WO2012092879A1 - 一种加扰传输方法及其装置 - Google Patents

一种加扰传输方法及其装置 Download PDF

Info

Publication number
WO2012092879A1
WO2012092879A1 PCT/CN2012/070118 CN2012070118W WO2012092879A1 WO 2012092879 A1 WO2012092879 A1 WO 2012092879A1 CN 2012070118 W CN2012070118 W CN 2012070118W WO 2012092879 A1 WO2012092879 A1 WO 2012092879A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
sequence
data
scrambling
slot
Prior art date
Application number
PCT/CN2012/070118
Other languages
English (en)
French (fr)
Inventor
高雪娟
沈祖康
林亚男
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to KR1020137014776A priority Critical patent/KR101543456B1/ko
Priority to EP12732064.6A priority patent/EP2701452B1/en
Priority to US13/978,527 priority patent/US8948143B2/en
Publication of WO2012092879A1 publication Critical patent/WO2012092879A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/065Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/065Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
    • H04L9/0656Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/20Manipulating the length of blocks of bits, e.g. padding or block truncation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a scrambling transmission method and apparatus therefor.
  • the LTE-A (Long Term Evolution-Advanced) system is currently configured to support up to 5 carriers for carrier aggregation (CAR).
  • CAR carrier aggregation
  • the LTE-A UE User Equipment, User Equipment, User Terminal
  • ACK/NACK feedback information corresponding to multiple downlink carriers and downlink subframes is fed back in the same uplink subframe. Therefore, the LTE-A system defines a new PUCCH (Physical Uplink Control Channel) transport format 1 - PUCCH format 3 to support larger ACK (ACKnowledgement) / NACK ( Non- ACKnoledgement, negative acknowledgement) feedback bit number transmission.
  • PUCCH Physical Uplink Control Channel
  • PUCCH format 3 supports up to 20-bit ACK/NACK feedback, and its transmission structure is shown in Figure 1.
  • the ACK/NACK feedback bit sequence is first encoded by RM (Reed-Muller), where Rel-8 (Release-8, Version 8) is reused for the number of ACK/NACK feedback bits not greater than 11 bits.
  • the RM ( 32, 0 ) + repetition coding method in the system encodes the ACK/NACK feedback bits into 48-bit coded bits. For the case where the number of ACK/NACK feedback bits exceeds 11 bits, Dual- is used.
  • RM mode double RM mode
  • the ACK/NACK feedback bits are divided into two groups.
  • Each group uses RM (32, 0) + truncation coding to encode the ACK/NACK feedback bits into 24-bit coded bits.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • RS Reference Signal, also called pilot
  • extended CP For the normal cyclic prefix (Normal CP), there are 2 columns of RS (Reference Signal, also called pilot) in each slot, occupying the 2nd and 6th SC-FDMA symbols respectively, as shown in Figure 1;
  • extended CP For the extended cyclic prefix (Extended CP), there are 1 column of RSs in each slot, occupying the 4th SC-FDMA symbol, as shown in Figure 2.
  • the same information is occupied by two edge portions of the frequency band in two time slots, and frequency hopping transmission is performed to obtain a frequency domain diversity gain.
  • PUCCH format 3 also supports a shortened format for simultaneous transmission of SRS (Sounding)
  • the shortened format In the shortened format, the SF length in the first slot is 5, the SF length in the second slot is 4, and the last SC-FDMA symbol in the second slot is vacant for transmitting SRS, and its structure As shown in Figure 3.
  • the shortened PUCCH format 3 When the UE is configured to support simultaneous transmission of ACK/NACK and SRS in the same uplink subframe, the shortened PUCCH format 3 will be used to simultaneously transmit multi-bit ACK/NACK and SRS.
  • Table 1 shows orthogonal spreading sequences corresponding to different SF lengths, where A ⁇ CCH represents the SF length.
  • the data of the time domain spread spectrum is orthogonal to the OC sequence.
  • the UE can be configured to use different OC sequences for multi-user multiplex transmission. Up to 5 users can be reused in a PRB pair.
  • Table 1 OC Sequences for PUCCH format 3
  • the base station uses the display signaling to notify the UE of the PUCCH format 3 resource number used by the ACK/NACK feedback in the PUCCH format 3, and the UE will calculate the PRB number (n) used for the feedback ACK/NACK information according to the value.
  • the orthogonal sequence number (" .c ), ie
  • 'PUCCH ' ly SF, 0 is the SF length in the first slot, is the slot number within a radio frame; n oc H CH , where the specific form has not been determined.
  • each RE (Resource Element) on one SC-FDMA symbol in the PUCCH format 3 corresponds to a different modulation symbol, that is, no frequency domain.
  • different user data is only orthogonally distinguished by the time domain OC sequence.
  • the transmission data of multiple users interfere with each other, especially for the cell edge user, such neighbor cell interference is particularly serious when the interference cell
  • the user's transmit power is large, it directly affects the PUCCH demodulation performance of the target cell user.
  • An object of the present invention is to provide a scrambling transmission method and a device thereof, which are used to solve the problem of inter-cell interference when user equipments operating on the same resource in different cells adopt the same time domain spreading sequence.
  • the example uses the following technical solutions:
  • a scrambling transmission method includes the following steps:
  • the user terminal generates the transmission information, and modulates the transmission information to generate a data modulation symbol; the user terminal scrambles the data modulation symbol by using a cell-specific scrambling sequence; the user terminal adopts DFT-S-OFDM ( Discrete Fourier Transform- Spreading - Orthogonal Frequency Division Multiplexing (Discrete Orthogonal Frequency Division Multiplexing) transmission structure, which transmits the scrambled data modulation symbols by time domain spreading.
  • DFT-S-OFDM Discrete Fourier Transform- Spreading - Orthogonal Frequency Division Multiplexing (Discrete Orthogonal Frequency Division Multiplexing) transmission structure, which transmits the scrambled data modulation symbols by time domain spreading.
  • a user terminal comprising:
  • a data generating module configured to generate a sending information, and modulate the sending information to generate a data modulation symbol
  • a scrambling module configured to scramble the data modulation symbol by using a cell-specific scrambling sequence
  • a sending module configured to transmit the scrambled by using a DFT-S-OFDM transmission structure by using a time domain spread spectrum method Data modulation symbol.
  • a scrambling transmission method includes the following steps:
  • the base station adopts a DFT-S-OFDM transmission structure, and receives a data modulation symbol sent by the user terminal by using a time domain despreading mode;
  • the base station descrambles the received data modulation symbols using a cell-specific descrambling sequence.
  • a base station device includes:
  • a receiving module for adopting a DFT-S-OFDM transmission structure and receiving by a time domain despreading method a data modulation symbol transmitted by the terminal;
  • a descrambling module configured to descramble the received data modulation symbol by using a cell-specific descrambling sequence.
  • the data modulation symbols generated by the user terminal are scrambled by using a cell-specific scrambling sequence, thereby reducing mutual interference between data of UEs working in the same resource in the neighboring cell, and improving Detection performance of the uplink signal.
  • FIG. 1 is a schematic diagram of a PUCCH format 3 transmission structure in a normal CP in the prior art
  • FIG. 2 is a schematic diagram of a PUCCH format 3 transmission structure in an extended CP in the prior art
  • FIG. 4A is a mode 1 according to Embodiment 1 of the present invention
  • 2 or 3 is a schematic diagram of scrambling
  • FIG. 4B is a schematic diagram of scrambling using mode 4, 5 or 6 according to Embodiment 1 of the present invention
  • FIG. 5A is a scrambling method using mode 1, 2 or 3 according to Embodiment 2 of the present invention
  • FIG. 5B is a schematic diagram of the method of using the method 4, 5, or 6 for scrambling according to the second embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a user terminal according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention. detailed description
  • PUCCH format 3 is defined in the LTE-A system as an ACK/NACK multiplexing transmission scheme.
  • the PUCCH format 3 may be configured to multiplex multiple UEs simultaneously on the same physical resource block by configuring multiple UEs to use different time domain OC sequences. UEs that are in different cells but work on the same frequency domain resources may use the same OC sequence, which may cause inter-cell interference. Especially for cell edge users, such neighbor cell interference is particularly serious when interfering in the cell. When the user transmit power is large, the PUCCH demodulation performance of the target cell user is directly affected. In order to reduce the interference between the neighboring cells, the embodiment of the present invention provides a message for transmitting information to the PUCCH format 3. Cell-specific scrambling transmission scheme.
  • the cell-specific scrambling operation provided by the embodiment of the present invention may be used. Scrambled.
  • the scrambling operation is performed in the time domain, that is, before DFT (Discrete Fourier Transform) precoding, QPSK (Quarature Phase Shift Keying) modulation, and can be in the time domain. Perform before or after spreading.
  • DFT Discrete Fourier Transform
  • QPSK Quadarature Phase Shift Keying
  • the method for transmitting the uplink control information by using the time domain spread spectrum method based on the transmission structure of the DFT-S-OFDM includes but is not limited to the PUCCH format 3 transmission mode.
  • the scrambling operation is cell-specific, that is, the scrambling sequence is a cell-specific scrambling sequence, and the scrambling sequences of different cells are different from each other.
  • the generation of the scrambling sequence is at least related to the cell identity N ', ie the initialization of the scrambling sequence needs to be related to at least N '.
  • the scrambling sequence can be generated using one or any combination of the following parameters, in addition to the cell identifier ⁇ ":
  • n f 0,1,..., indicates the radio frame number in the system
  • n s 0, 1, ..., 19, indicating the slot number in a radio frame
  • the scrambling sequence may be generated based on a pseudo-random sequence, which may be according to N or according to any combination of parameters such as N and , n s , ⁇ n s ⁇ . /, etc.
  • a pseudo-random sequence which may be according to N or according to any combination of parameters such as N and , n s , ⁇ n s ⁇ . /, etc.
  • the extended CP scrambling sequence may be further obtained based on the pseudo-random sequence variant or extension generated by the above method, for example, replacing the 0 element in the generated pseudo-random sequence with -1 or ' 2 to obtain a scrambling sequence; or, scrambling
  • the sequence can be obtained by performing corresponding x-QAM (Quadature Amplitude Modulation) modulation for each element of the pseudo-random sequence generated above, where x represents a hexadecimal; for example: in a pseudo-random sequence
  • BPSK Binary Phase Shift Keying
  • 2-QAM modulation also known as QPSK modulation
  • each of the four elements in the pseudo-random sequence is subjected to 4-QAM modulation, also referred to as 16QAM modulation; or, for each of the six elements in the pseudo-random sequence, 6-QAM modulation, also referred to
  • the UE may use the following scheme to perform scrambling using the cell-specific scrambling sequence:
  • Option 1 scrambling based on all data modulation symbols in one subframe, that is, generating the number of modulation symbols based on the data in the subframe.
  • a scrambling sequence (including all data modulation symbols in the time domain and the frequency domain), and then scrambling the data modulation symbols in the subframe using the scrambling sequence, wherein the scrambling sequence
  • Each scrambling value corresponds to a corresponding data modulation symbol in the subframe, respectively.
  • the total length of the scrambling sequence is
  • the number of subcarriers in the SC-FDMA symbol indicates the length of the time domain spreading sequence in the first slot in one subframe (i.e., the number of SC-FDMA symbols for transmitting data).
  • Method 1 generating a scrambling sequence based on the total number of data modulation symbols in each uplink subframe, for each uplink subframe The data inside is scrambled separately, that is: First, the length of each sub-frame is
  • K j ⁇ N CCH ⁇ SF i scrambling sequence Cj (n); Then, the data in multiple time slots in the sub-frame is adjusted to 0
  • the modulation symbols on the SC-FDMA are in a sequence of data modulation symbols obtained by concatenating the frequency domain in the first time domain or the time domain in the first frequency domain.
  • the generation of the scrambling sequence (") is related to at least a combination of a cell identity (also called cell ID, N) or a cell identity and a subframe number (L «").
  • the sequence of data modulation symbols is obtained in series.
  • the generation of the scrambling sequence is related to at least a combination of a cell identity ( ) or a cell identity and a time slot number ( n s ).
  • Mode 3 The total number of data modulation symbols on the SC-FDMA symbol based on each transmitted data
  • the generation of the scrambling sequence needs to be related to at least a combination of a cell identity ( ) or a cell identity and an SC-FDMA symbol number (/).
  • Scheme 2 scrambling based on SC-FDMA symbols of transmission data in one subframe, that is, generating a scrambling sequence based on the number of SC-FDMA symbols of the transmission data in the subframe, and then using the scrambling sequence pair
  • the data modulation symbols in the frame are scrambled, wherein each scrambling value in the scrambling sequence respectively corresponds to an SC-FDMA symbol of a corresponding transmission data in the subframe, and the N CCH in the frequency domain on the SC-FDMA symbol
  • the data modulation symbols are scrambled using the same scrambling value.
  • the total length of the scrambling sequence is
  • the length of the time domain spreading sequence ie, the number of SC-FDMA symbols for transmitting data.
  • Method 4 generating a scrambling sequence based on the total number of SC-FDMA symbols of the transmission data in one subframe, for each The data in the uplink subframes are scrambled separately, that is: First, the length is generated for each subframe.
  • d j ( ⁇ ) is a sequence of data modulation symbols in multiple slots in subframe j' (ie, a serial sequence of modulation symbols on SC-FDMA in which data is transmitted in one subframe) Column).
  • the generation of the scrambling sequence Cj (m) is related to at least a combination of a cell identity (N) or a cell identity and a subframe number (L").
  • the scrambling sequence c,.( ); then, scrambling the data modulation symbols in the time slots in one subframe, ⁇ m'N UCCH +12) ) ⁇ person m'N UCCH +n),
  • the generation of the scrambling sequence c,. (m) requires at least a cell identifier ( ) or a combination of cell identity and slot number (n s ).
  • the generation of the scrambling sequence needs to be related to at least a combination of a cell identity ( ) or a cell identity and an SC-FDMA symbol number (/).
  • the base station side performs descrambling processing on the received data by using a descrambling method corresponding to the above-mentioned scrambling mode, that is, the base station receives data through the PUCCH format 3 transmission scheme, and uses one of the methods 1 to 6 of the UE side to generate a solution.
  • the scrambling sequence uses the generated descrambling sequence to descramble the received data.
  • the base station adopts a DFT-S-OFDM transmission structure, and receives a data modulation symbol sent by the user equipment in a time domain despreading manner, and the base station uses the cell-specific descrambling sequence to descramble the received data modulation symbol.
  • the base station adjusts based on data in the subframe. Generating a descrambling sequence by using the descrambling sequence to descramble the data modulation symbols in the subframe, where each descrambling value in the descrambling sequence corresponds to a corresponding data modulation symbol in the subframe. If the UE performs scrambling by using the foregoing solution 2, the base station generates a descrambling sequence based on the number of SC-FDMA symbols of the transmission data in the subframe, and uses the descrambling sequence to descramble the data modulation symbols in the subframe. The descrambling values in the descrambling sequence respectively correspond to SC-FDMA symbols of corresponding transmission data in the subframe.
  • the base station When mode 1 is adopted, the base station generates a descrambling sequence of length -SR for each subframe based on the total number of data modulation symbols in each subframe, and a data modulation symbol for the subframe j
