WO2012091376A2 - 전기자동차의 공조 소모 전력 제어장치 및 방법 - Google Patents

전기자동차의 공조 소모 전력 제어장치 및 방법 Download PDF

Info

Publication number
WO2012091376A2
WO2012091376A2 PCT/KR2011/010076 KR2011010076W WO2012091376A2 WO 2012091376 A2 WO2012091376 A2 WO 2012091376A2 KR 2011010076 W KR2011010076 W KR 2011010076W WO 2012091376 A2 WO2012091376 A2 WO 2012091376A2
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
power consumption
power
air conditioning
control
Prior art date
Application number
PCT/KR2011/010076
Other languages
English (en)
French (fr)
Other versions
WO2012091376A3 (ko
Inventor
조동호
서인수
이흥열
이준호
박미현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2012091376A2 publication Critical patent/WO2012091376A2/ko
Publication of WO2012091376A3 publication Critical patent/WO2012091376A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a thermostat for an electric vehicle, and more particularly, to continuously monitor the power consumption of units consuming power in a vehicle based on a controller area network system.
  • a controller area network system By determining the power state of the vehicle and controlling the power consumption of the air conditioning system according to the power state of the vehicle, the optimal indoor environment is realized in an electric vehicle, a pure electric vehicle or an online electric vehicle.
  • the present invention relates to an air conditioning power control device and method for an electric vehicle to which a can system is applied to secure a mileage.
  • electric vehicles are electric vehicles powered by large-capacity batteries, so they do not generate any smoke that causes environmental pollution. have.
  • HVAC air conditioning system
  • the efficient use of the air conditioning system is very important in an electric vehicle that can use only limited battery power. .
  • the vehicle has a Full Automatic Temperature Control (FATC) to keep the interior of the vehicle in a comfortable environment according to the driving conditions (rapid acceleration, driving start, vehicle speed, driving on the slope) or the climate and environment.
  • FTC Full Automatic Temperature Control
  • the thermostat is connected to an air conditioner and a heater for heating and cooling the vehicle.
  • the thermostat of the vehicle is an interior temperature sensor (Incar Sensor) for detecting the indoor air temperature of the vehicle sucked through the inlet of the sensor, an ambient temperature sensor (Ambient Sensor) for sensing the outside temperature, the interior through the windshield
  • the solar sensor which detects the amount of inflow into the solar cell is connected to the FATC controller to collect information for determining the cooling or heating demand.
  • the thermostat of the vehicle is connected to an air conditioner (air conditioner) and a heater (air heater) for the indoor air-conditioning of the vehicle, such an air conditioner and heater, such as the bet or the outside air by the switch operation and operation of the driver Control by adjusting the ventilation path or running the compressor of the air conditioner.
  • air conditioner air conditioner
  • heater air heater
  • the present invention determines the power state of the vehicle by continuously monitoring the power consumption of the units consuming power in the vehicle based on the can system, and by controlling the power consumption of the air conditioning system according to the power state of the vehicle,
  • An object of the present invention is to provide an air conditioning power control device and method for an electric vehicle to which a can system is applied to realize an optimal vehicle interior environment and secure a mileage in a driving vehicle, a pure electric vehicle, or an online electric vehicle.
  • the present invention as described above is an air conditioning power consumption control device in an electric vehicle, the motor unit for driving various motors for driving the vehicle, the air conditioning unit for performing the cooling or heating in the vehicle, and measures the internal or external temperature of the vehicle
  • the temperature sensor an energy supply unit for providing power for driving the various devices in the vehicle, and the air conditioning unit when monitoring the power consumption of the vehicle and controlling power consumption for cooling or heating the vehicle.
  • a controller which sets a condition to a condition according to the power consumption control.
  • the controller compares the total power consumption of the vehicle with the amount of power that can be supplied, and checks whether the power consumption control for the cooling or heating is necessary.
  • the power consumption control it is characterized in that the operating conditions of the air conditioning unit is set to a condition according to the power consumption control.
  • the controller may calculate a power supply margin by comparing the amount of power available to the current power consumption of the monitored vehicle, and control the power consumption of the air conditioning unit when the power supply margin is less than or equal to a preset reference value. Characterized in determining.
  • the controller may determine the power consumption control for the air conditioning unit when the duration falls below a predetermined level by examining a duration of power supplied from the energy supply unit for driving of the vehicle. It is done.
  • the controller may calculate a power supply margin by comparing the amount of power available to the current power consumption of the monitored vehicle, and when the power supply margin is less than or equal to a predetermined reference value, the power supply margin may be small. It characterized in that to control the power consumption of the air conditioning unit by controlling the number of revolutions of the compressor to perform the cooling or heating in the air conditioning step by step.
  • the control unit may determine whether the in-vehicle cooling or heating is necessary with reference to the internal or external temperature of the vehicle.
  • the energy supply unit may further include a battery for providing power to the vehicle having a large capacity battery, a supercapacitor for discharging electric energy charged when the vehicle is driven, and providing electric power when the vehicle is driven. It is characterized by including a current collector for collecting current.
  • the present invention is a method for controlling the air conditioning power consumption in an electric vehicle, the step of monitoring the power consumption state of the various power consumption devices in the vehicle at the start-up of the vehicle, the total power consumption of the vehicle through the monitoring Calculating a power supply margin by comparing with the amount of power available for supplying the vehicle, checking whether cooling or heating is required in the vehicle, and if the cooling or heating is required in the vehicle, Determining power consumption control for the cooling or heating according to a supply margin.
  • the performing of the power consumption control may include checking whether cooling or heating is required in the vehicle according to the internal or external temperature of the vehicle, and if the cooling or heating is required in the vehicle, the power supply margin. And checking whether the degree is equal to or less than a preset reference value, and controlling power consumption for the cooling or heating when the power supply margin is less than or equal to the reference value.
  • the power supply margin is inspected and the less the power supply margin is, the less the rotation speed of the compressor of the air conditioning system performing the cooling or heating is gradually reduced. Characterized in that the power control.
  • the rotation speed of the compressor may be set to a predetermined rotation speed according to the range of the power supply margin value.
  • the air conditioning power consumption control for the electric vehicle based on the can system to continuously monitor the power consumption of the power consumption units in the vehicle to determine the power state of the vehicle, according to the power state of the vehicle
  • the power consumption there is an advantage that can realize the optimal indoor environment while securing a mileage in an electric vehicle, a pure electric vehicle or an online electric vehicle.
  • FIG. 1 is a block diagram of an air conditioning power control device of an electric vehicle according to an embodiment of the present invention
  • FIG. 2 is a flow chart of the air conditioning power consumption control according to the power state of the vehicle in the electric vehicle according to an embodiment of the present invention
  • FIG. 3 is a graph illustrating a method for determining a power consumption control application according to an embodiment of the present invention
  • FIG. 5 is an exemplary view of a performance graph of a compressor rotation speed control method according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a compressor speed limit graph according to power consumption control according to an exemplary embodiment of the present invention.
  • FIG. 1 illustrates a configuration of an air conditioning system power consumption control apparatus for an electric vehicle according to an exemplary embodiment of the present invention.
  • the motor 106 controls the driving of a plurality of motors provided for driving the vehicle under the control of the vehicle control unit 100.
  • the temperature sensor 104 measures the temperature inside or outside the vehicle.
  • the energy supply unit 120 is a device for providing power for driving a vehicle and operating an air conditioning system, and includes a battery 112, a super capacitor 114, and a pick up device 110. And the like.
  • the battery 112 charges electric energy with an energy source that provides power of an on-line electric vehicle under the control of the controller 100, and various devices of the vehicle when the vehicle is turned on. It provides electric energy to drive the vehicle, and performs charging when the online electric vehicle is driven by a power supply infrastructure installed on the road, and charges the charged energy when the online electric vehicle travels where there is no power supply infrastructure. To supply.
  • the super capacitor 114 charges electric energy when the on-line electric vehicle is supplied with power from a power supply infrastructure installed on a road, and provides charged electric energy as power when the operating power of the vehicle is required.
  • the air conditioner 108 controls the operation of an air conditioner such as a heater or an air conditioner for cooling or heating the vehicle under the control of the controller 100.
  • the air conditioning unit 108 is supplied with operating power to drive a device such as a condenser (condensor), a compressor fan (compressor fan), a compressor motor (compressor motor) for the operation of the heater or acorn for cooling or heating the vehicle Will be performed.
  • a current collector (pick up deivce) 110 collects electric power when the on-line electric vehicle runs.
  • each component described above provides power-related information through a common CAN line. It can be shared with the control unit 100.
  • each device of the air conditioning system does not need to be connected to the CAN line, and the air conditioning unit 108, which is an air conditioning system controller, is connected to the CAN to share information in a common CAN line, and a subsystem (blower motor, compressor, It can exchange information and control with internal communication & analog signal with evaporator fan, bet sensor, etc.).
  • the controller 100 is connected to the motor unit 106, the battery 112, the air conditioning unit 108, and the like by CAN communication, and controls overall operation of the online electric vehicle according to the operation program of the online electric vehicle stored in the memory unit 102. Perform
