WO2012083533A1 - 氟化石墨烯及其制备方法 - Google Patents

氟化石墨烯及其制备方法 Download PDF

Info

Publication number
WO2012083533A1
WO2012083533A1 PCT/CN2010/080123 CN2010080123W WO2012083533A1 WO 2012083533 A1 WO2012083533 A1 WO 2012083533A1 CN 2010080123 W CN2010080123 W CN 2010080123W WO 2012083533 A1 WO2012083533 A1 WO 2012083533A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
graphene oxide
graphite
fluorinated graphene
fluorinated
Prior art date
Application number
PCT/CN2010/080123
Other languages
English (en)
French (fr)
Inventor
周明杰
刘大喜
王要兵
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to EP10860923.1A priority Critical patent/EP2657188A4/en
Priority to CN201080069693.XA priority patent/CN103153848B/zh
Priority to US13/988,289 priority patent/US8981167B2/en
Priority to JP2013541174A priority patent/JP5753274B2/ja
Priority to PCT/CN2010/080123 priority patent/WO2012083533A1/zh
Publication of WO2012083533A1 publication Critical patent/WO2012083533A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide

Definitions

  • the invention belongs to the technical field of organic semiconductor materials, and particularly relates to fluorinated graphene and a preparation method thereof.
  • High specific surface area (theoretical calculated value: 2,630 m 2 /g).
  • its high conductivity properties, large specific surface properties and its two-dimensional nanoscale structural properties of monolayers can be used as electrode materials in supercapacitors and lithium ion batteries.
  • fluorinated graphite As an active substance of high-energy lithium-ion batteries, fluorinated graphite has attracted great interest and attention from researchers of new chemical power sources, and has successfully developed corresponding high-energy batteries.
  • the fluorinated graphite-lithium battery has the following excellent properties: (1) high voltage and high energy density. Generally, the actual nominal voltage of a manganese battery is 3V, and the energy density is 360wh/kg, and the nominal voltage of the cylindrical fluorinated graphite-lithium battery is twice that of the manganese battery, and the energy density is 5 ⁇ 10 of the manganese battery. Times. (2) High utilization rate and stable voltage. According to the discharge reaction, the utilization rate is almost 100% due to the formation of conductive carbon. The internal resistance does not increase during discharge, and the discharge voltage is stabilized to the end of discharge. Long storage period and wide temperature range.
  • Graphene fluoride is a compound with high mechanical strength and stable chemical and thermal properties.
  • the performance of this new material is very similar to that of polytetrafluoroethylene, commonly referred to as two-dimensional polytetrafluoroethylene.
  • the mass percentage of F is 4.7% ⁇ F% ⁇ 38.6%
  • the mass percentage of C is 61.4% ⁇ C% ⁇ 95.3%.
  • a method for preparing fluorinated graphene comprises the following steps:
  • the graphene oxide and the fluorine-containing compound are mixed at a mass ratio of 1:1 to 1:100, and then reacted at 200 to 1000 ° C for 1 to 10 hours, followed by cooling to obtain the fluorinated graphene.
  • the fluorine-containing compound is at least one of ammonium fluoride, sodium fluoroborate, potassium fluoroborate, potassium fluoroaluminate, and sodium fluorosilicate.
  • the fluorine-containing compound is at least one of polytetrafluoroethylene, polyhexafluoropropylene, and polyvinylidene fluoride.
  • the graphene oxide and the fluorine-containing compound have a mass ratio of 1: 1 to 1: 50.
  • the graphene oxide is reacted with a fluorine-containing compound at 500 to 800 ° C to obtain the fluorinated graphene.
  • the method for preparing the fluorinated graphene further comprises a purification operation of obtaining the fluorinated graphene, followed by washing and drying with water and ethanol.
  • the step of preparing graphene oxide using the graphite comprises:
  • the graphite, potassium persulfate and phosphorus pentoxide are added to concentrated sulfuric acid at 75-95 ° C according to a mass ratio of 2:1:1, stirred uniformly, then naturally cooled, washed to neutrality and dried to obtain a pretreated mixture. ;
  • the solid was washed with dilute hydrochloric acid and dried to obtain the graphene oxide.
  • the graphite has a purity greater than 99.5%.
  • the above method for preparing fluorinated graphene uses graphite to prepare graphene oxide, and then uses graphene oxide to react with a fluorine-containing compound at a certain temperature, and the process is simple, and fluorinated graphene can be conveniently prepared.
  • FIG. 1 is a flow chart showing a method of preparing fluorinated graphene according to an embodiment
  • Figure 3 is an XPS spectrum of F1s of a prepared fluorinated graphene
  • Figure 4 is a SEM electron micrograph of a prepared fluorinated graphene.
  • the mass percentage of F is 4.7% ⁇ F% ⁇ 38.6%, C The mass percentage is 61.4% ⁇ C% ⁇ 95.3%.
  • This fluorinated graphene is obtained by replacing an oxygen atom in graphene oxide with a fluorine atom.
  • the above-mentioned fluorinated graphene contains a trace amount of H, and since it is low in content, it can be ignored.
  • a method for preparing the above fluorinated graphene as shown in FIG. 1 includes the following steps:
  • the method comprises the steps of: preparing graphite, potassium permanganate and high-concentration strong oxidizing acid (sulfuric acid or nitric acid) in a water bath or an oil bath in the same container, and taking it out after being fully oxidized, first reducing potassium permanganate with hydrogen peroxide.
  • the product was washed several times with distilled water or hydrochloric acid, and dried to obtain graphite oxide.
  • the pretreated mixture and potassium permanganate are added to concentrated sulfuric acid to maintain the temperature below 20 °C, after which 30 ⁇ 40°C oil bath 1.5 ⁇ 2.5h, add deionized water, add hydrogen peroxide reaction after 15min, filter and collect solid.
  • the purpose of the oil bath is to better control the reaction temperature, and in other embodiments, a water bath can also be used.
  • the obtained graphene oxide reacts with a fluorine-containing compound to prepare a graphene fluoride.