  • the sequence descrambles the data modulation symbols on the SC-FDMA symbol I of the transmitted data.
  • the base station is based on the total number of SC-FDMA symbols of the transmission data in each subframe.
  • the data modulation symbols in time slot i are descrambled;
  • the cell-specific descrambling sequence generated by the base station is generated according to at least the cell identifier ( ⁇ "), or generated according to the cell identifier and one or any combination of the following parameters: a radio frame number ( ), a time in a radio frame The slot number (n s ), the subframe number ( L ′′ in one radio frame, and the SC-FDMA symbol number ( I ) in one slot.
  • the UE first generates an ACK/NACK feedback information sequence, and after the RM coding, the bit-level scrambling, the QPSK modulation, and the time-domain spreading, the modulated symbols (hereinafter referred to as modulation symbols) are scrambled by using the manner provided by the embodiment of the present invention. , as shown in Figure 4A or Figure 4B.
  • the UE generates a pseudo-random sequence through the Gold sequence of length 31, and performs QPSK modulation on the elements in the pseudo-random sequence every two groups to obtain a scrambling sequence.
  • the process of the UE performing the cell-specific scramble transmission by using the above manners 1-6 is specifically as follows:
  • the UE For each subframe, according to the generated scrambling sequence, the UE multiplies 120 modulation symbols on the 10 SC-FDMA symbols of the data transmitted in one subframe and the scrambling sequence of length 120 by point by point, and then scrambles. Transmission is performed by DFT precoding and IFFT (Inverse Fast Fourier Transform). Specific can be as shown 4A is shown.
  • IFFT Inverse Fast Fourier Transform
  • the UE 60 For each time slot, according to a scrambling sequence generated, the UE 60 modulation symbols with a length in the five SC-FDMA symbols in one slot 60 for transmitting data to the point-wise multiplying the scrambling sequence scrambling , then sent by DFT precoding and IFFT. Specifically, it can be as shown in FIG. 4A.
  • the UE generates the same scrambling sequence for each SC-FDMA symbol, that is, each sequence in S1(n) to S10(n) is the same; if the scrambling sequence
  • the UE generates different scrambling sequences for each SC-FDMA, that is, each sequence in S1(n) to S10(n) may be different, and the initial value generated by the scrambling sequence needs to be
  • the SC-FDMA symbols of the transmitted data are updated.
  • the UE For each SC-FDMA symbol, according to the generated scrambling sequence, the UE multiplies 12 modulation symbols on the SC-FDMA symbol of one transmission data and the scrambling sequence of length 12 point by point, and then performs DFT. Precoding and IFFT are sent. Specifically, it can be as shown in FIG. 4A.
  • the SC-FDMA symbol, the 12 modulation symbols on each SC-FDMA symbol are multiplied by the same scrambling value, and then transmitted by DFT precoding and IFFT. Specifically, it can be as shown in FIG. 4B.
  • Each scrambling value in the scrambling sequence of length 5 corresponds to the SC-FDMA symbol of one of the transmission data in the slot, and the 12 modulation symbols on each SC-FDMA symbol are multiplied by the same plus 4 value, and then Transmitted via DFT precoding and IFFT. Specifically, it can be as shown in FIG. 4B.
  • the FDMA generates a different scrambling sequence, that is, each of the values in S1 to S10 may be different, and the initial value generated by the scrambling sequence needs to be updated in the SC-FDMA symbol of each transmission data.
  • the UE multiplies 12 modulation symbols on one SC-FDMA symbol of the transmission data by the same corresponding scrambling value, and then performs transmission by DFT precoding and IFFT. Specifically, it can be as shown in FIG. 4B.
  • the UE transmits the scrambled modulation symbol sequence by using a PUCCH format 3 transmission scheme.
  • Base station :
  • the data is received by the PUCCH format 3 transmission scheme, and a descrambling sequence is generated by using one of the methods 1 to 6 of the UE, and the received descrambling sequence is used to descramble the received data.
  • the base station produces growth rate for each sub-frame as
  • Each descrambling value in a descrambling sequence of length 10 corresponds to an SC-FDMA symbol of one of the transmission data in the subframe, and the same de-scrambling value is used for the 12 modulation symbols on each SC-FDMA symbol.
  • Each descrambling value in the length 5 descrambling sequence corresponds to one SC-FDMA symbol of one transmission data in the slot, and the 12 modulation symbols on each SC-FDMA symbol use the same descrambling value.
  • the scrambling sequence; if the initialization parameter definition generated by the descrambling sequence is only related to the cell ID (A), for example c init , the base station generates the same descrambling sequence for each SC-FDMA symbol; if the descrambling sequence generates initialization parameters
  • the base station For each SC-FDMA symbol, based on the generated descrambling sequence, the base station descrambles the 12 modulation
  • the UE first generates an ACK/NACK feedback information sequence, and after RM coding, bit level scrambling, QPSK modulation, and time domain spreading, the QPSK modulation symbols are scrambled, as shown in FIG. 5.
  • the UE generates a pseudo-random sequence through a Gold sequence of length 31, and performs QPSK modulation on each of the elements in the pseudo-random sequence to obtain a scrambling sequence.
  • the process of the UE performing the cell-specific scramble transmission by using the above manners 1-6 is specifically as follows:
  • the UE For each subframe, according to the generated scrambling sequence, the UE multiplies the 108 modulation symbols on the 9 SC-FDMA symbols of the data transmitted in one subframe by the scrambling sequence of length 108 by point by point, and then scrambles. After DFT precoding and IFFT Line is sent. Specifically, it can be as shown in FIG. 5A.
  • the UE For each subframe, according to the generated scrambling sequence, the UE multiplies 60 modulation symbols on the 5 SC-FDMA symbols transmitted in the first slot with the scrambling sequence of length 60 by point-by-point to perform scrambling.
  • the 48 modulation symbols on the 4 SC-FDMA symbols of the data transmitted in the second time slot are multiplied by the scrambling sequence of length 48 by point-by-point, and then transmitted by DFT precoding and IFFT. Specifically, it can be as shown in FIG. 5A.
  • the UE generates the same scrambling sequence for each SC-FDMA symbol, ie each sequence in S1(n) to S9(n) is the same; if the scrambling sequence is generated
  • the SC-FDMA symbol of the data is updated.
  • the UE multiplies 12 modulation symbols on the SC-FDMA symbol of one transmission data and the scrambling sequence of length 12 point by point, and then performs DFT. Precoding and IFFT are sent. Specifically, it can be as shown in FIG. 5A.
  • the scrambling sequence if the initialization parameter definition generated by the scrambling sequence is only related to the cell ID (A), for example, c init two, the UE generates the same scrambling sequence for each subframe, that is, S1 ⁇ S9 for each subframe Same; if the initialization parameter definition generated by adding 4 special sequence is related to cell ⁇ ⁇ 11 ) and subframe number (L « s / 2 ′), for example c Mt Then, the UE generates different scrambling sequences for each subframe, that is, S1-S9 may be different for each subframe, and the initial value generated by the scrambling sequence needs to be updated in each subframe.
  • Each scrambling value in the scrambling sequence of length 9 corresponds to the SC-FDMA symbol of one of the transmission data in the sub-frame, and the 12 modulation symbols on each SC-FDMA symbol are multiplied by the same scrambling value, and then DFT precoding and IFFT are sent. Specifically, it can be as shown in FIG. 5B.
  • the scrambling sequence is different, that is, S1 ⁇ S4 may be different from S6 ⁇ S9, and the initial value generated by the scrambling sequence needs to be updated in each time slot.
  • each scrambling value in a scrambling sequence of length 5 corresponds to an SC-FDMA symbol of one transmission data in the first slot
  • each scrambling value in a scrambling sequence of length 4 corresponds to the SC-FDMA symbol of one of the second time slots
  • the 12 modulation symbols on each SC-FDMA symbol are multiplied by the same scrambling value, and then transmitted through DFT precoding and IFFT. Specifically, it can be as shown in FIG. 5B.
  • the UE For each time slot or each time slot in each subframe, according to the generated scrambling sequence, the UE multiplies 12 modulation symbols on the SC-FDMA symbol of one transmission data by the same corresponding scrambling value.
  • the interference is then sent via DFT precoding and IFFT. Specifically, it can be as shown in FIG. 5B.
  • the UE transmits the scrambled modulation symbol sequence by using a PUCCH format 3 transmission scheme.
  • Base station :
  • the data is received by the PUCCH format 3 transmission scheme, and a descrambling sequence is generated by using one of the methods 1 to 6 of the UE, and the received descrambling sequence is used to descramble the received data.
  • the base station produces growth rate for each sub-frame as
  • the base station descrambles 60 modulation symbols on the 5 SC-FDMA symbols transmitted in the first time slot and the descrambling sequence of length 60 by point-by-point operation.
  • the 48 modulation symbols on the 4 SC-FDMA symbols of the data transmitted in the second time slot and the descrambling sequence of length 48 are descrambled point by point.
  • Each descrambling value in the length 9 descrambling sequence corresponds to the SC-FDMA symbol of one of the transmission data in the subframe, and the 12 modulation symbols on each SC-FDMA symbol use the same descrambling value.
  • each descrambling value in the descrambling sequence of length 5 corresponds to one SC-FDMA symbol of one transmission data in the first slot, and each descrambling value in the descrambling sequence of length 4 Corresponding to the SC-FDMA symbol of one of the second time slots, the 12 modulation symbols on each SC-FDMA symbol use the same descrambling value.
  • the initial value needs to be updated in the SC-FDMA symbol of each transmitted data.
  • the base station descrambles 12 modulation symbols on the SC-FDMA symbol of one transmission data and the same corresponding descrambling value operation. .
  • the ACK/NACK transmission is taken as an example for the description, but the embodiment of the present invention is also applicable to the process of transmitting other information by using the PUCCH format 3.
  • the description of the scrambling sequence is generated by pseudo random sequence modulation, and the process of the scrambling sequence.
  • the embodiment of the present invention further provides a user terminal and a base station, which can be applied to the foregoing process.
  • the user terminal provided by the embodiment of the present invention may include:
  • a data generating module 601 configured to generate transmission information, and modulate the transmission information to generate a data modulation symbol
  • the scrambling module 602 is configured to perform scrambling on the data modulation symbol by using a cell-specific scrambling sequence
  • the sending module 603 is configured to send the scrambled data modulation symbol by using a DFT-S-OFDM transmission structure by using a time domain spreading method.
  • the scrambling module 602 may generate a scrambling sequence (including all data modulation symbols in the time domain and the frequency domain) based on the number of data modulation symbols in the subframe, and use the scrambling sequence in the subframe.
  • the data modulation symbols are scrambled, wherein each of the scrambling values in the scrambling sequence respectively corresponds to a corresponding data modulation symbol in the subframe.
  • the scrambling module 603 can be based at least on the cell identifier.
  • the scrambling module 603 can generate the scrambling sequence c(n) according to at least a cell identifier ( ⁇ "), or at least according to d, a region identifier, and a slot number O s ).
  • the scrambling module 603 may generate the add-on sequence ( «) according to at least the cell identifier ( ⁇ "), or at least according to the cell identifier and the SC-FDMA symbol number (/).
  • the scrambling module 603 may generate a scrambling sequence based on the number of SC-FDMA symbols in the subframe, and use the scrambling sequence to scramble the data modulation symbols in the subframe, where the scrambling sequence Each scrambling value in the corresponding corresponds to the corresponding SC-FDMA symbol in the subframe.
  • the scrambling module 603 can adopt the above manner 4, that is, based on SC-FDMA in each subframe.
  • the scrambling module 603 can generate the scrambling sequence cm) according to at least the cell identifier (N), or at least according to the cell identifier and the subframe number (L/2).
  • the scrambling module 603 can also adopt the above manner 5, that is, based on the SC-FDMA symbol in each slot.
  • the scrambling module 603 can generate the added sequence c, (m) according to at least the cell identifier (;), or at least according to the cell identifier and the slot number OJ.
  • the scrambling module 603 can generate the cell-specific scrambling sequence based on at least the cell identifier ( ⁇ ). Specifically, the scrambling module 603 can generate the cell-specific scrambling sequence according to the cell identifier and one or any combination of the following parameters:
  • the scrambling module 603 can generate the cell-specific scrambling sequence by: first generating a pseudo-random sequence:
  • N c 1600
  • the second m sequence The initialization parameter of 2 ( «) is defined as c init ⁇ Obtained by: c init or,
  • the scrambling sequence can be further obtained based on the pseudo-random sequence variant or extension generated by the above method, for example, the 0 element in the generated pseudo-random sequence is replaced by -1 or ⁇ 2 to obtain a scrambling sequence; or, x-QAM modulation is obtained.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention. As shown in the figure, the base station may include:
  • the receiving module 701 is configured to receive, by using a DFT-S-OFDM transmission structure, a data modulation symbol sent by the user equipment by using a time domain despreading manner;
  • the descrambling module 702 is configured to descramble the received data modulation symbol using a cell-specific descrambling sequence.
  • the descrambling module 702 can generate descrambling based on the number of data modulation symbols in the subframe. a sequence, descrambling the data modulation symbols in the subframe using the descrambling sequence, wherein each descrambling value in the descrambling sequence corresponds to a corresponding data modulation symbol in the subframe, respectively.
  • the data modulation symbols on the SC-FDMA symbol I are descrambled.
  • the descrambling module 702 may generate a descrambling sequence based on the number of SC-FDMA symbols of the transmission data in the subframe, and use the descrambling sequence to descramble the data modulation symbols in the subframe, where the solution
  • Each descrambling value in the scrambling sequence corresponds to the SC-FDMA symbol of the corresponding transmission data in the subframe, respectively.
  • the descrambling module 702 can calculate the total number of SC-FDMA symbols based on the transmission data in each subframe.
  • a descrambling sequence c of length is generated for each slot, (m), for data in slot i in one subframe Modulation symbol for descrambling ⁇ or,
  • the descrambling module 702 can generate the cell-specific information according to the cell identifier (N). Decoding the sequence, or generating the cell-specific descrambling sequence according to the cell identity and one or any combination of the following parameters:
  • the descrambling module 702 may generate the descrambling sequence based on a pseudo random sequence; the pseudo random sequence is based at least on a cell identifier (N), or according to a cell identifier and a radio frame number ( nf ), in a radio frame. One or any combination of the slot number (n s ), the subframe number (L ′′ in one radio frame), and the SC-FDMA symbol number ( I ) in one slot. Further, after the pseudo-random sequence is generated, the descrambling module 702 may replace a specific element in the pseudo-random sequence with a set value to generate a descrambling sequence, or form an element of the pseudo-random sequence for each k element. In a group, QAM modulation is performed on each set of elements to generate a descrambling sequence, where k > l.
  • the embodiment of the present invention provides a method for reducing interference between adjacent cells by introducing a cell-specific scrambling operation in the LTE-A system, and improving the detection performance of the uplink control signal.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a
  • the terminal device (which may be a cell phone, a personal computer, a server, or a network device, etc.) performs the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种加扰传输方法及其装置,该方法包括:用户终端产生发送信息,并对发送信息进行调制,产生数据调制符号;所述用户终端使用小区专属的加扰序列对所述数据调制符号进行加扰;所述用户终端采用DFT-S-OFDM传输结构,通过时域扩频方式发送所述加扰后的数据调制符号。本发明可降低邻小区间工作在相同资源上的用户终端数据的相互干扰,提高上行控制信号的检测性能。