  • the controller 100 monitors the power consumption of the motor unit 106, the air conditioning unit 108, and the like, which is a device that consumes power in the vehicle, according to an embodiment of the present invention.
  • the total power consumption is calculated by comparing the amount of power supply available in the vehicle with the amount of power available in the vehicle current collector 110, the battery 112, the supercapacitor 114, and the like.
  • the power supply margin is a value obtained by subtracting the total power consumption from the amount of power available from the vehicle, and is an important determination value for operating the power consumption device in the vehicle.
  • control unit 100 when the control unit 100 needs to operate an air conditioning system such as cooling or heating in a vehicle, the control unit 100 checks the power supply margin calculated as described above, and sets the air conditioning system to a predetermined optimal condition for the user to feel comfortable. It is decided whether to operate or to control the air conditioning power consumption.
  • the air conditioning unit 108 cools or cools the lower the power supply margin.
  • FIGS. 1 and 2 illustrates an operation control flow for efficiently controlling power consumption of an air conditioning system in an electric vehicle according to an exemplary embodiment of the present invention.
  • FIGS. 1 and 2 illustrate an operation control flow for efficiently controlling power consumption of an air conditioning system in an electric vehicle according to an exemplary embodiment of the present invention.
  • the controller 100 monitors the power state of the vehicle by checking the power consumed by all the devices consuming power in the vehicle when the vehicle is started (S200).
  • a controller for example, an air conditioning system controller
  • the controller 100 may evaluate the power state of the entire vehicle. It is important that the basic operation of determining the power state rather than the calculation subject be made.
  • the purpose of the power status monitoring phase is to monitor the amount of power currently used and to predict future power supply and demand based on the status of the power supply.
  • the power supply component In the case of a pure electric vehicle, the power supply component is simple by regenerative braking of the battery 112 and the driving motor. In the case of an online electric vehicle, the power supply component is a battery 112, a supercapacitor 114, and a current collector 110. This is complicated by the regenerative braking energy of the drive motor.
  • the power supply components of a vehicle have different power composition characteristics, which are capable of continuously supplying power for a certain time and power supplying elements at regular intervals.
  • the components that can be continuously powered include the battery 112 and the super capacitor 114, the battery 112 is a continuous supply of power, the super capacitor 114 is shorter than the battery 112, but continuous Can supply energy.
  • the current collector 110 supplies electric power at regular intervals, and the regenerative braking energy of the motor instantaneously supplies electric power.
  • the control unit 100 calculates the amount of power available in the vehicle by combining the information of the power supply components, and calculates the power supply margin by comparing the total amount of power consumed by the power consumption devices such as the motor unit and the air conditioning unit. Can be.
  • the EV (electric vehicle) mode the current collector 110, the regenerative braking of the motor, etc. It can be divided into OLEV (Online Electric Vehicle) mode, which supplies power from the same unstable power source.
  • OLEV Online Electric Vehicle
  • the power consumption components of the vehicle is largely the motor unit 106 for controlling the driving of the drive motor, auxiliary motor, etc., and the condenser and compressor fan (driven by the air conditioning unit 108, the air conditioning system controller) fans, compressor motors, etc., 80 to 90% of the power is used by drive motors and air conditioning systems. Therefore, when evaluating power consumption in real time, the power consumption is judged by considering a certain ratio in real time usage of the driving motor and the air conditioning system.
  • the driving motor, auxiliary motor, and various controllers in the motor unit 106 which are power consumption components, are essential elements for driving, the power consumption priority is high, and the low power consumption priority of the air conditioning system is evaluated through real-time power state evaluation. Usage is limited.
  • the power state is composed of power supply margin, supply duration, power consumption, and power supply margin, which is a difference between the supply power and the power consumption.
  • the amount of power available for supply is calculated as the maximum discharge amount of the battery 112 or the supercapacitor 114 (if the supply duration of each component is positive), and the supply duration is the battery 112 or
  • the state of charge (SOC) and the maximum discharge amount of the supercapacitor 114 may be calculated as shown in Equation 1 below.
  • the amount of power that can be supplied can be obtained by summing in real time the amount of power due to regenerative braking of the current collector 110 and the driving motor in addition to the maximum discharge amount of the battery 112 and the super capacitor 114 of the EV mode.
  • the supply duration is difficult to predict the instantaneous energy supply duration, it is calculated as the maximum discharge amount and supply duration of the battery 112 and the supercapacitor 114 in the EV mode.
  • Power consumption can be calculated as the sum of the power consumption of the major power consumption components in the vehicle, and the power supply margin, which is the difference between the power supply and the power consumption, can be calculated by real-time power monitoring.
  • the controller 100 checks whether the driving of the air conditioning system such as cooling or heating is currently performed in the interior of the vehicle with reference to the external or internal temperature of the vehicle. (S202).
  • control unit 100 may calculate a cooling or heating request of the vehicle through the temperature sensor 104 inside and outside the vehicle, and the difference between the outside temperature of the vehicle and the inside temperature, and the difference between the standard passenger comfort temperature and the inside temperature of the vehicle. Based on this, cooling or heating needs and demands can be determined.
  • the control unit 100 checks the power supply margin calculated as a result of the above monitoring to provide the air conditioning system. It is checked whether power consumption control is required (S204).
  • the application of power consumption control may be determined based on the power state of the vehicle.
  • power consumption control should be applied is as follows. First, when the amount of power available is less than the power consumption: In general, the vehicle is designed so that the amount of power available is greater than the power consumption under normal driving conditions, but temporary power supply shortage due to rapid acceleration or ramp operation or lack of battery SOC. This may be the case that the amount of power available for supply is insufficient.
  • duration of energy supply is below a certain level (this value can be set as a default, a parameter that can be modified by the user is a measure for recognizing energy shortage and determining the distance traveled). Can be.
  • control is generally performed using a control algorithm (optimal control) of the air conditioning system, and in this case, the air conditioning system is controlled with priority on passenger comfort rather than power consumption ( S210).
  • FIG. 3 illustrates a power state in which power consumption control is applied to driving an air conditioning system.
  • the air conditioning system power supply margin is low, the power consumption control is performed for the air conditioning system. It can be seen that the optimum control of the air conditioning system is performed with priority on comfort.
  • the controller 100 when it is necessary to control the power consumption in driving the air conditioning system, the controller 100 performs a power consumption control algorithm (S206).
  • the power consumption control aims to maintain optimal cooling or heating performance even in a situation where the power supply and demand in the vehicle is not good and the amount of power consumed in the air conditioning system is limited. Therefore, real-time vehicle power status and heating and cooling requirements are used as key variables in power consumption control algorithm.
  • an embodiment of the power consumption control algorithm is a compressor speed control method.
  • the main power consumption of the air conditioning system is the compressor. Therefore, optimally maintaining the amount of power consumed by the compressor determines the power consumption of the air conditioning system.
  • the cooling or heating demand is maximized at the start of cooling or heating, and decreases when the temperature inside the vehicle becomes constant due to cooling or heating being performed. Therefore, controlling the use of the compressor in accordance with cooling or heating requirements can greatly reduce power consumption.
  • Typical compressor control methods include repeating the compressor on and off at regular intervals (On / Off control), using a plurality of compressors to drive only a portion (Multiple compressor control), and changing the compressor rotation speed ( Variable speed control), Hot gas bypass, Clearance volume control, Cylinder unloading control, etc.
  • FIG. 4 is a graph illustrating the efficiency according to the compressor control method, and compares the amount of power consumed when there is a cooling demand of 50% of the maximum cooling demand. If the cooling demand is 50%, it is ideal that the power consumption is 50%, and the comparison shows that the method of changing the compressor rotation speed is the most efficient.
  • compressor speed control In the case of compressor speed control, the power consumption and cooling or heating capacity increases as the speed increases. However, in practice, the lower the compressor speed, the better the cooling or heating performance output relative to the input power. Therefore, it is a control method suitable for electric vehicles that need to perform power consumption control. Representative performance of the compressor speed control method in this regard is shown in FIG.
  • the power consumption control is a method of additionally limiting the compressor rotation speed according to the power supply margin to the optimum control for calculating the optimum compressor rotation speed according to the cooling or heating demand when it is determined that power consumption control is necessary.
  • the criterion for limiting the compressor rotation speed may be understood in more detail with reference to FIG. 6, which illustrates the compressor rotation speed limit according to the power consumption control.
  • the setting values for power supply margin and compressor RPM limit can be changed according to the vehicle's purpose of use (near and long distance), power supply pattern (battery capacity, distribution of power supply equipment) and user's requirements.
  • the controller 100 transmits the newly determined driving condition to the air conditioning unit 108 (S208) to perform cooling or heating of the vehicle. It can be operated under the driving condition determined above.
  • the power state of the vehicle is determined by continuously monitoring the power consumption of units consuming power in the vehicle based on the can system, and the power state of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

