WO2012090721A1 - 周波数可変回路及びマルチバンドアンテナ装置 - Google Patents

周波数可変回路及びマルチバンドアンテナ装置 Download PDF

Info

Publication number
WO2012090721A1
WO2012090721A1 PCT/JP2011/079138 JP2011079138W WO2012090721A1 WO 2012090721 A1 WO2012090721 A1 WO 2012090721A1 JP 2011079138 W JP2011079138 W JP 2011079138W WO 2012090721 A1 WO2012090721 A1 WO 2012090721A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
frequency
antenna device
radiating element
multiband antenna
Prior art date
Application number
PCT/JP2011/079138
Other languages
English (en)
French (fr)
Inventor
川端一也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012550825A priority Critical patent/JPWO2012090721A1/ja
Publication of WO2012090721A1 publication Critical patent/WO2012090721A1/ja
Priority to US13/928,139 priority patent/US20130285875A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to a frequency variable circuit and a multiband antenna device used for a multiband antenna that performs communication in a plurality of frequency bands.
  • FIG. 1 is a diagram illustrating a configuration of an antenna device described in Patent Document 1.
  • the frequency variable circuit 4 is interposed between the feeding electrode 5 and the radiation element 6 of the antenna, and the reactance value of the variable capacitance diode provided in the frequency variable circuit 4 is changed.
  • the resonance frequency of the antenna can be changed.
  • Patent Document 2 describes a dual-band antenna device in which a matching circuit is devised for matching at two resonance frequencies.
  • FIG. 2 is a diagram showing the configuration of the antenna device described in Patent Document 2.
  • the antenna device described in Patent Document 2 includes an antenna element 22 and a power feeding circuit 23 that supplies power to the antenna element 22.
  • An LC resonance circuit including inductance elements 25 and 26 and capacitance elements 28, 29, and 30 is connected between the antenna element 22 and the power feeding circuit 23.
  • an inductance element 25 and a capacitance element 28 are connected in series between the antenna element 22 and the power feeding circuit 23.
  • a high-pass type matching circuit including capacitance elements 29 and 30 and an inductance element 26 is connected in parallel with the series resonance circuit including the inductance element 25 and the capacitance element 28.
  • the LC resonance circuit is provided to resonate the antenna element 22 in two frequency bands, and includes an inductance element 26 and capacitance elements 29 and 30 for preventing the impedance from becoming infinite in a predetermined frequency band. It has a T-type circuit. For this reason, the drop point of the gain, that is, the notch can be eliminated between the two resonance frequencies, and the deterioration of the gain can be prevented.
  • the inductance element 27 is provided to match the input impedance of the antenna element 22 and the impedance of the power feeding circuit 23.
  • the antenna device described in Patent Document 1 has a problem that when the frequency is increased, loss is caused by the high-frequency resistance of the frequency variable circuit 4 and the antenna characteristics at high frequencies are deteriorated.
  • the antenna device described in Patent Document 1 is used in a wireless communication device such as a mobile phone terminal that performs communication in a frequency band of 800 MHz to 1.5 GHz, the above-described problem is remarkable.
  • the antenna device described in Patent Document 2 has an advantage that impedance matching at two resonance frequencies can be easily performed at a specific frequency, but when the frequency is varied using a variable reactance element in the matching circuit.
  • the loss increases at a high frequency due to the loss of the element and the antenna characteristics deteriorate.
  • an object of the present invention is to provide a frequency variable circuit and a multiband antenna device capable of performing communication in a plurality of frequency bands while reducing loss at high frequencies.
  • the frequency variable circuit includes a parallel resonant circuit in which a capacitor and an inductor are connected in parallel, and a first variable capacitance element connected in parallel to the capacitor, and includes one end of the parallel resonant circuit,
  • the variable capacitance element is connected to the feeding circuit and the first radiating element used in the first frequency band, and the other end of the parallel resonant circuit and the first variable capacitance element are connected to each other from the first frequency band.
  • the parallel resonant circuit connected to the second radiating element used in the lower second frequency band has a resonant frequency closer to the first frequency band than the second frequency band.
  • a multiband antenna device is a multiband antenna device that includes a frequency variable circuit and performs communication in different frequency bands, and includes a first radiating element connected to the frequency variable circuit, and a frequency variable A second radiating element connected to the circuit and a power feeding circuit connected to the frequency variable circuit are provided.
  • the first radiating element used in the first frequency band and the second radiating element used in the second frequency band lower than the first frequency band are provided, so that the frequency can be high and low. Communication becomes possible at the same time.
  • the first radiating element corresponding to a high frequency is connected to the second radiating element via a parallel resonant circuit that resonates in the first frequency band.
  • the parallel resonant circuit viewed from the first radiating element side has a high impedance, and acts as if the parallel resonant circuit side is equivalently connected to a state close to an open state. Therefore, it becomes difficult to couple the radiating element in the first frequency band to the radiating element in the second frequency band.
  • the frequency variable circuit including the parallel resonant circuit is inductive in the second frequency band, the frequency can be lowered without making the second radiating element complicated.
  • the reactance value between the second radiating element and the power feeding circuit is changed by changing the capacitance value of the first variable capacitance element. Can do.
  • a tunable antenna device or a shiftable antenna device capable of varying the communication frequency in the second frequency band, for example, 800 MHz to 900 MHz can be realized.
  • one end of the first radiating element is connected to the feeder circuit and a part thereof is grounded.
  • the first radiating element in the case of communication in the second frequency band, is inductively grounded, and the first radiating element can be used as a matching element in the second frequency band. it can. For this reason, it is not necessary to use a matching element, and the number of parts can be reduced.
  • the first radiating element may be connected to the power feeding circuit via a capacitive element.
  • the first radiating element is connected to the power feeding circuit via the capacitive element, thereby preventing a signal in the second frequency band lower than the first frequency band from flowing through the first radiating element. be able to. As a result, it is possible to further improve the isolation characteristics between the first and second radiating elements that perform low-band and high-band communication.
  • the capacitive element is preferably a second variable capacitive element.
  • the resonance frequency of the first radiating element and the resonance frequency of the second radiating element can be controlled independently.
  • impedance matching for the second radiating element can be adjusted with variable frequency.
  • the first and second variable capacitance elements are preferably MEMS elements.
  • the first radiating element has a length corresponding to a half wavelength of the first frequency band, and the central portion is substantially connected to the feeder circuit. preferable.
  • the multiband antenna device of the present invention communication in the first frequency band and the second frequency band is possible by reducing high-frequency loss due to the parallel resonance circuit. Further, by changing the capacitance value by the first variable capacitance element, it is possible to change the reactance of the parallel resonance circuit and change the resonance frequency of the second radiating element to a predetermined frequency.
  • FIG. 1 is a diagram illustrating a configuration of an antenna device described in Patent Literature 1.
  • FIG. It is a figure which shows the structure of the antenna apparatus of patent document 2.
