WO2010140266A1 - Communication device - Google Patents

Communication device Download PDF

Info

Publication number
WO2010140266A1
WO2010140266A1 PCT/JP2009/064685 JP2009064685W WO2010140266A1 WO 2010140266 A1 WO2010140266 A1 WO 2010140266A1 JP 2009064685 W JP2009064685 W JP 2009064685W WO 2010140266 A1 WO2010140266 A1 WO 2010140266A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
electric field
reference electrode
signal
Prior art date
Application number
PCT/JP2009/064685
Other languages
French (fr)
Japanese (ja)
Inventor
清昭 滝口
Original Assignee
Qファクター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qファクター株式会社 filed Critical Qファクター株式会社
Priority to JP2011518199A priority Critical patent/JP5436554B2/en
Publication of WO2010140266A1 publication Critical patent/WO2010140266A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body

Definitions

  • the present invention relates to a communication device, and is suitable in the technical field of communicating using a human body as a communication medium.
  • the principle of human body communication can be broadly divided into a current method and an electric field method (see Non-Patent Document 1).
  • the current method is a method in which a current is passed through a human body instead of an electric wire for communication. This method requires that the electrodes of the transceiver and the human body are in direct contact.
  • the electric field method generates an electric field in the human body by the oscillation of the transmitter, and changes in the electric field are detected by the receiver. In this electric field system, communication is established even if the electrodes of the transceiver and the human body are not in direct contact.
  • grounding is not possible, so the reference potential is not explicit.
  • both the transmitter and the receiver are configured to use the potential difference between the two electrodes built in the portable device.
  • the two electrodes can easily be short-circuited via the human body depending on the posture of the human body or the portable position of the portable device. That is, on the transmitting side, when the human body approaches the reference electrode, the reference electrode and the human body are coupled, and the electric field oscillated from the transmitting electrode and the electric field in the opposite phase from the reference electrode cancel each other through the human body. The transmission level is weakened.
  • the receiving side when the human body approaches the reference electrode serving as the reference potential for reception, an electric field circulates from the human body to the reference electrode, and the potential difference between the receiving electrode and the reference electrode is greatly attenuated.
  • both transmitters and receivers have a problem that signal attenuation occurs due to electric field cancellation.
  • the state of electrostatic capacitance between each of the plurality of electrodes and the surroundings of each of the electrodes is investigated, and the connection between each electrode and the transmission processing unit is switched and controlled according to the investigation result.
  • the present invention has been made in consideration of the above points, and an object of the present invention is to propose a communication apparatus capable of improving communication efficiency.
  • the present invention is a communication apparatus, which includes a transmission electrode that is oscillated in response to a signal to be transmitted, a reference electrode that is a pair of transmission electrodes, and a rotationally symmetric m around the reference electrode. And an applying means for applying to the m electrodes an alternating signal whose intensity at the reference electrode in an electric field generated from the m electrodes is less than a predetermined value.
  • the present invention also relates to a communication device, which is a rotationally symmetrical arrangement around a reference electrode, a detection electrode that is a detection target of a charged voltage formed on the surface of a human body, a reference electrode that is a pair of detection electrodes.
  • the present invention geometrically combines m electrode groups so that the corresponding polarities or phases are reversed, and cancels each other to generate an electric field with an electric field strength of approximately 0 [V / m].
  • the specific position can be used as a reference potential.
  • the electric field generated from the m electrodes arranged in rotational symmetry to the outside is abruptly attenuated by the cancellation of the electrodes, and the electric field range is limited to the vicinity of each electrode. . Therefore, the external coupling range for the m electrodes is limited to a very close range, and the electric field generated from the transmission electrode wraps around the human body through the human body with respect to the reference electrode located at the rotationally symmetric reference of the m electrodes. However, it is actively suppressed. As a result, the potential of the reference electrode is stabilized, and thus communication efficiency is improved.
  • FIG. 1 is a graph showing a relative intensity change (1 [MHz]) of each electric field according to distance.
  • FIG. 2 is a graph showing a relative intensity change (10 [MHz]) of each electric field according to the distance.
  • FIG. 3 is a diagram showing a distribution pattern of electric field strength.
  • FIG. 4 is a table showing the dielectric constant in the human tissue used for the simulation.
  • FIG. 5 is a diagram schematically showing the configuration of the communication system.
  • FIG. 6 is a diagram schematically illustrating the configuration of the transmission apparatus.
  • FIG. 7 is a diagram schematically showing the relationship between the electrode position and the charge applied to the electrode.
  • FIG. 8 is a diagram showing an electric field / potential distribution based on a simulation.
  • FIG. 9 is a diagram showing the electric field / potential distribution based on the simulation.
  • FIG. 10 is a diagram schematically showing the configuration of the receiving apparatus.
  • FIG. 11 is a diagram schematically showing the relationship between the electrode position and the charge applied to the electrode in another embodiment.
  • FIG. 12 is a graph showing the relationship between the distance of the reference electrode and the potential in each electrode structure.
  • FIG. 13 is a diagram schematically showing the relationship between the electrode position and the charge applied to the electrode in another embodiment.
  • FIG. 14 is a diagram schematically showing a configuration of a transmission apparatus according to another embodiment.
  • FIG. 15 is a diagram schematically showing a configuration of a receiving apparatus according to another embodiment.
  • FIG. 16 is a diagram schematically showing a configuration of a reference stabilizing unit for the inverse wave generating unit.
  • the electric field can be classified into a radiation electric field, an induction electromagnetic field, and a quasi-electrostatic field in relation to the distance.
  • Electric field resolution Here, the ratio of the change in electric field strength depending on the distance from the electric field generation source is compared between the radiation electric field, the induction electromagnetic field, and the quasi-electrostatic field.
  • Electric field E in equation (2) ⁇ When the third term relating to the radiation electric field is differentiated by the distance r, It can be expressed as In addition, the electric field E in the equation (2) ⁇ When the second term relating to the induction electromagnetic field is differentiated by the distance r, It can be expressed as Furthermore, the electric field E in equation (2) ⁇ When the first term relating to the quasi-electrostatic field is differentiated by the distance r, It can be expressed as Note that “T” in the equations (3) to (5) is a part of the equation (2) for the sake of simplicity. It is replaced as follows. As is clear from these formulas (3) to (5), the ratio of the change in the electric field strength depending on the distance is the largest component related to the quasi-electrostatic field.
  • the quasi-electrostatic field has a high resolution with respect to the distance.
  • FIG. 1 shows the relationship between the relative strength and distance of each electric field at 1 [MHz] as an index.
  • an intensity boundary distance there is a distance (hereinafter referred to as an intensity boundary distance) where the relative strengths of the radiation electric field, the induction electromagnetic field, and the quasi-electrostatic field are equal.
  • the radiated electric field is dominant (a state larger than the intensity of the induction electromagnetic field or the quasi-electrostatic field).
  • the quasi-electrostatic field is dominant (a state larger than the intensity of the radiated electric field and the induced electromagnetic field) in a space closer to the intensity boundary distance.
  • This intensity boundary distance is the electric field E in equation (2).
  • the higher the frequency the narrower the quasi-electrostatic field dominant space (that is, the intensity boundary distance shown in FIG. 1 becomes shorter as the frequency becomes higher (shifts to the left)).
  • 10 [MHz] a space in which the quasi-electrostatic field is dominant near 0.675 [m] according to the above-described equation (11).
  • the relationship between the relative strength of each of the radiated electric field, the induction electromagnetic field, and the quasi-electrostatic field and the distance is graphed, and the result shown in FIG. 2 is obtained.
  • the strength of the quasi-electrostatic field at a point of 0.01 [m] from the electric field generation source is approximately 18.2 [dB] larger than the induction electromagnetic field. Therefore, the quasi-electrostatic field in this case can be regarded as having no influence of the induction electromagnetic field and the radiation electric field.
  • the quasi-electrostatic field has a relationship superior to the induction electromagnetic field and the radiation electric field in a wider space from the electric field generation source as the lower frequency band is selected.
  • Electric field and human body By the way, if you want to generate a radiated electric field or induction electromagnetic field in the human body, it is necessary to pass a current through the human body, but since the human body has a very high impedance, it is physically impossible to flow a current through the human body efficiently. Difficult and inefficient. Further, it is not physiologically preferable. However, aspects of electrostatic phenomena represented by electrostatic charging are completely different. In other words, the human body is very well charged, as suggested by the empirical fact that we experience static electricity everyday.
  • a quasi-electrostatic field is generated by charging of the human body surface according to the operation. Therefore, when a quasi-electrostatic field is generated in the human body, it is not necessary to energize the human body and it may be charged. In other words, the human body is charged by dielectric polarization due to very little movement of electric charge, and when charging occurs at a certain point on the human body surface, it is transmitted from that point to the surroundings of the human body momentarily, and as a result, almost the same direction from the human body surface An equipotential surface of a quasi-electrostatic field is formed. This has already been confirmed by experiments and prototypes by the applicant.
  • the electric field around the human body is simulated when the floor is set to a reference potential of 0 [V] and the surface of the human body is charged to 480 [V], and the electric field intensity distribution pattern obtained from the simulation is shown in FIG. Show.
  • a human body model in an upright posture having a dielectric constant of a living tissue shown in FIG. 4 exists in a space where there is only a floor without walls and ceilings.
  • the reason why the human body voltage is set to 480 [V] is that the human body voltage strongly depends on the type of the rug (floor surface material) and the footwear, and the absolute value of the lowest human body voltage in the combination of the rug and the footwear. This is because the document 480 [V] was referred to.
  • this document includes [author] Hirokazu Kimura, [title] electrification of fiber / polymer material and its evaluation method, [media type] online, [issue date] June 29, 1998, [author] ] Evaluation Technology Department Industrial Fiber Group, [Information Source Address] http: // www. tri. pref. osaka. jp / group / sense / sangyosei / static. ele. pdf). As is apparent from FIG. 3, it can be seen that the electric field is distributed around the human body. [1-5.
  • the theoretical noise floor in this case is ⁇ 154 [dB] assuming that the electrode area is 1 [cm] ⁇ 1 [cm], the noise coefficient is 10, and the frequency band of the electric field is 10 [MHz].
  • the potential change on the human body surface is 6 ⁇ 10. -9 If it is [V / m] or more, the change can be detected.
  • a human body arranged in a range satisfying the above-described expression (11) in which the quasi-electrostatic field is dominant is less affected by the radiation electric field and the induction electromagnetic field.
  • the human body arranged in the range satisfying the above-described expression (11) in which the quasi-electrostatic field is dominant functions efficiently as a mediator, and the human body compared to the space where the radiation electric field and the induction electromagnetic field are dominant. Communication is greatly stabilized.
  • FIG. 5 shows the configuration of the communication system 1.
  • the communication system 1 includes a transmission device 2 mounted on a portable electronic device such as a portable digital audio player, a mobile phone, or a portable game machine, and a reception device 3 mounted on a headphone HP.
  • the transmitting device 2 induces a charged voltage (quasi-electrostatic field) on the surface of the human body by applying a quasi-electrostatic field that vibrates in accordance with music data to the human body to cause dielectric polarization.
  • the receiving device 3 is configured to extract music data from a change in the charged voltage on the human body surface and output the music data to a data processing unit mounted on the headphone HP.
  • FIG. 6 shows the configuration of the transmission apparatus 2.
  • the transmission device 2 includes an electrode (hereinafter, also referred to as a transmission electrode) 11 that is an output target of a signal to be transmitted, and a reference electrode 12 that is a pair of the transmission electrode 11.
  • a transmission processing unit 20 is connected to the transmission electrode 11.
  • the transmission processing unit 20 includes a carrier generation unit 21, a modulation unit 22, and an amplifier 23.
  • the carrier generation unit 21 generates a carrier wave having a constant frequency.
  • the frequency of this carrier wave is a frequency at which the strength of the quasi-electrostatic field is superior to the radiated electric field and the induced electromagnetic field at the maximum allowable distance that the transmitter 2 and the receiver 3 may be separated.
  • the band of charging change (walking frequency) formed in the human body with walking motion (about 10 [Hz])
  • hum noise The frequency at which the difference from the noise floor such as the frequency band (about 50 to 60 [Hz]) becomes clear is selected in consideration of the relative permittivity of air and the human body. Specifically, for example, 10 [MHz] is selected.
  • Music data reproduced by a portable electronic device in which the transmission device 2 is mounted is input to the modulation unit 22.
  • the modulation unit 22 modulates the carrier wave generated by the carrier generation unit 21 based on the music data, and sends a modulation signal obtained as a result to the amplifier 23.
  • the amplifier 23 amplifies the modulated signal to a predetermined signal level and sends the amplified modulated signal to the transmission electrode 11.
  • the transmitting electrode 11 generates a combined electric field of the radiated electric field, the induced electromagnetic field, and the quasi-electrostatic field according to the frequency of the carrier wave in the modulation signal from the amplifier 23 (the radiated electric field and the induced electromagnetic field). Oscillates when the field is suppressed.
  • the human body existing in the synthetic electric field is dielectrically polarized, and a quasi-electrostatic field (electrostatic voltage) is formed on the surface of the human body.
  • the transmitter 2 is provided with a unit (hereinafter also referred to as a reference potential stabilization unit) 30 that suppresses fluctuations in the potential of the reference electrode 12.
  • the reference potential stabilization unit 30 has a plurality of electrodes 31 to 34. These electrodes 31 to 34 are in the relationship of being the respective vertexes of the square, and are arranged at positions where the reference electrode 12 is present at the center of gravity of the square. Among these electrodes 31 to 34, a signal source 35 that transmits a sine wave signal is connected to the electrodes 31 and 34 arranged on one diagonal line.
  • the frequency of the sine wave is different from the frequency of the carrier used in the carrier generation unit 21 among the frequencies satisfying “r ⁇ c / 2 ⁇ f” based on the equation (11).
  • a frequency at which the difference from the noise floor becomes clear is selected.
  • the electrodes 32 and 33 arranged on the other diagonal line generate a signal (hereinafter also referred to as an inverse wave signal) from the sine wave signal having the same frequency and amplitude as the sine wave signal but having a phase difference of 180 °.
  • An inverse wave generation unit 36 is connected. Therefore, as shown in FIG. 7, the electrodes 31 to 34 are given a charge whose polarity is reversed at the adjacent electrodes.
  • FIG. 8 and FIG. 9 show the mapping of the electric field in the xy plane obtained by superimposing the electric fields generated by the point charges shown in FIG. 8A shows the electric field E [V / m] on a logarithmic scale, and FIG. 8B shows the electric field E [V / m] on a linear scale (linear scale).
  • FIG. 8A shows the electric field E [V / m] on a logarithmic scale
  • FIG. 8B shows the electric field E [V / m] on a linear scale (linear scale).
  • FIGS. 8C shows a potential distribution corresponding to the electric field distributions of FIGS. 8A and 8B.
  • FIGS. 9A, 9B, and 9C are enlarged views of specific regions in FIGS. 8A, 8B, and 8C, respectively.
  • the charge Q is 1 [C]
  • the distance between point charges is 0.01 [m].
  • FIGS. 8 and 9 it can be seen that the positions of the centers of gravity of the electrodes 31 to 34 existing in the xy plane and the vicinity thereof are singular regions.
  • the electric field strength at each of the electrodes 31 to 34 is steeply attenuated. Specifically, it attenuates by a power of 2 (number of electrodes) +1.
  • the reference potential stabilization unit 30 uses the electrodes 31 to 34 to which the charges of opposite polarity are given at the adjacent positions to set the potential of the reference electrode 12 positioned at the center of gravity of the electrodes 31 to 34 to approximately 0 [V]. To be able to hold on.
  • the reference potential stabilization unit 30 in this embodiment is covered with a non-conductive casing, and the electrodes 31 to 34 arranged in the casing are arranged at a certain distance from the inner surface of the casing. The Therefore, the reference potential stabilization unit 30 sets the potential of the reference electrode 12 positioned at the center of gravity of the electrodes 31 to 34 to approximately 0 [V] even if the human body is in close contact with the casing of the reference potential stabilization unit 30. To be able to hold on. [2-3. Configuration of receiving apparatus] FIG. 10 shows the configuration of the receiving device 3.
  • This receiving device 3 includes an electrode 41 (hereinafter also referred to as a detection electrode) that is a detection target of a quasi-electrostatic field (electrostatic voltage) formed on the surface of a human body, and a reference electrode that is a pair of the detection electrode 41 42.
  • a reception processing unit 50 is connected to the detection electrode 41.
  • the reception processing unit 50 amplifies a signal generated by the potential difference between the detection electrode 41 and the reference electrode 42 by the amplifier 51 and demodulates the signal obtained as a result of the amplification by the demodulation unit 52.
  • the demodulation result is music data superimposed on the modulation signal when a quasi-electrostatic field (electrostatic voltage) that changes in accordance with the modulation signal is obtained as a potential difference between the detection electrode 41 and the reference electrode 42.
  • This music data is emitted from the speaker through various processes in a data processing unit mounted on the headphone HP (FIG. 5).
  • the receiving apparatus 3 in this embodiment is provided with a unit (hereinafter also referred to as a reference potential stabilization unit) 60 that suppresses potential fluctuations in the reference electrode 42.
  • the reference potential stabilization unit 60 has a plurality of electrodes 61 to 64.
  • these electrodes 61 to 64 are in the relationship of being the vertices of a square, like the reference potential stabilization unit 30, and are arranged at positions where the reference electrode 42 is present at the center of gravity of the square.
  • a signal source 65 for transmitting a sine wave signal is connected to the electrodes 61 and 64 arranged on one diagonal line.
  • a reverse wave generation unit 66 that generates a reverse wave signal from a sine wave signal is connected to the electrodes 62 and 63 arranged on the other diagonal line.
  • the reference potential stabilization unit 60 is similar to the reference potential stabilization unit 30 in that the reference electrode 42 positioned at the center of gravity of the electrodes 61 to 64 is provided by the electrodes 61 to 64 to which charges of opposite polarity are given at adjacent positions. Can be maintained at approximately 0 [V]. Note that the reference potential stabilization unit 60 in this embodiment is covered with a non-conductive casing in the same manner as the reference potential stabilization section 30, and the electrodes 61 to 64 disposed in the casing are formed from the inner surface of the casing. It is arranged at a position separated by a certain distance.
  • the reference potential stabilization unit 60 sets the potential of the reference electrode 12 positioned at the center of gravity of the electrodes 61 to 64 to approximately 0 [V] even if the human body is in close contact with the casing of the reference potential stabilization unit 60. To be able to hold on. [2-4. Effect]
  • the four electrodes 31 to 34 are arranged so as to be the vertices of the square with the reference electrode 12 that is a pair of the transmission electrodes 11 as the center of gravity.
  • electric charges whose polarities are adjacent to each other are given (see FIGS. 6 and 7).
  • the center of gravity position of each of the electrodes 31 to 34 becomes a singular region by causing the opposite polarity charges generated from the adjacent electrodes to cancel each other regardless of the time change, and the transmission electrode 11 is a monopole. It functions as a monopole antenna by becoming a feeding point.
  • the electric field strength at each of the electrodes 31 to 34 is 2 with respect to the distance. 5 (2 n + 1 )
  • the range of the electric field generated from the electrodes 31 to 34 is in a very limited state, so that the external coupling range for the electrodes 31 to 34 is limited to the very vicinity.
  • the transmission device 2 Since the transmission device 2 is arranged in various positions such as a user's breast pocket, buttocks pocket, or heel, it is common that the positional relationship between the transmission electrode 11 and the reference electrode 12 with respect to the human body varies. Further, the transmission electrode 11 and the reference electrode 12 may be surrounded between the body and the hand of the human body according to the user's action. Even in such a case, since the coupling range with the outside of each electrode 31 to 34 itself is limited to the very vicinity, the transmission electrode is compared with the reference electrode 12 positioned at the center of gravity of the electrode 31 to 34. Thus, the electric field generated from the reference electrode 11 is greatly suppressed from passing through the human body, and the potential at the reference electrode 12 is stabilized.
  • the potential at the reference electrode 12 can be stabilized regardless of the arrangement position of the transmission device 2 with respect to the user and the operation of the user.
  • the coupling range of the electrodes 31 to 34 with the outside is limited to a very close range, the interference with the transmitter 2 or other circuits in the electronic device in which the transmitter 2 is mounted is greatly increased. As a result, the energy efficiency is high and the power is saved.
  • four electrodes 61 to 64 are arranged so as to be the apexes of a square with the reference electrode 42 as a pair of detection electrodes 41 as the center of gravity, and adjacent to the electrodes 61 to 64.
  • the center of gravity position of each of the electrodes 61 to 64 is made a singular region by mutually canceling the opposite polarity charges generated from the adjacent electrodes.
  • the coupling range of the electrodes 61 to 64 with the outside is limited to a very close range, it is possible to greatly reduce the electric field generated from the transmitting electrode 11 from passing through the human body to the reference electrode 42. The potential at 42 is stabilized.
  • the coupling range of the electrodes 61 to 64 themselves with the outside is limited to the very vicinity, the receiving device 3 or other circuits in the headphone HP (FIG.
  • the four electrodes 31 to 34 can be mounted on the circuit board so that the reference electrode 12 (42), which is a pair of the transmission electrode 11 (detection electrode 41), becomes the center of the square with the reference electrode 12 (42) as the center of gravity. It is. Therefore, even when the transmitter 2 (receiver 3) is thin like a card type, the reference potential stabilization unit 30 (60) can be easily applied, and the design restrictions are eased. It is possible.
  • the four electrodes 31 to 34 are arranged so as to be the vertices of the square with the reference electrode 12 (42) as a pair of the transmission electrode 11 (detection electrode 41) as the center of gravity.
  • the reference electrode 12 (42) can be stabilized, whereby the communication efficiency can be improved.
  • the electrodes 31 to 34 (61 to 64) are arranged at positions where the reference electrodes 12 (42) are present at the center of gravity of the square.
  • an electrode structure planear quadrupole structure
  • the electrode structure in the reference potential stabilization unit 30 (60) is not limited to this embodiment.
  • the degree of potential attenuation near the center of gravity of the regular 2n square increases. This is because if the distance from the center of gravity of the regular 2n square to each vertex is constant, the distance between adjacent charges (that is, the length of the side of the polygon) decreases as n increases, and the electric field generated from the electrode. This is because the efficiency of canceling out is improved.
  • the degree of suppressing the potential fluctuation at the reference electrode 12 (42) can be increased.
  • An electrode structure that is, a three-dimensional multipolar structure that gives a signal that has a relationship in which adjacent polarities are inverted can be applied to an electrode that is disposed at a position that satisfies the relationship. Note that FIG.
  • the electrode structure in the reference potential stabilization unit 30 (60) may be other than these examples.
  • the reference potential stabilization unit 30 (60) includes m electrodes (m is an even number of 4 or more) that are rotationally symmetric around the reference electrode 12 or 42, and the reference electrode 12 or 42 in the electric field generated from these electrodes. It is sufficient to have an application means for applying an alternating signal with an intensity of less than a predetermined value to the electrode.
  • the electric field strength at the reference electrode 12 or 42 is desirably “0”, but is set to be less than a predetermined value in consideration of variations in circuit elements and the like.
  • the signal source 35 (65) and the reverse are applied as application means for applying an alternating signal in which the intensity at the reference electrode 12 or 42 in the electric field generated from the electrode is less than a predetermined value to the electrode.
  • the wave generator 36 (66) is employed.
  • the application means is not limited to this embodiment. For example, it is possible to adopt the form shown in FIG. 14 (FIG. 15) in which the same reference numerals are given to the corresponding parts to FIG.
  • a signal line that branches between the amplifier 23 (51) and the reference electrode 12 (demodulation unit 52) and is connected to the electrodes 31, 34 (61, 64) is provided.
  • the reference potential stabilization unit 70 (80) the output of the amplifier 23 (51) is given to the electrodes 31, 34 (61, 64) and the reverse wave signal is given to the electrodes 32, 33 (62, 63). There are some differences. Therefore, even if the electric field generated from the electrodes 31 to 34 (61 to 64) wraps around the signal to be transmitted (received signal), the reference potential stabilizing unit 70 (80) Compared with the stabilizing unit 30 (60), the influence on the signal can be suppressed. In the reference potential stabilization unit 80 shown in FIG. 15, instead of the signal line that branches between the amplifier 51 and the demodulation unit 52 and is connected to the electrodes 61 and 64, the detection electrode 41 and the amplifier 51 are connected.
  • a signal line that is branched and connected to the electrodes 61 and 64 is applicable.
  • the reverse wave generation unit 86 may apply the reverse wave signal of the signal input to the amplifier 51 to the electrodes 62 and 63.
  • the reference potential for the inverse wave generators 36 (76) and 66 (86) is not explicit.
  • the inverse wave generators 36 (76) and 66 (86) have sinusoidal signals applied to the electrodes 31 and 34, 61 and 64 on one diagonal line due to the fluctuation of the reference potential when the inverse wave signal is generated.
  • the reverse wave potential stabilization unit 100 shown in FIG. 16 can be employed.
  • the reverse wave potential stabilization unit 100 includes four electrodes 101 to 104 and DC voltage application units 105 and 106.
  • the electrodes 101 to 104 are arranged so as to be the vertices of a square with the reference electrode 92 of the inverse wave generator 36, 76, 66 or 86 as the center of gravity.
  • the DC voltage application unit 105 applies a positive or negative DC voltage to the electrodes 101 and 104 on one diagonal line.
  • the DC voltage application unit 106 applies a DC voltage having a polarity opposite to that of the DC voltage application unit 105 to the electrodes 102 and 103 on the other diagonal line.
  • 104 and 101-103 can also be used as permanent charged bodies such as electrets having different polarities.
  • the reference potential for the inverse wave generation units 36 (76) and 66 (86) becomes substantially constant.
  • the potentials of the reference electrodes 12 and 42 in the reference potential stabilization units 30 (70) and 60 (80) are reduced. It must be held within the allowable range (0 ⁇ ⁇ [V]).
  • the shapes of the transmission electrode 11 and the reference electrode 12 (FIG.
  • the detection electrode 41 and the reference electrode 42 are rectangular.
  • the shape of these electrodes is not limited to this embodiment, and any shape can be adopted.
  • the arrangement of the transmission electrode 11 and the reference electrode 12 (FIG. 5) and the detection electrode 41 and the reference electrode 42 (FIG. 10) are parallel.
  • the arrangement state of the electrodes is not limited to this embodiment, and any state can be adopted.
  • the present invention can be used in, for example, agriculture, forestry, fishery, mining, construction, manufacturing, electrical, information and communication, transportation, or pharmaceutical industries, and of course, it can be widely used in all other industries. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

A communication device, the communication efficiency of which can be improved, is provided. Four electrodes (31 to 34) are disposed so as to become the vertices of a square having a centroid at a reference electrode (12) paired with a transmission electrode (11). Signals by which adjacent polarities are reversed to each other are applied to the electrodes (31 to 34).