본 발명은 전기자동차용 공조 소모 전력 제어에 있어서, 캔 시스템을 기반으로 차량내 전력을 소모하는 유닛들의 전력 소모량을 지속적으로 모니터링하여 차량의 전력 상태를 판단하고, 차량의 전력 상태에 따라 공조 시스템의 소모 전력을 제어함으로서, 전기로 구동하는 자동차, 순수 전기자동차 또는 온라인 전기자동차에서 주행거리를 확보하면서도 최적의 차량 실내 환경을 구현할 수 있다.

Description

전기자동차의 공조 소모 전력 제어장치 및 방법
본 발명은 전기자동차용 자동 온도조절 장치에 관한 것으로, 보다 상세하게는 캔 시스템(controller area network system)을 기반으로 차량내 전력을 소모하는 유닛(unit)들의 전력 소모량을 지속적으로 모니터링(monitoring)하여 차량의 전력 상태를 판단하고, 차량의 전력 상태에 따라 공조 시스템의 소모 전력을 제어함으로서, 전기로 구동하는 자동차, 순수 전기자동차 또는 온라인 전기자동차(online electric vehicle)에서 최적의 차량 실내 환경을 구현하고 주행거리를 확보할 수 있도록 하는 캔 시스템이 적용되는 전기자동차용 공조 소모 전력 제어장치 및 방법에 관한 것이다.
일반적으로, 전기자동차는 화석연료를 사용하는 내연기관 자동차와는 달리, 대용량 배터리를 장착하여 전기에너지를 동력으로 사용하는 자동차로 환경오염을 일으키는 매연을 전혀 발생시키지 않아 미래형 자동차로 연구가 활발히 진행되고 있다.
그러나, 이러한 전기자동차는 내연기관 차량과 달리 배터리(battery)를 충전하는 많은 시간이 소요되며, 충전을 할 수 있는 충전소 등의 인프라(infra)가 아직 거의 갖추어져 있지 않아 배터리에 충전된 전력만을 이용하여 주행해야하는 경우가 많아 차량의 다양한 전력 소모 장치를 운영하는데 어려움이 있다.
즉, 차량에는 차량을 주행시키기 위해 모터 등의 구동에 사용되는 전력외에도 차량의 외부 온도에 따라 냉방 또는 난방을 실행하여 차량의 실내 환경을 사용자가 쾌적함을 느낄 수 있는 온도로 유지시키는 공조 시스템(HVAC)의 동작을 위한 전력이 필요하다.
이러한, 공조 시스템의 가동은 전기자동차의 주행거리를 30% 정도 감소시키 등 차량의 주요 성능을 현저하게 낮추는 요인이 되므로, 제한된 배터리 전력만을 사용할 수 있는 전기자동차에서 공조 시스템의 효율적인 사용이 매우 중요하다.
위와 같은 문제점으로 인해 현재는 냉방 또는 난방 모듈이 없는 차량을 판매하거나, 냉방 또는 난방을 주모터와 다른 연료(가솔린, 경유)를 사용하여 동작시키는 등의 전기자동차가 제안되기도 하였으나, 이는 전기자동차에서 공조시스템의 효율적인 구동을 위한 근본적인 해결책은 되지 못하고 있다.
한편, 자동차는 주행조건(급가속, 주행 시작, 차량 속도, 경사로 주행)이나, 기후 및 환경에 따라서 차량의 실내를 쾌적한 환경으로 유지시켜 주기 위한 자동 온도 조절장치(FATC: Full Automatic Temperature Control)가 구비되어 있고, 이러한 자동온도 조절장치는 차량의 냉난방을 위하여 에어컨, 히터와 연결되어 있다.
여기서, 차량의 자동 온도 조절 장치는 센서의 흡기구를 통하여 흡입된 차량의 실내 공기 온도를 감지하는 내부 온도 센서(Incar Sensor)과 외부 온도를 감지하는 외부 온도 센서(Ambient Sensor), 전면 유리를 통하여 실내로 유입되는 일사량을 검출하는 일사 센서가 FATC 제어기에 연결되어 냉방 또는 난방 요구량을 판단하기 위한 정보를 수집한다.
또한, 차량의 자동 온도 조절 장치는 차량의 실내 냉난방을 위한 에어컨(air conditioner) 및 히터(heater) 등의 공조장치와 연결되며, 이러한 에어컨 및 히터 등은 운전자의 스위치 작동 및 조작에 의해 내기 또는 외기 통풍 경로를 조절 하거나, 에어컨의 압축기를 가동함으로서 제어한다.
에어컨 및 에어컨 사이클을 역으로 이용하여 난방을 하는 히트 펌프 시스템(heat pump system)에서의 전력 사용량은 70∼80%가 압축기(compressor)의 모터(motor), 팬(fan) 등에서 소모 되며, 나머지 20%가 컨덴서(condensor) 팬, 블로워 모터 등에서 소모된다. 따라서, 공조 시스템의 소비 전력을 효과적으로 제어하기 위해서는 압축기의 사용을 제어하는 것이 중요하다.
위와 같이, 내연기관 자동차와 달리 전력량 사용이 제한적인 전기자동차에서는 전기자동차의 특성을 고려한 공조 시스템의 소모 전력 제어가 필수적이나, 아직까지는 전기자동차에서 충분한 주행거리를 확보하면서도 차량의 실내 환경을 최적의 조건으로 유지시킬 수 있는 공조 시스템의 효율적인 소모 전력 제어에 대한 개발이 많이 미흡한 실정이다.
따라서, 본 발명은 캔 시스템을 기반으로 차량내 전력을 소모하는 유닛들의 전력 소모량을 지속적으로 모니터링하여 차량의 전력 상태를 판단하고, 차량의 전력 상태에 따라 공조 시스템의 소모 전력을 제어함으로서, 전기로 구동하는 자동차, 순수 전기자동차 또는 온라인 전기자동차에서 최적의 차량 실내 환경을 구현하고 주행거리를 확보할 수 있도록 하는 캔 시스템이 적용되는 전기자동차용 공조 소모 전력 제어장치 및 방법을 제공하고자 한다.
상술한 본 발명은 전기자동차에서 공조 소모 전력 제어장치로서, 차량의 구동을 위한 각종 모터를 구동시키는 모터부와, 차량내 냉방 또는 난방을 수행하는 공조부와, 상기 차량의 내부 또는 외부 온도를 측정하는 온도센서와, 상기 차량내 각종 장치의 구동을 위한 동력을 제공하는 에너지 공급부와, 상기 차량의 전력 소모 상태를 모니터링하여 상기 차량의 냉방 또는 난방 수행에 대한 소모 전력 제어가 필요한 경우 상기 공조부의 동작 조건을 상기 소모 전력 제어에 따른 조건으로 설정하는 제어부를 포함한다.
또한, 상기 제어부는, 상기 차량내 냉방 또는 난방의 수행이 필요한 것으로 판단하는 경우, 상기 차량의 전체 소모 전력량과 공급 가능한 전력량을 비교하여 상기 냉방 또는 난방에 대한 소모 전력 제어가 필요한지를 검사하고, 상기 소모 전력 제어가 필요한 경우 상기 공조부의 동작 조건을 상기 소모 전력 제어에 따른 조건으로 설정하는 것을 특징으로 한다.
또한, 상기 제어부는, 상기 공급 가능 전력량과 상기 모니터링된 상기 차량의 현재 소모 전력량을 비교한 전력 공급 여유도를 계산하고, 상기 전력 공급 여유도가 기설정된 기준값이하인 경우 상기 공조부에 대한 소모 전력 제어를 결정하는 것을 특징으로 한다.