  • FIG. It is a figure which shows typically the circuit structure of the multiband antenna device which concerns on Embodiment 1 of this invention.
  • It is a figure which shows typically the circuit structure of the multiband antenna device which concerns on Embodiment 1 of this invention.
  • FIG. 3A or 3B shows the equivalent circuit of FIG.
  • the multiband antenna apparatus described below may perform communication using any of the GSM (Global System for Mobile Communications) system, the W-CDMA (Wideband Code Division Multiple Access) system, and other systems. In addition to this, communication combining various methods such as LTE (Long Term Evolution) may be performed.
  • GSM Global System for Mobile Communications
  • W-CDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the multiband antenna device 1 can perform communication in the first frequency band and the second frequency band located on the lower frequency side than the first frequency band.
  • the first frequency band is a high frequency band (hereinafter referred to as a high band)
  • the second frequency band is a low frequency band (hereinafter referred to as a low band).
  • the multiband antenna device 1 includes a first radiating element 11, a second radiating element 12, an RF-MEMS (Radio Frequency-Micro Electro Mechanical Systems) circuit unit 10 corresponding to high-band and low-band communication, and a power feeding circuit. 15.
  • RF-MEMS Radio Frequency-Micro Electro Mechanical Systems
  • the first radiating element 11 and the second radiating element 12 are electrodes formed on, for example, a printed circuit board or a dielectric substrate.
  • the first radiating element 11 has a length that operates mainly at a high-band frequency f H (in the present embodiment, a 1.7 GHz band).
  • the second radiating element 12 has a length that operates mainly at a low-band frequency f L (800 MHz band in the present embodiment). 3A and 3B, the length of the second radiating element 12 is different. Therefore, the second radiating element 12 of the multiband antenna device 1 shown in FIG. 3B operates at a lower frequency.
  • FIG. 4 is a diagram illustrating the frequency characteristics of the return loss of the multiband antenna device 1 according to the present embodiment.
  • the horizontal axis indicates the frequency (MHz), and the vertical axis indicates the magnitude (dB) of the return loss.
  • the multiband antenna device 1 includes the first radiating element 11 and the second radiating element 12, as shown in FIG. 4, a high band centered at 1.7 GHz and a center around 800 MHz.
  • the resonance state (return loss characteristic valley) occurs in the two frequency bands of the low band.
  • One end of the first radiating element 11 is open, and the other end is connected to the power feeding circuit 15 directly or via a capacitor.
  • One end of the second radiating element 12 is open, and the other end is connected to the power feeding circuit 15 via the RF-MEMS circuit unit 10 as a variable capacitance circuit.
  • the RF-MEMS circuit unit 10 will be described in detail later.
  • a matching inductor L2 having one end grounded is connected between the RF-MEMS circuit unit 10 and the power feeding circuit 15 and between the first radiating element 11 and the power feeding circuit 15.
  • the inductor L2 is mainly a matching element for the first radiating element 11 and the second radiating element 12.
  • a connection point between the RF-MEMS circuit unit 10 and the power feeding circuit 15 to which the inductor L2 is connected and between the first radiating element 11 and the power feeding circuit 15 is referred to as a power feeding point X1.
  • one end of the first radiating element 11 is open, and the other end is connected to the power feeding circuit 15 and the inductor L2 via the power feeding point X1.
  • One end of the second radiating element 12 is open, and the other end is connected to the power feeding circuit 15 and the inductor L2 via the RF-MEMS circuit unit 10 and the power feeding point X1.
  • the feeding circuit 15 is connected to a transmission / reception circuit (RF circuit) in which the multiband antenna device 1 performs communication in the low band and the high band via the first radiating element 11 and the second radiating element 12.
  • RF circuit transmission / reception circuit
  • the RF-MEMS circuit unit 10 includes a MEMS element 14 and a tank circuit 13.
  • the tank circuit 13 is formed to have high impedance in the first frequency band (high band) and inductive in the second frequency band (low band), and the inductor L1 and the capacitor C1 are connected in parallel. It is an LC parallel resonant circuit that is connected.
  • the constants of the inductor L1 and the capacitor C1 are set so that the parallel resonance frequency is within the high band. Further, the tank circuit 13 is designed to be coupled with the first radiating element 11 so that the harmonics of the second radiating element 12 are excited, so that the frequency near the third harmonic of the low band (800 MHz band) ( Even at about 2.3 to 2.5 GHz), matching can be achieved.
  • FIG. 5 is a diagram illustrating frequency characteristics of reactance of the LC parallel resonant circuit.
  • the horizontal axis indicates the frequency of the supply voltage to the LC parallel resonant circuit
  • the vertical axis indicates the reactance X of the LC parallel resonant circuit.
  • the LC parallel resonance circuit has the maximum impedance at the resonance frequency f 0 of the LC parallel resonance circuit, and becomes inductive in a frequency range lower than the resonance frequency f 0 .
  • the tank circuit 13 the resonance frequency that is set to a frequency f H, so that the signal of frequency f H that is handled in the communication of high band prevents the flow in the second radiating element 12.
  • the coupling between the first radiating element 11 and the second radiating element 12 can be suppressed.
  • a signal having a frequency f H does not flow to the tank circuit 13, so that high frequency loss due to the tank circuit 13 is reduced.
  • tank circuit 13 is set to a constant (reactance X in the case of FIG. 5) so that the resonance frequency is set to the frequency f H as described above and the signal of the frequency f L handled in the low-band communication passes. L ) is set.
  • Tank circuit 13 is a low frequency f L in inductive than the resonance frequency f 0 that is set to the frequency f H.
  • the signal of the frequency f L in order to pass through an inductive tank circuit 13, the wavelength shortening due to the inductance is carried out.
  • the multiband antenna device 1 can be miniaturized as the wavelength is shortened by the wavelength shortening effect.
  • the multiband antenna device 1 can obtain two resonance states in the low band and the high band described with reference to FIGS. 3A and 3B. Communication in the low band and the high band is possible without switching the frequency band.
  • the multiband antenna device 1 since the tank circuit 13 prevents the signal having the frequency f H from passing, the multiband antenna device 1 according to the present embodiment can reduce high-frequency loss in high-band communication, thereby suppressing deterioration in antenna characteristics. it can.
  • the MEMS element 14 is connected to the tank circuit 13.
  • the MEMS element 14 is a first variable capacitance element, and can change the RF capacitance value to a desired value in accordance with the applied bias voltage (drive voltage).
  • drive voltage bias voltage
  • 3A and 3B a simplified MEMS element 14 is illustrated, but the MEMS element 14 includes drive electrodes 20A and 20B, capacitive electrodes 21A and 21B, and the like.
  • the capacitive electrodes 21A and 21B face each other, the capacitive electrode 21A is connected to one end (first end) of the tank circuit 13, and the capacitive electrode 21B is connected to the other end (second end) of the tank circuit 13. ing.
  • the capacitive electrode 21A is formed on a fixed part, and the capacitive electrode 21B is formed on a movable part made of metal or the like.
  • the drive electrodes 20A and 20B drive the movable part by electrostatic force.
  • FIG. 6 is a diagram showing an equivalent circuit of FIG. 3A or 3B.
  • the capacitive electrodes 21 ⁇ / b> A and 21 ⁇ / b> B constitute a variable capacitor C ⁇ b> 2 that is an RF capacitor, and are connected to the tank circuit 13.
  • the RF-MEMS circuit unit 10 is an LC parallel resonant circuit in which an inductor L1, a capacitor C1, and a variable capacitor C2 are connected in parallel.
  • the drive electrode 20A is connected to a control unit (not shown) via a resistor R1.
  • the drive electrode 20B is connected to the control unit via the resistor R2.
  • a bias voltage (drive voltage) for generating an electrostatic force is applied from the control unit to each of the drive electrode 20A and the drive electrode 20B.
  • the movable portion moves due to the electrostatic force, thereby changing the distance between the capacitive electrode 21 ⁇ / b> A and the capacitive electrode 21 ⁇ / b> B.
  • the capacitance value of the variable capacitor C2 formed by the above changes. For example, when a bias voltage is applied to the drive electrode 20A, the movable electrode approaches the drive electrode 20A due to electrostatic force, so that the capacitive electrode 21A and the capacitive electrode 21B approach each other. As a result, the capacitance value of the variable capacitor C2 increases.
  • the RF-MEMS circuit unit 10 by changing the capacitance value of the variable capacitor C2 by the MEMS element 14, the low-band center frequency (the valley of the return loss characteristic shown in FIG. 4) is changed from the frequency f L (800 MHz) to the wide area side. Alternatively, it can be shifted to the low frequency side. That is, the RF-MEMS circuit unit 10 is a frequency variable circuit.
  • the inductor L1 and the capacitor C1 of the tank circuit 13 are such that the parallel resonance frequency of the tank circuit 13 is in the high band (eg, 1.71 to 1.88 GHz) and is inductive in the low band.
  • a constant is set.
  • the reactance of the tank circuit 13 can be changed by changing the capacitance value of the variable capacitor C2 connected in parallel to the capacitor C1, and the resonance frequency of the second radiating element 12 can be changed to a predetermined frequency.
  • the first radiating element 11 and the power feeding circuit 15 are directly connected.
  • a capacitive element is interposed between the first radiating element 11 and the power feeding circuit 15.
  • the isolation characteristics between the first and second radiating elements 11 and 12 that perform low-band and high-band communication may be further enhanced.
  • FIGS. 7A and 7B are diagrams schematically showing a circuit configuration of a modification of the multiband antenna device according to Embodiment 1 of the present invention.
  • a capacitive element is connected between the first radiating element 11 and the power feeding circuit 15.
  • 7A and 7B show only a part of a circuit of a multiband antenna device which is a modified example.
  • a capacitor C3 is connected between the first radiating element 11 and the power feeding circuit 15.
  • the MEMS element 16 that is a variable capacitance element is connected between the first radiating element 11 and the power feeding circuit 15. 7B has the same configuration as that of the MEMS element 14, but is controlled independently of the MEMS element 14.
  • the same effect as in FIG. 7A can be obtained by connecting the MEMS element 16. Further, by connecting the MEMS element 16 and changing its capacitance value, the frequency f H (resonance frequency of the first radiating element 11) handled in high-band communication can be changed independently.
  • the multiband antenna device 1 can reduce the high-frequency loss caused by the tank circuit 13 and can perform communication in the low band and the high band. Further, by changing the capacitance value of the variable capacitor C2 by the MEMS element 14, the reactance of the tank circuit 13 can be changed and the resonance frequency of the second radiating element 12 can be changed to a predetermined frequency.
  • Embodiment 2 The second embodiment of the present invention will be described below.
  • symbol is attached
  • FIG. 8 is a diagram schematically showing a circuit configuration of the multiband antenna device 1A according to the second embodiment of the present invention.
  • the multiband antenna device 1A of the present embodiment does not include the inductor L2 that is a matching element, and is that the one end of the first radiating element 11 is not opened and is grounded. This is different from the band antenna device 1.
  • the first radiating element 11 corresponding to high-band communication has one end connected to the feeding circuit 15 via the feeding point X1 and the other end grounded. Yes.
  • the first radiating element 11 is inductively grounded, and the first radiating element 11 can be used as a matching element in the second frequency band.
  • the inductor L2 in the first embodiment can be dispensed with.
  • the end of the first radiating element 11 is grounded. However, a portion other than the end of the first radiating element 11 may be grounded. The place to be grounded can be appropriately changed according to the antenna characteristics of the multiband antenna device.
  • the multiband antenna device 1A according to the present embodiment has the same effects as those of the first embodiment, and the first radiating element 11 can also be used as a matching element. Reduction is possible.
  • FIG. 9 is a diagram schematically showing a circuit configuration of a multiband antenna device 1B according to Embodiment 3 of the present invention.
  • the multiband antenna device 1B of the present embodiment is different from the multiband antenna device 1 of the first embodiment in that power is fed to the center of the first radiating element 11.
  • Both ends of the first radiating element 11 corresponding to high band communication are open.
  • both ends of the radiating element are thus opened, the high-frequency current generated on the radiating element is maximum at the center of the radiating element and minimum at both ends in the resonance state of the antenna.
  • the first radiating element 11 has a length corresponding to 1 ⁇ 2 wavelength of the first frequency band, and is a portion where the high-frequency current is maximum in the first radiating element 11.
  • An RF-MEMS circuit unit 10 including a tank circuit 13 is connected to one side of the central portion of the first radiating element 11, and a power feeding circuit 15 is connected to the other side.
  • the influence of the tank circuit 13 having a high impedance connected to the first radiating element 11 can be further reduced, and therefore the resonance frequency of the second radiating element 12 is changed to a predetermined frequency.
  • the influence on the resonance frequency of the first radiating element 11 can be further reduced.
  • the multiband antenna device 1B according to the present embodiment has not only the same effects as those of the first embodiment, but also the influence that the resonance frequency of the first radiating element 11 is affected by the second radiating element 12. Can be reduced.
  • the specific configuration of the multiband antenna device can be appropriately changed in design, and the actions and effects described in the above-described embodiments are merely a list of the most preferable actions and effects resulting from the present invention.
  • the operations and effects of the present invention are not limited to those described in the above embodiment.
  • the control unit that drives the MEMS element 14 is configured to be provided outside the RF-MEMS circuit unit 10, but a step-up DC-DC converter or the like for driving the MEMS element 14 is used.
  • the control unit may be included in the RF-MEMS circuit unit 10. In this case, since the wiring connected to the RF-MEMS circuit unit 10 can be shortened, the influence of noise caused by wiring routing can be reduced.
  • FIG. 10 is a diagram schematically showing a circuit configuration of a multiband antenna device 1C according to the fourth embodiment of the present invention.
  • a third radiating element 18 having a length that operates in a frequency band different from that of the first radiating element 11 and the second radiating element 12 is provided via an inductor L3.
  • the MEMS element 16 that is a variable capacitance element is connected between the first radiating element 11 and the power feeding circuit 15, and the inductor L 2 that is a matching element is not provided.
  • the point is different from the multiband antenna device 1 of the first embodiment in that one end of the first radiating element 11 is not opened and is grounded.
  • the multiband antenna device 1C shown in FIG. 10 can perform communication in yet another frequency band other than the above-described high band and low band. Further, by providing the MEMS element 16 and changing the capacitance value thereof, the frequency f H (resonance frequency of the first radiating element 11) handled in high-band communication can be varied independently, and the first The isolation characteristics between the radiating element 11 and the second radiating element 12 can be further enhanced.
  • Multiband antenna device 10 RF-MEMS circuit unit 11 First radiating element 12 Second radiating element 13 Tank circuit (parallel resonant circuit) 14 MEMS element (first variable capacitance element) 15 Power supply circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

 周波数可変回路(10)、第1の周波数帯域で用いる第1の放射素子(11)、第1の周波数帯域より低い第2の周波数帯域で用いる第2の放射素子(12)および給電回路(15)を備えるマルチバンドアンテナ装置(1)であって、周波数可変回路(10)はキャパシタ(C1)とインダクタ(L1)とが並列接続された並列共振回路(13)とキャパシタ(C1)に並列接続された第1の可変容量素子(14)とを備え、並列共振回路(13)の一端と第1の可変容量素子(14)とは給電回路(15)と第1の放射素子(11)とに接続され、並列共振回路(13)の他端と第1の可変容量素子(14)とは第2の放射素子(12)に接続され、並列共振回路(13)は第2の周波数帯域よりも第1の周波数帯域に近い共振周波数を有する。高周波での損失を低減しつつ、複数の周波数帯域での通信を行うことができる周波数可変回路及びマルチバンドアンテナ装置を提供する。

Description

周波数可変回路及びマルチバンドアンテナ装置
 本発明は、複数の周波数帯域での通信を行うマルチバンドアンテナに用いる周波数可変回路及びマルチバンドアンテナ装置に関する。
 近年、携帯電話端末等の無線通信機では、複数の周波数帯域での通信を行うマルチバンド化が進んでいる。マルチバンドの無線通信機では、複数の周波数帯域に対応するアンテナ装置が搭載される。例えば、特許文献1には、複数の共振周波数を同時に所望範囲だけ変えることができる広帯域対応のアンテナ装置が記載されている。図1は、特許文献1に記載のアンテナ装置の構成を示す図である。特許文献1に記載のアンテナ装置は、アンテナの給電電極5と放射素子6との間に周波数可変回路4を介在させており、周波数可変回路4が備える可変容量ダイオードのリアクタンス値を変えることで、アンテナの共振周波数を変えることができるようになっている。
 また、特許文献2には、2つの共振周波数において整合をとるために整合回路を工夫したデュアルバンド対応のアンテナ装置が記載されている。図2は、特許文献2に記載のアンテナ装置の構成を示す図である。特許文献2に記載のアンテナ装置は、アンテナ素子22と、アンテナ素子22に電力を供給する給電回路23とを有する。アンテナ素子22と給電回路23との間には、インダクタンス素子25,26とキャパシタンス素子28,29,30とからなるLC共振回路が接続されている。具体的には、アンテナ素子22と給電回路23との間に、インダクタンス素子25とキャパシタンス素子28とが直列接続されている。そして、インダクタンス素子25とキャパシタンス素子28とからなる直列共振回路とは並列に、キャパシタンス素子29,30とインダクタンス素子26とからなるハイパス型整合回路が接続される。LC共振回路は、アンテナ素子22を2つの周波数帯域で共振させるために設けられており、所定の周波数帯域でインピーダンスが無限大になるのを防ぐためのインダクタンス素子26およびキャパシタンス素子29,30からなるT型回路を有している。このため、2つの共振周波数の間において、利得の落ち込み点すなわちノッチをなくすることができ、利得の劣化を防止することができる。なお、インダクタンス素子27は、アンテナ素子22の入力インピーダンスと給電回路23のインピーダンスとを整合するために設けられている。
国際公開第2006/080141号 特開2003-249811号公報
 しかしながら、特許文献1に記載のアンテナ装置では、周波数が高くなると、周波数可変回路4の高周波抵抗により損失が生じてしまい、高周波におけるアンテナ特性が劣化するという問題がある。例えば、特許文献1に記載のアンテナ装置を800MHz~1.5GHz帯の周波数帯域で通信を行う携帯電話端末等の無線通信機に使用する場合には、上述のような問題が顕著であった。また、特許文献1に記載のアンテナ装置では、常に複数の周波数帯域を同時に対応することが難しい。
 また、特許文献2に記載のアンテナ装置では、特定の周波数においては2つの共振周波数におけるインピーダンス整合が取りやすいという利点も持つが、整合回路に可変リアクタンス素子を用いて周波数可変する構成とした場合には、素子の損失により高い周波数においては損失が大きくなりアンテナ特性が劣化するという課題がある。
 そこで、本発明の目的は、高周波での損失を低減しつつ、複数の周波数帯域での通信を行うことができる周波数可変回路及びマルチバンドアンテナ装置を提供することにある。
 本発明に係る周波数可変回路は、キャパシタとインダクタとが並列接続されている並列共振回路と、キャパシタに並列接続されている第1の可変容量素子とを備え、並列共振回路の一端と、第1の可変容量素子とは、給電回路と第1の周波数帯域で用いる第1の放射素子とに接続され、並列共振回路の他端と、第1の可変容量素子とは、第1の周波数帯域より低い第2の周波数帯域で用いる第2の放射素子に接続され並列共振回路は、第2の周波数帯域よりも前記第1の周波数帯域に近い共振周波数を有する。
 また、本発明に係るマルチバンドアンテナ装置は、周波数可変回路を備え、異なる周波数帯域での通信を行うマルチバンドアンテナ装置であって、周波数可変回路に接続された第1の放射素子と、周波数可変回路に接続された第2の放射素子と、周波数可変回路に接続された給電回路と、を備えたことを特徴とする。
 この構成では、第1の周波数帯域で用いる第1の放射素子と、第1の周波数帯域より低い第2の周波数帯域で用いる第2の放射素子と備えることで、高帯域及び低帯域の周波数での通信が同時に可能となる。
 また、高い周波数に対応する第1の放射素子は、第1の周波数帯域で共振する並列共振回路を介して、第2の放射素子と接続してある。このため、第1の放射素子側から見た並列共振回路は高インピーダンスとなり、並列共振回路側が等価的に開放(オープン)に近い状態に接続されているかのように作用する。従って、第1の周波数帯域の放射素子が、第2の周波数帯域の放射素子と結合し難くなる。さらに、第1の周波数帯域の放射素子においては並列共振回路を含む周波数可変回路に高周波信号が流れ難くなるため、並列共振回路を含む周波数可変回路による第1の周波数帯域の損失を軽減できる。更に、前記の並列共振回路を含む周波数可変回路は、第2の周波数帯域では誘導性となるため第2の放射素子を複雑な形状にしなくても周波数を低くすることが可能になる。
 さらに、並列共振回路のキャパシタに第1の可変容量素子が用いられるため、第1の可変容量素子の容量値を変えることで、第2の放射素子と給電回路との間のリアクタンス値を変えることができる。これにより、第2の周波数帯域、例えば800MHz~900MHzにおいて、通信周波数を可変できるチューナブルアンテナ装置またはシフタブルアンテナ装置を実現できる。
 本発明に係るマルチバンドアンテナ装置において、第1の放射素子は、一端が給電回路に接続され、一部が接地されていることが好ましい。
 この構成では、第2の周波数帯域での通信の場合、第1の放射素子が誘導性で接地されることとなり、第2の周波数帯域でのマッチング素子として第1の放射素子を利用することができる。このため、マッチング素子を用いる必要がなくなり、部品点数を削減できる。
 本発明に係るマルチバンドアンテナ装置において、第1の放射素子は、容量素子を介して、給電回路に接続されてもよい。
 この構成では、容量素子を介して第1の放射素子を給電回路に接続することで、第1の放射素子に、第1の周波数帯域より低い第2の周波数帯域の信号が流れるのを防止することができる。その結果、低帯域及び高帯域の通信を行う第1及び第2の放射素子間のアイソレーション特性をさらに高めることができる。
 本発明に係るマルチバンドアンテナ装置において、容量素子は、第2の可変容量素子であることが好ましい。
 この構成では、第1の放射素子の共振周波数と第2の放射素子の共振周波数を独立に制御可能になる。また、第2の放射素子に対するインピーダンス整合も周波数可変とともに調整できる。
 本発明に係るマルチバンドアンテナ装置において、第1及び第2の可変容量素子は、MEMS素子であることが好ましい。
 この構成では、MEMS素子を用いることで、信号の歪や損失を軽減することができる。
 本発明に係るマルチバンドアンテナ装置において、第1の放射素子は、第1の周波数帯域の1/2波長に相当する長さを有し、実質的に中央部が給電回路に接続されることが好ましい。
 この構成では、第1の放射素子に高インピーダンスとなる並列共振回路が接続されることによる影響をより低減することができるため、第2の放射素子の共振周波数を所定の周波数に変えたとしても、第1の放射素子の共振周波数への影響を更に少なくすることができる。
 本発明に係るマルチバンドアンテナ装置によれば、並列共振回路による高周波損失を低減させて、第1の周波数帯域及び第2の周波数帯域での通信が可能となる。また、第1の可変容量素子により容量値を変えることで、並列共振回路のリアクタンスを変化させ、第2の放射素子の共振周波数を所定の周波数に変えることができる。
特許文献1に記載のアンテナ装置の構成を示す図である。 特許文献2に記載のアンテナ装置の構成を示す図である。 本発明の実施形態1に係るマルチバンドアンテナ装置の回路構成を模式的に示す図である。 本発明の実施形態1に係るマルチバンドアンテナ装置の回路構成を模式的に示す図である。 本発明の実施形態1に係るマルチバンドアンテナ装置のリターンロスの周波数特性を示す図である。 LC並列共振回路のリアクタンスの周波数特性を示す図である。 図3Aまたは図3Bの等価回路を示す図である。 本発明の実施形態1に係るマルチバンドアンテナ装置の変形例の回路構成を模式的に示す図である。 本発明の実施形態1に係るマルチバンドアンテナ装置の変形例の回路構成を模式的に示す図である。 本発明の実施形態2に係るマルチバンドアンテナ装置の回路構成を模式的に示す図である。 本発明の実施形態3に係るマルチバンドアンテナ装置の回路構成を模式的に示す図である。 本発明の実施形態4に係るマルチバンドアンテナ装置の回路構成を模式的に示す図である。
 以下、本発明に係る周波数可変回路及びマルチバンドアンテナ装置の好適な実施の形態について図面を参照して説明する。以下に説明するマルチバンドアンテナ装置は、GSM(Global System for Mobile Communications)方式、又はW-CDMA(Wideband Code Division Multiple Access)方式、その他の方式の何れかを用いた通信を行うものであってもよいし、これ以外においてもLTE(Long Term Evolution)等の各種方式を組み合わせた通信を行うものであってもよい。
(実施形態1)
 図3A及び図3Bは、本発明の実施形態1に係るマルチバンドアンテナ装置1の回路構成を模式的に示す図である。本実施形態に係るマルチバンドアンテナ装置1は、第1の周波数帯域と、第1の周波数帯域よりも低域側に位置する第2の周波数帯域での通信を行うことができるものである。第1の周波数帯域は高周波帯域(以下、ハイバンドという)であり、第2の周波数帯域は低周波帯域(以下、ローバンドという)である。マルチバンドアンテナ装置1は、ハイバンド及びローバンドの通信に対応する第1の放射素子11と、第2の放射素子12と、RF-MEMS(Radio Frequency-Micro Electro MechanicalSystems)回路部10と、給電回路15とを備えている。
 第1の放射素子11と第2の放射素子12とは、例えばプリント回路基板や誘電体基板などに形成された電極である。第1の放射素子11は、主としてハイバンドの周波数f(本実施形態では1.7GHz帯)で動作する長さを有している。第2の放射素子12は、主としてローバンドの周波数f (本実施形態では800MHz帯)で動作する長さを有している。なお、図3Aと図3Bでは、第2の放射素子12の長さが異なっている。このため、図3Bに示すマルチバンドアンテナ装置1の第2の放射素子12の方がより低い周波数で動作する。
 図4は、本実施形態に係るマルチバンドアンテナ装置1のリターンロスの周波数特性を示す図である。図4において、横軸は周波数(MHz)を示し、縦軸はリターンロスの大きさ(dB)を示している。
 マルチバンドアンテナ装置1は、第1の放射素子11と第2の放射素子12とを備えていることで、図4に示すように、1.7GHzを中心とするハイバンドと、800MHzを中心とするローバンドとの二つの周波数帯域に共振状態(リターンロス特性の谷)が生じるようになる。
 第1の放射素子11の一端は開放されており、他端は直接または容量を介して給電回路15に接続されている。第2の放射素子12の一端は開放されており、他端は可変容量回路としてのRF-MEMS回路部10を介して給電回路15に接続されている。RF-MEMS回路部10については後に詳述する。
 RF-MEMS回路部10と給電回路15との間であって、第1の放射素子11と給電回路15との間には、一端が接地された整合用のインダクタL2が接続されている。インダクタL2は、主として第1の放射素子11と第2の放射素子12のマッチング用素子である。以下、インダクタL2が接続されている、RF-MEMS回路部10と給電回路15との間であって、第1の放射素子11と給電回路15との間の接続点を、給電点X1という。
 よって、第1の放射素子11の一端は開放されており、他端は給電点X1を介して給電回路15とインダクタL2とに接続されている。また、第2の放射素子12の一端は開放されており、他端はRF-MEMS回路部10と給電点X1とを介して、給電回路15とインダクタL2とに接続されている。
 給電回路15は、マルチバンドアンテナ装置1が第1の放射素子11と第2の放射素子12とを介してローバンド及びハイバンドでの通信を行う送受信回路(RF回路)に接続される。
 RF-MEMS回路部10は、MEMS素子14と、タンク回路13とを備えている。
 タンク回路13は、第1の周波数帯域(ハイバンド)で高インピーダンスになるとともに、第2の周波数帯域(ローバンド)で誘導性になるように形成されており、インダクタL1とキャパシタC1とが並列に接続されてなるLC並列共振回路である。
 タンク回路13は、その並列共振周波数がハイバンド内になるように、インダクタL1とキャパシタC1とのそれぞれの定数が設定されている。また、タンク回路13は、第1の放射素子11と結合して第2の放射素子12の高調波が励振されるように設計することで、ローバンド(800MHz帯)の3倍波近傍の周波数(約2.3~2.5GHz)においても、整合を取ることができる。
 図5は、LC並列共振回路のリアクタンスの周波数特性を示す図である。図5では、横軸がLC並列共振回路への供給電圧の周波数を示し、縦軸がLC並列共振回路のリアクタンスXを示している。図5に示すように、LC並列共振回路は、LC並列共振回路の共振周波数fでインピーダンスが最大となり、共振周波数f より低い周波数範囲で誘導性となる。
 従って、タンク回路13は、共振周波数が周波数f に設定されることで、ハイバンドの通信で扱われる周波数fの信号が第2の放射素子12に流れることを阻止することができる。これにより、第1の放射素子11と第2の放射素子12との結合を抑圧することが可能になる。更に、マルチバンドアンテナ装置1において、ハイバンドで通信する場合、周波数fの信号は、タンク回路13へ流れることがないため、タンク回路13による高周波損失が低減される。
 また、タンク回路13は、上述のように共振周波数が周波数f に設定されていると共に、ローバンドの通信で扱われる周波数fの信号が通過するように、定数(図5の場合、リアクタンスX )が設定されている。タンク回路13は、周波数f に設定されている共振周波数fより低い周波数f では誘導性となる。これにより、マルチバンドアンテナ装置1において、ローバンドで通信する場合、周波数fの信号は、タンク回路13で阻止されることがなく、ローバンドでの通信が可能となる。
 また、周波数f の信号は、誘導性のタンク回路13を通過するため、インダクタンスによる波長短縮が行われる。この結果、波長短縮効果により波長が短くなる分、マルチバンドアンテナ装置1の小型化が可能となる。
 以上のように、タンク回路13の作用により、本実施形態に係るマルチバンドアンテナ装置1は、図3Aおよび図3Bで説明した、ローバンド及びハイバンドにおいて二つの共振状態が得られるようになり、通信周波数帯域の切り替えを行うことなく、ローバンド及びハイバンドでの通信が可能となる。
 また、タンク回路13が周波数f の信号の通過を阻止するため、本実施形態に係るマルチバンドアンテナ装置1は、ハイバンドの通信における高周波損失を低減でき、その結果、アンテナ特性の劣化を抑制できる。
 RF-MEMS回路部10では、MEMS素子14がタンク回路13に接続されている。MEMS素子14は、第1の可変容量素子であり、印加されるバイアス電圧(駆動電圧)の高さに応じてRF容量値を所望の値に変えることができる。図3Aおよび図3Bでは、簡略化したMEMS素子14を図示しているが、MEMS素子14は、駆動電極20A,20B、容量電極21A,21B等を備えている。
 容量電極21A,21Bは互いに対向しており、容量電極21Aはタンク回路13の一端(第1端)に接続されており、容量電極21Bはタンク回路13の他端(第2端)に接続されている。容量電極21Aは固定部に形成されており、容量電極21Bは金属などからなる可動部に形成されている。駆動電極20A,20Bは、静電力によって可動部を駆動するものである。
 図6は、図3Aまたは図3Bの等価回路を示す図である。上述のように、容量電極21A,21Bは、RF容量である可変容量C2を構成しており、タンク回路13に接続されている。RF-MEMS回路部10は、図6に示すように、インダクタL1とキャパシタC1と可変容量C2とが並列に接続されてなるLC並列共振回路である。
 駆動電極20Aは、抵抗R1を介して、図示しない制御部に接続されている。また、駆動電極20Bは、抵抗R2を介して、制御部に接続されている。駆動電極20Aと駆動電極20Bには、それぞれ、制御部から静電力を発生させるためのバイアス電圧(駆動電圧)が印加される。
 MEMS素子14では、駆動電極20A,20Bにバイアス電圧が印加されると、静電力によって可動部が動くことにより、容量電極21Aと容量電極21Bとの距離が変わり、容量電極21Aと容量電極21Bとにより形成される可変容量C2の容量値が変わる。例えば、駆動電極20Aにバイアス電圧が印加されると、静電力によって可動部が駆動電極20Aに近づくことにより、容量電極21Aと容量電極21Bとが近づく。この結果、可変容量C2の容量値は大きくなる。
 一方、駆動電極20Bにバイアス電圧が印加されると、静電力によって可動部が駆動電極20Bに近づくことにより、容量電極21Aと容量電極21Bとが離れる。この結果、可変容量C2の容量値は小さくなる。
 RF-MEMS回路部10において、MEMS素子14により、可変容量C2の容量値を変えることで、ローバンドの中心周波数(図4に示すリターンロス特性の谷)を、周波数f(800MHz)から広域側または低域側にシフトさせることができる。すなわち、RF-MEMS回路部10は、周波数可変回路である。
 より具体的には、タンク回路13のインダクタL1とキャパシタC1とは、タンク回路13の並列共振周波数がハイバンド内(例えば、1.71~1.88GHz)となり、ローバンドでは誘導性となるように定数が設定されている。この場合に、キャパシタC1に並列接続した可変容量C2の容量値を変えることで、タンク回路13のリアクタンスを変化させ、第2の放射素子12の共振周波数を所定の周波数に変化させることができる。
 なお、図3Aおよび図3Bでは、第1の放射素子11と給電回路15とは直接的に接続されているが、第1の放射素子11と給電回路15との間に容量素子を介在させることで、ローバンド及びハイバンドの通信を行う第1及び第2の放射素子11,12間のアイソレーション特性をさらに高めるようにしてもよい。
 図7A及び図7Bは、本発明の実施形態1に係るマルチバンドアンテナ装置の変形例の回路構成を模式的に示す図である。図7A及び図7Bに示す変形例では、第1の放射素子11と給電回路15との間に容量素子が接続されている。図7A及び図7Bでは、変形例であるマルチバンドアンテナ装置の回路の一部のみを示している。
 図7Aに示す変形例では、第1の放射素子11と給電回路15との間にキャパシタC3が接続されている。図7Bに示す変形例では、第1の放射素子11と給電回路15との間に可変容量素子であるMEMS素子16が接続されている。なお、図7Bに示す変形例におけるMEMS素子16は、MEMS素子14と同様の構成を有するが、MEMS素子14とは、独立して制御される。
 図7Bに示すように、MEMS素子16を接続することで、図7Aと同様の効果が得られる。また、MEMS素子16を接続して、その容量値を変えることで、ハイバンドの通信で扱われる周波数f(第1の放射素子11の共振周波数)を独立して変えることができる。
 以上説明したように、本実施形態に係るマルチバンドアンテナ装置1は、タンク回路13による高周波損失を低減させて、ローバンド及びハイバンドでの通信が可能となる。また、MEMS素子14により可変容量C2の容量値を変えることで、タンク回路13のリアクタンスを変化させ、第2の放射素子12の共振周波数を所定の周波数に変えることができる。
(実施形態2)
 以下に、本発明の実施形態2について説明する。なお、実施形態1と同様の構成については、同じ符号を付し、説明は省略する。
 図8は、本発明の実施形態2に係るマルチバンドアンテナ装置1Aの回路構成を模式的に示す図である。本実施形態のマルチバンドアンテナ装置1Aは、マッチング用素子であるインダクタL2を備えていない点、第1の放射素子11の一端が開放されておらず接地されている点で、実施形態1のマルチバンドアンテナ装置1と相違する。
 本実施形態に係るマルチバンドアンテナ装置1Aにおいて、ハイバンドの通信に対応する第1の放射素子11は、一端が給電点X1を介して給電回路15に接続されており、他端が接地されている。これにより、ローバンドの通信の場合、第1の放射素子11が誘導性で接地されることとなり、第2の周波数帯域でのマッチング素子として第1の放射素子11を利用することができ、その結果、実施形態1におけるインダクタL2を不要とすることができる。
 なお、本実施形態では、第1の放射素子11の端部が接地されている構成としているが、第1の放射素子11の端部以外の部分が接地されている構成であってもよく、接地させる箇所は、マルチバンドアンテナ装置のアンテナ特性等に応じて、適宜変更可能である。
 以上説明したように、本実施形態に係るマルチバンドアンテナ装置1Aは、実施形態1と同様の効果を奏すると共に、第1の放射素子11をマッチング用素子と兼用させることができるため、部品点数の削減が可能となる。
(実施形態3)
 以下に、本発明の実施形態3について説明する。なお、実施形態1と同様の構成については、同じ符号を付し、説明は省略する。
 図9は、本発明の実施形態3に係るマルチバンドアンテナ装置1Bの回路構成を模式的に示す図である。本実施形態のマルチバンドアンテナ装置1Bは、第1の放射素子11の中央に給電している点で、実施形態1のマルチバンドアンテナ装置1と相違する。
 ハイバンドの通信に対応する第1の放射素子11は、両端が開放されている。このように放射素子の両端が開放されている場合、アンテナの共振状態において、放射素子上に発生する高周波電流は、放射素子の中央で最大となり、両端で最小となる。
 そこで、本実施形態では、第1の放射素子11は第1の周波数帯域の1/2波長に相当する長さを有し、第1の放射素子11において高周波電流が最大となる部分である、第1の放射素子11の中央部の一方側にタンク回路13を含むRF-MEMS回路部10が接続され、他方側に給電回路15が接続されている。これにより、第1の放射素子11に高インピーダンスとなるタンク回路13が接続されることによる影響をより低減することができるため、第2の放射素子12の共振周波数を所定の周波数に変えたとしても、第1の放射素子11の共振周波数への影響を更に少なくすることができる。
 以上説明したように、本実施形態に係るマルチバンドアンテナ装置1Bは、実施形態1と同様の効果を奏するだけではなく、第1の放射素子11の共振周波数が第2の放射素子12から受ける影響を小さくすることが可能となる。
 なお、マルチバンドアンテナ装置の具体的構成などは、適宜設計変更可能であり、上述の実施形態に記載された作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、上述の実施形態に記載されたものに限定されるものではない。
 例えば、上述の実施形態において、MEMS素子14を駆動する制御部は、RF-MEMS回路部10の外部に設けられた構成としているが、MEMS素子14を駆動するための昇圧DC-DCコンバータ等を含む制御部を、RF-MEMS回路部10に含めた構成としてもよい。この場合、RF-MEMS回路部10に対して接続する配線をより短くできるため、配線の引き回しにより生じるノイズの影響を軽減できる。
(実施形態4)
 以下に、本発明の実施形態4について説明する。なお、実施形態1と同様の構成については、同じ符号を付し、説明は省略する。図10は、本発明の実施形態4に係るマルチバンドアンテナ装置1Cの回路構成を模式的に示す図である。本実施形態のマルチバンドアンテナ装置1Cは、第1の放射素子11及び第2の放射素子12とは異なる周波数帯域で動作する長さを有している第3放射素子18がインダクタL3を介して給電回路15に接続されている点、第1の放射素子11と給電回路15との間に可変容量素子であるMEMS素子16が接続されている点、マッチング用素子であるインダクタL2を備えていない点、第1の放射素子11の一端が開放されておらず接地されている点で、実施形態1のマルチバンドアンテナ装置1と相違する。
 この場合、図10に示すマルチバンドアンテナ装置1Cは、上述のハイバンド及びローバンド以外にさらに別の周波数帯域での通信が可能になる。また、MEMS素子16を設けてその容量値を変えることで、ハイバンドの通信で扱われる周波数f(第1の放射素子11の共振周波数)を独立に可変することができ、かつ、第1の放射素子11及び第2の放射素子12間のアイソレーション特性をさらに高めることができる。
 1,1A,1B,1C マルチバンドアンテナ装置
 10 RF-MEMS回路部
 11 第1の放射素子
 12 第2の放射素子
 13 タンク回路(並列共振回路)
 14 MEMS素子(第1の可変容量素子)
 15 給電回路

Claims (8)

  1.  キャパシタとインダクタとが並列接続されている並列共振回路と、
     前記キャパシタに並列接続されている第1の可変容量素子とを備え、
     前記並列共振回路の一端と、前記第1の可変容量素子とは、給電回路と第1の周波数帯域で用いる第1の放射素子とに接続され、
     前記並列共振回路の他端と、前記第1の可変容量素子とは、前記第1の周波数帯域より低い第2の周波数帯域で用いる第2の放射素子に接続され、
     前記並列共振回路は、前記第2の周波数帯域よりも前記第1の周波数帯域に近い共振周波数を有する、周波数可変回路。
  2.  請求項1に記載の周波数可変回路を備え、異なる周波数帯域での通信を行うマルチバンドアンテナ装置であって、
     前記周波数可変回路に接続された第1の放射素子と、
     前記周波数可変回路に接続された第2の放射素子と、
     前記周波数可変回路に接続された給電回路と、
     を備えたことを特徴とするマルチバンドアンテナ装置。
  3.  前記第1の放射素子は、
     一端が前記給電回路に接続され、一部が接地されている
     ことを特徴とする請求項2に記載のマルチバンドアンテナ装置。
  4.  前記第1の放射素子は、
     容量素子を介して、前記給電回路に接続されている
     ことを特徴とする請求項2に記載のマルチバンドアンテナ装置。
  5.  前記容量素子は、第2の可変容量素子である
     ことを特徴とする請求項4に記載のマルチバンドアンテナ装置。
  6.  前記第2の可変容量素子は、MEMS素子である
     ことを特徴とする請求項5に記載のマルチバンドアンテナ装置。
  7.  前記第1の放射素子は、
     第1の周波数帯域の1/2波長に相当する長さを有し、実質的に中央部が前記給電回路に接続される、
     ことを特徴とする請求項2に記載のマルチバンドアンテナ装置。
  8.  前記第1の可変容量素子は、MEMS素子である
     ことを特徴とする請求項2から7の何れか一つに記載のマルチバンドアンテナ装置。
PCT/JP2011/079138 2010-12-28 2011-12-16 周波数可変回路及びマルチバンドアンテナ装置 WO2012090721A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012550825A JPWO2012090721A1 (ja) 2010-12-28 2011-12-16 周波数可変回路及びマルチバンドアンテナ装置
US13/928,139 US20130285875A1 (en) 2010-12-28 2013-06-26 Frequency-variable circuit and multi-band antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-293028 2010-12-28
JP2010293028 2010-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/928,139 Continuation US20130285875A1 (en) 2010-12-28 2013-06-26 Frequency-variable circuit and multi-band antenna device

Publications (1)

Publication Number Publication Date
WO2012090721A1 true WO2012090721A1 (ja) 2012-07-05

Family

ID=46382834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079138 WO2012090721A1 (ja) 2010-12-28 2011-12-16 周波数可変回路及びマルチバンドアンテナ装置

Country Status (3)

Country Link
US (1) US20130285875A1 (ja)
JP (1) JPWO2012090721A1 (ja)
WO (1) WO2012090721A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648697B2 (ja) * 2011-01-19 2015-01-07 株式会社村田製作所 可変リアクタンス回路及びアンテナ装置
CN105281800A (zh) * 2014-05-28 2016-01-27 宏碁股份有限公司 通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013225613A1 (en) 2012-02-29 2014-09-18 Micreo Limited An electronic gain shaper and a method for storing parameters
WO2014010346A1 (ja) * 2012-07-11 2014-01-16 株式会社村田製作所 通信装置
US10249939B2 (en) * 2013-11-25 2019-04-02 Hewlett-Packard Development Company, L.P. Antenna devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725942A (en) * 1965-04-22 1973-04-03 Allen Elect Equip Vehicle-mounted antenna and coupling circuit therefor
JP2005217623A (ja) * 2004-01-28 2005-08-11 Mitsubishi Electric Corp 無線端末装置
JP2009135822A (ja) * 2007-11-30 2009-06-18 Fujitsu Component Ltd アンテナ装置
JP2010147636A (ja) * 2008-12-17 2010-07-01 Toshiba Corp アンテナ装置、無線機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189144U (ja) * 1984-05-24 1985-12-14 旭硝子株式会社 受信用アンテナ装置
JPS62260403A (ja) * 1986-05-06 1987-11-12 Seiko Epson Corp アンテナ回路
JP4059998B2 (ja) * 1998-12-15 2008-03-12 株式会社ヨコオ アンテナ装置
US6232841B1 (en) * 1999-07-01 2001-05-15 Rockwell Science Center, Llc Integrated tunable high efficiency power amplifier
US7319580B2 (en) * 2005-03-29 2008-01-15 Intel Corporation Collapsing zipper varactor with inter-digit actuation electrodes for tunable filters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725942A (en) * 1965-04-22 1973-04-03 Allen Elect Equip Vehicle-mounted antenna and coupling circuit therefor
JP2005217623A (ja) * 2004-01-28 2005-08-11 Mitsubishi Electric Corp 無線端末装置
JP2009135822A (ja) * 2007-11-30 2009-06-18 Fujitsu Component Ltd アンテナ装置
JP2010147636A (ja) * 2008-12-17 2010-07-01 Toshiba Corp アンテナ装置、無線機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648697B2 (ja) * 2011-01-19 2015-01-07 株式会社村田製作所 可変リアクタンス回路及びアンテナ装置
CN105281800A (zh) * 2014-05-28 2016-01-27 宏碁股份有限公司 通信装置

Also Published As

Publication number Publication date
JPWO2012090721A1 (ja) 2014-06-05
US20130285875A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP4508190B2 (ja) アンテナ及び無線通信機
JP5603072B2 (ja) 効率をさらに良くし、コンパクトな大きさのアンテナを維持するためにアンテナのパラメータを順応良く制御するための方法及び装置。
JP6465109B2 (ja) マルチアンテナ及びそれを備える無線装置
EP2139067B1 (en) Multiband antenna and radio communication terminal
JP4858860B2 (ja) マルチバンドアンテナ
US8421702B2 (en) Multi-layer reactively loaded isolated magnetic dipole antenna
EP3057177B1 (en) Adjustable antenna and terminal
US20120056795A1 (en) Antenna matching circuit, antenna device, and method of designing antenna device
KR101482476B1 (ko) 안테나 장치
WO2015178204A1 (ja) アンテナ整合回路、アンテナ整合モジュール、アンテナ装置および無線通信装置
KR20110122849A (ko) 안테나 장치, 인쇄 회로 보드, 휴대용 전자 장치 및 변환 키트
WO2014009607A1 (en) Switched antenna apparatus and methods
JPWO2009147885A1 (ja) マルチバンドアンテナ及びその実装構造
WO2012090721A1 (ja) 周波数可変回路及びマルチバンドアンテナ装置
US10122086B2 (en) Antenna device and communication apparatus
WO2020012885A1 (ja) アンテナ装置及び電子機器
JP2012182632A (ja) マルチバンドアンテナ
US9350073B2 (en) MEMS module, variable reactance circuit and antenna device
EP3529856B1 (en) Multi-resonant antenna structure
KR101842627B1 (ko) 주파수 가변형 디바이스와 이를 포함하는 안테나, 전파 흡수체 및 주파수 가변형 디바이스의 동작 주파수 확장 방법
US20200373083A1 (en) Antenna coupling element, antenna device, and communication terminal device
KR101063316B1 (ko) 리액티브 소자를 이용한 안테나
WO2013088650A1 (ja) アンテナ装置及び携帯無線機
KR101175319B1 (ko) 리액티브 소자를 이용한 안테나
JP6651010B2 (ja) アンテナ装置および無線機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550825

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853213

Country of ref document: EP

Kind code of ref document: A1