電体の形状については特に制限されないが、例えば、m個の電極を封入する誘電体の形状をシート状とした場合、誘電体自体又は基準電位生成装置1自体をカード状として薄厚化する観点としては好ましい。 By the way, in addition to m (m is an even number of 4 or more) electrodes, a part of electronic parts and wirings constituting the singular region forming unit 20 or the reference potential output unit 30 may be encapsulated in a dielectric. In addition, a part or the whole of the shielding unit 40 or the shielding plate 41 in the above-described embodiment can be a dielectric. The shape of the dielectric enclosing at least m (m is an even number of 4 or more) electrodes is not particularly limited. For example, when the shape of the dielectric enclosing m electrodes is a sheet, This is preferable from the viewpoint of thinning the body itself or the reference potential generating device 1 itself as a card.
 本発明は、例えば農業、林業、漁業、鉱業、建設業、製造業、電気業、情報通信業、運輸業又は医薬業において利用可能性があり、もちろんこれら以外のあらゆる産業において幅広く利用可能性がある。 The present invention can be used in, for example, agriculture, forestry, fishery, mining, construction, manufacturing, electrical, information and communication, transportation, or pharmaceutical industries, and of course, it can be widely used in all other industries. is there.
 1……基準電位生成装置
 10……回路電源部
 20……特異領域形成部
 21A~21D,51A~51D,52A~52D,53A~53D……電極
 22……信号発振源
 23……出力調整部
 30……基準電位出力部
 31A,31B、61A,61B、62A,62B……電位感知体
 32A,32B,71~74……FET
 33,81~83……差動アンプ
 40……遮蔽部
 41……遮蔽板
 42……絶縁スペーサ
 90……波長切替部
DESCRIPTION OF SYMBOLS 1 ... Reference potential generator 10 ... Circuit power supply part 20 ... Singular area formation part 21A-21D, 51A-51D, 52A-52D, 53A-53D ... Electrode 22 ... Signal oscillation source 23 ... Output adjustment part 30 …… reference potential output unit 31A, 31B, 61A, 61B, 62A, 62B …… potential sensing element 32A, 32B, 71 to 74 …… FET
33, 81 to 83 …… Differential amplifier 40 …… Shielding part 41 …… Shielding plate 42 …… Insulating spacer 90 …… Wavelength switching part

Claims (6)

  1.  基準とすべき位置の周りに回転対称に配されるm個(mは4以上の偶数)の電極と、
     前記m個の電極において互いに隣り合う電極の一方に対して信号を印加し、該隣り合う電極の他方に対して、前記信号の振幅及び波長と同じで位相が180度異なる信号を印加する印加部と
    を備え、
     前記m個の電極に印加される信号の波長は、該m個の電極における隣り合う電極間の距離以上とされる
    ことを特徴とする基準電位生成装置。
    M electrodes (m is an even number equal to or greater than 4) arranged in rotational symmetry around a position to be a reference;
    An application unit that applies a signal to one of the electrodes adjacent to each other in the m electrodes and applies a signal having the same amplitude and wavelength as the signal but having a phase different by 180 degrees to the other of the adjacent electrodes And
    The reference potential generating device, wherein a wavelength of a signal applied to the m electrodes is equal to or greater than a distance between adjacent electrodes in the m electrodes.
  2.  前記m個の電極は、複数の組とされ、各組の電極は、共通とすべき基準位置の周りに回転対称かつ自己相似となる位置に配される
    ことを特徴とする請求項1に記載の基準電位生成装置。
    The m number of electrodes are in a plurality of sets, and each set of electrodes is arranged at a position that is rotationally symmetric and self-similar around a reference position that should be made common. Reference potential generator.
  3.  前記m個の電極は、空気の誘電率よりも大きい誘電率となる誘電体に封入される
    ことを特徴とする請求項1又は請求項2に記載の基準電位生成装置。
    3. The reference potential generating device according to claim 1, wherein the m electrodes are sealed in a dielectric having a dielectric constant larger than a dielectric constant of air.
  4.  基準とすべき位置の周りに回転対称に配されるm個(mは4以上の偶数)の電極と、
     前記m個の電極において互いに隣り合う電極の一方に対して信号を印加し、該隣り合う電極の他方に対して、前記信号の振幅及び波長と同じで位相が180度異なる信号を印加する印加部と、
     前記基準とすべき位置又はその近傍に配される導体と、
     前記導体から得られる信号の単位時間当たりの変動幅が、許容し得る最大値として前記変動幅に設定される閾値よりも大きい場合、前記印加部から印加される信号の波長を切り替える切替部と
    を備えることを特徴とする基準電位生成装置。
    M electrodes (m is an even number equal to or greater than 4) arranged in rotational symmetry around a position to be a reference;
    An application unit that applies a signal to one of the electrodes adjacent to each other in the m electrodes and applies a signal having the same amplitude and wavelength as the signal but having a phase different by 180 degrees to the other of the adjacent electrodes When,
    A conductor disposed at or near the position to be the reference;
    A switching unit that switches a wavelength of a signal applied from the application unit when a variation range per unit time of a signal obtained from the conductor is larger than a threshold set in the variation range as an allowable maximum value; A reference potential generating device comprising:
  5.  前記m個の電極は、複数の組とされ、各組の電極は、共通とすべき基準位置の周りに回転対称となる位置に配される
    ことを特徴とする請求項4に記載の基準電位生成装置。
    5. The reference potential according to claim 4, wherein the m electrodes are formed into a plurality of sets, and each set of electrodes is disposed at a rotationally symmetric position around a reference position to be shared. Generator.
  6.  前記導体は複数でなり、
     前記複数の導体から得られる信号の差分を増幅する増幅部
    を備えるとする請求項4又は請求項5に記載の基準電位生成装置。
    The conductor is plural,
    The reference potential generating device according to claim 4, further comprising an amplifying unit that amplifies a difference between signals obtained from the plurality of conductors.
PCT/JP2012/050224 2011-01-13 2012-01-10 Reference potential generation device WO2012096243A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012552717A JP5499184B2 (en) 2011-01-13 2012-01-10 Reference potential generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-004463 2011-01-13
JP2011004463 2011-01-13