또한, 상기 제어부는, 상기 에너지 공급부로부터 상기 차량의 운행을 위해 공급되는 전력의 지속시간을 검사하여 상기 지속시간이 기설정된 일정 수준이하로 떨어지는 경우 상기 공조부에 대한 소모 전력 제어를 결정하는 것을 특징으로 한다.
또한, 상기 제어부는, 상기 공급 가능 전력량과 상기 모니터링된 상기 차량의 현재 소모 전력량을 비교한 전력 공급 여유도를 계산하고, 상기 전력 공급 여유도가 기설정된 기준값이하인 경우, 상기 전력 공급 여유도가 적을수록 상기 공조부에서 냉방 또는 난방을 수행하는 압축기의 회전수를 단계적으로 적게 제어하여 상기 공조부의 소모 전력 제어를 수행하는 것을 특징으로 한다.
또한, 상기 제어부는, 상기 차량의 내부 또는 외부 온도를 참조하여 상기 차량내 냉방 또는 난방의 필요여부를 판단하는 것을 특징으로 한다.
또한, 상기 에너지 공급부는, 대용량 배터리를 구비하는 상기 차량으로 동력을 제공하는 배터리와, 상기 차량의 주행 시 충전된 전기에너지를 방전시켜 동력을 제공하는 슈퍼 캐패시터와, 상기 차량의 주행 시 전기에너지를 집전하는 집전장치를 포함하는 것을 특징으로 한다.
또한, 본 발명은 전기자동차에서 공조 소모 전력을 제어하는 방법으로서, 차량의 시동온 시 상기 차량내 각종 전력 소모 장치에서의 전력 소모 상태를 모니터링하는 단계와, 상기 모니터링을 통해 상기 차량의 전체 소모 전력량을 산출하고, 상기 차량의 공급 가능한 전력량과 비교하여 전력 공급 여유도를 계산하는 단계와, 상기 차량내 냉방 또는 난방이 필요하게 되는지를 검사하는 단계와, 상기 차량내 냉방 또는 난방이 필요한 경우 상기 전력 공급 여유도에 따라 상기 냉방 또는 난방에 대한 소모 전력 제어를 결정하는 단계를 포함한다.
또한, 상기 소모 전력 제어를 수행하는 단계는, 상기 차량의 내부 또는 외부 온도에 따라 상기 차량내 냉방 또는 난방이 필요한지 여부를 검사하는 단계와, 상기 차량내 냉방 또는 난방이 필요한 경우, 상기 전력 공급 여유도가 기설정된 기준값 이하인지를 검사하는 단계와, 상기 전력 공급 여유도가 기준값 이하인 경우 상기 냉방 또는 난방에 대한 소모 전력 제어를 수행하는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 소모 전력 제어를 수행하는 단계에서, 상기 전력 공급 여유도를 검사하여 상기 전력 공급 여유도가 적을수록 상기 냉방 또는 난방을 수행하는 상기 공조 시스템의 압축기의 회전수를 단계적으로 적게 제어하여 소모 전력 제어를 수행하는 것을 특징으로 한다.
또한, 상기 압축기의 회전수는, 상기 전력 공급 여유도 값의 범위에 따라 기설정된 회전수로 정해지는 것을 특징으로 한다.
본 발명에서는 전기자동차용 공조 소모 전력 제어에 있어서, 캔 시스템을 기반으로 차량내 전력을 소모하는 유닛들의 전력 소모량을 지속적으로 모니터링하여 차량의 전력 상태를 판단하고, 차량의 전력 상태에 따라 공조 시스템의 소모 전력을 제어함으로서, 전기로 구동하는 자동차, 순수 전기자동차 또는 온라인 전기자동차에서 주행거리를 확보하면서도 최적의 차량 실내 환경을 구현할 수 있는 이점이 있다.
도 1은 본 발명의 실시 예에 따른 전기자동차의 공조 소모 전력 제어 장치의 구성도,
도 2는 본 발명의 실시 예에 따른 전기자동차에서 차량의 전력 상태에 따른 공조 소모 전력 제어 흐름도,
도 3은 본 발명의 실시 예에 따른 소모 전력 제어 적용 판단을 위한 그래프 예시도,
도 4는 본 발명의 실시 예에 따른 제어 방식에 따른 효율을 비교한 그래프 예시도,
도 5는 본 발명의 실시 예에 따른 압축기 회전수 제어방식의 성능 그래프 예시도,
도 6은 본 발명의 실시 예에 따른 소모 전력 제어에 따른 압축기 회전수 제한 그래프 예시도.
이하, 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 실시 예에 따른 전기자동차의 공조 시스템 소모 전력 제어장치의 구성을 도시한 것이다.
이하, 도 1을 참조하여, 공조 시스템에 대한 효율적인 소모 전력 제어를 수행하기 위한 전기자동차의 각 구성요소의 동작을 상세히 설명하기로 한다.
먼저, 모터부(motor)(106)는 제어부(vehicle control unit)(100)의 제어에 따라 차량의 주행을 위해 구비되는 다수의 모터의 구동을 제어한다. 온도센서(temperature sensor)(104)는 차량의 내부 또는 외부의 온도를 측정한다.
에너지 공급부(120)는 차량의 주행 및 공조 시스템의 가동을 위한 동력을 제공하는 장치로 배터리(battery)(112), 슈퍼 캐패시터(super device)(114), 집전장치(pick up device)(110) 등을 포함한다.
배터리(112)는 제어부(100)의 제어에 따라 온라인 전기자동차의 동력을 제공하는 에너지원(energy source)으로 전기에너지(electric energy)를 충전하고 있다가 차량의 시동이 온되는 경우 차량의 각종 장치의 구동을 위해 전기에너지를 제공하며, 온라인 전기자동차가 도로에 설치된 급전 인프라로부터 전력을 공급받아 주행하는 경우 충전을 수행하고, 온라인 전기자동차가 급전 인프라가 없는 곳을 주행하는 경우 충전된 에너지를 동력으로 공급한다.
슈퍼 캐패시터(super capacitor)(114)는 온라인 전기자동차가 도로에 설치된 급전 인프라로부터 전력을 공급받아 주행하는 경우 전기 에너지를 충전하고, 차량의 동작 전원 필요 시 충전된 전기에너지를 동력으로 제공한다.
공조부(108)는 제어부(100)의 제어에 따라 차량의 냉방 또는 난방을 수행하는 히터(heater) 또는 에이콘(air conditioner) 등의 공조장치의 동작을 제어한다. 이때, 공조부(108)는 동작 전원을 인가받아 히터 또는 에이콘의 동작을 위한 콘덴서(condensor), 압축기팬(compressor fan), 압축기 모터(compressor motor) 등의 장치를 구동시켜 차량에 대한 냉방 또는 난방을 수행하게 된다. 집전장치(pick up deivce)(110)는 온라인 전기자동차의 주행 시 전력을 집전한다.
한편, 차량의 전력 상태를 판단하기 위해 실시간으로 소비되는 전력과 공급되는 전력, 저장되어 있는 전력을 판단할 필요가 있으므로, 위 설명한 각 구성요소는 전력과 관련된 정보를 공통 CAN 라인(line)을 통해 제어부(100)와 공유할 수 있도록 한다. 이때, 공조 시스템의 각 장치가 CAN 라인에 연결될 필요는 없으며, 공조 시스템 제어기인 공조부(108)가 CAN에 연결되어 공통 CAN 라인에서 정보를 공유할 수 있도록 하며, 하위 시스템(블로워 모터, 압축기, 증발기 팬, 내기 센서 등)과는 내부 통신 & 아날로그 신호등으로 정보를 교환하고 제어를 할 수 있다.