Description

一种加扰传输方法及其装置
本申请要求以下中国专利申请的优先权:
于 2011年 1月 6日提交中国专利局, 申请号为 201110001898.0,发明名称 为 "一种加扰传输方法及其装置" 的中国专利申请。 以及
于 2011年 1月 7日提交中国专利局, 申请号为 201110002897.8,发明名称 为 "一种加扰传输方法及其装置" 的中国专利申请。 技术领域
本发明涉及无线通信技术领域, 尤其涉及一种加扰传输方法及其装置。
背景技术
LTE-A ( Long Term Evolution- Advanced, 长期演进升级 ) ***目前确定最 多可支持 5个载波进行 CA ( Carrier Aggregation,载波聚合), LTE-A UE ( User Equipment, 用户设备, 即用户终端 )需要在同一个上行子帧内反馈对应多个下 行载波及下行子帧的 ACK/NACK反馈信息。 因此, LTE-A***定义了一种新 的 PUCCH ( Physical Uplink Control Channel, 物理上行控制信道)传输格式一 — PUCCH format (格式) 3以支持较大 ACK ( ACKnowledgement, 肯定确认) /NACK ( Non-ACKnoledgement, 否定确认)反馈比特数传输。
PUCCH format 3最大支持 20比特 ACK/NACK反馈, 其传输结构如图 1 所示。 ACK/NACK反馈比特序列首先进行 RM ( Reed-Muller, 瑞德-穆勒)编 码, 其中, 对于 ACK/NACK反馈比特数不大于 11 比特情况下, 重用 Rel-8 ( Release-8, 版本 8 ) ***中的 RM ( 32, 0 ) +重复 ( repetition )编码方式将 ACK/NACK反馈比特编码为 48比特编码后比特( coded bits ) ,对于 ACK/NACK 反馈比特数超过 11 比特情况下, 采用 Dual-RM 方式 (双 RM 方式), 将 ACK/NACK反馈比特均分为 2组, 每组采用 RM ( 32, 0 ) +截短(truncation ) 编码方式将 ACK/NACK反馈比特编码为 24比特 coded bits; RM编码后的比特 序列经过比特级加扰(Scrambling ), 调制 ( Modulation )后, 分别在一个上行 子帧中的 2个时隙 ( slot )进行传输, 通过 SF ( Spreading Factor, 扩频因子) =5的时域 0C ( Orthogonal Cover, 正交扩频)序列将调制符号扩展在 1个时隙 中的多个 SC-FDMA ( Single Carrier- Frequency Division Multiple Access ,单载波 -频分多址)符号传输以获得时域分集增益。 对于常规循环前缀(Normal CP ), 每个时隙中有 2列 RS ( Reference Signal, 参考符号, 又称导频), 分别占用第 2和第 6个 SC-FDMA符号, 如图 1所示; 对于扩展循环前缀( Extended CP ), 每个时隙中有 1列 RS , 占用第 4个 SC-FDMA符号, 如图 2所示。 相同的信 息在 2个时隙中, 分别占用频带的 2个边缘部分, 进行跳频传输, 以获得频域 分集增益。
PUCCH format 3还支持截短( shortened )格式,用于同时传输 SRS( Sounding
Reference Signal, 探测参考信号)。 在 shortened格式中, 第一个时隙中的 SF 长度为 5 , 第二个时隙中的 SF长度为 4, 第二个时隙中的最后一个 SC-FDMA 符号空置用于传输 SRS , 其结构如图 3所示。 当 UE被配置支持 ACK/NACK 与 SRS在同一上行子帧中同时传输时, 将使用 shortened PUCCH format 3同时 传输多比特 ACK/NACK和 SRS。 表 1给出对应不同 SF长度的正交扩频序列, 其中 A^CCH即表示 SF长度。 由于采用不同 OC序列进行时域扩频的数据正交, 因此在一个 PRB ( Physics Resource Block pair, 物理资源块 ) pair (对) 中可 通过配置 UE使用不同的 OC序列进行多用户复用传输, 一个 PRB对中最多可 以复用 5个用户。 表 1: PUCCH format 3的 OC序列
Figure imgf000005_0002
基站使用显示信令通知 UE采用 PUCCH format 3进行 ACK/NACK反馈所 使用的 PUCCH format 3 资源编号《;^^ , UE 将根据该值计算出其反馈 ACK/NACK信息所使用的 PRB 编号 ( n )及正交序列编号 (《。c ), 即
|_m / 2」
N - l _ Lm/ 2」
Figure imgf000005_0001
其中 , 为主载波的上行带宽 ( 以 PRB 数量来衡量 ), m = (3) PUCCH
"'PUCCH ' l y SF,0 , 为第一个时隙中的 SF长度, 为一个无线帧 内的时隙编号; noc H CH , 其中 的具体形式尚未确定。
与 LTE Rel-8***中的 PUCCH format 1/la/lb不同, PUCCH format 3中一 个 SC-FDMA符号上的每个 RE ( Resource Element, 资源单元 )都对应一个不 同的调制符号, 即无频域扩频, 不同用户数据只通过时域 OC序列进行正交区 分。 当相邻小区中同一频域资源上的不同 UE采用了相同的 OC序列时, 多用 户的传输数据间相互干扰, 特别是对小区边缘用户来说, 这种邻小区干扰尤为 严重,当干扰小区内的用户发射功率较大时,直接影响目标小区用户的 PUCCH 解调性能。
发明人在实现本发明的过程中, 发现现有技术至少存在以下缺陷: 目前在 LTE-A***中, 现有的 PUCCH format 3传输方案不能解决当不同 小区中工作在同一资源上的 UE采用相同 OC序列时的小区间干扰(inter-cell interference ) 问题。 发明内容
本发明的目的在于提供一种加扰传输方法及其装置, 用以解决当不同小区 工作在同一资源上的用户设备采用相同时域扩频序列时的小区间干扰问题, 为 此, 本发明实施例采用如下技术方案:
一种加扰传输方法, 包括以下步骤:
用户终端产生发送信息, 并对发送信息进行调制, 产生数据调制符号; 所述用户终端使用小区专属的加扰序列对所述数据调制符号进行加扰; 所述用户终端采用 DFT-S-OFDM ( Discrete Fourier Transform- Spread - Orthogonal Frequency Division Multiplexing,基于离散傅立叶变换的扩频正交频 分复用)传输结构, 通过时域扩频方式发送所述加扰后的数据调制符号。
一种用户终端, 包括:
数据生成模块, 用于产生发送信息, 并对发送信息进行调制, 产生数据调 制符号;
加扰模块, 用于使用小区专属的加扰序列对所述数据调制符号进行加扰; 发送模块,用于采用 DFT-S-OFDM传输结构,通过时域扩频方式发送所述 加扰后的数据调制符号。
一种加扰传输方法, 包括以下步骤:
基站采用 DFT-S-OFDM传输结构,通过时域解扩频方式接收用户终端发送 的数据调制符号;
基站使用小区专属的解扰序列对接收到的所述数据调制符号进行解扰。 一种基站设备, 包括:
接收模块,用于采用 DFT-S-OFDM传输结构,通过时域解扩频方式接收用 户终端发送的数据调制符号;
解扰模块, 用于使用小区专属的解扰序列对接收到的所述数据调制符号进 行解扰。
本发明的上述实施例, 通过使用小区专属的加扰序列对用户终端产生的数 据调制符号进行加扰, 从而降低了邻小区中工作在同一资源上的 UE的数据之 间的相互干扰, 提高了上行信号的检测性能。 附图说明
图 1为现有技术中 Normal CP下的 PUCCH format 3传输结构示意图; 图 2为现有技术中 Extended CP下的 PUCCH format 3传输结构示意图; 图 4A为本发明实施例一提供的采用方式 1、 2或 3加扰的示意图; 图 4B为本发明实施例一提供的采用方式 4、 5或 6加扰的示意图; 图 5A为本发明实施例二提供的采用方式 1、 2或 3加扰的示意图; 图 5B为本发明实施例二提供的采用方式 4、 5或 6加扰的示意图; 图 6为本发明实施例提供的用户终端的结构示意图;
图 7为本发明实施例提供的基站的结构示意图。 具体实施方式
如背景技术中所述, LTE-A ***中定义了 PUCCH format 3 作为一种 ACK/NACK复用传输方案。 PUCCH format 3可通过配置多个 UE使用不同的 时域 OC序列, 在同一物理资源块上复用多个 UE同时传输。 处于不同小区但 工作在相同频域资源上的 UE可能使用相同的 OC序列, 此时会引起小区间干 扰, 特别是对小区边缘用户来说, 这种邻小区干扰尤为严重, 当干扰小区内的 用户发射功率较大时, 直接影响目标小区用户的 PUCCH解调性能。 为了降低 这种邻小区间干扰, 本发明实施例给出了一种对 PUCCH format 3传输信息进 行小区专属加扰的传输方案。
本发明实施例在 LTE-A***中, 当 UE采用基于 DFT-S-OFDM的传输结 构, 通过时域扩频方式传输上行控制信息时, 可采用本发明实施例提供的小区 专属加扰操作进行加扰。 该加扰操作在时域进行, 即 DFT ( Discrete Fourier Transform,离散傅立叶变换)预编码之前、 QPSK( Quadrature Phase Shift Keying , π/4偏置四相相移键控)调制之后, 可在时域扩频之前或之后进行。
其中,基于 DFT-S-OFDM的传输结构,通过时域扩频方式传输上行控制信 息的方式包括但不限于 PUCCH format 3传输方式。
该加扰操作为小区专属的, 即, 加扰序列为小区专属加扰序列, 不同小区 的加扰序列彼此不同。 为保证加扰序列为小区专属, 该加扰序列的产生至少与 小区标识 N '相关, 即加扰序列的初始化至少需要与 N '相关。 加扰序列除可 根据小区标识 Λ^"生成以外, 还可以使用 与以下参数之一或任意组合来生 成:
nf =0,1,..., 表示***中的无线帧编号;
ns =0,1,...19, 表示一个无线帧中的时隙编号;
L«J = 0,1,...9, 表示一个无线帧中的子帧编号;
l = 0,l,』 L mb -l,表示一个时隙中的 SC-FDMA符号编号, 6为一个时 隙中的 SC-FDMA符号个数。
具体的, 加扰序列可基于伪随机序歹 'J (pseudo-random sequence)产生, 伪 随机序列可根据 N 或根据 N 与 、 ns、 \ns\. /等参数的任意组合, 通过 长度为 31的 Gold序列产生, 即:
c(n) = (x1 (n + Nc) + x2(n + Nc ))mod2
[2]
Figure imgf000008_0001
其 中 , Nc =1600 , 第 一 个 m 序 列 的 初 始 化参数为 ^(0) = 1,^(«) = 0,« = 1,2,...,30; 第二个 m序列 2(«)的初始化参数定义形式为 ^=∑1>2( -2''。 ^与加扰序列初始化的决定因素有关,即由 N 或 N 与 nf 、 ns、 /等参数的任意组合确定其初始化参数, 例如: 可通过以 下式(3) ~ (8)之一计算得到: cimt = [3]
Figure imgf000009_0001
cinit = ins /2] + 1) · (2Ν +1)·29+ ' [6] cinit = 210 · (7 · («s + 1) + / + 1) · (2Ν^1 + 1) + 2 · N [7] cinit = 210 · (7 · («s + 1) + / + 1) · (2Ν +ΐ) + 2-Ν^ +NCP [8]
^ , l, normal CP
其中, NCP = 。
[0, extended CP 加扰序列可进一步基于上述方法生成的伪随机序列变型或扩展得到, 例如 将生成的伪随机序列中的 0元素替换为 -1或 ' 2得到加扰序列; 或者, 加扰序 列可通过将上述生成的伪随机序列中的元素每 k个一组, 进行相应的 x-QAM ( Quadrature Amplitude Modulation, 正交幅度调制)调制得到, 其中 x表示进 制; 例如: 伪随机序列中的每 1个元素一组, 进行 BPSK ( Binary Phase Shift Keying ,双相移相键控)调制;或,伪随机序列中的每 2个元素一组,进行 2-QAM 调制, 又称 QPSK调制; 或者, 伪随机序列中的每 4个元素一组, 进行 4-QAM 调制,又称 16QAM调制;或者,伪随机序列中的每 6个元素一组,进行 6-QAM 调制, 又称 64QAM调制。
具体的, UE可采用以下方案, 使用小区专属加扰序列进行加扰: 方案一: 基于一个子帧中所有数据调制符号进行加扰, 即, 基于子帧中的 数据调制符号的个数生成加扰序列 (包括时域和频域上的所有数据调制符号), 然后使用该加扰序列对子帧中的数据调制符号进行加扰, 其中, 加扰序列中的 各加扰值分别对应于子帧中相应的数据调制符号。 加扰序列总长度为
K =∑N^C UCCH SF,,其中 S为一个子帧中的时隙个数, N ^表示一个 PUCCH =0
SC-FDMA符号内的子载波个数, 表示一个子帧内第 个时隙中的时域扩频 序列长度(即传输数据的 SC-FDMA符号个数)。
具体的, 在方案一的具体实现过程中可采用以下方式 1~3中的一种: 方式 1 : 基于每个上行子帧内的数据调制符号的总数产生加扰序列, 对每 个上行子帧内的数据分别进行加扰, 即: 首先, 对每个子帧产生长度为
Kj =∑ N CCH · SFi的加扰序列 Cj (n); 然后, 对子帧 内多个时隙中的数据调 =0
制符号统一进行加扰, 即 = 其中, /!二。,:!,…^^— 1 , dj iji)为 子帧 j 内多个时隙中的数据调制符号序列 (即一个子帧中传输数据的 个
i=0
SC-FDMA上的调制符号按照先时域后频域, 或者先频域后时域的顺序串联得 到的数据调制符号序列)。较优的,加扰序列 (《)的产生需至少与小区标识(又 称小区 ID, N )或小区标识和子帧编号 ( L«」 ) 的组合相关。