Publications (1)

Publication Number Publication Date
WO2012096243A1 true WO2012096243A1 (en) 2012-07-19

Family

ID=46507143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050224 WO2012096243A1 (en) 2011-01-13 2012-01-10 Reference potential generation device

Country Status (2)

Country Link
JP (1) JP5499184B2 (en)
WO (1) WO2012096243A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282789A (en) * 2006-04-14 2007-11-01 Sony Corp Electric field control device and detecting device
JP2008212525A (en) * 2007-03-07 2008-09-18 Sony Corp Detecting device, detecting method, vein sensing device, scanning probe microscope, distortion detecting device, and metal detector
WO2010140266A1 (en) * 2009-06-03 2010-12-09 Qファクター株式会社 Communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282789A (en) * 2006-04-14 2007-11-01 Sony Corp Electric field control device and detecting device
JP2008212525A (en) * 2007-03-07 2008-09-18 Sony Corp Detecting device, detecting method, vein sensing device, scanning probe microscope, distortion detecting device, and metal detector
WO2010140266A1 (en) * 2009-06-03 2010-12-09 Qファクター株式会社 Communication device

Also Published As

Publication number Publication date
JPWO2012096243A1 (en) 2014-06-09
JP5499184B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
US10151778B2 (en) Voltage sensor housing and assembly including the same
US10777909B2 (en) Loop antenna array and loop antenna array group
KR101410389B1 (en) Radio communication device and radio communication system
US9192080B2 (en) Comb-structured shielding layer and wireless charging transmitter thereof
US10545178B2 (en) Current sensor for measuring an alternating current
US20150333538A1 (en) Wireless power transmission system
TWI699929B (en) Antenna unit and antenna device
US20150145537A1 (en) Capacitive sensor with differential shield
US20170104371A1 (en) Power supplying device
Babkin et al. Triple-stack multigap resistive plate chamber with strip readout
JP2011160499A (en) Feeding device
Mohammed et al. A comparative study of capacitive couplers in wireless power transfer
TWI553693B (en) An inductance coil and inductively coupled plasma processing device
JP5499184B2 (en) Reference potential generator
Al-Saadi et al. Analysis of charge plate configurations in unipolar capacitive power transfer system for the electric vehicles batteries charging
Schlottmann et al. A simple printed circuit board–based ion funnel for focusing low m/z ratio ions with high kinetic energies at elevated pressure
JP2012128535A (en) Reference potential generator
WO2012093667A1 (en) Reference potential generating device
JP5436554B2 (en) Communication device
US10348138B2 (en) Probes arrangement
When et al. Research of independent DC electric field sensor with wireless power supply circuit
Rezaei et al. An analysis of the magnetic field antenna
US20230269863A1 (en) Supply device and determination device
WO2022030288A1 (en) Antenna, wireless communication module, and wireless communication device
Miura et al. A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012552717

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12734472

Country of ref document: EP

Kind code of ref document: A1