  • This method is called a solid phase method, and is classified into a fluorine-containing inorganic substance and a fluorine-containing polymer according to a fluorine-containing compound, and the solid phase method includes an inorganic solid phase.
  • the method and the organic solid phase method are described in detail below.
  • the method uses a thermally decomposable fluorine-containing inorganic substance and S20
  • the reaction of the graphene oxide obtained in the step, the fluorine-containing inorganic material used may generally be, for example, ammonium fluoride, sodium fluoroborate, potassium fluoroborate, potassium fluoroaluminate and sodium fluorosilicate. In actual operation, you can choose one of them, or you can choose multiple blends.
  • the fluorine-containing inorganic material is dried, and the drying temperature is lower than the decomposition temperature.
  • the mass ratio of graphene oxide to fluorine-containing inorganic material is 1:1 to 1:50, and graphene oxide is reacted with fluorine-containing inorganic material at 500 to 800 °C.
  • the specific temperature of the heat treatment depends on the actually selected fluorine-containing inorganic material.
  • the method uses a thermally decomposable fluoropolymer with S20
  • the oxidized graphene obtained in the step is preferably reacted with, for example, polytetrafluoroethylene, polyhexafluoropropylene, and polyvinylidene fluoride. In actual operation, you can choose one of them, or you can choose multiple blends.
  • the fluoropolymer is boiled in boiling water for more than 3 hours and then dried.
  • the graphene oxide and the fluoropolymer are mixed in an organic solvent, dried, and then subjected to heat treatment at 200 to 800 ° C for 1 to 10 h under an anaerobic condition, and sufficiently cooled and cooled to obtain fluorinated graphene.
  • the mass ratio of graphene oxide to fluorine-containing inorganic material is 1: 1 to 1: 50, and graphene oxide and fluoropolymer are in The reaction is carried out at 500 to 800 °C.
  • anaerobic conditions can be achieved by inert gas or nitrogen protection.
  • the above method for preparing fluorinated graphene uses graphite to prepare graphene oxide, and then uses graphene oxide to react with a fluorine-containing compound at a certain temperature, and the process is simple, and fluorinated graphene can be conveniently prepared.
  • the prepared fluorinated graphene can be applied as an electrode material of a supercapacitor or a lithium ion secondary battery.
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10 g of potassium persulfate and 10 g of phosphorus pentoxide were added to concentrated sulfuric acid at 75 ° C, stirred uniformly, cooled for more than 6 h, washed until neutral, and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 40 °C for 1.5 h, then slowly add 920 mL. Deionized water.
  • the mixture was uniformly weighed and charged into a reactor and reacted at 500 ° C for 5 h. After slightly cooling, the reactant was taken out, washed successively with water and ethanol, and dried under vacuum at 80 ° C for 24 hours to obtain fluorinated graphene.
  • XPS test conditions Samples were analyzed using a VG Scientific ESCALab 220i-XL photoelectron spectrometer.
  • the excitation source is Al K ⁇ X-ray with a power of about 300 W.
  • the base vacuum for the analysis was 3 x 10 -9 mbar.
  • the electron binding energy was corrected by the C1s peak of contaminated carbon (284.8 eV).
  • the XPS spectrum of F1s of fluorinated graphene prepared in this example as shown in Fig. 4 can be seen from the figure, the obtained fluorinated graphene is 689.5 eV has a strong peak, corresponding to the carbon bond structure of fluorinated graphene is C - F (689.5 eV).
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10 g of potassium persulfate and 10 g of phosphorus pentoxide were added to concentrated sulfuric acid at 95 ° C, stirred uniformly, cooled for more than 6 h, washed until neutral, and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 30 °C for 2.5 h, then slowly add 920 mL. Deionized water.
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10g potassium persulfate and 10g phosphorus pentoxide were added to concentrated sulfuric acid at 80 °C, stirred evenly, cooled for more than 6h, washed to neutral and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 35 °C for 2 h, then slowly add 920 mL. Deionized water.
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10 g of potassium persulfate and 10 g of phosphorus pentoxide were added to concentrated sulfuric acid at 95 ° C, stirred uniformly, cooled for more than 6 h, washed until neutral, and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 35 °C for 1.5 h, then slowly add 920 mL. Deionized water.
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10 g of potassium persulfate and 10 g of phosphorus pentoxide were added to concentrated sulfuric acid at 75 ° C, stirred uniformly, cooled for more than 6 h, washed until neutral, and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 40 °C for 2 h, then slowly add 920 mL. Deionized water.
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10g potassium persulfate and 10g phosphorus pentoxide were added to concentrated sulfuric acid at 85 °C, stirred evenly, cooled for more than 6h, washed to neutral and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 35 °C for 1.5 h, then slowly add 920 mL. Deionized water.
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10g potassium persulfate and 10g phosphorus pentoxide were added to concentrated sulfuric acid at 85 °C, stirred evenly, cooled for more than 6h, washed to neutral and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 35 °C for 2.5 h, then slowly add 920 mL. Deionized water.
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10g potassium persulfate and 10g phosphorus pentoxide were added to concentrated sulfuric acid at 80 °C, stirred evenly, cooled for more than 6h, washed to neutral and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 35 °C for 1.5 h, then slowly add 920 mL. Deionized water.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 F content 53.5% 38.6% 28.4% 35.2% 17% 0.5% 18.5% 4.7%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

