WO2012093525A1 - 強化ガラス材の製造方法 - Google Patents

強化ガラス材の製造方法 Download PDF

Info

Publication number
WO2012093525A1
WO2012093525A1 PCT/JP2011/077127 JP2011077127W WO2012093525A1 WO 2012093525 A1 WO2012093525 A1 WO 2012093525A1 JP 2011077127 W JP2011077127 W JP 2011077127W WO 2012093525 A1 WO2012093525 A1 WO 2012093525A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressive stress
stress layer
glass material
tempered glass
layer
Prior art date
Application number
PCT/JP2011/077127
Other languages
English (en)
French (fr)
Inventor
昌志 田部
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2011551338A priority Critical patent/JPWO2012093525A1/ja
Publication of WO2012093525A1 publication Critical patent/WO2012093525A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the present invention relates to a method for producing a tempered glass material.
  • the present invention relates to a method for producing a tempered glass material having a compressive stress layer on the surface.
  • Patent Document 1 listed below describes a method for flattening by wet etching after chemically strengthening a glass substrate as a method for producing a chemically strengthened strengthened glass substrate.
  • wet etching is performed for a relatively long time using a relatively high concentration of hydrofluoric acid. Is called. Specifically, it is described that wet etching is performed for 10 minutes using 0.5% by mass of hydrofluoric acid and wet etching is performed for 0.5 minutes using 15% by mass of hydrofluoric acid.
  • Patent Document 1 the method for producing a tempered glass substrate described in Patent Document 1 has a problem that it is difficult to produce a tempered glass substrate having sufficiently high strength.
  • the present invention has been made in view of such points, and an object thereof is to provide a method capable of producing a tempered glass material having high strength.
  • the method for producing a tempered glass material according to the present invention relates to a method for producing a tempered glass material in which a compressive stress layer is formed on the surface layer.
  • the manufacturing method of the tempered glass material which concerns on this invention is equipped with the preparation process and the chemical etching process.
  • a preparation process is a process of preparing the glass material in which the compressive-stress layer was formed in the surface layer.
  • the chemical etching step is a step of chemically etching the surface layer of the compressive stress layer.
  • the preparing step may be a compressive stress layer forming step of forming a compressive stress layer on the surface layer of the glass material.
  • the compressive stress layer forming step may be a step of forming the compressive stress layer by exchanging ions in the surface layer of the glass material with ions having a larger ion radius than the ions.
  • the surface layer of the compressive stress layer is preferably chemically etched so that the compressive stress reduction rate of the compressive stress layer is 5% or less.
  • the preparation step and the chemical etching step so that the compressive stress of the compressive stress layer after chemical etching is in the range of 300 MPa to 1200 MPa.
  • the compressive stress layer forming step it is preferable to perform the compressive stress layer forming step so that the compressive stress of the compressive stress layer before chemical etching is in the range of 320 MPa to 1250 MPa.
  • the surface layer of the compressive stress layer is chemically etched using hydrofluoric acid having an HF concentration of 0.01% by mass to 0.1% by mass as an etchant for 1 second to 22 minutes.
  • chemical etching may be performed by immersing the glass material in an etching solution.
  • the chemical etching step it is preferable to perform chemical etching so that the thickness reduction due to etching is 0.1 ⁇ m to 3 ⁇ m.
  • a method capable of producing a tempered glass material having high strength can be provided.
  • FIG. 1 is a schematic cross-sectional view of a glass plate according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a glass plate after a compressive stress layer forming step is performed in an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a tempered glass sheet manufactured in one embodiment of the present invention.
  • FIG. 4 is a photomicrograph of the end face of the evaluation sample before etching.
  • FIG. 5 is a photomicrograph of the end face of the evaluation sample 8.
  • the tempered glass material may not be a tempered glass plate. That is, the tempered glass material may not be plate-shaped.
  • the tempered glass material may have, for example, a rectangular parallelepiped shape or a spherical shape.
  • the glass plate 10 (refer FIG. 1) used as the base material of the tempered glass plate 1 is prepared.
  • the glass plate 10 is typically a stress-substantially homogeneous glass plate that does not have a compressive stress layer.
  • the glass plate 10 has a shape corresponding to the shape of the tempered glass plate 1 to be manufactured. For this reason, for example, when manufacturing a rectangular parallelepiped tempered glass material, a rectangular parallelepiped glass material may be prepared.
  • the glass plate 10 can form a compressive stress layer 11a described later.
  • a compressive stress layer 11a when the compressive stress layer 11a is formed by an ion exchange method, a glass plate containing an alkali metal ion such as sodium ion can be used as the glass plate 10, for example.
  • an alkali-free glass plate may be used as the glass plate 10.
  • a compressive stress layer forming step is performed. Thereby, the preparation process which prepares the glass plate 10 in which the compressive-stress layer was formed in the surface layer 10a is performed.
  • a compressive stress layer is formed on the surface layer 10 a of the glass plate 10.
  • the method for forming the compressive stress layer is not particularly limited.
  • the compressive stress layer may be formed by an air cooling strengthening method in which the surface layer is rapidly cooled by blowing cold air to the surface layer, or the compressive stress layer may be formed by an ion exchange method.
  • the ion exchange method is a method of forming a compressive stress layer by exchanging ions in the surface layer 10a of the glass plate 10 with ions having an ion radius larger than that of the ions.
  • FIG. 2 shows a schematic cross-sectional view of the glass plate 11 on which the compressive stress layer 11a is formed.
  • the ion exchange conditions such as the type of ion exchange solution, temperature, and immersion time are the type of glass plate 10 to be used, the thickness of the compressive stress layer 11a to be formed, and the magnitude of the compressive stress of the compressive stress layer 11a to be formed. It can be set as appropriate according to the situation.
  • the temperature of the ion exchange solution can be, for example, about 400 ° C. to 500 ° C.
  • the immersion time of the glass plate 10 in the ion exchange solution can be, for example, about 1 hour to 10 hours.
  • the thickness of the compressive stress layer 11a can be, for example, 20 ⁇ m to 70 ⁇ m, and preferably 30 ⁇ m to 50 ⁇ m.
  • the compressive stress of the compressive stress layer 11a is preferably 320 MPa to 1250 MPa.
  • the compressive stress of the compressive stress layer 11a is more preferably 430 MPa to 1160 MPa.
  • the compressive stress of the compressive stress layer 11a is more preferably 570 MPa to 850 MPa.
  • the compressive stress of the compressive stress layer 11a is more preferably 700 MPa to 850 MPa. This is because if the compressive stress of the compressive stress layer 11a is too low, the strength of the tempered glass plate 1 may be too low. On the other hand, if the compressive stress of the compressive stress layer 11a is too high, the internal stress of the tempered glass plate 1 becomes too high and may lead to self-destruction.
  • the “thickness of the compressive stress layer” means the depth of the region where the optical waveguide effect is generated by the compressive stress of the surface layer of the tempered glass plate.
  • “thickness of compressive stress layer” and “compressive stress value” are values measured by using FSM-6000 manufactured by Orihara Seisakusho and setting photoelastic constants according to the glass material at appropriate times. .
  • the compressive stress layer 1a is formed by chemically etching only the surface layer of the compressive stress layer 11a.
  • strength can be manufactured so that it may be supported also in the experiment example mentioned later.
  • the reason why the strength is improved by chemically etching the surface layer of the compressive stress layer 11a is not clear, it is considered that the surface scratches, cracks, etc. disappear, or the surface is flattened.
  • the compression stress layer 11a has a compressive stress reduction rate, that is, a value obtained by subtracting the compressive stress of the compressive stress layer 1a from the compressive stress of the compressive stress layer 11a.
  • the ratio [((compressive stress of compressive stress layer 11a) ⁇ (compressive stress of compressive stress layer 1a)) / (compressive stress of compressive stress layer 11a)] to stress is 5% or less, more preferably 2% or less. It is preferable to chemically etch the surface layer of the compressive stress layer 11a within the range.
  • the compressive stress layer forming step and the etching step so that the compressive stress of the compressive stress layer 1a is in the range of 300 MPa to 1200 MPa. More preferably, the compressive stress layer forming step and the etching step are performed so that the compressive stress of the compressive stress layer 1a is in the range of 400 MPa to 1100 MPa. More preferably, the compressive stress layer forming step and the etching step are performed so that the compressive stress of the compressive stress layer 1a is in the range of 540 MPa to 820 MPa.
  • the compressive stress layer forming step and the etching step are performed so that the compressive stress of the compressive stress layer 1a is in the range of 720 MPa to 820 MPa. This is because if the compressive stress of the compressive stress layer 1a is too low, the strength of the tempered glass plate 1 may be too low. On the other hand, if the compressive stress of the compressive stress layer 1a is too high, the internal stress of the tempered glass plate 1 becomes too high and may lead to self-destruction.
  • chemical etching is preferably performed for 1 second to 22 minutes using hydrofluoric acid having an HF concentration of 0.01% by mass to 0.1% by mass as an etchant. More preferably, chemical etching is performed for 30 seconds to 22 minutes using hydrofluoric acid having an HF concentration of 0.03% to 0.1% by mass as an etchant.
  • the etching solution is not limited to hydrofluoric acid.
  • hydrochloric acid, sulfuric acid, nitric acid, ammonium fluoride, alkali metal hydroxide, aqueous ammonia, buffered hydrofluoric acid, and the like are preferably used.
  • the chemical etching may be performed, for example, by applying an etching solution to the surface of the compressive stress layer 11a, but is preferably performed by immersing the glass plate 11 in the etching solution. In the chemical etching step, it is preferable to stir the etching solution.
  • the chemical etching step it is preferable to perform chemical etching so that the amount of decrease in the thickness of the compressive stress layer 11a due to etching falls within the range of 0.1 ⁇ m to 3 ⁇ m, and the amount of decrease in the thickness of the compressive stress layer 11a due to etching. More preferably, the chemical etching is performed so that the thickness is in the range of 0.5 ⁇ m to 3 ⁇ m.
  • a glass base material made of Nippon Electric Glass Co., Ltd. made of chemically strengthened glass (material name: CX-01) having a thickness of 1 mm is cut into a size of 40 mm ⁇ 80 mm, and the end surface is mirror-polished to obtain a size of 40 mm ⁇ 80 mm ⁇ 1 mm.
  • a glass plate was created.
  • An end face of the sample before etching is shown in FIG.
  • a photomicrograph of the end face of the evaluation sample 8 is shown in FIG. From the photographs shown in FIGS. 4 and 5, it can be seen that if the etching time is too long, the end face is damaged by the etching.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 高い強度を有する強化ガラス材を製造し得る方法を提供する。 表層に圧縮応力層が形成されたガラス材の圧縮応力層の表層を化学エッチングする化学エッチング工程を行う。

Description

強化ガラス材の製造方法
 本発明は、強化ガラス材の製造方法に関する。特に、本発明は、表面に圧縮応力層を有する強化ガラス材の製造方法に関する。
 従来、ディスプレイや太陽電池などの用途に強化ガラス板が広く用いられるようになってきている。例えば、下記の特許文献1には、化学強化された強化ガラス基板の製造方法として、ガラス基板を化学強化処理した後にウエットエッチングすることにより平坦化する方法が記載されている。特許文献1に記載の製造方法では、ウエットエッチングは、ガラス基板の表面の平坦化を目的とするものであるため、比較的高濃度のフッ酸を用いて、比較的長時間にわたってウエットエッチングが行われる。具体的には、0.5質量%のフッ酸を用いて10分間ウエットエッチングすることや、15質量%のフッ酸を用いて0.5分間ウエットエッチングすることが記載されている。
特開2000-154040号公報
 しかしながら、特許文献1に記載の強化ガラス基板の製造方法では、十分に高い強度を有する強化ガラス基板を製造することが困難であるという課題がある。
 本発明は、斯かる点に鑑みて成されたものであり、その目的は、高い強度を有する強化ガラス材を製造し得る方法を提供することにある。
 本発明に係る強化ガラス材の製造方法は、表層に圧縮応力層が形成されている強化ガラス材の製造方法に関する。本発明に係る強化ガラス材の製造方法は、用意工程と、化学エッチング工程とを備えている。用意工程は、表層に圧縮応力層が形成されたガラス材を用意する工程である。化学エッチング工程は、圧縮応力層の表層を化学エッチングする工程である。
 用意工程は、ガラス材の表層に圧縮応力層を形成する圧縮応力層形成工程であってもよい。
 圧縮応力層形成工程は、ガラス材の表層中のイオンを該イオンよりもイオン半径の大きなイオンに交換することによって圧縮応力層を形成する工程であってもよい。
 化学エッチング工程において、圧縮応力層の圧縮応力の減少率が5%以下に収まるように圧縮応力層の表層を化学エッチングすることが好ましい。
 化学エッチング後の圧縮応力層の圧縮応力が300MPa~1200MPaの範囲内となるように用意工程と化学エッチング工程とを行うことが好ましい。
 化学エッチング前の圧縮応力層の圧縮応力が320MPa~1250MPaの範囲内となるように圧縮応力層形成工程を行うことが好ましい。
 化学エッチング工程において、圧縮応力層の表層を、HFの濃度が0.01質量%~0.1質量%のフッ酸をエッチング液として用いて、1秒~22分間化学エッチングすることが好ましい。
 化学エッチング工程において、ガラス材をエッチング液に浸漬することにより化学エッチングを行ってもよい。
 化学エッチング工程において、エッチングによる厚みの減少量が0.1μm~3μmとなるように化学エッチングを行うことが好ましい。
 本発明によれば、高い強度を有する強化ガラス材を製造し得る方法を提供することができる。
図1は、本発明を実施した一実施形態におけるガラス板の略図的断面図である。 図2は、本発明を実施した一実施形態において圧縮応力層形成工程実施後のガラス板の略図的断面図である。 図3は、本発明を実施した一実施形態において製造される強化ガラス板の略図的断面図である。 図4は、エッチング前の評価サンプルの端面の顕微鏡写真である。 図5は、評価サンプル8の端面の顕微鏡写真である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、以下の実施形態は、単なる例示である。本発明は、以下の実施形態に何ら限定されない。
 本実施形態では、図3に示す強化ガラス板1の製造方法について説明する。但し、本発明において、強化ガラス材は、強化ガラス板でなくてもよい。すなわち、強化ガラス材は、板状でなくてもよい。強化ガラス材は、例えば、直方体状、球状等の形状を有するものであってもよい。
 (ガラス材の準備工程)
 まず、強化ガラス板1の母材となるガラス板10(図1を参照)を用意する。ガラス板10は、通常、圧縮応力層を有さない応力的に実質的に均質なガラス板である。このガラス板10は、製造しようとする強化ガラス板1の形状に対応した形状を有する。このため、例えば、直方体状の強化ガラス材を製造する際には、直方体状のガラス材を準備すればよい。
 ガラス板10は、後述する圧縮応力層11aを形成可能なものである。具体的には、例えば、イオン交換法により圧縮応力層11aを形成する場合には、ガラス板10として、例えば、ナトリウムイオンなどのアルカリ金属イオンを含むガラス板を用いることができる。イオン交換法以外の方法により圧縮応力層11aを形成する場合は、ガラス板10として、例えば無アルカリガラス板を用いてもよい。
 (圧縮応力層形成工程)
 次に、圧縮応力層形成工程を行う。これにより、表層10aに圧縮応力層が形成されたガラス板10を用意する用意工程を行う。
 圧縮応力層形成工程においては、詳細には、ガラス板10の表層10aに圧縮応力層を形成する。圧縮応力層の形成方法は、特に限定されない。例えば、表層に冷風を吹き付けることにより表層を急激に冷却する風冷強化法により圧縮応力層を形成してもよいし、イオン交換法により圧縮応力層を形成してもよい。ここで、イオン交換法とは、ガラス板10の表層10a中のイオンを該イオンよりもイオン半径の大きなイオンに交換することによって圧縮応力層を形成する方法である。
 以下、本実施形態では、表層10a中のナトリウムイオンをカリウムイオンに交換することによって圧縮応力層を形成する例について説明する。本実施形態では、具体的には、ガラス板10として、ナトリウムイオンを含有する珪酸塩系ガラスからなる板を用いる。このガラス板10を、例えば、KNO溶融塩などのカリウムイオンを含む、高温のイオン交換液に浸漬することにより、表層10aのナトリウムイオンがカリウムイオンに交換され、圧縮応力層が形成される。図2に圧縮応力層11aが形成されたガラス板11の略図的断面図を示す。
 イオン交換液の種類、温度、浸漬時間等のイオン交換の条件は、使用するガラス板10の種類、形成しようとする圧縮応力層11aの厚み、形成しようとする圧縮応力層11aの圧縮応力の大きさ等に応じて適宜設定することができる。イオン交換液の温度は、例えば、400℃~500℃程度とすることができる。ガラス板10のイオン交換液への浸漬時間は、例えば、1時間~10時間程度とすることができる。
 強化ガラス板1の要求特性にもよるが、圧縮応力層11aの厚みは、例えば、20μm~70μmとすることができ、30μm~50μmであることが好ましい。また、圧縮応力層11aの圧縮応力は、320MPa~1250MPaであることが好ましい。圧縮応力層11aの圧縮応力は、430MPa~1160MPaであることがより好ましい。圧縮応力層11aの圧縮応力は、570MPa~850MPaであることがさらに好ましい。圧縮応力層11aの圧縮応力は、700MPa~850MPaであることがなお好ましい。圧縮応力層11aの圧縮応力が低すぎると、強化ガラス板1の強度が低くなりすぎる場合があるためである。一方、圧縮応力層11aの圧縮応力が高すぎると、強化ガラス板1の内部応力が高くなりすぎ、自己破壊につながる場合があるためである。
 なお、本発明において、「圧縮応力層の厚み」とは、強化ガラス板の表層の圧縮応力により光導波効果が生じる領域の深さを意味する。具体的には、本発明において、「圧縮応力層の厚み」と「圧縮応力値」は、折原製作所製FSM-6000を用い、硝材に応じた光弾性定数を適時設定して測定した値をいう。
 (化学エッチング工程)
 次に、化学エッチング工程を行う。具体的には、圧縮応力層11aの表層のみを化学エッチングする。これにより、圧縮応力層11aから図3に示す圧縮応力層1aを形成する。その結果、圧縮応力層1aが表層に形成されている強化ガラス板1を完成させることができる。
 このように、本実施形態では、圧縮応力層11aの表層のみを化学エッチングすることにより圧縮応力層1aを形成する。このため、後述する実験例においても裏付けられるように、高い強度を有する強化ガラス板1を製造することができる。なお、圧縮応力層11aの表層を化学エッチングすることにより強度が向上する理由は定かではないが、表面の傷やクラック等が消失するためや、表面が平坦化するためであると考えられる。
 この観点からは、圧縮応力層を厚く形成し、より多くの部分を化学エッチングにより除去することが好ましいように考えられる。しかしながら、圧縮応力層の表層を超えて化学エッチングすると、強化ガラス板の強度がかえって低下してしまう。従って、高強度の強化ガラス板1を製造するためには、本実施形態のように、圧縮応力層11aの表層のみを化学エッチングする必要がある。なお、圧縮応力層の表層を超えて化学エッチングすることにより強度が低下する原因は定かではないが、化学エッチングにより、ガラス板の端面に暇が生じてしまうことや、圧縮応力層の圧縮応力が低くなりすぎることなどによるものと考えられる。
 具体的には、化学エッチング工程においては、圧縮応力層の圧縮応力の減少率、すなわち、圧縮応力層11aの圧縮応力から圧縮応力層1aの圧縮応力を減算した値の、圧縮応力層11aの圧縮応力に対する比〔((圧縮応力層11aの圧縮応力)-(圧縮応力層1aの圧縮応力))/(圧縮応力層11aの圧縮応力)〕が5%以下、より好ましくは、2%以下に収まる範囲内で圧縮応力層11aの表層を化学エッチングすることが好ましい。
 また、圧縮応力層1aの圧縮応力が300MPa~1200MPaの範囲内となるように圧縮応力層形成工程とエッチング工程とを行うことが好ましい。圧縮応力層1aの圧縮応力が400MPa~1100MPaの範囲内となるように圧縮応力層形成工程とエッチング工程とを行うことがより好ましい。圧縮応力層1aの圧縮応力が540MPa~820MPaの範囲内となるように圧縮応力層形成工程とエッチング工程とを行うことがさらに好ましい。圧縮応力層1aの圧縮応力が720MPa~820MPaの範囲内となるように圧縮応力層形成工程とエッチング工程とを行うことがなお好ましい。圧縮応力層1aの圧縮応力が低すぎると、強化ガラス板1の強度が低くなりすぎる場合があるためである。一方、圧縮応力層1aの圧縮応力が高すぎると、強化ガラス板1の内部応力が高くなりすぎ、自己破壊につながる場合があるためである。
 上記のような好ましい範囲で化学エッチング工程を行うためには、比較的低濃度のエッチング液を用いて比較的短い時間化学エッチングすることが好ましい。具体的には、HFの濃度が0.01質量%~0.1質量%のフッ酸をエッチング液として用いて、1秒~22分間化学エッチングすることが好ましい。HFの濃度が0.03質量%~0.1質量%のフッ酸をエッチング液として用いて、30秒~22分間化学エッチングすることがより好ましい。
 なお、エッチング液は、フッ酸に限定されない。エッチング液としては、例えば、塩酸、硫酸、硝酸、フッ化アンモニウム、アルカリ金属の水酸化物、アンモニア水、バッファードフッ酸等も好ましく用いられる。
 化学エッチングは、例えば、圧縮応力層11aの表面にエッチング液を塗布することによって行ってもよいが、ガラス板11をエッチング液に浸漬することにより行うことが好ましい。また、化学エッチング工程においては、エッチング液を攪拌しておくことが好ましい。
 また、化学エッチング工程において、エッチングによる圧縮応力層11aの厚みの減少量が0.1μm~3μmの範囲内となるように化学エッチングを行うことが好ましく、エッチングによる圧縮応力層11aの厚みの減少量が0.5μm~3μmの範囲内となるように化学エッチングを行うことがより好ましい。
 (実験例)
 以下、本発明について、具体的な実験例に基づいて、さらに詳細に説明するが、本発明は以下の実験例に何ら限定されるものではない。
 (ガラス板の準備)
 日本電気硝子株式会社製 化学強化ガラス(材質名:CX-01)からなる厚み1mmのガラス母材を40mm×80mmの大きさにカットし、端面を鏡面研磨することにより、40mm×80mm×1mmのガラス板を作成した。
 (圧縮応力層形成工程)
 次に、ガラス板を、440℃のKNO溶融塩に6時間浸漬することによりイオン交換を行った。その結果、表面圧縮応力が665MPaであり、圧縮応力層の厚みが45μmである強化ガラス板が得られた。
 (エッチング工程)
 次に、強化ガラス板を、HFの濃度が0.06質量%のフッ酸に、下記の表1に示す時間だけ浸漬することによりエッチングを行い、評価サンプルを作成した。
 (評価)
 得られた評価サンプルの4点曲げ強度、圧縮応力層の圧縮応力、圧縮応力層の厚み減少量を測定した。また、圧縮応力層の圧縮応力の測定値から、エッチング工程の前後における圧縮応力の減少率を算出した。結果を下記の表1に示す。
 また、エッチング前(エッチング時間=0分)におけるサンプルの端面と、エッチング時間を50分とした評価サンプル8の端面とを顯微鏡により観察した。エッチング前におけるサンプルの端面を図4に示す。評価サンプル8の端面の顕微鏡写真を図5に示す。図4及び図5に示す写真から、エッチング時間が長くなりすぎると、エッチングにより端面が損傷してしまうことが分かる。
 なお、4点曲げ強度は、50mmの間隔で平行配置された2本の円柱棒(R=2mm)の上に評価サンプルを静置し、25mmの間隔で平行配置された2本の円柱棒(R=2mm)で、評価サンプルの上面に徐々に圧力を加えたとき、評価サンプルが破断した強度である。
 4点曲げ強度の測定には、島津製作所製 オートグラフ AG-ISを用い、加重速度5mm/分の条件で4点曲げ強度を測定した。
Figure JPOXMLDOC01-appb-T000001
1…強化ガラス板
1a…圧縮応力層
10…ガラス板
10a…ガラス板の表層
11…圧縮応力層が形成されたガラス板
11a…エッチング前の圧縮応力層