Description

通信装置Communication device
 本発明は通信装置に関し、人体を通信媒体として通信する技術分野において好適なものである。 The present invention relates to a communication device, and is suitable in the technical field of communicating using a human body as a communication medium.
 人体通信の原理は電流方式と電界方式とに大別できる(非特許文献1参照)。電流方式は電線の代わりに人体に電流を流して通信する方式である。この方式は送受信機の電極と人体とは直に接していることが条件となる。
 一方、電界方式は送信機の発振によって人体に電界を生じさせるもので、該電界の変化を受信機で検知する。この電界方式は送受信機の電極と人体とが直接触れていなくても通信が成立する。
 人体上で電界を用いて通信する場合、一般に、固定機器と異なり接地がとれないため基準電位が明示的ではない。したがって、送受信機ともに、携帯機器に内蔵された2つの電極間の電位差を利用する形態となる。
 しかしこの形態では、人体の姿勢又は携帯機器の携帯位置によって、2つの電極が人体を介して短絡することが容易に起こり得る。すなわち、送信側では、基準電極に人体が近づくとその基準電極と人体とが結合し、送信電極から発振される電界と、基準電極からの逆位相の電界とが人体を介して打ち消しあうことで、送信レベルが弱まる。
 一方、受信側では、受信の基準電位となる基準電極に人体が近づくと、該人体から基準電極に電界が回り込んで、受信電極と基準電極との電位差が大きく減衰することで、受信レベルが弱まる。
 このように送受信機いずれにも電界の打ち消しあいにより信号減衰が生じるという問題がある。
 この問題を解決する1つの手法として、複数の電極と、当該電極の周囲との静電容量の状態をそれぞれ調査し、その調査結果に応じて各電極と送信処理部との接続を切換制御するといったものが開示されている(例えば特許文献1参照)。
特開2006−324774公報 「日経エレクトロニクス」日経BP社出版、2008年6−30、no.981、p.94−95
The principle of human body communication can be broadly divided into a current method and an electric field method (see Non-Patent Document 1). The current method is a method in which a current is passed through a human body instead of an electric wire for communication. This method requires that the electrodes of the transceiver and the human body are in direct contact.
On the other hand, the electric field method generates an electric field in the human body by the oscillation of the transmitter, and changes in the electric field are detected by the receiver. In this electric field system, communication is established even if the electrodes of the transceiver and the human body are not in direct contact.
When communication is performed using an electric field on the human body, generally, unlike a fixed device, grounding is not possible, so the reference potential is not explicit. Therefore, both the transmitter and the receiver are configured to use the potential difference between the two electrodes built in the portable device.
However, in this embodiment, the two electrodes can easily be short-circuited via the human body depending on the posture of the human body or the portable position of the portable device. That is, on the transmitting side, when the human body approaches the reference electrode, the reference electrode and the human body are coupled, and the electric field oscillated from the transmitting electrode and the electric field in the opposite phase from the reference electrode cancel each other through the human body. The transmission level is weakened.
On the other hand, on the receiving side, when the human body approaches the reference electrode serving as the reference potential for reception, an electric field circulates from the human body to the reference electrode, and the potential difference between the receiving electrode and the reference electrode is greatly attenuated. Weaken.
Thus, both transmitters and receivers have a problem that signal attenuation occurs due to electric field cancellation.
As one method for solving this problem, the state of electrostatic capacitance between each of the plurality of electrodes and the surroundings of each of the electrodes is investigated, and the connection between each electrode and the transmission processing unit is switched and controlled according to the investigation result. (For example, refer to Patent Document 1).
JP 2006-324774 A "Nikkei Electronics," Nikkei BP Publishing Co., Ltd., 6-30, 2008, no. 981, p. 94-95
 しかしながら上記特許文献では、複数の電極のいずれもが人体における体と手との間に囲まれる等の状態では、どの電極を選択したとしても人体と結合して通信効率が極端に悪くなる場合がある。 However, in the above-mentioned patent document, in the state where all of the plurality of electrodes are surrounded between the body and the hand in the human body, even if any electrode is selected, it may be combined with the human body and the communication efficiency may be extremely deteriorated. is there.
 本発明は以上の点を考慮してなされたもので、通信効率を向上し得る通信装置を提案しようとするものである。
 かかる課題を解決するため本発明は、通信装置であって、送信すべき信号に応じて発振される送信電極と、送信電極のペアとされる基準電極と、基準電極の周りに回転対称なm個(mは4以上の偶数)の電極と、m個の電極から生じる電界における基準電極での強度が所定値未満となる交番信号を、該m個の電極に対して印加する印加手段とを有する。
 また本発明は、通信装置であって、人体表面に形成される帯電圧の検出対象とされる検出電極と、検出電極のペアとされる基準電極と、基準電極の周りに回転対称に配されるm個(mは4以上の偶数)の電極と、m個の電極から生じる電界における基準電極での強度が所定値未満となる交番信号を、該m個の電極に対して印加する印加手段とを有する。
 本発明は、対応する極性又は位相が逆となるようm個の電極群を幾何学的に組み合わせ、それらが相互に打ち消しあって電界強度がおおよそ0[V/m]となる電界を、該電極群内の特定位置に生じさせることができ、該特定位置を基準電位とすることができる。
 また、回転対称に配されるm個の電極から外部に対して生じる電界は、電極同士の打ち消しあいにより急峻に減衰するものであり、当該電界範囲が各電極のごく近傍に限局した状態にある。
 したがって、m個の電極に対する外部の結合範囲はごく近傍に限局され、該m個の電極の回転対称の基準に位置する基準電極に対して、送信電極から生じる電界が人体を介して回り込むということが、積極的に抑制される。この結果、基準電極の電位は安定化され、かくして通信効率が向上する。
The present invention has been made in consideration of the above points, and an object of the present invention is to propose a communication apparatus capable of improving communication efficiency.
In order to solve such a problem, the present invention is a communication apparatus, which includes a transmission electrode that is oscillated in response to a signal to be transmitted, a reference electrode that is a pair of transmission electrodes, and a rotationally symmetric m around the reference electrode. And an applying means for applying to the m electrodes an alternating signal whose intensity at the reference electrode in an electric field generated from the m electrodes is less than a predetermined value. Have.
The present invention also relates to a communication device, which is a rotationally symmetrical arrangement around a reference electrode, a detection electrode that is a detection target of a charged voltage formed on the surface of a human body, a reference electrode that is a pair of detection electrodes. Applying means for applying to the m electrodes an alternating signal in which the intensity at the reference electrode in an electric field generated from the m electrodes is less than a predetermined value (m is an even number of 4 or more) And have.
The present invention geometrically combines m electrode groups so that the corresponding polarities or phases are reversed, and cancels each other to generate an electric field with an electric field strength of approximately 0 [V / m]. It can be generated at a specific position in the group, and the specific position can be used as a reference potential.
In addition, the electric field generated from the m electrodes arranged in rotational symmetry to the outside is abruptly attenuated by the cancellation of the electrodes, and the electric field range is limited to the vicinity of each electrode. .
Therefore, the external coupling range for the m electrodes is limited to a very close range, and the electric field generated from the transmission electrode wraps around the human body through the human body with respect to the reference electrode located at the rotationally symmetric reference of the m electrodes. However, it is actively suppressed. As a result, the potential of the reference electrode is stabilized, and thus communication efficiency is improved.
 図1は、距離に応じた各電界の相対的な強度変化(1[MHz])を示すグラフである。
 図2は、距離に応じた各電界の相対的な強度変化(10[MHz])を示すグラフである。
 図3は、電界強度の分布パターンを示す図である。
 図4は、シミュレーションに用いた人体組織における誘電率を示す表である。
 図5は、通信システムの構成を概略的に示す図である。
 図6は、送信装置の構成を概略的に示す図である。
 図7は、電極位置と当該電極に与えられる電荷との関係を概略的に示す図である。
 図8は、シミュレーションに基づく電界・電位分布を示す図である。
 図9は、シミュレーションに基づく電界・電位分布を示す図である。
 図10は、受信装置の構成を概略的に示す図である。
 図11は、他の実施の形態における電極位置と当該電極に与えられる電荷との関係を概略的に示す図である。
 図12は、各電極構造での基準電極の距離と電位との関係を示すグラフである。
 図13は、他の実施の形態における電極位置と当該電極に与えられる電荷との関係を概略的に示す図である。
 図14は、他の実施の形態における送信装置の構成を概略的に示す図である。
 図15は、他の実施の形態における受信装置の構成を概略的に示す図である。
 図16は、逆波生成部に対するリファレンス安定化部の構成を概略的に示す図である。
FIG. 1 is a graph showing a relative intensity change (1 [MHz]) of each electric field according to distance.
FIG. 2 is a graph showing a relative intensity change (10 [MHz]) of each electric field according to the distance.
FIG. 3 is a diagram showing a distribution pattern of electric field strength.
FIG. 4 is a table showing the dielectric constant in the human tissue used for the simulation.
FIG. 5 is a diagram schematically showing the configuration of the communication system.
FIG. 6 is a diagram schematically illustrating the configuration of the transmission apparatus.
FIG. 7 is a diagram schematically showing the relationship between the electrode position and the charge applied to the electrode.
FIG. 8 is a diagram showing an electric field / potential distribution based on a simulation.
FIG. 9 is a diagram showing the electric field / potential distribution based on the simulation.
FIG. 10 is a diagram schematically showing the configuration of the receiving apparatus.
FIG. 11 is a diagram schematically showing the relationship between the electrode position and the charge applied to the electrode in another embodiment.
FIG. 12 is a graph showing the relationship between the distance of the reference electrode and the potential in each electrode structure.
FIG. 13 is a diagram schematically showing the relationship between the electrode position and the charge applied to the electrode in another embodiment.
FIG. 14 is a diagram schematically showing a configuration of a transmission apparatus according to another embodiment.
FIG. 15 is a diagram schematically showing a configuration of a receiving apparatus according to another embodiment.
FIG. 16 is a diagram schematically showing a configuration of a reference stabilizing unit for the inverse wave generating unit.
 1……通信システム、2……送信装置、3……受信装置、11……送信電極、12,42……基準電極、20……送信処理部、21……キャリア生成部、22……変調部、23,51……アンプ、30,60……リファレンス電位安定化部、31~34,61~64……電極、35,65……信号源、36,66……逆波生成部、41……検出電極、50……受信処理部、52……復調部 DESCRIPTION OF SYMBOLS 1 ... Communication system, 2 ... Transmission apparatus, 3 ... Reception apparatus, 11 ... Transmission electrode, 12, 42 ... Reference electrode, 20 ... Transmission processing part, 21 ... Carrier generation part, 22 ... Modulation Unit, 23, 51... Amplifier, 30, 60... Reference potential stabilization unit, 31-34, 61-64... Electrode, 35, 65 .. signal source, 36, 66. ...... Detection electrode, 50 ... Reception processing section, 52 ... Demodulation section
(1)人体通信
 本発明を実施するための形態を説明する前に、まずは、電界方式の人体通信について各種観点から説明する。
[1−1.電界の分類]
 電界発生源となる微小ダイポールからの距離をrとし、その距離rを隔てた位置をPとした場合、当該位置Pでの電界強度Eは、マックスウェル方程式より、次式
Figure JPOXMLDOC01-appb-I000001
のように曲座標(r、θ、δ)として表すことができる。ちなみに、(1)式における「Q」は、電荷(単位はクーロン)であり、「l」は、電荷間の距離(但し、微小ダイポールの定義より、「l」は「r」に比して小さい)であり、「π」は、円周率、「ε」は、微小ダイポールを含む空間の誘電率、「j」は、虚数単位、「k」は、波数である。
 かかる(1)式を展開すると、次式
Figure JPOXMLDOC01-appb-I000002
となる。この(2)式からも分かるように、電界E及びEΘは、電界発生源からの距離に線形に反比例する放射電界(EΘの第3項)と、電界発生源からの距離の2乗に反比例する誘導電磁界(E、EΘの第2項)と、電界発生源からの距離の3乗に反比例する準静電界(E、EΘの第1項)との合成電界として発生する。
 このように電界は、距離との関係では、放射電界、誘導電磁界及び準静電界に分類することができる。
[1−2.電界の分解能]
 ここで、電界発生源からの距離によって電界強度が変化する割合を、放射電界、誘導電磁界、準静電界で比較する。(2)式における電界EΘのうち、放射電界に関する第3項を距離rで微分すると、次式
Figure JPOXMLDOC01-appb-I000003
のように表すことができる。また(2)式における電界EΘのうち、誘導電磁界に関する第2項を距離rで微分すると、次式
Figure JPOXMLDOC01-appb-I000004
のように表すことができる。さらに(2)式における電界EΘのうち、準静電界に関する第1項を距離rで微分すると、次式
Figure JPOXMLDOC01-appb-I000005
のように表すことができる。なお、(3)~(5)式の「T」は、単純化するために(2)式の一部分を次式
Figure JPOXMLDOC01-appb-I000006
のように置き換えている。
 これら(3)~(5)式からも明らかなように、距離によって電界強度が変化する割合は準静電界に関する成分が最も大きい。つまり、準静電界は距離に対して高い分解能があるといえる。
[1−3.電界強度と周波数との関係]
 ここで、これら放射電界、誘導電磁界及び準静電界それぞれの相対的な強度と、距離との関係を図1に示す。図1は、1[MHz]における各電界それぞれの相対的な強度と距離との関係を指数で示すものである。
 この図1からも明らかなように、放射電界、誘導電磁界及び準静電界それぞれの相対的な強度が等しくなる距離(以下、これを強度境界距離と呼ぶ)が存在する。この強度境界距離よりも遠方の空間では放射電界が優位(誘導電磁界や準静電界の強度よりも大きい状態)となる。これに対して強度境界距離よりも近方の空間では準静電界が優位(放射電界や誘導電磁界の強度よりも大きい状態)となる。
 この強度境界距離は、(2)式における電界EΘの各項(EΘ1、EΘ2、EΘ3)に対応する電界の各成分、すなわち次式
Figure JPOXMLDOC01-appb-I000007
が一致する(EΘ1=EΘ2=EΘ3)ということであるから、次式
Figure JPOXMLDOC01-appb-I000008
を充足する場合、つまり、次式
Figure JPOXMLDOC01-appb-I000009
として表すことができる。
 この(9)式における波数kは、光速をc(c=3×10[m/s])とし、周波数をf[Hz]とすると次式
Figure JPOXMLDOC01-appb-I000010
として表すことができる。したがって強度境界距離は(9)式と(10)式を整理し、次式
Figure JPOXMLDOC01-appb-I000011
となる。
 この(11)式からも分かるように、放射電界及び誘導電磁界に比して強度の大きい状態にある準静電界の空間(以下、これを準静電界優位空間と呼ぶ)を広くする場合には周波数が密接に関係している。
 具体的には、低い周波数であるほど、準静電界優位空間が大きくなる(即ち、図1に示した強度境界距離は、周波数が低いほど長くなる(右に移ることになる))。これに対して高い周波数であるほど、準静電界優位空間が狭くなる(即ち、図1に示した強度境界距離は、周波数が高いほど短くなる(左に移ることになる))。
 例えば10[MHz]を選定した場合、上述の(11)式により、0.675[m]よりも近方では準静電界が優位な空間となる。かかる10[MHz]を選定した場合に放射電界、誘導電磁界及び準静電界それぞれの相対的な強度と、距離との関係をグラフ化すると図2に示す結果となる。
 この図2からも明らかなように、電界発生源から0.01[m]地点の準静電界の強度は、誘導電磁界に比しておよそ18.2[dB]大きくなる。従ってこの場合の準静電界は、誘導電磁界及び放射電界の影響がないものとみなすことができる。
 このように準静電界は、低い周波数帯を選定するほど、電界発生源からより広い空間において、誘導電磁界及び放射電界に比して優位となる関係にある。
[1−4.電界と人体]
 ところで、人体に放射電界や誘導電磁界を発生させようとするならば人体に電流を流す必要があるが、人体はインピーダンスが非常に高いので、人体に電流を効率的に流すことは物理的に困難でありかつ効率が悪い。また生理的にも好ましくない。しかしながら静電気帯電に代表される静電現象については全く様相が異なってくる。
 すなわち、我々が日常で静電気を体感するという経験的事実からも示唆されるように、人体は非常に良く帯電する。また動作に応じた人体表面の帯電により準静電界が発生することも知られていることから、人体へ準静電界を発生させる場合には当該人体に通電する必要はなく帯電させればよい。
 つまり、人体は極めて少ない電荷の移動により誘電分極して帯電し、また人体表面のある一点で帯電が生じると、その一点から瞬間的に人体表面周囲に伝わり、この結果、人体表面からほぼ等方向へ準静電界の等電位面が形成される。このことは本出願人による実験及び試作品により既に確認されている。
 実験の一例として、床を基準電位0[V]とし、人体表面が480[V]に帯電した場合の人体周囲における電界をシミュレーションし、当該シミュレーションより得られた電界強度の分布パターンを図3に示す。なおこのシミュレーションの条件としては、壁と天井がなく床のみが存在する空間に、図4に示す生体組織の誘電率でなる直立姿勢の人体モデルが存在することとした。
 人体帯電圧を480[V]とした理由は、人体帯電圧は敷物(床表面の材料)と、履物の種類に強く依存し、当該敷物と、履物の組み合わせで最も低い人体帯電圧の絶対値が480[V]という文献を参考としたためである。
 ちなみにこの文献は、[作成者]木村裕和、[表題]繊維・高分子材料の帯電性とその評価方法、[媒体のタイプ]online、[発行日]平成10年6月29日、[作成元]評価技術部産業用繊維グループ、[情報源アドレス]http://www.tri.pref.osaka.jp/group/sense/sangyoseni/static.ele.pdf)である。
 この図3からも明らかなように、人体周囲をまとうようにして電界が分布していることが分かる。
[1−5.準静電界を用いた人体通信]
 ところで電界のベクトルは人体表面の法線方向となるものであることから、人体表面と、その人体表面から法線方向に離間した電極とを配置し、これら一対の電極間の電位差を検出すれば人体の帯電圧の変化を得ることが可能となる。この電位差は、一般に、人体の帯電圧に比例するものであり、該帯電圧に対しておよそ0.02倍となる。
 例えば、上記シミュレーションにおける人体モデルの手首に電極間距離が1[cm]の電極を配した場合、当該手首での電界強度はおよそ1000[V/m]となることから、電極間の電位差はおよそ10[V]である。
 この場合の理論上のノイズフロアは、電極面積を1[cm]×1[cm]、雑音係数を10、電界の周波数帯域を10[MHz]と仮定すると、−154[dB]であるので、電界に換算すると、およそ6×10−9[V/m]となる。よって、上記シミュレーション条件下では、人体表面での電位変化が6×10−9[V/m]以上であれば、該変化を検出することができる。
 準静電界が支配的となる上述の(11)式を充足する範囲に配置された人体は、放射電界や誘導電磁界の影響も少ない。つまり、放射電界や誘導電磁界には磁界が発生するため、該放射電界や誘導電磁界では電流が分布するが、この分布に起因する副次的な電界との干渉の程度が小さい。
 したがって、準静電界が支配的となる上述の(11)式を充足する範囲に配置された人体は媒介体として効率的に機能し、放射電界や誘導電磁界が優位な空間に比べて、人体通信が格段に安定化する。
 このように本発明は、準静電界が支配的となる範囲内に配置される人体を帯電させることにより媒介体として作用させ、その人体近傍に形成される準静電界を通信媒体として通信するものである。
(2)本発明を実施するための形態
[2−1.通信システムの構成]
 図5において通信システム1の構成を示す。この通信システム1は、携帯ディジタルオーディオプレーヤー、携帯電話機又は携帯ゲーム機等の携帯型電子機器に搭載された送信装置2と、ヘッドホンHPに搭載された受信装置3とによって構成される。
 送信装置2は、音楽データに応じて振動する準静電界を人体に与えて該人体を誘電分極させることで、人体表面に帯電圧(準静電界)を誘起させるようになされている。
 受信装置3は、人体表面における帯電圧の変化から音楽データを抽出し、該音楽データを、ヘッドホンHPに搭載されるデータ処理部に出力するようになされている。
[2−2.送信装置の構成]
 図6において送信装置2の構成を示す。この送信装置2は、送信すべき信号の出力対象とされる電極(以下、これを送信電極とも呼ぶ)11と、該送信電極11のペアとされる基準電極12とを有する。
 送信電極11には送信処理部20が接続される。送信処理部20は、キャリア生成部21、変調部22及びアンプ23を有する。
 キャリア生成部21は、一定の周波数の搬送波を生成する。この搬送波の周波数は、送信装置2と受信装置3とを離してもよいとして許容し得る最大距離において準静電界の強度が放射電界及び誘導電磁界よりも優位となる周波数とされる。
 すなわち(11)式に基づく「r<c/2πf」を充足する周波数のうち、歩行運動に伴って人体に形成される帯電変化(歩行周波数)の帯域(10[Hz]程度)や、ハムノイズの周波数帯域(50~60[Hz]程度)等のノイズフロアとの差が明確となる周波数が、空気及び人体の比誘電率などを考慮して選定される。具体的には例えば10[MHz]が選定される。
 変調部22には、送信装置2が搭載される携帯型電子機器において再生された音楽データが入力される。変調部22は、この音楽データに基づいて、キャリア生成部21が生成する搬送波を変調し、この結果得られる変調信号をアンプ23に送出する。
 アンプ23は、変調信号を所定の信号レベルにまで増幅し、当該増幅した変調信号を送信電極11に送出する。
 送信電極11は、アンプ23から変調信号における搬送波の周波数に応じて、放射電界、誘導電磁界及び準静電界の合成電界を、該準静電界の強度が優位となる状態(放射電界及び誘導電磁界が抑制された状態)で発振する。
 この合成電界に存在する人体は誘電分極し、該人体表面には準静電界(帯電圧)が形成される。したがって準静電界(帯電圧)は、音楽データが重畳された変調信号に応じて変化することになる。
 かかる構成に加えてこの送信装置2には、基準電極12における電位の変動を抑制する部(以下、これをリファレンス電位安定化部とも呼ぶ)30が設けられる。
 このリファレンス電位安定化部30は複数の電極31~34を有する。これら電極31~34は、正方形の各頂点となる関係にあり、該正方形の重心に基準電極12が存在する関係となる位置に配される。
 これら電極31~34のうち、一方の対角線上に配される電極31、34には正弦波信号を発信する信号源35が接続される。この正弦波の周波数は、(11)式に基づく「r<c/2πf」を充足する周波数のうち、キャリア生成部21で用いられる搬送波の周波数とは異なる周波数とされる。なおキャリア生成部21の場合と同様にノイズフロアとの差が明確となる周波数が選定される。
 また他方の対角線上に配される電極32、33には、正弦波信号から、該正弦波信号と同じ周波数及び振幅で位相が180°異なる信号(以下、これを逆波信号とも呼ぶ)を生成する逆波生成部36が接続される。
 したがって電極31~34には、図7に示すように、隣り合う電極での極性が反転する電荷が与えられることとなる。逆極性の電荷により生じる電界は相互に打ち消しあうため、当該電界の強度はZ軸(破線で示す)では時間経過にかかわらず0[V/m]となる。以下、電界が打ち消しあってその強度が所定値未満となる領域を特異領域と呼ぶこととする。
 ここで、図7に示す点電荷により生じる電界を重ねあわせたx−y平面での電界を計算してマッピングしたものを図8及び図9に示す。
 図8(A)は電界E[V/m]を対数尺度で示し、図8(B)は電界E[V/m]を線形尺度(リニアスケール)で示している。図8(C)は、図8(A)及び図8(B)の電界分布に対応する電位分布である。また図9(A)、(B)、(C)は、それぞれ、図8(A)、(B)、(C)における特異領域を拡大したものである。なお、図8及び図9では、電荷Qは1[C]とし、点電荷間の距離は0.01[m]とした。
 図8及び図9に示されるとおり、x−y平面に存在する電極31~34の重心位置及びその近傍は特異領域となっていることが分かる。
 また図8及び図9からも分かるように、各電極31~34での電界強度は急峻に減衰する。具体的には2の累乗数(電極個数)+1で減衰する。つまり、各電極31~34から生じる電界の範囲はごく近傍に限局した状態である。
 このことは、各電極31~34に対する外部の結合範囲がごく近傍に限局されるということを意味する。したがって、各電極31~34は人体に近づけられてもその人体との結合し難い状態にあり、当該電極31~34の重心(特異領域)に位置する基準電極12での電位の変動は大幅に抑制されることとなる。
 このようにこのリファレンス電位安定化部30は、隣り合う位置で逆極性の電荷が与えられる電極31~34によって、当該電極31~34の重心に位置する基準電極12の電位をおおよそ0[V]に保持し得るようになされている。
 なお、この実施の形態におけるリファレンス電位安定化部30は非導電性の筐体に覆われ、該筐体内に配される電極31~34は筐体内側面から一定の距離を隔てた位置に配される。
 したがって、リファレンス電位安定化部30は、該リファレンス電位安定化部30における筐体に人体が密着したとしても、該当該電極31~34の重心に位置する基準電極12の電位をおおよそ0[V]に保持し得るようになされている。
[2−3.受信装置の構成]
 図10において受信装置3の構成を示す。この受信装置3は、人体表面に形成される準静電界(帯電圧)の検出対象とされる電極(以下、これを検出電極とも呼ぶ)41と、該検出電極41のペアとされる基準電極42とを有する。
 検出電極41には受信処理部50が接続される。受信処理部50は、検出電極41と、基準電極42との間の電位差により生じる信号をアンプ51で増幅し、当該増幅結果として得られる信号を復調部52で復調する。
 この復調結果は、変調信号に応じて変化する準静電界(帯電圧)が検出電極41と、基準電極42との間の電位差として得られる場合、該変調信号に重畳された音楽データとなる。この音楽データは、ヘッドホンHP(図5)に搭載されるデータ処理部での各種処理を経てスピーカから放音されることになる。
 かかる構成に加えてこの実施の形態における受信装置3には、基準電極42における電位の変動を抑制する部(以下、これをリファレンス電位安定化部とも呼ぶ)60が設けられている。
 このリファレンス電位安定化部60は複数の電極61~64を有する。これら電極61~64は、この実施の形態ではリファレンス電位安定化部30と同様に、正方形の各頂点となる関係にあり、該正方形の重心に基準電極42が存在する関係となる位置に配される。
 これら電極61~64のうち、一方の対角線上に配される電極61、64には正弦波信号を発信する信号源65が接続される。また他方の対角線上に配される電極62、63には、正弦波信号から逆波信号を生成する逆波生成部66が接続される。
 したがってこのリファレンス電位安定化部60は、リファレンス電位安定化部30と同様に、隣り合う位置で逆極性の電荷が与えられる電極61~64によって、当該電極61~64の重心に位置する基準電極42の電位をおおよそ0[V]に保持し得るようになされている。
 なお、この実施の形態におけるリファレンス電位安定化部60は、リファレンス電位安定化部30と同様に非導電性の筐体に覆われ、該筐体内に配される電極61~64は筐体内側面から一定の距離を隔てた位置に配される。
 したがって、リファレンス電位安定化部60は、該リファレンス電位安定化部60における筐体に人体が密着したとしても、該当該電極61~64の重心に位置する基準電極12の電位をおおよそ0[V]に保持し得るようになされている。
[2−4.効果等]
 以上の構成において、この送信装置2では、送信電極11のペアとされる基準電極12を重心として正方形の各頂点となるよう4個の電極31~34が配され、該電極31~34に対して、隣り合う極性が反転する電荷が与えられる(図6、図7参照)。
 したがってこの送信装置2では、各電極31~34での重心位置が、隣り合う電極から生じる逆極性の電荷が時間変化にかかわらず相互に打ち消しあうことで特異領域とされ、送信電極11が単極子の給電点となることでモノポールアンテナとして機能する。
 また各電極31~34での電界強度は距離に対して2(2n+1)だけ減衰し、これら電極31~34から生じる電界の範囲はごく近傍に限局した状態にあることから、当該電極31~34に対する外部の結合範囲がごく近傍に限局される。
 送信装置2の配置位置はユーザの胸ポケット、尻ポケット又は鞄の中等さまざまであることから、人体に対する送信電極11及び基準電極12との配置関係に変動が生じる場合が一般的となる。またユーザの動作に応じて、人体における体と手との間に送信電極11及び基準電極12が囲まれる場合もある。
 このような場合であっても、各電極31~34自体の外部との結合範囲がごく近傍に限局されているため、該電極31~34の重心に位置する基準電極12に対して、送信電極11から生じる電界が人体を介して回り込むということが大幅に抑制され、該基準電極12での電位は安定化される。
 ユーザに対する送信装置2の配置位置や、該ユーザの動作にかかわらず基準電極12での電位を安定化できるということは各種観点で非常に有用である。
 これに加えて、各電極31~34自体の外部との結合範囲がごく近傍に限局されるため、送信装置2又はこの送信装置2を搭載する電子機器内での他の回路との干渉が大幅に低減され、この結果、エネルギー効率が高く省電力化となる。
 一方、この受信装置3では、検出電極41のペアとされる基準電極42を重心として正方形の各頂点となるよう4個の電極61~64が配され、該電極61~64に対して、隣り合う極性が反転する電荷が与えられる(図10、図7参照)。
 したがってこの受信装置3では、送信装置2と同様に、各電極61~64での重心位置が、隣り合う電極から生じる逆極性の電荷が相互に打ち消しあうことで特異領域とされる。また、各電極61~64自体の外部との結合範囲がごく近傍に限局されているため、送信電極11から生じる電界が人体を介して基準電極42に回り込むということも大幅に低減され、基準電極42での電位は安定化される。
 これに加えて、各電極61~64自体の外部との結合範囲がごく近傍に限局されるため、受信装置3又はこの受信装置3を搭載するヘッドホンHP(図5)内での他の回路との干渉が大幅に低減され、この結果、エネルギー効率が高く省電力化となる。
 なお、送信電極11(検出電極41)のペアとされる基準電極12(42)を重心として正方形の各頂点となるよう4個の電極31~34(61~64)は、回路基板に搭載可能である。したがって、送信装置2(受信装置3)を、カード型のように薄厚化する場合であってもリファレンス電位安定化部30(60)を容易に適用することができ、設計上の制約を緩和することが可能である。
 以上の構成によれば、送信電極11(検出電極41)のペアとされる基準電極12(42)を重心として正方形の各頂点となるよう4個の電極31~34(61~64)を配することで基準電極12(42)を安定化できるようにしたことにより、通信効率を向上できる。
(3)他の実施の形態
 上述の実施の形態では、正方形の各頂点となる関係にあり、該正方形の重心に基準電極12(42)が存在する関係となる位置に配される電極31~34(61~64)に対して、隣り合う極性が反転する関係となる信号を与える電極構造(平面4極構造)が採用された。しかしながらリファレンス電位安定化部30(60)における電極構造はこの実施の形態に限定されるものではない。
 例えば、正2n(nは2以上の偶数)角形の各頂点となる関係にあり、該正2n角形の重心に基準電極12が存在する関係となる位置に配される電極に対して、隣り合う極性が反転する関係となる信号を与える電極構造(すなわち平面2n極構造)が適用可能である。
 ここで、平面6極構造(n=3)及び平面8極構造(n=4)における電極位置と、当該電極に与えられる電荷との関係を図11に示す。また平面4極構造(n=2)、平面6極構造及び平面8極構造での特異領域(基準電極が配される正2n角形の重心)からの距離と、電位との関係を図12に示す。
 図12からも分かるように、平面2n極構造ではnが大きい電極構造となるほど、正2n角形の重心近傍での電位の減衰の程度が大きくなる。これは、正2n角形の重心から各頂点までの距離が一定であれば、nが大きくなるほど、隣り合う電荷間の距離(すなわち多角形の辺の長さ)が小さくなり、当該電極から生じる電界が打ち消しあう効率が向上することによる。したがって、平面2n極構造としてnが大きい電極構造が採用されるほど、基準電極12(42)における電位の変動を抑制する程度を大きくすることができる。
 また例えば、正4面体以外の正多面体、もしくは、全ての面の形状が2n角形となる準正多面体の各頂点となる関係にあり、当該多面体の対角線の重心に基準電極12(42)が存在する関係となる位置に配される電極に対して、隣り合う極性が反転する関係となる信号を与える電極構造(すなわち立体多極構造)が適用可能である。なお、立体8極構造(正6面体)、立体14極構造(切頂8面体)における電極位置と、当該電極に与えられる電荷との関係を図13に示す。
 リファレンス電位安定化部30(60)における電極構造はこれら例示以外であってもよい。要するに、リファレンス電位安定化部30(60)は、基準電極12又は42の周りに回転対称なm個(mは4以上の偶数)の電極と、それら電極から生じる電界における基準電極12又は42での強度が所定値未満となる交番信号を、該電極に対して印加する印加手段とを有するものとすればよい。基準電極12又は42での電界強度は「0」となることが望ましいが、回路素子のばらつき等を考慮して所定値未満とされる。なお、この多極構造自体の詳細等については本発明者が既に提案した特願2007−56954も参照されたい。
 また上述の実施の形態では、電極から生じる電界における基準電極12又は42での強度が所定値未満となる交番信号を、該電極に対して印加する印加手段として、信号源35(65)及び逆波生成部36(66)が採用された。しかしながら印加手段はこの実施の形態に限定されるものではない。例えば、図6(図10)との対応部分に同一符号を付した図14(図15)に示す形態を採用することが可能である。
 このリファレンス電位安定化部70(80)では、アンプ23(51)と基準電極12(復調部52)との間を分岐して電極31、34(61、64)に接続される信号線が設けられ、該アンプ23(51)から出力される信号の逆波信号を電極32、33(62、63)に与える逆波生成部76(86)が設けられる。
 すなわち印加手段は、リファレンス電位安定化部30(60)では正弦波信号を電極31、34(61、64)に与えその逆波信号を電極32、33(62、63)に与えるものであるのに対し、リファレンス電位安定化部70(80)ではアンプ23(51)の出力を電極31、34(61、64)に与えその逆波信号を電極32、33(62、63)に与えるものである点で相違する。
 したがって、リファレンス電位安定化部70(80)は、仮に、電極31~34(61~64)から生じる電界が、送信すべき信号(受信される信号)に回り込んだであっても、リファレンス電位安定化部30(60)に比べて、当該信号に与える影響を抑えることができる。
 なお、図15に示すリファレンス電位安定化部80では、アンプ51と復調部52との間を分岐して電極61、64に接続される信号線に代えて、検出電極41と、アンプ51との間を分岐して電極61、64に接続される信号線が適用可能である。この場合、逆波生成部86は、アンプ51に入力される信号の逆波信号を電極62、63に与えるようにすればよい。
 ところで、接地がとれない機器に送信装置2又は受信装置3が設けられている場合、逆波生成部36(76)、66(86)に対する基準電位についても明示的ではないことになる。
 この場合、逆波生成部36(76)、66(86)では、逆波信号の生成時における基準電位の変動によって、一方の対角線上における電極31と34、61と64に与えられる正弦波信号に対する逆波(同じ振幅で位相が180°異なる波形)とは異なる波形の信号として生成されることもある。
 このため、リファレンス電位安定化部30(70)、60(80)における基準電極12、42の電位が許容範囲内(0±α[V])で保持されないといった事態が想定される。
 したがって、逆波生成部36(76)、66(86)に対する基準電位の変動を抑制すれば、リファレンス電位安定化部30(70)、60(80)における基準電極12、42をより一段と安定化できる。
 具体的には、例えば図16に示す逆波電位安定化部100を採用することができる。この逆波電位安定化部100は、4個の電極101~104と、直流電圧印加部105、106とを有する。
 電極101~104は、逆波生成部36、76、66又は86の基準電極92を重心として正方形の各頂点となるよう配される。直流電圧印加部105は、一方の対角線上の電極101、104に対して正極又は負極の直流電圧を印加する。直流電圧印加部106は、他方の対角線上の電極102、103に対して、直流電圧印加部105とは逆極性の直流電圧を印加する。
 なお、直流電圧印加部105、106から直流電圧を印加することに代えて、電極101~104のうち、正方形の辺を構成する位置関係として互いに隣り合う電極101−102、102−104、103−104、101−103同士を、互いに極性の異なるエレクトトレットなどの永久帯電体とすることもできる。
 これにより逆波生成部36(76)、66(86)に対する基準電位は、略一定となり、この結果、リファレンス電位安定化部30(70)、60(80)における基準電極12、42の電位が許容範囲内(0±α[V])で必ず保持することとなる。
 また上述の実施の形態では、送信電極11及び基準電極12(図5)と、検出電極41及び基準電極42(図10)との形状が矩形とされた。しかしながらこれら電極の形状はこの実施の形態に限定されるものではなく、あらゆる形状を採用することが可能である。
 また上述の実施の形態では、送信電極11及び基準電極12(図5)と、検出電極41及び基準電極42(図10)との配置が平行とされた。しかしながら電極の配置状態はこの実施の形態に限定されるものではなく、あらゆる状態を採用することが可能である。
(1) Human body communication
Before describing a mode for carrying out the present invention, first, electric field type human body communication will be described from various viewpoints.
[1-1. Classification of electric field]
When r is a distance from a minute dipole serving as an electric field generation source and P is a position separated from the distance r, the electric field intensity E at the position P is expressed by the following equation from the Maxwell equation.
Figure JPOXMLDOC01-appb-I000001
It can be expressed as a music coordinate (r, θ, δ). Incidentally, “Q” in the equation (1) is a charge (unit is coulomb), and “l” is a distance between charges (however, “l” is smaller than “r” by definition of a minute dipole). “Π” is a circular constant, “ε” is a dielectric constant of a space including a minute dipole, “j” is an imaginary unit, and “k” is a wave number.
When this equation (1) is expanded,
Figure JPOXMLDOC01-appb-I000002
It becomes. As can be seen from this equation (2), the electric field E r And E Θ Is a radiated electric field that is linearly inversely proportional to the distance from the electric field source (E Θ 3) and an induced electromagnetic field (E that is inversely proportional to the square of the distance from the electric field source). r , E Θ And the quasi-electrostatic field that is inversely proportional to the cube of the distance from the electric field source (E r , E Θ Generated as a combined electric field with the first term).
Thus, the electric field can be classified into a radiation electric field, an induction electromagnetic field, and a quasi-electrostatic field in relation to the distance.
[1-2. Electric field resolution]
Here, the ratio of the change in electric field strength depending on the distance from the electric field generation source is compared between the radiation electric field, the induction electromagnetic field, and the quasi-electrostatic field. Electric field E in equation (2) Θ When the third term relating to the radiation electric field is differentiated by the distance r,
Figure JPOXMLDOC01-appb-I000003
It can be expressed as In addition, the electric field E in the equation (2) Θ When the second term relating to the induction electromagnetic field is differentiated by the distance r,
Figure JPOXMLDOC01-appb-I000004
It can be expressed as Furthermore, the electric field E in equation (2) Θ When the first term relating to the quasi-electrostatic field is differentiated by the distance r,
Figure JPOXMLDOC01-appb-I000005
It can be expressed as Note that “T” in the equations (3) to (5) is a part of the equation (2) for the sake of simplicity.
Figure JPOXMLDOC01-appb-I000006
It is replaced as follows.
As is clear from these formulas (3) to (5), the ratio of the change in the electric field strength depending on the distance is the largest component related to the quasi-electrostatic field. That is, it can be said that the quasi-electrostatic field has a high resolution with respect to the distance.
[1-3. Relationship between electric field strength and frequency]
Here, the relationship between the relative intensity of each of the radiation electric field, the induction electromagnetic field and the quasi-electrostatic field and the distance is shown in FIG. FIG. 1 shows the relationship between the relative strength and distance of each electric field at 1 [MHz] as an index.
As is clear from FIG. 1, there is a distance (hereinafter referred to as an intensity boundary distance) where the relative strengths of the radiation electric field, the induction electromagnetic field, and the quasi-electrostatic field are equal. In a space far from the intensity boundary distance, the radiated electric field is dominant (a state larger than the intensity of the induction electromagnetic field or the quasi-electrostatic field). On the other hand, the quasi-electrostatic field is dominant (a state larger than the intensity of the radiated electric field and the induced electromagnetic field) in a space closer to the intensity boundary distance.
This intensity boundary distance is the electric field E in equation (2). Θ Each term (E Θ1 , E Θ2 , E Θ3 ), The components of the electric field corresponding to
Figure JPOXMLDOC01-appb-I000007
Match (E Θ1 = E Θ2 = E Θ3 )
Figure JPOXMLDOC01-appb-I000008
That is, that is,
Figure JPOXMLDOC01-appb-I000009
Can be expressed as
The wave number k in the equation (9) indicates the speed of light as c (c = 3 × 10 2 [M / s]) and the frequency is f [Hz]
Figure JPOXMLDOC01-appb-I000010
Can be expressed as Therefore, the intensity boundary distance is arranged by formulas (9) and (10).
Figure JPOXMLDOC01-appb-I000011
It becomes.
As can be seen from equation (11), when the space of the quasi-electrostatic field that is stronger than the radiated electric field and the induction electromagnetic field (hereinafter referred to as the quasi-electrostatic field dominant space) is widened. Are closely related in frequency.
Specifically, the lower the frequency, the larger the quasi-electrostatic field dominant space (that is, the intensity boundary distance shown in FIG. 1 becomes longer as the frequency is lower (moves to the right)). On the other hand, the higher the frequency, the narrower the quasi-electrostatic field dominant space (that is, the intensity boundary distance shown in FIG. 1 becomes shorter as the frequency becomes higher (shifts to the left)).
For example, when 10 [MHz] is selected, a space in which the quasi-electrostatic field is dominant near 0.675 [m] according to the above-described equation (11). When such 10 [MHz] is selected, the relationship between the relative strength of each of the radiated electric field, the induction electromagnetic field, and the quasi-electrostatic field and the distance is graphed, and the result shown in FIG. 2 is obtained.
As is clear from FIG. 2, the strength of the quasi-electrostatic field at a point of 0.01 [m] from the electric field generation source is approximately 18.2 [dB] larger than the induction electromagnetic field. Therefore, the quasi-electrostatic field in this case can be regarded as having no influence of the induction electromagnetic field and the radiation electric field.
As described above, the quasi-electrostatic field has a relationship superior to the induction electromagnetic field and the radiation electric field in a wider space from the electric field generation source as the lower frequency band is selected.
[1-4. Electric field and human body]
By the way, if you want to generate a radiated electric field or induction electromagnetic field in the human body, it is necessary to pass a current through the human body, but since the human body has a very high impedance, it is physically impossible to flow a current through the human body efficiently. Difficult and inefficient. Further, it is not physiologically preferable. However, aspects of electrostatic phenomena represented by electrostatic charging are completely different.
In other words, the human body is very well charged, as suggested by the empirical fact that we experience static electricity everyday. In addition, it is known that a quasi-electrostatic field is generated by charging of the human body surface according to the operation. Therefore, when a quasi-electrostatic field is generated in the human body, it is not necessary to energize the human body and it may be charged.
In other words, the human body is charged by dielectric polarization due to very little movement of electric charge, and when charging occurs at a certain point on the human body surface, it is transmitted from that point to the surroundings of the human body momentarily, and as a result, almost the same direction from the human body surface An equipotential surface of a quasi-electrostatic field is formed. This has already been confirmed by experiments and prototypes by the applicant.
As an example of the experiment, the electric field around the human body is simulated when the floor is set to a reference potential of 0 [V] and the surface of the human body is charged to 480 [V], and the electric field intensity distribution pattern obtained from the simulation is shown in FIG. Show. As a condition for the simulation, a human body model in an upright posture having a dielectric constant of a living tissue shown in FIG. 4 exists in a space where there is only a floor without walls and ceilings.
The reason why the human body voltage is set to 480 [V] is that the human body voltage strongly depends on the type of the rug (floor surface material) and the footwear, and the absolute value of the lowest human body voltage in the combination of the rug and the footwear. This is because the document 480 [V] was referred to.
By the way, this document includes [author] Hirokazu Kimura, [title] electrification of fiber / polymer material and its evaluation method, [media type] online, [issue date] June 29, 1998, [author] ] Evaluation Technology Department Industrial Fiber Group, [Information Source Address] http: // www. tri. pref. osaka. jp / group / sense / sangyosei / static. ele. pdf).
As is apparent from FIG. 3, it can be seen that the electric field is distributed around the human body.
[1-5. Human body communication using quasi-electrostatic field]
By the way, since the vector of the electric field is the normal direction of the human body surface, if the human body surface and an electrode separated from the human body surface in the normal direction are arranged and the potential difference between the pair of electrodes is detected, It is possible to obtain a change in the charged voltage of the human body. This potential difference is generally proportional to the charged voltage of the human body, and is approximately 0.02 times the charged voltage.
For example, when an electrode having an electrode distance of 1 [cm] is arranged on the wrist of the human body model in the above simulation, the electric field strength at the wrist is about 1000 [V / m], so the potential difference between the electrodes is about 10 [V].
The theoretical noise floor in this case is −154 [dB] assuming that the electrode area is 1 [cm] × 1 [cm], the noise coefficient is 10, and the frequency band of the electric field is 10 [MHz]. When converted to an electric field, approximately 6 × 10 -9 [V / m]. Therefore, under the simulation conditions, the potential change on the human body surface is 6 × 10. -9 If it is [V / m] or more, the change can be detected.
A human body arranged in a range satisfying the above-described expression (11) in which the quasi-electrostatic field is dominant is less affected by the radiation electric field and the induction electromagnetic field. That is, since a magnetic field is generated in the radiated electric field and the induction electromagnetic field, a current is distributed in the radiated electric field and the induction electromagnetic field, but the degree of interference with a secondary electric field due to this distribution is small.
Therefore, the human body arranged in the range satisfying the above-described expression (11) in which the quasi-electrostatic field is dominant functions efficiently as a mediator, and the human body compared to the space where the radiation electric field and the induction electromagnetic field are dominant. Communication is greatly stabilized.
As described above, the present invention causes a human body arranged within a range where the quasi-electrostatic field is dominant to act as a mediator, and communicates using the quasi-electrostatic field formed in the vicinity of the human body as a communication medium. It is.
(2) Mode for carrying out the present invention
[2-1. Configuration of communication system]
FIG. 5 shows the configuration of the communication system 1. The communication system 1 includes a transmission device 2 mounted on a portable electronic device such as a portable digital audio player, a mobile phone, or a portable game machine, and a reception device 3 mounted on a headphone HP.
The transmitting device 2 induces a charged voltage (quasi-electrostatic field) on the surface of the human body by applying a quasi-electrostatic field that vibrates in accordance with music data to the human body to cause dielectric polarization.
The receiving device 3 is configured to extract music data from a change in the charged voltage on the human body surface and output the music data to a data processing unit mounted on the headphone HP.
[2-2. Configuration of transmitter]
FIG. 6 shows the configuration of the transmission apparatus 2. The transmission device 2 includes an electrode (hereinafter, also referred to as a transmission electrode) 11 that is an output target of a signal to be transmitted, and a reference electrode 12 that is a pair of the transmission electrode 11.
A transmission processing unit 20 is connected to the transmission electrode 11. The transmission processing unit 20 includes a carrier generation unit 21, a modulation unit 22, and an amplifier 23.
The carrier generation unit 21 generates a carrier wave having a constant frequency. The frequency of this carrier wave is a frequency at which the strength of the quasi-electrostatic field is superior to the radiated electric field and the induced electromagnetic field at the maximum allowable distance that the transmitter 2 and the receiver 3 may be separated.
That is, among the frequencies satisfying “r <c / 2πf” based on the equation (11), the band of charging change (walking frequency) formed in the human body with walking motion (about 10 [Hz]), hum noise The frequency at which the difference from the noise floor such as the frequency band (about 50 to 60 [Hz]) becomes clear is selected in consideration of the relative permittivity of air and the human body. Specifically, for example, 10 [MHz] is selected.
Music data reproduced by a portable electronic device in which the transmission device 2 is mounted is input to the modulation unit 22. The modulation unit 22 modulates the carrier wave generated by the carrier generation unit 21 based on the music data, and sends a modulation signal obtained as a result to the amplifier 23.
The amplifier 23 amplifies the modulated signal to a predetermined signal level and sends the amplified modulated signal to the transmission electrode 11.
The transmitting electrode 11 generates a combined electric field of the radiated electric field, the induced electromagnetic field, and the quasi-electrostatic field according to the frequency of the carrier wave in the modulation signal from the amplifier 23 (the radiated electric field and the induced electromagnetic field). Oscillates when the field is suppressed.
The human body existing in the synthetic electric field is dielectrically polarized, and a quasi-electrostatic field (electrostatic voltage) is formed on the surface of the human body. Therefore, the quasi-electrostatic field (electrostatic voltage) changes according to the modulation signal on which the music data is superimposed.
In addition to this configuration, the transmitter 2 is provided with a unit (hereinafter also referred to as a reference potential stabilization unit) 30 that suppresses fluctuations in the potential of the reference electrode 12.
The reference potential stabilization unit 30 has a plurality of electrodes 31 to 34. These electrodes 31 to 34 are in the relationship of being the respective vertexes of the square, and are arranged at positions where the reference electrode 12 is present at the center of gravity of the square.
Among these electrodes 31 to 34, a signal source 35 that transmits a sine wave signal is connected to the electrodes 31 and 34 arranged on one diagonal line. The frequency of the sine wave is different from the frequency of the carrier used in the carrier generation unit 21 among the frequencies satisfying “r <c / 2πf” based on the equation (11). As in the case of the carrier generation unit 21, a frequency at which the difference from the noise floor becomes clear is selected.
The electrodes 32 and 33 arranged on the other diagonal line generate a signal (hereinafter also referred to as an inverse wave signal) from the sine wave signal having the same frequency and amplitude as the sine wave signal but having a phase difference of 180 °. An inverse wave generation unit 36 is connected.
Therefore, as shown in FIG. 7, the electrodes 31 to 34 are given a charge whose polarity is reversed at the adjacent electrodes. Since the electric fields generated by the charges of opposite polarity cancel each other, the intensity of the electric field is 0 [V / m] on the Z axis (shown by a broken line) regardless of the passage of time. Hereinafter, a region where the electric field cancels and the intensity is less than a predetermined value is referred to as a singular region.
Here, FIG. 8 and FIG. 9 show the mapping of the electric field in the xy plane obtained by superimposing the electric fields generated by the point charges shown in FIG.
8A shows the electric field E [V / m] on a logarithmic scale, and FIG. 8B shows the electric field E [V / m] on a linear scale (linear scale). FIG. 8C shows a potential distribution corresponding to the electric field distributions of FIGS. 8A and 8B. FIGS. 9A, 9B, and 9C are enlarged views of specific regions in FIGS. 8A, 8B, and 8C, respectively. 8 and 9, the charge Q is 1 [C], and the distance between point charges is 0.01 [m].
As shown in FIGS. 8 and 9, it can be seen that the positions of the centers of gravity of the electrodes 31 to 34 existing in the xy plane and the vicinity thereof are singular regions.
As can be seen from FIGS. 8 and 9, the electric field strength at each of the electrodes 31 to 34 is steeply attenuated. Specifically, it attenuates by a power of 2 (number of electrodes) +1. That is, the range of the electric field generated from each electrode 31 to 34 is in a very limited state.
This means that the external coupling range for each of the electrodes 31 to 34 is limited to the very vicinity. Therefore, even if each electrode 31 to 34 is brought close to the human body, it is difficult to couple with the human body. It will be suppressed.
As described above, the reference potential stabilization unit 30 uses the electrodes 31 to 34 to which the charges of opposite polarity are given at the adjacent positions to set the potential of the reference electrode 12 positioned at the center of gravity of the electrodes 31 to 34 to approximately 0 [V]. To be able to hold on.
Note that the reference potential stabilization unit 30 in this embodiment is covered with a non-conductive casing, and the electrodes 31 to 34 arranged in the casing are arranged at a certain distance from the inner surface of the casing. The
Therefore, the reference potential stabilization unit 30 sets the potential of the reference electrode 12 positioned at the center of gravity of the electrodes 31 to 34 to approximately 0 [V] even if the human body is in close contact with the casing of the reference potential stabilization unit 30. To be able to hold on.
[2-3. Configuration of receiving apparatus]
FIG. 10 shows the configuration of the receiving device 3. This receiving device 3 includes an electrode 41 (hereinafter also referred to as a detection electrode) that is a detection target of a quasi-electrostatic field (electrostatic voltage) formed on the surface of a human body, and a reference electrode that is a pair of the detection electrode 41 42.
A reception processing unit 50 is connected to the detection electrode 41. The reception processing unit 50 amplifies a signal generated by the potential difference between the detection electrode 41 and the reference electrode 42 by the amplifier 51 and demodulates the signal obtained as a result of the amplification by the demodulation unit 52.
The demodulation result is music data superimposed on the modulation signal when a quasi-electrostatic field (electrostatic voltage) that changes in accordance with the modulation signal is obtained as a potential difference between the detection electrode 41 and the reference electrode 42. This music data is emitted from the speaker through various processes in a data processing unit mounted on the headphone HP (FIG. 5).
In addition to such a configuration, the receiving apparatus 3 in this embodiment is provided with a unit (hereinafter also referred to as a reference potential stabilization unit) 60 that suppresses potential fluctuations in the reference electrode 42.
The reference potential stabilization unit 60 has a plurality of electrodes 61 to 64. In the present embodiment, these electrodes 61 to 64 are in the relationship of being the vertices of a square, like the reference potential stabilization unit 30, and are arranged at positions where the reference electrode 42 is present at the center of gravity of the square. The
Of these electrodes 61 to 64, a signal source 65 for transmitting a sine wave signal is connected to the electrodes 61 and 64 arranged on one diagonal line. In addition, a reverse wave generation unit 66 that generates a reverse wave signal from a sine wave signal is connected to the electrodes 62 and 63 arranged on the other diagonal line.
Therefore, the reference potential stabilization unit 60 is similar to the reference potential stabilization unit 30 in that the reference electrode 42 positioned at the center of gravity of the electrodes 61 to 64 is provided by the electrodes 61 to 64 to which charges of opposite polarity are given at adjacent positions. Can be maintained at approximately 0 [V].
Note that the reference potential stabilization unit 60 in this embodiment is covered with a non-conductive casing in the same manner as the reference potential stabilization section 30, and the electrodes 61 to 64 disposed in the casing are formed from the inner surface of the casing. It is arranged at a position separated by a certain distance.
Therefore, the reference potential stabilization unit 60 sets the potential of the reference electrode 12 positioned at the center of gravity of the electrodes 61 to 64 to approximately 0 [V] even if the human body is in close contact with the casing of the reference potential stabilization unit 60. To be able to hold on.
[2-4. Effect]
In the above configuration, in the transmission device 2, the four electrodes 31 to 34 are arranged so as to be the vertices of the square with the reference electrode 12 that is a pair of the transmission electrodes 11 as the center of gravity. Thus, electric charges whose polarities are adjacent to each other are given (see FIGS. 6 and 7).
Therefore, in this transmission device 2, the center of gravity position of each of the electrodes 31 to 34 becomes a singular region by causing the opposite polarity charges generated from the adjacent electrodes to cancel each other regardless of the time change, and the transmission electrode 11 is a monopole. It functions as a monopole antenna by becoming a feeding point.
The electric field strength at each of the electrodes 31 to 34 is 2 with respect to the distance. 5 (2 n + 1 ) And the range of the electric field generated from the electrodes 31 to 34 is in a very limited state, so that the external coupling range for the electrodes 31 to 34 is limited to the very vicinity.
Since the transmission device 2 is arranged in various positions such as a user's breast pocket, buttocks pocket, or heel, it is common that the positional relationship between the transmission electrode 11 and the reference electrode 12 with respect to the human body varies. Further, the transmission electrode 11 and the reference electrode 12 may be surrounded between the body and the hand of the human body according to the user's action.
Even in such a case, since the coupling range with the outside of each electrode 31 to 34 itself is limited to the very vicinity, the transmission electrode is compared with the reference electrode 12 positioned at the center of gravity of the electrode 31 to 34. Thus, the electric field generated from the reference electrode 11 is greatly suppressed from passing through the human body, and the potential at the reference electrode 12 is stabilized.
It is very useful from various viewpoints that the potential at the reference electrode 12 can be stabilized regardless of the arrangement position of the transmission device 2 with respect to the user and the operation of the user.
In addition to this, since the coupling range of the electrodes 31 to 34 with the outside is limited to a very close range, the interference with the transmitter 2 or other circuits in the electronic device in which the transmitter 2 is mounted is greatly increased. As a result, the energy efficiency is high and the power is saved.
On the other hand, in this receiving device 3, four electrodes 61 to 64 are arranged so as to be the apexes of a square with the reference electrode 42 as a pair of detection electrodes 41 as the center of gravity, and adjacent to the electrodes 61 to 64. Charges whose polarity is matched are given (see FIGS. 10 and 7).
Therefore, in the receiving device 3, as in the transmitting device 2, the center of gravity position of each of the electrodes 61 to 64 is made a singular region by mutually canceling the opposite polarity charges generated from the adjacent electrodes. In addition, since the coupling range of the electrodes 61 to 64 with the outside is limited to a very close range, it is possible to greatly reduce the electric field generated from the transmitting electrode 11 from passing through the human body to the reference electrode 42. The potential at 42 is stabilized.
In addition, since the coupling range of the electrodes 61 to 64 themselves with the outside is limited to the very vicinity, the receiving device 3 or other circuits in the headphone HP (FIG. 5) in which the receiving device 3 is mounted Interference is greatly reduced, resulting in high energy efficiency and low power consumption.
The four electrodes 31 to 34 (61 to 64) can be mounted on the circuit board so that the reference electrode 12 (42), which is a pair of the transmission electrode 11 (detection electrode 41), becomes the center of the square with the reference electrode 12 (42) as the center of gravity. It is. Therefore, even when the transmitter 2 (receiver 3) is thin like a card type, the reference potential stabilization unit 30 (60) can be easily applied, and the design restrictions are eased. It is possible.
According to the above configuration, the four electrodes 31 to 34 (61 to 64) are arranged so as to be the vertices of the square with the reference electrode 12 (42) as a pair of the transmission electrode 11 (detection electrode 41) as the center of gravity. By doing so, the reference electrode 12 (42) can be stabilized, whereby the communication efficiency can be improved.
(3) Other embodiments
In the above-described embodiment, the electrodes 31 to 34 (61 to 64) are arranged at positions where the reference electrodes 12 (42) are present at the center of gravity of the square. Thus, an electrode structure (planar quadrupole structure) that gives a signal in which adjacent polarities are reversed is adopted. However, the electrode structure in the reference potential stabilization unit 30 (60) is not limited to this embodiment.
For example, there is a relationship that becomes each vertex of a positive 2n (n is an even number of 2 or more) square, and it is adjacent to an electrode arranged at a position where the reference electrode 12 exists at the center of gravity of the positive 2n square. An electrode structure (that is, a planar 2n-pole structure) that provides a signal having a relationship of reversing the polarity is applicable.
Here, FIG. 11 shows the relationship between the electrode position in the planar hexapole structure (n = 3) and the planar octupole structure (n = 4) and the charge applied to the electrode. FIG. 12 shows the relationship between the potential from the distance from the singular region (the center of the regular 2n square where the reference electrode is arranged) in the planar quadrupole structure (n = 2), the planar hexapole structure and the planar octupole structure. Show.
As can be seen from FIG. 12, in the planar 2n-pole structure, as the electrode structure increases, the degree of potential attenuation near the center of gravity of the regular 2n square increases. This is because if the distance from the center of gravity of the regular 2n square to each vertex is constant, the distance between adjacent charges (that is, the length of the side of the polygon) decreases as n increases, and the electric field generated from the electrode. This is because the efficiency of canceling out is improved. Therefore, as the electrode structure having a large n is adopted as the planar 2n-pole structure, the degree of suppressing the potential fluctuation at the reference electrode 12 (42) can be increased.
In addition, for example, a regular polyhedron other than a regular tetrahedron, or a quasi-regular polyhedron in which the shape of all the surfaces is a 2n-polyhedron is in the relationship of each vertex, and the reference electrode 12 (42) exists at the center of gravity of the diagonal line of the polyhedron. An electrode structure (that is, a three-dimensional multipolar structure) that gives a signal that has a relationship in which adjacent polarities are inverted can be applied to an electrode that is disposed at a position that satisfies the relationship. Note that FIG. 13 shows the relationship between the electrode position in the three-dimensional octapole structure (regular hexahedron) and the three-dimensional 14-pole structure (truncated octahedron) and the charge applied to the electrode.
The electrode structure in the reference potential stabilization unit 30 (60) may be other than these examples. In short, the reference potential stabilization unit 30 (60) includes m electrodes (m is an even number of 4 or more) that are rotationally symmetric around the reference electrode 12 or 42, and the reference electrode 12 or 42 in the electric field generated from these electrodes. It is sufficient to have an application means for applying an alternating signal with an intensity of less than a predetermined value to the electrode. The electric field strength at the reference electrode 12 or 42 is desirably “0”, but is set to be less than a predetermined value in consideration of variations in circuit elements and the like. For details of the multipolar structure itself, refer to Japanese Patent Application No. 2007-56954 already proposed by the present inventor.
Further, in the above-described embodiment, the signal source 35 (65) and the reverse are applied as application means for applying an alternating signal in which the intensity at the reference electrode 12 or 42 in the electric field generated from the electrode is less than a predetermined value to the electrode. The wave generator 36 (66) is employed. However, the application means is not limited to this embodiment. For example, it is possible to adopt the form shown in FIG. 14 (FIG. 15) in which the same reference numerals are given to the corresponding parts to FIG. 6 (FIG. 10).
In the reference potential stabilization unit 70 (80), a signal line that branches between the amplifier 23 (51) and the reference electrode 12 (demodulation unit 52) and is connected to the electrodes 31, 34 (61, 64) is provided. In addition, there is provided a reverse wave generation unit 76 (86) for applying a reverse wave signal of the signal output from the amplifier 23 (51) to the electrodes 32, 33 (62, 63).
That is, in the reference potential stabilization unit 30 (60), the application means applies a sine wave signal to the electrodes 31, 34 (61, 64) and applies an inverse wave signal to the electrodes 32, 33 (62, 63). On the other hand, in the reference potential stabilization unit 70 (80), the output of the amplifier 23 (51) is given to the electrodes 31, 34 (61, 64) and the reverse wave signal is given to the electrodes 32, 33 (62, 63). There are some differences.
Therefore, even if the electric field generated from the electrodes 31 to 34 (61 to 64) wraps around the signal to be transmitted (received signal), the reference potential stabilizing unit 70 (80) Compared with the stabilizing unit 30 (60), the influence on the signal can be suppressed.
In the reference potential stabilization unit 80 shown in FIG. 15, instead of the signal line that branches between the amplifier 51 and the demodulation unit 52 and is connected to the electrodes 61 and 64, the detection electrode 41 and the amplifier 51 are connected. A signal line that is branched and connected to the electrodes 61 and 64 is applicable. In this case, the reverse wave generation unit 86 may apply the reverse wave signal of the signal input to the amplifier 51 to the electrodes 62 and 63.
By the way, when the transmitter 2 or the receiver 3 is provided in a device that cannot be grounded, the reference potential for the inverse wave generators 36 (76) and 66 (86) is not explicit.
In this case, the inverse wave generators 36 (76) and 66 (86) have sinusoidal signals applied to the electrodes 31 and 34, 61 and 64 on one diagonal line due to the fluctuation of the reference potential when the inverse wave signal is generated. It may be generated as a signal having a waveform different from the reverse wave (waveform having the same amplitude but having a phase difference of 180 °).
For this reason, a situation is assumed in which the potentials of the reference electrodes 12 and 42 in the reference potential stabilization units 30 (70) and 60 (80) are not held within an allowable range (0 ± α [V]).
Therefore, if the fluctuation of the reference potential with respect to the inverse wave generation units 36 (76) and 66 (86) is suppressed, the reference electrodes 12 and 42 in the reference potential stabilization units 30 (70) and 60 (80) are further stabilized. it can.
Specifically, for example, the reverse wave potential stabilization unit 100 shown in FIG. 16 can be employed. The reverse wave potential stabilization unit 100 includes four electrodes 101 to 104 and DC voltage application units 105 and 106.
The electrodes 101 to 104 are arranged so as to be the vertices of a square with the reference electrode 92 of the inverse wave generator 36, 76, 66 or 86 as the center of gravity. The DC voltage application unit 105 applies a positive or negative DC voltage to the electrodes 101 and 104 on one diagonal line. The DC voltage application unit 106 applies a DC voltage having a polarity opposite to that of the DC voltage application unit 105 to the electrodes 102 and 103 on the other diagonal line.
Instead of applying a DC voltage from the DC voltage application units 105 and 106, the electrodes 101-102, 102-104, 103- adjacent to each other as a positional relationship constituting a square side among the electrodes 101 to 104. 104 and 101-103 can also be used as permanent charged bodies such as electrets having different polarities.
As a result, the reference potential for the inverse wave generation units 36 (76) and 66 (86) becomes substantially constant. As a result, the potentials of the reference electrodes 12 and 42 in the reference potential stabilization units 30 (70) and 60 (80) are reduced. It must be held within the allowable range (0 ± α [V]).
In the above-described embodiment, the shapes of the transmission electrode 11 and the reference electrode 12 (FIG. 5) and the detection electrode 41 and the reference electrode 42 (FIG. 10) are rectangular. However, the shape of these electrodes is not limited to this embodiment, and any shape can be adopted.
In the above-described embodiment, the arrangement of the transmission electrode 11 and the reference electrode 12 (FIG. 5) and the detection electrode 41 and the reference electrode 42 (FIG. 10) are parallel. However, the arrangement state of the electrodes is not limited to this embodiment, and any state can be adopted.
 本発明は、例えば農業、林業、漁業、鉱業、建設業、製造業、電気業、情報通信業、運輸業又は医薬業において利用可能性があり、もちろんこれら以外のあらゆる産業において幅広く利用可能性がある。 The present invention can be used in, for example, agriculture, forestry, fishery, mining, construction, manufacturing, electrical, information and communication, transportation, or pharmaceutical industries, and of course, it can be widely used in all other industries. is there.

Claims (7)

  1. 送信すべき信号に応じて発振される送信電極と、
     上記送信電極のペアとされる基準電極と、
     上記基準電極の周りに回転対称なm個(mは4以上の偶数)の電極と、
     上記m個の電極から生じる電界における上記基準電極での強度が所定値未満となる交番信号を、該m個の電極に対して印加する印加手段と
     を具えることを特徴とする通信装置。
    A transmission electrode that oscillates in response to a signal to be transmitted;
    A reference electrode which is a pair of the transmission electrodes;
    M rotationally symmetric electrodes (m is an even number of 4 or more) around the reference electrode;
    A communication device, comprising: an applying unit that applies an alternating signal that causes an intensity of the electric field generated from the m electrodes at the reference electrode to be less than a predetermined value to the m electrodes.
  2. 上記電極は、正2n角形の各頂点となり(上記nは2以上の偶数)、該正2n角形の重心に上記基準電極が存在する関係となる位置に配される
     ことを特徴とする請求項1に記載の通信装置。
    The electrode is a vertex of a regular 2n square (where n is an even number of 2 or more), and is arranged at a position where the reference electrode exists at the center of gravity of the regular 2n square. The communication apparatus as described in.
  3. 上記印加手段は、
     上記m個の電極のうち、隣り合う電極の一方に対して送信すべき信号を与えるとともに、上記隣り合う電極の他方に対して上記送信すべき信号の位相を180度ずらした信号を与える
     ことを特徴とする請求項1に記載の通信装置。
    The application means includes
    Among the m electrodes, a signal to be transmitted is given to one of the adjacent electrodes, and a signal in which the phase of the signal to be transmitted is shifted by 180 degrees is given to the other of the adjacent electrodes. The communication device according to claim 1.
  4. 放射電界及び誘導電磁界よりも準静電界の強度が優位となる状態で上記送信電極を発振させて人体を帯電させる発振制御手段
     をさらに具えることを特徴とする請求項1に記載の通信装置。
    2. The communication apparatus according to claim 1, further comprising oscillation control means for oscillating the transmission electrode and charging a human body in a state in which the strength of the quasi-electrostatic field is superior to the radiated electric field and the induction electromagnetic field. .
  5. 人体表面に形成される帯電圧の検出対象とされる検出電極と、
     上記検出電極のペアとされる基準電極と、
     上記基準電極の周りに回転対称に配されるm個(mは4以上の偶数)の電極と、
     上記m個の電極から生じる電界における上記基準電極での強度が所定値未満となる交番信号を、該m個の電極に対して印加する印加手段と
     を具えることを特徴とする通信装置。
    A detection electrode to be detected by a charged voltage formed on the surface of the human body;
    A reference electrode as a pair of the detection electrodes;
    M electrodes (m is an even number greater than or equal to 4) arranged in rotational symmetry around the reference electrode;
    A communication device, comprising: an applying unit that applies an alternating signal that causes an intensity of the electric field generated from the m electrodes at the reference electrode to be less than a predetermined value to the m electrodes.
  6. 上記電極は、正2n角形の各頂点となり(上記nは2以上の偶数)、該正2n角形の重心に上記基準電極が存在する関係となる位置に配される
     ことを特徴とする請求項5に記載の通信装置。
    The said electrode becomes each vertex of a regular 2n square (where n is an even number of 2 or more), and is arranged at a position where the reference electrode exists at the center of gravity of the regular 2n square. The communication apparatus as described in.
  7. 上記印加手段は、
     上記m個の電極のうち、隣り合う電極の一方に対して上記検出電極と上記基準電極との間に生じる信号を与えるとともに、上記隣り合う電極の他方に対して該信号の位相を180度ずらした信号を与える
     ことを特徴とする請求項5に記載の通信装置。
    The application means includes
    Of the m electrodes, a signal generated between the detection electrode and the reference electrode is given to one of the adjacent electrodes, and the phase of the signal is shifted by 180 degrees with respect to the other of the adjacent electrodes. The communication device according to claim 5, wherein a communication signal is provided.
PCT/JP2009/064685 2009-06-03 2009-08-18 Communication device WO2010140266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011518199A JP5436554B2 (en) 2009-06-03 2009-08-18 Communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009134077 2009-06-03
JP2009-134077 2009-06-03

Publications (1)

Publication Number Publication Date
WO2010140266A1 true WO2010140266A1 (en) 2010-12-09

Family

ID=43297412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064685 WO2010140266A1 (en) 2009-06-03 2009-08-18 Communication device

Country Status (2)

Country Link
JP (2) JP5436554B2 (en)
WO (1) WO2010140266A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093667A1 (en) * 2011-01-06 2012-07-12 国立大学法人 東京大学 Reference potential generating device
WO2012096243A1 (en) * 2011-01-13 2012-07-19 国立大学法人 東京大学 Reference potential generation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282789A (en) * 2006-04-14 2007-11-01 Sony Corp Electric field control device and detecting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4257611B2 (en) * 2005-05-17 2009-04-22 ソニー株式会社 Communication apparatus and method, and program
JP5114074B2 (en) * 2007-03-07 2013-01-09 Qファクター株式会社 Detection device, detection method, vein sensing device, scanning probe microscope, strain detection device, and metal detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282789A (en) * 2006-04-14 2007-11-01 Sony Corp Electric field control device and detecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093667A1 (en) * 2011-01-06 2012-07-12 国立大学法人 東京大学 Reference potential generating device
WO2012096243A1 (en) * 2011-01-13 2012-07-19 国立大学法人 東京大学 Reference potential generation device
JP5499184B2 (en) * 2011-01-13 2014-05-21 国立大学法人 東京大学 Reference potential generator

Also Published As

Publication number Publication date
JP5436554B2 (en) 2014-03-05
JPWO2010140266A1 (en) 2012-11-15
JP2011015387A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
US9819075B2 (en) Body communication antenna
US10014578B2 (en) Body antenna system
US10211680B2 (en) Method for 3 dimensional pocket-forming
US9432779B2 (en) Hearing aid antenna
US20110300801A1 (en) Radio receiver and transmitter circuits and methods
CN105099482A (en) Body communication antenna
US9973031B2 (en) Orientation-independent wireless charging
JP2011160499A (en) Feeding device
Ito et al. Evaluations of body-centric wireless communication channels in a range from 3 MHz to 3 GHz
JP2008027219A (en) Information processing system, receiving device and method, recording medium, and program
JP5436554B2 (en) Communication device
Shi et al. The performance analysis of a spinning magnet as a mechanical antenna
JP2009213062A (en) Transmitter, communication system and communication method
JP6515983B2 (en) Electromagnetic field probe
JP5436310B2 (en) Pickup and communication device
KR101811811B1 (en) Novel probes arrangement
WO2012093667A1 (en) Reference potential generating device
JP5487222B2 (en) Composite antenna and communication device using the same
US11791865B2 (en) Near electric field communication
Haridim et al. Near region field of antennas in piecewise-homogeneous media
JP2012128535A (en) Reference potential generator
Kurosu et al. Electromagnetic field analysis of human body communication between wearable and stationary devices including the earth ground
Takeuchi et al. Implementation methodology of handshaking communication using wearable near-field coupling transceivers
JP5499184B2 (en) Reference potential generator
WO2023195169A1 (en) Power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845548

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518199

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845548

Country of ref document: EP

Kind code of ref document: A1