氟化石墨烯及其制备方法
【技术领域】
本发明属于有机半导体材料技术领域,具体涉及氟化石墨烯及其制备方法。
【背景技术】
自从英国曼彻斯特大学的安德烈· K ·海姆 (Andre K. Geim) 等在 2004 年制备出石墨烯材料,由于其独特的结构和光电性质受到了人们广泛的重视。石墨烯被喻为材料科学与凝聚态物理领域正在升起的'新星',它所具有的许多新颖而独特的性质与潜在的应用正吸引了诸多科技工作者。单层石墨烯具有大的比表面积,优良的导电、导热性能和低的热膨胀系数。如:1. 高强度,杨氏摩尔量,( 1,100 GPa ) ,断裂强度:( 125GPa ) ;2. 高热导率,( 5,000 W/mK ) ;3. 高导电性、载流子传输率,( 200,000 cm 2 /V*s ) ;4. 高的比表面积,(理论计算值: 2,630 m2 /g ) 。尤其是其高导电性质,大的比表面性质和其单分子层二维的纳米尺度的结构性质,可在超级电容器和锂离子电池中用作电极材料。
氟化石墨作为高能锂离子电池的活性物质,己引起新型化学电源研究者们的极大兴趣和重视,并已开发成功相应的高能电池。氟化石墨-锂电池具有如下优异的性能:(1)电压高、能量密度高。一般锰电池的实际公称电压为3V,能量密度为 360wh/kg ,而圆柱形氟化石墨-锂电池的公称电压是锰电池的二倍,能量密度是锰电池的 5~10 倍。(2)利用率高、电压平稳。根据放电反应,由于生成导电性的碳,利用率几乎为 100% ,放电时内阻并不增加,放电电压稳定到放电末期。储存期长、适用温度范围广。
氟化石墨烯是一种机械强度高,化学和热学性能稳定的化合物。这种新材料性能非常类似聚四氟乙烯,通常称之为二维聚四氟乙烯。
然而,如何方便的得到氟化石墨烯是目前的一个难题。
【发明内容】
基于此,有必要提供至少一种 工艺简单的 氟化石墨烯的制备方法以及上述氟化石墨烯的制备方法制备出的氟化石墨烯。
一种氟化石墨烯, 其中, F 的质量百分比为 0.5 < F% < 53.5% , C 的质量百分比为 46.5% < C% < 99.5% 。
优选的, F 的质量百分比为 4.7% < F% < 38.6% , C 所占的质量百分比为 61.4% < C% < 95.3% 。
一种氟化石墨烯的制备方法,包括如下步骤:
提供石墨;
使用所述石墨制备氧化石墨烯;
在无氧环境中,所述氧化石墨烯与含氟化合物按质量比1:1~1:100混合后,200~1000℃下反应1~10小时后冷却,得到所述氟化石墨烯。
优选的,所述含氟化合物为氟化铵、氟硼酸钠、氟硼酸钾、氟铝酸钾和氟硅酸钠中的至少一种。
优选的,所述含氟化合物为聚四氟乙烯、聚六氟丙烯和聚偏氟乙烯中的至少一种。
优选的,所述氧化石墨烯与所述含氟化合物按质量比 1 : 1~1 : 50 。
优选的,所述氧化石墨烯与含氟化合物在500~800℃下反应制得所述氟化石墨烯。
优选的,所述氟化石墨烯的制备方法还包括得到所述氟化石墨烯后依次用水和乙醇洗涤、干燥的纯化操作。
优选的,使用所述石墨制备氧化石墨烯的步骤包括:
将所述石墨、过硫酸钾和五氧化二磷按照质量比2:1:1加入到75~95℃的浓硫酸中,搅拌均匀后自然冷却,洗涤至中性后干燥,得到预处理的混合物;
将所述预处理的混合物和高锰酸钾加入到温度低于 20 ℃ 的浓硫酸中,然后在 30~40℃下油浴1.5~2.5 h ,加入去离子水, 15min 后加入双氧水反应,抽滤、收集固体;
所述固体用稀盐酸洗涤,干燥,得到所述氧化石墨烯。
优选的,所述石墨纯度大于99.5%。
上述氟化石墨烯的制备方法使用石墨制备氧化石墨烯,再利用氧化石墨烯与含氟化合物在一定温度下反应,工艺简单,可以方便地制备出氟化石墨烯。
【附图说明】
图 1 为一实施方式的氟化石墨烯的制备方法的流程图;
图 2 为实施一制备的氟化石墨烯的 C1s 的 XPS 图谱;
图 3 为实施一制备的氟化石墨烯的 F1s 的 XPS 图谱;
图 4 为实施一制备的氟化石墨烯的SEM电镜图片。
【具体实施方式】
下面结合附图及实施例对氟化石墨烯的制备方法做进一步的解释说明。
一种氟化石墨烯,其中,F的质量百分比为0.5 < F% < 53.5%,C的质量百分比为46.5% < C% < 99.5%。
在优选的实施例中, F 的质量百分比为 4.7% < F% <38.6% , C 的质量百分比为 61.4% < C% < 95.3% 。
这种氟化石墨烯通过氟原子取代氧化石墨烯中的氧原子制得。
在电镜下可以看出,这种氟化石墨烯表面具有可以提高比表面积的褶皱状结构。
上述氟化石墨烯中含有微量的 H ,由于含量很低,可以忽略不记。
如图1所示的一种上述氟化石墨烯的制备方法,包括如下步骤:
S10 、提供石墨
购买纯度超过 99.5% 的石墨。
S20、使用石墨制备氧化石墨烯
一般的,可以通过 Hummers 法制备氧化石墨,即将石墨、高锰酸钾和高浓度强氧化性酸(硫酸或硝酸)置于同一容器中水浴或油浴加热,待充分氧化后取出,先用双氧水还原高锰酸钾,在用蒸馏水或盐酸洗涤产物数次,干燥后得到氧化石墨。
为了制备氧化石墨烯,可以对 Hummers 法进行一些改进,改进后的制备过程包括如下步骤。