제어부(100)는 모터부(106), 배터리(112), 공조부(108) 등과 CAN 통신으로 연결되며, 메모리부(102)에 저장된 온라인 전기자동차의 동작 프로그램에 따라 온라인 전기자동차의 전반적인 동작 제어를 수행한다.
또한, 제어부(100)는 본 발명의 실시 예에 따라 차량내 전력을 소모하는 장치인 모터부(106), 공조부(108) 등에서와 소모 전력을 모니터링(monitoring)하고, 전력 소모 장치에서 소모되는 전체 소모 전력이 차량내 집전장치(110), 배터리(112), 슈퍼 캐패시터(114) 등에서 제공한 가능한 공급 가능 전력량과 비교하여 차량에서 가용한 전력 공급 여유도를 계산한다. 이때, 전력 공급 여유도라 함은 차량에서 공급 가능한 전력량에서 전제 소모 전력량을 뺀 값으로, 차량에서 전력 소모 장치를 동작시키는데 중요한 판단값이 된다.
즉, 제어부(100)는 차량내 냉방 또는 난방 등의 공조 시스템의 가동이 필요하게 되는 경우, 위와 같이 산출된 전력 공급 여유도를 검사하여 공조 시스템을 사용자가 쾌적함을 느낄 수 있는 기설정된 최적 조건으로 가동시킬 것인지 또는 공조 소모 전력에 대한 제어를 수행할 것인지 여부를 결정하게 된다.
이때, 제어부(100)는 전력 공급 여유도가 기설정된 기준값 이하로 낮게 검사되어, 공조 시스템에 대한 소모 전력 제어가 필요한 것으로 판단하는 경우, 전력 공급 여유도가 낮을수록 공조부(108)에서 냉방 또는 난방을 수행하는데 구동되는 압축기의 회전수를 단계적으로 낮게 제어하여 공조부(108)에 대한 소모 전력 제어를 수행하게 된다.
도 2는 본 발명의 실시 예에 따라 전기자동차에서 효율적으로 공조 시스템의 소모 전력을 제어하기 위한 동작 제어 흐름을 도시한 것이다. 이하, 도 1 및 도 2를 참조하여 본 발명의 실시 예를 상세히 설명하기로 한다.
먼저, 캔 시스템(Controller Area network system)을 기반으로 차량의 전력 상태에 따라 냉방 장치 또는 난방 장치 등의 공조 시스템의 소모 전력을 제어하기 위해서는 우선적으로 차량의 전력 상태 및 냉난방 상태를 판단해야 한다.
이를 위해, 제어부(100)는 차량의 시동이 온(on)되는 경우 차량에서 전력을 소모하는 모든 장치에 의해서 소모되는 전력을 검사하여 차량의 전력 상태를 모니터링(monitoring) 한다(S200).
이때, 전력 상태를 판단하는 정보는 공통 CAN 라인에서 얻을 수 있기 때문에 각 구성 요소의 컨트롤러(controller)(예: 공조 시스템 제어기)가 각자 계산할 수도 있고, 제어부(100)에서 차량 전체의 전력 상태를 평가할 수 있으며, 계산 주체보다는 전력 상태를 판단하는 기본 동작이 이루어져야 한다는 것이 중요하다.
전력 상태 모니터링 단계의 목적은 현재 사용하는 전력량을 모니터링 하고 전력 공급 상태를 바탕으로 미래의 전력 수급 상황을 예상하는 것이다.
순수 전기자동차의 경우 전력 공급 구성요소는 배터리(112)와 구동 모터의 회생제동으로 간단하지만, 온라인 전기자동차의 경우 전력 공급 구성요소는 배터리(112), 슈퍼 캐패시터(114), 집전장치(110), 구동모터의 회생제동 에너지 등으로 복잡해진다.
차량의 전력 공급 구성요소는 전력 구성 특성이 각기 다른데, 일정시간 동안 지속적으로 전력을 공급할 수 있는 것과 일정 주기로 전력을 공급하는 구성요소가 있다. 지속적으로 전력을 공급할 수 있는 구성 요소로는 배터리(112)와 슈퍼 캐패시터(114)가 있으며 배터리(112)는 지속적으로 전력을 공급하고, 슈퍼 캐패시터(114)는 배터리(112)에 비하여 짧지만 지속적으로 에너지를 공급할 수 있다. 이에 반하여 집전장치(110)는 일정 주기로 전력을 공급하고, 모터의 회생제동 에너지는 순간적으로 전력을 공급한다.
이때, 제어부(100)는 전력 공급 구성요소의 정보를 조합하여 차량내 공급 가능한 전력량을 계산하고, 모터부, 공조부 등의 전력 소모 장치에서 소모되는 전체 소모 전력량을 비교하여 전력 공급 여유도를 계산할 수 있다. 이때, 차량에서 공급 가능한 전력량의 계산에 있어서는 크게 배터리(112)와 슈퍼 캐패시터(114) 등과 같은 안정적인 전원 공급원에서만 전력을 공급 받는 EV(전기자동차) 모드와 집전장치(110), 모터의 회생제동 등과 같은 불안정한 전력 공급원으로부터 전력을 공급하는 OLEV(온라인 전기자동차)모드로 나눌 수 있다.
한편, 차량의 전력 소모 구성요소로는 크게 구동 모터, 보조 모터 등의 구동을 제어하는 모터부(106)와, 공조 시스템 제어기인 공조부(108)에서 구동시키는 콘덴서(condenser), 압축기 팬(compressor fan), 압축기 모터(compressor motor) 등이 있으며, 전력의 80∼90%는 구동모터와 공조 시스템이 사용한다. 따라서 실시간으로 전력 사용량을 평가할 때는 구동모터와 공조 시스템의 실시간 사용량에 일정 비율을 고려하여 전력 사용량을 판단한다.
전력 소모 구성요소인 모터부(106)내 구동모터, 보조모터, 각종 콘트롤러 등은 주행에 필수 요소이므로 전력 소모 우선순위가 높으며, 공조 시스템 등의 전력 소모 우선순위가 낮은 것은 실시간 전력 상태 평가를 통해 사용량을 제한받는다.
전력 상태는 크게 공급 가능 전력량, 공급 지속 시간, 소비 전력량 및 공급 가능 전력량과 소모 전력량의 차이인 전력 공급 여유도로 구성된다.
EV모드의 경우 공급가능 전력량()은 배터리(112) 또는 슈퍼 캐패시터(114)의 최대 방전량으로 계산되며(단, 각 구성품의 공급지속 시간이 양수인 경우), 공급 지속 시간은 배터리(112) 또는 슈퍼 캐패시터(114)의 SOC(state of charge)와 최대 방전 량으로 아래의 [수학식 1]과 같이 계산될 수 있다.
<수학식 1>
Figure PCTKR2011010076-appb-I000001
OLEV모드의 경우 공급 가능 전력량은 EV모드의 배터리(112) 및 슈퍼 캐패시터(114)의 최대 방전량 외에도 집전장치(110) 및 구동 모터의 회생제동으로 인한 전력량을 실시간으로 합산하여 구할 수 있다. 그러나 공급 지속시간은 순간적인 에너지의 공급지속시간을 예측하기 어렵기 때문에 EV모드에서의 배터리(112)와 슈퍼 캐패시터(114)의 최대 방전량 및 공급 지속 시간으로 계산한다.
소모 전력량은 차량내의 주요 전력 소모 구성요소에서의 소모 전력량의 합으로 계산할 수 있으며, 공급 전력량과 소모 전력량의 차이인 전력 공급 여유도는 실시간 전력 모니터링으로 계산할 수 있다.
위와 같이, 차량에 대한 전력 상태 모니터링을 수행하는 상태에서 제어부(100)는 차량의 외부 또는 내부 온도를 참조하여 현재 차량의 실내에 냉방 또는 난방 등의 수행 등 공조 시스템의 구동이 필요한지 여부를 검사한다(S202).
이때, 제어부(100)는 차량 내외의 온도 센서(104)를 통해서 차량의 냉방 또는 난방 요구를 계산할 수 있는데, 차량의 외부 온도와 내부 온도의 차이, 표준 승객 쾌적 온도와 차량내 내부 온도의 차이를 바탕으로 냉방 또는 난방 요구 및 요구량을 판단할 수 있다.
위와 같은 판단에 따라 차량내 냉방 또는 난방의 수행이 필요하여 공조 시스템을 구동시켜야하는 것으로 판단되는 경,우 제어부(100)는 위와 같은 모니터링 수행 결과로 산출되는 전력 공급 여유도를 검사하여 공조 시스템에 대한 소모 전력 제어가 필요한지 여부를 검사한다(S204).
이하, 소모 전력 제어를 적용하는 판단 과정을 좀더 자세히 살펴보기로 한다.
즉, 차량 전력 상태 모니터링 단계(S200)에서 냉방 또는 난방 요구가 있다고 판단되면, 차량의 전력상태를 기준으로 소모전력 제어 적용을 판단할 수 있다.
소모전력 제어를 적용해야 하는 경우는 다음과 같다. 첫 번째로, 공급 가능 전력량이 소비 전력량보다 작은 경우 : 일반적으로 보통의 주행상황에서는 공급 가능 전력량이 소비 전력량보다 크도록 차량을 설계하나 급가속, 경사로 운행 등으로 인한 일시적인 공급 전력량 부족 또는 배터리 SOC 부족으로 인해 공급 가능 전력량이 부족하게 되는 경우가 해당될 수 있다.
두 번째로, 에너지 공급 지속 시간이 일정 수준 이하인 경우(이 값은 디폴트(defualt) 로 설정할 수 있으며, 사용자가 수정할 수도 있는 변수로 에너지 부족을 인지하고 운행 가능한 거리를 판단하는 척도이다.)가 해당될 수 있다.
그러나, 소모전력 제어를 적용하지 않아도 되는 상황에서는 일반적으로 공조시스템의 제어 알고리즘(최적제어)을 사용하여 제어를 수행하며, 이 경우는 소모 전력 보다는 승객의 쾌적성을 우선으로 공조시스템을 제어한다(S210).
도 3은 공조 시스템의 구동에 소모 전력 제어를 적용하게 되는 전력 상태를 도시한 것으로, 공조 시스템 전력공급 여유가 낮은 경우에는 공조 시스템에 대해 소모 전력 제어를 수행하며, 전력공급 여유가 높은 경우에는 승객의 쾌적성을 우선으로 공조 시스템에 대한 최적 제어를 수행하게 되는 것을 알 수 있다.
위와 같이, 공조 시스템의 구동에 있어서 소모 전력 제어가 필요하게 되는 경우 제어부(100)는 소모 전력 제어 알고리즘을 수행하게 된다(S206).
이하, 소모 전력 제어 알고리즘에 대해 좀더 상세히 설명하면, 소모 전력 제어란 차량 내의 전력 수급 상황이 좋지 못하여 공조 시스템에서 소비되는 전력량이 제한되는 상황에서도 최적의 냉방 또는 난방 성능을 유지하는 것을 목적으로 한다. 따라서 소모 전력 제어 알고리즘에 실시간 차량 전력 상태와 냉난방 요구가 주요 변수로 사용된다.
위와 같은, 소모 전력 제어 알고리즘의 실시예로 압축기 회전수 제어 방식이 있다. 앞서 설명한 것처럼 공조 시스템의 주요 전력 소비원은 압축기이다. 따라서 압축기에서 소비하는 전력량을 최적으로 유지하는 것이 공조 시스템의 전력 사용량을 좌우한다. 또한 냉방 또는 난방 요구량은 냉방 또는 난방을 시작하는 시점에서 최대가 되며, 냉방 또는 난방이 수행되어 차량 내부 온도가 일정해지면 줄어든다. 따라서 냉방 또는 난방 요구량에 맞추어 압축기의 사용을 제어하면 소비전력을 크게 줄일 수 있다.
대표적인 압축기 제어 방식으로는 압축기를 일정 주기로 켜고 끄는 것을 반복하는 방식(On/ Off control), 다수의 압축기를 사용하여 필요에 따라 일부만 구동시키는 방식(Multiple compressor control), 압축기 회전수를 변화시키는 방식(Variable speed control), Hot gas bypass, Clearance volume control, Cylinder unloading control, 등이 있다.
도 4는 압축기 제어방식에 따른 효율을 도시한 그래프로, 최대 냉방 요구량 대비 50%의 냉방 요구가 있을 때 소비되는 전력량을 비교하여 도시한 것이다. 50%의 냉방 요구량이라면 전력 사용량이 50%가 되는 것은 이상적인 경우이고, 비교결과 압축기 회전수를 변화시키는 방식이 가장 효율적인 것을 알 수 있다.
압축기 회전수 제어 방식(Variable speed control)의 경우 회전수 증가에 따라 소모전력과 냉방 또는 난방 능력이 증가한다. 그러나 실제적으로 입력 전력 대비 출력되는 냉방 또는 난방 성능은 압축기 회전수가 낮을수록 좋다. 따라서 소모전력 제어를 수행해야 하는 전기자동차에 적합한 제어 방식이다. 이와 관련된 압축기 회전수 제어 방식의 대표적인 성능은 도 5에서 보여지는 바와 같다.
따라서, 소모 전력 제어는 소모 전력 제어가 필요하다는 판단이 있을 때 냉방 또는 난방 요구에 따른 최적의 압축기 회전수를 계산하는 최적제어에 전력 공급 여유에 따라 압축기 회전수를 추가적으로 제한하는 방식이다. 압축기 회전수 제한에 대한 기준은 소모 전력 제어에 따른 압축기 회전수 제한을 도시된 도 6을 참조하여 좀 더 자세하게 이해 할 수 있다.
전력 공급 여유 및 압축기 RPM 제한에 대한 설정값은 차량의 사용 목적(근거리용, 장거리용), 전력 공급 패턴(배터리 용량, 급전 설비의 분포현황), 사용자의 요구에 따라 변화할 수 있다.
위와 같이, 소모 전력 제어 알고리즘을 수행을 통해 공조 시스템의 구동 조건이 새로이 결정되는 경우 제어부(100)는 공조부(108)로 새로이 결정된 구동조건을 전달하여(S208) 차량의 냉방 또는 난방의 수행이 위 결정된 구동조건으로 동작할 수 있도록 한다.
상기한 바와 같이, 본 발명은 전기자동차용 공조 소모 전력 제어에 있어서, 캔 시스템을 기반으로 차량내 전력을 소모하는 유닛들의 전력 소모량을 지속적으로 모니터링하여 차량의 전력 상태를 판단하고, 차량의 전력 상태에 따라 공조 시스템의 소모 전력을 제어함으로서, 전기로 구동하는 자동차, 순수 전기자동차 또는 온라인 전기자동차에서 주행거리를 확보하면서도 최적의 차량 실내 환경을 구현할 수 있다.
한편 상술한 본 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시될 수 있다. 따라서 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위에 의해 정하여져야 한다.