方式 2: 基于每个时隙内的数据调制符号的总数产生加扰序列, 对每个时 隙中的数据分别进行加扰, 即: 首先, 对每个时隙产生长度为 = N ra/ J 的加扰序列 然后, 对一个子帧中的时隙 内的数据调制符号进行加扰,
^? di (n) = di (n) - ci (n) , 其中, « = 0,1".. — 1 , = 0, J— 1表示一个子帧中的时 隙索引, 为一个子帧中的时隙 内的数据调制符号序列(一个子帧中的时 隙 i中传输数据的 S 个 SC-FDMA上的调制符号按照先时域后频域,或者先频 域后时域的顺序串联得到的数据调制符号序列)。 较优的, 加扰序列 的产 生需至少与小区标识( )或小区标识和时隙编号 ( ns ) 的组合相关。
方式 3: 基于每个传输数据的 SC-FDMA符号上的数据调制符号的总数产 生加扰序列, 对每个 SC-FDMA符号上的数据分别进行加扰, 即: 首先, 对每 个传输数据的 SC-FDMA符号产生长度为 Kt = NP CCH的加扰序列 Cl (n); 然后, 对传输数据的 SC-FDMA 符号 I 上的数据调制符号进行加扰, 即 ¾ («) = dt {n) - Cl {n) , 其中, w = 0,l,... — 1 , / = 0,7,..JV — 1表示一个时隙内 的 SC-FDMA符号编号, (《)为传输数据的 SC-FDMA符号 I上的数据调制符 号序列; 特别的, 如果 SC-FDMA符号 /为导频数据, 则不需进行上述加扰操 作。 较优的, 加扰序列 的产生需至少与小区标识 ( ) 或小区标识和 SC-FDMA符号编号 (/) 的组合相关。
方案二: 基于一个子帧中的传输数据的 SC-FDMA符号进行加扰, 即, 基 于子帧中的传输数据的 SC-FDMA符号的个数生成加扰序列, 然后使用该加扰 序列对子帧中的数据调制符号进行加扰, 其中, 加扰序列中的各加扰值分别对 应于子帧中相应的传输数据的 SC-FDMA符号, 对该 SC-FDMA符号上频域上 的 N CCH个数据调制符号使用相同的加扰值进行加扰。 加扰序列总长度为
5-1
K = YJSFi , 其中 S为一个子帧中的时隙个数, 表示一个子帧内第 个时隙 =0
中的时域扩频序列长度(即传输数据的 SC-FDMA符号个数)。
具体的, 在方案二的具体实现过程中可采用以下方式 4~6中的一种: 方式 4: 基于一个子帧中的传输数据的 SC-FDMA符号的总数产生加扰序 歹^, 对每个上行子帧内的数据分别进行加扰, 即: 首先, 对每个子帧产生长度
5-1
为 =∑^;的加 ^尤序列 ( ); 然后,对子帧 内多个时隙中的数据调制符号
=0 进行加 扰 , 即 人 m'Nc UCCH +n)=Ci(m .d人 m'N UCCH +n) , 其 中 , m = 0,..., Kj -1, n = 0 … N UCCH - 1 , dj (·)为子帧 j'内多个时隙中的数据调制 符号序列(即一个子帧中传输数据的 个 SC-FDMA上的调制符号的串联序 列)。 较优的, 加扰序列 Cj (m)的产生需至少与小区标识( N )或小区标识和 子帧编号 ( L 」 ) 的组合相关。
方式 5: 基于一个时隙中的传输数据的 SC-FDMA符号的总数产生加扰序 歹 对每个时隙中的数据分别进行加扰, 即: 首先, 对每个时隙产生长度为 =S 的加扰序列 c,.( ); 然后, 对一个子帧中的时隙 内的数据调制符号进 行加扰, ^人 m'N UCCH +12)= )^人 m'N UCCH +n), 其中, = 0" — 1表 示一个子帧中的时隙索引, = 0,..., — 1, n = X...N^c UCCH -1, 为一个子 帧中的时隙 内的数据调制符号序列(一个子帧中的时隙 i中传输数据的 个 SC-FDMA上的调制符号串联序列)。 较优的, 加扰序列 c,.(m)的产生需至少与 小区标识( )或小区标识和时隙编号 ( ns ) 的组合相关。
方式 6: 对每个传输数据的 SC-FDMA符号产生加扰序列, 对每个传输数 据的 SC-FDMA符号上的数据分别进行加扰, 即: 首先, 对每个传输数据的 SC-FDMA符号产生长度为 Kt =1的加扰序列 ct;然后,对传输数据的 SC-FDMA 符号 /上的数据调制符号进行加扰, 即¾(«) = ^^(«),其中, l = 0,l,』 L mb -l 表示一个时隙内的 SC-FDMA符号编号, n = 0 ..N UCCH -1, 为传输数 据的 SC-FDMA符号 I上的数据调制符号序列; 特别的, 如果 SC-FDMA符号 / 为导频数据, 则不需进行加扰操作。 较优的, 加扰序列 的产生需至少与小 区标识( )或小区标识和 SC-FDMA符号编号 (/) 的组合相关。
相应的, 基站侧采用与上述加扰方式对应的解扰方式对接收到的数据进行 解扰处理, 即, 基站通过 PUCCH format 3传输方案接收数据, 采用同 UE端的 方法 1~6之一产生解扰序列, 使用生成的解扰序列对接收数据进行解扰。 具体 的,基站采用 DFT-S-OFDM传输结构,通过时域解扩频方式接收用户终端发送 的数据调制符号, 该基站使用小区专属的解扰序列对接收到的数据调制符号进 行解扰。 其中, 若 UE采用上述方案一进行加扰, 则基站基于子帧中的数据调 制符号的个数生成解扰序列, 使用所述解扰序列对子帧中的数据调制符号进行 解扰, 其中, 解扰序列中的各解扰值分别对应于子帧中相应的数据调制符号; 若 UE采用上述方案二进行加扰, 则基站基于子帧中的传输数据的 SC-FDMA 符号的个数生成解扰序列, 使用所述解扰序列对子帧中的数据调制符号进行解 扰, 其中, 解扰序列中的各解扰值分别对应于子帧中相应的传输数据的 SC-FDMA符号。 具体的:
当采用方式 1时, 基站基于每个子帧中的数据调制符号总数, 对每个子帧 产生长度为 - SR的解扰序列 , 对子帧 j内的数据调制符号
Figure imgf000013_0001
进行解扰;
当采用方式 2时,基站基于一个子帧中的每个时隙中的数据调制符号总数, 对每个时隙产生长度为 =
Figure imgf000013_0002
的解扰序列 对一个子帧中的时 隙 i内的数据调制符号进行解扰;
当采用方式 3时, 基站基于一个子帧中的每个传输数据的 SC-FDMA符号 中的数据调制符号总数, 对每个传输数据的 SC-FDMA 符号产生长度为 Kl = N UCCH的解扰序列 , 对传输数据的 SC-FDMA符号 I上的数据调制 符号进行解扰。
当采用方式 4时,基站基于每个子帧中的传输数据的 SC-FDMA符号总数,
5-1
对每个子帧产生长度为 =∑SFi的解扰序列 (m) ,对子帧 j内的数据调制符
=0
号进行解扰;
当采用方式 5时, 基站基于每个时隙中的传输数据的 SC-FDMA符号的个 数, 对每个时隙产生长度为 = S 的解扰序列 c,. (m) , 对一个子帧中的时隙 i 内的数据调制符号进行解扰;
当采用方式 6 时, 基站针对每个传输数据的 SC-FDMA符号产生长度为 K, = 1的解扰序列 ,对传输数据的 SC-FDMA符号 I上的数据调制符号进行解 扰。
上述过程中,基站所生成的小区专属的解扰序列至少根据小区标识( Λ " ) 生成, 或根据小区标识以及以下参数之一或任意组合生成: 无线帧编号( ), 一个无线帧中的时隙编号( ns ), 一个无线帧中的子帧编号( L 」 ), 一个时隙 中的 SC-FDMA符号编号 ( I )。
下面结合具体两个应用实例对本发明实施例进行进一步说明。
实例一: UE采用 PUCCH format 3 normal format传输 ACK/NACK信息, 此时 S =5 , =0,1, N CCH=\2。 UE首先生成 ACK/NACK反馈信息序列, 经 RM编码、 比特级加扰、 QPSK调制和时域扩频后, 采用本发明实施例提供的 方式对调制后的符号(以下称调制符号)进行加扰, 如图 4A或图 4B所示。 其 中, UE通过长度为 31的 Gold序列产生伪随机序列, 并将伪随机序列中的元 素每 2个一组进行 QPSK调制, 得到加扰序列。 UE分别采用上述方式 1-6进 行小区专属加扰传输的过程具体为:
UE端:
( 1 ) 当 采用 方 式 1 时 : UE 对每个子 帧 产 生 长度为
K. =YN^CCH -SF. =12·5 + 12·5 = 120的加扰序列; 如果加扰序列产生的初始 化参数定义只与小区 ID(A )相关, 例如 cin =N , 则 UE对每个子帧产生的 加扰序列相同, 即 Sl(n)~S10(n)对每个子帧相同; 如果加扰序列产生的初始化 参数定义与小区 ID(A )和子帧编号 (L"s/2」)相关, 例如^
Figure imgf000014_0001
, 则 UE对每个子帧产生的加扰序列不同, 即 Sl(n)~S10(n)对每个子帧可能不同, 加扰序列产生的初始值需在每个子帧进行更新。 对于每个子帧, 根据生成的加 扰序列, UE将一个子帧中传输数据的 10个 SC-FDMA符号上的 120个调制符 号与长度为 120 的加扰序列逐点相乘进行加扰, 再经过 DFT预编码和 IFFT ( Inverse Fast Fourier Transform, 快速傅立叶逆变换)进行发送。 具体可如图 4A所示。
( 2 ) 当 采用 方式 2 时: UE 对每个时 隙产生长度为 Kt = N^CCH - SF, =12·5 = 60的加扰序列; 如果加扰序列产生的初始化参数定 义只与小区 π Λ 11)相关, 例如 cinit =Nc!!, 则 UE对每个时隙产生的加扰序列 相同, 即 Sl(n)~S5(n)与 S6(n)~S10(n)相同; 如果加扰序列产生的初始化参数定 义与小区 Π Λ 11)和时隙编号( )相关, 例如 =ns -29 + N , 则 UE对每个 时隙产生的加扰序列不同, 即 Sl(n)~S5(n)与 S6(n)~S10(n)可能不同, 加扰序列 产生的初始值需在每个时隙进行更新。 对于每个时隙, 根据生成的加扰序列, UE将一个时隙中传输数据的 5个 SC-FDMA符号上的 60个调制符号与长度为 60的加扰序列逐点相乘进行加扰, 再经过 DFT预编码和 IFFT进行发送。 具体 可如图 4A所示。
( 3 ) 当采用方式 3 时: UE 对每个 SC-FDMA 符号产生长度为
Kl 二 NP CCH =12的加扰序列; 如果加扰序列产生的初始化参数定义只与小区
ID(A )相关, 例如 ς½ϊ = Ν , 则 UE对每个 SC-FDMA符号产生的加扰序列 相同, 即 Sl(n)到 S10(n)中的每个序列都相同; 如果加扰序列产生的初始化参 数定义与小 区 ID( Λ 11 )和 SC-FDMA 符号编号 ( / ) 相关, 例如 cinit = 210 · (7 · («s + 1) + / + 1) · (2Ν +1) + 2· Ν^1 , 则 UE对每个 SC-FDMA产生 的加扰序列不同, 即 Sl(n)到 S10(n)中的每个序列可能不同, 加扰序列产生的 初始值需在每个传输数据的 SC-FDMA符号进行更新。 对于每个 SC-FDMA符 号, 根据生成的加扰序列, UE将一个传输数据的 SC-FDMA符号上的 12个调 制符号与长度为 12的加扰序列逐点相乘进行加扰,再经过 DFT预编码和 IFFT 进行发送。 具体可如图 4A所示。
5-1
( 4 )当采用方式 4时: UE对每个子帧产生长度为 Κ』 =∑^;- =5 + 5 = 10^
=0
加 4尤序列; 如果加 4尤序列产生的初始化参数定义只与小区 ID(A )相关, 例如 cinit = N , 则 UE对每个子帧产生的加扰序列相同, 即 S1~S10对每个子帧都 相同; 如果加扰序列产生的初始化参数定义与小区 ID(A )和子帧编号(L«S/2」) 相关, 例如^ t =L«s/2」'29+N?, 则 UE对每个子帧产生的加扰序列不同, 即 S1~S10对每个子帧可能不同, 加扰序列产生的初始值需在每个子帧进行更 新。 长度为 10 的加扰序列中的每个加扰值对应该子帧中的一个传输数据的
SC-FDMA符号, 每个 SC-FDMA符号上的 12调制符号乘以同一个加扰值, 再 经过 DFT预编码和 IFFT进行发送。 具体可如图 4B所示。
(5) 当采用方式 5时: UE对每个时隙产生长度为 =^ =5的加扰序 列; 如果加扰序列产生的初始化参数定义只与小区 ID(A )相关, 例如 cinit = Ν ,则 UE对每个时隙产生的加扰序列相同,即 S1~S5与 S6~S10相同; 如果加扰序列产生的初始化参数定义与小区 ID( A )和时隙编号 OS)相关,例如 cinit =ns -29 + N ,则 UE对每个时隙产生的加扰序列不同,即 S1~S5与 S6~S10 可能不同, 加扰序列产生的初始值需在每个时隙进行更新。 长度为 5的加扰序 列中的每个加扰值对应该时隙中的一个传输数据的 SC-FDMA 符号, 每个 SC-FDMA符号上的 12调制符号乘以同一个加 4尤值,再经过 DFT预编码和 IFFT 进行发送。 具体可如图 4B所示。
(6)当采用方式 6时: UE对每个 SC-FDMA符号产生长度为 =1的加 扰序列; 如果加扰序列产生的初始化参数定义只与小区 ID(A )相关, 例如 cinit = Ν , 则 UE对每个 SC-FDMA符号产生的加扰序列相同, 即 S1到 S10 中的每个值都相同; 如果加扰序列产生的初始化参数定义与小区 π Λ 11)和
SC-FDMA 符 号 编 号 ( / ) 相 关 , 例 如 cinit = 210 · (7 · («S + 1) + / + 1) · (2Ν +1) + 2· Ν^1 , 则 UE对每个 SC-FDMA产生 的加扰序列不同, 即 S1到 S10中的每个值都可能不同, 加扰序列产生的初始 值需在每个传输数据的 SC-FDMA符号进行更新。 对于每个 SC-FDMA符号, 根据生成的加扰序列, UE将传输数据的一个 SC-FDMA符号上的 12个调制符 号与同一个对应的加扰值相乘进行加扰,再经过 DFT预编码和 IFFT进行发送。 具体可如图 4B所示。
进一步,UE将加扰后的调制符号序列采用 PUCCH format 3传输方案发送。 基站端:
通过 PUCCH format 3传输方案接收数据,采用同 UE端的方法 1~6之一产 生解扰序列, 使用生成的解扰序列对接收数据进行解扰。 具体的:
( 1 ) 当 采用 方 式 1 时 : 基站对每个子帧产 生长度为
Κ. = ΥΝ^εεΗ -SF. =12·5 + 12·5 = 120的解扰序列; 如果解扰序列产生的初始 化参数定义只与小区 ID(A )相关, 例如 Cin =N , 则基站对每个子帧产生的 解扰序列相同; 如果解扰序列产生的初始化参数定义与小区 ID(A )和子帧编 号 (L"S/2」)相关, 例如^ t =L«s/2」.29+N ,则基站对每个子帧产生的解扰序 列不同, 即解扰序列产生的初始值需在每个子帧进行更新。 对于每个子帧, 根 据生成的解扰序列, 基站将一个子帧中传输数据的 10个 SC-FDMA符号上的 120个调制符号与长度为 120的解扰序列逐点运算进行解扰。
( 2 ) 当 采用 方式 2 时: 基站对每个时隙产生长度为 Kt = N^UCCH - SF, =12·5 = 60的解扰序列; 如果解扰序列产生的初始化参数定 义只与小区 π Λ 11)相关, 例如 Cinit =N , 则基站对每个时隙产生的解扰序列 相同; 如果解扰序列产生的初始化参数定义与小区 ID(A )和时隙编号 os)相 关, 例如 cinit =ns '29 +N , 则基站对每个时隙产生的解扰序列不同, 解扰序 列产生的初始值需在每个时隙进行更新。对于每个时隙,根据生成的解扰序歹l, 基站将一个时隙中传输数据的 5个 SC-FDMA符号上的 60个调制符号与长度 为 60的解扰序列逐点运算进行解扰。
( 3 ) 当采用方式 3 时: 基站对每个 SC-FDMA 符号产生长度为 Kt =NP CCH =12的解扰序列; 如果解扰序列产生的初始化参数定义只与小区 Π Λ 11)相关, 例如 c =N , 则基站对每个 SC-FDMA符号产生的解扰序列 相同; 如果解扰序列产生的初始化参数定义与小区 Π Λ 11)和 SC-FDMA符号 编号 (/)相关, 例如 =21() .(7.(«s +l) + / + i: 2N^ +l) + 2.N ", 则基站 对每个 SC-FDMA产生的解扰序列不同, 解扰序列产生的初始值需在每个传输 数据的 SC-FDMA符号进行更新。 对于每个 SC-FDMA符号, 根据生成的解扰 序列, 基站将一个传输数据的 SC-FDMA符号上的 12个调制符号与长度为 12 的解扰序列逐点运算进行解扰。
(4)当采用方式 4时: 基站对每个子帧产生长度为 =∑SFi =5 + 5 = 10
=0
的解扰序列; 如果解扰序列产生的初始化参数定义只与小区 ID(A )相关, 例 如 c^ =A^", 则基站对每个子帧产生的解扰序列相同; 如果解扰序列产生的 初始化参数定义与小区 ID( Λ 11 )和子帧编号( L /2」)相关, 例如 cinit = ns/2]-29 +N^C 1 , 则基站对每个子帧产生的解扰序列不同, 解扰序列产 生的初始值需在每个子帧进行更新。 长度为 10 的解扰序列中的每个解扰值对 应该子帧中的一个传输数据的 SC-FDMA符号, 每个 SC-FDMA符号上的 12 调制符号使用同一个解扰值。
( 5 )当采用方式 5时: 基站对每个时隙产生长度为 = SFt = 5的解扰序 列; 如果解扰序列产生的初始化参数定义只与小区 ID(A )相关, 例如 cinit =N , 则基站对每个时隙产生的解扰序列相同; 如果解扰序列产生的初 始化参数定义与小区 ID( A )和时隙编号 OS)相关, 例如 Cinit =ns .29 +Ν , 则 基站对每个时隙产生的解扰序列不同, 解扰序列产生的初始值需在每个时隙进 行更新。 长度为 5的解扰序列中的每个解扰值对应该时隙中的一个传输数据的 SC-FDMA符号, 每个 SC-FDMA符号上的 12调制符号使用同一个解扰值。
(6)当采用方式 6时: 基站对每个 SC-FDMA符号产生长度为 =1的解 扰序列; 如果解扰序列产生的初始化参数定义只与小区 ID(A )相关, 例如 cinit = ,则基站对每个 SC-FDMA符号产生的解扰序列相同;如果解扰序列 产生的初始化参数定义与小区 ID(A )和 SC-FDMA符号编号 (/)相关, 例如 cinit =2W -(7-(ns +\) + 1 + \)·(2Ν^1 +l) + 2-N^c ,则基站对每个 SC-FDMA产生 的解扰序列不同, 解扰序列产生的初始值需在每个传输数据的 SC-FDMA符号 进行更新。 对于每个 SC-FDMA符号, 根据生成的解扰序列, 基站将传输数据 的一个 SC-FDMA符号上的 12个调制符号与同一个对应的解扰值运算进行解 扰。
实施例二: UE采用 PUCCH format 3 shortened format传输 ACK/NACK信 息, 此时 = 5 , SF, = , N UCCH =12。 UE首先生成 ACK/NACK反馈信息序 歹l , 经 RM编码, 比特级加扰、 QPSK调制和时域扩频后, 对 QPSK调制符号 进行加扰, 如图 5所示。 UE通过长度为 31的 Gold序列产生伪随机序列, 并 将伪随机序列中的元素每 2个一组进行 QPSK调制, 得到加扰序列。 UE分别 采用上述方式 1-6进行小区专属加扰传输的过程具体为:
UE端:
( 1 ) 当 采用 方 式 1 时 : UE 对每个子 帧 产 生 长度为 K =YNPUCCH -SF. =12·5 + 12·4 = 108的加扰序列; 如果加扰序列产生的初始 化参数定义只与小区 ID(A )相关, 例如 cMt =N , 则 UE对每个子帧产生的 加扰序列相同, 即 Sl(n)~S9(n)对每个子帧相同; 如果加扰序列产生的初始化参 数定义与小区 ID(A )和子帧编号(L"S/2」)相关, 例如^ =L«s/2」'29+N?, 则 UE对每个子帧产生的加扰序列不同, 即 Sl(n)~S9(n)对每个子帧可能不同, 加扰序列产生的初始值需在每个子帧进行更新。 对于每个子帧, 根据生成的加 扰序列, UE将一个子帧中传输数据的 9个 SC-FDMA符号上的 108个调制符 号与长度为 108的加扰序列逐点相乘进行加扰, 再经过 DFT预编码和 IFFT进 行发送。 具体可如图 5A所示。
( 2 ) 当采用 方式 2 时: UE 对第一个时隙产生长度为 Ko =N UCCH .SF0 =12'5 = 60的加扰序列, 对第二个时隙产生长度为 K, = N^CCH - SF, =12.4 = 48的加扰序列; 如果加扰序列产生的初始化参数定 义只与小区 ID(A )相关, 例如 Cinh =N , 则 UE在每个时隙产生加扰序列的 初始化值相同, 只是截取的加扰序列长度不同, 即 Sl(n)~S4(n)与 S6(n)~S9(n) 相同; 如果加扰序列产生的初始化参数定义与小区 ID(A )和时隙编号 Os)相 关, 例如 c^ =«s .29+N , 则 UE 对每个时隙产生的加扰序列不同, 即 Sl(n)~S4(n)与 S6(n)~S9(n)可能不同,加扰序列产生的初始值需在每个时隙进行 更新。 对于每个子帧, 根据生成的加扰序列, UE将第一个时隙中传输数据的 5 个 SC-FDMA符号上的 60个调制符号与长度为 60的加扰序列逐点相乘进行加 扰, 将第二个时隙中传输数据的 4个 SC-FDMA符号上的 48个调制符号与长 度为 48的加扰序列逐点相乘进行加扰, 再经过 DFT预编码和 IFFT进行发送。 具体可如图 5A所示。
( 3 ) 当采用方式 3 时: UE 对每个 SC-FDMA 符号产生长度为
Ki = NPUCCH =12的加扰序列; 如果加扰序列产生的初始化参数定义只与小区
Π Λ 11)相关, 例如 = Ν , 则 UE对每个 SC-FDMA符号产生的加扰序列 相同, 即 Sl(n)到 S9(n)中的每个序列都相同; 如果加扰序列产生的初始化参数 定义与 小 区 ID( A )和 SC-FDMA 符号编号 ( / ) 相关, 例如 cinit = 210 · (7 · («s + 1) + / + 1) · (2Ν +1) + 2· Ν^1 , 则 UE对每个 SC-FDMA产生 的加扰序列不同, 即 Sl(n)到 S9(n)中的每个序列都可能不同, 加扰序列产生的 初始值需在每个传输数据的 SC-FDMA符号进行更新。 对于每个 SC-FDMA符 号, 根据生成的加扰序列, UE将一个传输数据的 SC-FDMA符号上的 12个调 制符号与长度为 12的加扰序列逐点相乘进行加扰,再经过 DFT预编码和 IFFT 进行发送。 具体可如图 5A所示。 ( 4 )当采用方式 4时: UE对每个子帧产生长度为 = ^ = 5 + 4 = 9的
=0
加扰序列; 如果加扰序列产生的初始化参数定义只与小区 ID(A )相关, 例如 cinit 二 Ν ,则 UE对每个子帧产生的加扰序列相同, 即 S1~S9对每个子帧都相 同; 如果加 4尤序列产生的初始化参数定义与小区 π Λ 11)和子帧编号(L«s/2」)相 关, 例如 cMt
Figure imgf000021_0001
, 则 UE对每个子帧产生的加扰序列不同, 即 S1-S9对每个子帧可能不同, 加扰序列产生的初始值需在每个子帧进行更新。 长度为 9 的加扰序列中的每个加扰值对应该子帧中的一个传输数据的 SC-FDMA符号, 每个 SC-FDMA符号上的 12调制符号乘以同一个加扰值, 再 经过 DFT预编码和 IFFT进行发送。 具体可如图 5B所示。
(5) 当采用方式 5时: UE对第一个时隙产生长度为 Q =SFQ =5的加扰 序列,对第二个时隙产生长度为 = =4的加扰序列; 如果加扰序列产生的 始化参数定义只与小区 ID( A )相关, 例如 c^ =N^, 则 UE在每个时隙产生 加扰序列的初始化值相同, 只是截取的加扰序列长度不同, 即 S1~S4与 S6~S9 相同; 如果加扰序列产生的初始化参数定义与小区 ID(A )和时隙编号 OJ相 关,例如 =ns -29 + Ν ,则 UE对每个时隙产生的加扰序列不同, 即 S1~S4 与 S6~S9可能不同, 加扰序列产生的初始值需在每个时隙进行更新。 对于每个 子帧, 长度为 5的加扰序列中的每个加扰值对应第一个时隙中的一个传输数据 的 SC-FDMA符号, 长度为 4的加扰序列中的每个加扰值对应第二个时隙中的 一个传输数据的 SC-FDMA符号,每个 SC-FDMA符号上的 12调制符号乘以同 一个加扰值, 然后再经过 DFT预编码和 IFFT进行发送。 具体可如图 5B所示。
(6) 当采用方式 6时: UE对每个 SC-FDMA符号产生长度为 =1的加 扰序列; 如果加扰序列产生的始化参数定义只与小区 ID(A )相关, 例如 cinit =Ν , 则 UE对每个 SC-FDMA符号产生的加扰序列相同, 即 S1到 S9 中的每个值都相同; 如果加扰序列产生的始化参数定义与小区 ID(A )和 SC-FDMA 符 号 编 号 ( / ) 相 关 , 例 如 cinit = 210 · (7 · («s + 1) + / + 1) · (2Ν +1) + 2· Ν^1 , 则 UE对每个 SC-FDMA产生 的加扰序列不同, 即 S1到 S9中的每个值都可能不同, 加扰序列产生的初始值 需在每个传输数据的 SC-FDMA符号进行更新。 对于每个子帧或每个子帧中的 每个时隙, 根据生成的加扰序列, UE将一个传输数据的 SC-FDMA符号上的 12个调制符号与同一个对应的加扰值相乘进行加扰, 然后再经过 DFT预编码 和 IFFT进行发送。 具体可如图 5B所示。
进一步,UE将加扰后的调制符号序列采用 PUCCH format 3传输方案发送。 基站端:
通过 PUCCH format 3传输方案接收数据,采用同 UE端的方法 1~6之一产 生解扰序列, 使用生成的解扰序列对接收数据进行解扰。 具体的:
( 1 ) 当 采用 方 式 1 时 : 基站对每个子帧产 生长度为
K.
Figure imgf000022_0001
-SF. =12·5 + 12·4 = 108的解扰序列; 如果解扰序列产生的初始 化参数定义只与小区 ID(A )相关, 例如 cin =N , 则基站对每个子帧产生的 解扰序列相同; 如果解扰序列产生的初始化参数定义与小区 π Λ 11)和子帧编 号 (L"s/2」)相关, 例如^ t =L«s/2」'29+N , 则基站对每个子帧产生的解扰序 列不同, 解扰序列产生的初始值需在每个子帧进行更新。 对于每个子帧, 根据 生成的解扰序列, 基站将一个子帧中传输数据的 9个 SC-FDMA符号上的 108 个调制符号与长度为 108的解扰序列逐点运算进行解扰。
( 2 ) 当采用 方式 2 时: 基站对第一个时隙产生长度为
K。 =N UCCH .SF0 =12-5 = 60的解扰序列, 对第二个时隙产生长度为 Kx = N^CCH - SFX =12·4 = 48的解扰序列; 如果解扰序列产生的初始化参数定 义只与小区 π Λ 11)相关, 例如 Cinit =N , 则基站在每个时隙产生解扰序列的 初始化值相同, 只是截取的解扰序列长度不同; 如果解扰序列产生的初始化参 数定义与小区 ID(A )和时隙编号 OJ相关, 例如 =ns ·29 +N , 则基站对 每个时隙产生的解扰序列不同, 解扰序列产生的初始值需在每个时隙进行更 新。 对于每个子帧, 根据生成的解扰序列, 基站将第一个时隙中传输数据的 5 个 SC-FDMA符号上的 60个调制符号与长度为 60的解扰序列逐点运算进行解 扰, 将第二个时隙中传输数据的 4个 SC-FDMA符号上的 48个调制符号与长 度为 48的解扰序列逐点运算进行解扰。
( 3 ) 当采用方式 3 时: 基站对每个 SC-FDMA 符号产生长度为 KI = NPUCCH =12的解扰序列; 如果解扰序列产生的初始化参数定义只与小区
ID(A )相关, 例如 Cinit =N , 则基站对每个 SC-FDMA符号产生的解扰序列 相同; 如果解扰序列产生的初始化参数定义与小区 Π Λ 11)和 SC-FDMA符号 编号 (/)相关, 例如 =21() .(7.(«s+l) + / + i: 2N^+l) + 2.N ", 则基站 对每个 SC-FDMA产生的解扰序列不同, 解扰序列产生的初始值需在每个传输 数据的 SC-FDMA符号进行更新。 对于每个 SC-FDMA符号, 根据生成的解扰 序列, 基站将一个传输数据的 SC-FDMA符号上的 12个调制符号与长度为 12 的解扰序列逐点运算进行解扰。
(4) 当采用方式 4时: 基站对每个子帧产生长度为 = ^ =5 + 4 = 9
=0
的解扰序列; 如果解扰序列产生的初始化参数定义只与小区 ID(A )相关, 例 如 cinit =N , 则基站对每个子帧产生的解扰序列相同; 如果解扰序列产生的 初始化参数定义与小区 πχ Λ 11 )和子帧编号( L /2」)相关, 例如 cinit =
Figure imgf000023_0001
, 则基站对每个子帧产生的解扰序列不同, 解扰序列产 生的初始值需在每个子帧进行更新。 长度为 9的解扰序列中的每个解扰值对应 该子帧中的一个传输数据的 SC-FDMA符号,每个 SC-FDMA符号上的 12调制 符号使用同一个解扰值。
(5) 当采用方式 5时: 基站对第一个时隙产生长度为 。 =SF。 =5的解扰 序列,对第二个时隙产生长度为 =4的解扰序列; 如果解扰序列产生的 始化参数定义只与小区 ID( A )相关, 例如 cinit =N , 则基站在每个时隙产生 解扰序列的初始化值相同, 只是截取的解扰序列长度不同; 如果解扰序列产生 的初始化参数定义与小 区 ID( A )和时隙编号(《s )相关, 例如 cinit =ns -29 , 则基站对每个时隙产生的解扰序列不同, 解扰序列产生的 初始值需在每个时隙进行更新。 对于每个子帧, 长度为 5的解扰序列中的每个 解扰值对应第一个时隙中的一个传输数据的 SC-FDMA符号, 长度为 4的解扰 序列中的每个解扰值对应第二个时隙中的一个传输数据的 SC-FDMA符号, 每 个 SC-FDMA符号上的 12调制符号使用同一个解扰值。
(6)当采用方式 6时: 基站对每个 SC-FDMA符号产生长度为 =1的解 扰序列; 如果解扰序列产生的始化参数定义只与小区 ID(A )相关, 例如 cinit =N ,则基站对每个 SC-FDMA符号产生的解扰序列相同;如果解扰序列 产生的始化参数定义与小区 ID(A )和 SC-FDMA符号编号 (/)相关, 例如 cinit =2W -(7-(ns +\) + 1 + \)·(2Ν^1 +l) + 2-N^c ,则基站对每个 SC-FDMA产生 的解扰序列不同, 解扰序列产生的初始值需在每个传输数据的 SC-FDMA符号 进行更新。 对于每个子帧或每个子帧中的每个时隙, 根据生成的解扰序列, 基 站将一个传输数据的 SC-FDMA符号上的 12个调制符号与同一个对应的解扰 值运算进行解扰。
需要说明的是, 上述实施例中为了筒化描述, 以 ACK/NACK传输为例, 但本发明实施例同样适用于采用 PUCCH format 3传输其他信息的过程。
需要说明的是, 上述实施例中通过伪随机序列调制生成加扰序列的描述, 扰序列的过程。
基于相同的技术构思, 本发明实施例还提供了一种用户终端和一种基站, 可应用于上述流程。 如图 6所示, 本发明实施例提供的用户终端可包括:
数据生成模块 601, 用于产生发送信息, 并对发送信息进行调制, 产生数 据调制符号;
加扰模块 602, 用于使用小区专属的加扰序列对所述数据调制符号进行加 扰;
发送模块 603, 用于采用 DFT-S-OFDM传输结构, 通过时域扩频方式发送 所述加扰后的数据调制符号。
上述用户终端中, 加扰模块 602可基于子帧中的数据调制符号的个数生成 加扰序列 (包括时域和频域上的所有数据调制符号), 使用所述加扰序列对子 帧中的数据调制符号进行加扰, 其中, 加扰序列中的各加扰值分别对应于子帧 中相应的数据调制符号。
具体的, 加扰模块 603可采用上述方式 1, 即基于每个子帧中的数据调制 符号总数, 对每个子帧产生长度为 =∑N^UCCH -SFt的加扰序列 , 对子
=0 帧 内的数据调制符号进行如下加扰处理: = 其中, S为一 个子帧中的时隙个数, N UCCH表示一个 PUCCH SC-FDMA符号内的子载波个 数, 表示一个子帧内第 个时隙中传输数据的 SC-FDMA符号个数, 为 子帧 内传输的数据调制符号序列; = 0,. -1表示一个子帧中的时隙索引; j 表示子帧号; 《 = 0,1, ...^^. -1。 进一步的, 加扰模块 603 可至少根据小区标识
( N;c l ), 或至少根据小区标识和子帧编号(L"s/2」)生成所述加扰序列
加扰模块 603还可采用上述方式 2, 即基于一个子帧中的每个时隙 i中的 数据调制符号总数, 对每个时隙产生长度为 K【 = N UCCH · SFi的加扰序列 , 对一个子帧中的时隙 内的数据调制符号进行如下加扰处理: .(«) = i .(«)-c.(«); 其中, N CCH表示一个 PUCCH SC-FDMA符号内的子载 波个数, 表示一个子帧内第 i个时隙中传输数据的 SC-FDMA符号个数, 为一个子帧中的时隙 i内传输的数据调制符号序列; = 0,. -1表示时隙 索引; 《 = 0,1,... - 1。 进一步的, 加扰模块 603可至少根据小区标识( Λ^" ), 或至少根据 d、区标识和时隙编号 Os )生成所述加扰序列 c (n)。 加扰模块 603还可采用上述方式 3, 即基于一个子帧中的每个 SC-FDMA 符号中的数据调制符号总数, 对每个传输数据的 SC-FDMA符号产生长度为 K, = N^CCH的加扰序列 , 对传输数据的 SC-FDMA符号 I上的数据调制 符号进行如下加扰处理: («) = («). («); 其中, N CCH表示一个 PUCCH SC-FDMA符号内的子载波个数, d («)为所述 SC-FDMA符号上的数据调制符 号序列; 《 = 0,1,... - 1; / = 0,7,..JV 6 -1, 表示一个时隙内的 SC-FDMA符号 编号。 进一步的, 加扰模块 603可至少根据小区标识( Λ " ), 或至少根据小区 标识和 SC-FDMA符号编号 (/ )生成所述加 4尤序列 («)。 上述用户终端中, 加扰模块 603可基于子帧中的 SC-FDMA符号的个数生 成加扰序列, 使用所述加扰序列对子帧中的数据调制符号进行加扰, 其中, 加 扰序列中的各加扰值分别对应于子帧中相应的 SC-FDMA符号。
具体的,加扰模块 603可采用上述方式 4,即基于每个子帧中的 SC-FDMA
5-1
符号总数, 对每个子帧产生长度为 =∑SFi的加扰序列 (m), 对子帧 j内的
i=0 调制符号进行如下加扰处理: Km'N UCCH +n)=c m)'d人 m'N UCCH +n); 其 中, s为一个子帧中的时隙个数, 表示一个子帧内第 个时隙中传输数据的
SC-FDMA符号个数, (·)为子帧 内的数据调制符号序列; = 0,..^- 1表示 一个子帧中的时隙索引, 表示子帧号; m = 0,...,^ - 1, n = 0,l,...N UCCH -1。 进一步的, 加扰模块 603可至少根据小区标识( N ), 或至少根据小区标识和 子帧编号(L /2」)生成所述加扰序列 c m)。 加扰模块 603还可采用上述方式 5, 即基于每个时隙中的 SC-FDMA符号 的个数, 对每个时隙产生长度为 = SF,的加扰序列 Ci (m) , 对一个子帧中的时 隙 内 的 数 据 调 制 符 号 进 行 如 下 加 扰 处 理 : ¾ (m · N CCH +n)=Ci (m) · dt (m · N UCCH + «);其中, S为一个子顿中的时隙个数, S 表示一个子帧内第 个时隙中传输数据的 SC-FDMA符号个数, (·)为一个 子帧中的时隙 i内的数据调制符号序列; = 0,...^- 1表示一个子帧中的时隙索 引, m = 0,...,Ki-l, n = QX』 UCCH -1。 进一步的, 加扰模块 603可至少根据 小区标识( ;),或至少 ^据小区标识和时隙编号 OJ生成所述加 4尤序列 c,.(m)。
加扰模块 603还可采用上述方式 6, 即针对每个传输数据的 SC-FDMA符 号产生长度为 Κ = 1的加扰序列 Cl ,对传输数据的 SC-FDMA符号 I上的数据调 制符号进行如下加扰处理: ^{jt^ Ci 'd人 n); 其中, /表示一个时隙内传输数据 的 SC-FDMA符号编号, n = 0X...N UCCH - 为传输数据的 SC-FDMA符 号 I上的数据调制符号序列。 进一步的, 加扰模块 603 可至少根据小区标识 ( ),或至少根据小区标识和 SC-FDMA符号编号( /)生成所述加扰序列 Cl
上述各用户终端中, 加扰模块 603可至少根据小区标识( Ν )生成所述 小区专属的加扰序列。 具体的, 加扰模块 603可根据小区标识以及以下参数之 一或任意组合生成所述小区专属的加扰序列:
无线帧编号 ( nf ); 一个无线帧中的时隙编号 ( ns ); 一个无线帧中的子帧编号 (L 」);
一个时隙中的 SC-FDMA符号编号 ( I )。
具体的, 加扰模块 603可通过以下方式生成所述小区专属的加扰序列: 首先生成伪随机序列:
c(n) = (x1 (n + Nc) + x2(n + Nc ))mod2
χ1(η + 3ϊ) = (x1 (n + 3) + xl («))mod2
χ2(η + 3ϊ) = (x2 (n + 3) + x2 (n + 2) + x2 (n + i) + x2 («))mod2 其 中 , Nc=1600 , 第 一 个 m 序 列 的 初 始 化参数 为 1(0) = 1,χ1(/ζ) = 0,/ι = 1,2,...,30; 第二个 m序列 2(«)的初始化参数定义形式为 cinit
Figure imgf000028_0001
^通过以下方式获得: cinit
Figure imgf000028_0002
或,
cimt =ns -29 +N^1 或,
cinit = ins
Figure imgf000028_0003
+ 1) · +1)·29 + ; 或,
cinit = 210 · (7 · («s + 1) + / + 1) · (2Ν +1) + 2· ; 或,
cinit = 210 - (7 - (ns + 1) + / + 1) · (2Ν^' + 1) + 2 · N^c 1 + NCP , 其 中 ,
Γΐ, normal CP
Ncp =\ 。
[0, extended CP
然后, 加扰序列可进一步基于上述方法生成的伪随机序列变型或扩展得 到,例如将生成的伪随机序列中的 0元素替换为 -1或^ 2得到加扰序列;或者, x-QAM调制得到; 例如: 伪随机序列中的每 1个元素一组, 进行 BPSK调制; 或, 伪随机序列中的每 2个元素一组, 进行 QPSK调制; 或者, 伪随机序列中 的每 4个元素一组, 进行 16QAM调制; 或者, 伪随机序列中的每 6个元素一 组, 进行 64QAM调制。
参见图 7, 为本发明实施例提供的基站的结构示意图, 如图所示, 该基站 可包括:
接收模块 701, 用于采用 DFT-S-OFDM传输结构, 通过时域解扩频方式接 收用户终端发送的数据调制符号;
解扰模块 702, 用于使用小区专属的解扰序列对接收到的所述数据调制符 号进行解扰。
上述基站中, 解扰模块 702可基于子帧中的数据调制符号的个数生成解扰 序列, 使用所述解扰序列对子帧中的数据调制符号进行解扰, 其中, 解扰序列 中的各解扰值分别对应于子帧中相应的数据调制符号。
具体的, 解扰模块 702可基于每个子帧中的数据调制符号总数, 对每个子 帧产生长度为 =∑N^C UCCH■SFi的解扰序列 (《) , 对子帧 j内的数据调制符
=0
号进行解扰; 或,
基于一个子帧中的每个时隙中的数据调制符号总数, 对每个时隙产生长度 为 = Λ^^α/ 的解扰序列 c, (w) ,对一个子帧中的时隙 内的数据调制符号 进行解扰; 或,
基于一个子帧中的每个传输数据的 SC-FDMA符号中的数据调制符号总 数, 对每个传输数据的 SC-FDMA 符号产生长度为 = N eeff 的解扰序列 c (η) , 对传输数据的 SC-FDMA符号 I上的数据调制符号进行解扰。 上述基站中, 解扰模块 702可基于子帧中的传输数据的 SC-FDMA符号的 个数生成解扰序列, 使用所述解扰序列对子帧中的数据调制符号进行解扰, 其 中, 解扰序列中的各解扰值分别对应于子帧中相应的传输数据的 SC-FDMA符 号。
具体的, 解扰模块 702可基于每个子帧中的传输数据的 SC-FDMA符号总
5-1
数,对每个子帧产生长度为 ^. =∑SFi的解扰序列 (m) ,对子帧 内的数据调
=0
制符号进行解扰; 或,
基于每个时隙中的传输数据的 SC-FDMA符号的个数, 对每个时隙产生长 度为 = 的解扰序列 c,. (m) , 对一个子帧中的时隙 i内的数据调制符号进行 解扰 ^ 或 ,
针对每个传输数据的 SC-FDMA符号产生长度为 = 1的解扰序列 对 传输数据的 SC-FDMA符号 /上的数据调制符号进行解扰。
上述基站中, 解扰模块 702可根据小区标识( N )生成所述小区专属的 解扰序列, 或根据小区标识以及以下参数之一或任意组合生成所述小区专属的 解扰序列:
无线帧编号 ( nf );
一个无线帧中的时隙编号 ( ns );
一个无线帧中的子帧编号 (L 」);
一个时隙中的 SC-FDMA符号编号 ( I )。
具体的, 解扰模块 702可基于伪随机序列生成所述解扰序列; 所述伪随机 序列至少根据小区标识( N ), 或根据小区标识以及无线帧编号 ( nf )、 一个 无线帧中的时隙编号 ( ns )、 一个无线帧中的子帧编号 ( L 」 )和一个时隙中 的 SC-FDMA符号编号 ( I )之一或任意组合生成。 进一步的, 解扰模块 702 在生成伪随机序列后, 可将所述伪随机序列中的特定元素替换为设定值生成解 扰序列, 或者将所述伪随机序列中的元素每 k个元素组成一组, 对每组元素进 行 QAM调制生成解扰序列, 其中, k > l。
综上所述, 本发明实施例给出了 LTE-A***中, PUCCH format 3通过引 入小区专属加扰操作, 降低邻小区相互干扰的方法, 提高了上行控制信号的检 测性能。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发明 可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件, 但很 多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本质上 或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该计算机 软件产品存储在一个存储介质中, 包括若干指令用以使得一台终端设备(可以 是手机, 个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述 的方法。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视本发明的保护范围。