首先,将石墨、过硫酸钾和五氧化二磷按照质量比2:1:1加入到75~95℃的的浓硫酸中,搅拌均匀后自然冷却,洗涤至中性后干燥,得到预处理的混合物。
其次,将所述预处理的混合物和高锰酸钾加入到浓硫酸中,保持温度低于 20 ℃ ,之后 30~40℃油浴1.5~2.5h ,加入去离子水, 15min 后加入双氧水反应,抽滤、收集固体。
最后,将上述固体用稀盐酸洗涤,干燥,得到氧化石墨烯。
油浴的目的是为了更好的控制反应温度,在其他的实施方式中,也可以采用水浴。
S30 、氧化石墨烯与含氟化合物反应得到氟化石墨烯
利用 S20 步骤得到的氧化石墨烯与含氟化合物反应制备氟化石墨烯,这种方法称为固相法,按照含氟化合物分为含氟无机物和含氟聚合物,固相法又包括无机固相法和有机固相法,下面一一具体介绍。
无机固相法制备氟化石墨烯
本方法采用可热分解的含氟无机物与 S20 步骤得到的氧化石墨烯反应,采用的含氟无机物一般的可以列举如:氟化铵、氟硼酸钠、氟硼酸钾、氟铝酸钾和氟硅酸钠。实际操作时,可以选择其中一种,也可以选择多种混合。
首先,对含氟无机物进行干燥处理,干燥温度低于其分解温度。
然后,按照氧化石墨烯与含氟无机物质量比为 1 : 1~1 : 100 将氧化石墨烯与含氟无机物混匀后装入反应器, 200~1000℃热处理1~10 h ,充分反应后冷却,取出反应物并依次用水和乙醇洗涤后, 80 ℃ 真空干燥 24h 得到氟化石墨烯。
在优选的实施例中,氧化石墨烯与含氟无机物的质量比为1:1~1:50,氧化石墨烯与含氟无机物在500~800℃下反应。
热处理具体温度依实际选择的含氟无机物而定。
有机固相法制备氟化石墨烯
本方法采用可热分解的含氟聚合物与 S20 步骤得到的氧化石墨烯反应,采用的含氟聚合物一般的可以列举如:聚四氟乙烯、聚六氟丙烯和聚偏氟乙烯。实际操作时,可以选择其中一种,也可以选择多种混合。
首先,将含氟聚合物在沸水中煮3h以上,再烘干。
然后,按照氧化石墨烯与含氟聚合物质量比为 1 : 1~1 : 100 将氧化石墨烯与含氟聚合物在有机溶剂中混匀后烘干,压片后在无氧条件下 200~800℃热处理1~10 h ,充分反应后冷却,得到氟化石墨烯。
在优选的实施例中,氧化石墨烯与含氟无机物的质量比为 1 : 1~1 : 50 ,氧化石墨烯与含氟聚合物在 500~800℃下反应。
一般的,无氧条件可以通过惰性气体或氮气保护实现。
上述氟化石墨烯的制备方法使用石墨制备氧化石墨烯,再利用氧化石墨烯与含氟化合物在一定温度下反应,工艺简单,可以方便地制备出氟化石墨烯。
制备得到的氟化石墨烯可以应用作为超级电容器、锂离子二次电池的电极材料。
以下为具体实施例部分。
实施例 1
本实施例通过氧化石墨烯制备氟化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 75 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 40 ℃ 的油浴中保持 1.5h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化石墨烯:通过固相法制备氟化石墨烯。其具体步骤为,把含氟无机物氟化铵经过充分干燥的氧化石墨烯按照质量比,氟化铵:氧化石墨烯 =100 : 1 混合均匀称重后装入反应器中,在 500 ℃ 下反应 5h 。稍微冷却后取出反应物,依次用水和乙醇洗涤后,在 80 ℃ 真空干燥 24h 得到氟化石墨烯。
对所得氟化石墨烯进行以下实验:
XPS 测试实验条件:样品用 VG Scientific ESCALab220i-XL 型光电子能谱仪分析。激发源为 Al K α X 射线,功率约 300 W 。分析时的基础真空为 3×10-9 mbar 。电子结合能用污染碳的 C1s 峰( 284.8 eV )校正。
元素相对定量计算:
相对原子百分比=
Figure PCTCN2010080123-appb-I000001
式中: Ii - i 元素的峰强度 ( 面积 )
Si -i元素的相对元素灵敏度因子
由表 1 可以得出 F 的质量百分比为 53.5% 。
如图 3 所示的本实施例制备的氟化石墨烯的 C1s 的 XPS 图谱,从图中可以看出,制得的氟化石墨烯在 284.8 eV 处有很强的峰值,对应氟化石墨烯中碳键结构为 C - C ( 284.8 eV )。
如图 4 所示的本实施例制备的氟化石墨烯的 F1s 的 XPS 图谱,从图中可以看出,制得的氟化石墨烯在 689.5 eV 处有很强的峰值,对应氟化石墨烯中碳键结构为 C - F ( 689.5 eV )。
如图 5 所示的本实施例制备的氟化石墨烯的 SEM 电镜图片,从图中可以看出,制得的氟化石墨烯表面具有皱褶状结构,这种皱褶状结构有利于提高材料的比表面积。
实施例 2