Claims (9)

  1.  表層に圧縮応力層が形成されている強化ガラス材の製造方法であって、
     表層に前記圧縮応力層が形成されたガラス材を用意する用意工程と、
     前記圧縮応力層の表層を化学エッチングする化学エッチング工程と、
    を備える、強化ガラス材の製造方法。
  2.  前記用意工程は、ガラス材の表層に前記圧縮応力層を形成する圧縮応力層形成工程である、請求項1に記載の強化ガラス材の製造方法。
  3.  前記圧縮応力層形成工程は、前記ガラス材の表層中のイオンを該イオンよりもイオン半径の大きなイオンに交換することによって前記圧縮応力層を形成する工程である、請求項2に記載の強化ガラス材の製造方法。
  4.  前記化学エッチング工程において、前記圧縮応力層の圧縮応力の減少率が5%以下に収まるように前記圧縮応力層の表層を化学エッチングする、請求項1~3のいずれか一項に記載の強化ガラス材の製造方法。
  5.  前記化学エッチング後の前記圧縮応力層の圧縮応力が300MPa~1200MPaの範囲内となるように前記用意工程及び前記化学エッチング工程とを行う、請求項1~4のいずれか一項に記載の強化ガラス材の製造方法。
  6.  前記化学エッチング前の前記圧縮応力層の圧縮応力が320MPa~1250MPaの範囲内となるように前記圧縮応力層形成工程を行う、請求項2に記載の強化ガラス材の製造方法。
  7.  前記化学エッチング工程において、前記圧縮応力層の表層を、HFの濃度が0.01質量%~0.1質量%のフッ酸をエッチング液として用いて、1秒~22分間化学エッチングする、請求項1~6のいずれか一項に記載の強化ガラス材の製造方法。
  8.  前記化学エッチング工程において、前記ガラス材をエッチング液に浸漬することにより前記化学エッチングを行う、請求項1~7のいずれか一項に記載の強化ガラス材の製造方法。
  9.  前記化学エッチング工程において、エッチングによる厚みの減少量が0.1μm~3μmとなるように化学エッチングを行う、請求項1~8のいずれか一項に記載の強化ガラス材の製造方法。
PCT/JP2011/077127 2011-01-07 2011-11-25 強化ガラス材の製造方法 WO2012093525A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011551338A JPWO2012093525A1 (ja) 2011-01-07 2011-11-25 強化ガラス材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011001667 2011-01-07
JP2011-001667 2011-01-07

Publications (1)

Publication Number Publication Date
WO2012093525A1 true WO2012093525A1 (ja) 2012-07-12

Family

ID=46457388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077127 WO2012093525A1 (ja) 2011-01-07 2011-11-25 強化ガラス材の製造方法

Country Status (3)

Country Link
JP (1) JPWO2012093525A1 (ja)
TW (1) TW201231418A (ja)
WO (1) WO2012093525A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013996A1 (ja) * 2012-07-17 2014-01-23 旭硝子株式会社 強化カバーガラスの製造方法及び強化カバーガラス
WO2014045809A1 (ja) * 2012-09-20 2014-03-27 旭硝子株式会社 化学強化ガラスの製造方法
WO2013071021A3 (en) * 2011-11-10 2014-10-02 Corning Incorporated Acid strengthening of glass
CN114105493A (zh) * 2021-11-08 2022-03-01 江西水晶光电有限公司 一种提升摄像头保护盖板强度的工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115959840A (zh) * 2022-12-28 2023-04-14 四川江天科技有限公司 玻璃的强化方法和强化玻璃及其用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000207730A (ja) * 1999-01-12 2000-07-28 Ishizuka Glass Co Ltd 磁気記録媒体用ガラス基板
JP2000311336A (ja) * 1999-04-28 2000-11-07 Nippon Sheet Glass Co Ltd 磁気ディスク用基板の作製方法、その方法により得られた磁気ディスク用基板及び磁気記録媒体
JP2002174810A (ja) * 2000-12-08 2002-06-21 Hoya Corp ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ
JP2010168270A (ja) * 2008-12-26 2010-08-05 Hoya Corp ガラス基材及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000207730A (ja) * 1999-01-12 2000-07-28 Ishizuka Glass Co Ltd 磁気記録媒体用ガラス基板
JP2000311336A (ja) * 1999-04-28 2000-11-07 Nippon Sheet Glass Co Ltd 磁気ディスク用基板の作製方法、その方法により得られた磁気ディスク用基板及び磁気記録媒体
JP2002174810A (ja) * 2000-12-08 2002-06-21 Hoya Corp ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ
JP2010168270A (ja) * 2008-12-26 2010-08-05 Hoya Corp ガラス基材及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071021A3 (en) * 2011-11-10 2014-10-02 Corning Incorporated Acid strengthening of glass
JP2014534945A (ja) * 2011-11-10 2014-12-25 コーニング インコーポレイテッド ガラスの酸強化
US8978414B2 (en) 2011-11-10 2015-03-17 Corning Incorporated Acid strengthening of glass
US9505653B2 (en) 2011-11-10 2016-11-29 Corning Incorporated Acid strengthening of glass
WO2014013996A1 (ja) * 2012-07-17 2014-01-23 旭硝子株式会社 強化カバーガラスの製造方法及び強化カバーガラス
WO2014045809A1 (ja) * 2012-09-20 2014-03-27 旭硝子株式会社 化学強化ガラスの製造方法
CN114105493A (zh) * 2021-11-08 2022-03-01 江西水晶光电有限公司 一种提升摄像头保护盖板强度的工艺

Also Published As

Publication number Publication date
JPWO2012093525A1 (ja) 2014-06-09
TW201231418A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
WO2012093525A1 (ja) 強化ガラス材の製造方法
CN104944790B (zh) 强化玻璃的组合物和用其制造触摸屏玻璃的方法
JP2009167086A5 (ja)
JP5255611B2 (ja) ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ
JP5066626B2 (ja) 携帯機器用カバーガラスのガラス基材及び携帯機器用カバーガラス
TW201034993A (en) Glass substrate and method for manufacturing the same
US11254605B2 (en) Methods of reducing the thickness of textured glass, glass-ceramic, and ceramic articles with high concentration alkali hydroxide at elevated temperature
JP2010202514A (ja) 携帯型液晶ディスプレイ用のガラス基板及びその製造方法並びにこれを用いた携帯型液晶ディスプレイ
JP2011105598A5 (ja) 携帯端末装置のカバーガラス用のガラス基材およびその製造方法
JP5730241B2 (ja) 電子機器用カバーガラスの製造方法および電子機器用カバーガラスのガラス基板保持具
WO2013187683A1 (ko) 강화유리 커팅 방법 및 커팅 장치
JP2015013777A (ja) 着色ガラス
CN113840810A (zh) 改良具有处于压应力下的区域的纹理化玻璃基板以增加玻璃基板强度的方法
WO2017179360A1 (ja) 強化ガラスの製造方法および強化ガラス製造装置
US11629095B2 (en) Etching glass and glass ceramic materials in hydroxide containing molten salt
TWI662107B (zh) 用於修復玻璃的組合物和方法及經該組合物處理過的玻璃
WO2016117479A1 (ja) ガラス基材の製造方法
JP4862859B2 (ja) ガラス基板
KR102585674B1 (ko) 붕규산 유리 및 그의 제조 방법
JP2017081767A (ja) ガラス板用エッチング液及びガラス板のエッチング方法
JP5183320B2 (ja) 携帯機器用カバーガラスのガラス基材の製造方法
WO2018008359A1 (ja) 強化ガラス板の製造方法
JP5066625B2 (ja) 携帯機器用カバーガラスのガラス基材及び携帯機器用カバーガラス
JP5502937B2 (ja) ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ
KR20190111252A (ko) 굽힘 특성이 강화된 강화 글라스 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011551338

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854967

Country of ref document: EP

Kind code of ref document: A1