Claims (11)

  1. 전기자동차에서 공조 소모 전력 제어장치로서,
    차량의 구동을 위한 각종 모터를 구동시키는 모터부와,
    차량내 냉방 또는 난방을 수행하는 공조부와,
    상기 차량의 내부 또는 외부 온도를 측정하는 온도센서와,
    상기 차량내 각종 장치의 구동을 위한 동력을 제공하는 에너지 공급부와,
    상기 차량의 전력 소모 상태를 모니터링하여 상기 차량의 냉방 또는 난방 수행에 대한 소모 전력 제어가 필요한 경우 상기 공조부의 동작 조건을 상기 소모 전력 제어에 따른 조건으로 설정하는 제어부
    를 포함하는 공조 소모 전력 제어장치.
  2. 제 1 항에 있어서,
    상기 제어부는,
    상기 차량내 냉방 또는 난방의 수행이 필요한 것으로 판단하는 경우, 상기 차량의 전체 소모 전력량과 공급 가능한 전력량을 비교하여 상기 냉방 또는 난방에 대한 소모 전력 제어가 필요한지를 검사하고, 상기 소모 전력 제어가 필요한 경우 상기 공조부의 동작 조건을 상기 소모 전력 제어에 따른 조건으로 설정하는 것을 특징으로 하는 공조 소모 전력 제어장치.
  3. 제 2 항에 있어서,
    상기 제어부는,
    상기 공급 가능 전력량과 상기 모니터링된 상기 차량의 현재 소모 전력량을 비교한 전력 공급 여유도를 계산하고, 상기 전력 공급 여유도가 기설정된 기준값이하인 경우 상기 공조부에 대한 소모 전력 제어를 결정하는 것을 특징으로 하는 공조 소모 전력 제어장치.
  4. 제 2 항에 있어서,
    상기 제어부는,
    상기 에너지 공급부로부터 상기 차량의 운행을 위해 공급되는 전력의 지속시간을 검사하여 상기 지속시간이 기설정된 일정 수준이하로 떨어지는 경우 상기 공조부에 대한 소모 전력 제어를 결정하는 것을 특징으로 하는 공조 소모 전력 제어장치.
  5. 제 2 항에 있어서,
    상기 제어부는,
    상기 공급 가능 전력량과 상기 모니터링된 상기 차량의 현재 소모 전력량을 비교한 전력 공급 여유도를 계산하고, 상기 전력 공급 여유도가 기설정된 기준값이하인 경우, 상기 전력 공급 여유도가 적을수록 상기 공조부에서 냉방 또는 난방을 수행하는 압축기의 회전수를 단계적으로 적게 제어하여 상기 공조부의 소모 전력 제어를 수행하는 것을 특징으로 하는 공조 소모 전력 제어장치.
  6. 제 1 항에 있어서,
    상기 제어부는,
    상기 차량의 내부 또는 외부 온도를 참조하여 상기 차량내 냉방 또는 난방의 필요여부를 판단하는 것을 특징으로 하는 공조 소모 전력 제어장치.
  7. 제 1 항에 있어서,
    상기 에너지 공급부는,
    대용량 배터리를 구비하는 상기 차량으로 동력을 제공하는 배터리와,
    상기 차량의 주행 시 충전된 전기에너지를 방전시켜 동력을 제공하는 슈퍼 캐패시터와,
    상기 차량의 주행 시 전기에너지를 집전하는 집전장치
    를 포함하는 것을 특징으로 하는 공조 소모 전력 제어장치.
  8. 전기자동차에서 공조 소모 전력을 제어하는 방법으로서,
    차량의 시동온 시 상기 차량내 각종 전력 소모 장치에서의 전력 소모 상태를 모니터링하는 단계와,
    상기 모니터링을 통해 상기 차량의 전체 소모 전력량을 산출하고, 상기 차량의 공급 가능한 전력량과 비교하여 전력 공급 여유도를 계산하는 단계와,
    상기 차량내 냉방 또는 난방이 필요하게 되는지를 검사하는 단계와,
    상기 차량내 냉방 또는 난방이 필요한 경우 상기 전력 공급 여유도에 따라 상기 냉방 또는 난방에 대한 소모 전력 제어를 결정하는 단계
    를 포함하는 공조 소모 전력 제어방법.
  9. 제 8 항에 있어서,
    상기 소모 전력 제어를 수행하는 단계는,
    상기 차량의 내부 또는 외부 온도에 따라 상기 차량내 냉방 또는 난방이 필요한지 여부를 검사하는 단계와,
    상기 차량내 냉방 또는 난방이 필요한 경우, 상기 전력 공급 여유도가 기설정된 기준값 이하인지를 검사하는 단계와,
    상기 전력 공급 여유도가 기준값 이하인 경우 상기 냉방 또는 난방에 대한 소모 전력 제어를 수행하는 단계
    를 포함하는 것을 특징으로 하는 공조 소모 전력 제어방법.
  10. 제 9 항에 있어서,
    상기 소모 전력 제어를 수행하는 단계에서,
    상기 전력 공급 여유도를 검사하여 상기 전력 공급 여유도가 적을수록 상기 냉방 또는 난방을 수행하는 상기 공조 시스템의 압축기의 회전수를 단계적으로 적게 제어하여 소모 전력 제어를 수행하는 것을 특징으로 하는 공조 소모 전력 제어방법.
  11. 제 10 항에 있어서,
    상기 압축기의 회전수는,
    상기 전력 공급 여유도 값의 범위에 따라 기설정된 회전수로 정해지는 것을 특징으로 하는 공조 소모 전력 제어방법.
PCT/KR2011/010076 2010-12-27 2011-12-26 전기자동차의 공조 소모 전력 제어장치 및 방법 WO2012091376A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100135731A KR20120073842A (ko) 2010-12-27 2010-12-27 전기자동차의 공조 소모 전력 제어장치 및 방법
KR10-2010-0135731 2010-12-27

Publications (2)

Publication Number Publication Date
WO2012091376A2 true WO2012091376A2 (ko) 2012-07-05
WO2012091376A3 WO2012091376A3 (ko) 2012-09-13

Family

ID=46383661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010076 WO2012091376A2 (ko) 2010-12-27 2011-12-26 전기자동차의 공조 소모 전력 제어장치 및 방법

Country Status (2)

Country Link
KR (1) KR20120073842A (ko)
WO (1) WO2012091376A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138067A (zh) * 2019-06-03 2019-08-16 孙亦博 一种供电电源***

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101498524B1 (ko) * 2013-11-12 2015-03-04 한국철도기술연구원 전기철도차량의 회생제동 전력을 이용한 주공기 압축기 동작 제어 시스템 및 그 방법
KR101509745B1 (ko) * 2013-12-16 2015-04-07 현대자동차 주식회사 공조장치 소비전력 산출방법
KR101551028B1 (ko) 2013-12-26 2015-09-07 현대자동차주식회사 에너지 절약형 자동 공조 제어시스템 및 방법
KR20190048224A (ko) 2017-10-31 2019-05-09 쌍용자동차 주식회사 전기 자동차의 공조 제어장치 및 그 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205302A (ja) * 1995-01-30 1996-08-09 Hitachi Ltd 電気自動車用エアコン
JPH09315139A (ja) * 1996-05-31 1997-12-09 Hitachi Ltd 電気自動車用エアコン
KR20090058190A (ko) * 2007-12-04 2009-06-09 주식회사 두원공조 전기자동차 또는 연료전지차용 압축기 제어장치 및 방법
JP2010187471A (ja) * 2009-02-12 2010-08-26 Taihei Seisakusho:Kk 非接触受電装置および無人搬送車

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205302A (ja) * 1995-01-30 1996-08-09 Hitachi Ltd 電気自動車用エアコン
JPH09315139A (ja) * 1996-05-31 1997-12-09 Hitachi Ltd 電気自動車用エアコン
KR20090058190A (ko) * 2007-12-04 2009-06-09 주식회사 두원공조 전기자동차 또는 연료전지차용 압축기 제어장치 및 방법
JP2010187471A (ja) * 2009-02-12 2010-08-26 Taihei Seisakusho:Kk 非接触受電装置および無人搬送車

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138067A (zh) * 2019-06-03 2019-08-16 孙亦博 一种供电电源***

Also Published As

Publication number Publication date
WO2012091376A3 (ko) 2012-09-13
KR20120073842A (ko) 2012-07-05

Similar Documents

Publication Publication Date Title
CN108417928B (zh) 在快速充电期间用于在冷却电池的同时加热车舱的方法
CN108162712B (zh) 空调控制方法、装置及空调
WO2012091376A2 (ko) 전기자동차의 공조 소모 전력 제어장치 및 방법
US9252621B2 (en) Battery temperature adjusting system and battery charging system
CN101667665B (zh) 能够满足快速更换分箱充电模式的电池管理***
WO2012091377A2 (ko) 온라인 전기자동차의 전주기 공조제어 장치 및 방법
CN104494392B (zh) 太阳能车载空调***
CN102887046B (zh) 电动车辆用空调***
US20130020046A1 (en) Automotive air conditioning system
CN103171450A (zh) 用于对车辆的高压电池进行热管理的方法和***
KR101776309B1 (ko) 전기자동차의 충전시 온도 관리 방법
EP2956330B1 (en) Intermittent operation of battery temperature control system
CN111137105A (zh) 一种新能源汽车整车一体式热管理控制***及其控制方法
JP2015104143A (ja) 車載機器制御装置
JPH09289042A (ja) 電気自動車用電池の冷却装置
CN113147321B (zh) 一种车载空调与可再生制动协调控制方法
CN105846013A (zh) 动力电池充电和加热控制***以及控制方法
CN204717938U (zh) 一种车载太阳能恒温恒湿环境调节***
CN103358886A (zh) 冷却风扇控制装置
CN205066056U (zh) 一种车用顶置式太阳能直流空调***
WO2012086911A1 (ko) 전기자동차의 공조제어 방법
CN217170417U (zh) 一种汽车的空调***和一种汽车
KR101587082B1 (ko) 차량용 배터리 유닛 냉각장치
CN203553304U (zh) 一种电池热管理控制***
CN206983665U (zh) 一种工程车用双动力空调控制***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852374

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852374

Country of ref document: EP

Kind code of ref document: A2