本实施例通过氧化石墨烯制备氟化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 95 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 30 ℃ 的油浴中保持 2.5h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化石墨烯:通过固相法制备氟化石墨烯。其具体步骤为把含氟无机物氟硼酸钠和经过充分干燥的氧化石墨烯按照一定的质量比,氟硼酸钠:氧化石墨烯 =50 : 1 混合均匀称重后装入反应器中,在 800 ℃ 下反应 4h 。稍微冷却后取出反应物,依次用水和乙醇洗涤后,在 80 ℃ 真空干燥 24h 得到氟化石墨烯。
由表 1 可以得出 F 的质量百分比为 38.6% 。
实施例 3
本实施例通过氧化石墨烯制备氟化石墨烯的工艺流程如下:
石墨→氧化石墨烯→氟化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 35 ℃ 的油浴中保持 2h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化石墨烯:通过固相法制备氟化石墨烯。其具体步骤为把含氟无机物氟硅酸钠和经过充分干燥的氧化石墨烯按照一定的质量比,氟硅酸钠:氧化石墨烯 =80 : 1 混合均匀称重后装入反应器中,在 1000 ℃ 下反应 1h 。稍微冷却后取出反应物,依次用水和乙醇洗涤后,在 80 ℃ 真空干燥 24h 得到氟化石墨烯。
由表 1 可以得出 F 的质量百分比为 28.4% 。
实施例 4
本实施例通过氧化石墨烯制备氟化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 95 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 35 ℃ 的油浴中保持 1.5h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化石墨烯:通过固相法制备氟化石墨烯。其具体步骤为把含氟无机物氟铝酸钾和经过充分干燥的氧化石墨烯按照一定的质量比,氟铝酸钾:氧化石墨烯 =45 : 1 混合均匀称重后装入反应器中,在 200 ℃ 下反应 10h 。稍微冷却后取出反应物,依次用水和乙醇洗涤后,在 80 ℃ 真空干燥 24h 得到氟化石墨烯。
由表 1 可以得出 F 的质量百分比为 35.2% 。
实施例 5
本实施例通过氧化石墨烯制备氟化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 75 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 40 ℃ 的油浴中保持 2h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化石墨烯:通过固相法制备氟化石墨烯。其具体步骤为:把经过在沸水中煮沸 3h ,烘干后的含氟聚合物聚四氟乙烯和经过充分干燥的氧化石墨烯按照一定的质量比聚四氟乙烯:氧化石墨烯 =30 : 1 在有机溶剂中混合均匀,然后放入烘箱中在 150 ℃ 左右烘干,进而压片放入镍舟中。把镍舟放入高温炉的石英管内并通氮气适量后密封加热。炉温控制在 800 ℃ ,反应 5h 后,取出石英管冷却,即可得到氟化石墨烯。
由表 1 可以得出 F 的质量百分比为 17% 。
实施例 6
本实施例通过氧化石墨烯制备氟化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 85 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 35 ℃ 的油浴中保持 1.5h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化石墨烯:通过固相法制备氟化石墨烯。其具体步骤为:把经过在沸水中煮沸 3h ,烘干后的含氟聚合物聚六氟丙烯和经过充分干燥的氧化石墨烯按照一定的质量比,聚六氟丙烯:氧化石墨烯 =15 : 1 在有机溶剂中混合均匀,然后放入烘箱中在 150 ℃ 左右烘干,进而压片放入镍舟中。把镍舟放入高温炉的石英管内并通氮气适量后密封加热。炉温控制在 200 ℃ ,反应 4h 后,取出石英管冷却,即可得到氟化石墨烯。
由表 1 可以得出 F 的质量百分比为 0.5% 。
实施例 7
本实施例通过氧化石墨烯制备氟化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 85 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 35 ℃ 的油浴中保持 2.5h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化石墨烯:通过固相法制备氟化石墨烯。其具体步骤为:把经过在沸水中煮沸 3h ,烘干后的含氟聚合物聚偏氟乙烯和经过充分干燥的氧化石墨烯按照一定的质量比,聚偏氟乙烯:氧化石墨烯 =5 : 1 在有机溶剂中混合均匀,然后放入烘箱中在 150 ℃ 左右烘干,进而压片放入镍舟中。把镍舟放入高温炉的石英管内并通氮气适量后密封加热。炉温控制在 1000 ℃ ,反应 1h 后,取出石英管冷却,即可得到氟化石墨烯。