Claims

权利要求
1、 一种加扰传输方法, 其特征在于, 包括以下步骤:
用户终端产生发送信息, 并对发送信息进行调制, 产生数据调制符号; 所述用户终端使用小区专属的加扰序列对所述数据调制符号进行加扰; 所述用户终端采用 DFT-S-OFDM传输结构,通过时域扩频方式发送所述加 扰后的数据调制符号。
2、 如权利要求 1 所述的方法, 其特征在于, 所述用户终端使用小区专属 的加扰序列对所述数据调制符号进行加扰, 具体为:
基于子帧中的数据调制符号的个数生成加扰序列, 使用所述加扰序列对子 帧中的数据调制符号进行加扰, 其中, 加扰序列中的各加扰值分别对应于子帧 中相应的数据调制符号。
3、 如权利要求 2所述的方法, 其特征在于, 所述基于子帧中的数据调制 符号的个数生成加扰序列, 使用所述加扰序列对子帧中的数据调制符号进行加 扰, 具体为:
基于每个子帧中的数据调制符号总数, 对每个子帧产生长度为
Kj =∑N^C UCCH■SFi的加扰序列 (《) , 对子帧 j内的数据调制符号进行如下加 =0
扰处理:
Figure imgf000032_0001
其中, S为一个子帧中的时隙个数, N ea/表示一个 PUCCH SC-FDMA 符号内的子载波个数, S 表示一个子帧内第 i个时隙中传输数据的 SC-FDMA 符号个数, 为子帧 j内传输的数据调制符号序列; = 0,..^ - 1表示一个 子帧中的时隙索引; 表示子帧号; 《 = 0,1,... . - 1。
4、 如权利要求 3所述的方法, 其特征在于, 所述加扰序列 至少根据 小区标识, 或至少 ^据小区标识和子帧编号生成。
5、 如权利要求 2所述的方法, 其特征在于, 所述基于子帧中的数据调制 符号的个数生成加扰序列, 使用所述加扰序列对子帧中的数据调制符号进行加 扰, 具体为: 基于一个子帧中的每个时隙中的数据调制符号总数, 对每个时隙产生长度 为 = ^^«/ 的加扰序列 c, (w),对一个子帧中的时隙 内的数据调制符号 进行如下加 4尤处理: di (n) = di (n) · ci (n)
其中, N CCH表示一个 PUCCH SC-FDMA符号内的子载波个数, 表示 一个子帧内第 i个时隙中传输数据的 SC-FDMA符号个数, 为一个子帧中 的时隙 i内传输的数据调制符号序列; = 0,..^ - 1表示一个子帧中的时隙索引; « = 0,H.— 1。
6、 如权利要求 5所述的方法, 其特征在于, 所述加扰序列 至少根据 小区标识, 或至少 ^^据小区标识和时隙编号生成。
7、 如权利要求 2所述的方法, 其特征在于, 所述基于子帧中的数据调制 符号的个数生成加扰序列, 使用所述加扰序列对子帧中的数据调制符号进行加 扰, 具体为: 基于一个子帧中的每个传输数据的 SC-FDMA符号中的数据调制符号总 数, 对每个传输数据的 SC-FDMA 符号产生长度为 = N CCff 的加扰序列 Cl {n) , 对传输数据的 SC-FDMA符号 l上的数据调制符号进行如下加扰处理: dl (n) = dl (n) · cl in)
其中, N eeff表示一个 PUCCH SC-FDMA符号内的子载波个数, 为 所述 SC-FDMA符号上的数据调制符号序列; n = 0,1,...^ - 1; /表示一个时隙 内传输数据的 SC-FDMA符号编号。
8、 如权利要求 7所述的方法, 其特征在于, 所述加扰序列 至少根据 小区标识, 或至少 ^据小区标识和 SC-FDMA符号编号生成。
9、 如权利要求 1 所述的方法, 其特征在于, 所述用户终端使用小区专属 的加扰序列对所述数据调制符号进行加扰, 具体为:
基于子帧中的传输数据的 SC-FDMA符号的个数生成加扰序列, 使用所述 加扰序列对子帧中的数据调制符号进行加扰, 其中, 加扰序列中的各加扰值分 别对应于子帧中相应的传输数据的 SC-FDMA符号。
10、 如权利要求 9所述的方法, 其特征在于, 所述基于子帧中的传输数据 的 SC-FDMA符号的个数生成加扰序列, 使用所述加扰序列对子帧中的数据调 制符号进行加扰, 具体为:
基于每个子帧中的传输数据的 SC-FDMA符号总数, 对每个子帧产生长度 为 = §^:的加扰序列^ ( ) , 对子帧 j 内的数据调制符号进行如下加扰处
=0 理:
dj (m · N ucch + n) = C] (m) · dj (m · N
SCH + n)
其中, S为一个子帧中的时隙个数, 表示一个子帧内第 个时隙中传输 数据的 SC-FDMA符号个数, (·)为子帧 j内的数据调制符号序列; i = 0,...S - 1 表示一个子帧 中 的时隙索引 , j 表示子帧号; Μ = 0,..., ,. - 1 , « = o,i,.C - 1。
11、 如权利要求 10所述的方法, 其特征在于, 所述加扰序列 c m)至少根 据小区标识, 或至少根据小区标识和子帧编号生成。
12、 如权利要求 9所述的方法, 其特征在于, 所述基于子帧中的传输数据 的 SC-FDMA符号的个数生成加扰序列, 使用所述加扰序列对子帧中的数据调 制符号进行加扰, 具体为:
基于每个时隙中的传输数据的 SC-FDMA符号的个数, 对每个时隙产生长 度为 = 的加扰序列 c,.(m), 对一个子帧中的时隙 i内的数据调制符号进行 如下加 4尤处理:
[m · N ucch +n)= Ci (m) · d, (m · N^CCH + n)
其中, S为一个子帧中的时隙个数, S 表示一个子帧内第 个时隙中传输 数据的 SC-FDMA符号个数, (·)为一个子帧中的时隙 i内的数据调制符号序 歹 'J; i = 0,...S-l表示一个子帧 中 的时隙索 引 , m = 0,".,Ki—l ,
« = o,i,.C - 1。
13、 如权利要求 12所述的方法, 其特征在于, 所述加扰序列 c,.(m)至少根 据小区标识, 或至少根据小区标识和时隙编号生成。
14、 如权利要求 9所述的方法, 其特征在于, 所述基于子帧中的传输数据 的 SC-FDMA符号的个数生成加扰序列, 使用所述加扰序列对子帧中的数据调 制符号进行加扰, 具体为:
针对每个传输数据的 SC-FDMA符号产生长度为 Κ = 1的加扰序列 c , 对 传输数据的 SC-FDMA符号 /上的数据调制符号进行如下加扰处理:
dt (n) =c dl (n) 其中 , /表示一个时隙内传输数据的 SC-FDMA 符号编号, n = K CH -1 , 为传输数据的 SC-FDMA符号 /上的数据调制符号序 列。
15、 如权利要求 14所述的方法, 其特征在于, 所述加扰序列 至少根据 小区标识, 或至少 ^据小区标识和 SC-FDMA符号编号生成。
16、 如权利要求 1所述的方法, 其特征在于, 所述小区专属的加扰序列至 少根据小区标识生成, 或根据小区标识以及以下参数之一或任意组合生成: 无线帧编号;
无线帧中的时隙编号;
无线帧中的子帧编号;
时隙中的 SC-FDMA符号编号。
17、 如权利要求 1-16任一项所述的方法, 其特征在于, 所述加扰序列基于 伪随机序列生成; 所述伪随机序列至少根据小区标识, 或根据小区标识以及无 线帧编号、 无线帧中的时隙编号、 无线帧中的子帧编号和时隙中的 SC-FDMA 符号编号之一或任意组合生成。
18、 如权利要求 17所述的方法, 其特征在于, 所述加扰序列基于伪随机 序列生成, 具体为:
将所述伪随机序列中的特定元素替换为设定值, 或者将所述伪随机序列中 的元素每 k个元素组成一组, 对每组元素进行 QAM调制, 其中, k > l。
19、 一种用户终端, 其特征在于, 包括:
数据生成模块, 用于产生发送信息, 并对发送信息进行调制, 产生数据调 制符号; 加扰模块, 用于使用小区专属的加扰序列对所述数据调制符号进行加扰; 发送模块,用于采用 DFT-S-OFDM传输结构,通过时域扩频方式发送所述 加扰后的数据调制符号。
20、 如权利要求 19所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 基于子帧中的数据调制符号的个数生成加扰序列, 使用所述加扰序列对子 帧中的数据调制符号进行加扰, 其中, 加扰序列中的各加扰值分别对应于子帧 中相应的数据调制符号。
21、 如权利要求 20所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 基于每个子帧中的数据调制符号总数, 对每个子帧产生长度为 Kj =∑N^C UCCH 的加扰序列 (《) , 对子帧 j内的数据调制符号进行如下加 =0
扰处理:
Figure imgf000037_0001
其中, S为一个子帧中的时隙个数, N ea/表示一个 PUCCH SC-FDMA 符号内的子载波个数, S 表示一个子帧内第 i个时隙中传输数据的 SC-FDMA 符号个数, 为子帧 内传输的数据调制符号序列; = 0,..^ - 1表示一个子 帧中的时隙索引; 表示子帧号; 《 = 0,1,.. ^. - 1。
22、 如权利要求 21 所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 至少根据小区标识, 或至少根据小区标识和子帧编号生成所述加扰序列
23、 如权利要求 20所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 基于一个子帧中的每个时隙中的数据调制符号总数, 对每个时隙产生长度 为 = ^^«/ 的加扰序列 c, (w) ,对一个子帧中的时隙 内的数据调制符号 进行如下加 4尤处理:
di (n) = di (n) · ci (n)
其中, N CCH表示一个 PUCCH SC-FDMA符号内的子载波个数, 表示 一个子帧内第 i个时隙中传输数据的 SC-FDMA符号个数, 为一个子帧中 的时隙 i内传输的数据调制符号序列; = 0,..^ - 1表示一个子帧中的时隙索引; n = 0,1,... .—1。
24、 如权利要求 23 所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 至少根据小区标识, 或至少根据小区标识和时隙编号生成所述加扰序列 c («)。
25、 如权利要求 20所述的用户终端, 其特征在于, 所述加扰模块具体用 于,基于一个子帧中的每个传输数据的 SC-FDMA符号中的数据调制符号总数, 对每个传输数据的 SC-FDMA符号产生长度为 = N UCCH的加扰序列 , 对传输数据的 SC-FDMA符号 I上的数据调制符号进行如下加扰处理:
dl (n) = dl (n) · cl in)
其中, N eeff表示一个 PUCCH SC-FDMA符号内的子载波个数, 为 所述 SC-FDMA符号上的数据调制符号序列; 《 = 0,1,... - 1 ; /表示一个时隙 内传输数据的 SC-FDMA符号编号。
26、 如权利要求 25 所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 至少根据小区标识, 或至少根据小区标识和 SC-FDMA符号编号生成所述 力口扰序列
27、 如权利要求 19所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 基于子帧中的传输数据的 SC-FDMA符号的个数生成加扰序列, 使用所述 加扰序列对子帧中的数据调制符号进行加扰, 其中, 加扰序列中的各加扰值分 别对应于子帧中相应的传输数据的 SC-FDMA符号。
28、 如权利要求 27所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 基于每个子帧中的传输数据的 SC-FDMA符号总数, 对每个子帧产生长度 为 = ^ 的加扰序列 (m), 对子帧 j 内的数据调制符号进行如下加扰处
=0 理:
dj (m · N ucch +n)= C] (m) · dj (m · N
SCH + n)
其中, S为一个子帧中的时隙个数, 表示一个子帧内第 个时隙中传输 数据的 SC-FDMA符号个数, (·)为子帧 内的数据调制符号序列; = 0,..^- 1 表示一个子帧中的时隙索引, 表示子帧号; m = 0,..., - l, « = 0,l,...N CCff -1。
29、 如权利要求 28所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 至少根据小区标识, 或至少根据小区标识和子帧编号生成所述加扰序列 Cj (m)。
30、 如权利要求 27所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 基于每个时隙中的传输数据的 SC-FDMA符号的个数, 对每个时隙产生长 度为 = 的加扰序列 c,.(m), 对一个子帧中的时隙 i内的数据调制符号进行 如下加 4尤处理:
( ATPUCCH - J ( TijPUCCH , \
ai [m · Nsc +n)=ci (m) · ai [m · Nsc +n)
其中, S为一个子帧中的时隙个数, S 表示一个子帧内第 个时隙中传输 数据的 SC-FDMA符号个数, (·)为一个子帧中的时隙 i内的数据调制符号序 歹 'J ; i = 0,...S-l 表示一个子帧 中 的 时 隙 索 引 , m = 0,..., — 1 , n = ,l,...NPUCCH -1.
31、 如权利要求 30所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 至少根据小区标识, 或至少根据小区标识和时隙编号生成所述加扰序列 c, (m)。
32、 如权利要求 27所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 针对每个传输数据的 SC-FDMA符号产生长度为 = 1的加扰序列 对 传输数据的 SC-FDMA符号 /上的数据调制符号进行如下加扰处理:
dt (n) = c dl (n)
其中, l 表示一个时隙内传输数据的 SC-FDMA 符号编号, n = K CCH - 1 , d, («)为传输数据的 SC-FDMA符号 I上的数据调制符号序 列。
33、 如权利要求 32所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 至少根据小区标识, 或至少根据小区标识和 SC-FDMA符号编号生成所述 加扰序列 。
34、 如权利要求 19所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 根据小区标识生成所述小区专属的加扰序列, 或根据小区标识以及以下参 数之一或任意组合生成所述小区专属的加扰序列:
无线帧编号;
无线帧中的时隙编号;
无线帧中的子帧编号;
时隙中的 SC-FDMA符号编号。
35、 如权利要求 19-34任一项所述的用户终端, 其特征在于, 所述加扰模 块具体用于, 基于伪随机序列生成所述加扰序列; 所述伪随机序列至少根据小 区标识, 或根据小区标识以及无线帧编号、 无线帧中的时隙编号、 无线帧中的 子帧编号和时隙中的 SC-FDMA符号编号之一或任意组合生成。
36、 如权利要求 35 所述的用户终端, 其特征在于, 所述加扰模块具体用 于, 将所述伪随机序列中的特定元素替换为设定值, 或者将所述伪随机序列中 的元素每 k个元素组成一组, 对每组元素进行 QAM调制, 其中, k > l。
37、 一种加扰传输方法, 其特征在于, 包括以下步骤: 基站采用 DFT-S-OFDM传输结构,通过时域解扩频方式接收用户终端发送 的数据调制符号; 基站使用小区专属的解扰序列对接收到的所述数据调制符号进行解扰。
38、 如权利要求 37所述的方法, 其特征在于, 基站使用小区专属的解扰 序列对接收到的所述数据调制符号进行解扰, 具体为: 基于子帧中的数据调制符号的个数生成解扰序列, 使用所述解扰序列对子 帧中的数据调制符号进行解扰, 其中, 解扰序列中的各解扰值分别对应于子帧 中相应的数据调制符号。
39、 如权利要求 38所述的方法, 其特征在于, 所述基于子帧中的数据调 制符号的个数生成解扰序列, 使用所述解扰序列对子帧中的数据调制符号进行 解扰, 具体为:
基于每个子帧中的数据调制符号总数, 对每个子帧产生长度为 Kj =∑N^C UCCH■SFi的解扰序列 (《) , 对子帧 j内的数据调制符号进行解扰; =0
或, 基于一个子帧中的每个时隙中的数据调制符号总数, 对每个时隙产生长度 为 = ^^«/ 的解扰序列 c, (w) ,对一个子帧中的时隙 内的数据调制符号 进行解扰; 或, 基于一个子帧中的每个传输数据的 SC-FDMA符号中的数据调制符号总 数, 对每个传输数据的 SC-FDMA 符号产生长度为 = N eeff 的解扰序列 Cl (η) , 对传输数据的 SC-FDMA符号 I上的数据调制符号进行解扰。
40、 如权利要求 37所述的方法, 其特征在于, 基站使用小区专属的解扰 序列对接收到的所述数据调制符号进行解扰, 具体为: 基于子帧中的传输数据的 SC-FDMA符号的个数生成解扰序列, 使用所述 解扰序列对子帧中的数据调制符号进行解扰, 其中, 解扰序列中的各解扰值分 别对应于子帧中相应的传输数据的 SC-FDMA符号。
41、 如权利要求 40所述的方法, 其特征在于, 所述基于子帧中的传输数 据的 SC-FDMA符号的个数生成解扰序列, 使用所述解扰序列对子帧中的数据 调制符号进行解扰, 具体为: 基于每个子帧中的传输数据的 SC-FDMA符号总数, 对每个子帧产生长度
5-1
为 Kj =∑SFi的解扰序列 C ( ) , 对子帧 j内的数据调制符号进行解扰; 或,
=0
基于每个时隙中的传输数据的 SC-FDMA符号的个数, 对每个时隙产生长 度为 = 的解扰序列 c,. (m) , 对一个子帧中的时隙 i内的数据调制符号进行 解扰 ^ 或 , 针对每个传输数据的 SC-FDMA符号产生长度为 = 1的解扰序列 对 传输数据的 SC-FDMA符号 /上的数据调制符号进行解扰。
42、 如权利要求 37-41任一项所述的方法, 其特征在于, 所述小区专属的 解扰序列至少根据小区标识生成, 或根据小区标识以及以下参数之一或任意组 合生成: 无线帧编号;
无线帧中的时隙编号;
无线帧中的子帧编号;
时隙中的 SC-FDMA符号编号。
43、 如权利要求 37-42任一项所述的方法, 其特征在于, 所述解扰序列基 于伪随机序列生成; 所述伪随机序列至少根据小区标识, 或根据小区标识以及 无线帧编号、无线帧中的时隙编号、无线帧中的子帧编号和时隙中的 SC-FDMA 符号编号之一或任意组合生成。
44、 如权利要求 43 所述的方法, 其特征在于, 所述解扰序列基于伪随机 序列生成, 具体为:
将所述伪随机序列中的特定元素替换为设定值, 或者将所述伪随机序列中 的元素每 k个元素组成一组, 对每组元素进行 QAM调制, 其中, k > l。
45、 一种基站设备, 其特征在于, 包括:
接收模块,用于采用 DFT-S-OFDM传输结构,通过时域解扩频方式接收用 户终端发送的数据调制符号;
解扰模块, 用于使用小区专属的解扰序列对接收到的所述数据调制符号进 行解扰。
46、 如权利要求 45所述的基站, 其特征在于, 所述解扰模块具体用于: 基于子帧中的数据调制符号的个数生成解扰序列, 使用所述解扰序列对子 帧中的数据调制符号进行解扰, 其中, 解扰序列中的各解扰值分别对应于子帧 中相应的数据调制符号。
47、 如权利要求 46所述的基站, 其特征在于, 所述解扰模块具体用于: 基于每个子帧中的数据调制符号总数, 对每个子帧产生长度为
Kj =∑N^C UCCH■SFi的解扰序列 (《) , 对子帧 j内的数据调制符号进行解扰; =0 或, 基于一个子帧中的每个时隙中的数据调制符号总数, 对每个时隙产生长度 为 = ^^«/ 的解扰序列 c, (w) ,对一个子帧中的时隙 内的数据调制符号 进行解扰; 或, 基于一个子帧中的每个传输数据的 SC-FDMA符号中的数据调制符号总 数, 对每个传输数据的 SC-FDMA 符号产生长度为 = N eeff 的解扰序列 ct (η) , 对传输数据的 SC-FDMA符号 I上的数据调制符号进行解扰。
48、 如权利要求 45所述的基站, 其特征在于, 所述解扰模块具体用于: 基于子帧中的传输数据的 SC-FDMA符号的个数生成解扰序列, 使用所述 解扰序列对子帧中的数据调制符号进行解扰, 其中, 解扰序列中的各解扰值分 别对应于子帧中相应的传输数据的 SC-FDMA符号。
49、 如权利要求 48所述的基站, 其特征在于, 所述解扰模块具体用于: 基于每个子帧中的传输数据的 SC-FDMA符号总数, 对每个子帧产生长度
5-1
为 ^ =∑SFi的解扰序列 C ( ) , 对子帧 j内的数据调制符号进行解扰; 或,
=0
基于每个时隙中的传输数据的 SC-FDMA符号的个数, 对每个时隙产生长 度为 = 的解扰序列 c,. (m) , 对一个子帧中的时隙 i内的数据调制符号进行 解扰; 或, 针对每个传输数据的 SC-FDMA符号产生长度为 = 1的解扰序列 对 传输数据的 SC-FDMA符号 /上的数据调制符号进行解扰。
50、 如权利要求 45 所述的基站, 其特征在于, 所述解扰模块具体用于, 根据小区标识生成所述小区专属的解扰序列, 或根据小区标识以及以下参数之 一或任意组合生成所述 d、区专属的解扰序列:
无线帧编号;
无线帧中的时隙编号;
无线帧中的子帧编号;
时隙中的 SC-FDMA符号编号。
51、 如权利要求 45-50任一项所述的基站, 其特征在于, 所述解扰模块具 体用于, 基于伪随机序列生成所述解扰序列; 所述伪随机序列至少根据小区标 识, 或根据小区标识以及无线帧编号、 无线帧中的时隙编号、 无线帧中的子帧 编号和时隙中的 SC-FDMA符号编号之一或任意组合生成。
52、 如权利要求 51所述的基站, 其特征在于, 所述解扰模块具体用于, 将 所述伪随机序列中的特定元素替换为设定值, 或者将所述伪随机序列中的元素 每 k个元素组成一组, 对每组元素进行 QAM调制, 其中, k > l。
PCT/CN2012/070118 2011-01-06 2012-01-06 一种加扰传输方法及其装置 WO2012092879A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137014776A KR101543456B1 (ko) 2011-01-06 2012-01-06 스크램블 전송 방법 및 그 장치
EP12732064.6A EP2701452B1 (en) 2011-01-06 2012-01-06 Scrambled transmission method and device thereof
US13/978,527 US8948143B2 (en) 2011-01-06 2012-01-06 Scrambled transmission method and device thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110001898.0 2011-01-06
CN201110001898 2011-01-06
CN201110002897.8 2011-01-07
CN201110002897.8A CN102065054B (zh) 2011-01-06 2011-01-07 一种加扰传输方法及其装置

Publications (1)

Publication Number Publication Date
WO2012092879A1 true WO2012092879A1 (zh) 2012-07-12

Family

ID=44000158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070118 WO2012092879A1 (zh) 2011-01-06 2012-01-06 一种加扰传输方法及其装置

Country Status (5)

Country Link
US (1) US8948143B2 (zh)
EP (1) EP2701452B1 (zh)
KR (1) KR101543456B1 (zh)
CN (1) CN102065054B (zh)
WO (1) WO2012092879A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294954A (zh) * 2017-11-16 2020-06-16 Oppo广东移动通信有限公司 时隙指示方法、终端设备、网络设备及计算机存储介质
CN111385074A (zh) * 2018-12-28 2020-07-07 中兴通讯股份有限公司 参考信号处理方法及装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065054B (zh) * 2011-01-06 2014-06-04 大唐移动通信设备有限公司 一种加扰传输方法及其装置
CN102957499B (zh) * 2011-08-25 2018-07-10 深圳市中兴微电子技术有限公司 一种加扰方法和装置
CN104081833A (zh) * 2012-10-24 2014-10-01 华为技术有限公司 干扰控制方法、装置和***
US9876615B2 (en) * 2012-11-13 2018-01-23 Lg Electronics Inc. Method and apparatus for transmitting and receiving data multiple times in consecutive subframes
CN106233648B (zh) * 2014-05-07 2019-05-10 华为技术有限公司 发送设备、接收设备、无线通信方法及***
US9953598B2 (en) 2014-05-29 2018-04-24 Samsung Electronics Co., Ltd. Method of controlling display driver IC with improved noise characteristics
EP3284196B1 (en) * 2015-04-14 2019-03-06 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements relating to sending information repeatedly from a sending node to a receiving node in a cell of a wireless communication network
CN106559101B (zh) * 2015-09-25 2019-12-10 电信科学技术研究院 一种频域扩频、解扩频方法及装置
US10129877B2 (en) * 2016-03-16 2018-11-13 Qualcomm Incorporated Paging for machine type communication devices
CN107426744A (zh) * 2016-05-23 2017-12-01 中兴通讯股份有限公司 小区信号的选择方法及装置
KR102201765B1 (ko) * 2016-09-30 2021-01-12 엘지전자 주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치
WO2018093951A1 (en) * 2016-11-16 2018-05-24 Intel IP Corporation COVERAGE ENHANCEMENT FOR UNLICENSED INTERNET OF THINGS (U-IoT)
CN110545159B (zh) 2017-01-24 2021-01-05 华为技术有限公司 用于无线通信***中的数据解扰方法及装置
US10506586B2 (en) 2017-03-24 2019-12-10 Qualcomm Incorporated Slot format indicator (SFI) and slot aggregation level indication in group common PDCCH and SFI conflict handling
CN109391293B (zh) * 2017-08-11 2022-01-14 华为技术有限公司 一种信号加扰、解扰方法及装置
CN109802752B (zh) 2017-11-17 2022-01-14 华为技术有限公司 信息传输的方法和通信设备
WO2019157618A1 (en) * 2018-02-13 2019-08-22 Qualcomm Incorporated Techniques and apparatuses for papr and inter-cell interference reduction for non-orthogonal multiple access
US11456813B2 (en) 2018-02-13 2022-09-27 Qualcomm Incorporated PAPR and inter-cell interference reduction
CN110808752A (zh) * 2018-08-06 2020-02-18 黎光洁 一种物联网的通信方法及***
CN110380748B (zh) * 2019-07-25 2021-10-29 东南大学 一种加扰信号生成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070081604A1 (en) * 2005-10-07 2007-04-12 Samsung Electronics Co., Ltd. Apparatus and method for reduced peak-to-average-power ratio in a wireless network
CN101272232A (zh) * 2008-05-14 2008-09-24 中兴通讯股份有限公司 物理混合重传指示信道的加扰方法
CN101296021A (zh) * 2007-04-28 2008-10-29 华为技术有限公司 多信道复用传输方法与装置
CN101330671A (zh) * 2007-06-20 2008-12-24 北京三星通信技术研究有限公司 发送广播信息的设备和方法
CN102065054A (zh) * 2011-01-06 2011-05-18 大唐移动通信设备有限公司 一种加扰传输方法及其装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366200B2 (en) * 2002-08-26 2008-04-29 Qualcomm Incorporated Beacon signaling in a wireless system
US7379417B2 (en) * 2003-02-19 2008-05-27 Wipro Limited Orthogonal frequency division multiplexing transmitter system and VLSI implementation thereof
WO2006102746A1 (en) * 2005-03-30 2006-10-05 Nortel Networks Limited Methods and systems for transmission of orthogonal frequency division multiplexed symbols
US8111731B2 (en) * 2007-04-04 2012-02-07 Texas Instruments Incorported Block scrambling for orthogonal frequency division multiple access
US8300651B1 (en) * 2008-01-30 2012-10-30 Marvell International Ltd. Channel estimation with co-channel pilots suppression
JP5338907B2 (ja) * 2009-06-15 2013-11-13 富士通株式会社 無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法
US8300587B2 (en) * 2009-08-17 2012-10-30 Nokia Corporation Initialization of reference signal scrambling
MY184042A (en) * 2010-01-18 2021-03-17 Ericsson Telefon Ab L M Radio base station and user equipment and methods therein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070081604A1 (en) * 2005-10-07 2007-04-12 Samsung Electronics Co., Ltd. Apparatus and method for reduced peak-to-average-power ratio in a wireless network
CN101296021A (zh) * 2007-04-28 2008-10-29 华为技术有限公司 多信道复用传输方法与装置
CN101330671A (zh) * 2007-06-20 2008-12-24 北京三星通信技术研究有限公司 发送广播信息的设备和方法
CN101272232A (zh) * 2008-05-14 2008-09-24 中兴通讯股份有限公司 物理混合重传指示信道的加扰方法
CN102065054A (zh) * 2011-01-06 2011-05-18 大唐移动通信设备有限公司 一种加扰传输方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Clarification of RNTI used in scrambling sequence", 3GPP TSG-RAN-WG1 MEETING #55BIS R1-090109, 16 January 2009 (2009-01-16), XP050318050 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294954A (zh) * 2017-11-16 2020-06-16 Oppo广东移动通信有限公司 时隙指示方法、终端设备、网络设备及计算机存储介质
CN111294954B (zh) * 2017-11-16 2023-06-30 Oppo广东移动通信有限公司 时隙指示方法、终端设备、网络设备及计算机存储介质
US11877266B2 (en) 2017-11-16 2024-01-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Time slot indication method, terminal device, network device and computer storage medium
CN111385074A (zh) * 2018-12-28 2020-07-07 中兴通讯股份有限公司 参考信号处理方法及装置
CN111385074B (zh) * 2018-12-28 2023-10-17 中兴通讯股份有限公司 参考信号处理方法及装置

Also Published As

Publication number Publication date
EP2701452A4 (en) 2017-08-16
CN102065054B (zh) 2014-06-04
EP2701452B1 (en) 2019-09-04
KR101543456B1 (ko) 2015-09-18
KR20130108415A (ko) 2013-10-02
US20130279485A1 (en) 2013-10-24
CN102065054A (zh) 2011-05-18
EP2701452A1 (en) 2014-02-26
US8948143B2 (en) 2015-02-03

Similar Documents

Publication Publication Date Title
WO2012092879A1 (zh) 一种加扰传输方法及其装置
US11818719B2 (en) Radio base station and user equipment and methods therein
WO2018199100A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
US8855073B2 (en) Method and apparatus for performing contention-based uplink transmission in a wireless communication system
AU2011205828B9 (en) Radio base station and user equipment and methods therein
US9154276B2 (en) Wireless communication system, mobile station apparatus, and base station apparatus using demodulation reference signal
CN110235464A (zh) 基站装置、终端装置以及其通信方法
JP2016076988A (ja) アップリンク伝送時に、多重符号語ベースの単一ユーザmimoが用いられるシステムにおけるphich割当及び参照信号生成方法
WO2010101097A1 (ja) 符号多重伝送方法、送信装置及び受信装置
EP3691379A1 (en) Terminal device and base station device
WO2018100428A1 (en) Method and device for signal processing in communication system
JP2012222723A (ja) 無線通信システム、移動局装置および基地局装置
KR20200031547A (ko) 무선 채널 상태 정보에 기초한 물리 계층 암호화 방법 및 장치
JP2011254355A (ja) 無線通信システム、移動局装置および基地局装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137014776

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13978527

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE