WO2012095023A1 - 一种干扰检测方法、装置和*** - Google Patents

一种干扰检测方法、装置和*** Download PDF

Info

Publication number
WO2012095023A1
WO2012095023A1 PCT/CN2012/070341 CN2012070341W WO2012095023A1 WO 2012095023 A1 WO2012095023 A1 WO 2012095023A1 CN 2012070341 W CN2012070341 W CN 2012070341W WO 2012095023 A1 WO2012095023 A1 WO 2012095023A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
measurement
reference symbol
interference
interfering
Prior art date
Application number
PCT/CN2012/070341
Other languages
English (en)
French (fr)
Inventor
于映辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12734211.1A priority Critical patent/EP2665305B1/en
Publication of WO2012095023A1 publication Critical patent/WO2012095023A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • H04L1/0035Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter evaluation of received explicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an interference detection method, apparatus, and system.
  • the sites of each base station are networked to ensure that interference occurring between different base stations is within acceptable limits.
  • more types of media are applied to cellular communication systems; therefore, the same frequency uses different radio access technologies, and the use of the same or different access technologies for adjacent frequencies is said to be possible.
  • the network layout after various types of media are applied to the cellular communication system makes the interference coexistence between the base stations more complicated, and thus requires a new interference detection and interference coexistence scheme.
  • the interference measurement scheme is performed by the user equipment (User Equipment, UE) for the measurement of the base station, and the uplink measurement is mainly the measurement of the UE by the base station.
  • User Equipment User Equipment
  • Measurements are divided into physical layer measurement and high-level measurement.
  • the physical layer measurement includes downlink measurement and uplink measurement: the downlink measurement is a channel quality indicator (CQI) measurement, and the uplink measurement is a channel sounding reference signal (SRS) measurement, and the functions of the two measurements are provided.
  • CQI channel quality indicator
  • SRS channel sounding reference signal
  • the uplink and downlink channel quality is used by the base station (E Node Base station, eNB) for scheduling reference. Since it is a measurement that supports scheduling, its reported period is from 2ms to ten ms, which is a short-cycle dynamic measurement result.
  • the high-level measurement is the downlink measurement: The common reference symbol on the downlink subframe is measured, and the measurement period is several hundred ms, which reflects a long-term channel quality.
  • the measurement for the base station is a downlink measurement, which is performed by the UE, and the measurement of the downlink CQI measurement or the uplink SRS is dynamic and fast, and cannot provide long-term stable channel measurement results.
  • the technical problem to be solved by the embodiments of the present invention is to provide an interference detection method, apparatus and system, which provide long-term stable channel measurement results.
  • One aspect of the present invention provides an interference detection method, including:
  • the measuring base station acquires the measurement reference symbol of the interfering base station and the configuration information of the measurement reference symbol; and the measurement base station detects the received quality value of the measurement reference symbol of the interfering base station according to the configuration information.
  • Another aspect of the present invention provides an interference detection method, including:
  • the interfering base station sends the measurement reference symbol to the measurement base station, where the transmission power of the interference base station on the measurement reference symbol is the same as the transmission power of the interference base station on the common reference symbol on the downlink subframe;
  • Another aspect of the present invention provides an interference detection method, including:
  • the measuring base station sends a measurement control message to the interfering base station to the UE under the measurement base station;
  • the measurement control message includes at least one of the following information: a detection range of the measurement reference symbol of the interference base station, a measurement quantity for performing measurement, and a reporting mechanism of the measurement;
  • the measurement base station receives the cell signal reception quality of the interfering base station reported by the UE.
  • Another aspect of the present invention provides an interference detection method, including:
  • the user equipment UE receives the measurement control message sent by the measurement base station;
  • the measurement control message includes at least one of the following information: a detection range of the measurement reference symbol of the interference base station, a measurement quantity for performing measurement, and a reporting mechanism of the measurement;
  • the UE detects the cell signal reception quality of the interfering base station according to the measurement control information; the UE reports the cell signal reception quality of the interfering base station to the measurement base station.
  • a base station including:
  • An acquiring unit configured to acquire a measurement reference symbol of the interfering base station and configuration information of the measurement reference symbol
  • a detecting unit configured to detect, according to the configuration information acquired by the acquiring unit, a received quality value of the measurement reference symbol of the interfering base station.
  • a base station including:
  • a second sending unit configured to send a measurement reference symbol to the measurement base station, where the transmit power of the interference base station on the measurement reference symbol is the same as the transmit power of the interference base station on a common reference symbol on the downlink subframe Transmitting the configuration information of the measurement reference symbol to the measurement base station, so that the measurement base station detects a reception quality value of the measurement reference symbol of the interference base station according to the configuration information.
  • a base station including:
  • a third sending unit configured to send a measurement control message to the interfering base station to the UE under the base station, where the measurement control message includes at least one of the following information: a detection range of the measurement reference symbol of the interfering base station, and a measurement Measurement amount, reporting mechanism of the measurement;
  • a third receiving unit configured to receive, by the measurement control message sent by the third sending unit
  • the cell signal reception quality of the interfering base station reported by the UE.
  • Another aspect of the present invention provides a user equipment, including:
  • a fourth receiving unit configured to receive a measurement control message sent by the measurement base station
  • the measurement control message includes at least one of the following information: a detection range of the measurement reference symbol of the interference base station, a measurement quantity for performing measurement, and a reporting mechanism of the measurement; a measuring unit, configured to detect a cell signal receiving quality of the interfering base station according to the measurement control information received by the fourth receiving unit;
  • a fourth sending unit configured to report, to the measurement base station, a cell signal reception quality of the interfering base station measured by the measurement unit.
  • Another aspect of the present invention provides an interference detection system, including: a base station provided by an embodiment of the present invention; or a base station and a user equipment provided by the embodiment of the present invention.
  • the embodiment of the present invention provides a method and a system for performing interference detection by a base station, and provides long-term stable channel measurement results, and solves the problem of complex network conditions, the same frequency, different frequency, and different systems.
  • the downlink transmission of the interfering base station transmits interference detection and interference processing of the uplink reception of the measurement base station of the same system or the different system of the adjacent frequency band, so that the network can flexibly deploy and interfere with coexistence.
  • FIG. 1A is a schematic diagram of a DSS application scenario according to an embodiment of the present invention.
  • FIG. 1B is a schematic diagram of a spectrum of a scene interference of the same frequency according to an embodiment of the present invention
  • 1C is a schematic diagram of a frequency media of a scene interference of an inter-frequency according to an embodiment of the present invention
  • 1D is a schematic diagram of a spectrum of a scene interference of an inter-frequency according to an embodiment of the present invention
  • 1E is a schematic diagram of a typical network unit according to an embodiment of the present invention.
  • FIG. 2A is a schematic flowchart of a method according to an embodiment of the present invention.
  • 2B is a schematic flowchart of a method according to an embodiment of the present invention.
  • 3A is a schematic flowchart of a method according to an embodiment of the present invention.
  • 3B is a schematic diagram of an interference band region according to an embodiment of the present invention
  • 4A is a schematic flowchart of a method according to an embodiment of the present invention
  • 4B-1 is a schematic diagram of a scheduling position of a single antenna port SRS according to an embodiment of the present invention.
  • 4B-2 is a schematic diagram of a scheduling position of an antenna port SRS according to Embodiment 2 of the present invention.
  • 4B-3 is a schematic diagram of a scheduling position of an antenna port SRS according to Embodiment 4 of the present invention.
  • 4C is a schematic diagram of a SC-FDMA block and a subcarrier according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a SC-FDMA block and a subcarrier according to an embodiment of the present invention
  • 6A is a schematic flowchart of a method according to an embodiment of the present invention.
  • 6B is a schematic flowchart of a method according to an embodiment of the present invention.
  • 6C is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • 16 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • the application scenario of the embodiment of the present invention is an interference problem between a low power node (LPN) and a macro cell using dynamic spectrum sharing (DSS) technology, or an interference problem between LPN nodes.
  • the LPN may be a pico cell Pico cell, a micro micro cell, a relay relay, a home base station HeNB (HNB), or the like.
  • HNB home base station HeNB
  • the embodiment of the present invention describes the interference between the LPN and the macro base station as an example, the interference problem between the LPNs, or the interference problem between the macro base stations can also adopt the same method; in the introduction of the embodiment, the macro base station is used.
  • the base station that performs the interference measurement as the measurement base station may also be referred to as the interfered base station;
  • the LPN acts as the interfering base station, that is, the base station that causes the interference;
  • the measurement base station may also be the LPN, and the other positions in the embodiment of the present invention are no longer - Description.
  • N LPNs may generate frequency division multiplexing (FDD) uplink (UL) resources for downlink signal transmission in a macro base station, and the transmission signal will be transmitted by the macro base station.
  • FDD frequency division multiplexing
  • UL uplink
  • the DSS application scenario is shown in FIG. 1A.
  • the macro base station is represented by an eNB, and has multiple LPNs in the coverage of the eNB.
  • Interference scenarios can be classified into different scenarios such as co-channel interference, inter-frequency interference, and heterogeneous interference.
  • FIG. 1B is a scene of the same frequency
  • FIG. 1C is a scene of an inter-frequency.
  • the macro base station eNB 1 is a base station that provides uplink resources to the LPN
  • the macro base station eNB2 is a neighboring macro base station of the LPN.
  • the downlinks of eNB1, eNB2, and LPN are all indicated by white boxes.
  • Uplink subframes on the uplink frequency bands of the macro base stations eNB 1 , eNB 2 and LPN They are all shaded by slashes.
  • the downlink subframe of the LPN on the upstream band is indicated by the grid shading.
  • 1D is a scenario of a different system.
  • the macro base station eNB1 is a base station that provides uplink resources to the LPN, and the macro base station eNB2 is a neighboring macro base station of the LPN.
  • the macro base station eNB1 and the LPN may be the same access technology, or may be different access technologies. In the embodiment of the present invention, the case where the macro base station eNB1 and the LPN adopt the same access technology is used as an example. The method used is similar in the art, and is not specifically described in the embodiment of the present invention.
  • the macro base station eNB2 employs an access technology different from the LPN.
  • the downlinks of both eNB1 and LPN are indicated by white boxes, and the uplink subframes on the uplink frequency bands of eNB1 and LPN are indicated by diagonal hatching.
  • the downlink subframe of the LPN on the upstream band is indicated by the grid shading.
  • the network unit 0 is: The macro base station eNB1 that provides resources to the LPN cell and the UEs below it form the network unit 0.
  • the interference avoidance mode can be used to solve the interference problem between the base station eNB1 and the LPN cell providing the resource. Therefore, the problem of interference detection and interference processing for the network element 1 is not involved for the network element 0.
  • Network element 1 LPN1 and the UEs below it form a network element 1 which interferes with a neighboring LPN cell (network element 2) or macro base station eNB2 (network element 3), which may be an interfering base station.
  • network element 2 LPN1 and the UEs below it form a network element 1 which interferes with a neighboring LPN cell (network element 2) or macro base station eNB2 (network element 3), which may be an interfering base station.
  • the network unit 2 is: an LPN cell (LPN2) adjacent to a Time Division Duplex (TDD) cell of the LPN, and the LPN2 and the UEs below thereof constitute the network element 2, and need to detect that it is adjacent to the LPN1. Interfering with the situation and performing interference processing, so the network unit 2 can be a measurement base station;
  • LPN2 LPN cell
  • TDD Time Division Duplex
  • Network element 3 is a macro cell adjacent to the TDD cell of the LPN, and the macro cell may be a cell of the same frequency, different frequency or different system.
  • the macro cell and the UEs under the macro cell constitute a network unit 3, and it is required to detect the interference of the network unit 1 and the interference management between the network unit 1 and the network unit. 3 can also be used to measure the base station.
  • the embodiment of the present invention mainly solves the method for interference detection and interference processing between the network unit 2 by the network unit 1, or the interference detection and interference processing between the network unit 1 and the network unit 3.
  • the embodiment of the present invention illustrates the solution of the interference detection and interference processing between the network unit 3 and the network unit 3, and the network unit 1 can also implement the interference detection and interference processing between the network unit 2 and the network unit 2.
  • the example of the program is not specific - repeat.
  • the measurement of the interference may use a high-level measurement quantity, such as a reference signal received power (RSRP), a reference signal received quality (RSRQ), and a received signal strength indicator (Received signal).
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • CQI measurement or SRS measurement a measure of measurement, or physical layer, such as CQI measurement or SRS measurement.
  • these quantities are usually The reception quality value of the reference symbol is measured.
  • any implementation of the downlink transmission in the receiving frequency band of the base station such as the FDD UL frequency band or the FDD uplink frequency band, may be implemented by using the solution of the present invention.
  • the FDD UL band or near the FDD UL band there are interference adjacent bands in the range of the isolation band, such as ⁇ 30MHz, or 50MHz, etc., the specific data is determined by RAN4 simulation)
  • the transmission of the FDD downlink (DL) or the transmission of the TDD DL, or the transmission of other radio access technologies is determined by RAN4 simulation.
  • TDD UL in other frequency bands on the TDD band or near the TDD band (according to the performance specifications of RAN4, which is the adjacent frequency in the range of the isolation band, such as ⁇ 30MHz, or 50MHz, etc., the specific data is determined by RAN4 simulation)
  • RAN4 which is the adjacent frequency in the range of the isolation band, such as ⁇ 30MHz, or 50MHz, etc., the specific data is determined by RAN4 simulation
  • the DL transmissions on the corresponding time slots and the DL transmissions include the same access technology FDD system or non-FDD system, or different access technologies.
  • An embodiment of the present invention provides an interference detection method, as shown in FIG. 2A, including: 201A: The measurement base station acquires measurement reference symbols of the interfering base station and configuration information of the foregoing measurement reference symbols;
  • the measurement reference symbols in the above 201A include one of the following: Common Reference Symbols (CRS) on the downlink subframe, channel sounding reference symbols on the downlink subframe, common reference symbols on the uplink subframe, and uplink subframes.
  • CRS Common Reference Symbols
  • the channel detection reference symbols are used; the above four measurement reference symbols respectively correspond to an application scenario of interference detection, and the subsequent embodiments will respectively illustrate the four scenarios.
  • the measurement reference symbols may also be other reference symbols for measurement, which are distributed on the uplink subframe of the interfering base station or some physical radio block (PRB) on the downlink subframe.
  • PRB physical radio block
  • the method further includes: sending, by the measurement base station, a measurement request message to the interfering base station.
  • the measurement base station receives the configuration reference symbols sent by the interference base station according to the measurement request message and the configuration information of the measurement reference symbols.
  • the above-mentioned scheduling-based reference symbol is a reference symbol that is scheduled by the base station, for example, the channel sounding reference symbol in the present invention.
  • the common reference symbol on the uplink subframe may also be a scheduling-based reference symbol or, more specifically, the foregoing.
  • the configuration information in the 201A includes at least one of the following information: location indication information of the measurement reference symbol, a bandwidth configuration of the measurement reference symbol, a subframe configuration of the measurement reference symbol, a report configuration of the measurement reference symbol, and the foregoing measurement reference. a symbol transmission power configuration; wherein, the location indication information is:
  • the foregoing measurement base station acquires its own cell scheduling performance, and if the cell scheduling performance decreases, the foregoing detection is performed; or The foregoing measurement base station detects a reception quality value of its own reference symbol, and the measurement base station detects its own reference symbol as a common reference symbol transmitted by the measurement base station.
  • the above detection is performed. It should be noted that the above two examples are not exhaustive of the conditions for initiating interference detection, and should not be construed as limiting the embodiments of the present invention.
  • the measurement base station detects a reception quality value of the measurement reference symbol of the interference base station according to the configuration information.
  • Embodiments of the present invention provide a method and system for performing interference detection by a base station, which provides long-term stable channel measurement results, and solves the problem that downlink transmission is performed in the same frequency band under the same network condition under the same frequency condition, different frequency, and different system conditions.
  • the interference detection and interference processing of the uplink reception enables the network to flexibly deploy and interfere with coexistence.
  • the implementation of the 202A may include: the foregoing measurement base station determines the interfered frequency band; and the measurement base station detects the reception quality value of the measurement reference symbol of the interference base station on the interfered frequency band.
  • the embodiments of the present invention provide several ways for a measurement base station to determine a frequency band to be interfered: the measurement base station determines that the measurement base station is interfered based on the frequency band used by the interference base station and the interference frequency band defined by the protocol performance specification. Frequency band; or,
  • the measurement base station performs measurement based on the full frequency band of the base station, and determines the interfered frequency band of the measurement base station based on the measurement result of the different sub-bands in the full frequency band; or the measurement base station detects the above-mentioned entire frequency band of the base station.
  • the channel quality of the interfering base station is determined, and the frequency band in which the channel quality exceeds the threshold portion is determined to be an interference frequency band.
  • an interference processing procedure may be further performed.
  • the measurement base station starts interference with the interference base station.
  • the processing flow, the foregoing interference processing procedure includes: the foregoing measurement base station sends an interference processing request to the interference base station according to the result of the foregoing measurement; or, the measurement base station cancels scheduling of the data resource in the interfered subframe; or the measurement base station only The scheduling of data resources is performed on the user equipment UE whose interference measured on the interfered subframe is lower than a set threshold.
  • the interference processing request includes at least one of the following information: the transmit power information to be adjusted, the time domain or the frequency domain location indication information of the resource that needs to perform power control, and the parameter indication information that needs to be adjusted; wherein, the parameter indication information that needs to be adjusted And including at least one of the following: a working center frequency of the cell under the interfering base station, an operating band of the cell under the interfering base station, and a downlink subframe offset amount of the cell under the interfering base station, and an uplink and downlink of the interfering base station cell
  • the configuration change information and the change information of the antenna tilt angle of the interfering base station cell is not limited to the transmit power information to be adjusted, the time domain or the frequency domain location indication information of the resource that needs to perform power control, and the parameter indication information that needs to be adjusted; wherein, the parameter indication information that needs to be adjusted And including at least one of the following: a working center frequency of the cell under the interfering base station, an operating band of the cell under the interfering base station
  • the method further includes: performing layer 3 L3 filtering on the received quality value of the measurement reference symbol of the interfering base station, and performing interference according to the filtered value. Evaluation.
  • FIG. 2B which includes:
  • the interfering base station sends the measurement reference symbol to the measurement base station, where the transmission power of the interference base station on the measurement reference symbol is the same as the transmission power of the interference base station on the common reference symbol on the downlink subframe;
  • the foregoing interference base station sends the configuration information of the measurement reference symbol to the measurement base station, so that the measurement base station detects the reception quality value of the measurement reference symbol of the interference base station according to the configuration information.
  • the above measurement reference symbols include one of the following: a common reference symbol on a downlink subframe, a channel sounding reference symbol on a downlink subframe, a common reference symbol on an uplink subframe, and a channel probe on an uplink subframe. Measure the reference symbol.
  • the measurement reference symbols may also be other reference symbols for measurement, which are distributed on the uplink subframe of the interfering base station or some physical radio block (PRB) on the downlink subframe.
  • PRB physical radio block
  • the method before the transmitting, by the interfering base station, the configuration information of the measurement reference symbol to the measurement base station, the method further includes: the interference base station receiving the measurement request message sent by the measurement base station; and sending, by the interference base station, the measurement request message to the measurement base station according to the measurement request message.
  • the interference base station receiving the measurement request message sent by the measurement base station; and sending, by the interference base station, the measurement request message to the measurement base station according to the measurement request message.
  • the foregoing configuration information includes at least one of the following information: location indication information of the measurement reference symbol, a bandwidth configuration of the measurement reference symbol, a subframe configuration of the measurement reference symbol, a report configuration of the measurement reference symbol, and the foregoing Measuring reference symbol transmit power configuration;
  • the location indication information is:
  • the first embodiment of the present invention provides an interference detection method.
  • the base station eNB2 measures the Common Reference Symbols (CRS) on the downlink subframe of the interfering base station LPN, and measures the base station as a special
  • the UE performs interference detection on the interfering base station LPN.
  • the process of the first solution may be as shown in FIG.
  • 3A including: measuring that the condition that the base station eNB2 finds that the interference detection is started is met (for example, the scheduling performance of the base station is detected to be reduced, or the signal quality of the measured base station is deteriorated, for example, the report reported by the UE.
  • Step 1 Firstly, the configuration of the downlink measurement performed by the base station eNB2 (the configuration information of the measurement reference symbols is generated), and the measurement entity is the measurement base station eNB2, instead of the traditional downlink measurement execution entity UE, and the specific configuration includes:
  • Base station eNB2 can support RSRP, RSRQ and RSSI measurements.
  • Measurement target the frequency and bandwidth of the measured cell, the identity of the measured cell (Identity, id), the configuration of the uplink and downlink of the measured cell, the offset of the measured cell, the MBSFN configuration of the measured cell or the blank frame configuration.
  • the antenna configuration of the measured cell, etc. can pass the existing interface (such as the X2 port in Long Term Evolution (LTE), or the Iur port of the Universal Mobile Telecommunications System (UMTS). , or a similar interface to other systems).
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the center frequency of the measured cell in the measurement target may be set as the center frequency of the interfered cell, or the center frequency of the measured cell in the measurement target is located in the interference band of the interfered cell.
  • the center frequency of the measured cell in the measurement target can be autonomously searched according to a certain degree (for example, the LTE system can be performed according to the 6RB class).
  • the measurement base station determines the interference frequency band by a certain method, the position indication information of the measurement reference symbol in the measurement target, the bandwidth configuration of the measurement reference symbol, and the subframe configuration of the measurement reference symbol are reflected in the measurement target. Instructing the measurement base station to perform interference detection on the measurement reference symbols on the physical resource blocks.
  • the measurement base station eNB2 can support measurement events supported by all UEs, for example, in LTE, from A1-A5, B1 and B2, etc.
  • the main reason is to detect whether the RSRQ value is higher than Or below the set threshold. Due to the different measurement purposes, the downlink measurement of the prior art is for mobility, and the downlink measurement of interference detection is for interference measurement, so the event similar to the meaning of the event uses different thresholds.
  • the measurement base station eNB2 may perform Layer 3 Layer 3
  • the parameters of the L3 filtering used by the base station may be configured according to the parameters of the low-speed UE.
  • Step 2 Measure the base station eNB2 initiates the measurement of the interference to the LPN.
  • the base station eNB2 There may be two ways for starting the measurement of the neighboring cell LPN (interfering base station), one is to measure the internal implementation of the base station eNB2, and the measurement base station eNB2 is degraded according to the scheduling performance of the cell on the base station, for example, in the LPN downlink transmission time slot. If the block error rate (BLER) of the data on the eNB2 exceeds the set value, the measurement base station eNB2 determines that the LPN causes interference.
  • BLER block error rate
  • the eNB2 determines that the LPN causes interference, and starts the measurement for the LPN.
  • the other method may be that the measurement base station eNB2 detects the RSRQ value of the local base station, and may specifically be the CRS detection of the subframe corresponding to the subframe corresponding to the LPN downlink subframe and the uplink subframe of the LPN, in this case, if When the RSRQ value of the base station is lower than the set threshold, the measurement of the RSRQ for the LPN is started. Or measuring the CRS of the subframe corresponding to the subframe corresponding to the LPN downlink subframe and the subframe corresponding to the uplink subframe of the LPN when the base station eNB2 detects the RSRQ value of the base station.
  • Step 3 Measure the downlink interference detection of the base station eNB2 for the LPN, and only detect the RSRQ value on the downlink subframe.
  • the measurement base station eNB2 may save the measurement result and start the interference processing flow with the LPN.
  • the measurement base station eNB2 can obtain the following configuration information of the LPN through the currently existing interface: cell frequency and bandwidth, cell id, uplink and downlink configuration of the cell, cell Offset amount, multimedia broadcast multicast service over the single frequency Network, MBSFN ) Configuration or blank frame configuration, antenna configuration of the cell, etc.
  • the measurement base station eNB2 can know which part of the LPN has interference to the measurement base station eNB2 according to the performance specification of the RAN4.
  • the measurement base station eNB2 measures the CRS of the full-band of the LPN on the base station, and then analyzes the interference value of the CRS of those frequency bands to be relatively large, and then determines which part of the frequency band interferes with the measurement base station eNB2.
  • Measuring Base Stations eNB2 has two implementations for measuring partial frequency bands. One is to modify RSRQ measurements to support narrowband RSRQ measurements. Or modify the CQI and perform L3 filtering on the CQI measurement results.
  • the non-interference band region and the interference band region of the uplink of the base station eNB2 are measured; the LPN uplink and downlink non-interference band region, and the interference band region.
  • a method of center frequency + bandwidth ie, information indicating the center frequency and measurement bandwidth used to measure the above-mentioned measurement reference symbols
  • a method of indicating the frequency start separately ie, indicating the measurement above
  • the information of the start position and the end position used for measuring the reference symbol), or the manner in which the frequency is +offset i.e., information indicating the start position and the offset offset used to measure the above-mentioned measurement reference symbol).
  • the range of the CRS to be measured is indicated in the measurement target, for example:
  • Option 1 CRS center frequency + method of measuring CRS bandwidth
  • MeasObjectEUTRA SEQUENCE ⁇
  • PresenceAntennaPortl PresenceAntennaPortl
  • Option 2 The measured start and end positions of the CRS
  • MeasObjectEUTRA SEQUENCE ⁇
  • PresenceAntennaPort 1 PresenceAntennaPort 1
  • MeasObjectEUTRA SEQUENCE ⁇
  • PresenceAntennaPort 1 PresenceAntennaPort 1
  • carrierFreq_start ARFCN-ValueEUTRA measured— carrierFreq_offset Measured— bandwidth or measured PRBs
  • the offset value is a positive value, and if the measured CRS measurement position is a high frequency, the offset value is a negative value.
  • the UE can also set the same-class frequency from low frequency to high frequency or high frequency to low frequency within the base station range of the serving cell based on the set type, such as the measurement bandwidth of 6 RB or 1.25 MHz. Or inter-frequency measurement.
  • the measurement base station eNB2 may not change the configuration of the measurement frequency frame control field fc, but only modify the frequency of the CRS band. Point, keep the measurement as the same frequency measurement. Or the measurement base station eNB2 regards the measurement within its receiving frequency band as the same frequency measurement. Or the UE keeps the measured fc as the center frequency of the serving cell, detects the pilot signal of the neighboring cell in the entire frequency band of the serving cell, and interferes with the interference signal quality exceeding the threshold portion (such as the interference band region in FIG. 3B).
  • the measurement result of the CRS symbol is subjected to the L3 filtering operation, and the evaluation and reporting of the interference are performed accordingly.
  • the L3 filtering operation is not performed, and the evaluation and event reporting are not performed as the interference signal.
  • the above interference signal for the interference signal quality exceeding the threshold portion may also be determined as the interference frequency band, and the measurement base station performs the layer 3 filtering operation on the signal of the interference frequency band, and according to This is the assessment and reporting of interference.
  • Method 2 Measuring the base station The eNB2 can measure the partially interfered frequency band by using the CQI measurement method.
  • the eNB2 is based on the degradation of the scheduling performance of the cell on the base station, such as the LPN downlink transmission time slot, and the BLER of the data on the eNB2.
  • the eNB2 decides that the LPN causes interference.
  • the BLER of the data on the eNB2 exceeds the set value, and the eNB2 determines that the LPN causes interference, and then starts such a procedure for the LPN.
  • the eNB2 may detect the RSRQ value of the local base station, and may specifically be the CRS detection of the subframe corresponding to the subframe corresponding to the LPN downlink subframe and the uplink subframe of the LPN. In this case, if the base station The RSRQ value below the set threshold starts the measurement of the RSRQ for the LPN. Or, when detecting the RSRQ value of the local base station, the eNB2 distinguishes the CRS detection of the subframe corresponding to the LPN downlink subframe and the subframe corresponding to the uplink subframe of the LPN, and the detection of the RSRQ corresponding to the LPN downlink subframe is lower than the set gate. At the limit, the measurement of the RSRQ for the LPN is initiated.
  • the measurement bandwidth of the CQI is configured as the bandwidth of the interference area, and the bandwidth of the interference area at this time may be the entire bandwidth of the neighboring cell or the partial bandwidth of the neighboring cell.
  • Measuring base station eNB2 image The UE performs CQI measurement of the specified bandwidth. Since the CQI is a dynamic measurement result supporting scheduling, in order to obtain a long-term measurement result of the interference situation, the measurement base station eNB2 can perform L3 filtering on the dynamic measurement result to obtain a filtered high-level measurement result.
  • Solution 2 In the solution, the base station detects the channel sounding reference symbol on the downlink subframe of the interfering base station LPN, and the base station uses the LPN as a special UE to detect the channel sounding reference symbol.
  • the process of detecting a channel sounding reference signal (SRS) sent by the eNB2 in the downlink subframe of the LPN may include: detecting that the scheduling performance of the cell under the base station is deteriorated by the base station eNB2, or the scheduling performance is poor.
  • SRS channel sounding reference signal
  • the eNB2 sends a scheduling request for the channel sounding reference symbol SRS to the interfering base station LPN, for requesting the LPN to start the scheduling of the channel sounding reference symbols on the downlink subframe used for interference detection, and after receiving the scheduling request, the LPN receives the scheduling request. Perform SRS scheduling.
  • the eNB 2 transmits the scheduling request information of the channel sounding reference symbol to the LPN, the eNB 2 can configure the configuration information measured based on the channel sounding reference symbol.
  • the configuration information may include:
  • Measurement target the frequency and bandwidth of the measured cell, the identity of the measured cell (Identity, id), the configuration of the uplink and downlink of the measured cell, the offset of the measured cell, the MBSFN configuration of the measured cell or the blank frame configuration.
  • the antenna configuration of the measured cell, etc. can pass the existing interface (such as the X2 port in Long Term Evolution (LTE), or the Iur port of the Universal Mobile Telecommunications System (UMTS). , or a similar interface to other systems).
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the center frequency of the measured cell in the measurement target may be set as the center frequency of the interfered cell, or the center frequency of the measured cell in the measurement target is located in the interference frequency range of the interfered cell.
  • the center frequency of the measured cell in the measurement target may be autonomously searched according to a certain degree (for example, the LTE system may be performed according to the 6RB class).
  • the measurement base station determines the interference frequency band by a certain method, the position indication information of the measurement reference symbol in the measurement target is measured, and the reference symbol is measured.
  • the bandwidth configuration, the subframe configuration of the measurement reference symbols are all embodied in the measurement target, to indicate that the measurement base station performs interference detection on the measurement reference symbols on the physical resource blocks.
  • Measurement event configuration The measurement base station eNB2 can support measurement events of all downlink measurements, such as in LTE, from A1-A5, B1 and B2, etc.
  • scheme 2 scheme 3 similar event definitions can be used to indicate downlink-based The interference triggering condition of the neighboring cell detected by the channel sounding reference symbol on the subframe or the channel sounding reference symbol on the uplink subframe.
  • the configuration of these uplink measurement events is similar to the configuration of the downlink events, that is, the meanings of the events are the same, such as the reception quality value of the serving cell (measured base station) or the neighboring cell (interfering base station) and the absolute threshold or relative threshold (the serving cell (measurement base station) It compares with the reception quality value of the neighboring cell (interfering base station) and increases the relative offset amount) for comparison.
  • the downlink measurement in the prior art is for mobility, and the uplink interference detection is for interference measurement, so the event value similar to the event meaning uses different thresholds.
  • the measurement base station eNB2 can perform Layer 3 Layer 3 and L3 filtering operations, and the L3 filtering parameters used by the base station can be configured according to the parameters of the low-speed UE.
  • the LPN After receiving the channel sounding reference symbol scheduling request information, the LPN starts the channel sounding reference symbol SRS on the downlink subframe used for interference detection, and sends configuration information of the channel sounding reference symbol SRS, including scheduling information, to the eNB2, so that It performs interference detection based on channel sounding reference symbols; after receiving the scheduling information of the channel sounding reference symbols of the LPN, the eNB2 starts interference detection based on the channel sounding reference symbols. If the measured amount of the detected channel sounding reference symbol satisfies the set event threshold, the eNB 2 saves and processes the measurement result and initiates an interference processing procedure with the LPN.
  • the LPN transmits channel sounding reference symbols on the downlink subframe.
  • the same resource as the channel sounding reference symbol of the UE needs to be scheduled on the downlink subframe of the LPN, and The same channel sounding reference symbol as the UE uplink is transmitted, but the transmission power of the channel sounding reference symbol is the same as the common reference symbol CRS on the downlink subframe of the LPN.
  • channel The sounding reference symbol is located at the last symbol of a UL subframe, but the bandwidth it occupies is configurable by the system.
  • Step 1 The LPN schedules channel sounding reference symbols on the downlink subframe, as shown in FIG. 4B-1 to FIG. 4B-3, and the LPN in the case of single antenna port, 2 antenna ports and 4 antenna ports.
  • the scheduling position of the SRS on the downlink subframe is as follows:
  • 4B-1 to 4B-3 are: Single antenna port: One antenna port; Two antenna ports: Two antenna ports; Four antenna ports: Four antenna ports; ⁇ ⁇ : :::: even-numbered slots; H gap:: odd-numbered slots;
  • the black squares are: Resource Element ( K, L ) : Resource element (k,l);
  • a blank square indicates that it is not used to transmit this antenna port: Not used for transmission on this antenna port;
  • This antenna port reference symbol Reference symbols on this antenna port tread on the last symbol, and each channel sounding reference symbol is separated by one subcarrier.
  • the channel on the downlink subframe of the interfering base station LPN The configuration information of the sounding reference symbol includes: a bandwidth configuration of the channel sounding reference symbol, a subframe configuration of the channel sounding reference symbol, and a reporting configuration of the channel sounding reference symbol.
  • the eNB2 needs to notify the channel sounding reference symbol to transmit the subframe configuration.
  • the LPN is in the SRS.
  • the transmit power on the same is the same as the transmit power on the CRS on its common reference symbol.
  • Step 2 Measure the base station eNB2 initiates interference detection for the LPN.
  • the method and the first step of the first scheme are the same for the LPN measurement, and are not described here.
  • Step 3 The measurement base station eNB2 notifies the LPN to initiate measurement of the LPN, and the eNB2 passes A measurement request is sent by a direct or indirect interface between the LPN and the eNB2. In this measurement request, the eNB2 notifies the LPN to measure the interference of the LPN.
  • Step 4 After receiving the information of the measurement request, the LPN starts scheduling the channel sounding reference symbols sent on the downlink subframe, and sends the scheduling configuration to the eNB2.
  • the scheduling configuration of the channel sounding reference symbols includes: channel sounding reference symbols. Bandwidth configuration, subframe configuration of channel sounding reference symbols and reporting configuration of channel sounding reference symbols. In order to support the measurement of eNB2, the LPN also needs to transmit the transmit power configuration on the channel sounding reference symbol to eNB2.
  • Step 5 Measure the base station eNB2 detects the channel sounding reference symbols on the LPN. Since the interference is a long-term measurement result, the eNB2 needs to perform an L3 filtering operation on the value of the measured channel sounding reference symbol, and the specific L3 filtering algorithm is similar to the L3 filtering of the UE. Also because of the support for high-level measurements, the scheduling period of the SRS on the downlink subframe of the LPN can be set longer, as long as the RAN4 needs to meet the high-level measurement requirements.
  • Solution 3 In this solution, the interfering base station LPN transmits a channel sounding reference symbol of the LPN on the UL subframe, and the channel sounding reference symbol uses the same transmission power as the common reference symbol CRS on the downlink subframe.
  • Step 1 The interfering base station LPN schedules channel sounding reference symbols similar to the uplink of the UE on the uplink subframe, which may be as follows:
  • the scheduling position of the channel sounding reference symbols on the UL subframe is single carrier frequency division multiple access as shown in FIG. 4C. (Single Carrier Frequency Division Multiple Access, SC-FDMA) block and subcarrier.
  • the channel sounding reference symbols are scheduled on the last symbol of each radio resource block RB, and each channel sounding reference symbol is separated by one subcarrier.
  • the configuration information of the channel sounding reference symbols on the uplink subframe of the LPN includes: a bandwidth configuration of the channel sounding reference symbols, a subframe configuration of the channel sounding reference symbols, and a report configuration of the channel sounding reference symbols.
  • the transmit power of the LPN on the channel sounding reference symbol is the same as the transmit power on its CRS.
  • LPN channel sounding reference The configuration of the number is similar to the SRS configuration of an ordinary UE on an uplink subframe.
  • the channel sounding reference symbol is located at the last symbol of a UL subframe, but the bandwidth it occupies is configurable by the system.
  • Steps 2 and 3 of this solution are the same as steps 2 and 3 of Scheme 2.
  • Step 4 After receiving the information, the LPN starts scheduling the channel sounding reference symbols sent on the uplink subframe, and sends the scheduling configuration of the channel sounding reference symbols to the eNB2.
  • the scheduling configuration of the channel sounding reference symbols includes: channel sounding reference. The bandwidth configuration of the symbol, the subframe configuration of the channel sounding reference symbol, and the reporting configuration of the channel sounding reference symbol. Moreover, it is necessary to notify the eNB2 of the configuration of the SRS transmission subframe configuration and the transmission power.
  • step 5 of this scheme is the same as the processing in step 5 of scheme 2.
  • the interfering base station LPN transmits a newly defined uplink common reference symbol on the UL subframe, and the measurement base station eNB2 detects a new uplink common reference symbol, and performs LPN uplink measurement.
  • the location of the newly set common reference symbol on the uplink subframe may refer to the location of the DL common reference symbol.
  • the reference symbols occupy a balance of resource elements (RE) throughout the PRB. It can be performed on a specific symbol similar to the channel sounding reference symbol.
  • the uplink common symbol is set as shown in Fig. 5 for the single carrier frequency division multiple access (SC-FDMA) block and the subcarrier.
  • the LPN may send an uplink common symbol on the uplink subframe, and the transmit power on the uplink common symbol is the same as the transmit power of the downlink CRS; and is distributed at the position of the target Ro.
  • the measurement method can be similar to the Downlink (DL) measurement in Scenario 1, except that the direction of measurement changes to the upstream measurement.
  • Step 1 First, the base station eNB2 performs uplink measurement configuration, and the specific configuration includes: Measurement amount: The base station eNB2 can support uplink RSRP, uplink RSRQ, and uplink RSSI measurement. The measurement is based on the newly set uplink CRS reference symbol.
  • Measurement target the frequency and bandwidth of the measured cell, the identity of the measured cell (Identity, id), the configuration of the uplink and downlink of the measured cell, the offset of the measured cell, the MBSFN configuration of the measured cell or the blank frame configuration.
  • the antenna configuration of the measured cell, etc. which can be obtained through the existing The port (for example, X2 port in Long Term Evolution (LTE), or Iur port of Universal Mobile Telecommunications System (UMTS), or similar interface of other systems) is obtained.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the measurement entity stays within the operating frequency band of the interfered base station to perform measurement of the signal of the interference cell.
  • the center frequency of the measured cell in the measurement target may be set as the center frequency of the interfered cell, or the center frequency of the measured cell in the measurement target is located in the interference frequency range of the interfered cell.
  • the center frequency of the measured cell in the measurement target may be autonomously searched according to a certain degree (for example, the LTE system may be performed according to the 6RB class).
  • the measurement base station determines the interference frequency band by a certain method, the position indication information of the measurement reference symbol in the measurement target, the bandwidth configuration of the measurement reference symbol, and the subframe configuration of the measurement reference symbol are reflected in the measurement target. Instructing the measurement base station to perform interference detection on the measurement reference symbols on the physical resource blocks.
  • Measurement event configuration Measurement base station
  • the measurement of the common pilot symbols of the uplink of eNB2 can support all downlink measurement events, such as in LTE, from A1-A5, B1 and B2.
  • the event can be renamed: for example, C 1 -C5 , and D 1 and D2 , where C 1 -C5 can correspond to Al -A5 , and D 1 and D2 can correspond to B 1 and B 2 .
  • the corresponding event has a type meaning, indicating that different thresholds can be used due to different measurement purposes. In the scenario of interference detection, the main reason is to detect whether the RSRQ value is higher or lower than the set threshold.
  • the base station performs the detection
  • the LPN and the interfering base station are both stationary base stations, the measurement result is relatively stable, and only the environmental disturbance is received. Therefore, the rate of the detector is low, and when reporting, it can be considered that the TTT parameter is not applicable.
  • the eNB2 may perform the L3 filtering operation, and the L3 filtering parameter used by the base station may be configured according to the parameters of the low-speed UE.
  • Step 2 and Step 3 are the same as Step 2 and Step 3 in Option 1.
  • the measurement of the uplink common reference symbol supports the measurement of L3 of the specified bandwidth.
  • the specified bandwidth can be the same as the step of step 3 in scenario 1. Similar to the way, you can also use several fixed bandwidth types, such as 6RB, or 1.25M.
  • the measurement base station also needs to detect the interference frequency band of the interference base station, and the detection method may be one of the following methods:
  • the position of the interference band is determined, and the reception quality of the interfering base station in the interference band is obtained.
  • the channel quality of the interfering base station on the entire frequency band of the base station is detected, and the sub-band whose channel quality exceeds the threshold portion is the interference frequency band, and the reception quality of the interfering base station in the interference frequency band is obtained.
  • one of the following methods may be used: measurement of the center frequency and measurement bandwidth setting method; or
  • the set-rate co-frequency or inter-frequency measurement is performed from low frequency to high frequency or high frequency to low frequency within the base station of the serving cell based on the set type.
  • the embodiment of the present invention further provides another interference detection method, as shown in FIG. 6A, including: 601A: The measurement base station sends a measurement control message to the interfering base station to the UE under the measurement base station; where the measurement control message includes at least the following One of the information: the detection range of the measurement reference symbol of the interfering base station, the measurement quantity to be measured, and the reporting mechanism of the above measurement;
  • the detection range of the measurement reference symbol of the foregoing interference base station may be the reception frequency range of the measurement base station; the foregoing measurement quantity may be a signal reception quality; and the reporting mechanism may include: reporting a threshold value or a reporting period.
  • the UE under the measurement base station specifically detects one or more UEs whose path loss of the measurement base station is less than a set threshold or the received power is greater than a set threshold.
  • the detection range of the measurement reference symbol of the foregoing interference base station may be the foregoing measurement base station
  • the measurement base station receives the cell signal reception quality of the interfering base station reported by the UE. Further, if the measurement base station receives the cell signal reception quality of the interference base station reported by the multiple UEs in 702, the measurement base station combines the cell signal reception quality of the interference base station reported by the multiple UEs.
  • interference processing procedure of the sixth or the seventh solution provided by the embodiment of the present invention may be further added after the present solution, and details are not described herein again.
  • the above embodiment is a scheme for measuring interference detection by a base station, and correspondingly, a method for implementing interference detection on a UE, as shown in FIG. 6B, includes:
  • the user equipment UE receives the measurement control message sent by the measurement base station;
  • the foregoing measurement control message includes at least one of the following information: a detection range of the measurement reference symbol of the interference base station, a measurement quantity for performing measurement, and a reporting mechanism of the foregoing measurement;
  • the detection range of the measurement reference symbol of the foregoing interference base station may be the reception frequency range of the measurement base station; the foregoing measurement quantity may be a signal reception quality; and the reporting mechanism may include: reporting a threshold value or a reporting period.
  • the foregoing UE detects a cell signal reception quality of the interfering base station according to the foregoing measurement control information
  • the foregoing UE reports the cell signal reception quality of the interfering base station to the measurement base station.
  • the detecting the cell signal reception quality of the interfering base station includes: the UE acquiring the frequency band in which the measurement base station is interfered; and the UE detecting the cell signal reception quality of the interference base station in the interfered frequency band.
  • the foregoing UE acquiring the frequency band in which the measurement base station is interfered includes:
  • the user equipment UE acquires the interfered frequency band of the measurement base station determined by the measurement base station, where the interfered frequency band of the measurement base station is that the measurement base station is based on the interference base station Determined by the frequency band and the interference band range specified by the protocol performance specification; or, the above user equipment
  • the UE performs measurement based on the measurement of the full frequency band of the base station, and based on the measurement result of the different subbands in the full frequency band, the user equipment UE determines the interfered frequency band of the measurement base station;
  • the user equipment UE performs measurement according to the full frequency band of the measurement base station, and reports the measurement result of the different sub-bands in the full frequency band to the measurement base station, where the measurement base station determines the interfered frequency band of the measurement base station;
  • the user equipment UE detects the channel quality of the interfering base station on the full frequency band of the measurement base station, and the user equipment UE determines that the frequency band in which the channel quality exceeds the threshold portion is the interference frequency band.
  • the user equipment UE detects the channel quality of the interfering base station on the entire frequency band of the measurement base station, and reports the channel quality of the interfering base station to the measurement base station, where the measurement base station determines that the frequency band of the channel quality exceeds the threshold portion is Interference frequency band.
  • the method further includes: performing layer 3 L3 filtering on the cell signal receiving quality of the interfering base station, and performing interference evaluation according to the filtered value.
  • Scheme 5 A schematic diagram of the scheme is shown in FIG. 6C.
  • the measurement base station eNB2 selects a part of the UEs it serves to perform interference detection of the LPN base station, and integrates measurement results of the N UEs to obtain interference information of the LPN base station. .
  • the selected MUE (Macro UE) needs to be a UE that can receive on the FDD UL.
  • the receiving position of the MUE and the serving base station (measuring base station) is different, so the result of the detection may be inaccurate.
  • the MUE detection is used, the MUE needs to be close to the base station.
  • the appropriate MUE needs to be selected for the base station to detect.
  • the selection of the MUE and the interference result of the LPN can be as follows:
  • the MUE is selected according to the path loss (PL) value of the MUE to the serving base station (measured base station).
  • the path loss value of the MUE to the serving cell (measured base station) needs to be less than a certain threshold, that is, the RSRP of the cell under the serving base station (measured base station) received by the UE needs to be greater than a set threshold.
  • the specific selection method is as follows:
  • the distance from the MUE to the serving base station (measured base station) is evaluated according to the PL of the serving base station (measured base station) by the MUE.
  • the serving base station (measured base station) can set a threshold of a PL or a threshold of an RSRP (measuring the base station to calculate the PL value after receiving the measurement result), and issue the threshold (PL threshold or RSRP threshold) as the measurement control to the MUE.
  • the MUE finds that the set PL value or RSRP value is satisfied, the MUE measures the measurement result to the serving base station (measurement base station); the reported event considers:
  • PL the PL of the cell under the serving base station (measured base station) is less than a set threshold
  • RSRP The RSRP of the cell in the serving base station (measured base station) is greater than the set threshold.
  • the event can reuse the A1 event: Serving becomes better than threshold. Because the usage is different, the threshold needs to be reset.
  • the serving base station selects the few MUEs with the smallest PL as the UE for interference estimation measurement according to the result reported by the MUE.
  • the measurement base station eNB2 sets the selected UEs to perform measurement of the interference base station:
  • the measurement control of the measurement base station eNB2 for its selected UE is the same as that of the normal UE, and the difference is:
  • Measurement target the frequency and bandwidth of the measured cell, the identity of the measured cell (Identity, id), the configuration of the uplink and downlink of the measured cell, the offset of the measured cell, the MBSFN configuration of the measured cell or the blank frame configuration.
  • the antenna configuration of the measured cell, etc. can pass the existing interfaces (such as X2 port in Long Term Evolution (LTE), or universal mobile Obtained by the Iur port of the Universal Mobile Telecommunications System (UMTS) or similar interface of other systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the measurement entity stays within the operating frequency band of the interfered base station to perform measurement of the signal of the interference cell.
  • the center frequency of the measured cell in the measurement target may be set as the center frequency of the interfered cell, or the center frequency of the measured cell in the measurement target is located in the interference frequency range of the interfered cell.
  • the center frequency of the measured cell in the measurement target may be autonomously searched according to a certain degree (for example, the LTE system may be performed according to the 6RB class).
  • the measurement base station eNB2 can obtain the following configuration information of the LPN through the currently existing interface: cell frequency and bandwidth, cell id, uplink and downlink configuration of the cell, cell Offset, MBSFN configuration or blank frame configuration of the cell, antenna configuration of the cell, etc.
  • the measurement base station can know which part of the LPN has interference to the measurement base station eNB2 according to the performance specification of the RAN4.
  • eNB2 measures the CRS of the full band of the LPN at the base station, and then analyzes the interference value of the CRS of those bands to be relatively large, and then determines which part of the band interferes with the eNB2.
  • the measurement for the partial band interference base station is the same as the method for the third step of the first solution.
  • a method of center frequency + bandwidth or a method of indicating the frequency at the beginning may be employed.
  • the frequency is expressed as +offset.
  • the measurement target is indicated in the measurement target
  • Option 1 CRS center frequency + method of measuring CRS bandwidth
  • MeasObjectEUTRA SEQUENCE ⁇
  • PresenceAntennaPort 1 PresenceAntennaPort 1 , Measured—carrierFreq ARFCN-ValueEUTRA, (fc of CC or fc of CRS)
  • Option 2 The measured start and end positions of the CRS
  • MeasObjectEUTRA SEQUENCE ⁇
  • PresenceAntennaPort 1 PresenceAntennaPort 1
  • MeasObjectEUTRA SEQUENCE ⁇
  • PresenceAntennaPort 1 PresenceAntennaPort 1
  • carrierFreq_start ARFCN-ValueEUTRA measured— carrierFreq_offset Measured— bandwidth or measured PRBs
  • the offset value is a positive value, and if the measured CRS measurement position is a high frequency, the offset value is a negative value.
  • the UE can also set the same-class frequency from low frequency to high frequency or high frequency to low frequency within the base station range of the serving cell based on the set type, such as the measurement bandwidth of 6 RB or 1.25 MHz. Or inter-frequency measurement.
  • the eNB may not change the configuration of the measurement frequency point fc, but only modify the frequency of the CRS band, and keep the measurement as Same frequency measurement. Or measuring the measurement in the range of the receiving band of the base station eNB2 The quantities are considered as the same frequency measurements.
  • the UE keeps the measured fc as the center frequency of the serving cell, detects the pilot signal of the neighboring cell in the entire frequency band of the serving cell, and interferes with the interference signal quality exceeding the threshold portion (such as the interference band region in FIG. 3B).
  • the measurement result of the CRS symbol is subjected to the L3 operation, and the evaluation and reporting of the interference are performed accordingly.
  • the L3 filtering operation is not performed, and the evaluation and event reporting are not performed as the interference signal.
  • the specific measurement process is as follows:
  • the MSR needs to report the threshold of the RSRQ of the LPN, and the threshold is sent to the MUE in the measurement control message;
  • the MUE finds that the threshold of the RSRQ of the set LPN is met, the MUE reports the measurement result of the LPN to the interfered measurement base station;
  • the measurement base station evaluates the location of the MUE according to the PL value of the interfered base station reported by the MUE and the measured value of the measured LPN (RSRQ value).
  • the interfered base station selects the measurement results of the LPNs of the MUEs at different locations to average, and obtains the interference result of the LPN received by the interfered base station.
  • the embodiment of the present invention further provides a method for performing interference processing.
  • the interference processing procedure between the base station initiation and the interference base station is measured.
  • the foregoing interference processing procedure includes: the foregoing measurement base station sends an interference processing request to the foregoing interference base station according to the result of the foregoing measurement; or, the measurement base station cancels scheduling of the data resource on the interfered subframe; or, the foregoing measurement base station only The user equipment UE whose interference measured on the interfered subframe is lower than the set threshold performs scheduling of the data resource.
  • Solution 6 Measure the interference negotiation between the base station and the LPN to solve the interference problem; the process is shown in Figure 7: 701: Interference is detected; 702: Interference process request; 703: Interference process response (Interference process response ); More specifically: When the measurement base station finds that the LPN base station generates interference thereto, and after the measurement base station learns the time domain and the frequency domain range of the interference of the LPN, the base station solves the interference problem by performing interference negotiation with the LPN, and the specific process is as follows:
  • the base station may send the interference processing request information to the LPN, where the interference request information includes:
  • Reduced transmit power information which can be an absolute transmit power value or a relative transmit power, such as how much dB is increased or decreased. Or just an indication of raising or lowering.
  • transmit power is an absolute threshold
  • an indication of a specific transmit power may be included, and the transmit power range is, for example, a specific dBM;
  • an indication indicating the adjusted transmission power such as -dB, or +dB, may be included. If both up and down power are supported, a negative dB can indicate a decrease in power, and a positive dB can indicate a boost in power. Or in the case of interference, the neighboring base station only indicates the reduced power value. Adjacent base stations can decide to reduce by a few dB based on previous interference detection.
  • the time or frequency domain location indication of the resource that IB wants to perform power control is the time or frequency domain location indication of the resource that IB wants to perform power control:
  • the adjusted resource location of the frequency domain can be: frequency, bandwidth, subcarrier, channel, PRB, etc.
  • the time slot, subframe, radio frame, super can be used. Frame, PRB, or other identifiable resource combinations that have been defined;
  • the resource location of the frequency domain may be: frequency range (frequency start and frequency end, or center frequency + bandwidth, channel, etc.), expressed in the time domain as the start of the time stamp , sub-frame, radio frame, superframe or time slot.
  • 1C-1 The center frequency and/or frequency band at which the LPN operates. If the center frequency and/or frequency band of the LPN power can be adjusted, and the adjusted LPN does not interfere with the measurement base station, then consider Altering the adjustment of the center frequency and/or frequency band of the LPN;
  • 1C-2 Change information of the downlink subframe offset amount of the LPN: If the specific downlink subframe of the LPN has large interference to the measurement base station, the LPN can adjust the synchronization offset amount, for example, the first downlink in the radio frame. The frame is adjusted at the offset position in the radio frame.
  • 1C-3 Change information of the uplink and downlink configuration of the LPN: If the specific downlink subframe of the LPN has large interference to the measurement base station, the LPN can adjust the ratio of the uplink and the downlink. To reduce the interference of a specific downlink subframe to the measurement base station.
  • Antenna tilt adjustment Includes the angle of the horizontal antenna angle or the vertical antenna angle.
  • the LPN can modify the range of its coverage area by changing the horizontal or vertical inclination, which also reduces the interference to the measurement base station.
  • the LPN receives the interference processing request sent by the eNB2, the LPN adjusts according to the indicated adjustment information, and feeds back the interference processing corresponding information, and the LPN may carry the interference processing corresponding message by the eNB configuration update message or other information, where the corresponding information is Includes:
  • the power information of the LPN that has been adjusted the information of other parameters that have been adjusted.
  • the embodiment of the present invention further provides the seventh solution, and the interference processing process includes:
  • Solution 7 The base station performs internal resource scheduling adjustment.
  • the scheduling of the base station can be performed in two ways for the downlink subframe with severe interference:
  • the first mode is: scheduling of a common control resource may be performed on a subframe with severe interference without scheduling any data resources of the UE;
  • the second method is: scheduling only the data resources of some UEs in the subframe with severe interference, and the UE is a UE that is located at the center of the measurement base station, is not interfered by the LPN, or is a UE that is particularly lightly affected by the LPN.
  • the embodiments of the present invention provide direct interference detection of a base station and the base station selects a UE to perform interference detection.
  • the method and system, and after detecting the interference problem also provide a solution for inter-base station interference coordination solution.
  • the invention has the beneficial effects of: solving the interference detection and interference processing of the downlink transmission of the adjacent frequency band in the downlink transmission under the same network condition, the same frequency, the different frequency, and the different system, so that the network can be flexibly deployed And coexist.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a base station, where the base station in this embodiment can be used as an interference detection process for measuring a base station in the process of the embodiments 1 to 4 in the embodiment of the method for measuring a base station, and interference processing of the sixth or the seventh solution.
  • Process as shown in Figure 8, including:
  • the obtaining unit 801 is configured to acquire measurement reference symbols of the interfering base station and configuration information of the measurement reference symbols.
  • the detecting unit 802 is configured to detect, according to the configuration information acquired by the acquiring unit 801, the received quality value of the measurement reference symbol of the interference base station.
  • the foregoing base station further includes:
  • the interference processing unit 901 is configured to start an interference processing procedure with the foregoing interference base station when the received quality value of the measurement reference symbol detected by the detecting unit 802 is higher than a set threshold; the interference processing procedure includes:
  • the interference processing unit 901 sends an interference processing request to the interfering base station according to the result of the foregoing measurement; or the interference processing unit 901 cancels the scheduling of the data resource on the interfered subframe; or the interference processing unit 901 is only The user equipment UE whose interference measured on the interfered subframe is lower than the set threshold performs scheduling of the data resource.
  • the interference processing request sent by the interference processing unit 901 includes at least one of the following information: Transmit power information to be adjusted, time domain or frequency domain position indication information of resources requiring power control, and parameter indication information to be adjusted;
  • the parameter indication information that needs to be adjusted includes at least one of the following: a working center frequency of the cell under the interference base station, an operating frequency band of the cell under the interference base station, and a downlink subframe offset amount of the cell under the interference base station.
  • the change information, the change information of the uplink and downlink configuration of the interfering base station cell, and the change information of the antenna tilt angle of the interfering base station cell includes at least one of the following: a working center frequency of the cell under the interference base station, an operating frequency band of the cell under the interference base station, and a downlink subframe offset amount of the cell under the interference base station.
  • the detecting unit 802 is specifically configured to: determine a frequency band to be interfered; and detect a receiving quality value of the measurement reference symbol of the interfering base station on the interfered frequency band.
  • the detecting unit 802 is further configured to perform layer 3 L3 filtering on the received quality value of the measurement reference symbol of the interfering base station, and perform interference estimation according to the filtered value.
  • the information acquiring unit 801 includes:
  • the first sending unit 8011 is configured to send a measurement request message to the interfering base station before the detecting unit 802 detects the received quality value of the measurement reference symbol of the interfering base station;
  • the first receiving unit 8012 is configured to receive, by the foregoing interference base station, the measurement reference symbol sent by the measurement request message sent by the first sending unit 8011, and the configuration information of the measurement reference symbol.
  • the embodiment of the present invention further provides a base station, which may be used as a method for the interfering base station to implement the interfering base station according to any one of the foregoing method embodiments, as shown in FIG.
  • the second sending unit 1101 is configured to send, to the measurement base station, the measurement reference symbol, where the transmit power of the base station on the measurement reference symbol is the same as the transmit power of the base station on the common reference symbol on the downlink subframe;
  • the configuration information of the reference symbol is sent to the measurement base station, so that the measurement base station detects the reception quality value of the measurement reference symbol of the base station according to the configuration information.
  • the foregoing base station may further include:
  • the second receiving unit 1201 is configured to: before transmitting the configuration information of the measurement reference symbol to the measurement base station, receive a measurement request message sent by the measurement base station;
  • the second sending unit 1101 is specifically configured to: send the measurement reference symbol to the measurement base station according to the measurement request message received by the receiving unit 1201; and send the measurement reference symbol to the measurement base station according to the measurement request message received by the receiving unit 1201. information.
  • the embodiment of the present invention further provides a base station, which can be used as a process for measuring the interference detection of the base station in the process of the embodiment of the method for measuring the implementation method of the base station, and the interference processing procedure of the sixth or the seventh solution; Show, including:
  • the third sending unit 1301 is configured to send, to the UE under the base station, a measurement control message to the interfering base station;
  • the foregoing measurement control message includes at least one of the following information: a detection range of the measurement reference symbol of the interference base station, a measurement quantity for performing measurement, and a reporting mechanism of the foregoing measurement;
  • the detection range of the measurement reference symbol of the foregoing interference base station may be the reception frequency range of the measurement base station; the foregoing measurement quantity may be a signal reception quality; and the reporting mechanism may include: reporting a threshold value or a reporting period.
  • the third receiving unit 1302 is configured to receive a cell signal receiving quality of the interfering base station reported by the UE indicated by the measurement control message sent by the third sending unit.
  • the foregoing base station further includes:
  • the processing unit 1401 is configured to start an interference processing procedure with the foregoing interference base station when the value of the received quality received by the third receiving unit 1302 is higher than a set threshold.
  • the interference processing procedure includes:
  • the processing unit 1401 sends an interference processing request to the interfering base station according to the result of the foregoing measurement; or, the processing unit 1401 cancels the scheduling of the data resource on the interfered subframe; or, the processing unit 1401 is only for the interfered sub-
  • the user equipment UE whose interference measured on the frame is lower than the set threshold performs scheduling of the data resource.
  • the foregoing base station may further include:
  • the merging unit 1501 is configured to: when the third receiving unit 1302 receives the cell signal receiving quality of the interference base station reported by the multiple UEs, combine the cell signal receiving qualities of the interfering base stations reported by the multiple UEs.
  • the embodiment of the present invention further provides a user equipment, which can implement the interference detection process of the user equipment in the process of the embodiment of the fifth embodiment of the method embodiment; as shown in FIG. 16, the method includes:
  • a fourth receiving unit 1601 configured to receive a measurement control message sent by the measurement base station
  • the foregoing measurement control message includes at least one of the following information: a detection range of the measurement reference symbol of the interference base station, a measurement quantity for performing measurement, and a reporting mechanism of the foregoing measurement;
  • the detection range of the measurement reference symbol of the foregoing interference base station may be the reception frequency range of the measurement base station; the foregoing measurement quantity may be a signal reception quality; and the reporting mechanism may include: reporting a threshold value or a reporting period.
  • the measuring unit 1602 is configured to detect, according to the measurement control information received by the fourth receiving unit 1601, the cell signal receiving quality of the interfering base station;
  • the fourth sending unit 1603 is configured to report the cell signal receiving quality of the interfering base station measured by the measuring unit 1602 to the measuring base station.
  • the foregoing measuring unit 1602 is specifically configured to: acquire a frequency band in which the measurement base station is interfered; and detect a cell signal reception quality of the interference base station on the interfered frequency band.
  • the foregoing user equipment may further include:
  • a filtering unit 1701 configured to perform layer 3 on the received quality measured by the measuring unit 1602
  • L3 is filtered and the interference is evaluated based on the filtered values described above.
  • An embodiment of the present invention further provides an interference detection system.
  • the embodiments of the present invention provide a method and a system for performing direct interference detection by a base station and a base station selecting a UE for interference detection, and further providing a solution for inter-base station interference coordination after detecting an interference problem.
  • the invention has the beneficial effects of: solving the interference detection and interference processing of the downlink transmission of the adjacent frequency band in the downlink transmission under the same network condition, the same frequency, the different frequency, and the different system, so that the network can be flexibly deployed And coexist.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种干扰检测方法、 装置和***
本申请要求于 2011 年 1 月 13 日提交中国专利局、 申请号为 201110006927.2、 发明名称为"一种干扰检测方法、 装置和***"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 特别涉及一种干扰检测方法、 装置和***。
背景技术
在目前的蜂窝通信***中,各个基站的站址都是经过网络规划以确保不同 的基站之间发生的干扰在可接受范围之内。 随着通信技术的发展, 更多类型的 频媒被应用到蜂窝通信***中; 因此相同频率使用不同的无线接入技术,相邻 频率使用相同或不同的接入技术都称为可能。各种类型的频媒被应用到蜂窝通 信***后的网络布局使得基站间的干扰共存更为复杂,因此需要新的干扰检测 和干扰共存的方案。
另夕卜, 灵活频谱共享技术作为一种有效的提高频谱效率的方法被提出, 采 用该技术的小区的配置是可以半静态的变化,这样变化对于已经规划布局的网 络会带来一定的冲击, 额外的干扰可能会产生。
而干扰测量的方案, 对于基站的测量, 即下行的测量是由用户设备(User Equipment, UE )进行的, 上行测量则主要是基站对于 UE的测量。
测量分为物理层测量和高层测量两种类型。
物理层测量包括下行测量和上行测量:下行测量为信道质量指示( Channel Quality Indicator, CQI )测量,上行测量为信道探测参考符号 (Sounding Reference signal, SRS)的测量,这两种测量的功能是提供上下行信道质量给基站( E Node Base station, eNB )做调度的参考使用的。 由于是支持调度的测量, 所以其上 报的周期从 2ms到十几 ms , 是一个短周期的动态测量结果。 而高层的测量为下行测量: 测量的是下行子帧上的公共参考符号,其测量 的周期为几百 ms, 反应了一个长期的信道质量。
对于基站的测量为下行测量, 由 UE来执行, 而且无论下行 CQI测量还是上 行 SRS的测量都是动态快变的, 无法提供长期的稳定的信道测量结果。
发明内容
本发明实施例要解决的技术问题是提供一种干扰检测方法、 装置和***, 提供长期的稳定的信道测量结果。
本发明的一个方面提供了一种干扰检测方法, 包括:
测量基站获取干扰基站的测量参考符号及所述测量参考符号的配置信息; 所述测量基站根据所述配置信息检测所述干扰基站的测量参考符号的接 收质量值。
本发明的另一个方面提供了一种干扰检测方法, 包括:
干扰基站向测量基站发送测量参考符号, 其中, 所述干扰基站在所述测量 参考符号上的发送功率和所述干扰基站在下行子帧上的公共参考符号上的发 射功率相同;
所述干扰基站将所述测量参考符号的配置信息发送给测量基站,以使得所 述测量基站根据所述配置信息检测所述干扰基站的测量参考符号的接收质量 值。
本发明的另一个方面提供了一种干扰检测方法, 包括:
测量基站向测量基站下的 UE发送对干扰基站的测量控制消息;
其中, 所述测量控制消息包括至少以下信息之一: 所述干扰基站的测量参 考符号的检测范围、 进行测量的测量量、 所述测量的上报机制;
测量基站接收所述 UE上报的干扰基站的小区信号接收质量。
本发明的另一个方面提供了一种干扰检测方法, 包括:
用户设备 UE接收测量基站发送的测量控制消息; 其中, 所述测量控制消息包括至少以下信息之一: 所述干扰基站的测量参 考符号的检测范围、 进行测量的测量量、 所述测量的上报机制;
所述 UE依据所述测量控制信息检测干扰基站的小区信号接收质量; 所述 UE向所述测量基站上报所述干扰基站的小区信号接收质量。
本发明的另一个方面提供了一种基站, 包括:
获取单元,用于获取干扰基站的测量参考符号及所述测量参考符号的配置 信息;
检测单元,用于根据所述获取单元获取的配置信息检测所述干扰基站的测 量参考符号的接收质量值。
本发明的另一个方面提供了一种基站, 包括:
第二发送单元, 用于向测量基站发送测量参考符号, 其中, 所述干扰基站 在所述测量参考符号上的发送功率和所述干扰基站在下行子帧上的公共参考 符号上的发射功率相同; 将所述测量参考符号的配置信息发送给测量基站, 以 使得所述测量基站根据所述配置信息检测所述干扰基站的测量参考符号的接 收质量值。
本发明的另一个方面提供了一种基站, 包括:
第三发送单元, 用于向基站下的 UE发送对干扰基站的测量控制消息; 其中, 所述测量控制消息包括至少以下信息之一: 所述干扰基站的测量参 考符号的检测范围、 进行测量的测量量、 所述测量的上报机制;
第三接收单元, 用于接收所述第三发送单元发送的测量控制消息指向的
UE上报的干扰基站的小区信号接收质量。
本发明的另一个方面提供了一种用户设备, 包括:
第四接收单元, 用于接收测量基站发送的测量控制消息;
其中, 所述测量控制消息包括至少以下信息之一: 所述干扰基站的测量参 考符号的检测范围、 进行测量的测量量、 所述测量的上报机制; 测量单元,用于依据所述第四接收单元接收的测量控制信息检测干扰基站 的小区信号接收质量;
第四发送单元,用于向所述测量基站上报所述测量单元测量的干扰基站的 小区信号接收质量。
本发明的另一个方面提供了一种干扰检测***, 包括: 本发明实施例提供 的基站; 或者, 本发明实施例提供的基站和用户设备。
上述技术方案具有如下有益效果:本发明实施例提供了基站进行干扰检测 的方法和***, 提供长期的稳定的信道测量结果, 解决了复杂的网络条件下, 同频, 异频, 异***情况下的干扰基站的下行发送对其相邻频带的同***或异 ***的测量基站的上行接收的干扰检测和干扰处理,使得网络可以灵活部署和 干扰共存。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需 要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1A为本发明实施例 DSS应用场景示意图;
图 1B为本发明实施例同频的场景干扰的频谱示意图;
图 1C为本发明实施例异频的场景干扰的频媒示意图;
图 1D为本发明实施例异频的场景干扰的频谱示意图;
图 1E为本发明实施例典型的网络单元示意图;
图 2A为本发明实施例方法流程示意图;
图 2B为本发明实施例方法流程示意图;
图 3A为本发明实施例方法流程示意图;
图 3B为本发明实施例干扰频带区域示意图; 图 4A为本发明实施例方法流程示意图;
图 4B-1为本发明实施例单天线口 SRS的调度位置示意图;
图 4B-2为本发明实施例 2天线口 SRS的调度位置示意图;
图 4B-3为本发明实施例 4天线口 SRS的调度位置示意图;
图 4C为本发明实施例 SC-FDMA块以及子载波示意图;
图 5为本发明实施例 SC-FDMA块以及子载波示意图;
图 6A为本发明实施例方法流程示意图;
图 6B为本发明实施例方法流程示意图;
图 6C为本发明实施例应用场景示意图;
图 7为本发明实施例方法流程示意图;
图 8为本发明实施例基站结构示意图;
图 9为本发明实施例基站结构示意图;
图 10为本发明实施例基站结构示意图;
图 11为本发明实施例基站结构示意图;
图 12为本发明实施例基站结构示意图;
图 13为本发明实施例基站结构示意图;
图 14为本发明实施例基站结构示意图;
图 15为本发明实施例基站结构示意图;
图 16为本发明实施例用户设备结构示意图;
图 17为本发明实施例用户设备结构示意图;
图 18为本发明实施例***结构示意图;
图 19为本发明实施例***结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述。 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例的应用场景为采用动态频谱共享 ( Dynamic spectrum sharing, DSS )技术的低功率节点 (Lower power node, LPN )和宏小区之间 的干扰问题,或者 LPN节点之间的干扰问题。 LPN可以为微微蜂窝 Pico小区, 微 micro小区, 中继 relay、 家庭基站 HeNB ( HNB )等。 本发明实施例为了方 便描述, 以 LPN和宏基站间的干扰为例进行描述, LPN之间的干扰问题, 或 者宏基站间的干扰问题也可以采用同样方法;在实施例的介绍中以宏基站作为 测量基站即执行干扰测量的基站, 也可以称为被干扰基站; LPN作为干扰基 站即造成干扰的基站; 需要说明的是, 测量基站也可以是 LPN, 对此本发明 实施例其它位置不再——说明。
由于 DSS技术的采用,在一个宏基站内部可能会产生 N个 LPN使用频分 复用 (Frequent Division Duplex, FDD )上行(Uplink, UL ) 资源进行下行信 号的发送, 该发射信号会被宏基站下的小区和相邻的多个 LPN接收到, 从而 造成对宏小区或相邻的 LPN的上行的干扰。
本发明实施例 DSS应用场景如图 1A所示, 其中宏基站用 eNB表示, 在 eNB覆盖范围内有多个 LPN。 干扰场景可以分为同频干扰, 异频干扰, 异系 统干扰等不同的场景。
其中同频干扰, 异频干扰和异***干扰的频谱示意图如图 1B到图 1D所 示:
图 1B是同频的场景, 图 1C是异频的场景。 宏基站 eNB 1是提供上行资 源给 LPN的基站, 宏基站 eNB2是 LPN的相邻宏基站。 eNBl,eNB2和 LPN 的下行都白框来表示。 宏基站 eNB 1 , eNB2和 LPN的上行频段上的上行子帧 都用斜线阴影表示。 LPN在上行频段上的下行子帧用网格阴影所示。 图 1D是异***的场景, 宏基站 eNBl是提供上行资源给 LPN的基站, 宏 基站 eNB2是 LPN的相邻宏基站。 其中宏基站 eNBl和 LPN可以是相同的接 入技术, 也可以是不同的接入技术, 本发明实施例是以宏基站 eNBl 和 LPN 采用相同接入技术的情况为例的, 当属于不同接入技术时, 所采用的方法也是 类似的, 不在本发明实施例中具体说明。 宏基站 eNB2采用和 LPN不同的接 入技术。 在 eNBl和 LPN的下行都用白框来表示, eNBl和 LPN的上行频段 上的上行子帧都用斜线阴影表示。 LPN在上行频段上的下行子帧用网格阴影 所示。
在上述场景中的干扰协调中各个涉及到的节点以及相应的操作如图 1E所 示: 其中有 4个典型的网络单元:
网络单元 0为: 提供资源给 LPN小区的宏基站 eNBl和其下的 UEs组成 了网络单元 0,在本文档中,提供资源的基站 eNBl和 LPN小区之间可以通过 干扰规避方式来解决干扰问题。 所以对于网络单元 0不涉及到对于网络单元 1 的干扰检测和干扰处理的问题。
网络单元 1 : LPN1和其下的 UEs形成了网络单元 1 , 其对相邻的 LPN 小区(网络单元 2)或者宏基站 eNB2(网络单元 3)形成干扰, 网络单元 1可以为 干扰基站。
网络单元 2为: 与 LPN的时分复用 ( Time Division Duplex, TDD ) 小区 相邻的 LPN小区 (LPN2 ) , 该 LPN2和其下的 UEs构成了网络单元 2, 需要 检测其被相邻的 LPN1的干扰情况, 并进行干扰处理, 所以网络单元 2可以为 测量基站;
网络单元 3:是与 LPN的 TDD小区相邻的宏小区,该宏小区可以是同频, 异频或异***的小区。 该宏小区和宏小区下的 UEs构成了网络单元 3 , 需要检 测网络单元 1对其的干扰以及需要跟网络单元 1间进行干扰的管理,网络单元 3也可以为测量基站。
本发明实施例主要解决的是网络单元 1对于网络单元 2之间的干扰检测和 干扰处理的方法,或者, 网络单元 1对于和网络单元 3之间的干扰检测以及干 扰处理的方法。本发明实施例以网络单元 1对网络单元 3之间的干扰检测和干 扰处理来阐述本发明实施例方案,网络单元 1对于和网络单元 2之间的干扰检 测以及干扰处理也可采用本发明实施例的方案, 就不具体——赘述。
本发明实施例对于干扰的检测可以使用高层的测量量,比如参考符号接收 功率 ( Reference signal received power, RSRP ) ,参考符号的接收质量 ( Reference signal received quality, RSRQ )以及接收信号强度指示 ( Received signal strength indication, RSSI )测量, 或物理层的测量量, 如 CQI测量或者 SRS测量。 其 他与上述测量能达到相同效果的测量本发明实施例对此并不予限定,因此以上 的测量量的举例不应理解为对本发明实施例的限定;在本发明实施例中将这些 量通常为测量参考符号的接收质量值。
另外需要说明的是:除了 DSS的场景外,任何在基站的接收频带,如 FDD UL频段上或 FDD上行频段附近有下行发送的情况都可以采用本发明实施的 方案, 其具体可以为:
FDD UL频段上或者 FDD UL频段附近(按照 RAN4的性能规范,在隔离 带范围内即为有干扰的邻频, 比如〜 30MHz附近, 或者 50MHz等, 具体数据 由 RAN4仿真决定 )的其他频段上有 FDD下行链路 ( Downlink, DL )的发送 或者 TDD DL的发送, 或者有其他无线接入技术的发射。
TDD频段上或 TDD频段附近(按照 RAN4的性能规范,在隔离带范围内 即为有干扰的邻频, 比如〜 30MHz附近, 或者 50MHz等, 具体数据由 RAN4 仿真决定) 的其他频段上的 TDD UL对应的时隙上有 DL发射, DL发射包括 相同接入技术 FDD制式或非 FDD制式, 或不同的接入技术。
本发明实施例提供了一种干扰检测方法, 如图 2A所示, 包括: 201A: 测量基站获取干扰基站的测量参考符号及上述测量参考符号的配 置信息;
上述 201A中的测量参考符号包括以下之一: 下行子帧上的公共参考符号 ( Common Reference Symbols, CRS ) , 下行子帧上的信道探测参考符号, 上 行子帧上的公共参考符号, 上行子帧上的信道探测参考符号; 以上四种测量参 考符号分别对应了干扰检测的一个应用场景,后续实施例将分别就这四种场景 举例进行说明。
另外测量参考符号还可以是其他的用于测量的参考符号,这些参考符号分 布在干扰基站的上行子帧上或下行子帧上的一些物理无线资源块 (Physical Radio block, PRB)上。测量参考符号所占用的位置可以反映干扰基站发送的测 量信号的情况。
可选地, 当上述 201A中的测量参考符号为基于调度的参考符号时, 在上 述检测上述干扰基站的测量参考符号的接收质量值之前,还包括: 上述测量基 站向上述干扰基站发送测量请求消息;上述测量基站接收上述干扰基站根据上 述测量请求消息发送的上述测量参考符号及上述测量参考符号的配置信息。上 述基于调度的参考符号为基站调度的参考符号, 比如, 本发明中的信道探测参 考符号, 可选的, 上行子帧上的公共参考符号也可以为基于调度的参考符号或 更具体地, 上述 201A中的配置信息中包括至少以下信息之一: 上述测量 参考符号的位置指示信息, 上述测量参考符号的带宽配置、上述测量参考符号 的子帧配置、上述测量参考符号的上报配置、上述测量参考符号发射功率配置; 其中, 上述位置指示信息为:
指示测量上述测量参考符号所使用的中心频率和测量带宽的信息; 或者 指示测量上述测量参考符号所使用的起始位置和终止位置的信息; 或者 指示测量上述测量参考符号所使用的起始位置和偏移量 offset的信息。 进一步地,在 201A之前可能存在需要自动控制是否启动干扰检测的方法, 本实施例提供了两种: 上述测量基站获取自身的小区调度性能, 若上述小区调 度性能下降, 则执行上述检测; 或者, 上述测量基站检测自身的参考符号的接 收质量值, 所述测量基站检测自身的参考符号为测量基站发送的公共参考符 号。若上述测量基站的参考符号的接收质量值低于设定门限,则执行上述检测。 需要说明的是以上两个举例不是启动干扰检测的条件的穷举,不应理解为对本 发明实施例的限定。
202A: 上述测量基站根据上述配置信息检测上述干扰基站的测量参考符 号的接收质量值。
本发明实施例提供了基站进行干扰检测的方法和***,提供长期的稳定的 信道测量结果, 解决了复杂的网络条件下, 同频, 异频, 异***情况下的下行 发送对其相邻频带的上行接收的干扰检测和干扰处理,使得网络可以灵活部署 和干扰共存。
可选地, 202A的实现可以是包括: 上述测量基站确定被干扰的频带; 上 述测量基站在上述被干扰的频带上检测上述干扰基站的测量参考符号的接收 质量值。
更具体地, 本发明实施例提供了测量基站确定被干扰的频带的几种方式: 上述测量基站基于上述干扰基站使用的频带和协议性能规范所规定的干 扰频带范围, 确定上述测量基站的被干扰的频带; 或者,
上述测量基站基于本基站的全频带进行测量,并基于对上述全频带中不同 子频带的测量结果, 确定上述测量基站的被干扰的频带; 或者, 上述测量基站 在本基站的全频带上检测上述干扰基站的信道质量,确定上述信道质量超过阈 值部分的频带为干扰频带。
进一步地, 在 202A之后还可以执行干扰处理流程, 当上述测量参考符号 的接收质量值高于设定的阈值时,上述测量基站启动与上述干扰基站间的干扰 处理流程, 上述干扰处理流程包括: 上述测量基站根据上述测量的结果向上述 干扰基站发送干扰处理请求; 或者, 上述测量基站在被干扰的子帧上取消数据 资源的调度; 或者,上述测量基站仅对在被干扰的子帧上测量的干扰低于设定 阈值的用户设备 UE进行数据资源的调度。
干扰处理请求包含至少以下信息之一: 需要调整的发射功率信息、需要进 行功率控制的资源的时域或频域的位置指示信息、 需要调整的参数指示信息; 其中, 上述需要调整的参数指示信息包括至少以下之一: 上述干扰基站下的小 区的工作中心频率、上述干扰基站下的小区的工作频带、上述干扰基站下的小 区的下行子帧偏置量的变化信息、干扰基站小区的上下行配置的变化信息、 以 及干扰基站小区的天线倾角的变化信息。
干扰处理流程将在后续方案六和方案七中进行详细说明。
进一步地, 在上述检测上述干扰基站的测量参考符号的接收质量值之后, 还包括: 对上述干扰基站的测量参考符号的接收质量值进行层三 L3过滤, 并 根据上述过滤后的值进行干扰的评估。
在以上实施例是测量基站实现干扰检测的实现方案,对应地,在干扰基站 的实现方式, 请参考图 2B所示, 包括:
201B: 干扰基站向测量基站发送测量参考符号, 其中, 上述干扰基站在 上述测量参考符号上的发送功率和上述干扰基站在下行子帧上的公共参考符 号上的发射功率相同;
202B: 上述干扰基站将上述测量参考符号的配置信息发送给测量基站, 以使得上述测量基站根据上述配置信息检测上述干扰基站的测量参考符号的 接收质量值。
与测量基站侧的实现方案对应地, 本实施例中:
上述的测量参考符号包括以下之一: 下行子帧上的公共参考符号, 下行子 帧上的信道探测参考符号, 上行子帧上的公共参考符号, 上行子帧上的信道探 测参考符号。
另外测量参考符号还可以是其他的用于测量的参考符号,这些参考符号分 布在干扰基站的上行子帧上或下行子帧上的一些物理无线资源块 (Physical Radio block, PRB)上。测量参考符号所占用的位置可以反映干扰基站发送的测 量信号的情况。
可选地,上述干扰基站将上述测量参考符号的配置信息发送给测量基站之 前, 还包括: 上述干扰基站接收到测量基站发送的测量请求消息; 上述干扰基 站根据上述测量请求消息向上述测量基站发送上述测量参考符号及上述测量 参考符号的配置信息。
可选地, 上述配置信息中包括至少以下信息之一: 上述测量参考符号的位 置指示信息, 上述测量参考符号的带宽配置、 上述测量参考符号的子帧配置、 上述测量参考符号的上报配置、 上述测量参考符号发射功率配置;
其中, 上述位置指示信息为:
指示测量上述测量参考符号所使用的中心频率和测量带宽的信息; 或者 指示测量上述测量参考符号所使用的起始位置和终止位置的信息; 或者 指示测量上述测量参考符号所使用的起始位置和偏移量 offset的信息。 方案一、本发明实施例提供了一种干扰检测方法,方案一中测量基站 eNB2 进行干扰基站 LPN 的下行子帧上的公共参考符号 (Common Reference Symbols, CRS ) 的检测, 测量基站作为一个特殊的 UE, 对干扰基站 LPN进 行干扰检测。 方案一的流程可以如图 3A所示, 包括: 测量基站 eNB2发现启 动干扰检测的条件符合(例如检测到本测量基站的调度性能降低, 或者本测量 基站的信号质量变差, 比如 UE上报的本基站的公共参考符号的信号质量低于 设定门限(RSRQ门限); 启动测量干扰基站 LPN; 保存&处理测量结果, 测 量基站 eNB2进行干扰处理, 测量基站 eNB2在执行干扰检测的过程中可以划 分为三个步骤: 步骤一: 首先测量基站 eNB2进行了下行测量的配置(生成测量参考符号 的配置信息) , 此时测量实体为测量基站 eNB2, 而不是传统的下行测量的执 行实体 UE, 其具体配置包括:
测量量: 基站 eNB2可以支持 RSRP, RSRQ和 RSSI的测量。
测量目标: 被测量小区频点和带宽, 被测量小区的标识(Identity, id ) , 被测量小区的上下行的配置, 被测量小区的偏置量, 被测量小区的 MBSFN配 置或空白帧配置,被测量小区的天线配置等, 这些信息可以通过目前已有的接 口 (比如: 长期演进( Long Term Evolution, LTE ) 中的 X2口, 或通用移动 通信*** ( Universal Mobile Telecommunications System, UMTS ) 的 Iur口 , 或其他***的类似接口 )获得。 但是对于干扰类的测量, 需要测量实体停留在 被干扰基站的工作频带范围内进行干扰小区的信号的测量。所以测量目标中的 被测量小区的中心频点可以设置为被干扰小区的中心频点,或者测量目标中的 被测量小区的中心频点位于被干扰小区的干扰频带范围内。此时, 测量目标中 的被测量小区的中心频点可以按照一定的类度(比如 LTE***而言, 可以按 照 6RB的类度进行) 自治的搜索。
另夕卜,如果测量基站通过一定的方法确定了干扰频带, 则测量目标中的测 量参考符号的位置指示信息, 测量参考符号的带宽配置, 测量参考符号的子帧 配置都会体现在测量目标中,以指示测量基站对这些物理资源块上的测量参考 符号进行干扰检测。
测量事件的配置: 原则上测量基站 eNB2可以支持全部 UE支持的测量事 件, 比如在 LTE中, 从 A1-A5, B1和 B2等; 在干扰检测的场景下, 主要的 是检测 RSRQ值是否高于或者低于设定的门限值。 由于测量目的不同,现有技 术的下行测量是为了移动性, 而干扰检测的下行测量是为了干扰测量, 所以类 似事件含义的事件, 其使用的阈值各不相同。
那么, 测量基站进行检测的场景下, 因为 LPN和干扰基站都是静止的基 站, 所以, 测量的结果会比较稳定, 只受到环境的扰动。 所以检测者的速率为 低速, 而且在上报时, 可以考虑不适用 ( Time To Trigger, TTT )参数测量结 果的处理: 对于物理层上报到高层的测量结果, 测量基站 eNB2可以进行层三 Layer 3 , L3过滤操作, 基站使用的 L3过滤的参数可以按照低速 UE的参数来 配置。
步骤二: 测量基站 eNB2启动对于 LPN的干扰的测量。 对于何时启动对 于邻区 LPN (干扰基站 )的测量可能有两种方式, 一种是测量基站 eNB2的内 部实现, 测量基站 eNB2根据基站上小区的调度性能的下降, 比如在 LPN下 行发射时隙 , eNB2上的数据的误块率( Block Error Rate, BLER )超过设定值, 则测量基站 eNB2判决是 LPN引起干扰。 或者在变更 LPN配置后不久, eNB2 上的数据的 BLER超过设定值, 则 eNB2判断是 LPN引起干扰, 则启动对于 LPN的测量。另外一种方式可以是测量基站 eNB2检测本基站的 RSRQ值,具 体可以为不区分 LPN下行子帧对应的子帧和 LPN 的上行子帧对应的子帧的 CRS检测, 在这种情况下, 如果本基站的 RSRQ值低于设定的门限值, 则启 动对于 LPN的 RSRQ的测量。 或者测量基站 eNB2在检测本基站的 RSRQ值 时, 区分 LPN下行子帧对应的子帧和 LPN的上行子帧对应的子帧的 CRS检
LPN的 RSRQ的测量。
步骤三: 测量基站 eNB2对于 LPN的下行干扰的检测, 只检测该下行子 帧上的 RSRQ值。 当所检测的 RSRQ的值高于设定的阈值时, 测量基站 eNB2 可能保存该测量结果, 并启动和 LPN的干扰处理流程。
当 LPN只有部分频带干扰测量基站 eNB2时, 如前上述, 测量基站 eNB2 可以通过目前已经存在的接口获得 LPN的如下配置信息: 小区频点和带宽, 小区的 id, 小区的上下行的配置, 小区的偏置量, 小区的多媒体广播多播业务 单频网 ( Multimedia Broadcast Multicast Service over the single frequency network, MBSFN ) 配置或空白帧配置, 小区的天线配置等。 测量基站 eNB2 可以根据 RAN4的性能规定, 获知 LPN的哪部分频带对测量基站 eNB2有干 扰。 或者测量基站 eNB2在本基站上对 LPN的全频带的 CRS进行测量, 然后 分析那些频带的 CRS 的干扰值比较大, 然后确定那部分频带对该测量基站 eNB2有干扰。
测量基站 eNB2对于部分频带的测量有 2种实现方式, 一种是修改 RSRQ 测量, 支持窄带的 RSRQ测量。 或者修改 CQI, 对 CQI的测量结果进行 L3过 滤处理。
方式一: 为了准确测量 LPN 上的对测量基站 eNB2造成干扰的频带的 RSRQ值, 则需要对部分的公共参考符号 (common reference signaling, CRS ) 符号而不是全部的 CRS符号进行测量。
如图 3B所示, 测量基站 eNB2上行的非干扰频带区域, 以及干扰频带区 域; LPN上下行非干扰频带区域, 以及干扰频带区域。
为了通知部分 CRS的位置, 可以采用中心频率 +带宽的方式(即: 指示测 量上述测量参考符号所使用的中心频率和测量带宽的信息 ), 或者频率起始分 别指示的方法(即: 指示测量上述测量参考符号所使用的起始位置和终止位置 的信息), 或者频率起 +offset的方式(即: 指示测量上述测量参考符号所使用 的起始位置和偏移量 offset的信息 )表达。
当被干扰频带或干扰频带为部分频带时,在此测量目标中指示需要测量的 CRS的范围, 比如:
选项一: CRS的中心频率 +测量的 CRS带宽的方法
MeasObjectEUTRA ::= SEQUENCE {
carrierFreq ARFCN-ValueEUTRA,
allowedMeasBandwidth AllowedMeasBandwidth,
presenceAntennaPort 1 PresenceAntennaPortl ,
measured— carrierFreq ARFCN-ValueEUTRA, (fc of CC or fc of CRS)
measured— bandwidth Measured— bandwidth or measured PRBs (bandwidth of partial carrier or CRS)
或者, 选项二: 测量的 CRS的起始位置和终止位置
MeasObjectEUTRA ::= SEQUENCE {
carrierFreq ARFCN-ValueEUTRA,
allowedMeasBandwidth AllowedMeasBandwidth,
presenceAntennaPort 1 PresenceAntennaPort 1 ,
measured— carrierFreq_start ARFCN-ValueEUTRA, measured— carrierFreq_stop ARFCN-ValueEUTRA, 或者, 选项三: 测量的 CRS的起始位置 +offset
MeasObjectEUTRA ::= SEQUENCE {
carrierFreq ARFCN-ValueEUTRA,
allowedMeasBandwidth AllowedMeasBandwidth,
presenceAntennaPort 1 PresenceAntennaPort 1 ,
measured— carrierFreq_start ARFCN-ValueEUTRA, measured— carrierFreq_offset Measured— bandwidth or measured PRBs
在选项三中, 如果测量的 CRS的起始位置是低频, 则 offset值为正值, 如果测量的 CRS的测量位置为高频, 则 offset值为负值。
除了上述方法外, UE还可以基于设定的类度, 比如 6RB或 1.25MHz的 测量带宽,在服务小区的基站范围内从低频到高频或者从高频到低频进行设定 类度的同频或异频测量。
在这种情况下, 为了减小产生的异频测量, 而且因为即使基站值检测部分 的 CRS符号, 测量基站 eNB2也可以不改变测量频点帧控制字段 fc的配置, 而只是修改 CRS频带的频点, 保持测量为同频测量。 或者测量基站 eNB2将 其接收频带范围内的测量都视为同频测量。 或者 UE保持测量的 fc是服务小区的中心频点,检测服务小区全部频带范 围内的相邻小区的导频信号, 并对干扰信号质量超过阈值部分的干扰信号(比 如图 3B中的干扰频带区域的 CRS符号 ) 的测量结果进行 L3过滤操作, 并进 行据此进行干扰的评估和上报。 对于干扰信号质量低于阈值部分的干扰信号 (比如图 3B中的非干扰频带区域的 CRS符号)不进行 L3过滤操作, 不作为 干扰信号进行评估和事件的上报。
上述的并对干扰信号质量超过阈值部分的干扰信号(比如图 3B中的干扰 频带区域的 CRS符号)也可以被确定为干扰频带, 测量基站对该干扰频带的 信号进行层 3过滤操作, 并据此进行干扰的评估和上报。
方式二: 测量基站 eNB2对于部分被干扰频带的测量,可以采用 CQI测量 的方式。
首先: 启动对于 LPN的干扰的测量。 对于何时启动对于邻区 LPN的测量 可能有两种方式, 一种是测量基站 eNB2的内部实现, eNB2根据基站上小区 的调度性能的下降, 比如 LPN下行发射时隙, eNB2上的数据的 BLER超过设 定值, 则 eNB2判决是 LPN引起干扰。 或者在变更 LPN配置后不久, eNB2 上的数据的 BLER超过设定值, 则 eNB2判断是 LPN引起干扰, 则启动对于 LPN的此类昂。另外一种方式可以是 eNB2检测本基站的 RSRQ值,具体可以 为不区分 LPN下行子帧对应的子帧和 LPN的上行子帧对应的子帧的 CRS检 测, 在这种情况下, 如果本基站的 RSRQ值低于设定的门限值, 则启动对于 LPN的 RSRQ的测量。 或者 eNB2在检测本基站的 RSRQ值时, 区分 LPN下 行子帧对应的子帧和 LPN的上行子帧对应的子帧的 CRS检测, 当 LPN下行 子帧对应的 RSRQ的检测低于设定的门限值时, 则启动对于 LPN的 RSRQ的 测量。
然后: 将 CQI的测量带宽配置为干扰区域的带宽, 此时的干扰区域的带 宽, 可以为相邻小区的全部带宽或者相邻小区的部分带宽。 测量基站 eNB2像 UE—样进行指定带宽的 CQI测量。 因为 CQI是支持调度的动态的测量结果, 为了得到干扰情况的长期的测量结果,测量基站 eNB2可以把该动态的测量结 果进行 L3过滤, 得到过滤后的高层的测量结果。
方案二: 本方案中测量基站对干扰基站 LPN的下行子帧上的信道探测参 考符号进行检测, 基站将 LPN当成特殊的 UE进行信道探测参考符号的检测。 如图 4A所示, eNB2检测 LPN下行子帧上发送的信道探测参考符号 (Sounding Reference signal, SRS)流程可以包括: 测量基站 eNB2检测本基站下的小区的 调度性能变差, 或者调度性能差过一定的门限值, 则 eNB2 向干扰基站 LPN 发送信道探测参考符号 SRS的调度请求, 用于请求 LPN启动用于干扰检测的 下行子帧上的信道探测参考符号的调度, LPN接收到调度请求后执行 SRS调 度。 当 eNB2发送信道探测参考符号的调度请求信息到 LPN后, eNB2可以配 置基于信道探测参考符号测量的配置信息。 该配置信息可以包括:
测量量: 类似于 RSRP, RSRQ和 RSSI的测量量。
测量目标: 被测量小区频点和带宽, 被测量小区的标识(Identity, id ) , 被测量小区的上下行的配置, 被测量小区的偏置量, 被测量小区的 MBSFN配 置或空白帧配置,被测量小区的天线配置等, 这些信息可以通过目前已有的接 口 (比如: 长期演进( Long Term Evolution, LTE ) 中的 X2口, 或通用移动 通信*** ( Universal Mobile Telecommunications System, UMTS ) 的 Iur口 , 或其他***的类似接口)获得。 但是对于干扰类的测量, 需要测量实体停留在 被干扰基站的工作频带范围内进行干扰小区的信号的测量。所以测量目标中的 被测量小区的中心频点可以设置为被干扰小区的中心频点,或者测量目标中的 被测量小区的中心频点位于被干扰小区的干扰频带范围内。此时, 测量目标中 的被测量小区的中心频点可以按照一定的类度(比如 LTE***而言, 可以按 照 6RB的类度进行) 自治的搜索。 另外, 如果测量基站通过一定的方法确定 了干扰频带, 则测量目标中的测量参考符号的位置指示信息, 测量参考符号的 带宽配置, 测量参考符号的子帧配置都会体现在测量目标中, 以指示测量基站 对这些物理资源块上的测量参考符号进行干扰检测。
测量事件的配置: 测量基站 eNB2可以支持全部下行测量的测量事件, 比 如在 LTE中, 从 A1-A5, B1和 B2等; 在方案二, 方案三中, 类似的事件定 义可以用来表明基于下行子帧上的信道探测参考符号或上行子帧上信道探测 参考符号检测出的相邻小区的干扰触发情况。这些上行测量事件的配置和下行 事件的配置类似, 即事件的含义相同, 比如服务小区 (测量基站)或相邻小区 (干 扰基站)的接收质量值与绝对阈值或相对阈值 (服务小区(测量基站)与相邻小区 (干扰基站)的接收质量值进行比较, 并增加相对偏置量)进行比较等。 由于测量 目的不同,现有技术的下行测量是为了移动性, 而上行干扰检测是为了干扰测 量, 所以类似事件含义的事件, 其使用的阈值各不相同。
测量结果的处理: 对于物理层上报到高层的测量结果, 测量基站 eNB2可 以进行层三 Layer 3 , L3过滤操作, 基站使用的 L3过滤的参数可以按照低速 UE的参数来配置。
LPN 收到该信道探测参考符号调度请求信息后, 启动用于干扰检测的下 行子帧上的信道探测参考符号 SRS, 并把该信道探测参考符号 SRS的配置信 息, 包括调度信息发送给 eNB2,使其进行基于信道探测参考符号的干扰检测; eNB2收到 LPN的信道探测参考符号的调度信息后,启动基于信道探测参 考符号的干扰检测。如果所检测的信道探测参考符号的测量量满足设定的事件 门限时, 则 eNB2保存和处理该测量结果, 并发起和 LPN的干扰处理过程。
LPN在下行子帧上发送信道探测参考符号。为了使测量基站 eNB2能像检 测 UE的信道探测参考符号 ( Sounding Reference signal, SRS )那样检测 LPN 的下行信道质量, 在 LPN的下行子帧上需要调度和 UE的信道探测参考符号 相同的资源, 并发送和 UE上行相同的信道探测参考符号, 但是该信道探测参 考符号的发射功率和 LPN的下行子帧上的公共参考符号 CRS是一样的。信道 探测参考符号位于一个 UL子帧的最后一个符号,但是其占用的带宽是***可 以配置的。 为了使测量基站 eNB2能够检测该 LPN的信道探测参考符号 SRS 的符号, LPN需要将信道探测参考符号的配置信息通知给 eNB2。具体流程为: 步骤一: LPN在下行子帧上调度信道探测参考符号, 具体可如图 4B-1至 图 4B-3所示, 单天线口, 2天线口和 4天线口情况下的 LPN的下行子帧上的 SRS的调度位置:
4B-1至图 4B-3依次为: 单天线端口: One antenna port; 两个天线端口: Two antenna ports;四个天线端口: Four antenna ports; 禺数日†隙:: even-numbered slots; 奇数 H†隙:: odd-numbered slots;
从上到下依次为: 天线端口 0: Antenna port 0; 天线端口 1 : Antenna port 1 ; 天线端口 2: Antenna port 2; 天线端口 3: Antenna port 3;
黑色的方块为: 资源元素 ( K, L ) : Resource element (k,l);
空白的方块表示:不用于传输此天线端口: Not used for transmission on this antenna port;
标有为 的方块表示为: 这个天线端口参考符号: Reference symbols on this antenna port„ 的最后一个符号上, 而且每个信道探测参考符号隔一个子载波。 该干扰基站 LPN 的下行子帧上的信道探测参考符号的配置信息包括: 信道探测参考符号 的带宽配置 , 信道探测参考符号的子帧配置和信道探测参考符号的上报配置。 而且需要通知 eNB2该信道探测参考符号发送子帧配置。 LPN在 SRS上的发 送功率和其公共参考符号上 CRS上的发射功率相同。
步骤二: 测量基站 eNB2启动对 LPN的干扰检测, 方法和方案一的步骤 二中启动对 LPN测量相同, 不在此赘述。
步骤三: 测量基站 eNB2通知 LPN要启动对 LPN的测量, 则 eNB2通过 LPN和 eNB2间的直接或者间接接口发送测量请求。在该测量请求中 eNB2通 知 LPN要测量 LPN的干扰。
步骤四: LPN 收到该测量请求的信息后, 启动对下行子帧上发送的信道 探测参考符号的调度, 并把该调度配置发送给 eNB2; 信道探测参考符号的调 度配置包括:信道探测参考符号的带宽配置, 信道探测参考符号的子帧配置和 信道探测参考符号的上报配置。 为了支持 eNB2的测量, LPN还需要将信道探 测参考符号上的发射功率配置发送给 eNB2。
步骤五: 测量基站 eNB2对 LPN上信道探测参考符号进行检测。 因为干 扰是一个长期的测量结果, eNB2需要对测量的信道探测参考符号的值进行 L3 过滤操作,具体的 L3过滤的算法和 UE的 L3过滤相似。 同样因为对高层测量 的支持, 在 LPN的下行子帧上 SRS的调度周期也可以设置的比较长, 只要满 足 RAN4对于高层测量的需求即可。
方案三: 本方案中干扰基站 LPN在 UL子帧上发送 LPN的信道探测参考 符号, 该信道探测参考符号使用和下行子帧上的公共参考符号 CRS相同的发 射功率。
具体的操作流程和方案二相似, 不同之处在于:
步骤一: 干扰基站 LPN在上行子帧上调度类似于 UE上行的信道探测参 考符号, 具体可如: UL子帧上的信道探测参考符号的调度位置如图 4C所示 的单载波频分多址 ( Single Carrier Frequency Division Multiple Access , SC-FDMA )块以及子载波。 信道探测参考符号被调度在每个无线资源块 RB 的最后一个符号上, 而且每个信道探测参考符号隔一个子载波。 该 LPN的上 行子帧上的信道探测参考符号的配置信息包括: 信道探测参考符号的带宽配 置 , 信道探测参考符号的子帧配置和信道探测参考符号的上报配置。
而且需要通知 eNB2该信道探测参考符号发送子帧配置。 LPN在信道探测 参考符号上的发送功率和其 CRS上的发射功率相同。 LPN的信道探测参考符 号的配置和普通的 UE在上行子帧上的 SRS配置类似。信道探测参考符号位于 一个 UL子帧的最后一个符号, 但是其占用的带宽是***可以配置的。
本方案步骤二和步骤三与方案二的步骤二和步骤三相同。
步骤四: LPN 收到该信息后, 启动对上行子帧上发送的信道探测参考符 号的调度, 并把信道探测参考符号的调度配置发送给 eNB2; 信道探测参考符 号的调度配置包括:信道探测参考符号的带宽配置, 信道探测参考符号的子帧 配置和信道探测参考符号的上报配置。而且需要通知 eNB2该 SRS发送子帧配 置以及发射功率的配置。
本方案步骤五的处理和方案二的步骤五相同。
方案四: 本方案干扰基站 LPN在 UL子帧上发送新定义的上行公共参考 符号, 测量基站 eNB2检测新的上行公共参考符号, 进行 LPN上行的测量。 其中上行子帧上新设定的公共参考符号的位置可以参考 DL公共参考符号的位 置。参考符号在整个 PRB内均衡的占用一些资源要素( resource element, RE )。 可以采用和信道探测参考符号类似的特定符号上进行。上行公共符号的设定如 图 5所示的业务码频分多址 ( single carrier Frequency Division Multiple Access, SC-FDMA )块以及子载波。 LPN可以在上行子帧上发送上行公共符号, 该上 行公共符号上的发射功率和下行的 CRS的发射功率相同;分布在标 Ro的位置。
测量的方法可以和方案一中的下行链路(Downlink, DL ) 测量类似, 只 是测量的方向变为上行测量。
步骤一: 首先测量基站 eNB2进行了上行测量的配置, 其具体配置包括: 测量量: 基站 eNB2可以支持上行的 RSRP, 上行的 RSRQ和上行的 RSSI 的测量。 该测量基于上述新设定的上行 CRS参考符号。
测量目标: 被测量小区频点和带宽, 被测量小区的标识(Identity, id ) , 被测量小区的上下行的配置, 被测量小区的偏置量, 被测量小区的 MBSFN配 置或空白帧配置,被测量小区的天线配置等, 这些信息可以通过目前已有的接 口 (比如: 长期演进( Long Term Evolution, LTE ) 中的 X2口, 或通用移动 通信*** ( Universal Mobile Telecommunications System, UMTS ) 的 Iur口 , 或其他***的类似接口)获得。 但是对于干扰类的测量, 需要测量实体停留在 被干扰基站的工作频带范围内进行干扰小区的信号的测量。所以测量目标中的 被测量小区的中心频点可以设置为被干扰小区的中心频点,或者测量目标中的 被测量小区的中心频点位于被干扰小区的干扰频带范围内。此时, 测量目标中 的被测量小区的中心频点可以按照一定的类度(比如 LTE***而言, 可以按 照 6RB的类度进行 ) 自治的搜索。
另夕卜,如果测量基站通过一定的方法确定了干扰频带, 则测量目标中的测 量参考符号的位置指示信息, 测量参考符号的带宽配置, 测量参考符号的子帧 配置都会体现在测量目标中,以指示测量基站对这些物理资源块上的测量参考 符号进行干扰检测。
测量事件的配置: 测量基站 eNB2上行的公共导频符号的测量可以支持 全部的下行测量事件, 比如在 LTE中, 从 A1-A5, B1和 B2等。 但是由于是 上行的测量事件, 该事件可以进行重命名: 比如 C 1 -C5 , 和 D 1和 D2 , 其中 C 1 -C5可以和 Al -A5对应, D 1和 D2可以和 B 1和 B2对应, 相对应的事件具 有类型的含义, 指示由于测量目的的不同, 可以使用不同的阈值。 在干扰检测 的场景下,主要的是检测 RSRQ值是否高于或者低于设定的门限值。则基站进 行检测的场景下, 因为 LPN和干扰基站都是静止的基站, 所以, 测量的结果 会比较稳定, 只收到环境的扰动。 所以检测者的速率为低速, 而且在上报时, 可以考虑不适用 TTT参数。
测量结果的处理: 对于物理层上报到高层的测量结果, eNB2可以进行 L3 过滤操作, 基站使用的 L3过滤的参数可以按照低速 UE的参数来配置。
步骤二和步骤三和方案一中的步骤二以及步骤三相同。上行公共参考符号 的测量支持指定带宽的 L3的测量。 该指定的带宽可以和方案一中步骤三的指 示方式类似, 也可以使用几种固定的带宽类度, 比如 6RB, 或 1.25M等。 在从方案二到方案四的干扰检测中,测量基站也需要检测干扰基站的干扰 频带, 其检测的方法可以为下面的方式之一:
基于协议性能规范的干扰范围和干扰基站使用的频带范围,确定测量基站 的干扰频带的范围, 获取该干扰频带内的干扰基站的接收质量;
基于本基站的全频带进行测量,基于不同子频带的测量结果, 判决干扰频 带的位置, 获取该干扰频带内的干扰基站的接收质量。
检测本基站的全频带上的干扰基站的信道质量,信道质量超过阈值部分的 子频带为干扰频带, 获取该干扰频带内的干扰基站的接收质量。
对于上述已经确定出的干扰频带的指示, 可以采用下面的方法之一: 测量的中心频率和测量带宽设定的方法进行测量; 或者,
测量的起始位置和终止位置分别指示的方法进行测量; 或者,
测量的起始位置和 offset设定的方法进行测量; 或者,
基于设定的类度在服务小区的基站范围内从低频到高频或者从高频到低 频进行设定类度的同频或异频测量。
本发明实施例还提供了另一种干扰检测方法, 如图 6A所示, 包括: 601A: 测量基站向测量基站下的 UE发送对干扰基站的测量控制消息; 其 中, 上述测量控制消息包括至少以下信息之一: 上述干扰基站的测量参考符号 的检测范围、 进行测量的测量量、 上述测量的上报机制;
具体地,上述干扰基站的测量参考符号的检测范围可以为上述测量基站的 接收频率范围; 上述测量量可以为信号接收质量; 上述上报机制可以包括: 上 报阈值或上报周期。
上述测量基站下的 UE具体为检测到是上述测量基站的路损小于设定阈值 或接收功率大于设定阈值的一个或多个 UE。
具体地,上述干扰基站的测量参考符号的检测范围可以为上述测量基站的 接收频率范围; 上述测量量可以为信号接收质量; 上述上报机制可以包括: 上 报阈值或上报周期。
602A: 测量基站接收上述 UE上报的干扰基站的小区信号接收质量。 进一步地,如果在 702中上述测量基站接收到多个 UE上报的干扰基站的 小区信号接收质量; 则上述测量基站对上述多个 UE上报的干扰基站的小区信 号接收质量进行合并。
在本方案之后也可以进一步增加本发明实施例提供的方案六或方案七的 干扰处理流程, 在此不再赘述。
以上实施例是在测量基站实现干扰检测的方案, 对应的, 在 UE上实现干 扰检测的方法, 如图 6B所示, 包括:
601B: 用户设备 UE接收测量基站发送的测量控制消息;
其中, 上述测量控制消息包括至少以下信息之一: 上述干扰基站的测量参 考符号的检测范围、 进行测量的测量量、 上述测量的上报机制;
具体地,上述干扰基站的测量参考符号的检测范围可以为上述测量基站的 接收频率范围; 上述测量量可以为信号接收质量; 上述上报机制可以包括: 上 报阈值或上报周期。
602B: 上述 UE依据上述测量控制信息检测干扰基站的小区信号接收质 量;
603B: 上述 UE向上述测量基站上报上述干扰基站的小区信号接收质量。 具体地, 上述检测干扰基站的小区信号接收质量包括: 上述 UE获取上述 测量基站被干扰的频带; 上述 UE在上述被干扰的频带上检测上述干扰基站的 小区信号接收质量。
更具体地, 上述 UE获取上述测量基站被干扰的频带包括:
上述用户设备 UE 获取上述测量基站确定的上述测量基站的被干扰的频 带, 其中, 上述测量基站的被干扰的频带为上述测量基站基于上述干扰基站使 用的频带和协议性能规范所规定的干扰频带范围确定的; 或者, 上述用户设备
UE基于上述测量基站的全频带进行测量, 并基于对上述全频带中不同子频带 的测量结果, 用户设备 UE确定上述测量基站的被干扰的频带;
或者, 上述用户设备 UE基于所述测量基站的全频带进行测量, 并将所述 全频带中不同子频带的测量结果上报给测量基站,由测量基站确定所述测量基 站的被干扰的频带;
或者,上述用户设备 UE在测量基站的全频带上检测上述干扰基站的信道 质量, 用户设备 UE确定上述信道质量超过阈值部分的频带为干扰频带。
或者,上述用户设备 UE在测量基站的全频带上检测所述干扰基站的信道 质量, 并将所述干扰基站的信道质量上报给测量基站, 由测量基站确定所述信 道质量超过阈值部分的频带为干扰频带。
进一步地, 在上述检测干扰基站的小区信号接收质量之后, 还包括: 对上述干扰基站的小区信号接收质量进行层三 L3过滤, 并根据上述过滤 后的值进行干扰的评估。
上述配置信息中包括的信息可以参考前四个方案, 在此不再——赘述。 方案五: 该方案的示意图如图 6C所示, 本方案中, 测量基站(eNB2 )选 择其服务的部分 UE进行 LPN基站的干扰的检测, 综合 N个 UE的测量结果, 得到 LPN基站的干扰信息。
被选择的 MUE ( Macro UE )需要是能在 FDD UL上进行接收的 UE。 但 是 MUE和服务基站 (测量基站)的接收位置不同,所以其检测的结果可能不准。 而且如果采用 MUE的检测,则该 MUE需要离基站很近。需要选择合适的 MUE 为基站做检测。 MUE的选择和 LPN的干扰结果可以采用如下的方法:
MUE选择的方法: 根据 MUE到服务基站 (测量基站)的路损 (Pathloss,PL) 值来选择 MUE。 MUE到服务小区 (测量基站)的路损值需要小于一定阈值, 也 就是 UE接收到的服务基站 (测量基站)下的小区的 RSRP需要大于设定的阈值。 具体选择方法如下:
1、 MUE 到服务基站 (测量基站)的 PL^ 务基站 (测量基站)的发射功率 (MUE读取 SIB2)-RSRP(MUE 测量的服务基站 (测量基站)的参考符号功率强 度);
2、 根据 MUE对于服务基站 (测量基站)的 PL来评估 MUE到服务基站 (测 量基站)的距离。 服务基站 (测量基站)可以设定一个 PL的阈值或者 RSRP的阈 值 (测量基站收到测量结果后, 自己计算 PL值), 并且下发该阈值 (PL 阈值或 RSRP阈值)作为测量控制给 MUE。
3、 当 MUE发现满足设定的 PL值或 RSRP值时, MUE上^艮测量结果给 服务基站 (测量基站); 上报的事件考虑:
PL: 本服务基站 (测量基站)下的小区的 PL小于设定的阈值;
RSRP: 本服务基站 (测量基站)下的小区的 RSRP大于设定的门限值,该事 件可以重用 A1事件: Serving becomes better than threshold, 因为用途不同, 需 要重新设置阈值。
4、 服务基站 (测量基站)根据 MUE上报的结果选择 PL最小的几个 MUE 作为干扰评估测量的 UE。
测量基站 eNB2设置选择的 UEs进行干扰基站的测量:
因为测量的目标是干扰检测, 而不是进行切换目标小区的选择, 也就是 UE不需要调频到目标小区的频率, 而是停留在被干扰小区的接收频带范围内 去检测在该范围内的相邻干扰小区的信号质量。所以测量基站 eNB2对于其选 择的 UE的测量控制和正常的 UE的测量控制相同, 所不同的是:
测量目标: 被测量小区频点和带宽, 被测量小区的标识(Identity, id ) , 被测量小区的上下行的配置, 被测量小区的偏置量, 被测量小区的 MBSFN配 置或空白帧配置,被测量小区的天线配置等, 这些信息可以通过目前已有的接 口 (比如: 长期演进( Long Term Evolution, LTE ) 中的 X2口, 或通用移动 通信*** ( Universal Mobile Telecommunications System, UMTS ) 的 Iur口 , 或其他***的类似接口)获得。 但是对于干扰类的测量, 需要测量实体停留在 被干扰基站的工作频带范围内进行干扰小区的信号的测量。所以测量目标中的 被测量小区的中心频点可以设置为被干扰小区的中心频点,或者测量目标中的 被测量小区的中心频点位于被干扰小区的干扰频带范围内。此时, 测量目标中 的被测量小区的中心频点可以按照一定的类度(比如 LTE***而言, 可以按 照 6RB的类度进行 ) 自治的搜索。
当 LPN只有部分频带干扰测量基站时, 如前上述, 测量基站 eNB2可以 通过目前已经存在的接口获得 LPN的如下配置信息: 小区频点和带宽, 小区 的 id, 小区的上下行的配置, 小区的偏置量, 小区的 MBSFN配置或空白帧配 置, 小区的天线配置等。 测量基站可以根据 RAN4的性能规定, 获知 LPN的 哪部分频带对测量基站 eNB2有干扰。或者 eNB2在本基站上对 LPN的全频带 的 CRS进行测量, 然后分析那些频带的 CRS的干扰值比较大, 然后确定那部 分频带对该 eNB2有干扰。
对于部分频带干扰基站的测量和方案一的步骤三的方式一相同。
为了准确测量 LPN上的对测量基站 eNB2造成干扰的频带的 RSRQ值, 则需要对部分的 CRS符号而不是全部的 CRS符号进行测量。
为了通知部分 CRS的位置, 可以采用中心频率 +带宽的方式, 或者频率起 始分别指示的方法。 或者频率起 +offset的方式表达。
当被干扰频带或干扰频带为部分频带时,在此测量目标中指示需要测量的
CRS的范围。
选项一: CRS的中心频率 +测量的 CRS带宽的方法
MeasObjectEUTRA ::= SEQUENCE {
carrierFreq ARFCN-ValueEUTRA,
allowedMeasBandwidth AllowedMeasBandwidth,
presenceAntennaPort 1 PresenceAntennaPort 1 , measured— carrierFreq ARFCN-ValueEUTRA, (fc of CC or fc of CRS)
measured— bandwidth Measured— bandwidth or measured PRBs (bandwidth of partial carrier or CRS)
或者, 选项二: 测量的 CRS的起始位置和终止位置
MeasObjectEUTRA ::= SEQUENCE {
carrierFreq ARFCN-ValueEUTRA,
allowedMeasBandwidth AllowedMeasBandwidth,
presenceAntennaPort 1 PresenceAntennaPort 1 ,
measured— carrierFreq_start ARFCN-ValueEUTRA, measured— carrierFreq_stop ARFCN-ValueEUTRA, 或者, 选项三: 测量的 CRS的起始位置 +offset
MeasObjectEUTRA ::= SEQUENCE {
carrierFreq ARFCN-ValueEUTRA,
allowedMeasBandwidth AllowedMeasBandwidth,
presenceAntennaPort 1 PresenceAntennaPort 1 ,
measured— carrierFreq_start ARFCN-ValueEUTRA, measured— carrierFreq_offset Measured— bandwidth or measured PRBs
在选项三中, 如果测量的 CRS的起始位置是低频, 则 offset值为正值, 如果测量的 CRS的测量位置为高频, 则 offset值为负值。
除了上述方法外, UE还可以基于设定的类度, 比如 6RB或 1.25MHz的 测量带宽,在服务小区的基站范围内从低频到高频或者从高频到低频进行设定 类度的同频或异频测量。
在这种情况下, 为了减小产生的异频测量, 而且因为即使基站值检测部分 的 CRS符号, eNB也可以不改变测量频点 fc的配置, 而只是修改 CRS频带 的频点, 保持测量为同频测量。 或者测量基站 eNB2将其接收频带范围内的测 量都视为同频测量。
或者 UE保持测量的 fc是服务小区的中心频点,检测服务小区全部频带范 围内的相邻小区的导频信号, 并对干扰信号质量超过阈值部分的干扰信号(比 如图 3B中的干扰频带区域的 CRS符号 ) 的测量结果进行 L3操作, 并进行据 此进行干扰的评估和上报。对于干扰信号质量低于阈值部分的干扰信号(比如 图 3B中的非干扰频带区域的 CRS符号 )不进行 L3过滤操作, 不作为干扰信 号进行评估和事件的上报。 具体测量流程如下:
1、 测量基站配置 MUE需要上报的 LPN的 RSRQ的阈值, 并把该阈值在 测量控制消息中下发给 MUE;
2、 当 MUE发现满足设定的 LPN的 RSRQ的阈值时 , MUE上报 LPN的 测量结果给被干扰的测量基站;
3、 测量基站根据和 MUE上报的被干扰基站的 PL值和测量的 LPN的测 量值 (RSRQ值), 评估 MUE的位置。
4、 被干扰基站选择不同位置的 MUE的 LPN的测量结果进行平均, 得到 被干扰基站收到的 LPN的干扰结果。
进一步地, 本发明实施例还提供了干扰处理的方法, 当测量基站所检测的 测量参考符号的接收质量值高于设定的阈值时,测量基站启动与干扰基站间的 干扰处理流程。上述干扰处理流程包括: 上述测量基站根据上述测量的结果向 上述干扰基站发送干扰处理请求; 或者, 上述测量基站在被干扰的子帧上取消 数据资源的调度; 或者, 上述测量基站仅对在被干扰的子帧上测量的干扰低于 设定阈值的用户设备 UE进行数据资源的调度。
方案六: 测量基站和 LPN之间进行干扰协商来解决干扰问题; 流程如图 7所示: 701 :干扰检测( Interference is detected ); 702:干扰处理请求( Interference process request ); 703: 干扰过程响应 ( Interference process response ); 更具 体地: 当测量基站发现 LPN基站对其产生干扰时, 并且测量基站获知 LPN对其 干扰的时域和频域范围后, 基站通过和 LPN之间的进行干扰的协商来解决干 扰问题, 其具体的流程:
1、 当测量基站 (eNB2)检测到干扰后, 基站可以发送干扰处理请求信息到 LPN, 在该干扰请求信息中, 包含着:
1A: 需要降低的发射功率信息, 该信息可以是一个绝对的发射功率值, 也可以是相对的发射功率, 比如功率升高或者降低多少 dB。 或者只是升高或 者降低的指示。
1A-1 : 发射功率为绝对阈值的情况下, 可以包括具体的发射功率的指示, 其发射功率范围比如为特定的 dBM;
1A-2:发射功率为相对阈值的情况下,可以包括具体指示调整的发射功率 的指示, 比如为 -dB, 或者 +dB。 如果同时支持升功率和降功率的情况下, 负 的 dB可以表明为降低功率, 正的 dB可以表明为升高功率。 或者在干扰的情 况下,相邻基站只指示降低的功率值。相邻的基站可以基于前面的干扰检测来 决定降低几个 dB。
IB希望进行功率控制的资源的时域或频域的位置指示:
1B-1 : 对于同一种 RAT的情况下, 调整的频域的资源位置可以为: 频率, 带宽, 子载波, 信道, PRB等, 对于时域的位置可以用时隙, 子帧, 无线帧, 超帧, PRB, 或者其他已经定义的可以识别的资源组合等;
1B-2: 对于异 RAT的情况下, 其频域的资源位置可以为: 频率范围(频率 启动和频率结束, 或者中心频率 +带宽, 信道等), 时域上表示为, 时间戳的起 始, 子帧, 无线帧, 超帧或者时隙等。
1C: 或者希望进行调整的其他参数的指示信息:
1C-1 : LPN工作的中心频率和 /或频带,如果 LPN功率的中心频率和 /或频 带可以进行调整, 并且调整之后的 LPN对测量基站没有干扰, 则可以考虑更 改 LPN的中心频率和 /或频带的调整;
1C-2: LPN的下行子帧偏置量的变化信息: 如果 LPN的特定的下行子帧 对于测量基站的干扰大, 则 LPN可以通过调整同步偏置量, 比如无线帧中的 第一个下行帧在无线帧中的偏置位置做调整。
1C-3: LPN的上下行配置的变化信息: 如果 LPN的特定的下行子帧对于 测量基站的干扰大, LPN可以调整上下行的配比。 以降低特定的下行子帧对 测量基站的干扰。
1C-4: 天线倾角的调整: 包括水平天线角或者垂直天线角的角度。 LPN 通过改变水平倾角或垂直倾角可以修改其覆盖区域的范围,这样也可以降低对 测量基站的干扰。
2: LPN收到 eNB2发送的干扰处理请求, LPN根据指示的调整信息进行 调整, 并反馈干扰处理相应信息, LPN可以通过 eNB配置更新消息或者其他 的信息来携带干扰处理相应消息, 在该相应信息中包括:
已经调整的 LPN的功率信息; 已经调整的其他参数的信息。
进一步地, 本发明实施例还提供了方案七, 干扰处理流程包括:
Figure imgf000034_0001
方案七: 基站进行内部资源调度调整。 当基站检测到干扰基站的干扰时, 对于干扰严重的下行子帧, 基站的调度可以采用两种方式:
第一种方式是:在干扰严重的子帧上,不进行任何 UE的数据资源的调度, 可以进行公共的控制资源的调度;
第二种方式是: 在干扰严重的子帧上, 仅调度部分 UE的数据资源, 该部 分 UE为位于测量基站中心的, 没有受到 LPN干扰的 UE, 或者受到 LPN干 4尤轻的 UE。
本发明实施例提供了基站直接干扰检测以及基站选择 UE进行干扰检测的 方法和***,并且在检测出干扰问题后,还提供了基站间干扰协调解决的方案。 本发明带来的有益效果为: 解决了复杂的网络条件下, 同频, 异频, 异***情 况下的下行发送对其相邻频带的上行接收的干扰检测和干扰处理,使得网络可 以灵活部署和共存。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
本发明实施例还提供了一种基站,本实施例的基站可以作为测量基站实现 方法实施例中的方案一至四的实施例流程中测量基站的干扰检测流程,以及方 案六或方案七的干扰处理流程; 如图 8所示, 包括:
获取单元 801 , 用于获取干扰基站的测量参考符号及上述测量参考符号的 配置信息;
检测单元 802, 用于根据上述获取单元 801获取的配置信息检测上述干扰 基站的测量参考符号的接收质量值。
进一步地, 如图 9所示, 上述基站, 还包括:
干扰处理单元 901 , 用于当上述检测单元 802检测的测量参考符号的接收 质量值高于设定的阈值时, 启动与上述干扰基站间的干扰处理流程; 上述干扰 处理流程包括:
上述干扰处理单元 901 根据上述测量的结果向上述干扰基站发送干扰处 理请求;或者,上述干扰处理单元 901在被干扰的子帧上取消数据资源的调度; 或者,上述干扰处理单元 901仅对在被干扰的子帧上测量的干扰低于设定阈值 的用户设备 UE进行数据资源的调度。
具体地,上述干扰处理单元 901发送的干扰处理请求包含至少以下信息之 一: 需要调整的发射功率信息、需要进行功率控制的资源的时域或频域的位置 指示信息、 需要调整的参数指示信息;
其中, 上述需要调整的参数指示信息包括至少以下之一: 上述干扰基站下 的小区的工作中心频率、上述干扰基站下的小区的工作频带、上述干扰基站下 的小区的下行子帧偏置量的变化信息、 干扰基站小区的上下行配置的变化信 息、 以及干扰基站小区的天线倾角的变化信息。
可选地, 上述检测单元 802具体用于: 确定被干扰的频带; 在上述被干扰 的频带上检测上述干扰基站的测量参考符号的接收质量值。
可选地, 上述检测单元 802, 还用于对上述干扰基站的测量参考符号的接 收质量值进行层三 L3过滤, 并根据上述过滤后的值进行干扰的评估。
可选地, 如图 10所示, 当上述干扰基站的测量参考符号为基于调度的参 考符号时, 上述信息获取单元 801包括:
第一发送单元 8011 , 用于在上述检测单元 802检测上述干扰基站的测量 参考符号的接收质量值之前, 向上述干扰基站发送测量请求消息;
第一接收单元 8012, 用于接收上述干扰基站根据上述第一发送单元 8011 发送的测量请求消息发送的上述测量参考符号及上述测量参考符号的配置信 自
本发明实施例还提供了一种基站,可以作为干扰基站实现上述方法实施例 一至四任意一项的干扰基站的方法流程; 如图 11所示, 包括:
第二发送单元 1101 , 用于向测量基站发送测量参考符号, 其中, 上述基 站在上述测量参考符号上的发送功率和上述基站在下行子帧上的公共参考符 号上的发射功率相同; 将上述测量参考符号的配置信息发送给测量基站, 以使 得上述测量基站根据上述配置信息检测上述基站的测量参考符号的接收质量 值。
进一步地, 如图 12所示, 上述基站还可以包括: 第二接收单元 1201 , 用于在将上述测量参考符号的配置信息发送给测量 基站之前, 接收测量基站发送的测量请求消息;
上述第二发送单元 1101具体用于:根据上述接收单元 1201接收的测量请 求消息向上述测量基站发送上述测量参考符号; 根据上述接收单元 1201接收 的测量请求消息向上述测量基站发送测量参考符号的配置信息。
本发明实施例还提供了一种基站,可以作为测量基站实现方法实施例中的 方案五的实施例流程中测量基站的干扰检测流程,以及方案六或方案七的干扰 处理流程; 如图 13所示, 包括:
第三发送单元 1301 , 用于向基站下的 UE发送对干扰基站的测量控制消 息;
其中, 上述测量控制消息包括至少以下信息之一: 上述干扰基站的测量参 考符号的检测范围、 进行测量的测量量、 上述测量的上报机制;
具体地,上述干扰基站的测量参考符号的检测范围可以为上述测量基站的 接收频率范围; 上述测量量可以为信号接收质量; 上述上报机制可以包括: 上 报阈值或上报周期。
第三接收单元 1302, 用于接收上述第三发送单元发送的测量控制消息指 向的 UE上报的干扰基站的小区信号接收质量。
进一步地, 如图 14所示, 上述基站还包括:
处理单元 1401 , 用于当上述第三接收单元 1302接收到的接收质量的值高 于设定的阈值时, 启动与上述干扰基站间的干扰处理流程; 上述干扰处理流程 包括:
上述处理单元 1401根据上述测量的结果向上述干扰基站发送干扰处理请 求; 或者, 上述处理单元 1401在被干扰的子帧上取消数据资源的调度; 或者, 上述处理单元 1401仅对在被干扰的子帧上测量的干扰低于设定阈值的用户设 备 UE进行数据资源的调度。 进一步地, 如图 15所示, 上述基站还可以包括:
合并单元 1501 , 用于当第三接收单元 1302接收到多个 UE上报的干扰基 站的小区信号接收质量时; 则对上述多个 UE上报的干扰基站的小区信号接收 质量进行合并。
本发明实施例还提供了一种用户设备,可以实现方法实施例中的方案五的 实施例流程中用户设备的干扰检测流程; 如图 16所示, 包括:
第四接收单元 1601 , 用于接收测量基站发送的测量控制消息;
其中, 上述测量控制消息包括至少以下信息之一: 干扰基站的测量参考符 号的检测范围、 进行测量的测量量、 上述测量的上报机制;
具体地,上述干扰基站的测量参考符号的检测范围可以为上述测量基站的 接收频率范围; 上述测量量可以为信号接收质量; 上述上报机制可以包括: 上 报阈值或上报周期。
测量单元 1602, 用于依据上述第四接收单元 1601接收的测量控制信息检 测干扰基站的小区信号接收质量;
第四发送单元 1603 , 用于向上述测量基站上报上述测量单元 1602测量的 干扰基站的小区信号接收质量。
具体地, 上述测量单元 1602具体用于: 获取上述测量基站被干扰的频带; 在上述被干扰的频带上检测上述干扰基站的小区信号接收质量。
进一步地, 如图 17所示, 上述用户设备还可以包括:
过滤单元 1701 , 用于对上述测量单元 1602测量得到的接收质量进行层三
L3过滤, 并根据上述过滤后的值进行干扰的评估。
本发明实施例还提供了一种干扰检测***,
如图 18, 包括: 产生干扰的基站 1801和图 8至 10任意一项能够对干扰 进行测量的基站 1802; 或者, 图 11或 12的基站 1801和图 8至 10任意一项 的基站 1802; 或者, 如图 19包括: 图 13至 15任意一项的基站 1901和图 16 或 17任意一项的用户设备 1902。 可以理解的是本发明实施例提供的基站一般 至少有两个或者两个以上。
本发明实施例提供了基站直接干扰检测以及基站选择 UE进行干扰检测的 方法和***,并且在检测出干扰问题后,还提供了基站间干扰协调解决的方案。 本发明带来的有益效果为: 解决了复杂的网络条件下, 同频, 异频, 异***情 况下的下行发送对其相邻频带的上行接收的干扰检测和干扰处理,使得网络可 以灵活部署和共存。
以上对本发明实施例所提供的一种干扰检测方法、装置和***进行了详细 施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时,对于本领域 的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改 变之处, 综上, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种干扰检测方法, 其特征在于, 包括:
测量基站获取干扰基站的测量参考符号及所述测量参考符号的配置信息; 所述测量基站根据所述配置信息检测所述干扰基站的测量参考符号的接 收质量值。
2、 根据权利要求 1所述方法, 其特征在于, 所述的测量参考符号包括以 下之一: 下行子帧上的公共参考符号, 下行子帧上的信道探测参考符号, 上行 子帧上的公共参考符号, 上行子帧上的信道探测参考符号。
3、 根据权利要求 1或 2所述方法, 其特征在于, 进一步包括:
当所述测量参考符号的接收质量值高于设定的阈值时,所述测量基站启动 与所述干扰基站间的干扰处理流程, 所述干扰处理流程包括:
所述测量基站根据所述参考符号的接收质量值向所述干扰基站发送干扰 处理请求; 或者,
所述测量基站在被干扰的子帧上取消数据资源的调度; 或者,
所述测量基站仅对在被干扰的子帧上测量的所述参考符号的接收质量值 低于设定阈值的用户设备 UE进行数据资源的调度。
4、 根据权利要求 3所述方法, 其特征在于, 所述干扰处理请求包含至少 以下信息之一:
需要调整的发射功率信息、需要进行功率控制的资源的时域或频域的位置 指示信息、 需要调整的参数指示信息;
其中, 所述需要调整的参数指示信息包括至少以下之一: 所述干扰基站下 的小区的工作中心频率、所述干扰基站下的小区的工作频带、所述干扰基站下 的小区的下行子帧偏置量的变化信息、 干扰基站小区的上下行配置的变化信 息、 以及干扰基站小区的天线倾角的变化信息。
5、 根据权利要求 1或 2所述方法, 其特征在于, 在所述测量基站进行所 述检测之前还包括:
所述测量基站获取自身的小区调度性能, 若所述小区调度性能下降, 则执 行所述检测; 或者,
所述测量基站检测自身的参考符号的接收质量值,若所述测量基站的参考 符号的接收质量值低于设定门限, 则执行所述检测。
6、 根据权利要求 1或 2所述方法, 其特征在于, 所述测量基站根据所述 配置信息检测所述干扰基站的测量参考符号的接收质量值包括:
所述测量基站确定被干扰的频带;
所述测量基站在所述被干扰的频带上检测所述干扰基站的测量参考符号 的接收质量值。
7、 根据权利要求 6所述方法, 其特征在于, 所述测量基站确定被干扰的 频带包括:
所述测量基站基于所述干扰基站使用的频带和协议性能规范所规定的干 扰频带范围, 确定所述测量基站的被干扰的频带; 或者
所述测量基站基于本基站的全频带进行测量,并基于对所述全频带中不同 子频带的测量结果, 确定所述测量基站的被干扰的频带; 或者,
所述测量基站在本基站的全频带上检测所述干扰基站的信道质量,确定所 述信道质量超过阈值部分的频带为干扰频带。
8、 根据权利要求 1或 2所述方法, 其特征在于, 在所述检测所述干扰基 站的测量参考符号的接收质量值之后, 还包括:
对所述干扰基站的测量参考符号的接收质量值进行层三 L3过滤, 并根据 所述过滤后的值进行干扰的评估。
9、 根据权利要求 1或 2所述方法, 其特征在于, 当所述干扰基站的测量 参考符号为基于调度的参考符号时,
在所述检测所述干扰基站的测量参考符号的接收质量值之前, 还包括: 所述测量基站向所述干扰基站发送测量请求消息;
所述测量基站接收所述干扰基站根据所述测量请求消息发送的所述基于 调度的参考符号及所述基于调度的参考符号的配置信息。
10、 根据权利要求 1或 2所述方法, 其特征在于, 所述配置信息中包括至 少以下信息之一: 所述测量参考符号的位置指示信息, 所述测量参考符号的带 宽配置、 所述测量参考符号的子帧配置、 所述测量参考符号的上报配置、 所述 测量参考符号发射功率配置;
其中, 所述位置指示信息为:
指示测量所述测量参考符号所使用的中心频率和测量带宽的信息; 或者 指示测量所述测量参考符号所使用的起始位置和终止位置的信息; 或者 指示测量所述测量参考符号所使用的起始位置和偏移量 offset的信息。
11、 一种干扰检测方法, 其特征在于, 包括:
干扰基站向测量基站发送测量参考符号, 其中, 所述干扰基站在所述测量 参考符号上的发送功率和所述干扰基站在下行子帧上的公共参考符号上的发 射功率相同;
所述干扰基站将所述测量参考符号的配置信息发送给测量基站,以使得所 述测量基站根据所述配置信息检测所述干扰基站的测量参考符号的接收质量 值。
12、 根据权利要求 11所述方法, 其特征在于, 所述的测量参考符号包括 以下之一: 下行子帧上的公共参考符号, 下行子帧上的信道探测参考符号, 上 行子帧上的公共参考符号, 上行子帧上的信道探测参考符号。
13、 根据权利要求 11或 12所述的方法, 其特征在于, 所述干扰基站将所 述测量参考符号的配置信息发送给测量基站之前, 还包括:
所述干扰基站接收到测量基站发送的测量请求消息;
所述干扰基站根据所述测量请求消息向所述测量基站发送所述测量参考 符号及所述测量参考符号的配置信息。
14、 根据权利要求 11或 12所述方法, 其特征在于, 所述配置信息中包括 至少以下信息之一: 所述测量参考符号的位置指示信息, 所述测量参考符号的 带宽配置、 所述测量参考符号的子帧配置、 所述测量参考符号的上报配置、 所 述测量参考符号发射功率配置;
其中, 所述位置指示信息为:
指示测量所述测量参考符号所使用的中心频率和测量带宽的信息; 或者 指示测量所述测量参考符号所使用的起始位置和终止位置的信息; 或者 指示测量所述测量参考符号所使用的起始位置和偏移量 offset的信息。
15、 一种干扰检测方法, 其特征在于, 包括:
测量基站向测量基站下的 UE发送对干扰基站的测量控制消息; 其中, 所述测量控制消息包括至少以下信息之一: 所述干扰基站的测量参 考符号的检测范围、 进行测量的测量量、 所述测量的上报机制;
测量基站接收所述 UE上报的干扰基站的小区信号接收质量。
16、 根据权利要求 15所述方法, 其特征在于,
所述干扰基站的测量参考符号的检测范围为所述测量基站的接收频率范 围;
所述测量量为信号接收质量;
所述上报机制包括: 上报阈值或上报周期。
17、 根据权利要求 15所述方法, 其特征在于, 进一步包括:
当所述干扰基站的小区信号接收质量高于设定的阈值时,所述测量基站启 动与所述干扰基站间的干扰处理流程, 所述干扰处理流程包括:
所述测量基站根据所述参考符号的接收质量值向所述干扰基站发送干扰 处理请求; 或者,
所述测量基站在被干扰的子帧上取消数据资源的调度; 或者 所述测量基站仅对在被干扰的子帧上测量的所述参考符号的接收质量值 低于设定阈值的用户设备 UE进行数据资源的调度。
18、 根据权利要求 17所述方法, 其特征在于, 所述干扰处理请求包含至 少以下信息之一:
需要调整的发射功率信息、需要进行功率控制的资源的时域或频域的位置 指示信息、 需要调整的参数指示信息;
其中, 所述需要调整的参数指示信息包括至少以下之一: 所述干扰基站下 的小区的工作中心频率、所述干扰基站下的小区的工作频带、所述干扰基站下 的小区的下行子帧偏置量的变化信息、 干扰基站小区的上下行配置的变化信 息、 以及干扰基站小区的天线倾角的变化信息。
19、根据权利要求 15-18中任意一项所述方法,其特征在于,进一步包括: 如果所述测量基站接收到多个 UE上报的干扰基站的小区信号接收质量; 则所述测量基站对所述多个 UE上报的干扰基站的小区信号接收质量进行 合并。
20、 一种干扰检测方法, 其特征在于, 包括:
用户设备 UE接收测量基站发送的测量控制消息;
其中, 所述测量控制消息包括至少以下信息之一: 所述干扰基站的测量参 考符号的检测范围、 进行测量的测量量、 所述测量的上报机制;
所述 UE依据所述测量控制信息检测干扰基站的小区信号接收质量; 所述 UE向所述测量基站上报所述干扰基站的小区信号接收质量。
21、 根据权利要求 20所述方法, 其特征在于, 所述检测干扰基站的小区 信号接收质量包括:
所述 UE获取所述测量基站被干扰的频带;
所述 UE在所述被干扰的频带上检测所述干扰基站的小区信号接收质量。
22、 根据权利要求 20所述方法, 其特征在于, 所述 UE获取所述测量基 站被干扰的频带包括:
所述用户设备 UE 获取所述测量基站确定的所述测量基站的被干扰的频 带, 其中, 所述测量基站的被干扰的频带为所述测量基站基于所述干扰基站使 用的频带和协议性能规范所规定的干扰频带范围确定的; 或者,
所述用户设备 UE基于所述测量基站的全频带进行测量,并基于对所述全 频带中不同子频带的测量结果, 确定所述测量基站的被干扰的频带; 或者, 所述用户设备 UE基于所述测量基站的全频带进行测量,并将所述全频带 中不同子频带的测量结果上报给测量基站,由测量基站确定所述测量基站的被 干扰的频带;
所述用户设备 UE在测量基站的全频带上检测所述干扰基站的信道质量, 用户设备 UE确定所述信道质量超过阈值部分的频带为干扰频带; 或者, 所述用户设备 UE在测量基站的全频带上检测所述干扰基站的信道质量, 并将所述干扰基站的信道质量上报给测量基站,由测量基站确定所述信道质量 超过阈值部分的频带为干扰频带。
23、 根据权利要求 20所述方法, 其特征在于, 在所述检测干扰基站的小 区信号接收质量之后, 还包括:
对所述干扰基站的小区信号接收质量进行层三 L3过滤, 并根据所述过滤 后的值进行干扰的评估。
24、 根据权利要求 20所述方法, 其特征在于, 所述配置信息中包括至少 以下信息之一: 所述测量参考符号的位置指示信息, 所述测量参考符号的带宽 配置、 所述测量参考符号的子帧配置、 所述测量参考符号的上报配置、 所述测 量参考符号发射功率配置;
其中, 所述位置指示信息为:
指示测量所述测量参考符号所使用的中心频率和测量带宽的信息; 或者 指示测量所述测量参考符号所使用的起始位置和终止位置的信息; 或者 指示测量所述测量参考符号所使用的起始位置和偏移量 offset的信息。
25、 一种基站, 其特征在于, 包括:
获取单元,用于获取干扰基站的测量参考符号及所述测量参考符号的配置 信息;
检测单元,用于根据所述获取单元获取的配置信息检测所述干扰基站的测 量参考符号的接收质量值。
26、 根据权利要求 25所述基站, 其特征在于, 还包括:
干扰处理单元,用于当所述检测单元检测的测量参考符号的接收质量值高 于设定的阈值时, 启动与所述干扰基站间的干扰处理流程; 所述干扰处理流程 包括:
所述干扰处理单元根据所述参考符号的接收质量值向所述干扰基站发送 度; 或者, 所述干扰处理单元仅对在被干扰的子帧上测量的所述参考符号的接 收质量值低于设定阈值的用户设备 UE进行数据资源的调度。
27、 根据权利要求 26所述基站, 其特征在于, 所述干扰处理单元发送的 干扰处理请求包含至少以下信息之一:
需要调整的发射功率信息、需要进行功率控制的资源的时域或频域的位置 指示信息、 需要调整的参数指示信息;
其中, 所述需要调整的参数指示信息包括至少以下之一: 所述干扰基站下 的小区的工作中心频率、所述干扰基站下的小区的工作频带、所述干扰基站下 的小区的下行子帧偏置量的变化信息、 干扰基站小区的上下行配置的变化信 息、 以及干扰基站小区的天线倾角的变化信息。
28、 根据权利要求 25至 27任意一项所述基站, 其特征在于,
所述检测单元具体用于: 确定被干扰的频带; 在所述被干扰的频带上检测 所述获取单元获取的干扰基站的测量参考符号的接收质量值。
29、 根据权利要求 25至 27任意一项所述基站, 其特征在于, 所述检测单元,还用于对所述干扰基站的测量参考符号的接收质量值进行 层三 L3过滤, 并根据所述过滤后的值进行干扰的评估。
30、 根据权利要求 25或 26所述基站, 其特征在于, 当所述干扰基站的测 量参考符号为基于调度的参考符号时, 所述获取单元包括:
第一发送单元,用于在所述检测单元检测所述干扰基站的测量参考符号的 接收质量值之前, 向所述干扰基站发送测量请求消息;
第一接收单元,用于接收所述干扰基站根据所述第一发送单元发送的测量 请求消息发送的所述基于调度的参考符号及所述基于调度的参考符号的配置 信息。
31、 一种基站, 其特征在于, 包括:
第二发送单元, 用于向测量基站发送测量参考符号, 其中, 所述基站在所 述测量参考符号上的发送功率和所述基站在下行子帧上的公共参考符号上的 发射功率相同; 将所述测量参考符号的配置信息发送给测量基站, 以使得所述 测量基站根据所述配置信息检测所述基站的测量参考符号的接收质量值。
32、 根据权利要求 31所述的基站, 其特征在于, 还包括:
第二接收单元, 用于接收测量基站发送的测量请求消息;
所述第二发送单元具体用于:根据所述第二接收单元接收的测量请求消息 向所述测量基站发送所述测量参考符号;根据所述第二接收单元接收的测量请 求消息向所述测量基站发送测量参考符号的配置信息。
33、 一种基站, 其特征在于, 包括:
第三发送单元, 用于向基站下的 UE发送对干扰基站的测量控制消息; 其中, 所述测量控制消息包括至少以下信息之一: 所述干扰基站的测量参 考符号的检测范围、 进行测量的测量量、 所述测量的上报机制;
第三接收单元, 用于接收所述第三发送单元发送的测量控制消息指向的 UE上报的干扰基站的小区信号接收质量。
34、 根据权利要求 33所述基站, 其特征在于, 还包括:
处理单元,用于当所述第三接收单元接收到的接收质量的值高于设定的阈 值时, 启动与所述干扰基站间的干扰处理流程; 所述干扰处理流程包括:
所述处理单元根据所述参考符号的接收质量值向所述干扰基站发送干扰 所述处理单元仅对在被干扰的子帧上测量的参考符号的接收质量值低于设定 阈值的用户设备 UE进行数据资源的调度。
35、 根据权利要求 33或 34所述基站, 其特征在于, 还包括:
合并单元,用于当第三接收单元接收到多个 UE上报的干扰基站的小区信 号接收质量时,对所述多个 UE上报的干扰基站的小区信号接收质量进行合并。
36、 一种用户设备, 其特征在于, 包括:
第四接收单元, 用于接收测量基站发送的测量控制消息;
其中, 所述测量控制消息包括至少以下信息之一: 所述干扰基站的测量参 考符号的检测范围、 进行测量的测量量、 所述测量的上报机制;
测量单元,用于依据所述第四接收单元接收的测量控制信息检测干扰基站 的小区信号接收质量;
第四发送单元,用于向所述测量基站上报所述测量单元测量的干扰基站的 小区信号接收质量。
37、 根据权利要求 36所述用户设备, 其特征在于, 所述测量单元具体用 于: 获取所述测量基站被干扰的频带; 在所述被干扰的频带上检测所述干扰基 站的小区信号接收质量。
38、 根据权利要求 36或 37所述用户设备, 其特征在于, 还包括: 过滤单元, 用于对所述测量单元测量得到的接收质量进行层三 L3过滤, 并根据所述过滤后的值进行干扰的评估。
39、 一种干扰检测***, 其特征在于, 包括:
产生干扰的基站和权利要求 25至 30任意一项所述的能够进行干扰测量的 基站; 或者, 权利要求 31或 32的基站和权利要求 25至 30任意一项的基站; 或者,权利要求 32至 35任意一项的基站和权利要求 36至 38任意一项的用户 设备。
PCT/CN2012/070341 2011-01-13 2012-01-13 一种干扰检测方法、装置和*** WO2012095023A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12734211.1A EP2665305B1 (en) 2011-01-13 2012-01-13 Interference detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110006927.2A CN102595436B (zh) 2011-01-13 2011-01-13 一种干扰检测方法、装置和***
CN201110006927.2 2011-01-13

Publications (1)

Publication Number Publication Date
WO2012095023A1 true WO2012095023A1 (zh) 2012-07-19

Family

ID=46483543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070341 WO2012095023A1 (zh) 2011-01-13 2012-01-13 一种干扰检测方法、装置和***

Country Status (3)

Country Link
EP (1) EP2665305B1 (zh)
CN (1) CN102595436B (zh)
WO (1) WO2012095023A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079052A1 (en) 2012-11-26 2014-05-30 Telefonaktiebolaget L M Ericsson (Publ) Methods and radio network nodes for measuring interference
WO2014185713A1 (en) 2013-05-14 2014-11-20 Samsung Electronics Co., Ltd. Interference measurement method and apparatus for controlling inter-cell interference in wireless communication system
WO2015072903A1 (en) * 2013-11-13 2015-05-21 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a telecommunication system
CN105519019A (zh) * 2013-05-27 2016-04-20 华为技术有限公司 一种检测干扰信号的方法及装置
EP2992635A4 (en) * 2013-02-28 2017-03-15 Telefonaktiebolaget LM Ericsson (publ) Signal transmission with interference mitigation
CN111211806A (zh) * 2020-01-10 2020-05-29 南通先进通信技术研究院有限公司 一种针对未知异***通信干扰的规避方法
CN114142953A (zh) * 2020-09-03 2022-03-04 中国电信股份有限公司 信道质量测量方法、***和相关设备

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6099329B2 (ja) * 2012-08-02 2017-03-22 シャープ株式会社 端末、基地局、通信方法および集積回路
CN103906118B (zh) * 2012-12-25 2017-08-08 ***通信集团湖北有限公司 一种wlan网络终端上行干扰评估方法及装置
CN103974318A (zh) * 2013-01-25 2014-08-06 中航物联技术(北京)有限公司 具有干扰自动上报功能的wsn无线基站
CN104053222B (zh) * 2013-03-14 2017-07-14 电信科学技术研究院 基站发射功率调整方法和装置
WO2014153750A1 (zh) * 2013-03-28 2014-10-02 华为技术有限公司 异***小区间同频干扰协调的方法及基站
CN105210315B (zh) * 2013-05-07 2017-12-19 Lg电子株式会社 在无线通信***中执行测量的方法及其设备
EP3068179B1 (en) 2013-12-13 2021-02-03 Huawei Technologies Co., Ltd. Interference coordination method, device and system
CN104753560B (zh) * 2013-12-26 2018-01-05 联芯科技有限公司 一种抗窄带干扰方法、eNodeB及通信***
CN105009667B (zh) 2013-12-30 2019-06-21 华为技术有限公司 一种干扰协调方法、装置及***
CN104754631B (zh) * 2013-12-31 2019-07-09 中兴通讯股份有限公司 一种排查小区干扰的方法及***、网管
CN105722111B (zh) * 2014-12-05 2019-05-31 ***通信集团公司 一种干扰检测方法和装置
EP3229532B1 (en) * 2014-12-23 2019-09-11 Huawei Technologies Co., Ltd. Power allocation method and communication device
CN105828349B (zh) * 2015-01-04 2019-04-23 ***通信集团公司 一种基于td-lte***的远端干扰检测方法及装置
US9729221B2 (en) * 2015-06-26 2017-08-08 Intel IP Corporation Method for feedback reporting and a mobile communications device
US10708016B2 (en) * 2015-12-14 2020-07-07 Qualcomm Incorporated Reference signals for estimating mixed interference
CN108401283B (zh) * 2017-02-04 2022-11-29 中兴通讯股份有限公司 通信节点之间的信息交互方法及装置
BR112019026136A2 (pt) 2017-06-16 2020-06-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de comunicação sem fio e dispositivo terminal
CN109526001B (zh) * 2017-09-19 2022-06-03 ***通信有限公司研究院 一种测量方法、基站、终端及通信设备
CN108111282B (zh) 2017-09-30 2020-11-24 中兴通讯股份有限公司 一种无线通信方法及装置
CN109936427B (zh) * 2017-12-15 2021-05-11 电信科学技术研究院 一种通信方法、装置及终端设备
WO2019167140A1 (ja) * 2018-02-27 2019-09-06 三菱電機株式会社 無線通信システムおよび干渉抑圧方法
CN110971381B (zh) * 2018-09-28 2023-01-03 海信集团有限公司 一种远程干扰管理方法及网络侧设备
CN111757384B (zh) * 2019-03-28 2024-04-05 北京三星通信技术研究有限公司 Cu-du分离式基站的用于远程干扰协调的方法和设备
CN111162806B (zh) * 2019-11-21 2021-04-30 南京码讯光电技术有限公司 一种无线宽带***的窄带干扰检测及消除方法和***
CN113766555A (zh) * 2020-06-04 2021-12-07 普天信息技术有限公司 一种基于测量基站进行网络测量的方法
CN113873565B (zh) * 2020-06-30 2023-07-21 ***通信集团设计院有限公司 同频干扰定位方法、装置、设备及存储介质
CN114554520A (zh) * 2020-11-26 2022-05-27 维沃移动通信有限公司 干扰测量方法、装置、终端及网络侧设备
CN114698011B (zh) * 2020-12-28 2023-08-22 成都鼎桥通信技术有限公司 小站间防干扰方法和装置
CN115085835B (zh) * 2021-03-15 2024-04-09 中国电信股份有限公司 信息交互方法、基站和通信***
EP4349056A1 (en) * 2022-03-11 2024-04-10 ZTE Corporation Systems and methods for determining measurement resource for measuring interference between network nodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459956A (zh) * 2007-12-10 2009-06-17 大唐移动通信设备有限公司 一种负荷控制方法及装置
CN101778463A (zh) * 2009-01-08 2010-07-14 ***通信集团公司 一种家庭基站及其发射功率设置方法
US20100254471A1 (en) * 2009-04-07 2010-10-07 Hyunsoo Ko Method of transmitting power information in wireless communication system
CN101931957A (zh) * 2009-06-22 2010-12-29 大唐移动通信设备有限公司 一种控制下行测量参考信号干扰的方法和设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594576B2 (en) * 2008-03-28 2013-11-26 Qualcomm Incorporated Short-term interference mitigation in an asynchronous wireless network
EP2392184A4 (en) * 2009-01-29 2017-05-03 Apple Inc. Scheduling transmission of data at a base station based on an interference indicator message from another base station

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459956A (zh) * 2007-12-10 2009-06-17 大唐移动通信设备有限公司 一种负荷控制方法及装置
CN101778463A (zh) * 2009-01-08 2010-07-14 ***通信集团公司 一种家庭基站及其发射功率设置方法
US20100254471A1 (en) * 2009-04-07 2010-10-07 Hyunsoo Ko Method of transmitting power information in wireless communication system
CN101931957A (zh) * 2009-06-22 2010-12-29 大唐移动通信设备有限公司 一种控制下行测量参考信号干扰的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2665305A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9584272B2 (en) 2012-11-26 2017-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Methods and radio network nodes for measuring interference
US10382153B2 (en) 2012-11-26 2019-08-13 Telefonaktiebolaget Lm Ericsson (Publ) Methods and radio network nodes for measuring interference
WO2014079052A1 (en) 2012-11-26 2014-05-30 Telefonaktiebolaget L M Ericsson (Publ) Methods and radio network nodes for measuring interference
EP3316619A1 (en) * 2012-11-26 2018-05-02 Telefonaktiebolaget LM Ericsson (publ) Methods and radio network nodes for measuring interference
EP2923510A4 (en) * 2012-11-26 2016-07-27 Ericsson Telefon Ab L M METHOD AND RADIO NETWORK NODES FOR INTERFERENCE MEASUREMENT
US9979503B2 (en) 2013-02-28 2018-05-22 Telefonaktiebolaget L M Ericsson (Publ) Signal transmission with interference mitigation
EP2992635A4 (en) * 2013-02-28 2017-03-15 Telefonaktiebolaget LM Ericsson (publ) Signal transmission with interference mitigation
EP2997680A4 (en) * 2013-05-14 2017-01-11 Samsung Electronics Co., Ltd. Interference measurement method and apparatus for controlling inter-cell interference in wireless communication system
AU2014266127B2 (en) * 2013-05-14 2017-09-21 Samsung Electronics Co., Ltd. Interference measurement method and apparatus for controlling inter-cell interference in wireless communication system
WO2014185713A1 (en) 2013-05-14 2014-11-20 Samsung Electronics Co., Ltd. Interference measurement method and apparatus for controlling inter-cell interference in wireless communication system
CN105519019B (zh) * 2013-05-27 2017-07-21 华为技术有限公司 一种检测干扰信号的方法及装置
CN105519019A (zh) * 2013-05-27 2016-04-20 华为技术有限公司 一种检测干扰信号的方法及装置
US9860814B2 (en) 2013-11-13 2018-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a telecommunication system
WO2015072903A1 (en) * 2013-11-13 2015-05-21 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a telecommunication system
CN111211806A (zh) * 2020-01-10 2020-05-29 南通先进通信技术研究院有限公司 一种针对未知异***通信干扰的规避方法
CN114142953A (zh) * 2020-09-03 2022-03-04 中国电信股份有限公司 信道质量测量方法、***和相关设备
CN114142953B (zh) * 2020-09-03 2024-01-26 中国电信股份有限公司 信道质量测量方法、***和相关设备

Also Published As

Publication number Publication date
CN102595436A (zh) 2012-07-18
CN102595436B (zh) 2015-05-27
EP2665305B1 (en) 2016-03-23
EP2665305A4 (en) 2014-08-20
EP2665305A1 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
WO2012095023A1 (zh) 一种干扰检测方法、装置和***
JP6779914B2 (ja) ライセンス支援アクセスのためのrrm測定および報告
JP6096310B2 (ja) 干渉が緩和された実効的な測定に関係する方法及びデバイス
US10356623B2 (en) Techniques for performing carrier sense adaptive transmission in unlicensed spectrum
KR101398060B1 (ko) 광대역 네트워크에서 피어-투-피어 통신을 지원하기 위한 간섭 관리
US8619680B2 (en) Radio communication system, base station apparatus, radio resource control method, and non-transitory computer readable medium
US9585104B2 (en) Performing inter-frequency measurements on carriers with overlapping bandwidths
JP6297701B2 (ja) 免許不要周波数帯における無線アクセス技術間のロバストな動作
JP6174265B2 (ja) ユーザ端末及び無線通信方法
EP2590442B1 (en) Apparatus and method for adaptive transmission during almost blank subframes in a wireless communication network
US9838925B2 (en) Method and a network node for determining an offset for selection of a cell of a first radio network node
JP5602742B2 (ja) 干渉制御方法、マクロ端末、マクロ基地局及びフェムト基地局
US9432850B2 (en) Wireless communication system, base station, management server, and wireless communication method
US20150063151A1 (en) Opportunistic supplemental downlink in unlicensed spectrum
KR20160052651A (ko) 비허가 스펙트럼에서의 측정 리포팅
US20140003273A1 (en) Limiting Interference in a Heterogeneous Wireless Communication System
US9955503B2 (en) Carrier sense adaptive transmission (CSAT) communication scheme detection and mitigation in unlicensed spectrum
JP6401158B2 (ja) モバイル・トランシーバおよび基地局トランシーバのための装置、方法、コンピュータ・プログラム
JP2015534358A (ja) スモールセルネットワークにおけるパイロット汚染の緩和のための集中型管理
KR101895108B1 (ko) 인핸스드 수신기에 관해 병렬 측정을 조정하기 위한 노드 및 방법
JP5696382B2 (ja) 基地局装置、無線リソースの割当て方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012734211

Country of ref document: EP