WO2012093600A1 - Exhaust gas purification catalyst and exhaust gas purification catalyst structure - Google Patents

Exhaust gas purification catalyst and exhaust gas purification catalyst structure Download PDF

Info

Publication number
WO2012093600A1
WO2012093600A1 PCT/JP2011/079875 JP2011079875W WO2012093600A1 WO 2012093600 A1 WO2012093600 A1 WO 2012093600A1 JP 2011079875 W JP2011079875 W JP 2011079875W WO 2012093600 A1 WO2012093600 A1 WO 2012093600A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
gas purification
ymno
gas purifying
Prior art date
Application number
PCT/JP2011/079875
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 石崎
直樹 大矢
貴弘 中
直樹 光田
弘志 大野
高橋 進
彦睦 渡邉
啓充 高木
晶子 杉岡
晃 阿部
Original Assignee
本田技研工業株式会社
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社, 三井金属鉱業株式会社 filed Critical 本田技研工業株式会社
Priority to DE112011104673T priority Critical patent/DE112011104673T5/en
Priority to CN201180064342.4A priority patent/CN103370131B/en
Priority to JP2012551833A priority patent/JP5864444B2/en
Publication of WO2012093600A1 publication Critical patent/WO2012093600A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/688Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • B01J35/30
    • B01J35/393
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters

Definitions

  • the present invention relates to an exhaust gas purification catalyst and an exhaust gas purification catalyst structure used for purifying exhaust gas discharged from an internal combustion engine such as an automobile.
  • the exhaust gas discharged from internal combustion engines such as automobiles contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO). Therefore, conventionally, a three-way catalyst for purifying and detoxifying these harmful components has been used.
  • harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO). Therefore, conventionally, a three-way catalyst for purifying and detoxifying these harmful components has been used.
  • a precious metal such as Pt, Pd, or Rh and an alumina, ceria, zirconia, or a composite oxide thereof are arbitrarily combined and applied on a honeycomb carrier such as ceramics or metal. Has been.
  • exhaust gas discharged from diesel engines contains particulates (particulate matter), and if these materials are released into the atmosphere as they are, they cause air pollution.
  • particulates particulate matter
  • DPF diesel particulate filter
  • Patent Documents 1 and 2 As a system proposed so far, a catalyst (for example, Patent Documents 1 and 2) in which an expensive noble metal such as Pt is supported on a carrier, for example, a carrier made of an inorganic oxide such as zirconium oxide, vanadium oxide, or cerium oxide. And 3) and a system that uses a catalyst by supporting inexpensive silver. Conventionally, it has been pointed out that although silver is inexpensive, it is inferior in heat resistance (see Non-Patent Document 1).
  • the present invention provides an exhaust gas purifying catalyst and an exhaust gas purifying catalyst structure capable of purifying gas components harmful to exhaust gas discharged from an internal combustion engine such as an automobile and oxidizing and removing particulates. It is aimed.
  • the present inventors have achieved excellent exhaust gas purification performance and Ag by supporting Ag on yttrium manganate YMnO 3 .
  • the present inventors have found that the problem of heat durability, which has been a drawback, can also be overcome.
  • the exhaust gas purifying catalyst component of the present invention comprises a catalyst support made of a ceramic or metal material and the exhaust gas purifying catalyst supported on the catalyst support.
  • the exhaust gas purifying catalyst and the exhaust gas purifying catalyst structure according to the present invention can purify gas components harmful to exhaust gas discharged from an internal combustion engine such as an automobile and oxidize and remove particulates. Since the gas purification performance is excellent, it is effective for purifying exhaust gas discharged from an internal combustion engine such as an automobile.
  • FIG. 4 is an electron micrograph of a part of the exhaust gas purifying catalyst structure obtained in Example 3.
  • FIG. 4 is an electron micrograph of a part of the exhaust gas purifying catalyst structure obtained in Example 3.
  • Yttrium manganate used in the exhaust gas purifying catalyst and the exhaust gas purifying catalyst structure of the present invention is a known double oxide represented by the chemical formula YMnO 3 , and this double oxide YMnO 3 includes, for example, yttrium nitrate and nitric acid.
  • a mixture of manganese, citric acid and water is first calcined at a temperature in the range of 200-400 ° C. for a time in the range of 1-10 hours, and then at a temperature in the range of 800-1000 ° C., 1-10 It can manufacture by carrying out secondary baking for the time within the range of time.
  • yttrium nitrate hexahydrate, manganese nitrate hexahydrate, citric acid and water are used as a mixture in a molar ratio of 1: 1: 6: 40. Can do.
  • the crystal system of YMnO 3 obtained by the above-described method for producing the double oxide YMnO 3 is in the form of hexagonal crystal, orthorhombic crystal or a mixture thereof, any of which is useful as a support in the present invention. It is.
  • Y 2 O 3 and MnO 2 as raw materials are weighed so that the atomic ratio of Y / Mn is 1/1, and pulverized and mixed for 3 hours or more using, for example, a ball mill Can be mentioned.
  • the double oxide YMnO 3 can be obtained by firing at 900 ° C. for 5 hours in the air atmosphere.
  • a liquid phase method can be mentioned.
  • nitrates of Y and Mn as raw materials are weighed so that the atomic ratio of Y / Mn becomes 1/1, and an aqueous solution such as ammonia is dropped into an aqueous solution.
  • a double oxide YMnO 3 can be obtained by making a precipitate of Mn, filtering, washing and drying, and removing and crystallizing nitrate radicals by sufficient heating, for example, at about 800 ° C.
  • the method for producing the double oxide YMnO 3 is not particularly limited.
  • the exhaust gas purifying catalyst of the present invention is such that Ag is supported on a carrier containing such yttrium manganate YMnO 3 .
  • the carrier may be YMnO 3 used alone, or may be used by mixing with other known carriers such as alumina (Al 2 O 3 ), CeO 2 , (CeZr) O 2 .
  • the exhaust gas purifying catalyst of the present invention comprising a carrier containing yttrium manganate YMnO 3 and Ag supported on the surface of the carrier is, for example, from yttrium manganate YMnO 3 in a solution of a soluble silver compound. It can be manufactured by adding the carrier powder to be stirred and drying and baking the slurry. As another production method, a carrier powder composed of yttrium manganate YMnO 3 and an Ag compound powder such as Ag powder or silver carbonate can be blended and fired. As the firing atmosphere, for example, air or oxygen-enriched air can be used, and firing can be performed at 450 to 600 ° C., for example. At that time, a part of silver may be contained in the crystal lattice of YMnO 3 or may be dissolved in the crystal.
  • the exhaust gas purifying catalyst component of the present invention comprising a catalyst support made of ceramics or a metal material and the exhaust gas purifying catalyst supported on the surface of the catalyst support is, for example, soluble A carrier powder made of yttrium manganate YMnO 3 is placed in a silver compound solution and stirred. The slurry is coated on the surface of a catalyst support made of a ceramic or metal material in the form of a honeycomb or DPF, and then dried and fired. Can be manufactured.
  • As the firing atmosphere for example, air or oxygen-enriched air can be used, and firing can be performed at 450 to 600 ° C., for example.
  • the exhaust gas purifying catalyst component of the present invention comprising a catalyst support made of ceramics or a metal material and the exhaust gas purifying catalyst supported on the surface of the catalyst support is, for example, a ceramic.
  • a carrier powder made of yttrium manganate YMnO 3 is supported on the surface of a catalyst support made of a metal material, a solution of a soluble silver compound is brought into contact with the catalyst support carrying the carrier powder, and then dried and calcined. It can also be manufactured.
  • the firing atmosphere for example, air or oxygen-enriched air can be used, and firing can be performed at 450 to 600 ° C., for example.
  • a soluble silver compound solution When a soluble silver compound solution is used in the above production method, a soluble silver compound and a solvent that dissolves the silver compound are used.
  • a soluble silver compound and a solvent that dissolves the silver compound are used.
  • silver nitrate, silver acetate, silver fluoride or the like when silver nitrate, silver acetate, silver fluoride or the like is used as the silver compound, water or the like can be used as the solvent, and when silver oxide or the like is used as the silver compound, nitric acid, aqueous ammonia or the like is used as the solvent.
  • silver chloride or the like aqueous ammonia or the like can be used as the solvent, and the combination of the soluble silver compound and the solvent is obvious to those skilled in the art.
  • the Ag particles supported on the surface of the carrier containing yttrium manganate YMnO 3 include those having a size of 10 to 20 nm. Is preferred. That is, if the Ag particle is 10 nm or more, it is difficult to enter the pores of the yttrium manganate YMnO 3 particle, and if it is 20 nm or less, good contact with YMnO 3 is maintained and effective.
  • the exhaust gas purifying catalyst structure of the present invention particularly the DPF
  • a binder component By applying a binder component to the surface of the carrier, the adhesion between the substrate and the carrier is improved, the durability of the catalyst is improved, and the heat resistance is improved.
  • the DPF may have any shape known as DPF, but preferably has a three-dimensional structure.
  • the filter having a three-dimensional structure include a wall-through type, a flow-through honeycomb type, a wire mesh type, a ceramic fiber type, a metal porous body type, a particle filling type, and a foam type.
  • the material of the base material include cordierite, SiC and other ceramics, Fe—Cr—Al alloy, stainless steel alloy and the like.
  • the total coating amount of the catalyst is preferably about 10 to 100 g / L for the wall-through type DPF and about 50 to 150 g / L for the wire mesh type. If the total coating amount of the catalyst is too small, sufficient performance cannot be obtained. Moreover, when there is too much, the back pressure with respect to waste gas will become high.
  • the catalyst is preferably in a state where it is deposited only on the surface layer without entering the gap inside the wall.
  • the exhaust gas purifying catalyst component of the present invention is produced as a three-dimensional DPF
  • a carrier powder composed of yttrium manganate YMnO 3 is put in a solution of a soluble silver compound and stirred, and the slurry is three-dimensional. It can be produced by coating a catalyst support, which is a DPF having a structure, followed by drying and firing.
  • a catalyst support which is a DPF having a structure
  • the firing atmosphere for example, air or oxygen-enriched air can be used, and firing can be performed at 450 to 600 ° C., for example.
  • a carrier support made of yttrium manganate YMnO 3 is supported on a catalyst support which is a three-dimensional DPF, and the carrier It can also be produced by bringing a solution of a soluble silver compound into contact with a catalyst support on which a powder is supported, followed by drying and firing.
  • the firing atmosphere for example, air or oxygen-enriched air can be used, and firing can be performed at 450 to 600 ° C., for example.
  • the supported amount of Ag is 1 to 10 at% based on the number of Y atoms. It is preferably 4 to 9 at%.
  • the amount of Ag loaded is less than 1 at%, the exhaust gas purification performance is insufficient, and even when the amount is more than 10 at%, the exhaust gas purification performance tends to reach its peak.
  • Examples 1 to 5 and Comparative Example 1 A carrier powder made of yttrium manganate YMnO 3 was added to an aqueous silver nitrate solution so that the amount of Ag would be the ratio shown in Table 1 based on the number of Y atoms, and stirred for 30 minutes. Each obtained slurry was coated on the surface of a particulate filter made of cordierite having a diameter of 25.4 mm and a length of 76.2 mm. These were dried at 120 ° C. for 3 hours and then calcined in air at 500 ° C. for 1 hour.
  • the supported amount of YMnO 3 was 40 g / L, and the supported amount of Ag was as shown in Table 1 in terms of metal.
  • An electron micrograph of a part of the exhaust gas purifying catalyst structure obtained in Example 5 is shown in FIG.
  • the length of one scale is 6 nm, and the scale of 10 is 60 nm.
  • the size of the Ag particles supported on the YMnO 3 support is about 10 to 20 nm.
  • the exhaust gas purification catalyst components were separately loaded into a model gas measuring device (MEXA-7500D manufactured by Horiba, Ltd.), and the exhaust model gas having the composition shown in Table 2 below was circulated at a space velocity of 29000 / h.
  • the temperature was lowered from 600 ° C. at a rate of 17 ° C./min, and the CO and HC purification rates were measured continuously. From the obtained measurement results, the temperature (T50) at which each CO / HC reached a 50% purification rate was determined. The results were as shown in Table 1.
  • the exhaust gas purifying catalyst component of the present invention having yttrium manganate YMnO 3 supporting Ag is an exhaust gas of a comparative example having yttrium manganate YMnO 3 not supporting Ag.
  • the exhaust gas purification performance is superior to that of the purification catalyst component, and a sufficient exhaust gas purification effect is obtained when the amount of Ag supported is 1 to 10 at%. When it is ⁇ 9 at%, a significant exhaust gas purification effect is obtained.
  • the exhaust gas of the 2.4 L diesel engine was passed through the exhaust gas purification catalyst structure, and 2 g of soot was collected per 1 L of the exhaust gas purification catalyst structure. Thereafter, a soot combustion rate was measured by circulating a gas consisting of O 2 : 3.8%, NO: 200 ppm, and the balance: N 2 at 600 ° C. at a space velocity (SV) of 21300 / h.
  • SV space velocity
  • MEXA-7500D manufactured by HORIBA, Ltd. was used.
  • the 90% regeneration time (the time until 90% of the collected soot burned) was as shown in Table 3.
  • the exhaust gas purifying catalyst structure of Example 5 of the present invention including yttrium manganate YMnO 3 supporting Ag is provided with yttrium manganate YMnO 3 not supporting Ag.
  • Exhaust gas purification catalyst structure of Comparative Example 1 Exhaust gas purification catalyst structure of Comparative Example 2 comprising Pd-supported yttrium manganate YMnO 3 , Exhaust of Comparative Example 3 comprising Pt-supported Al 2 O 3 It is superior in the soot combustion rate than the gas purification catalyst structure.
  • the amount of Ag carried in the exhaust gas purification catalyst structure of Example 5 is the same as the amount of Pd carried by the exhaust gas purification catalyst structure of Comparative Example 2 and the Pt of the exhaust gas purification catalyst structure of Comparative Example 3.
  • the exhaust gas purifying catalyst structure of Example 5 is less expensive than those of Comparative Examples 2 and 3. Therefore, it became clear that a catalyst having excellent exhaust gas purification performance and heat resistance can be obtained by combining yttrium manganate YMnO 3 and Ag.

Abstract

An exhaust gas purification catalyst comprising a carrier including yttrium manganese oxide (YMnO3) and Ag supported on the surface of said carrier; and an exhaust gas purification catalyst structure comprising a catalyst support body comprising a ceramic or a metal material, and the exhaust gas purification catalyst supported on top of the catalyst support body.

Description

排気ガス浄化用触媒及び排気ガス浄化用触媒構成体Exhaust gas purification catalyst and exhaust gas purification catalyst structure
 本発明は自動車等の内燃機関から排出される排気ガスを浄化するために使用される排気ガス浄化用触媒及び排気ガス浄化用触媒構成体に関する。 The present invention relates to an exhaust gas purification catalyst and an exhaust gas purification catalyst structure used for purifying exhaust gas discharged from an internal combustion engine such as an automobile.
 自動車等の内燃機関から排出される排ガス中には、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NO)等の有害成分が含まれている。それで、従来から、これら有害成分を浄化して無害化する三元触媒が用いられている。 The exhaust gas discharged from internal combustion engines such as automobiles contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO). Therefore, conventionally, a three-way catalyst for purifying and detoxifying these harmful components has been used.
 このような三元触媒として、Pt、Pd、Rh等の貴金属とアルミナ、セリア、ジルコニア又はこれらの複合酸化物とを任意に組み合わせて、セラミックス又は金属等のハニカム担体上に塗布させたものが使用されている。 As such a three-way catalyst, a precious metal such as Pt, Pd, or Rh and an alumina, ceria, zirconia, or a composite oxide thereof are arbitrarily combined and applied on a honeycomb carrier such as ceramics or metal. Has been.
 また、ディーゼルエンジンから排出される排気ガスはパティキュレート(粒子状物質)を含んでおり、これらの物質がそのまま大気中に放出されると大気汚染の原因になる。パティキュレートを取り除くための有効な手段として、ススを捕集するためのディーゼル・パティキュレート・フィルター(DPF)を用いたディーゼル排ガストラップシステムがある。しかし、このDPFでは捕集したパティキュレートを酸化除去してDPFを再生する必要がある。 Also, exhaust gas discharged from diesel engines contains particulates (particulate matter), and if these materials are released into the atmosphere as they are, they cause air pollution. As an effective means for removing particulates, there is a diesel exhaust gas trap system using a diesel particulate filter (DPF) for collecting soot. However, in this DPF, it is necessary to regenerate the DPF by oxidizing and removing the collected particulates.
 これまでに提案されたシステムとしては、担体、例えば、酸化ジルコニウム、酸化バナジウム、酸化セリウム等の無機酸化物からなる担体にPtなどの高価な貴金属を担持させた触媒(例えば、特許文献1、2及び3参照)や、安価な銀を担持させて触媒を用いるシステムがある。また、従来、銀を用いるものは安価であるものの、耐熱性に劣ることが指摘されている(非特許文献1参照)。 As a system proposed so far, a catalyst (for example, Patent Documents 1 and 2) in which an expensive noble metal such as Pt is supported on a carrier, for example, a carrier made of an inorganic oxide such as zirconium oxide, vanadium oxide, or cerium oxide. And 3) and a system that uses a catalyst by supporting inexpensive silver. Conventionally, it has been pointed out that although silver is inexpensive, it is inferior in heat resistance (see Non-Patent Document 1).
特開平10-047035号公報Japanese Patent Laid-Open No. 10-047035 特開2003-334443号公報JP 2003-334443 A 特開2004-058013号公報JP 2004-058013 A
 本発明は自動車等の内燃機関から排出される排気ガスに対して有害なガス成分を浄化し且つパティキュレートを酸化除去し得る排気ガス浄化用触媒及び排気ガス浄化用触媒構成体を提供することを目的としている。 The present invention provides an exhaust gas purifying catalyst and an exhaust gas purifying catalyst structure capable of purifying gas components harmful to exhaust gas discharged from an internal combustion engine such as an automobile and oxidizing and removing particulates. It is aimed.
 本発明者らは上記の目的を達成するために種々の物質の組み合わせを用いて種々の実験を行った結果、マンガン酸イットリウムYMnOにAgを担持させることにより優れた排気ガス浄化性能とAgの欠点であった熱耐久性の問題も克服されることを見出し、本発明を完成した。 As a result of various experiments using various combinations of substances in order to achieve the above-mentioned object, the present inventors have achieved excellent exhaust gas purification performance and Ag by supporting Ag on yttrium manganate YMnO 3 . The present inventors have found that the problem of heat durability, which has been a drawback, can also be overcome.
 即ち、本発明の排気ガス浄化用触媒は、マンガン酸イットリウムYMnOを含む担体と、該担体の表面上に担持されているAgとからなることを特徴とする。 That is, the exhaust gas purifying catalyst of the present invention comprises a carrier containing yttrium manganate YMnO 3 and Ag supported on the surface of the carrier.
 本発明の排気ガス浄化用触媒においては、Agの担持量がYの原子数を基準にして1~10at%であることが好ましく、4~9at%であることが一層好ましい。 In the exhaust gas purifying catalyst of the present invention, the supported amount of Ag is preferably 1 to 10 at%, more preferably 4 to 9 at%, based on the number of Y atoms.
 また、本発明の排気ガス浄化用触媒構成体は、セラミックス又は金属材料からなる触媒支持体と、該触媒支持体上に担持されている上記の排気ガス浄化用触媒とを備えていることを特徴とする。 The exhaust gas purifying catalyst component of the present invention comprises a catalyst support made of a ceramic or metal material and the exhaust gas purifying catalyst supported on the catalyst support. And
 本発明の排気ガス浄化用触媒構成体においては、セラミックス又は金属材料からなる触媒支持体がハニカム形状であるか、又はDPFであることが好ましい。 In the exhaust gas purifying catalyst structure of the present invention, it is preferable that the catalyst support made of ceramics or a metal material has a honeycomb shape or a DPF.
 本発明の排気ガス浄化用触媒及び排気ガス浄化用触媒構成体は自動車等の内燃機関から排出される排気ガスに対して有害なガス成分を浄化し且つパティキュレートを酸化除去し得るので、即ち排気ガス浄化性能に優れているので、自動車等の内燃機関から排出される排気ガスを浄化するのに有効である。 The exhaust gas purifying catalyst and the exhaust gas purifying catalyst structure according to the present invention can purify gas components harmful to exhaust gas discharged from an internal combustion engine such as an automobile and oxidize and remove particulates. Since the gas purification performance is excellent, it is effective for purifying exhaust gas discharged from an internal combustion engine such as an automobile.
実施例3で得た排気ガス浄化用触媒構成体の一部分の電子顕微鏡写真である。4 is an electron micrograph of a part of the exhaust gas purifying catalyst structure obtained in Example 3. FIG.
 以下に、本発明の排気ガス浄化用触媒及び排気ガス浄化用触媒構成体について具体的に説明する。 Hereinafter, the exhaust gas purifying catalyst and the exhaust gas purifying catalyst structure of the present invention will be described in detail.
 本発明の排気ガス浄化用触媒及び排気ガス浄化用触媒構成体で用いるマンガン酸イットリウムは化学式YMnOで表わされる公知の複酸化物であり、この複酸化物YMnOは、例えば、硝酸イットリウムと硝酸マンガンとクエン酸と水とからなる混合物を、200~400℃の範囲内の温度、1~10時間の範囲内の時間で一次焼成し、次いで800~1000℃の範囲内の温度、1~10時間の範囲内の時間で二次焼成することにより製造することができる。 Yttrium manganate used in the exhaust gas purifying catalyst and the exhaust gas purifying catalyst structure of the present invention is a known double oxide represented by the chemical formula YMnO 3 , and this double oxide YMnO 3 includes, for example, yttrium nitrate and nitric acid. A mixture of manganese, citric acid and water is first calcined at a temperature in the range of 200-400 ° C. for a time in the range of 1-10 hours, and then at a temperature in the range of 800-1000 ° C., 1-10 It can manufacture by carrying out secondary baking for the time within the range of time.
 上記の複酸化物YMnOの製造方法においては、例えば、硝酸イットリウム6水和物と硝酸マンガン6水和物とクエン酸と水とを1:1:6:40のモル比の混合物として用いることができる。上記の製造方法において硝酸イットリウムと硝酸マンガンとのモル比が1:1からずれた場合や、反応温度、反応時間等の反応条件の変化によっては副生物として複酸化物YMn、複酸化物YMn、Y、Mnが生じることがあるが、これらの副生物を含む混合物も本発明において担体として同様に有用である。従って、本発明においてはマンガン酸イットリウムYMnOを含む担体と表示する。また、上記の複酸化物YMnOの製造方法で得られるYMnOの結晶系は六方晶、斜方晶又はこれらの混合の形の何れかになるが、何れのものも本発明において担体として有用である。
In the above method for producing the double oxide YMnO 3 , for example, yttrium nitrate hexahydrate, manganese nitrate hexahydrate, citric acid and water are used as a mixture in a molar ratio of 1: 1: 6: 40. Can do. In the above production method, when the molar ratio of yttrium nitrate to manganese nitrate deviates from 1: 1, or depending on changes in reaction conditions such as reaction temperature and reaction time, double oxide YMn 2 O 5 , double oxidation The products Y 2 Mn 2 O 7 , Y 2 O 3 , Mn 2 O 3 may be produced, but mixtures containing these by-products are also useful as carriers in the present invention. Therefore, in the present invention, it is expressed as a support containing yttrium manganate YMnO 3 . Further, the crystal system of YMnO 3 obtained by the above-described method for producing the double oxide YMnO 3 is in the form of hexagonal crystal, orthorhombic crystal or a mixture thereof, any of which is useful as a support in the present invention. It is.
 また、他の製造方法としては、原料としてY及びMnOをY/Mnの原子比が1/1になるように秤取し、例えばボールミルを用いて3時間以上粉砕・混合する方法を挙げることができる。この方法では、その後大気雰囲気下、900℃で5時間焼成することにより複酸化物YMnOを得ることができる。 As another production method, Y 2 O 3 and MnO 2 as raw materials are weighed so that the atomic ratio of Y / Mn is 1/1, and pulverized and mixed for 3 hours or more using, for example, a ball mill Can be mentioned. In this method, the double oxide YMnO 3 can be obtained by firing at 900 ° C. for 5 hours in the air atmosphere.
 さらに、他の製造方法としては、液相法を挙げることができる。例えば、液相法では、原料としてY、Mnの硝酸塩をY/Mnの原子比が1/1になる様に秤取し、水溶液としたものに、アンモニア等のアルカリ水溶液を滴下してYとMnの沈殿を作り、これを濾過、洗浄、乾燥後例えば800℃程度の十分な加熱により硝酸根を除去・結晶化することで複酸化物YMnOを得ることができる。  Furthermore, as another manufacturing method, a liquid phase method can be mentioned. For example, in the liquid phase method, nitrates of Y and Mn as raw materials are weighed so that the atomic ratio of Y / Mn becomes 1/1, and an aqueous solution such as ammonia is dropped into an aqueous solution. A double oxide YMnO 3 can be obtained by making a precipitate of Mn, filtering, washing and drying, and removing and crystallizing nitrate radicals by sufficient heating, for example, at about 800 ° C.
 何れにしても、複酸化物YMnOの製造方法は特に限定されるものではない。 In any case, the method for producing the double oxide YMnO 3 is not particularly limited.
 本発明の排気ガス浄化用触媒は、このようなマンガン酸イットリウムYMnOを含む担体にAgを担持させたものである。担体はYMnOを単独で用いたものでもよく、アルミナ(Al)、CeO、(CeZr)Oなど他の公知の担体と混合して用いてもよい。 The exhaust gas purifying catalyst of the present invention is such that Ag is supported on a carrier containing such yttrium manganate YMnO 3 . The carrier may be YMnO 3 used alone, or may be used by mixing with other known carriers such as alumina (Al 2 O 3 ), CeO 2 , (CeZr) O 2 .
 マンガン酸イットリウムYMnOを含む担体と、該担体の表面上に担持されているAgとからなる本発明の排気ガス浄化用触媒は、例えば、可溶性銀化合物の溶液中に、マンガン酸イットリウムYMnOからなる担体粉末を入れて撹拌し、そのスラリーを加熱乾燥し、焼成することにより製造することができる。また、別の製法として、マンガン酸イットリウムYMnOからなる担体粉末とAg粉末又は炭酸銀等のAg化合物粉末とを配合し、焼成することにより製造することもできる。それらの焼成雰囲気として、例えば空気、酸素富化空気を用いることができ、また焼成を例えば450~600℃で実施することができる。その際、銀の一部が、YMnOの結晶の格子内に含有されるか又は結晶に固溶していることもあり得る。 The exhaust gas purifying catalyst of the present invention comprising a carrier containing yttrium manganate YMnO 3 and Ag supported on the surface of the carrier is, for example, from yttrium manganate YMnO 3 in a solution of a soluble silver compound. It can be manufactured by adding the carrier powder to be stirred and drying and baking the slurry. As another production method, a carrier powder composed of yttrium manganate YMnO 3 and an Ag compound powder such as Ag powder or silver carbonate can be blended and fired. As the firing atmosphere, for example, air or oxygen-enriched air can be used, and firing can be performed at 450 to 600 ° C., for example. At that time, a part of silver may be contained in the crystal lattice of YMnO 3 or may be dissolved in the crystal.
 また、セラミックス又は金属材料からなる触媒支持体と、該触媒支持体表面に担持されている上記の排気ガス浄化用触媒とを備えている本発明の排気ガス浄化用触媒構成体は、例えば、可溶性銀化合物の溶液中に、マンガン酸イットリウムYMnOからなる担体紛体を入れて撹拌し、そのスラリーをセラミックス又は金属材料からなるハニカム形状又はDPFである触媒支持体表面にコートさせ、その後乾燥し、焼成することにより製造することができる。焼成雰囲気として、例えば空気、酸素富化空気を用いることができ、また焼成を例えば450~600℃で実施することができる。 The exhaust gas purifying catalyst component of the present invention comprising a catalyst support made of ceramics or a metal material and the exhaust gas purifying catalyst supported on the surface of the catalyst support is, for example, soluble A carrier powder made of yttrium manganate YMnO 3 is placed in a silver compound solution and stirred. The slurry is coated on the surface of a catalyst support made of a ceramic or metal material in the form of a honeycomb or DPF, and then dried and fired. Can be manufactured. As the firing atmosphere, for example, air or oxygen-enriched air can be used, and firing can be performed at 450 to 600 ° C., for example.
 あるいは、セラミックス又は金属材料からなる触媒支持体と、該触媒支持体表面に担持されている上記の排気ガス浄化用触媒とを備えている本発明の排気ガス浄化用触媒構成体は、例えば、セラミックス又は金属材料からなる触媒支持体表面にマンガン酸イットリウムYMnOからなる担体紛体を担持させ、該担体紛体を担持した触媒支持体に可溶性銀化合物の溶液を接触させ、その後乾燥し、焼成することにより製造することもできる。焼成雰囲気として、例えば空気、酸素富化空気を用いることができ、また焼成を例えば450~600℃で実施することができる。 Alternatively, the exhaust gas purifying catalyst component of the present invention comprising a catalyst support made of ceramics or a metal material and the exhaust gas purifying catalyst supported on the surface of the catalyst support is, for example, a ceramic. Alternatively, a carrier powder made of yttrium manganate YMnO 3 is supported on the surface of a catalyst support made of a metal material, a solution of a soluble silver compound is brought into contact with the catalyst support carrying the carrier powder, and then dried and calcined. It can also be manufactured. As the firing atmosphere, for example, air or oxygen-enriched air can be used, and firing can be performed at 450 to 600 ° C., for example.
 上記の製造方法において可溶性銀化合物の溶液を用いる場合には、可溶性銀化合物及び該銀化合物を溶解する溶媒を用いる。例えば、銀化合物として硝酸銀、酢酸銀、フッ化銀等を用いる場合には溶媒として水等を用いることができ、銀化合物として酸化銀等を用いる場合には溶媒として硝酸、アンモニア水等を用いることができ、銀化合物として塩化銀等を用いる場合には溶媒としてアンモニア水等を用いることができ、可溶性銀化合物と溶媒との組み合わせは当業者には自明である。 When a soluble silver compound solution is used in the above production method, a soluble silver compound and a solvent that dissolves the silver compound are used. For example, when silver nitrate, silver acetate, silver fluoride or the like is used as the silver compound, water or the like can be used as the solvent, and when silver oxide or the like is used as the silver compound, nitric acid, aqueous ammonia or the like is used as the solvent. When silver chloride or the like is used as the silver compound, aqueous ammonia or the like can be used as the solvent, and the combination of the soluble silver compound and the solvent is obvious to those skilled in the art.
 本発明の排気ガス浄化用触媒及び排気ガス浄化用触媒構成体において、マンガン酸イットリウムYMnOを含む担体の表面上に担持されているAg粒子については、10~20nmの大きさのものを含むことが好ましい。すなわち、Ag粒子が10nm以上であるとマンガン酸イットリウムYMnO粒子の細孔に入りにくく、20nm以下であるとYMnOと良好な接触を保ち効果的だからである。 In the exhaust gas purifying catalyst and the exhaust gas purifying catalyst structure of the present invention, the Ag particles supported on the surface of the carrier containing yttrium manganate YMnO 3 include those having a size of 10 to 20 nm. Is preferred. That is, if the Ag particle is 10 nm or more, it is difficult to enter the pores of the yttrium manganate YMnO 3 particle, and if it is 20 nm or less, good contact with YMnO 3 is maintained and effective.
 本発明の排気ガス浄化用触媒構成体、特にDPFを製造することを考慮すると、担体の表面にバインダー成分としてSiO、TiO、ZrO、Alなどを付与しておくことが好ましい。担体の表面にバインダー成分を付与することにより基材と担体との密着性が向上して触媒の耐久性が向上し、耐熱性が向上する。 Considering the production of the exhaust gas purifying catalyst structure of the present invention, particularly the DPF, it is preferable to give SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 or the like as a binder component to the surface of the carrier. . By applying a binder component to the surface of the carrier, the adhesion between the substrate and the carrier is improved, the durability of the catalyst is improved, and the heat resistance is improved.
 DPFはDPFとして公知のいかなる形状であっても良いが、三次元立体構造を有するものが好ましい。三次元立体構造を有するフィルターの具体例として、ウォールスルー型、フロースルーハニカム型、ワイヤメッシュ型、セラミックファイバー型、金属多孔体型、粒子充填型、フォーム型等を挙げることができる。また、基材の材質としてコージエライト、SiCなどのセラミックやFe-Cr-Al合金やステンレス合金などを挙げることができる。触媒の総コート量としては、ウォールスルー型DPFの場合には10~100g/L、ワイヤメッシュ型の場合には50~150g/Lくらいが好ましい。触媒の総コート量が少なすぎると充分な性能を得ることができない。また、多すぎると排ガスに対する背圧が高くなってしまう。なお、ウォールスルー型DPFの場合には触媒はウォール内部の間隙に入り込まず表層のみに堆積した状態であることが好ましい。 The DPF may have any shape known as DPF, but preferably has a three-dimensional structure. Specific examples of the filter having a three-dimensional structure include a wall-through type, a flow-through honeycomb type, a wire mesh type, a ceramic fiber type, a metal porous body type, a particle filling type, and a foam type. Further, examples of the material of the base material include cordierite, SiC and other ceramics, Fe—Cr—Al alloy, stainless steel alloy and the like. The total coating amount of the catalyst is preferably about 10 to 100 g / L for the wall-through type DPF and about 50 to 150 g / L for the wire mesh type. If the total coating amount of the catalyst is too small, sufficient performance cannot be obtained. Moreover, when there is too much, the back pressure with respect to waste gas will become high. In the case of a wall-through type DPF, the catalyst is preferably in a state where it is deposited only on the surface layer without entering the gap inside the wall.
 本発明の排気ガス浄化用触媒構成体を三次元構造のDPFとして製造する場合には、可溶性銀化合物の溶液中にマンガン酸イットリウムYMnOからなる担体紛体を入れて撹拌し、そのスラリーを三次元構造のDPFである触媒支持体にコートさせ、その後乾燥し、焼成することにより製造することができる。焼成雰囲気として、例えば空気、酸素富化空気を用いることができ、また焼成を例えば450~600℃で実施することができる。 When the exhaust gas purifying catalyst component of the present invention is produced as a three-dimensional DPF, a carrier powder composed of yttrium manganate YMnO 3 is put in a solution of a soluble silver compound and stirred, and the slurry is three-dimensional. It can be produced by coating a catalyst support, which is a DPF having a structure, followed by drying and firing. As the firing atmosphere, for example, air or oxygen-enriched air can be used, and firing can be performed at 450 to 600 ° C., for example.
 本発明の排気ガス浄化用触媒構成体を三次元構造のDPFとして製造するその他の方法として、三次元構造のDPFである触媒支持体にマンガン酸イットリウムYMnOからなる担体紛体を担持させ、該担体紛体を担持した触媒支持体に可溶性銀化合物の溶液を接触させ、その後乾燥し、焼成することにより製造することもできる。それらの焼成雰囲気として、例えば空気、酸素富化空気を用いることができ、また焼成を例えば450~600℃で実施することができる。 As another method for producing the exhaust gas purifying catalyst component of the present invention as a three-dimensional DPF, a carrier support made of yttrium manganate YMnO 3 is supported on a catalyst support which is a three-dimensional DPF, and the carrier It can also be produced by bringing a solution of a soluble silver compound into contact with a catalyst support on which a powder is supported, followed by drying and firing. As the firing atmosphere, for example, air or oxygen-enriched air can be used, and firing can be performed at 450 to 600 ° C., for example.
 本発明の排気ガス浄化用触媒及び排気ガス浄化用触媒構成体においては、後記の実施例のデータからも明らかなように、Agの担持量がYの原子数を基準にして1~10at%であることが好ましく、4~9at%であることが一層好ましい。Agの担持量が1at%よりも少ない場合には排気ガス浄化性能が不十分であり、また10at%よりも多くなっても排気ガス浄化性能が頭打ちとなる傾向がある。 In the exhaust gas purifying catalyst and the exhaust gas purifying catalyst structure of the present invention, as is clear from the data of the examples described later, the supported amount of Ag is 1 to 10 at% based on the number of Y atoms. It is preferably 4 to 9 at%. When the amount of Ag loaded is less than 1 at%, the exhaust gas purification performance is insufficient, and even when the amount is more than 10 at%, the exhaust gas purification performance tends to reach its peak.
 以下に、実施例及び比較例に基づいて本発明を具体的に説明する。 Hereinafter, the present invention will be described in detail based on examples and comparative examples.
 実施例1~5及び比較例1
 硝酸銀水溶液中にAgの量がYの原子数を基準にしてそれぞれ第1表に示す割合となるようにマンガン酸イットリウムYMnOからなる担体粉末を投入し、30分間攪拌した。得られた各々のスラリーを直径25.4mm×長さ76.2mmのコージェライト製パティキュレートフィルター表面にコートさせた。これらを120℃で3時間乾燥した後、空気中500℃で1時間焼成した。得られた各々のパティキュレートフィルター形状の排ガス浄化用触媒構成体のYMnOの担持量は40g/Lであり、Agの担持量は金属換算で第1表に示す通りであった。なお、実施例5で得た排気ガス浄化用触媒構成体の一部分の電子顕微鏡写真を図1に示す。図1の電子顕微鏡写真において1目盛の長さは6nmであり、10目盛りで60nmであることを示している。図1から明らかなように、YMnO担体上に担持されているAg粒子の大きさは10~20nm程度である。
Examples 1 to 5 and Comparative Example 1
A carrier powder made of yttrium manganate YMnO 3 was added to an aqueous silver nitrate solution so that the amount of Ag would be the ratio shown in Table 1 based on the number of Y atoms, and stirred for 30 minutes. Each obtained slurry was coated on the surface of a particulate filter made of cordierite having a diameter of 25.4 mm and a length of 76.2 mm. These were dried at 120 ° C. for 3 hours and then calcined in air at 500 ° C. for 1 hour. In each of the obtained particulate filter-shaped exhaust gas purification catalyst components, the supported amount of YMnO 3 was 40 g / L, and the supported amount of Ag was as shown in Table 1 in terms of metal. An electron micrograph of a part of the exhaust gas purifying catalyst structure obtained in Example 5 is shown in FIG. In the electron micrograph of FIG. 1, the length of one scale is 6 nm, and the scale of 10 is 60 nm. As is clear from FIG. 1, the size of the Ag particles supported on the YMnO 3 support is about 10 to 20 nm.
 <排ガス浄化性能試験>
 実施例1~5及び比較例1で得られた各々の排気ガス浄化用触媒構成体を大気中、700℃で30時間耐久処理した。耐久処理後の排気ガス浄化用触媒構成体の触媒活性を以下のようにして評価した。
<Exhaust gas purification performance test>
Each exhaust gas purifying catalyst structure obtained in Examples 1 to 5 and Comparative Example 1 was subjected to a durability treatment at 700 ° C. for 30 hours in the atmosphere. The catalytic activity of the exhaust gas purifying catalyst structure after the durability treatment was evaluated as follows.
 それらの排ガス浄化用触媒構成体を別々にモデルガス測定装置(堀場製作所製MEXA-7500D)に装填し、下記の第2表に示す組成の排気モデルガスを空間速度29000/hで流通させながら、600℃から17℃/分の降温速度で降温させ、CO、HC浄化率を連続的に測定した。得られた測定結果より、CO/HCそれぞれの50%浄化率に到達する温度(T50)を求めた。それらの結果は第1表に示す通りであった。 The exhaust gas purification catalyst components were separately loaded into a model gas measuring device (MEXA-7500D manufactured by Horiba, Ltd.), and the exhaust model gas having the composition shown in Table 2 below was circulated at a space velocity of 29000 / h. The temperature was lowered from 600 ° C. at a rate of 17 ° C./min, and the CO and HC purification rates were measured continuously. From the obtained measurement results, the temperature (T50) at which each CO / HC reached a 50% purification rate was determined. The results were as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 第1表に示すデータから明らかなように、Agを担持したマンガン酸イットリウムYMnOを備える本発明の排気ガス浄化用触媒構成体はAgを担持しないマンガン酸イットリウムYMnOを備える比較例の排気ガス浄化用触媒構成体よりも排気ガス浄化性能に優れており、また、Agの担持量が1~10at%である場合に十分な排気ガス浄化効果が得られており、特にAgの担持量が4~9at%である場合に顕著な排気ガス浄化効果が得られている。 As is apparent from the data shown in Table 1, the exhaust gas purifying catalyst component of the present invention having yttrium manganate YMnO 3 supporting Ag is an exhaust gas of a comparative example having yttrium manganate YMnO 3 not supporting Ag. The exhaust gas purification performance is superior to that of the purification catalyst component, and a sufficient exhaust gas purification effect is obtained when the amount of Ag supported is 1 to 10 at%. When it is ˜9 at%, a significant exhaust gas purification effect is obtained.
 <スス燃焼速度の測定法>
 実施例5で得られたAg/YMnO担持排気ガス浄化用触媒構成体(Ag担持量2.3g/L)、比較例1で得られたYMnO担持排気ガス浄化用触媒構成体(貴金属担持なし)、硝酸銀の代わりに硝酸パラジウムを用いた以外は実施例5と同様にして得られたPd/YMnO担持排気ガス浄化用触媒構成体(Pd担持量0.4g/L)(比較例2)、及び硝酸銀の代わりにジニトロジアンミン白金を用い、YMnOの代わりにAlを用いた以外は実施例5と同様にして得られたPt/Al担持排気ガス浄化用触媒構成体(Pt担持量0.5g/L)(比較例3)をそれぞれ大気中、700℃で30時間耐久処理した。耐久処理後の各々の排気ガス浄化用触媒構成体について下記の方法でスス燃焼速度を測定した。
<Measurement method of soot burning rate>
Ag / YMnO 3 supported exhaust gas purification catalyst structure obtained in Example 5 (Ag supported amount 2.3 g / L), YMnO 3 supported exhaust gas purification catalyst structure obtained in Comparative Example 1 (noble metal support) None), Pd / YMnO 3 -supported exhaust gas purification catalyst structure (Pd support amount 0.4 g / L) obtained in the same manner as in Example 5 except that palladium nitrate was used instead of silver nitrate (Comparative Example 2) And Pt / Al 2 O 3 supported exhaust gas purifying catalyst structure obtained in the same manner as in Example 5 except that dinitrodiammine platinum was used instead of silver nitrate and Al 2 O 3 was used instead of YMnO 3. Each of the bodies (Pt supported amount 0.5 g / L) (Comparative Example 3) was endured for 30 hours at 700 ° C. in the air. The soot combustion rate was measured by the following method for each exhaust gas purifying catalyst structure after the endurance treatment.
 2.4Lディーゼルエンジンの排気ガスを上記の排気ガス浄化用触媒構成体中に通してススを排気ガス浄化用触媒構成体1L当たり2g捕集させた。その後、600℃でO:3.8%、NO:200ppm、残部:Nからなるガスを空間速度(SV)21300/hで流通させてスス燃焼速度を測定した。測定には堀場製作所製MEXA-7500Dを用いた。90%再生時間(捕集されていたススの90%が燃焼するまでの時間)は第3表に示す通りであった。 The exhaust gas of the 2.4 L diesel engine was passed through the exhaust gas purification catalyst structure, and 2 g of soot was collected per 1 L of the exhaust gas purification catalyst structure. Thereafter, a soot combustion rate was measured by circulating a gas consisting of O 2 : 3.8%, NO: 200 ppm, and the balance: N 2 at 600 ° C. at a space velocity (SV) of 21300 / h. For the measurement, MEXA-7500D manufactured by HORIBA, Ltd. was used. The 90% regeneration time (the time until 90% of the collected soot burned) was as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 第3表に示すデータから明らかなように、Agを担持したマンガン酸イットリウムYMnOを備える本発明の実施例5の排気ガス浄化用触媒構成体は、Agを担持しないマンガン酸イットリウムYMnOを備える比較例1の排気ガス浄化用触媒構成体、Pdを担持したマンガン酸イットリウムYMnOを備える比較例2の排気ガス浄化用触媒構成体、Ptを担持したAlを備える比較例3の排気ガス浄化用触媒構成体よりもスス燃焼速度において優れている。なお、実施例5の排気ガス浄化用触媒構成体のAgの担持量は、比較例2の排気ガス浄化用触媒構成体のPdの担持量及び比較例3の排気ガス浄化用触媒構成体のPtの担持量よりも多いが、実施例5の排気ガス浄化用触媒構成体は比較例2及び3のものよりも安価である。従って、マンガン酸イットリウムYMnOとAgとを組み合わせることで優れた排気ガス浄化性能と耐熱性を有する触媒が得られることが明らかになった。 As is clear from the data shown in Table 3 , the exhaust gas purifying catalyst structure of Example 5 of the present invention including yttrium manganate YMnO 3 supporting Ag is provided with yttrium manganate YMnO 3 not supporting Ag. Exhaust gas purification catalyst structure of Comparative Example 1, Exhaust gas purification catalyst structure of Comparative Example 2 comprising Pd-supported yttrium manganate YMnO 3 , Exhaust of Comparative Example 3 comprising Pt-supported Al 2 O 3 It is superior in the soot combustion rate than the gas purification catalyst structure. Note that the amount of Ag carried in the exhaust gas purification catalyst structure of Example 5 is the same as the amount of Pd carried by the exhaust gas purification catalyst structure of Comparative Example 2 and the Pt of the exhaust gas purification catalyst structure of Comparative Example 3. However, the exhaust gas purifying catalyst structure of Example 5 is less expensive than those of Comparative Examples 2 and 3. Therefore, it became clear that a catalyst having excellent exhaust gas purification performance and heat resistance can be obtained by combining yttrium manganate YMnO 3 and Ag.

Claims (6)

  1.  マンガン酸イットリウムYMnOを含む担体と、該担体の表面上に担持されているAgとからなることを特徴とする排気ガス浄化用触媒。 An exhaust gas purification catalyst comprising a carrier containing yttrium manganate YMnO 3 and Ag supported on the surface of the carrier.
  2.  Agの担持量がYの原子数を基準にして1~10at%である請求項1記載の排気ガス浄化用触媒。 The exhaust gas purifying catalyst according to claim 1, wherein the supported amount of Ag is 1 to 10 at% based on the number of Y atoms.
  3.  マンガン酸イットリウムYMnOを含む担体の表面上に担持されているAg粒子が10~20nmの大きさの粒子を含む請求項1又は2記載の排気ガス浄化用触媒。 The exhaust gas purifying catalyst according to claim 1 or 2, wherein the Ag particles supported on the surface of the carrier containing yttrium manganate YMnO 3 include particles having a size of 10 to 20 nm.
  4.  セラミックス又は金属材料からなる触媒支持体と、該触媒支持体上に担持されている請求項1、2又は3に記載の排気ガス浄化用触媒とを備えていることを特徴とする排気ガス浄化用触媒構成体。 An exhaust gas purifying apparatus comprising: a catalyst support made of ceramics or a metal material; and the exhaust gas purifying catalyst according to claim 1, 2 or 3 supported on the catalyst support. Catalyst component.
  5.  触媒支持体がハニカム形状である請求項4記載の排気ガス浄化用触媒構成体。 The exhaust gas purifying catalyst structure according to claim 4, wherein the catalyst support has a honeycomb shape.
  6.  触媒支持体がDPFである請求項4記載の排気ガス浄化用触媒構成体。 The exhaust gas purifying catalyst component according to claim 4, wherein the catalyst support is DPF.
PCT/JP2011/079875 2011-01-05 2011-12-22 Exhaust gas purification catalyst and exhaust gas purification catalyst structure WO2012093600A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112011104673T DE112011104673T5 (en) 2011-01-05 2011-12-22 Exhaust gas purifying catalyst and exhaust gas purifying catalyst system
CN201180064342.4A CN103370131B (en) 2011-01-05 2011-12-22 Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JP2012551833A JP5864444B2 (en) 2011-01-05 2011-12-22 Exhaust gas purification catalyst and exhaust gas purification catalyst structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-000626 2011-01-05
JP2011000626 2011-01-05

Publications (1)

Publication Number Publication Date
WO2012093600A1 true WO2012093600A1 (en) 2012-07-12

Family

ID=46457460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079875 WO2012093600A1 (en) 2011-01-05 2011-12-22 Exhaust gas purification catalyst and exhaust gas purification catalyst structure

Country Status (4)

Country Link
JP (1) JP5864444B2 (en)
CN (1) CN103370131B (en)
DE (1) DE112011104673T5 (en)
WO (1) WO2012093600A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083869A1 (en) * 2012-11-27 2014-06-05 三井金属鉱業株式会社 Catalyst for discharge gas purification
US20140274662A1 (en) * 2013-03-15 2014-09-18 Cdti Systems and Methods for Variations of ZPGM Oxidation Catalysts Compositions
JP5925956B2 (en) * 2014-04-17 2016-05-25 三井金属鉱業株式会社 Exhaust gas purification catalyst composition and exhaust gas purification catalyst
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US9555400B2 (en) 2013-11-26 2017-01-31 Clean Diesel Technologies, Inc. Synergized PGM catalyst systems including platinum for TWC application
WO2019097878A1 (en) * 2017-11-17 2019-05-23 三井金属鉱業株式会社 Exhaust gas purging composition
CN115003411A (en) * 2020-01-27 2022-09-02 巴斯夫公司 Yttrium doped catalyst support

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6076936B2 (en) * 2013-10-21 2017-02-08 本田技研工業株式会社 Exhaust purification filter
JP2015100758A (en) * 2013-11-26 2015-06-04 三菱重工業株式会社 Exhaust gas treatment system
CN115739073A (en) * 2022-11-28 2023-03-07 深圳市蓝美蓝科技有限公司 Catalyst, preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1547972A2 (en) * 2003-12-22 2005-06-29 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
JP2007307446A (en) * 2006-05-16 2007-11-29 Honda Motor Co Ltd Oxidation catalyst for cleaning exhaust gas
JP2008173592A (en) * 2007-01-19 2008-07-31 Toyota Central R&D Labs Inc Composite material, composite material base material, composite material dispersion liquid, and production method used for the same
JP2010022893A (en) * 2008-07-15 2010-02-04 Honda Motor Co Ltd Oxidation catalyst device for cleaning exhaust
EP2361669A1 (en) * 2010-02-26 2011-08-31 General Electric Company Catalyst Composition and Catalytic Reduction System Comprising Yttrium
JP2011183277A (en) * 2010-03-05 2011-09-22 Honda Motor Co Ltd Exhaust gas purification catalyst

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047035A (en) 1996-08-08 1998-02-17 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
US6541112B1 (en) * 2000-06-07 2003-04-01 Dmc2 Degussa Metals Catalysts Cerdec Ag Rare earth manganese oxide pigments
JP3528839B2 (en) 2002-05-15 2004-05-24 トヨタ自動車株式会社 Particulate oxidizer and oxidation catalyst
JP2004058013A (en) 2002-07-31 2004-02-26 Nissan Motor Co Ltd Purification catalyst for exhaust gas
US7347887B2 (en) * 2003-12-22 2008-03-25 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
JP4699232B2 (en) * 2006-02-14 2011-06-08 本田技研工業株式会社 Exhaust gas purification oxidation catalyst
JP4956130B2 (en) * 2006-10-05 2012-06-20 日産自動車株式会社 Exhaust gas purification catalyst
JP4689574B2 (en) * 2006-10-20 2011-05-25 本田技研工業株式会社 Oxidation catalyst for exhaust gas purification
JP4753209B2 (en) * 2007-12-06 2011-08-24 本田技研工業株式会社 Oxidation catalyst equipment for exhaust gas purification
JP2009208039A (en) * 2008-03-06 2009-09-17 Toyota Central R&D Labs Inc Catalyst for removing particulate matter and method for removing particulate matter by using the same
WO2009130869A1 (en) * 2008-04-22 2009-10-29 本田技研工業株式会社 Oxidation catalyst and oxidation catalyst device for exhaust gas purification

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1547972A2 (en) * 2003-12-22 2005-06-29 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
JP2007307446A (en) * 2006-05-16 2007-11-29 Honda Motor Co Ltd Oxidation catalyst for cleaning exhaust gas
JP2008173592A (en) * 2007-01-19 2008-07-31 Toyota Central R&D Labs Inc Composite material, composite material base material, composite material dispersion liquid, and production method used for the same
JP2010022893A (en) * 2008-07-15 2010-02-04 Honda Motor Co Ltd Oxidation catalyst device for cleaning exhaust
EP2361669A1 (en) * 2010-02-26 2011-08-31 General Electric Company Catalyst Composition and Catalytic Reduction System Comprising Yttrium
JP2011183277A (en) * 2010-03-05 2011-09-22 Honda Motor Co Ltd Exhaust gas purification catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HICKEY, N. ET AL.: "Effect of the support on activity of silver catalysts for the selective reduction of NO by propene", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 100, no. 1-2, 22 July 2010 (2010-07-22), pages 102 - 115, XP027358393 *
ROMAN, L.C. ET AL.: "Deposition of silver nanoparticles on yttrium manganese oxide powders", MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, vol. 806, 2004, pages 195 - 200 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104418A (en) * 2012-11-27 2014-06-09 Mitsui Mining & Smelting Co Ltd Exhaust gas purifying catalyst
WO2014083869A1 (en) * 2012-11-27 2014-06-05 三井金属鉱業株式会社 Catalyst for discharge gas purification
US20140274662A1 (en) * 2013-03-15 2014-09-18 Cdti Systems and Methods for Variations of ZPGM Oxidation Catalysts Compositions
US9511353B2 (en) 2013-03-15 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US9555400B2 (en) 2013-11-26 2017-01-31 Clean Diesel Technologies, Inc. Synergized PGM catalyst systems including platinum for TWC application
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
JP5925956B2 (en) * 2014-04-17 2016-05-25 三井金属鉱業株式会社 Exhaust gas purification catalyst composition and exhaust gas purification catalyst
US9993805B2 (en) 2014-04-17 2018-06-12 Mitsui Mining & Smelting Co., Ltd. Catalyst composition for purifying exhaust gas and exhaust gas purifying catalyst
WO2019097878A1 (en) * 2017-11-17 2019-05-23 三井金属鉱業株式会社 Exhaust gas purging composition
CN111278555A (en) * 2017-11-17 2020-06-12 三井金属矿业株式会社 Composition for exhaust gas purification
JPWO2019097878A1 (en) * 2017-11-17 2020-12-24 三井金属鉱業株式会社 Exhaust gas purification composition
JP7213822B2 (en) 2017-11-17 2023-01-27 三井金属鉱業株式会社 Exhaust gas purification composition
CN111278555B (en) * 2017-11-17 2023-03-28 三井金属矿业株式会社 Composition for exhaust gas purification
US11633723B2 (en) 2017-11-17 2023-04-25 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purging composition
CN115003411A (en) * 2020-01-27 2022-09-02 巴斯夫公司 Yttrium doped catalyst support

Also Published As

Publication number Publication date
CN103370131A (en) 2013-10-23
JP5864444B2 (en) 2016-02-17
CN103370131B (en) 2016-05-11
DE112011104673T5 (en) 2013-10-17
JPWO2012093600A1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5864444B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
KR102483435B1 (en) Nitrous oxide removal catalysts for exhaust systems
US10260395B2 (en) Nitrous oxide removal catalysts for exhaust systems
JP4959129B2 (en) Exhaust gas purification catalyst
JP5864443B2 (en) Exhaust gas purification catalyst
JP6087362B2 (en) Platinum-based oxidation catalyst and exhaust gas purification method using the same
JPWO2008091004A1 (en) Exhaust gas purification catalyst and exhaust gas purification honeycomb catalyst structure
EP2452746A1 (en) Particulate combustion catalyst
JP2007069076A (en) Catalyst for cleaning exhaust gas and diesel particulate filter with catalyst
WO2007122917A1 (en) Exhaust gas purifying catalyst and method for producing same
JP2000262898A (en) Catalyst for purifying exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
US9393522B2 (en) Method for combusting diesel exhaust gas
JP4697796B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP4775954B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP2001046870A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning system
JPH1176819A (en) Catalyst for cleaning of exhaust gas
JP5942893B2 (en) Method for producing exhaust gas purifying catalyst
JP2011218297A (en) Catalyst material for cleaning exhaust gas
JP2022553892A (en) diesel oxidation catalyst
JP2009255004A (en) Particulate combustion catalyst, particulate filter, and exhaust gas treatment apparatus
JP2015100788A (en) Production method of catalyst material, production method of particulate filter with catalyst using the same, and production method of three way catalyst for gasoline engine
JP4836188B2 (en) Exhaust gas purification catalyst, production method thereof and regeneration method thereof
JP2011131163A (en) Exhaust gas treatment catalyst and method for manufacturing exhaust gas treatment catalyst

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180064342.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551833

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1301003745

Country of ref document: TH

Ref document number: 1120111046731

Country of ref document: DE

Ref document number: 112011104673

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854864

Country of ref document: EP

Kind code of ref document: A1