由表 1 可以得出 F 的质量百分比为 18.5% 。
实施例 8
本实施例通过氧化石墨烯制备氟化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 35 ℃ 的油浴中保持 1.5h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化石墨烯:通过固相法制备氟化石墨烯。其具体步骤为:把经过在沸水中煮沸 3h ,烘干后的含氟聚合物聚偏氟乙烯和经过充分干燥的氧化石墨烯按照一定的质量比,聚偏氟乙烯:氧化石墨烯 =1 : 1 在有机溶剂中混合均匀,然后放入烘箱中在 150 ℃ 左右烘干,进而压片放入镍舟中。把镍舟放入高温炉的石英管内并通氮气适量后密封加热。炉温控制在 500 ℃ ,反应 3h 后,取出石英管冷却,即可得到氟化石墨烯。
由表 1 可以得出 F 的质量百分比为 4.7%
表 1 氟化石墨稀 F 含量
编号 实施例 1 实施例 2 实施例 3 实施例 4 实施例 5 实施例 6 实施例 7 实施例 8
F 含量 53.5% 38.6% 28.4% 35.2% 17% 0.5% 18.5% 4.7%
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种氟化石墨烯,其特征在于,其中,F的质量百分比为0.5 < F% < 53.5%,C的质量百分比为46.5% < C% < 99.5%。
  2. 如权利要求1所述氟化石墨稀,其特征在于,所述F的质量百分比为4.7% < F% < 38.6%,所述C所占的质量百分比为61.4% < C% < 95.3%。
  3. 一种制备权利要求 1 所述氟化石墨烯的方法,其特征在于,包括如下步骤:
    提供石墨;
    使用所述石墨制备氧化石墨烯;
    在无氧环境中,所述氧化石墨烯与含氟化合物按质量比1:1~1:100混合后,200~1000℃下反应1~10 h后冷却,得到所述氟化石墨烯。
  4. 如权利要求3所述的氟化石墨烯的制备方法,其特征在于,所述含氟化合物为氟化铵、氟硼酸钠、氟硼酸钾、氟铝酸钾和氟硅酸钠中的至少一种。
  5. 如权利要求3所述的氟化石墨烯的制备方法,其特征在于,所述含氟化合物为聚四氟乙烯、聚六氟丙烯和聚偏氟乙烯中的至少一种。
  6. 如权利要求3~5中任一项所述氟化石墨烯的制备方法,其特征在于,所述氧化石墨烯与所述含氟化合物的质量比为1:1~1:50。
  7. 如权利要求3~5中任一项所述氟化石墨烯的制备方法,其特征在于,所述氧化石墨烯与所述含氟化合物在500~800℃下反应制得所述氟化石墨烯。
  8. 如权利要求3所述的氟化石墨烯的制备方法,其特征在于,所述氟化石墨烯的制备方法还包括得到所述氟化石墨烯后依次用水和乙醇洗涤、干燥的纯化操作。
  9. 如权利要求 3 所述的氟化石墨烯的制备方法,其特征在于,使用所述石墨制备氧化石墨烯的步骤包括:
    将所述石墨、过硫酸钾和五氧化二磷按照质量比 2 : 1 : 1 加入到 75~95℃的浓硫酸中,搅拌均匀后自然冷却,洗涤至中性后干燥,得到预处理的混合物;
    将所述预处理的混合物和高锰酸钾加入到温度低于 20 ℃ 的浓硫酸中,然后在 30~40℃下油浴1.5~2.5 h ,加入去离子水, 15min 后加入双氧水反应,抽滤、收集固体;
    所述固体用稀盐酸洗涤,干燥,得到所述氧化石墨烯。
  10. 如权利要求3所述的氟化石墨烯的制备方法,其特征在于,所述石墨纯度大于99.5%。
PCT/CN2010/080123 2010-12-22 2010-12-22 氟化石墨烯及其制备方法 WO2012083533A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10860923.1A EP2657188A4 (en) 2010-12-22 2010-12-22 FLUOROGRAPHIC AND METHOD FOR PREPARING THE SAME
CN201080069693.XA CN103153848B (zh) 2010-12-22 2010-12-22 氟化石墨烯及其制备方法
US13/988,289 US8981167B2 (en) 2010-12-22 2010-12-22 Fluorographene and preparation method thereof
JP2013541174A JP5753274B2 (ja) 2010-12-22 2010-12-22 フッ化グラフェンの調製方法
PCT/CN2010/080123 WO2012083533A1 (zh) 2010-12-22 2010-12-22 氟化石墨烯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/080123 WO2012083533A1 (zh) 2010-12-22 2010-12-22 氟化石墨烯及其制备方法

Publications (1)

Publication Number Publication Date
WO2012083533A1 true WO2012083533A1 (zh) 2012-06-28

Family

ID=46313033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080123 WO2012083533A1 (zh) 2010-12-22 2010-12-22 氟化石墨烯及其制备方法

Country Status (5)

Country Link
US (1) US8981167B2 (zh)
EP (1) EP2657188A4 (zh)
JP (1) JP5753274B2 (zh)
CN (1) CN103153848B (zh)
WO (1) WO2012083533A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097032A1 (en) * 2012-12-20 2014-06-26 Basf Se Edge halogenation of graphene materials
CN104211048A (zh) * 2013-06-05 2014-12-17 中国科学院上海有机化学研究所 一种氟化石墨烯的制备方法
CN104952712A (zh) * 2014-03-26 2015-09-30 韩国科学技术院 NH4F制造n掺杂石墨烯和电气器件的方法及该石墨烯和器件

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350992A (zh) * 2013-06-19 2013-10-16 厦门烯成新材料科技有限公司 一种高导电性氟化石墨烯薄膜的制备方法
CN103553027B (zh) * 2013-10-23 2015-08-26 南京大学 利用氟化石墨烯制备高含量氮掺杂石墨烯的方法
CN104944402B (zh) * 2014-03-24 2017-04-26 中国科学院兰州化学物理研究所 一种快速高效制备氟含量可调氟化石墨烯的方法
KR101687983B1 (ko) * 2014-03-26 2017-01-02 한국과학기술원 불화암모늄을 이용한 n-도핑된 그래핀 및 전기소자의 제조방법,그에 의한 그래핀 및 전기소자
KR102399147B1 (ko) * 2015-09-23 2022-05-19 나노텍 인스트러먼츠, 인코포레이티드 고도로 배향된 일체화 할로겐화 그래핀의 모노리식 필름
CN105417528A (zh) * 2015-12-09 2016-03-23 天津大学 氟化石墨烯水凝胶材料及其电极制备方法
CN107082424A (zh) * 2017-05-12 2017-08-22 厦门希弗新能源科技有限公司 一种氟化石墨烯及其制备方法和应用
US11264228B2 (en) 2018-10-09 2022-03-01 Savannah River Nuclear Solutions, Llc Method of making a carbon filament for thermal ionization
TWI680944B (zh) * 2018-10-31 2020-01-01 國立中央大學 氟化石墨烯的製備方法
CN109887835B (zh) * 2019-01-25 2020-12-18 复旦大学 一种在半导体表面原位还原氧化石墨烯的方法
WO2020229881A1 (en) * 2019-05-16 2020-11-19 Arcelormittal A method for the manufacture of graphene oxide from expanded kish graphite
CN112591732B (zh) * 2020-12-15 2022-06-24 西北大学 一种氟含量可控的氟化石墨烯和氟化碳纳米管的制备方法
KR102541519B1 (ko) * 2020-12-21 2023-06-12 주식회사 세라핀 산화 그래핀을 포함하는 체적 발열체 및 이의 제조방법
CN114247442A (zh) * 2021-12-24 2022-03-29 安徽工业大学 一种氟掺杂石墨烯负载CuO复合材料及其制备方法和应用
CN115849357A (zh) * 2022-12-09 2023-03-28 陕西科技大学 一种氟化石墨烯及制备方法和应用
CN117398530B (zh) * 2023-11-15 2024-03-26 上海科进医疗科技有限公司 一种石墨烯医用水溶性润滑剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527441A (ja) * 2006-02-21 2009-07-30 カリフォルニア インスティテュート オブ テクノロジー 部分フッ素化炭素の電気化学
CN100384715C (zh) * 2006-08-24 2008-04-30 西北核技术研究所 以三氟化氮为氟化剂合成氟化石墨或氟化碳的工艺
CN101284659A (zh) * 2008-01-04 2008-10-15 西北工业大学 一种氟化碳纳米管及其制备方法
GB201009718D0 (en) * 2010-06-10 2010-07-21 Univ Manchester Functionalised graphene

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHENG S.-H. ET AL.: "Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor", PHYSICAL REVIEW B, vol. 81, 25 May 2010 (2010-05-25), pages 205435-1 - 205435-5, XP002659149 *
RAHUL R. NAIR ET AL.: "Fluorographene: A Two-Dimensional Counterpart of Teflon", SMALL, vol. 6, no. 24, 4 November 2010 (2010-11-04), pages 2877 - 2884, XP002659150 *
See also references of EP2657188A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097032A1 (en) * 2012-12-20 2014-06-26 Basf Se Edge halogenation of graphene materials
CN104211048A (zh) * 2013-06-05 2014-12-17 中国科学院上海有机化学研究所 一种氟化石墨烯的制备方法
CN104211048B (zh) * 2013-06-05 2019-03-15 中国科学院上海有机化学研究所 一种氟化石墨烯的制备方法
CN104952712A (zh) * 2014-03-26 2015-09-30 韩国科学技术院 NH4F制造n掺杂石墨烯和电气器件的方法及该石墨烯和器件
CN104952712B (zh) * 2014-03-26 2018-01-12 朗姆研究公司 NH4F制造n掺杂石墨烯和电气器件的方法及该石墨烯和器件

Also Published As

Publication number Publication date
EP2657188A4 (en) 2016-11-09
US8981167B2 (en) 2015-03-17
CN103153848A (zh) 2013-06-12
JP2013544223A (ja) 2013-12-12
CN103153848B (zh) 2015-06-17
US20130261352A1 (en) 2013-10-03
JP5753274B2 (ja) 2015-07-22
EP2657188A1 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
WO2012083533A1 (zh) 氟化石墨烯及其制备方法
WO2012083534A1 (zh) 氟化氧化石墨烯及其制备方法
WO2019039856A1 (ko) 다공성 실리콘-탄소 복합체의 제조방법, 상기 제조방법에 의해 제조된 다공성 실리콘-탄소 복합체를 포함하는 이차전지 음극 및 상기 이차전지 음극을 포함하는 이차전지
Wu et al. Retarding the crystallization of PbI 2 for highly reproducible planar-structured perovskite solar cells via sequential deposition
CN102530910B (zh) 氟化石墨烯的制备方法
WO2019093681A2 (ko) 다공성 탄소, 이를 포함하는 양극 및 리튬 이차전지
WO2015043538A1 (zh) 氧化钛基超级电容器电极材料及其制备方法
WO2021167212A1 (ko) 헤테로 원소 도핑 고흑연성 다공성 탄소체, 이를 포함하는 촉매 및 이의 제조방법
WO2019112107A1 (ko) 실리콘나이트라이드 음극재 및 이의 제조 방법
WO2021194149A1 (ko) 다공성 실리콘 및 이를 포함하는 이차전지 음극 활물질 제조 방법
WO2018110776A1 (ko) 구겨진 형상의 그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 복합체를 포함하는 슈퍼커패시터
WO2019035503A1 (ko) 질소 도핑된 그래핀 양자점 제조방법, 질소 도핑된 그래핀 양자점 및 질소 도핑된 그래핀 양자점을 포함하는 태양전지
WO2000017104A1 (en) Method of making silicon clathrates
CN102757035B (zh) 一种石墨烯的制备方法
KR20140056570A (ko) 마이크로웨이브를 이용한 도핑된 그래핀의 제조방법
WO2023013938A1 (ko) 팽창성 흑연을 사용한 전도성 박막의 제조방법
CN107937949A (zh) 制备二维层状垂直异质结的方法
KR20220095798A (ko) 열 플라즈마를 이용하여 제조되는 질소 및 황이 도핑 된 탄소 소재 및 그 소재를 이용하는 그래핀 잉크
WO2022131695A1 (ko) 리튬 이온 이차전지용 음극재, 이의 제조방법 및 이를 포함하는 리튬 이온 이차전지
WO2022065836A1 (ko) 건·습식 그래핀 플레이크 조성물의 제조방법 및 이에 따라 제조된 그래핀 플레이크 조성물
Ono et al. Thermal annealing effects on graphene/n-Si Schottky junction solar cell: removal of PMMA residues
WO2024043746A1 (ko) 리튬 이차전지용 양극 활물질
WO2022045756A1 (ko) 슈퍼 커패시터 전극 소재 및 이의 제조방법
WO2023224171A1 (ko) 피롤 표면처리된 맥신을 구비하는 슈퍼캐패시터 및 이의 제조방법
WO2022131595A1 (ko) 플렉서블 전극 소재 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069693.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860923

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010860923

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13988289

Country of ref document: US

Ref document number: 2010860923

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013541174

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE