WO2012081569A1 - Light emitting element, light adjusting element, display device, and lighting device - Google Patents

Light emitting element, light adjusting element, display device, and lighting device Download PDF

Info

Publication number
WO2012081569A1
WO2012081569A1 PCT/JP2011/078765 JP2011078765W WO2012081569A1 WO 2012081569 A1 WO2012081569 A1 WO 2012081569A1 JP 2011078765 W JP2011078765 W JP 2011078765W WO 2012081569 A1 WO2012081569 A1 WO 2012081569A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting element
light emitting
concave mirror
emitted
Prior art date
Application number
PCT/JP2011/078765
Other languages
French (fr)
Japanese (ja)
Inventor
梅中 靖之
豪 鎌田
柴田 諭
昇平 勝田
大祐 篠崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012081569A1 publication Critical patent/WO2012081569A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/006Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to produce indicia, symbols, texts or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a light emitting element, a light control element, a display device, and a lighting device.
  • This application claims priority based on Japanese Patent Application No. 2010-280263 filed in Japan on December 16, 2010, the contents of which are incorporated herein by reference.
  • a light emitting element having a light source such as a light emitting diode (hereinafter abbreviated as LED) is known.
  • a light-emitting element having a configuration of a reflective light-emitting diode that includes a light source mounted on a substrate and has a reflective surface that reflects light emitted from the light source and reflects it to the outside is disclosed. (See Patent Document 1 below). This light emitting element extracts light from the normal direction of the LED mounting substrate.
  • a light emitting element having a light source mounted on a substrate and an orientation control member having a plurality of incident surfaces and reflecting surfaces is disclosed (the following patent document) 2). This light emitting element extracts light from a direction different from the normal direction of the LED mounting substrate.
  • Patent Document 1 can extract light having directivity, it cannot extract light obliquely with respect to the normal line of the LED mounting substrate.
  • a light emitting element is attached to one surface of an object (for example, a surface to which the light emitting element is attached, such as an end face of a light guide plate)
  • light cannot be extracted in an oblique direction with respect to the normal of the one surface of the object.
  • the technique of Patent Document 2 cannot extract light having directivity. Therefore, the light-emitting element can be applied to an application such as a lighting device that hardly requires light having high directivity, but cannot be applied to a device that requires light having high directivity.
  • An aspect of the present invention is made to solve the above-described problem, and provides a light-emitting element capable of extracting light with high directivity in an oblique direction with respect to a normal line of one surface of an object.
  • Another object is to provide a light control element that can obtain a sufficient amount of light by using the light emitting element.
  • Another object is to provide a display device that can display brightly and with high contrast by using the above light control element.
  • a light-emitting element includes a mounting surface for mounting on a light guide, and the light-emitting element includes a package in which a recess is formed, and the recess in the package. And a light source disposed at the focal point of the concave mirror, and a straight line connecting the central point of the concave mirror and the focal point obliquely intersects the normal of the mounting surface Yes.
  • the straight line may coincide with a normal line of a light emission surface of the light source.
  • the concave mirror may be a parabolic mirror, and the straight line may coincide with a rotational symmetry axis of the parabolic mirror.
  • the light-emitting element further includes a reflection mirror, and the reflection mirror is disposed such that the light source is disposed between the concave mirror and the reflection mirror, and the reflection mirror is the concave surface. Light from the light source emitted in a direction different from the mirror may be reflected toward the concave mirror.
  • the light-emitting element further includes a light transmissive member that transmits light emitted from the light source, and the light source is embedded in the concave portion of the package by the light transmissive member,
  • the light transmission member may form the mounting surface.
  • the light-emitting element according to one embodiment of the present invention may further include a lid member, the lid member may form the attachment surface, and the lid member may be disposed so as to close the recess.
  • the light source may be attached to the back surface of the lid member.
  • the light control device includes an illumination unit capable of controlling the amount of emitted light, and a light guide that receives the light emitted from the illumination unit and propagates the light while totally reflecting the light inside.
  • the light guide has a plurality of light extraction regions for extracting the light to the outside while the light emitted from the illumination unit is propagated while being totally reflected inside the light guide, At least two light extraction regions of the plurality of light extraction regions have different incident angle ranges in which light emitted from the illumination unit can be extracted to the outside, and the light guide is emitted from the illumination unit
  • the light is configured to propagate inside the light guide at a plurality of different propagation angles
  • the illumination unit includes a light emitting element having an attachment surface for attaching to the light guide, and the light emitting element includes a recess.
  • a package formed with the package A concave mirror provided in the concave portion and a light source disposed at the focal point of the concave mirror, and a straight line connecting the center point of the concave mirror and the focal point obliquely intersects with the normal of the mounting surface is doing.
  • the end surface of the light guide is orthogonal to the surface on which the light extraction region is provided, and the light emitting device is disposed on the end surface of the light guide.
  • a plurality of light emitting elements are arranged, and each of the plurality of light emitting elements has the straight line in a different direction with respect to the light extraction region so that the emitted light is incident on the light extraction region at different incident angles. It may be arranged so that.
  • a display device includes the above-described dimming element and a display element that performs display using light emitted from the dimming element.
  • a lighting device includes the above-described dimming element.
  • a light emitting element capable of extracting light with high directivity in an oblique direction with respect to the normal line of one surface of an object.
  • a light control element that can obtain a sufficient amount of light by using the light emitting element.
  • a bright display device with high contrast can be realized by using the dimmer element.
  • FIG. 13B is a cross-sectional view taken along the line A-A ′ of FIG. 13A showing an example of a lighting device.
  • FIG. 1 is a perspective view showing a liquid crystal display device and a backlight according to the present embodiment.
  • 2A to 2C are diagrams for explaining the principle of light emitted from each light extraction region in the backlight according to the present embodiment.
  • FIG. 2A shows a case where light is emitted from the first light extraction area RA.
  • FIG. 2B shows a case where light is emitted from the second light extraction region RB.
  • FIG. 2C shows a case where light is emitted from the third light extraction region RC.
  • FIG 3 is a cross-sectional view showing the light emitting device of this embodiment.
  • 4A to 4C are cross-sectional views showing the light-emitting elements of this embodiment.
  • FIGS. 5A to 5C are simulation results showing the relationship between the angle and the amount of emitted light in each light-emitting element of this embodiment.
  • the scale of the size may be varied depending on the component.
  • the liquid crystal display device 1 (display device) of the present embodiment includes a liquid crystal panel 2 (display element), a backlight 3 (light control element) disposed on the back side of the liquid crystal panel 2, have.
  • the liquid crystal panel 2 is a transmissive liquid crystal panel that performs display using light emitted from the backlight 3. The user can view the display from the opposite side of the backlight 3, that is, from the upper side of the liquid crystal panel 2 in FIG.
  • the configuration of the liquid crystal panel 2 is not particularly limited, and may be an active matrix liquid crystal panel including a switching thin film transistor (hereinafter abbreviated as TFT) for each pixel.
  • TFT switching thin film transistor
  • a simple matrix type liquid crystal panel that does not include a TFT may be used.
  • the liquid crystal panel is not limited to a transmissive liquid crystal panel, and may be a transflective liquid crystal panel.
  • the display mode is not particularly limited, and there are various display modes such as VA (Vertical Alignment) mode, TN (Twisted Nematic) mode, STN (Super Twisted Nematic) mode, IPS (In-Plane Switching) mode, etc.
  • VA Vertical Alignment
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • IPS In-Plane Switching
  • the backlight 3 of the present embodiment does not emit light uniformly from the entire surface of the light guide, which will be described later, but emits light for each light extraction region in which the entire surface is divided into a plurality (9 in this embodiment).
  • the amount of light emitted can be controlled. That is, in the backlight 3 of the present embodiment, each of the plurality of light extraction regions has a dimming function. As a whole of the backlight 3, it is possible to emit light only in a specific light extraction region or not. Alternatively, the amount of light emitted from a specific light extraction region can be changed with respect to the amount of light emitted from another light extraction region.
  • the backlight 3 includes light emitting elements 7a, 7b, and 7c.
  • light emitting elements 7a, 7b, and 7c are light emitting elements 7a, 7b, and 7c.
  • FIG. 3 is a cross-sectional view showing the light emitting element.
  • FIG. 3 shows a basic configuration (light emitting element 7) of three light emitting elements 7a, 7b, 7c provided on the first end face 5c.
  • the light emitting element 7 includes a package 71, a concave mirror 72, a light source 73, a reflection mirror 74, and a light transmission member 75, as shown in FIG.
  • the concave mirror 72 is provided in the concave portion 71 a of the package 71.
  • the shape of the concave mirror 72 is a curved shape that follows the shape of the concave portion 71 a of the package 71.
  • the concave mirror 72 is a parabolic mirror that reflects the light emitted from the light source 73.
  • the light source 73 is embedded in the recess 71 a of the package 71 by a light transmitting member 75 that transmits light emitted from the light source 73.
  • symbol Pf is the focal point of the concave mirror 72
  • symbol Pc is the central point of the concave mirror 72
  • symbol CL1 is the central axis of the concave mirror 72 (the central point Pc of the concave mirror 72 and the focal point Pf of the concave mirror 72).
  • the line CL) is a normal line of the mounting surface 71 b
  • the sign ⁇ is an inclination angle of the concave mirror 72.
  • the inclination angle of the concave mirror 72 is an angle formed by the central axis of the concave mirror 72 and the normal line of the mounting surface 71b.
  • a recess 71 a is formed in the package 71.
  • the package 71 has a rectangular parallelepiped shape, and has a mounting surface 71b on the side from which light is emitted (at the end of the portion where the recess 71a is formed).
  • the attachment surface 71 b is a flat surface that serves as an attachment surface when the light emitting element 7 is attached to the first end surface 5 c of the light guide 5.
  • the shape of the concave portion 71a of the package 71 is a curved shape that is concave with respect to the light source 73 when viewed from the normal surface of the virtual surface including the central axis CL1 of the concave mirror 72 and the normal line CL2 of the mounting surface 71b. Yes. That is, the slope of the tangent line of the curve gradually becomes gentler as it approaches the center point of the recess 71a.
  • the shape of the recess 71a of the package 71 is formed by a method such as resin injection molding using a mold having a convex shape obtained by inverting the shape of the recess 71a. Or you may form the shape of the recessed part 71a of the package 71 by cutting the surface of the originally flat resin member, for example.
  • the central axis CL1 of the concave mirror 72 obliquely intersects the normal line CL2 of the mounting surface 71b with a predetermined angle (inclination angle) ⁇ . Further, the central axis CL1 of the concave mirror 72 coincides with the rotation target axis of the parabolic mirror.
  • the size of the parabolic mirror (the diameter of a circle viewed from a direction parallel to the central axis CL1) is set to a diameter of 8 mm.
  • the radius of curvature of the parabolic mirror is set to 5.4 mm.
  • the concave mirror 72 is a parabolic mirror
  • it is not limited to this, and may be a spherical mirror, for example.
  • the concave mirror 72 is not limited to a circular rotationally symmetric shape as viewed from a direction parallel to the central axis CL1 of the concave mirror 72, and is parallel to the central axis CL1 of the concave mirror 72 such as an elliptical mirror. It is also possible to select a non-rotationally symmetric shape that is non-circular when viewed from the direction.
  • the light source 73 is a substantially rectangular parallelepiped chip LED (surface mounting LED).
  • the central axis CL1 of the concave mirror 72 coincides with the normal line of the light emission surface of the light source 73 (the normal line of the upper surface of the chip LED).
  • a reflection mirror 74 is provided on the side of the light source 73 opposite to the side where the concave mirror 72 is disposed. That is, the light source 73 is disposed between the concave mirror 72 and the reflection mirror 74.
  • the reflection mirror 74 can be formed on the mounting substrate of the light source 73 by, for example, forming a metal film such as aluminum by sputtering or vapor deposition.
  • the reflection mirror 74 reflects light from the light source 73 emitted in a different direction from the concave mirror 72 toward the concave mirror 72.
  • the size of the chip LED one side of a square viewed from a direction parallel to the central axis CL1
  • the size of the reflecting mirror is set to 1 mm.
  • a part of the reflection mirror 74 is provided with a printed wiring board on which the light source 73 is mounted.
  • a portion corresponding to the back surface of the light source 73 can be a mounting region, and the other portion (a peripheral portion of the mounting region) can be a reflection region.
  • Various wirings formed in the mounting region of the reflection mirror 74 include a printed wiring board on which the light emitting elements 7a, 7b, and 7c described above are mounted, and a control including a driving IC that is responsible for driving and controlling the light emitting elements 7a, 7b, and 7c. It is electrically connected to the part.
  • the light source 73 is embedded in the recess 71 a of the package 71 with a light transmitting member 75.
  • the light transmissive member 75 can be formed by the following method.
  • a concave mirror 72 is disposed in the recess 71 a of the package 71, and a light source 73 and a reflection mirror 74 are disposed inside the package 71.
  • a resin having optical transparency such as an acrylic resin is injected into the package 71 and cured.
  • the refractive index of the light transmitting member 75 is set to 1.5, which is the same value as the refractive index nWG (1.5) of the light guide 5.
  • the transmittance can be set to a value different from the refractive index nWG (1.5) of the light guide 5.
  • the transmittance of the light transmissive member 75 can be changed by selecting a material having a different refractive index when the light transmissive member 75 is formed, or by adding a low refractive index material to the resin material. This can be done by changing the concentration of the low refractive index material.
  • the backlight 3 is composed of three backlight units 4 having substantially the same dimensions, shape, and configuration.
  • the three backlight units 4 are in a direction orthogonal to the longitudinal direction of the light guide 5 described later, that is, a direction orthogonal to the direction in which the three light extraction regions RA, RB, RC of the light guide 5 are arranged (FIG. 1). In the y-axis direction). Therefore, the backlight 3 has a total of nine light extraction regions RA, RB, RC, three in each of the horizontal and vertical directions on the screen of the liquid crystal display device 1.
  • Each backlight unit 4 includes an illumination unit 6 and a light guide 5.
  • the illumination unit 6 includes a plurality (three in the present embodiment) of light emitting elements 7a, 7b, and 7c.
  • the light guide 5 is composed of a parallel plate made of a resin having optical transparency such as acrylic resin.
  • the backlight 3 shows the example comprised from the three backlight units 4 by which the light guide was made into the different body here, it has a total of nine light extraction area
  • the light guide may have an integral structure. Even with this structure, it is possible to select the light extraction regions RA, RB, and RC for emitting light by using a light emitting element with high directivity.
  • Three light emitting elements 7a, 7b, 7c are installed on one end face of the light guide 5 with the light emission side facing the light guide 5 side.
  • the light guide 5 receives light emitted from the light emitting elements 7a, 7b, and 7c.
  • the light guide 5 reflects the incident light from the inside to the opposite end surface (from the ⁇ x direction to the + x direction in FIG. 1) from the end surface side where the light emitting elements 7a, 7b, 7c are installed. It has the function of propagating and taking it out to the outside space.
  • the three light emitting elements 7a, 7b, and 7c can be individually controlled to be turned on / off, and the amount of emitted light can be controlled.
  • the backlight 3 includes a printed wiring board on which the light emitting elements 7a, 7b, and 7c are mounted, and a driving IC that is responsible for driving and controlling the light emitting elements 7a, 7b, and 7c.
  • a control unit and the like are provided.
  • the light emitting elements 7a, 7b, and 7c light emitting elements having a half value width of about 5 ° with respect to the spread angle of the emitted light while the light is guided through the light guide 5 can be used.
  • each light extraction region RA, RB, RC low refractive index bodies 8a, 8b, a refractive index body 9, and a light scattering body 10 are stacked in this order.
  • the low refractive index bodies 8 a and 8 b have a refractive index lower than that of the light guide 5.
  • the refractive index body 9 has a refractive index equal to the refractive index of the light guide 5.
  • the light scatterer 10 scatters the light emitted from the low refractive index bodies 8 a and 8 b and the refractive index body 9.
  • the respective light extraction regions are directed from the side closer to the light emitting elements 7a, 7b, 7c to the side farther from the first light extraction region RA, the second light extraction region RB, and the third light extraction. This is referred to as region RC.
  • the main surface of the light guide 5 provided with the light extraction regions RA, RB, RC is the first main surface 5a
  • the main surface opposite to the first main surface 5a is the second main surface 5b
  • the light emitting element 7a is the first end surface 5c
  • the end surface of the light guide 5 provided with 7b and 7c is referred to as a first end surface 5c
  • the end surface opposite to the first end surface 5c is referred to as a second end surface 5d.
  • the low refractive index bodies 8 a and 8 b both have a refractive index lower than that of the light guide 5, and the refractive index body 9 has a refractive index equal to the refractive index of the light guide 5.
  • the low refractive index bodies 8a and 8b and the refractive index body 9 have different refractive indexes.
  • the low refractive index bodies 8a and 8b and the refractive index body 9 are arranged along the propagation direction of light emitted from the light emitting elements 7a, 7b and 7c and incident on the light extraction regions RA, RB and RC (FIG.
  • the refractive index is relatively low, and the refractive index is relatively high.
  • the refractive index nWG of the light guide 5 is 1.5
  • the refractive index nA of the first low refractive index body 8a provided in the first light extraction region RA is 1.3
  • the refractive index nB of the second low refractive index body 8b provided in the second light extraction region RB is 1.4
  • the refractive index nC of the refractive index body 9 provided in the third light extraction region RC is 1.5. Is set.
  • the first method is to form the low refractive index bodies 8a and 8b and the refractive index body 9 using different materials.
  • an acrylic resin is used as the material of the light guide 5
  • Kuraray Co., Ltd. the material of the refractive index body 9.
  • the light scatterer 10 may be merely disposed on the light guide 5.
  • the second technique is to use a material containing a low refractive index material in a predetermined substrate and adjust the refractive index by varying the concentration of the low refractive index material.
  • Low refractive index materials such as powder (registered trademark, refractive index: 1.27) or airgel (registered trademark, refractive index: 1.27) manufactured by Jason Wells are included, and the concentration of these low refractive index materials is different.
  • Two types of liquids are prepared. Each liquid material can be selectively applied on the light guide 5 and cured.
  • a light scatterer 10 is laminated on the low refractive index bodies 8 a and 8 b and the refractive index body 9.
  • the light scatterer 10 has a function of scattering the light incident from the low refractive index bodies 8 a and 8 b and the refractive index body 9 and extracting the light to the external space of the backlight 3.
  • the light scatterer 10 a commercially available light scattering film in which scattering beads or the like are coated on a base film can be used.
  • the light scattering body 10 can be formed by sticking a light scattering film on the low refractive index bodies 8 a and 8 b and the refractive index body 9.
  • the first end surface 5 c of the light guide 5 is a right-angle surface having the same angle with respect to the first main surface 5 a.
  • Light emitting elements 7a, 7b, 7c are fixed to the first end surface 5c of the light guide 5 via an optical adhesive. Therefore, three light emitting elements 7 a, 7 b, 7 c are arranged in the short direction of the light guide 5 over the entire first end face 5 c.
  • the concave mirror 72 With such a configuration, most of the light emitted from the light source 73 is directly incident on the concave mirror 72.
  • light from the light source 73 emitted in a different direction from the remaining concave mirror 72 is reflected by the reflection mirror 74 and enters the concave mirror 72.
  • the light incident on the concave mirror 72 is reflected by the concave mirror 72 toward the mounting surface 71b. Since the light source 73 is disposed at the focal point Pc of the concave mirror 72, the light reflected by the concave mirror 72 is collimated.
  • the light collimated by the concave mirror 72 propagates through the light transmitting member 75 and is extracted from the mounting surface 71b.
  • the light emission surface of the light transmitting member 75 is the mounting surface.
  • the angle formed by the central axis CL1 of the concave mirror 72 and the normal line CL2 of the mounting surface 71b is the largest.
  • FIG. 2A is a sectional view taken along the line A-A ′ of FIG.
  • FIG. 2B shows a cross-sectional view along the line B-B ′ of FIG. 1.
  • FIG. 2C shows a cross-sectional view taken along the line C-C 'of FIG.
  • Each light emitting element 7a, 7b, 7c is fixed so that the light La, Lb, Lc is incident on the first end face 5c obliquely.
  • the light La, Lb, Lc emitted from each light emitting element 7a, 7b, 7c repeats total reflection between the first main surface 5a and the second main surface 5b of the light guide 5, and the first end surface 5c. Is propagated from the side toward the second end face 5d.
  • an angle formed by the optical axis with respect to a virtual horizontal plane passing through the center in the thickness direction of the light guide plate is defined as a propagation angle ⁇ .
  • the refractive index of the light transmission member 75 is set to 1.5, which is the same value as the refractive index nWG (1.5) of the light guide 5, the propagation angle ⁇ is equal to the inclination angle ⁇ . Therefore, as shown in FIG. 2A, the propagation angle phi A of the light La from the first light emitting element 7a becomes 37 °. As shown in Figure 2B, propagation angle phi B light Lb from the second light emitting element 7b becomes 26 °. As shown in FIG.
  • propagation angle phi C of the light Lc from the third light-emitting element 7c becomes 15 °. Therefore, while each light La, Lb, Lc is propagated from the first end face 5c side toward the second end face 5d side, the first light extraction area RA, the second light extraction area RB, and the third light extraction area RC. In this order, the light enters the light extraction areas RA, RB, RC.
  • the thickness (dimension in the z-axis direction) is drawn sufficiently larger than the longitudinal dimension (dimension in the x-axis direction) of the light guide 5 for easy viewing. Further, only the central axis of the light emitted from each light emitting element 7a, 7b, 7c is drawn. For this reason, it may seem that the light does not necessarily enter each of the light extraction regions RA, RB, RC, but actually the thickness is sufficiently small with respect to the longitudinal dimension of the light guide 5 and each light emitting element 7a. , 7b, 7c have a finite beam diameter, so that the light La, Lb, Lc is reliably incident on each of the light extraction areas RA, RB, RC.
  • the illuminating unit 6 of the present embodiment includes three light emitting elements 7a, 7b, and 7c.
  • Lights La, Lb, and Lc from the light emitting elements 7a, 7b, and 7c are converted into the light extraction regions RA,
  • Lights La, Lb, and Lc are extracted from RB and RC and are incident on the light extraction regions RA, RB, and RC at an incident angle including an incident angle at which the light can be extracted.
  • C 15 °).
  • the light La, Lb, and Lc from each light emitting element 7a, 7b, and 7c are the light guide 5 in each light extraction area
  • region RA, RB, RC, each low refractive index body 8a, 8b, and the refractive index body 9 Consider the critical angle when entering the interface.
  • the incident angle range in which light can be extracted outside in the first light extraction area RA is 60. Less than 1 °, the incident angle range in which light can be extracted outside in the second light extraction region RB is less than 69.0 °, and the incident angle range in which light can be extracted outside in the third light extraction region RC is all angles. It becomes a range.
  • the two low refractive index bodies 8a and 8b and the refractive index body 9 provided in the three light extraction regions RA, RB, and RC of the present embodiment are incident on the light extraction regions RA, RB, and RC.
  • the light is arranged in the order of relatively low refractive index to relatively high refractive index.
  • the three light extraction regions RA, RB, and RC have different incident angle ranges in which light can be extracted to the outside.
  • the three light extraction areas RA, RB, and RC have a relatively narrow incident angle range that can be extracted from a light extraction area that has a relatively narrow incident angle range along the propagation direction of incident light.
  • the incident angle range that can be extracted in the first light extraction region RA is less than 60.1 °
  • the incident angle range that can be extracted in the second light extraction region RB is less than 69.0 °
  • the incident angle range that can be extracted in the third light extraction region RC is the entire angle range.
  • the incident angle ⁇ A of the light La from the first light emitting element 7a with respect to the first major surface 5a is 53 °.
  • the incident angle ⁇ A with respect to the first major surface 5a is no matter how many times the light La from the first light emitting element 7a repeats total reflection. Always 53 °.
  • the critical angle ⁇ A 60.1 °
  • the light Lb cannot be transmitted through the interface between the light guide 5 and the first low refractive index body 8a, and is totally reflected.
  • the critical angle ⁇ B here is 69.0 °
  • the light Lb passes through the interface between the light guide 5 and the second low refractive index body 8b and is incident on the second low refractive index body 8b. , Extracted from the light scatterer 10 to the outside. In this way, substantially the entire amount of the light Lb emitted from the second light emitting element 7b can be extracted from the second light extraction region RB.
  • the backlight 3 of the present embodiment can extract light emitted from a predetermined LED only from a predetermined light extraction area.
  • the light Lc from the third light emitting element 7c is the first light Lc.
  • the light Lc from the third light emitting element 7c reaches the first light extraction region RA or the second light extraction region RB, and the interface between the light guide 5 and the first low refractive index body 8a or the second low refractive index body 8b.
  • incident angle ⁇ C 75 °
  • the incident angle ⁇ C is larger than the critical angle ⁇ A and the critical angle ⁇ B , so that the light Lc cannot be transmitted through each interface and is totally reflected.
  • the light Lc from the third light emitting element 7c reaches the third light extraction region RC, the light Lc passes through the interface between the light guide 5 and the refractive index body 9 and is incident on the refractive index body 9, and thereafter , Extracted from the light scatterer 10 to the outside. In this way, substantially the entire amount of the light Lc emitted from the third light emitting element 7c can be extracted from the third light extraction region RC.
  • the three light extraction areas RA are determined depending on which of the three light emitting elements 7a, 7b, and 7c of the backlight unit 4 is lit. , RB, and RC, the light extraction area from which light is extracted, that is, which light extraction area RA, RB, RC is allowed to emit light can be appropriately selected. Further, by controlling the amount of light emitted from each light emitting element 7a, 7b, 7c, the amount of light extracted from the selected light extraction regions RA, RB, RC, that is, the brightness of the selected light extraction region. Can be adjusted.
  • the light emitting element 7a of the present embodiment since the light source 73 is disposed at the focal point Pf of the concave mirror 72, the light emitted from the light source 73 and reflected by the concave mirror 72 is collimated. The light collimated by the concave mirror 72 is emitted from the mounting surface 71 b of the package 71. Therefore, light with high directivity can be extracted from the mounting surface 71 b of the package 71.
  • the light cannot be extracted in an oblique direction with respect to the normal line of the LED mounting substrate.
  • a light-emitting element is attached to one surface of an object (for example, a surface on which a light-emitting element is attached, such as an end face of a light guide plate)
  • light cannot be extracted in an oblique direction with respect to the normal of the one surface of the object .
  • the light emitting element 7a of the present embodiment since the central axis CL1 of the concave mirror 72 obliquely intersects the normal line CL2 of the mounting surface 71b of the package 71, the light is normal to one surface of the object.
  • the light emitting element 7a of the present embodiment can be taken out obliquely. Therefore, according to the light emitting element 7a of the present embodiment, light with high directivity can be extracted in an oblique direction with respect to the normal line of one surface of the object. In addition, in order to extract light in an oblique direction with respect to the normal of one surface of the object, it is not necessary to cut one surface of the object obliquely. Therefore, the shape of the object becomes simple, and processing is not time-consuming.
  • the central axis CL1 of the concave mirror 72 coincides with the normal line of the light exit surface of the light source 73. Therefore, the light emitted from the light source 73 can be extracted more efficiently than when the central axis CL1 of the concave mirror 72 is deviated from the normal line of the light emission surface of the light source 73.
  • the concave mirror 72 is a parabolic mirror and the light source 73 is disposed at the focal point Pf of the concave mirror 72, the light emitted from the light source 73 can be sufficiently collimated and extracted. Therefore, it becomes easy to extract light with high directivity.
  • a reflection mirror 74 is provided on the side opposite to the side where the concave mirror 72 of the light source 73 is disposed. Therefore, light reflected from the side opposite to the side where the concave mirror 72 of the light source 73 is disposed (light from the light source 73 not directly incident on the concave mirror 72) is reflected toward the concave mirror 72 by the reflection mirror 74.
  • the reflection mirror 74 is not provided, the light emitted from the side opposite to the side where the concave mirror 72 of the light source 73 is disposed is not reflected by the concave mirror 72, and the package 71 The light that has not been collimated is extracted as it is from the mounting surface 71b. Therefore, by providing the reflecting mirror 74, light with high directivity can be reliably extracted.
  • the position and posture of the light source 73 can be stably held. For example, when the light emitting element 7a receives an impact from the outside, the position of the light source 73 is shifted or the posture of the light source 73 is inclined (the light source 73 is shifted from the focal point Pf, or the normal line of the light emission surface of the light source 73). Can be prevented from deviating from the central axis CL1 of the concave mirror 72).
  • the configuration in which the reflection mirror 74 is provided on the side opposite to the side where the concave mirror 72 of the light source 73 is disposed is described as an example.
  • the configuration is not limited thereto.
  • the light from the light source emitted in a direction different from the concave mirror is directed in the same direction as the traveling direction of the light collimated by the concave mirror.
  • a collimating lens may be provided.
  • the light emitted from the side opposite to the side where the concave mirror of the light source is disposed (the light from the light source not directly incident on the concave mirror) is collimated by the collimating lens, and the mounting surface of the package
  • the collimated light is extracted from. Therefore, by providing a collimating lens instead of the reflecting mirror, light with high directivity can be reliably extracted.
  • FIGS. 4A to 5C are cross-sectional views showing the light-emitting elements of this embodiment.
  • FIG. 4A is a cross-sectional view showing the first light emitting element 7a.
  • FIG. 4B is a cross-sectional view showing the second light emitting element 7b.
  • FIG. 4C is a cross-sectional view showing the third light emitting element 7c.
  • FIGS. 4A to 4C are cross-sectional views showing the light-emitting elements of this embodiment.
  • FIG. 4A is a cross-sectional view showing the first light emitting element 7a.
  • FIG. 4B is a cross-sectional view showing the second light emitting element 7b.
  • FIG. 4C is a cross-sectional view showing the third light emitting element 7c.
  • FIGS. 5A to 5C are simulation results showing the relationship between the angle and the amount of emitted light in each light-emitting element of this embodiment.
  • FIG. 5A is a graph showing how light is extracted in the first light emitting element 7a with an inclination angle.
  • FIG. 5B is a graph showing a state of light extraction in the second light emitting element 7b.
  • FIG. 5C is a graph showing a state of light extraction in the third light emitting element 7c.
  • 5A to 5C is an angle (inclination angle) ⁇ [°] formed by the central axis of the concave mirror and the normal of the mounting surface.
  • the vertical axis of the graphs in FIGS. 5A to 5C represents the amount of luminous flux [lumen].
  • the basic configuration is the same as that of the light emitting device of the present embodiment, and the light source and the reflection mirror are embedded in the concave portion of the package with resin (light transmitting member).
  • the simulation conditions were as follows: in each light emitting element 7a, 7b, 7c, the size of the parabolic mirror (diameter of the circle viewed from the direction parallel to the central axis CL1) was 8 mm in diameter, and the size of the reflecting mirror (parallel to the central axis CL1).
  • the side of the square viewed from one direction) is 1 mm
  • the size of the chip LED one side of the square viewed from the direction parallel to the central axis CL1
  • the radius of curvature of the parabolic mirror is 5.4 mm
  • the embedded resin The refractive index was 1.5.
  • emitted toward the light guide 5 was calculated
  • the maximum amount of light flux emitted from the first light emitting element 7a was obtained at an inclination angle of 36.898 °. Further, the full width at half maximum (FWHM) of the intensity distribution of light emitted from the first light emitting element 7a was 3.2 °.
  • the maximum amount of light flux emitted from the second light emitting element 7b was obtained at an inclination angle of 25.928 °.
  • the half width (FWHM) of the intensity distribution of the light emitted from the second light emitting element 7b was 3.2 °.
  • the maximum amount of emitted light flux in the third light emitting element 7c was obtained at an inclination angle of 14.958 °. Further, the full width at half maximum (FWHM) of the intensity distribution of the light emitted from the third light emitting element 7c was 3.2 °.
  • FIG. 6 is a cross-sectional view showing the light emitting device of this embodiment.
  • the same components as those in FIG. 3 used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the light source 73 and the reflection mirror 74 are embedded in the recess 71 a of the package 71 by the light transmission member 75, and the light emission surface of the light transmission member 75 is attached to the first end surface 5 c of the light guide 5. It was a surface.
  • the light emitting element 107 of the present embodiment as shown in FIG. 6, the light source 73 and the reflection mirror 74 are attached to the back surface 76 a of the lid member 76, and the lid member 76 is partly provided on the recess 71 a of the package 71. Is fitted, and the light emission surface (front surface) 76b of the lid member 76 is an attachment surface.
  • the lid member 76 is a member for closing the recess 71 a of the package 71.
  • the light emission surface 76b of the lid member 76 is a flat surface parallel to the mounting surface 71b of the package 71 described above.
  • the back surface 76a of the lid member 76 is a flat surface with the central axis CL1 of the concave mirror 72 as a normal line.
  • the shape of the lid member 76 is formed by a method such as injection molding of resin using a mold having a predetermined shape. Alternatively, the shape of the lid member 76 may be formed, for example, by cutting the surface of an originally flat resin member.
  • the recess 71a of the package 71 closed by the lid member 76 has a so-called hollow structure in which an air layer 175 is enclosed.
  • the concave portion 71a of the package 71 can be a hollow structure, and a light transmitting member can be arranged in the same manner as in the configuration of the first embodiment.
  • the light transmissive member is formed by disposing a concave mirror 72 in the concave portion 71a of the package 71, and injecting and curing a light transmissive resin such as an acrylic resin into the package 71, for example. can do.
  • a light transmissive resin such as an acrylic resin
  • the transmittance of the light transmitting member can be a value different from the refractive index nWG (1.5) of the light guide 5.
  • the liquid material can be taken in and out of the package 71 only by removing the lid member 76 by making the light transmitting member a liquid material. It becomes easy to change the transmittance of the transmissive member.
  • the lid member 76 is provided, it is possible to prevent impurities from entering the package 71 from the outside.
  • FIGS. 7, 8A and 8B a third embodiment of the present invention will be described with reference to FIGS. 7, 8A and 8B.
  • the basic configuration of the light emitting device of this embodiment is the same as that of the first embodiment, and only the shape of the concave portion of the package and the shape of the concave mirror are different from those of the first embodiment. Therefore, in this embodiment, description of the basic structure of a light emitting element is abbreviate
  • FIG. 7 is a perspective view showing the light emitting device of this embodiment.
  • 8A and 8B are schematic views showing the light emitting device of this embodiment.
  • FIG. 8A is a cross-sectional view of the light-emitting element.
  • FIG. 8B is a plan view of the light emitting element. 7, 8 ⁇ / b> A, and 8 ⁇ / b> B, the same components as those in FIG. 3 used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the shape of the recess 71 a of the package 71 is concave with respect to the light source 73 as viewed from the normal of the virtual plane including the central axis CL 1 of the concave mirror 72 and the normal CL 2 of the mounting surface 71 b. It was like a curve.
  • the concave mirror 72 is a parabolic mirror, and the shape viewed from a direction parallel to the central axis CL1 of the concave mirror 72 is a circular rotationally symmetric shape.
  • the concave portion 271a of the package 271 has a curved shape that is concave with respect to the light source 73.
  • the shape when the concave portion 271a is cut by a virtual plane including the central axis CL1 of the concave mirror 272 and the normal line CL2 of the mounting surface 271b is the same. Further, the shape viewed from the direction parallel to the central axis CL1 of the concave mirror 272 is rectangular.
  • the reflected light from the concave mirror 272 has directivity on the virtual plane (XZ plane) as shown in FIG. 8A, and a plane (XY) orthogonal to the virtual plane as shown in FIG. 8B. In the plane). Therefore, it is possible to extract light having directivity in the vertical direction and spreading in the horizontal direction.
  • FIG. 9 is an exploded perspective view showing a schematic configuration of a liquid crystal display device which is a configuration example of the display device.
  • FIG. 10A, FIG. 10B, FIG. 11A, and FIG. 11B are diagrams showing examples of backlight arrangement in a liquid crystal display device.
  • the liquid crystal display device 121 of this configuration example includes a lower case 122, a reflecting plate 123, a backlight 3 (light control element), a diffusion plate 124, and a liquid crystal panel 2 (display element). And an upper case 125. That is, a laminated body of the reflecting plate 123, the backlight 3, the diffusion plate 124, and the liquid crystal panel 2 is accommodated in the lower case 122 and the upper case 125.
  • the reflector 123 on the opposite side of the backlight 3 from the liquid crystal panel 2
  • light leaking from the backlight 3 to the opposite side of the liquid crystal panel 2 can be reflected and contributed to display.
  • the diffusion plate 124 between the backlight 3 and the liquid crystal panel 2
  • luminance unevenness of the backlight 3 can be reduced.
  • the reflecting plate 123 and the diffusing plate 124 are not necessarily used.
  • FIG. 10A a configuration in which a plurality of backlights 3 are arranged in the screen of the liquid crystal display device 121 so that the light extraction areas RA, RB, RC are arranged in the vertical direction of the screen can be employed.
  • FIG. 10B a configuration in which a plurality of backlights 3 are arranged so that the light extraction areas RA, RB, RC are arranged in the horizontal direction of the screen in the screen of the liquid crystal display device 127 is adopted. Can do.
  • the light extraction regions RA, RB, RC are provided only in a part in the longitudinal direction, and the other portions are elongated rod-shaped light guides 135 that are regions where light is guided.
  • a backlight 137 that combines a plurality of (three in this example) may be used.
  • regions where the light extraction regions RA, RB, RC are provided are shifted in the longitudinal direction. Therefore, when a plurality of light guides 135 are combined, the light extraction regions RA, RB, and RC are arranged along the longitudinal direction of the light guide 135.
  • a plurality of backlights 137 may be arranged in the screen of the liquid crystal display device 131 so that the light extraction areas RA, RB, RC are arranged in the vertical direction of the screen.
  • a plurality of backlights 137 may be arranged in the screen of the liquid crystal display device 133 so that the light extraction areas RA, RB, RC are arranged in the horizontal direction of the screen.
  • FIG. 12 is a cross-sectional view of the lighting device as the first configuration example.
  • 13A and 13B are diagrams showing a lighting apparatus as a second configuration example.
  • FIG. 13A is a plan view of the lighting apparatus as a second configuration example, and
  • FIG. 13B is a line AA ′ in FIG. 13A. It is sectional drawing of the illuminating device which is the 2nd structural example which follows.
  • the first low refractive index body 8a having a refractive index of 1.3 is formed on the first main surface 5a side of the light guide 5 and the refractive index is on the second main surface 5b side.
  • a second low refractive index body 8b of 1.4 is formed.
  • a light scatterer 10 is stacked on the first low refractive index body 8a and the second low refractive index body 8b.
  • Other configurations are the same as those of the first embodiment.
  • only one first end face 5c is shown, but actually, another one first end face having a different angle with respect to the first main face 5a is formed in the depth direction of the paper.
  • the light emitting element only one light emitting element 7a is shown, but actually another one LED is installed in the depth direction of the drawing.
  • the light emitting element 201 emits light from the first main surface 5a side depending on which one of the two light emitting elements provided on the first end surface 5c of the light guide 5 is lit. It is possible to switch whether light is emitted from the two principal surfaces 5b side. Therefore, it is possible to realize an illumination device that can switch the light emitting surface.
  • a character portion 204 written “SHARP” is formed on one surface of the light guide 5.
  • a first low refractive index body 8a having a refractive index of 1.3 is formed on the first main surface 5a side of the light guide 5, and the character portion 204 is formed.
  • the first low refractive index body 8a is not formed in any other part.
  • a light scatterer 10 is stacked on the first low refractive index body 8a. That is, the character part 204 is a light extraction area in the above embodiment. Other configurations are the same as those of the first embodiment. Although only one first end face 5c is shown in FIG.
  • the lighting device 203 light is emitted from the character part 204 depending on which of the two light emitting elements provided on the first end surface 5 c of the light guide 5 is lit, or other than the character part 204. It is possible to switch whether light is emitted from Therefore, according to this structure, the illuminating device which can be utilized as digital signage which can blink the character part 204, for example is realizable.
  • the technical scope in the aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the aspect of the present invention.
  • three light emitting elements are arranged side by side in the short direction of the light guide (y-axis direction in FIG. 1).
  • a plurality of light emitting elements are arranged in the light guide. May be arranged side by side in the thickness direction (z-axis direction in FIG. 1).
  • the configuration in which the light emitting element is disposed on the end face of the light guide has been described as an example.
  • the present invention is not limited thereto, and the light emitting element can be used alone.
  • refraction of light on the mounting surface of the light emitting element is considered.
  • the mounting surface of the light emitting element is an interface between a light transmitting member having a refractive index of 1.5 and an air layer having a refractive index of 1.0.
  • the inclination angle of the concave mirror is set to about 10 °.
  • an optical member such as a light diffusion film or a prism sheet may be appropriately disposed between the liquid crystal panel and the backlight.
  • a light diffusion film or a prism sheet may be appropriately disposed between the liquid crystal panel and the backlight.
  • these optical members it is possible to further reduce luminance unevenness and adjust the light diffusion angle and direction.
  • the shape, size, number, arrangement, constituent material, manufacturing method, and the like of various components in the above embodiment are not limited to those illustrated in the above embodiment, and can be changed as appropriate.
  • the aspect of the present invention can be used for a liquid crystal display device and other various display devices capable of performing display using a light control element including a light emitting element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

This light emitting element has a mounting surface. The light emitting element is provided with a package in which a recessed part is formed, a concave mirror provided in that recessed part of the package, and a light source disposed at a focal point of the concave mirror. A straight line connecting the center point of the concave mirror and the focal point crosses the normal line of the mounting surface obliquely.

Description

発光素子、調光素子、表示装置および照明装置LIGHT EMITTING ELEMENT, LIGHT ADJUSTING ELEMENT, DISPLAY DEVICE, AND LIGHTING DEVICE
 本発明は、発光素子、調光素子、表示装置および照明装置に関するものである。
 本願は、2010年12月16日に、日本に出願された特願2010-280263号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a light emitting element, a light control element, a display device, and a lighting device.
This application claims priority based on Japanese Patent Application No. 2010-280263 filed in Japan on December 16, 2010, the contents of which are incorporated herein by reference.
 発光素子の一例として、発光ダイオード(Light Emitting Diode,以下、LEDと略記する)等の光源を備えた発光素子が知られている。 As an example of a light emitting element, a light emitting element having a light source such as a light emitting diode (hereinafter abbreviated as LED) is known.
 例えば、発光素子の一例として、基板に実装された光源を備え、光源から射出された光を反射して外部に反射する反射面を有する反射型発光ダイオードの構成を有する発光素子が開示されている(下記の特許文献1参照)。この発光素子は、LED実装基板の法線方向から光の取り出しを行っている。 For example, as an example of a light-emitting element, a light-emitting element having a configuration of a reflective light-emitting diode that includes a light source mounted on a substrate and has a reflective surface that reflects light emitted from the light source and reflects it to the outside is disclosed. (See Patent Document 1 below). This light emitting element extracts light from the normal direction of the LED mounting substrate.
 また、発光素子の他の例として、基板に実装された光源と、入射面と反射面が複数形成された配向制御部材と、を備えた形態の発光素子が開示されている(下記の特許文献2参照)。この発光素子は、LED実装基板の法線方向とは異なる方向から光の取り出しを行っている。 Further, as another example of the light emitting element, a light emitting element having a light source mounted on a substrate and an orientation control member having a plurality of incident surfaces and reflecting surfaces is disclosed (the following patent document) 2). This light emitting element extracts light from a direction different from the normal direction of the LED mounting substrate.
特許第3982635号公報Japanese Patent No. 3968235 特開2007-287686号公報JP 2007-287686 A
 しかしながら、特許文献1の技術では、指向性を持った光を取り出すことはできるものの、光をLED実装基板の法線に対して斜め方向に取り出すことはできない。例えば、発光素子を対象物の一面(例えば導光板の端面など、発光素子が取り付けられる面)に取り付けた場合、光を対象物の一面の法線に対して斜め方向に取り出すことはできない。 However, although the technique of Patent Document 1 can extract light having directivity, it cannot extract light obliquely with respect to the normal line of the LED mounting substrate. For example, when a light emitting element is attached to one surface of an object (for example, a surface to which the light emitting element is attached, such as an end face of a light guide plate), light cannot be extracted in an oblique direction with respect to the normal of the one surface of the object.
 一方、光を対象物の一面の法線に対して斜め方向に取り出すために、対象物の一面を斜めにカットすることも考えられるが、対象物の形状が複雑となり、加工に手間がかかる。 On the other hand, in order to extract light in an oblique direction with respect to the normal of one surface of the object, it is conceivable to cut one surface of the object obliquely, but the shape of the object is complicated, and processing is troublesome.
 また、特許文献2の技術では、指向性を持った光を取り出すことはできない。そのため、発光素子の適用として、指向性の高い光がほとんど要求されない照明装置等の用途には適用できるものの、指向性の高い光が要求される装置には適用することができない。 In addition, the technique of Patent Document 2 cannot extract light having directivity. Therefore, the light-emitting element can be applied to an application such as a lighting device that hardly requires light having high directivity, but cannot be applied to a device that requires light having high directivity.
 本発明の態様は、上記の課題を解決するためになされたものであって、指向性の高い光を対象物の一面の法線に対して斜め方向に取り出すことが可能な発光素子の提供を目的の一つとする。
 また、上記の発光素子を用いることで光量が十分に得られる調光素子の提供を目的の一つとする。また、上記の調光素子を用いることで明るく、コントラストの高い表示が可能な表示装置の提供を目的の一つとする。
An aspect of the present invention is made to solve the above-described problem, and provides a light-emitting element capable of extracting light with high directivity in an oblique direction with respect to a normal line of one surface of an object. One of the purposes.
Another object is to provide a light control element that can obtain a sufficient amount of light by using the light emitting element. Another object is to provide a display device that can display brightly and with high contrast by using the above light control element.
 上記の目的を達成するために、本発明の一態様における発光素子は、導光体に取り付けるための取付面を有し、前記発光素子は、凹部が形成されたパッケージと、前記パッケージの前記凹部に設けられた凹面ミラーと、前記凹面ミラーの焦点に配置された光源と、を備え、前記凹面ミラーの中心点と前記焦点とを結ぶ直線は、前記取付面の法線と斜めに交差している。 In order to achieve the above object, a light-emitting element according to one embodiment of the present invention includes a mounting surface for mounting on a light guide, and the light-emitting element includes a package in which a recess is formed, and the recess in the package. And a light source disposed at the focal point of the concave mirror, and a straight line connecting the central point of the concave mirror and the focal point obliquely intersects the normal of the mounting surface Yes.
 本発明の一態様における発光素子は、前記直線は、前記光源の光射出面の法線と一致していてもよい。 In the light-emitting element according to one embodiment of the present invention, the straight line may coincide with a normal line of a light emission surface of the light source.
 本発明の一態様における発光素子は、前記凹面ミラーは、放物面ミラーであり、前記直線は、前記放物面ミラーの回転対称軸と一致していてもよい。 In the light-emitting element according to one embodiment of the present invention, the concave mirror may be a parabolic mirror, and the straight line may coincide with a rotational symmetry axis of the parabolic mirror.
 本発明の一態様における発光素子は、さらに反射ミラーを備え、前記反射ミラーは、前記光源が前記凹面ミラーと前記反射ミラーとの間に配置されるように配置され、前記反射ミラーは、前記凹面ミラーと異なる方向に射出された前記光源からの光を、前記凹面ミラーに向けて反射してもよい。 The light-emitting element according to one embodiment of the present invention further includes a reflection mirror, and the reflection mirror is disposed such that the light source is disposed between the concave mirror and the reflection mirror, and the reflection mirror is the concave surface. Light from the light source emitted in a direction different from the mirror may be reflected toward the concave mirror.
 本発明の一態様における発光素子は、さらに、前記光源から射出された光を透過する光透過部材を備え、前記光源は、前記パッケージの前記凹部に、前記光透過部材によって埋設されており、前記光透過部材は、前記取付面を形成していてもよい。 The light-emitting element according to one embodiment of the present invention further includes a light transmissive member that transmits light emitted from the light source, and the light source is embedded in the concave portion of the package by the light transmissive member, The light transmission member may form the mounting surface.
 本発明の一態様における発光素子は、さらに蓋部材を備え、前記蓋部材は、前記取付面を形成し、前記蓋部材は、前記凹部を閉塞するよう配置されていてもよい。 The light-emitting element according to one embodiment of the present invention may further include a lid member, the lid member may form the attachment surface, and the lid member may be disposed so as to close the recess.
 本発明の一態様における発光素子は、前記蓋部材の裏面に、前記光源が取り付けられていてもよい。 In the light-emitting element according to one embodiment of the present invention, the light source may be attached to the back surface of the lid member.
 本発明の他の態様における調光素子は、射出する光の量を制御可能な照明部と、前記照明部から射出された光が入射され、前記光を内部で全反射させつつ伝播させる導光体とを備え、前記導光体は、前記照明部から射出された光が導光体内部で全反射しつつ伝播される間に前記光を外部に取り出す複数の光取出領域を有し、前記複数の光取出領域のうちの少なくとも2つの光取出領域は、前記照明部から射出された光を外部に取り出し可能な入射角範囲が互いに異なり、前記導光体は、前記照明部から射出された光を、前記導光体の内部を複数の異なる伝播角度で伝播させるよう構成され、前記照明部は、前記導光体に取り付けるための取付面を有する発光素子を備え、前記発光素子は、凹部が形成されたパッケージと、前記パッケージの前記凹部に設けられた凹面ミラーと、前記凹面ミラーの焦点に配置された光源と、を備え、前記凹面ミラーの中心点と前記焦点とを結ぶ直線は、前記取付面の法線と斜めに交差している。 The light control device according to another aspect of the present invention includes an illumination unit capable of controlling the amount of emitted light, and a light guide that receives the light emitted from the illumination unit and propagates the light while totally reflecting the light inside. And the light guide has a plurality of light extraction regions for extracting the light to the outside while the light emitted from the illumination unit is propagated while being totally reflected inside the light guide, At least two light extraction regions of the plurality of light extraction regions have different incident angle ranges in which light emitted from the illumination unit can be extracted to the outside, and the light guide is emitted from the illumination unit The light is configured to propagate inside the light guide at a plurality of different propagation angles, the illumination unit includes a light emitting element having an attachment surface for attaching to the light guide, and the light emitting element includes a recess. A package formed with the package A concave mirror provided in the concave portion and a light source disposed at the focal point of the concave mirror, and a straight line connecting the center point of the concave mirror and the focal point obliquely intersects with the normal of the mounting surface is doing.
 本発明の他の態様における調光素子は、前記導光体の端面は、前記光取出領域が設けられた面に対して直交しており、前記導光体の端面には、前記発光素子が複数配置されており、前記複数の発光素子の各々は、射出された光が前記光取出領域に対して互いに異なる入射角で入射するように、前記直線が前記光取出領域に対して異なる向きになるよう配置されていてもよい。 In the light control device according to another aspect of the present invention, the end surface of the light guide is orthogonal to the surface on which the light extraction region is provided, and the light emitting device is disposed on the end surface of the light guide. A plurality of light emitting elements are arranged, and each of the plurality of light emitting elements has the straight line in a different direction with respect to the light extraction region so that the emitted light is incident on the light extraction region at different incident angles. It may be arranged so that.
 本発明のさらに他の態様における表示装置は、前述の調光素子と、前記調光素子から射出される光を用いて表示を行う表示素子と、を備える。 A display device according to still another aspect of the present invention includes the above-described dimming element and a display element that performs display using light emitted from the dimming element.
 本発明のさらに他の態様における照明装置は、前述の調光素子を備える。 A lighting device according to still another aspect of the present invention includes the above-described dimming element.
 本発明の態様によれば、指向性の高い光を対象物の一面の法線に対して斜め方向に取り出すことが可能な発光素子を実現することができる。また、上記の発光素子を用いることで光量が十分に得られる調光素子を実現することができる。また、上記の調光素子を用いることで明るく、コントラストの高い表示が可能な表示装置を実現することができる。 According to the aspect of the present invention, it is possible to realize a light emitting element capable of extracting light with high directivity in an oblique direction with respect to the normal line of one surface of an object. In addition, it is possible to realize a light control element that can obtain a sufficient amount of light by using the light emitting element. In addition, a bright display device with high contrast can be realized by using the dimmer element.
第1の実施形態の液晶表示装置およびバックライトを示す斜視図である。It is a perspective view which shows the liquid crystal display device and backlight of 1st Embodiment. 第1の実施形態のバックライトにおいて各光取出領域から光が射出する原理を説明するための図である。It is a figure for demonstrating the principle in which light inject | emits from each light extraction area | region in the backlight of 1st Embodiment. 第1の実施形態のバックライトにおいて各光取出領域から光が射出する原理を説明するための図である。It is a figure for demonstrating the principle in which light inject | emits from each light extraction area | region in the backlight of 1st Embodiment. 第1の実施形態のバックライトにおいて各光取出領域から光が射出する原理を説明するための図である。It is a figure for demonstrating the principle in which light inject | emits from each light extraction area | region in the backlight of 1st Embodiment. 第1の実施形態の発光素子を示す断面図である。It is sectional drawing which shows the light emitting element of 1st Embodiment. 第1の実施形態の第1発光素子を示す断面図である。It is sectional drawing which shows the 1st light emitting element of 1st Embodiment. 第1の実施形態の第2発光素子を示す断面図である。It is sectional drawing which shows the 2nd light emitting element of 1st Embodiment. 第1の実施形態の第3発光素子を示す断面図である。It is sectional drawing which shows the 3rd light emitting element of 1st Embodiment. 第1の実施形態の第1発光素子における角度と射出光束量の関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between the angle in the 1st light emitting element of 1st Embodiment, and an emitted light beam quantity. 第1の実施形態の第2発光素子における角度と射出光束量の関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between the angle in the 2nd light emitting element of 1st Embodiment, and an emitted light beam quantity. 第1の実施形態の第3発光素子における角度と射出光束量の関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between the angle in the 3rd light emitting element of 1st Embodiment, and an emitted light beam quantity. 第2の実施形態の発光素子を示す断面図である。It is sectional drawing which shows the light emitting element of 2nd Embodiment. 第3の実施形態の発光素子を示す斜視図である。It is a perspective view which shows the light emitting element of 3rd Embodiment. 第3の実施形態の発光素子を示す模式図である。It is a schematic diagram which shows the light emitting element of 3rd Embodiment. 第3の実施形態の発光素子を示す模式図である。It is a schematic diagram which shows the light emitting element of 3rd Embodiment. 液晶表示装置の一構成例を示す概略構成図である。It is a schematic block diagram which shows the example of 1 structure of a liquid crystal display device. 液晶表示装置におけるバックライトの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the backlight in a liquid crystal display device. 液晶表示装置におけるバックライトの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the backlight in a liquid crystal display device. 液晶表示装置におけるバックライトの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the backlight in a liquid crystal display device. 液晶表示装置におけるバックライトの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the backlight in a liquid crystal display device. 照明装置の一例を示す断面図である。It is sectional drawing which shows an example of an illuminating device. 照明装置の一例を示す平面図である。It is a top view which shows an example of an illuminating device. 照明装置の一例を示す図13AのA-A’線に沿う断面図である。FIG. 13B is a cross-sectional view taken along the line A-A ′ of FIG. 13A showing an example of a lighting device.
[第1の実施形態]
 以下、本発明の第1の実施形態について、図1~図5Cを用いて説明する。
 本実施形態では、表示素子に液晶パネルを用いた液晶表示装置を例示する。
 図1は、本実施形態の液晶表示装置およびバックライトを示す斜視図である。図2A~2Cは、本実施形態のバックライトにおいて各光取出領域から光が射出する原理を説明するための図である。図2Aは、第1光取出領域RAから光が射出する場合を示している。図2Bは、第2光取出領域RBから光が射出する場合を示している。図2Cは、第3光取出領域RCから光が射出する場合を示している。図3は、本実施形態の発光素子を示す断面図である。図4A~4Cは、本実施形態の各発光素子を示す断面図である。図5A~5Cは、本実施形態の各発光素子における角度と射出光束量の関係を示すシミュレーション結果である。
 なお、以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
[First embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 5C.
In the present embodiment, a liquid crystal display device using a liquid crystal panel as a display element is illustrated.
FIG. 1 is a perspective view showing a liquid crystal display device and a backlight according to the present embodiment. 2A to 2C are diagrams for explaining the principle of light emitted from each light extraction region in the backlight according to the present embodiment. FIG. 2A shows a case where light is emitted from the first light extraction area RA. FIG. 2B shows a case where light is emitted from the second light extraction region RB. FIG. 2C shows a case where light is emitted from the third light extraction region RC. FIG. 3 is a cross-sectional view showing the light emitting device of this embodiment. 4A to 4C are cross-sectional views showing the light-emitting elements of this embodiment. FIGS. 5A to 5C are simulation results showing the relationship between the angle and the amount of emitted light in each light-emitting element of this embodiment.
In the following drawings, in order to make each component easy to see, the scale of the size may be varied depending on the component.
 本実施形態の液晶表示装置1(表示装置)は、図1に示すように、液晶パネル2(表示素子)と、液晶パネル2の背面側に配置されたバックライト3(調光素子)と、を有している。液晶パネル2は、バックライト3から射出された光を利用して表示を行う透過型の液晶パネルである。使用者は、バックライト3の反対側、すなわち、図1における液晶パネル2の上側から表示を視認することができる。本実施形態において、液晶パネル2の構成は特に限定されるものではなく、スイッチング用薄膜トランジスタ(Thin Film Transistor,以下、TFTと略記する)を画素毎に備えたアクティブマトリクス型液晶パネルであっても良いし、TFTを備えていない単純マトリクス方式の液晶パネルであっても良い。また、透過型の液晶パネルに限らず、半透過型(透過・反射兼用型)液晶パネルであっても良い。表示モードについても、特に限定されることはなく、VA(Vertical Alignment)モード、TN(Twisted Nematic)モード、STN(Super Twisted Nematic)モード、IPS(In-Plane Switching)モード等、種々の表示モードの液晶パネルを用いることができる。 As shown in FIG. 1, the liquid crystal display device 1 (display device) of the present embodiment includes a liquid crystal panel 2 (display element), a backlight 3 (light control element) disposed on the back side of the liquid crystal panel 2, have. The liquid crystal panel 2 is a transmissive liquid crystal panel that performs display using light emitted from the backlight 3. The user can view the display from the opposite side of the backlight 3, that is, from the upper side of the liquid crystal panel 2 in FIG. In the present embodiment, the configuration of the liquid crystal panel 2 is not particularly limited, and may be an active matrix liquid crystal panel including a switching thin film transistor (hereinafter abbreviated as TFT) for each pixel. A simple matrix type liquid crystal panel that does not include a TFT may be used. In addition, the liquid crystal panel is not limited to a transmissive liquid crystal panel, and may be a transflective liquid crystal panel. The display mode is not particularly limited, and there are various display modes such as VA (Vertical Alignment) mode, TN (Twisted Nematic) mode, STN (Super Twisted Nematic) mode, IPS (In-Plane Switching) mode, etc. A liquid crystal panel can be used.
 本実施形態のバックライト3は、後述する導光体の全面から光が均一に射出される訳ではなく、全面を複数個(本実施形態では9個)に分割した光取出領域毎に、射出される光の量を制御できるようになっている。すなわち、本実施形態のバックライト3は、複数の光取出領域の各々が調光機能を有している。バックライト3全体として、特定の光取出領域だけ光を射出させたり、射出させなかったりすることができる。あるいは、特定の光取出領域から射出される光の量を他の光取出領域から射出される光の量に対して変化させることができる。 The backlight 3 of the present embodiment does not emit light uniformly from the entire surface of the light guide, which will be described later, but emits light for each light extraction region in which the entire surface is divided into a plurality (9 in this embodiment). The amount of light emitted can be controlled. That is, in the backlight 3 of the present embodiment, each of the plurality of light extraction regions has a dimming function. As a whole of the backlight 3, it is possible to emit light only in a specific light extraction region or not. Alternatively, the amount of light emitted from a specific light extraction region can be changed with respect to the amount of light emitted from another light extraction region.
 バックライト3は、発光素子7a,7b,7cを備えている。以下、発光素子の基本構成について図3を用いて説明する。 The backlight 3 includes light emitting elements 7a, 7b, and 7c. Hereinafter, a basic configuration of the light-emitting element will be described with reference to FIG.
 図3は、発光素子を示す断面図である。図3は、第1端面5cに設けられた3つの発光素子7a,7b,7cの基本構成(発光素子7)を示している。 FIG. 3 is a cross-sectional view showing the light emitting element. FIG. 3 shows a basic configuration (light emitting element 7) of three light emitting elements 7a, 7b, 7c provided on the first end face 5c.
 発光素子7は、図3に示すように、パッケージ71と、凹面ミラー72と、光源73と、反射ミラー74と、光透過部材75と、を備えている。凹面ミラー72は、パッケージ71の凹部71aに設けられている。凹面ミラー72の形状は、パッケージ71の凹部71aの形状に倣った曲線状となっている。凹面ミラー72は、光源73から射出された光を反射する放物面ミラーである。光源73は、パッケージ71の凹部71aに、光源73から射出された光を透過する光透過部材75によって埋設されている。 The light emitting element 7 includes a package 71, a concave mirror 72, a light source 73, a reflection mirror 74, and a light transmission member 75, as shown in FIG. The concave mirror 72 is provided in the concave portion 71 a of the package 71. The shape of the concave mirror 72 is a curved shape that follows the shape of the concave portion 71 a of the package 71. The concave mirror 72 is a parabolic mirror that reflects the light emitted from the light source 73. The light source 73 is embedded in the recess 71 a of the package 71 by a light transmitting member 75 that transmits light emitted from the light source 73.
 なお、図3において、符号Pfは凹面ミラー72の焦点、符号Pcは凹面ミラー72の中心点、符号CL1は凹面ミラー72の中心軸(凹面ミラー72の中心点Pcと凹面ミラー72の焦点Pfを結ぶ線)、符号CL2は取付面71bの法線、符号θは凹面ミラー72の傾斜角度である。ここで、凹面ミラー72の傾斜角度とは、凹面ミラー72の中心軸と取付面71bの法線とのなす角度である。 In FIG. 3, symbol Pf is the focal point of the concave mirror 72, symbol Pc is the central point of the concave mirror 72, symbol CL1 is the central axis of the concave mirror 72 (the central point Pc of the concave mirror 72 and the focal point Pf of the concave mirror 72). The line CL) is a normal line of the mounting surface 71 b, and the sign θ is an inclination angle of the concave mirror 72. Here, the inclination angle of the concave mirror 72 is an angle formed by the central axis of the concave mirror 72 and the normal line of the mounting surface 71b.
 パッケージ71の内部には、凹部71aが形成されている。パッケージ71は、直方体状となっており、光が射出される側に(凹部71aが形成された部分の端部に)、取付面71bを有している。この取付面71bは、発光素子7を導光体5の第1端面5cに取り付ける際の取付面となる平坦面である。パッケージ71の凹部71aの形状は、凹面ミラー72の中心軸CL1と取付面71bの法線CL2を含む仮想面の法線から見て、光源73に対して凹となるような曲線状となっている。すなわち、曲線の接線の傾きは凹部71aの中心点に近づくに従って徐々に緩やかとなっている。 A recess 71 a is formed in the package 71. The package 71 has a rectangular parallelepiped shape, and has a mounting surface 71b on the side from which light is emitted (at the end of the portion where the recess 71a is formed). The attachment surface 71 b is a flat surface that serves as an attachment surface when the light emitting element 7 is attached to the first end surface 5 c of the light guide 5. The shape of the concave portion 71a of the package 71 is a curved shape that is concave with respect to the light source 73 when viewed from the normal surface of the virtual surface including the central axis CL1 of the concave mirror 72 and the normal line CL2 of the mounting surface 71b. Yes. That is, the slope of the tangent line of the curve gradually becomes gentler as it approaches the center point of the recess 71a.
 本実施形態の場合、パッケージ71の凹部71aの形状は、凹部71aの形状を反転させた凸形状を有する金型を用いて樹脂の射出成形を行うなどの方法によって形成されている。あるいは、パッケージ71の凹部71aの形状は、例えば元々平坦な樹脂部材の表面を切削加工することによって形成しても良い。 In the case of the present embodiment, the shape of the recess 71a of the package 71 is formed by a method such as resin injection molding using a mold having a convex shape obtained by inverting the shape of the recess 71a. Or you may form the shape of the recessed part 71a of the package 71 by cutting the surface of the originally flat resin member, for example.
 凹面ミラー72の中心軸CL1は、取付面71bの法線CL2と所定の角度(傾斜角度)θをなして斜めに交差している。また、凹面ミラー72の中心軸CL1は、放物面ミラーの回転対象軸と一致している。本実施形態の一例として、放物面ミラーのサイズ(中心軸CL1と平行な方向から視た円の直径)は、直径8mmに設定されている。放物面ミラーの曲率半径は、5.4mmに設定されている。 The central axis CL1 of the concave mirror 72 obliquely intersects the normal line CL2 of the mounting surface 71b with a predetermined angle (inclination angle) θ. Further, the central axis CL1 of the concave mirror 72 coincides with the rotation target axis of the parabolic mirror. As an example of the present embodiment, the size of the parabolic mirror (the diameter of a circle viewed from a direction parallel to the central axis CL1) is set to a diameter of 8 mm. The radius of curvature of the parabolic mirror is set to 5.4 mm.
 なお、ここでは、凹面ミラー72が放物面ミラーである例を示すが、これに限らず、例えば球面ミラーであってもよい。また、凹面ミラー72としては、凹面ミラー72の中心軸CL1と平行な方向から視た形状が円形の回転対称形状のものに限らず、楕円球ミラーなど、凹面ミラー72の中心軸CL1と平行な方向から視た形状が非円形の非回転対称形状のものを選択することも可能である。 In addition, although the example in which the concave mirror 72 is a parabolic mirror is shown here, it is not limited to this, and may be a spherical mirror, for example. Further, the concave mirror 72 is not limited to a circular rotationally symmetric shape as viewed from a direction parallel to the central axis CL1 of the concave mirror 72, and is parallel to the central axis CL1 of the concave mirror 72 such as an elliptical mirror. It is also possible to select a non-rotationally symmetric shape that is non-circular when viewed from the direction.
 光源73は、略直方体状のチップLED(表面実装用LED)である。凹面ミラー72の中心軸CL1は、光源73の光射出面の法線(チップLEDの上面の法線)と一致している。 The light source 73 is a substantially rectangular parallelepiped chip LED (surface mounting LED). The central axis CL1 of the concave mirror 72 coincides with the normal line of the light emission surface of the light source 73 (the normal line of the upper surface of the chip LED).
 光源73の凹面ミラー72が配置された側と反対の側には、反射ミラー74が設けられている。すなわち、光源73は、凹面ミラー72と反射ミラー74の間に配置されている。反射ミラー74は、光源73の実装基板に、例えばアルミニウム等の金属膜をスパッタ法もしくは蒸着法で形成するなどして形成することができる。反射ミラー74は、凹面ミラー72と異なる方向に射出された光源73からの光を凹面ミラー72に向けて反射する。本実施形態の一例として、チップLEDのサイズ(中心軸CL1と平行な方向から視た正方形の一辺)は、250μmに設定されている。反射ミラーのサイズ(中心軸CL1と平行な方向から視た正方形の一辺)は、1mmに設定されている。 A reflection mirror 74 is provided on the side of the light source 73 opposite to the side where the concave mirror 72 is disposed. That is, the light source 73 is disposed between the concave mirror 72 and the reflection mirror 74. The reflection mirror 74 can be formed on the mounting substrate of the light source 73 by, for example, forming a metal film such as aluminum by sputtering or vapor deposition. The reflection mirror 74 reflects light from the light source 73 emitted in a different direction from the concave mirror 72 toward the concave mirror 72. As an example of the present embodiment, the size of the chip LED (one side of a square viewed from a direction parallel to the central axis CL1) is set to 250 μm. The size of the reflecting mirror (one side of the square viewed from the direction parallel to the central axis CL1) is set to 1 mm.
 なお、図3では図示を省略したが、反射ミラー74の一部には、光源73が実装されるプリント配線板などが設けられている。例えば、反射ミラー74において、光源73の裏面に対応する部分を実装領域とし、その他の部分(実装領域の周辺部分)を反射領域とすることができる。反射ミラー74の実装領域に形成された各種配線は、上述した発光素子7a,7b,7cが実装されるプリント配線板、発光素子7a,7b,7cの駆動および制御を担う駆動用ICを含む制御部などに電気的に接続される。 Although not shown in FIG. 3, a part of the reflection mirror 74 is provided with a printed wiring board on which the light source 73 is mounted. For example, in the reflection mirror 74, a portion corresponding to the back surface of the light source 73 can be a mounting region, and the other portion (a peripheral portion of the mounting region) can be a reflection region. Various wirings formed in the mounting region of the reflection mirror 74 include a printed wiring board on which the light emitting elements 7a, 7b, and 7c described above are mounted, and a control including a driving IC that is responsible for driving and controlling the light emitting elements 7a, 7b, and 7c. It is electrically connected to the part.
 光源73は、パッケージ71の凹部71aに光透過部材75によって埋設されている。
 光透過部材75は、以下の方法により形成することができる。パッケージ71の凹部71aに凹面ミラー72を配置し、パッケージ71の内部に光源73および反射ミラー74を配置する。その後、このパッケージ71の内部に、例えばアクリル樹脂等の光透過性を有する樹脂を注入して硬化させる。本実施形態の一例として、光透過部材75の屈折率は、導光体5の屈折率nWG(1.5)と同じ値の1.5に設定されている。
The light source 73 is embedded in the recess 71 a of the package 71 with a light transmitting member 75.
The light transmissive member 75 can be formed by the following method. A concave mirror 72 is disposed in the recess 71 a of the package 71, and a light source 73 and a reflection mirror 74 are disposed inside the package 71. Thereafter, a resin having optical transparency such as an acrylic resin is injected into the package 71 and cured. As an example of this embodiment, the refractive index of the light transmitting member 75 is set to 1.5, which is the same value as the refractive index nWG (1.5) of the light guide 5.
 なお、発光素子から射出される光の射出角度(導光体5を伝播する伝播角度)を補正したり、射出角度を凹面ミラー72の傾斜角度と異ならせたりするために、光透過部材75の透過率を導光体5の屈折率nWG(1.5)と異なる値にすることもできる。例えば、光透過部材75の透過率の変更は、上述したように、光透過部材75を形成する際に、屈折率の異なる材料を選択したり、樹脂材料に低屈折率材料を含有させ、これら低屈折率材料の濃度を異ならせたりすることによって行うことができる。 In order to correct the emission angle of light emitted from the light emitting element (propagation angle propagating through the light guide 5) or to make the emission angle different from the inclination angle of the concave mirror 72, The transmittance can be set to a value different from the refractive index nWG (1.5) of the light guide 5. For example, as described above, the transmittance of the light transmissive member 75 can be changed by selecting a material having a different refractive index when the light transmissive member 75 is formed, or by adding a low refractive index material to the resin material. This can be done by changing the concentration of the low refractive index material.
 次に、本実施形態のバックライト3の構成について説明する。
 本実施形態のバックライト3は、図1に示すように、寸法、形状、構成が全て概略同一の3個のバックライトユニット4から構成されている。3個のバックライトユニット4は、後述する導光体5の長手方向と直交する方向、すなわち、導光体5の3つの光取出領域RA,RB,RCが並ぶ方向と直交する方向(図1のy軸方向)に互いに隣接して配置されている。したがって、バックライト3は、液晶表示装置1の画面における水平方向および垂直方向に沿って3個ずつ、合計9個の光取出領域RA,RB,RCを有している。各バックライトユニット4は照明部6と導光体5とから構成されている。また、照明部6は複数(本実施形態では3個)の発光素子7a,7b,7cから構成されている。導光体5は、例えばアクリル樹脂等の光透過性を有する樹脂からなる平行平板で構成されている。なお、ここでは、バックライト3が、導光体が別体とされた3個のバックライトユニット4から構成されている例を示すが、合計9個の光取出領域RA,RB,RCを有する導光体が一体の構造であっても良い。この構造であっても、指向性の高い発光素子を用いることで光を射出させる光取出領域RA,RB,RCを選択することが可能である。
Next, the configuration of the backlight 3 of the present embodiment will be described.
As shown in FIG. 1, the backlight 3 according to the present embodiment is composed of three backlight units 4 having substantially the same dimensions, shape, and configuration. The three backlight units 4 are in a direction orthogonal to the longitudinal direction of the light guide 5 described later, that is, a direction orthogonal to the direction in which the three light extraction regions RA, RB, RC of the light guide 5 are arranged (FIG. 1). In the y-axis direction). Therefore, the backlight 3 has a total of nine light extraction regions RA, RB, RC, three in each of the horizontal and vertical directions on the screen of the liquid crystal display device 1. Each backlight unit 4 includes an illumination unit 6 and a light guide 5. The illumination unit 6 includes a plurality (three in the present embodiment) of light emitting elements 7a, 7b, and 7c. The light guide 5 is composed of a parallel plate made of a resin having optical transparency such as acrylic resin. In addition, although the backlight 3 shows the example comprised from the three backlight units 4 by which the light guide was made into the different body here, it has a total of nine light extraction area | region RA, RB, RC. The light guide may have an integral structure. Even with this structure, it is possible to select the light extraction regions RA, RB, and RC for emitting light by using a light emitting element with high directivity.
 導光体5の1つの端面に、3個の発光素子7a,7b,7cが光射出側を導光体5側に向けて設置されている。導光体5は、各発光素子7a,7b,7cから射出された光が入射される。導光体5は、入射された光を内部で全反射させつつ、発光素子7a,7b,7cが設置された端面側から反対側の端面(図1の-x方向から+x方向)に向けて伝播させ、その間に外部空間に取り出す機能を有している。また、3個の発光素子7a,7b,7cは、個々に独立して点灯、消灯が制御でき、さらに射出光量が制御できる構成となっている。なお、図1では図示を省略したが、バックライト3には、発光素子7a,7b,7cが実装されるプリント配線板、発光素子7a,7b,7cの駆動および制御を担う駆動用ICを含む制御部などが備えられている。本実施形態には、高い指向性を有する発光素子7a,7b,7cを用いることが好ましい。例えば、発光素子7a,7b,7cとして、導光体5内部を光が導光する間の射出光の広がり角に対する強度分布の半値幅が5°程度の発光素子を用いることができる。 Three light emitting elements 7a, 7b, 7c are installed on one end face of the light guide 5 with the light emission side facing the light guide 5 side. The light guide 5 receives light emitted from the light emitting elements 7a, 7b, and 7c. The light guide 5 reflects the incident light from the inside to the opposite end surface (from the −x direction to the + x direction in FIG. 1) from the end surface side where the light emitting elements 7a, 7b, 7c are installed. It has the function of propagating and taking it out to the outside space. Further, the three light emitting elements 7a, 7b, and 7c can be individually controlled to be turned on / off, and the amount of emitted light can be controlled. Although not shown in FIG. 1, the backlight 3 includes a printed wiring board on which the light emitting elements 7a, 7b, and 7c are mounted, and a driving IC that is responsible for driving and controlling the light emitting elements 7a, 7b, and 7c. A control unit and the like are provided. In the present embodiment, it is preferable to use light emitting elements 7a, 7b, and 7c having high directivity. For example, as the light emitting elements 7a, 7b, and 7c, light emitting elements having a half value width of about 5 ° with respect to the spread angle of the emitted light while the light is guided through the light guide 5 can be used.
 導光体5の2つの主面のうち、液晶パネル2に対向する側の主面5aには、複数(本実施形態では3つ)の光取出領域RA,RB,RCが導光体5の長手方向(図1のx軸方向)に沿って設けられている。各光取出領域RA,RB,RCには、低屈折率体8a,8bおよび屈折率体9と、光散乱体10と、がこの順に積層されている。低屈折率体8a,8bは、導光体5の屈折率よりも低い屈折率を有する。屈折率体9は、導光体5の屈折率と等しい屈折率を有する。光散乱体10は、各低屈折率体8a,8bおよび屈折率体9から射出された光を散乱させる。なお、以下の説明では、便宜上、各光取出領域を、発光素子7a,7b,7cに近い側から遠い側に向けて、第1光取出領域RA、第2光取出領域RB、第3光取出領域RC、と称する。また、光取出領域RA,RB,RCが設けられた導光体5の主面を第1主面5a、第1主面5aの反対側の主面を第2主面5b、発光素子7a,7b,7cが設けられた導光体5の端面を第1端面5c、第1端面5cの反対側の端面を第2端面5d、と称する。 Of the two main surfaces of the light guide 5, a plurality of (three in this embodiment) light extraction regions RA, RB, RC are provided on the main surface 5 a facing the liquid crystal panel 2. It is provided along the longitudinal direction (x-axis direction in FIG. 1). In each light extraction region RA, RB, RC, low refractive index bodies 8a, 8b, a refractive index body 9, and a light scattering body 10 are stacked in this order. The low refractive index bodies 8 a and 8 b have a refractive index lower than that of the light guide 5. The refractive index body 9 has a refractive index equal to the refractive index of the light guide 5. The light scatterer 10 scatters the light emitted from the low refractive index bodies 8 a and 8 b and the refractive index body 9. In the following description, for the sake of convenience, the respective light extraction regions are directed from the side closer to the light emitting elements 7a, 7b, 7c to the side farther from the first light extraction region RA, the second light extraction region RB, and the third light extraction. This is referred to as region RC. In addition, the main surface of the light guide 5 provided with the light extraction regions RA, RB, RC is the first main surface 5a, the main surface opposite to the first main surface 5a is the second main surface 5b, and the light emitting element 7a, The end surface of the light guide 5 provided with 7b and 7c is referred to as a first end surface 5c, and the end surface opposite to the first end surface 5c is referred to as a second end surface 5d.
 上述したように、低屈折率体8a,8bは、いずれも導光体5の屈折率よりも低い屈折率を有し、屈折率体9は、導光体5の屈折率と等しい屈折率を有している。低屈折率体8a,8bおよび屈折率体9はそれぞれ異なる屈折率を有している。また、低屈折率体8a,8bおよび屈折率体9は、各発光素子7a,7b,7cから射出されて各光取出領域RA,RB,RCに入射される光の伝播方向に沿って(図1の-x方向から+x方向に向けて)、屈折率が相対的に低いものから屈折率が相対的に高いものの順に配列されている。
 本実施形態の一例として、導光体5の屈折率nWGが1.5であるのに対し、第1光取出領域RAに設けられた第1低屈折率体8aの屈折率nAが1.3、第2光取出領域RBに設けられた第2低屈折率体8bの屈折率nBが1.4、第3光取出領域RCに設けられた屈折率体9の屈折率nCが1.5に設定されている。
As described above, the low refractive index bodies 8 a and 8 b both have a refractive index lower than that of the light guide 5, and the refractive index body 9 has a refractive index equal to the refractive index of the light guide 5. Have. The low refractive index bodies 8a and 8b and the refractive index body 9 have different refractive indexes. Further, the low refractive index bodies 8a and 8b and the refractive index body 9 are arranged along the propagation direction of light emitted from the light emitting elements 7a, 7b and 7c and incident on the light extraction regions RA, RB and RC (FIG. 1 from the −x direction to the + x direction), the refractive index is relatively low, and the refractive index is relatively high.
As an example of this embodiment, the refractive index nWG of the light guide 5 is 1.5, whereas the refractive index nA of the first low refractive index body 8a provided in the first light extraction region RA is 1.3. The refractive index nB of the second low refractive index body 8b provided in the second light extraction region RB is 1.4, and the refractive index nC of the refractive index body 9 provided in the third light extraction region RC is 1.5. Is set.
 屈折率が異なる低屈折率体8a,8bおよび屈折率体9を形成する手法としては、例えば以下の2つの手法を挙げることができる。
 第1の手法は、異なる材料を用いて低屈折率体8a,8bおよび屈折率体9を形成することである。例えば導光体5の材料としてアクリル樹脂を用い、第1低屈折率体8aの材料としてデュポン社製の非晶性フッ素樹脂「AF1600」(登録商標、屈折率:n=1.29~1.31)、第2低屈折率体8bの材料としてDIC社製の紫外線硬化樹脂「OP40」(登録商標、屈折率:n=1.403)、屈折率体9の材料としてクラレ社製のメタクリル樹脂「パラペット(光学グレード)」(登録商標、屈折率:n=1.49)の各液状体を導光体5上に選択的に塗布し、硬化させることで実現できる。
 なお、屈折率体9は導光体5と等しい屈折率を有しているため、導光体5上に必ずしも屈折率体9を形成する必要はない。例えば、導光体5上に光散乱体10が配置されているだけでも良い。
As a method of forming the low refractive index bodies 8a and 8b and the refractive index body 9 having different refractive indexes, for example, the following two methods can be cited.
The first method is to form the low refractive index bodies 8a and 8b and the refractive index body 9 using different materials. For example, an acrylic resin is used as the material of the light guide 5, and an amorphous fluororesin “AF1600” (registered trademark, refractive index: n A = 1.29 to 1) manufactured by DuPont is used as the material of the first low refractive index body 8 a. .31), UV curing resin “OP40” (registered trademark, refractive index: n B = 1.403) manufactured by DIC as the material of the second low refractive index body 8b, and Kuraray Co., Ltd. as the material of the refractive index body 9. Each liquid material of methacrylic resin “parapet (optical grade)” (registered trademark, refractive index: n C = 1.49) is selectively applied onto the light guide 5 and cured.
Since the refractive index body 9 has the same refractive index as that of the light guide 5, it is not always necessary to form the refractive index body 9 on the light guide 5. For example, the light scatterer 10 may be merely disposed on the light guide 5.
 第2の手法は、所定の基材中に低屈折率材料を含有させた材料を用い、低屈折率材料の濃度を異ならせて屈折率を調整することである。例えば、上記の屈折率体9の材料として用いたクラレ社製のメタクリル樹脂「パラペット(光学グレード)」(登録商標、屈折率:n=1.49)中に、Ardrich社製のメゾポーラスシリカナノパウダー(登録商標、屈折率:1.27)、もしくはJason Wells社製のエアロゲル(登録商標、屈折率:1.27)等の低屈折率材料を含有させ、これら低屈折率材料の濃度を異ならせた2種類の液状体を作製する。そして、各液状体を導光体5上に選択的に塗布し、硬化させることで実現できる。 The second technique is to use a material containing a low refractive index material in a predetermined substrate and adjust the refractive index by varying the concentration of the low refractive index material. For example, in the methacrylic resin “Parapet (Optical Grade)” (registered trademark, refractive index: n C = 1.49) manufactured by Kuraray Co., Ltd. used as the material of the refractive index body 9, the mesoporous silica nanometer manufactured by Ardrich is used. Low refractive index materials such as powder (registered trademark, refractive index: 1.27) or airgel (registered trademark, refractive index: 1.27) manufactured by Jason Wells are included, and the concentration of these low refractive index materials is different. Two types of liquids are prepared. Each liquid material can be selectively applied on the light guide 5 and cured.
 低屈折率体8a,8bおよび屈折率体9上には光散乱体10が積層されている。光散乱体10は、低屈折率体8a,8bおよび屈折率体9から入射された光を散乱させてバックライト3の外部空間に取り出す機能を有している。具体的には、光散乱体10としては、ベースフィルム上に散乱ビーズ等がコーティングされた市販の光散乱フィルムを使用することができる。低屈折率体8a,8bおよび屈折率体9上に光散乱フィルムを貼付することで光散乱体10を形成することができる。本実施形態の光散乱体10としては、光散乱能の高い光散乱フィルムを用いることが望ましい。 A light scatterer 10 is laminated on the low refractive index bodies 8 a and 8 b and the refractive index body 9. The light scatterer 10 has a function of scattering the light incident from the low refractive index bodies 8 a and 8 b and the refractive index body 9 and extracting the light to the external space of the backlight 3. Specifically, as the light scatterer 10, a commercially available light scattering film in which scattering beads or the like are coated on a base film can be used. The light scattering body 10 can be formed by sticking a light scattering film on the low refractive index bodies 8 a and 8 b and the refractive index body 9. As the light scatterer 10 of this embodiment, it is desirable to use a light scattering film with high light scattering ability.
 図1に示すように、各バックライトユニット4において、導光体5の第1端面5cは第1主面5aに対する角度が互いに等しい直角面となっている。導光体5の第1端面5cには、発光素子7a,7b,7cが光学接着剤を介して固定されている。したがって、第1端面5cの全体では、3個の発光素子7a,7b,7cが導光体5の短手方向に並べられている。 As shown in FIG. 1, in each backlight unit 4, the first end surface 5 c of the light guide 5 is a right-angle surface having the same angle with respect to the first main surface 5 a. Light emitting elements 7a, 7b, 7c are fixed to the first end surface 5c of the light guide 5 via an optical adhesive. Therefore, three light emitting elements 7 a, 7 b, 7 c are arranged in the short direction of the light guide 5 over the entire first end face 5 c.
 このような構成により、光源73から射出された光の大部分は、凹面ミラー72に直接入射する。一方、残りの凹面ミラー72と異なる方向に射出された光源73からの光は、反射ミラー74で反射されて凹面ミラー72に入射する。凹面ミラー72に入射した光は、凹面ミラー72によって取付面71bに向けて反射される。なお、光源73は凹面ミラー72の焦点Pcに配置されているため、凹面ミラー72で反射された光は平行化される。そして、凹面ミラー72で平行化された光は、光透過部材75を伝播して、取付面71bから取り出される。本実施形態では、光透過部材75の光射出面が取付面となる。 With such a configuration, most of the light emitted from the light source 73 is directly incident on the concave mirror 72. On the other hand, light from the light source 73 emitted in a different direction from the remaining concave mirror 72 is reflected by the reflection mirror 74 and enters the concave mirror 72. The light incident on the concave mirror 72 is reflected by the concave mirror 72 toward the mounting surface 71b. Since the light source 73 is disposed at the focal point Pc of the concave mirror 72, the light reflected by the concave mirror 72 is collimated. The light collimated by the concave mirror 72 propagates through the light transmitting member 75 and is extracted from the mounting surface 71b. In the present embodiment, the light emission surface of the light transmitting member 75 is the mounting surface.
 なお、以下の説明では、便宜上、第1端面5cに設けられた3つの発光素子7a,7b,7cのうち、凹面ミラー72の中心軸CL1と取付面71bの法線CL2とのなす角度が最も大きい発光素子(図1の右側)を第1発光素子7a(θ1=37°)と称する。また、凹面ミラー72の中心軸CL1と取付面71bの法線CL2とのなす角度が次に大きい発光素子(図1の中央)を第2発光素子7b(θ2=26°)と称する。凹面ミラー72の中心軸CL1と取付面71bの法線CL2とのなす角度が最も小さい発光素子(図1の左側)を第3発光素子7c(θ3=15°)、と称する。 In the following description, for the sake of convenience, of the three light emitting elements 7a, 7b, 7c provided on the first end surface 5c, the angle formed by the central axis CL1 of the concave mirror 72 and the normal line CL2 of the mounting surface 71b is the largest. A large light emitting element (right side in FIG. 1) is referred to as a first light emitting element 7a (θ1 = 37 °). The light emitting element (center in FIG. 1) having the next largest angle between the central axis CL1 of the concave mirror 72 and the normal line CL2 of the mounting surface 71b is referred to as a second light emitting element 7b (θ2 = 26 °). The light emitting element (left side in FIG. 1) having the smallest angle formed by the central axis CL1 of the concave mirror 72 and the normal line CL2 of the mounting surface 71b is referred to as a third light emitting element 7c (θ3 = 15 °).
 図2Aは図1のA-A’線に沿う断面図を示している。図2Bは図1のB-B’線に沿う断面図を示している。図2Cは図1のC-C’線に沿う断面図を示している。各発光素子7a,7b,7cは第1端面5cに対して斜めに光La,Lb,Lcが入射するように固定されている。各発光素子7a,7b,7cから射出された光La,Lb,Lcは、導光体5の第1主面5aと第2主面5bとの間で全反射を繰り返しつつ、第1端面5c側から第2端面5d側に向けて伝播される。 FIG. 2A is a sectional view taken along the line A-A ′ of FIG. FIG. 2B shows a cross-sectional view along the line B-B ′ of FIG. 1. FIG. 2C shows a cross-sectional view taken along the line C-C 'of FIG. Each light emitting element 7a, 7b, 7c is fixed so that the light La, Lb, Lc is incident on the first end face 5c obliquely. The light La, Lb, Lc emitted from each light emitting element 7a, 7b, 7c repeats total reflection between the first main surface 5a and the second main surface 5b of the light guide 5, and the first end surface 5c. Is propagated from the side toward the second end face 5d.
 ここで、導光板の厚さ方向の中心を通る仮想水平面に対する光軸のなす角度を伝播角度φと定義する。すると、光透過部材75の屈折率は、導光体5の屈折率nWG(1.5)と同じ値の1.5に設定されていることから、伝播角度φは傾斜角度θと等しくなる。そのため、図2Aに示すように、第1発光素子7aからの光Laの伝播角度φは37°となる。図2Bに示すように、第2発光素子7bからの光Lbの伝播角度φは26°となる。図2Cに示すように、第3発光素子7cからの光Lcの伝播角度φは15°となる。よって、各光La,Lb,Lcは、第1端面5c側から第2端面5d側に向けて伝播される間、第1光取出領域RA、第2光取出領域RB、第3光取出領域RCの順に、各光取出領域RA,RB,RCに入射する。 Here, an angle formed by the optical axis with respect to a virtual horizontal plane passing through the center in the thickness direction of the light guide plate is defined as a propagation angle φ. Then, since the refractive index of the light transmission member 75 is set to 1.5, which is the same value as the refractive index nWG (1.5) of the light guide 5, the propagation angle φ is equal to the inclination angle θ. Therefore, as shown in FIG. 2A, the propagation angle phi A of the light La from the first light emitting element 7a becomes 37 °. As shown in Figure 2B, propagation angle phi B light Lb from the second light emitting element 7b becomes 26 °. As shown in FIG. 2C, propagation angle phi C of the light Lc from the third light-emitting element 7c becomes 15 °. Therefore, while each light La, Lb, Lc is propagated from the first end face 5c side toward the second end face 5d side, the first light extraction area RA, the second light extraction area RB, and the third light extraction area RC. In this order, the light enters the light extraction areas RA, RB, RC.
 なお、図2A~2Cでは、図面を見やすくするため、導光体5の長手方向の寸法(x軸方向の寸法)に対して厚み(z軸方向の寸法)を十分大きく描いている。また、各発光素子7a,7b,7cから射出される光の中心軸のみを描いている。そのため、光が各光取出領域RA,RB,RCに必ずしも入射しない場合もあるように思えるが、実際には導光体5の長手方向の寸法に対して厚みが十分に小さく、各発光素子7a,7b,7cからの光La,Lb,Lcは有限の光束径を有しているため、光La,Lb,Lcは各光取出領域RA,RB,RCに確実に入射する。 2A to 2C, the thickness (dimension in the z-axis direction) is drawn sufficiently larger than the longitudinal dimension (dimension in the x-axis direction) of the light guide 5 for easy viewing. Further, only the central axis of the light emitted from each light emitting element 7a, 7b, 7c is drawn. For this reason, it may seem that the light does not necessarily enter each of the light extraction regions RA, RB, RC, but actually the thickness is sufficiently small with respect to the longitudinal dimension of the light guide 5 and each light emitting element 7a. , 7b, 7c have a finite beam diameter, so that the light La, Lb, Lc is reliably incident on each of the light extraction areas RA, RB, RC.
 すなわち、本実施形態の照明部6は、3個の発光素子7a,7b,7cを備えており、各発光素子7a,7b,7cからの光La,Lb,Lcを、各光取出領域RA,RB,RCから光La,Lb,Lcを取り出し可能な入射角を含む入射角で各光取出領域RA,RB,RCに入射させる。また、後述するが、照明部6は、1つの光取出領域RA,RB,RCに対して3種類の異なる入射角θ(θ=53°、θ=64°、θ=75°)で入射させるように、いずれの発光素子7a,7b,7cを点灯させるかを切り換えることにより、導光体5の内部における光の伝播角度φ(φ=37°、φ=26°、φ=15°)を切り換える機能を有している。 That is, the illuminating unit 6 of the present embodiment includes three light emitting elements 7a, 7b, and 7c. Lights La, Lb, and Lc from the light emitting elements 7a, 7b, and 7c are converted into the light extraction regions RA, Lights La, Lb, and Lc are extracted from RB and RC and are incident on the light extraction regions RA, RB, and RC at an incident angle including an incident angle at which the light can be extracted. As will be described later, the illumination unit 6 has three different incident angles θ (θ A = 53 °, θ B = 64 °, θ C = 75 °) with respect to one light extraction region RA, RB, RC. The light propagation angle φ (φ A = 37 °, φ B = 26 °, φ inside the light guide 5 is switched by switching which light emitting element 7a, 7b, 7c is lit. C = 15 °).
 ここで、各発光素子7a,7b,7cからの光La,Lb,Lcが、各光取出領域RA,RB,RCにおける導光体5と各低屈折率体8a,8bおよび屈折率体9との界面に入射する際の臨界角を考慮する。
 第1光取出領域RAでの導光体5と第1低屈折率体との界面は、屈折率nWG=1.5の導光体と屈折率n=1.3の第1低屈折率体8aとの界面となるので、Snellの法則より、臨界角γは60.1°となる。したがって、第1光取出領域RAでは、入射角が60.1°未満で入射した光は界面を透過し、入射角が60.1°以上で入射した光は界面で全反射する。同様に、第2光取出領域RBでの導光体5と第2低屈折率体8bとの界面は、屈折率nWG=1.5の導光体5と屈折率n=1.4の第2低屈折率体8bとの界面となるので、臨界角γは69.0°となる。したがって、第2光取出領域RBでは、入射角が69.0°未満で入射した光は界面を透過し、入射角が69.0°以上で入射した光は界面で全反射する。これに対して、第3光取出領域RCでの導光体5と屈折率体9との界面は、屈折率nWG=1.5の導光体と屈折率n=1.5の屈折率体9との界面となるので、全ての入射角において光は界面を透過する。
Here, the light La, Lb, and Lc from each light emitting element 7a, 7b, and 7c are the light guide 5 in each light extraction area | region RA, RB, RC, each low refractive index body 8a, 8b, and the refractive index body 9, Consider the critical angle when entering the interface.
The interface between the light guide 5 and the first low refractive index body in the first light extraction region RA is the first low refraction with the refractive index n WG = 1.5 and the refractive index n A = 1.3. Since it becomes an interface with the rate body 8a, the critical angle γ A is 60.1 ° according to Snell's law. Therefore, in the first light extraction region RA, light incident at an incident angle of less than 60.1 ° is transmitted through the interface, and light incident at an incident angle of 60.1 ° or more is totally reflected at the interface. Similarly, the interface between the light guide 5 and the second low refractive index body 8b in the second light extraction region RB is the light guide 5 having a refractive index n WG = 1.5 and a refractive index n B = 1.4. Therefore, the critical angle γ B is 69.0 °. Therefore, in the second light extraction region RB, light incident at an incident angle of less than 69.0 ° is transmitted through the interface, and light incident at an incident angle of 69.0 ° or greater is totally reflected at the interface. On the other hand, the interface between the light guide 5 and the refractive index body 9 in the third light extraction region RC is a refraction having a refractive index n WG = 1.5 and a refractive index n C = 1.5. Since it becomes an interface with the index body 9, light passes through the interface at all incident angles.
 すなわち、第1光取出領域RA、第2光取出領域RB、第3光取出領域RCを単独で見た場合には、第1光取出領域RAで光を外部に取り出し可能な入射角範囲は60.1°未満、第2光取出領域RBで光を外部に取り出し可能な入射角範囲は69.0°未満、第3光取出領域RCで光を外部に取り出し可能な入射角範囲は全ての角度範囲となる。 That is, when the first light extraction area RA, the second light extraction area RB, and the third light extraction area RC are viewed independently, the incident angle range in which light can be extracted outside in the first light extraction area RA is 60. Less than 1 °, the incident angle range in which light can be extracted outside in the second light extraction region RB is less than 69.0 °, and the incident angle range in which light can be extracted outside in the third light extraction region RC is all angles. It becomes a range.
 このように、本実施形態の3つの光取出領域RA,RB,RCに設けられた2つの低屈折率体8a,8bおよび屈折率体9は、光取出領域RA,RB,RCに入射される光の伝播方向に沿って、屈折率が相対的に低いものから屈折率が相対的に高いものの順に配列されている。このような屈折率の違いに基づき、3つの光取出領域RA,RB,RCは、光を外部に取り出し可能な入射角範囲が異なっている。さらに、3つの光取出領域RA,RB,RCは、入射される光の伝播方向に沿って、取り出し可能な入射角範囲が相対的に狭い光取出領域から取り出し可能な入射角範囲が相対的に広い光取出領域の順に配列されている。本実施形態においては、第1光取出領域RAでの取出可能な入射角範囲は60.1°未満であり、第2光取出領域RBでの取出可能な入射角範囲は69.0°未満であり、第3光取出領域RCでの取出可能な入射角範囲は全角度範囲である。 As described above, the two low refractive index bodies 8a and 8b and the refractive index body 9 provided in the three light extraction regions RA, RB, and RC of the present embodiment are incident on the light extraction regions RA, RB, and RC. Along the light propagation direction, the light is arranged in the order of relatively low refractive index to relatively high refractive index. Based on such a difference in refractive index, the three light extraction regions RA, RB, and RC have different incident angle ranges in which light can be extracted to the outside. Further, the three light extraction areas RA, RB, and RC have a relatively narrow incident angle range that can be extracted from a light extraction area that has a relatively narrow incident angle range along the propagation direction of incident light. They are arranged in the order of wide light extraction areas. In the present embodiment, the incident angle range that can be extracted in the first light extraction region RA is less than 60.1 °, and the incident angle range that can be extracted in the second light extraction region RB is less than 69.0 °. The incident angle range that can be extracted in the third light extraction region RC is the entire angle range.
 このとき、図2Aに示すように、第1端面5cに固定された第1発光素子7aを点灯させたとすると、第1発光素子7aからの光Laは第1端面5cに対して斜めに入射し伝播角度φ=37°で導光体5を伝播するため、第1発光素子7aからの光Laの第1主面5aに対する入射角θは53°となる。また、本実施形態の導光体5は平行平板で構成されているため、第1発光素子7aからの光Laが何回全反射を繰り返しても、第1主面5aに対する入射角θは常に53°である。第1発光素子7aからの光Laが第1光取出領域RAに到達し、導光体5と第1低屈折率体8aとの界面に対して入射角θ=53°で入射すると、ここでの臨界角γは60.1°であるから、光Laは導光体5と第1低屈折率体8aとの界面を透過して第1低屈折率体8aに入射される。その後、光散乱体10で散乱して外部に取り出される。このようにして、第1発光素子7aから射出された光Laの略全量を第1光取出領域RAから取り出すことができる。 At this time, as shown in FIG. 2A, if the first light emitting element 7a fixed to the first end face 5c is turned on, the light La from the first light emitting element 7a is obliquely incident on the first end face 5c. Since the light propagates through the light guide 5 at the propagation angle φ A = 37 °, the incident angle θ A of the light La from the first light emitting element 7a with respect to the first major surface 5a is 53 °. In addition, since the light guide 5 of the present embodiment is configured by parallel plates, the incident angle θ A with respect to the first major surface 5a is no matter how many times the light La from the first light emitting element 7a repeats total reflection. Always 53 °. When the light La from the first light emitting element 7a reaches the first light extraction region RA and enters the interface between the light guide 5 and the first low refractive index body 8a at an incident angle θ A = 53 °, Since the critical angle γ A at 6 is 60.1 °, the light La passes through the interface between the light guide 5 and the first low refractive index body 8a and enters the first low refractive index body 8a. Thereafter, the light is scattered by the light scatterer 10 and taken out to the outside. In this way, substantially the entire amount of the light La emitted from the first light emitting element 7a can be extracted from the first light extraction region RA.
 次に、図2Bに示すように、第1発光素子7aを消灯させ、第1端面5cに固定された第2発光素子7bを点灯させたとすると、第2発光素子7bからの光Lbは第1端面5cに対して斜めに入射し伝播角度φ=26°で導光体5を伝播するため、第2発光素子7bからの光Lbの第1主面5aに対する入射角θは64°となる。第2発光素子7bからの光Lbが第1光取出領域RAに到達し、導光体5と第1低屈折率体8aとの界面に対して入射角θ=64°で入射する。ここでの臨界角γは60.1°であるから、光Lbは導光体5と第1低屈折率体8aとの界面を透過できず、全反射する。次に、第2発光素子7bからの光Lbが第2光取出領域RBに到達し、導光体5と第2低屈折率体8bとの界面に対して入射角θ=64°で入射する。ここでの臨界角γは69.0°であるから、光Lbは導光体5と第2低屈折率体8bとの界面を透過して第2低屈折率体8bに入射され、その後、光散乱体10から外部に取り出される。このようにして、第2発光素子7bから射出された光Lbの略全量を第2光取出領域RBから取り出すことができる。 Next, as shown in FIG. 2B, when the first light emitting element 7a is turned off and the second light emitting element 7b fixed to the first end face 5c is turned on, the light Lb from the second light emitting element 7b is the first light Lb. Since the light is incident on the end surface 5c obliquely and propagates through the light guide 5 at the propagation angle φ B = 26 °, the incident angle θ B of the light Lb from the second light emitting element 7b to the first main surface 5a is 64 °. Become. The light Lb from the second light emitting element 7b reaches the first light extraction region RA, and enters the interface between the light guide 5 and the first low refractive index body 8a at an incident angle θ B = 64 °. Since the critical angle γ A here is 60.1 °, the light Lb cannot be transmitted through the interface between the light guide 5 and the first low refractive index body 8a, and is totally reflected. Next, the light Lb from the second light emitting element 7b reaches the second light extraction region RB and is incident at an incident angle θ B = 64 ° with respect to the interface between the light guide 5 and the second low refractive index body 8b. To do. Since the critical angle γ B here is 69.0 °, the light Lb passes through the interface between the light guide 5 and the second low refractive index body 8b and is incident on the second low refractive index body 8b. , Extracted from the light scatterer 10 to the outside. In this way, substantially the entire amount of the light Lb emitted from the second light emitting element 7b can be extracted from the second light extraction region RB.
 仮に第1発光素子7aから射出された光Laが第2光取出領域RBに入射したとすると、この場合も入射角が臨界角よりも小さいという条件を満たすため、この光Laを第2光取出領域RBから取り出すことができる。しかしながら、第1発光素子7aから射出された光Laは第2光取出領域RBに到達する前に第1光取出領域RAで略全量が取り出されてしまうため、ほとんど第2光取出領域RBに到達することがない。したがって、実際には第1発光素子7aから射出された光Laが第2光取出領域RBから取り出されることはなく、第2発光素子7bから射出された光Lbが第2光取出領域RBから取り出されることになる。本実施形態のバックライト3は、このような原理に基づいて所定のLEDから射出された光を所定の光取出領域のみから取り出すことができる。 If the light La emitted from the first light emitting element 7a is incident on the second light extraction region RB, this condition also satisfies the condition that the incident angle is smaller than the critical angle. It can be taken out from the region RB. However, almost all of the light La emitted from the first light emitting element 7a is extracted in the first light extraction area RA before reaching the second light extraction area RB, and thus almost reaches the second light extraction area RB. There is nothing to do. Therefore, actually, the light La emitted from the first light emitting element 7a is not extracted from the second light extraction region RB, and the light Lb emitted from the second light emitting element 7b is extracted from the second light extraction region RB. Will be. Based on such a principle, the backlight 3 of the present embodiment can extract light emitted from a predetermined LED only from a predetermined light extraction area.
 次に、図2Cに示すように、第2発光素子7bを消灯させ、第1端面5cに固定された第3発光素子7cを点灯させたとすると、第3発光素子7cからの光Lcは第1端面5cに対して斜めに入射し伝播角度φ=15°で導光体5を伝播する。そのため、第3発光素子7cからの光Lcの第1主面5aに対する入射角θは75°となる。第3発光素子7cからの光Lcが第1光取出領域RAもしくは第2光取出領域RBに到達し、導光体5と第1低屈折率体8aもしくは第2低屈折率体8bとの界面に対して入射角θ=75°で入射すると、この入射角θは臨界角γおよび臨界角γよりも大きいため、光Lcは各界面を透過できず、全反射する。その後、第3発光素子7cからの光Lcが第3光取出領域RCに到達すると、光Lcは導光体5と屈折率体9との界面を透過して屈折率体9に入射され、その後、光散乱体10から外部に取り出される。
 このようにして、第3発光素子7cから射出された光Lcの略全量を第3光取出領域RCから取り出すことができる。
Next, as shown in FIG. 2C, when the second light emitting element 7b is turned off and the third light emitting element 7c fixed to the first end face 5c is turned on, the light Lc from the third light emitting element 7c is the first light Lc. The light is incident on the end face 5c obliquely and propagates through the light guide 5 at a propagation angle φ C = 15 °. Therefore, the incident angle θ C of the light Lc from the third light emitting element 7c with respect to the first major surface 5a is 75 °. The light Lc from the third light emitting element 7c reaches the first light extraction region RA or the second light extraction region RB, and the interface between the light guide 5 and the first low refractive index body 8a or the second low refractive index body 8b. Is incident at an incident angle θ C = 75 °, the incident angle θ C is larger than the critical angle γ A and the critical angle γ B , so that the light Lc cannot be transmitted through each interface and is totally reflected. Thereafter, when the light Lc from the third light emitting element 7c reaches the third light extraction region RC, the light Lc passes through the interface between the light guide 5 and the refractive index body 9 and is incident on the refractive index body 9, and thereafter , Extracted from the light scatterer 10 to the outside.
In this way, substantially the entire amount of the light Lc emitted from the third light emitting element 7c can be extracted from the third light extraction region RC.
 上述したように、本実施形態のバックライト3によれば、各バックライトユニット4の3個の発光素子7a,7b,7cのうちのいずれのLEDを点灯させるかによって、3つの光取出領域RA,RB,RCのうちのいずれの光取出領域から光を取り出すか、すなわち、いずれの光取出領域RA,RB,RCを発光させるかを適宜選択することができる。
 また、各発光素子7a,7b,7cから射出される光の量を制御することにより、選択された光取出領域RA,RB,RCから取り出す光の量、すなわち、選択された光取出領域の明るさを調整することができる。
As described above, according to the backlight 3 of the present embodiment, the three light extraction areas RA are determined depending on which of the three light emitting elements 7a, 7b, and 7c of the backlight unit 4 is lit. , RB, and RC, the light extraction area from which light is extracted, that is, which light extraction area RA, RB, RC is allowed to emit light can be appropriately selected.
Further, by controlling the amount of light emitted from each light emitting element 7a, 7b, 7c, the amount of light extracted from the selected light extraction regions RA, RB, RC, that is, the brightness of the selected light extraction region. Can be adjusted.
 本実施形態の発光素子7aにおいては、光源73が凹面ミラー72の焦点Pfに配置されているため、光源73から射出されて凹面ミラー72で反射された光は平行化される。
 凹面ミラー72によって平行化された光は、パッケージ71の取付面71bから射出される。よって、パッケージ71の取付面71bから指向性の高い光を取り出すことができる。
In the light emitting element 7a of the present embodiment, since the light source 73 is disposed at the focal point Pf of the concave mirror 72, the light emitted from the light source 73 and reflected by the concave mirror 72 is collimated.
The light collimated by the concave mirror 72 is emitted from the mounting surface 71 b of the package 71. Therefore, light with high directivity can be extracted from the mounting surface 71 b of the package 71.
 従来の発光素子では、指向性を持った光を取り出すことはできるものの、光をLED実装基板の法線に対して斜め方向に取り出すことはできなかった。例えば、発光素子を対象物の一面(例えば導光板の端面など、発光素子が取り付けられる面)に取り付けた場合、光を対象物の一面の法線に対して斜め方向に取り出すことはできなかった。これに対して、本実施形態の発光素子7aは、凹面ミラー72の中心軸CL1がパッケージ71の取付面71bの法線CL2と斜めに交差しているので、光を対象物の一面の法線に対して斜め方向に取り出すことができる。
 したがって、本実施形態の発光素子7aによれば、指向性の高い光を対象物の一面の法線に対して斜め方向に取り出すことが可能となる。
 また、光を対象物の一面の法線に対して斜め方向に取り出すために、対象物の一面を斜めにカットする必要がない。したがって、対象物の形状がシンプルとなり、加工に手間がかからなくなる。
In the conventional light emitting device, although light having directivity can be extracted, the light cannot be extracted in an oblique direction with respect to the normal line of the LED mounting substrate. For example, when a light-emitting element is attached to one surface of an object (for example, a surface on which a light-emitting element is attached, such as an end face of a light guide plate), light cannot be extracted in an oblique direction with respect to the normal of the one surface of the object . On the other hand, in the light emitting element 7a of the present embodiment, since the central axis CL1 of the concave mirror 72 obliquely intersects the normal line CL2 of the mounting surface 71b of the package 71, the light is normal to one surface of the object. Can be taken out obliquely.
Therefore, according to the light emitting element 7a of the present embodiment, light with high directivity can be extracted in an oblique direction with respect to the normal line of one surface of the object.
In addition, in order to extract light in an oblique direction with respect to the normal of one surface of the object, it is not necessary to cut one surface of the object obliquely. Therefore, the shape of the object becomes simple, and processing is not time-consuming.
 また、凹面ミラー72の中心軸CL1が光源73の光射出面の法線と一致している。そのため、凹面ミラー72の中心軸CL1が光源73の光射出面の法線とずれている場合に比べて、光源73から射出された光を効率良く取り出すことができる。 Also, the central axis CL1 of the concave mirror 72 coincides with the normal line of the light exit surface of the light source 73. Therefore, the light emitted from the light source 73 can be extracted more efficiently than when the central axis CL1 of the concave mirror 72 is deviated from the normal line of the light emission surface of the light source 73.
 また、凹面ミラー72が放物面ミラーであり、光源73が凹面ミラー72の焦点Pfに配置されているので、光源73から射出された光を十分に平行化して取り出すことができる。したがって、指向性の高い光を取り出すことが容易となる。 Further, since the concave mirror 72 is a parabolic mirror and the light source 73 is disposed at the focal point Pf of the concave mirror 72, the light emitted from the light source 73 can be sufficiently collimated and extracted. Therefore, it becomes easy to extract light with high directivity.
 また、光源73の凹面ミラー72が配置された側と反対の側に反射ミラー74が設けられている。そのため、反射ミラー74によって、光源73の凹面ミラー72が配置された側と反対の側から射出された光(凹面ミラー72に直接入射されない光源73からの光)は凹面ミラー72に向けて反射される。仮に、反射ミラー74が設けられていない構成であると、光源73の凹面ミラー72が配置された側と反対の側から射出された光は、凹面ミラー72で反射されることなく、パッケージ71の取付面71bから平行化されていない光がそのまま取り出されることとなる。したがって、反射ミラー74を設けることによって、指向性の高い光を確実に取り出すことができる。 Further, a reflection mirror 74 is provided on the side opposite to the side where the concave mirror 72 of the light source 73 is disposed. Therefore, light reflected from the side opposite to the side where the concave mirror 72 of the light source 73 is disposed (light from the light source 73 not directly incident on the concave mirror 72) is reflected toward the concave mirror 72 by the reflection mirror 74. The If the configuration is such that the reflection mirror 74 is not provided, the light emitted from the side opposite to the side where the concave mirror 72 of the light source 73 is disposed is not reflected by the concave mirror 72, and the package 71 The light that has not been collimated is extracted as it is from the mounting surface 71b. Therefore, by providing the reflecting mirror 74, light with high directivity can be reliably extracted.
 また、光源73がパッケージ71の凹部71aに光透過部材75によって埋設されているので、光源73の位置および姿勢を安定して保持することができる。例えば、発光素子7aが外部から衝撃を受けた場合に、光源73の位置がずれたり光源73の姿勢が傾いたりすること(光源73が焦点Pfからずれたり、光源73の光射出面の法線が凹面ミラー72の中心軸CL1とずれたりすること)を抑制することができる。 Further, since the light source 73 is embedded in the recess 71a of the package 71 by the light transmitting member 75, the position and posture of the light source 73 can be stably held. For example, when the light emitting element 7a receives an impact from the outside, the position of the light source 73 is shifted or the posture of the light source 73 is inclined (the light source 73 is shifted from the focal point Pf, or the normal line of the light emission surface of the light source 73). Can be prevented from deviating from the central axis CL1 of the concave mirror 72).
 なお、本実施形態の発光素子7aでは、光源73の凹面ミラー72が配置された側と反対の側に反射ミラー74が設けられている構成を例示して説明したが、これに限らない。
 例えば、光源の凹面ミラーが配置された側と反対の側には、凹面ミラーと異なる方向に射出された光源からの光を凹面ミラーによって平行化された光の進行方向と同じ方向に向けて平行化する平行化レンズが設けられていても良い。この構成によれば、光源の凹面ミラーが配置された側と反対の側から射出された光(凹面ミラーに直接入射されない光源からの光)が平行化レンズによって平行化されて、パッケージの取付面から平行化された光が取り出される。したがって、反射ミラーに替えて平行化レンズを設けることによっても、指向性の高い光を確実に取り出すことができる。
In the light emitting element 7a of the present embodiment, the configuration in which the reflection mirror 74 is provided on the side opposite to the side where the concave mirror 72 of the light source 73 is disposed is described as an example. However, the configuration is not limited thereto.
For example, on the side opposite to the side where the concave mirror of the light source is arranged, the light from the light source emitted in a direction different from the concave mirror is directed in the same direction as the traveling direction of the light collimated by the concave mirror. A collimating lens may be provided. According to this configuration, the light emitted from the side opposite to the side where the concave mirror of the light source is disposed (the light from the light source not directly incident on the concave mirror) is collimated by the collimating lens, and the mounting surface of the package The collimated light is extracted from. Therefore, by providing a collimating lens instead of the reflecting mirror, light with high directivity can be reliably extracted.
 ここで、本発明者らは、本実施形態の各発光素子の効果を実証するために、凹面ミラーの傾斜角度を変えたときの導光体5に向けて射出される光の射出光束量を求めるシミュレーションを行った。
 以下、シミュレーション結果について図4A~図5Cを用いて説明する。
 図4A~4Cは、本実施形態の各発光素子を示す断面図である。図4Aは、第1発光素子7aを示す断面図である。図4Bは、第2発光素子7bを示す断面図である。図4Cは、第3発光素子7cを示す断面図である。
 図5A~5Cは、本実施形態の各発光素子における角度と射出光束量の関係を示すシミュレーション結果である。図5Aは、傾斜角度が第1発光素子7aにおける光取り出しの様子を示すグラフである。図5Bは、第2発光素子7bにおける光取り出しの様子を示すグラフである。図5Cは、第3発光素子7cにおける光取り出しの様子を示すグラフである。図5A~5Cのグラフの横軸は、凹面ミラーの中心軸と取付面の法線とのなす角度(傾斜角度)θ[°]である。図5A~5Cのグラフの縦軸は、射出光束量[lumen]である。
Here, in order to verify the effect of each light emitting element of the present embodiment, the inventors set the amount of emitted light flux of light emitted toward the light guide 5 when the inclination angle of the concave mirror is changed. The required simulation was performed.
Hereinafter, simulation results will be described with reference to FIGS. 4A to 5C.
4A to 4C are cross-sectional views showing the light-emitting elements of this embodiment. FIG. 4A is a cross-sectional view showing the first light emitting element 7a. FIG. 4B is a cross-sectional view showing the second light emitting element 7b. FIG. 4C is a cross-sectional view showing the third light emitting element 7c.
FIGS. 5A to 5C are simulation results showing the relationship between the angle and the amount of emitted light in each light-emitting element of this embodiment. FIG. 5A is a graph showing how light is extracted in the first light emitting element 7a with an inclination angle. FIG. 5B is a graph showing a state of light extraction in the second light emitting element 7b. FIG. 5C is a graph showing a state of light extraction in the third light emitting element 7c. 5A to 5C is an angle (inclination angle) θ [°] formed by the central axis of the concave mirror and the normal of the mounting surface. The vertical axis of the graphs in FIGS. 5A to 5C represents the amount of luminous flux [lumen].
 基本構成は本実施形態の発光素子と同様であり、光源および反射ミラーがパッケージの凹部に樹脂(光透過部材)によって埋設されているものとした。シミュレーションの条件は、各発光素子7a,7b,7cにおいて、放物面ミラーのサイズ(中心軸CL1と平行な方向から視た円の直径)を直径8mm、反射ミラーのサイズ(中心軸CL1と平行な方向から視た正方形の一辺)を1mm、チップLEDのサイズ(中心軸CL1と平行な方向から視た正方形の一辺)を250μm、放物面ミラーの曲率半径を5.4mm、埋設した樹脂の屈折率を1.5、とした。そして、各発光素子7a,7b,7cにおいて、導光体5に向けて射出される光の射出光束量を求めた。 The basic configuration is the same as that of the light emitting device of the present embodiment, and the light source and the reflection mirror are embedded in the concave portion of the package with resin (light transmitting member). The simulation conditions were as follows: in each light emitting element 7a, 7b, 7c, the size of the parabolic mirror (diameter of the circle viewed from the direction parallel to the central axis CL1) was 8 mm in diameter, and the size of the reflecting mirror (parallel to the central axis CL1). The side of the square viewed from one direction) is 1 mm, the size of the chip LED (one side of the square viewed from the direction parallel to the central axis CL1) is 250 μm, the radius of curvature of the parabolic mirror is 5.4 mm, and the embedded resin The refractive index was 1.5. And in each light emitting element 7a, 7b, 7c, the emitted light beam amount of the light inject | emitted toward the light guide 5 was calculated | required.
 図5Aに示すように、第1発光素子7aにおける射出光束量は傾斜角度36.898°において最大値が得られた。また、第1発光素子7aから射出される光の強度分布の半値幅(FWHM;fullwidthathalfmaximum)は3.2°であった。 As shown in FIG. 5A, the maximum amount of light flux emitted from the first light emitting element 7a was obtained at an inclination angle of 36.898 °. Further, the full width at half maximum (FWHM) of the intensity distribution of light emitted from the first light emitting element 7a was 3.2 °.
 図5Bに示すように、第2発光素子7bにおける射出光束量は傾斜角度25.928°において最大値が得られた。また、第2発光素子7bから射出される光の強度分布の半値幅(FWHM)は3.2°であった。 As shown in FIG. 5B, the maximum amount of light flux emitted from the second light emitting element 7b was obtained at an inclination angle of 25.928 °. In addition, the half width (FWHM) of the intensity distribution of the light emitted from the second light emitting element 7b was 3.2 °.
 図5Cに示すように、第3発光素子7cにおける射出光束量は傾斜角度14.958°において最大値が得られた。また、第3発光素子7cから射出される光の強度分布の半値幅(FWHM)は3.2°であった。 As shown in FIG. 5C, the maximum amount of emitted light flux in the third light emitting element 7c was obtained at an inclination angle of 14.958 °. Further, the full width at half maximum (FWHM) of the intensity distribution of the light emitted from the third light emitting element 7c was 3.2 °.
 このシミュレーション結果から、凹面ミラーの傾斜角度をいずれの角度に変えた場合でも、発光素子から指向性の高い光を取り出すことができることが判った。 From this simulation result, it was found that even when the inclination angle of the concave mirror was changed to any angle, light with high directivity could be extracted from the light emitting element.
[第2の実施形態]
 以下、本発明の第2の実施形態について、図6を用いて説明する。
 本実施形態の発光素子の基本構成は第1の実施形態と同様であり、蓋部材が設けられている点が第1の実施形態と異なるのみである。よって、本実施形態では、発光素子の基本構成の説明は省略し、蓋部材の構造についてのみ説明する。
 図6は、本実施形態の発光素子を示す断面図である。
 なお、図6において、第1の実施形態で用いた図3と共通の構成要素には同一の符号を付し、その説明は省略する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIG.
The basic configuration of the light emitting device of this embodiment is the same as that of the first embodiment, and only the point that a lid member is provided is different from that of the first embodiment. Therefore, in this embodiment, description of the basic structure of a light emitting element is abbreviate | omitted, and only the structure of a cover member is demonstrated.
FIG. 6 is a cross-sectional view showing the light emitting device of this embodiment.
In FIG. 6, the same components as those in FIG. 3 used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 第1の実施形態では、光源73および反射ミラー74がパッケージ71の凹部71aに光透過部材75によって埋設され、光透過部材75の光射出面が導光体5の第1端面5cに取り付けられる取付面となっていた。これに対して、本実施形態の発光素子107では、図6に示すように、光源73および反射ミラー74が蓋部材76の裏面76aに取り付けられ、パッケージ71の凹部71aの一部に蓋部材76が嵌め込まれており、蓋部材76の光射出面(表面)76bが取付面となっている。 In the first embodiment, the light source 73 and the reflection mirror 74 are embedded in the recess 71 a of the package 71 by the light transmission member 75, and the light emission surface of the light transmission member 75 is attached to the first end surface 5 c of the light guide 5. It was a surface. On the other hand, in the light emitting element 107 of the present embodiment, as shown in FIG. 6, the light source 73 and the reflection mirror 74 are attached to the back surface 76 a of the lid member 76, and the lid member 76 is partly provided on the recess 71 a of the package 71. Is fitted, and the light emission surface (front surface) 76b of the lid member 76 is an attachment surface.
 蓋部材76は、パッケージ71の凹部71aを閉塞するための部材である。蓋部材76の光射出面76bは上述したパッケージ71の取付面71bと平行かつ平坦な面となっている。蓋部材76の裏面76aは、凹面ミラー72の中心軸CL1を法線とする平坦面となっている。 The lid member 76 is a member for closing the recess 71 a of the package 71. The light emission surface 76b of the lid member 76 is a flat surface parallel to the mounting surface 71b of the package 71 described above. The back surface 76a of the lid member 76 is a flat surface with the central axis CL1 of the concave mirror 72 as a normal line.
 蓋部材76の形状は、所定の形状を有する金型を用いて樹脂の射出成形を行うなどの方法によって形成されている。あるいは、蓋部材76の形状は、例えば元々平坦な樹脂部材の表面を切削加工することによって形成しても良い。 The shape of the lid member 76 is formed by a method such as injection molding of resin using a mold having a predetermined shape. Alternatively, the shape of the lid member 76 may be formed, for example, by cutting the surface of an originally flat resin member.
 本実施形態において、蓋部材76によって閉塞されたパッケージ71の凹部71aは、空気層175が封入されたいわゆる中空構造となっている。 In this embodiment, the recess 71a of the package 71 closed by the lid member 76 has a so-called hollow structure in which an air layer 175 is enclosed.
 このように、パッケージ71の凹部71aを中空構造とすることもできるし、第1実施形態の構成と同様に光透過部材を配置することもできる。後者の場合、光透過部材は、パッケージ71の凹部71aに凹面ミラー72を配置し、このパッケージ71の内部に、例えばアクリル樹脂等の光透過性を有する樹脂を注入して硬化させるなどして形成することができる。本実施形態においては、第1の実施形態と異なり、光源73および反射ミラー74が蓋部材76の裏面76aに取り付けられているので、パッケージ71の内部に光源73および反射ミラー74を配置することなしにパッケージ71の内部に樹脂を注入させることができる。 As described above, the concave portion 71a of the package 71 can be a hollow structure, and a light transmitting member can be arranged in the same manner as in the configuration of the first embodiment. In the latter case, the light transmissive member is formed by disposing a concave mirror 72 in the concave portion 71a of the package 71, and injecting and curing a light transmissive resin such as an acrylic resin into the package 71, for example. can do. In the present embodiment, unlike the first embodiment, since the light source 73 and the reflection mirror 74 are attached to the back surface 76a of the lid member 76, the light source 73 and the reflection mirror 74 are not arranged inside the package 71. The resin can be injected into the package 71.
 なお、発光素子から射出される光の射出角度(導光体5を伝播する伝播角度)を補正したり射出角度を凹面ミラー72の傾斜角度と異ならせたりするために、光透過部材の透過率を導光体5の屈折率nWG(1.5)と異なる値にすることもできる。例えば、蓋部材76をパッケージ71から取り外し可能な構造とした場合、光透過部材を液状体とすることによって蓋部材76の取り外しだけで液状体をパッケージ71の内部に出し入れすることができるため、光透過部材の透過率の変更が容易となる。 In order to correct the emission angle of light emitted from the light emitting element (propagation angle propagating through the light guide 5) or to make the emission angle different from the inclination angle of the concave mirror 72, the transmittance of the light transmitting member. Can be a value different from the refractive index nWG (1.5) of the light guide 5. For example, when the lid member 76 is configured to be removable from the package 71, the liquid material can be taken in and out of the package 71 only by removing the lid member 76 by making the light transmitting member a liquid material. It becomes easy to change the transmittance of the transmissive member.
 本実施形態の発光素子107においては、蓋部材76が設けられているので、外部からパッケージ71の内部に不純物が侵入することを抑制することができる。 In the light emitting element 107 of the present embodiment, since the lid member 76 is provided, it is possible to prevent impurities from entering the package 71 from the outside.
[第3の実施形態]
 以下、本発明の第3の実施形態について、図7、図8Aおよび図8Bを用いて説明する。
 本実施形態の発光素子の基本構成は第1の実施形態と同様であり、パッケージの凹部の形状および凹面ミラーの形状が第1の実施形態と異なるのみである。よって、本実施形態では、発光素子の基本構成の説明は省略し、パッケージの凹部の形状および凹面ミラーの形状についてのみ説明する。
 図7は、本実施形態の発光素子を示す斜視図である。
 図8Aおよび8Bは、本実施形態の発光素子を示す模式図である。図8Aは、発光素子の断面図である。図8Bは、発光素子の平面図である。
 なお、図7、図8Aおよび図8Bにおいて、第1の実施形態で用いた図3と共通の構成要素には同一の符号を付し、その説明は省略する。
[Third embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. 7, 8A and 8B.
The basic configuration of the light emitting device of this embodiment is the same as that of the first embodiment, and only the shape of the concave portion of the package and the shape of the concave mirror are different from those of the first embodiment. Therefore, in this embodiment, description of the basic structure of a light emitting element is abbreviate | omitted, and only the shape of the recessed part of a package and the shape of a concave mirror is demonstrated.
FIG. 7 is a perspective view showing the light emitting device of this embodiment.
8A and 8B are schematic views showing the light emitting device of this embodiment. FIG. 8A is a cross-sectional view of the light-emitting element. FIG. 8B is a plan view of the light emitting element.
7, 8 </ b> A, and 8 </ b> B, the same components as those in FIG. 3 used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 第1の実施形態では、パッケージ71の凹部71aの形状が、凹面ミラー72の中心軸CL1と取付面71bの法線CL2を含む仮想面の法線から視て、光源73に対して凹となるような曲線状となっていた。また、凹面ミラー72が放物面ミラーであり、凹面ミラー72の中心軸CL1と平行な方向から視た形状が円形の回転対称形状のものであった。
 これに対して、本実施形態の発光素子207では、図7、図8Aおよび図8Bに示すように、パッケージ271の凹部271aの形状が光源73に対して凹となるような曲線状となっており、さらに、当該凹部271aを凹面ミラー272の中心軸CL1と取付面271bの法線CL2を含む仮想面で切断したときの形状が同じになっている。また、凹面ミラー272の中心軸CL1と平行な方向から視た形状が矩形となっている。
In the first embodiment, the shape of the recess 71 a of the package 71 is concave with respect to the light source 73 as viewed from the normal of the virtual plane including the central axis CL 1 of the concave mirror 72 and the normal CL 2 of the mounting surface 71 b. It was like a curve. The concave mirror 72 is a parabolic mirror, and the shape viewed from a direction parallel to the central axis CL1 of the concave mirror 72 is a circular rotationally symmetric shape.
On the other hand, in the light emitting element 207 of this embodiment, as shown in FIGS. 7, 8A and 8B, the concave portion 271a of the package 271 has a curved shape that is concave with respect to the light source 73. Furthermore, the shape when the concave portion 271a is cut by a virtual plane including the central axis CL1 of the concave mirror 272 and the normal line CL2 of the mounting surface 271b is the same. Further, the shape viewed from the direction parallel to the central axis CL1 of the concave mirror 272 is rectangular.
 本実施形態の発光素子207において、凹面ミラー272での反射光は、図8Aに示すように仮想面(XZ面)では指向性を持ち、図8Bに示すように仮想面と直交する面(XY面)では左右に広がる。よって、上下方向では指向性を持ち左右方向では広がりを持つ光を取り出すことが可能となる。 In the light emitting element 207 of the present embodiment, the reflected light from the concave mirror 272 has directivity on the virtual plane (XZ plane) as shown in FIG. 8A, and a plane (XY) orthogonal to the virtual plane as shown in FIG. 8B. In the plane). Therefore, it is possible to extract light having directivity in the vertical direction and spreading in the horizontal direction.
[表示装置の構成例]
 以下、表示装置の一構成例について、図9~図11Bを用いて説明する。
 図9は、表示装置の一構成例である液晶表示装置の概略構成を示す分解斜視図である。
 図10A、図10B、図11A、図11Bは、液晶表示装置におけるバックライトの配置例を示す図である。
[Configuration example of display device]
Hereinafter, one configuration example of the display device will be described with reference to FIGS. 9 to 11B.
FIG. 9 is an exploded perspective view showing a schematic configuration of a liquid crystal display device which is a configuration example of the display device.
FIG. 10A, FIG. 10B, FIG. 11A, and FIG. 11B are diagrams showing examples of backlight arrangement in a liquid crystal display device.
 本構成例の液晶表示装置121は、図9に示すように、下側ケース122と、反射板123と、バックライト3(調光素子)と、拡散板124と、液晶パネル2(表示素子)と、上側ケース125と、を備えている。すなわち、反射板123とバックライト3と拡散板124と液晶パネル2との積層体が、下側ケース122および上側ケース125の内部に収容されている。バックライト3の液晶パネル2と反対側に反射板123を配置したことにより、バックライト3から液晶パネル2と反対側に漏れ出た光を反射させて表示に寄与させることができる。また、バックライト3と液晶パネル2との間に拡散板124を配置したことにより、バックライト3の輝度ムラを軽減することができる。ただし、反射板123や拡散板124は必ずしも用いなくても良い。 As shown in FIG. 9, the liquid crystal display device 121 of this configuration example includes a lower case 122, a reflecting plate 123, a backlight 3 (light control element), a diffusion plate 124, and a liquid crystal panel 2 (display element). And an upper case 125. That is, a laminated body of the reflecting plate 123, the backlight 3, the diffusion plate 124, and the liquid crystal panel 2 is accommodated in the lower case 122 and the upper case 125. By disposing the reflector 123 on the opposite side of the backlight 3 from the liquid crystal panel 2, light leaking from the backlight 3 to the opposite side of the liquid crystal panel 2 can be reflected and contributed to display. Further, by disposing the diffusion plate 124 between the backlight 3 and the liquid crystal panel 2, luminance unevenness of the backlight 3 can be reduced. However, the reflecting plate 123 and the diffusing plate 124 are not necessarily used.
 図10Aに示すように、液晶表示装置121の画面内において、各光取出領域RA,RB,RCが画面の垂直方向に並ぶように、複数のバックライト3を配置する構成を採用することができる。もしくは、図10Bに示すように、液晶表示装置127の画面内において、各光取出領域RA,RB,RCが画面の水平方向に並ぶように、複数のバックライト3を配置する構成を採用することができる。 As shown in FIG. 10A, a configuration in which a plurality of backlights 3 are arranged in the screen of the liquid crystal display device 121 so that the light extraction areas RA, RB, RC are arranged in the vertical direction of the screen can be employed. . Alternatively, as shown in FIG. 10B, a configuration in which a plurality of backlights 3 are arranged so that the light extraction areas RA, RB, RC are arranged in the horizontal direction of the screen in the screen of the liquid crystal display device 127 is adopted. Can do.
 もしくは、図11Aおよび11Bに示すように、長手方向の一部にのみ光取出領域RA,RB,RCが設けられ、その他の部分は光が導光する領域となった細長い棒状の導光体135を複数本(本例では3本)組み合わせたバックライト137を用いても良い。複数本の導光体135は光取出領域RA,RB,RCが設けられた領域が長手方向にずれている。そのため、複数本の導光体135を組み合わせたときに、導光体135の長手方向にわたって光取出領域RA,RB,RCが並ぶような形態となる。 Alternatively, as shown in FIGS. 11A and 11B, the light extraction regions RA, RB, RC are provided only in a part in the longitudinal direction, and the other portions are elongated rod-shaped light guides 135 that are regions where light is guided. A backlight 137 that combines a plurality of (three in this example) may be used. In the plurality of light guides 135, regions where the light extraction regions RA, RB, RC are provided are shifted in the longitudinal direction. Therefore, when a plurality of light guides 135 are combined, the light extraction regions RA, RB, and RC are arranged along the longitudinal direction of the light guide 135.
 例えば、図11Aに示すように、液晶表示装置131の画面内において、各光取出領域RA,RB,RCが画面の垂直方向に並ぶように、複数のバックライト137を配置する構成としても良い。もしくは、図11Bに示すように、液晶表示装置133の画面内において、各光取出領域RA,RB,RCが画面の水平方向に並ぶように、複数のバックライト137を配置する構成としても良い。 For example, as shown in FIG. 11A, a plurality of backlights 137 may be arranged in the screen of the liquid crystal display device 131 so that the light extraction areas RA, RB, RC are arranged in the vertical direction of the screen. Alternatively, as shown in FIG. 11B, a plurality of backlights 137 may be arranged in the screen of the liquid crystal display device 133 so that the light extraction areas RA, RB, RC are arranged in the horizontal direction of the screen.
[照明装置の構成例]
 以下、照明装置の2つの構成例について、図12、図13Aおよび図13Bを用いて説明する。
 図12は、第1の構成例である照明装置の断面図である。図13Aおよび13Bは、第2の構成例である照明装置を示す図であって、図13Aは第2の構成例である照明装置の平面図、図13Bは図13AのA-A’線に沿う第2の構成例である照明装置の断面図である。
[Configuration example of lighting device]
Hereinafter, two configuration examples of the lighting device will be described with reference to FIGS. 12, 13A, and 13B.
FIG. 12 is a cross-sectional view of the lighting device as the first configuration example. 13A and 13B are diagrams showing a lighting apparatus as a second configuration example. FIG. 13A is a plan view of the lighting apparatus as a second configuration example, and FIG. 13B is a line AA ′ in FIG. 13A. It is sectional drawing of the illuminating device which is the 2nd structural example which follows.
 例えば図12に示す照明装置201では、導光体5の第1主面5a側に屈折率が1.3の第1低屈折率体8aが形成され、第2主面5b側に屈折率が1.4の第2低屈折率体8bが形成されている。また、第1低屈折率体8a上、第2低屈折率体8b上には光散乱体10が積層されている。その他の構成は第1の実施形態と同様である。なお、図12では一つの第1端面5cしか図示していないが、実際には紙面の奥行き方向に第1主面5aに対する角度が異なる他の一つの第1端面が形成されている。発光素子についても、一つの発光素子7aしか図示していないが、実際には紙面の奥行き方向に他の一つのLEDが設置されている。 For example, in the illumination device 201 shown in FIG. 12, the first low refractive index body 8a having a refractive index of 1.3 is formed on the first main surface 5a side of the light guide 5 and the refractive index is on the second main surface 5b side. A second low refractive index body 8b of 1.4 is formed. A light scatterer 10 is stacked on the first low refractive index body 8a and the second low refractive index body 8b. Other configurations are the same as those of the first embodiment. In FIG. 12, only one first end face 5c is shown, but actually, another one first end face having a different angle with respect to the first main face 5a is formed in the depth direction of the paper. As for the light emitting element, only one light emitting element 7a is shown, but actually another one LED is installed in the depth direction of the drawing.
 この照明装置201において、導光体5の第1端面5cに設けられた2つの発光素子のうち、いずれの発光素子を点灯させるかによって、第1主面5a側から光を射出させるか、第2主面5b側から光を射出させるかを切り換えることができる。したがって、発光面を切り換えることが可能な照明装置を実現することができる。 In the illumination device 201, the light emitting element 201 emits light from the first main surface 5a side depending on which one of the two light emitting elements provided on the first end surface 5c of the light guide 5 is lit. It is possible to switch whether light is emitted from the two principal surfaces 5b side. Therefore, it is possible to realize an illumination device that can switch the light emitting surface.
 また、図13Aに示す照明装置203では、導光体5の一面に「SHARP」と書かれた文字部204が形成されている。文字部204に対応して、図13Bに示すように、導光体5の第1主面5a側に屈折率が1.3の第1低屈折率体8aが形成されており、文字部204以外の部分には第1低屈折率体8aが形成されていない。また、第1低屈折率体8a上には光散乱体10が積層されている。すなわち、文字部204が上記実施形態における光取出領域となっている。その他の構成は第1の実施形態と同様である。なお、図13Bでは一つの第1端面5cしか図示していないが、実際には紙面の奥行き方向に第1主面5aに対する角度が異なる他の一つの第1端面が形成されている。発光素子についても、一つの発光素子7aしか図示していないが、実際には紙面の奥行き方向に他の一つの発光素子が設置されている。 Further, in the lighting device 203 shown in FIG. 13A, a character portion 204 written “SHARP” is formed on one surface of the light guide 5. Corresponding to the character portion 204, as shown in FIG. 13B, a first low refractive index body 8a having a refractive index of 1.3 is formed on the first main surface 5a side of the light guide 5, and the character portion 204 is formed. The first low refractive index body 8a is not formed in any other part. A light scatterer 10 is stacked on the first low refractive index body 8a. That is, the character part 204 is a light extraction area in the above embodiment. Other configurations are the same as those of the first embodiment. Although only one first end face 5c is shown in FIG. 13B, in actuality, another first end face having a different angle with respect to the first main face 5a is formed in the depth direction of the paper. As for the light emitting element, only one light emitting element 7a is shown, but actually, another one light emitting element is installed in the depth direction of the drawing.
 この照明装置203において、導光体5の第1端面5cに設けられた2つの発光素子のうち、いずれの発光素子を点灯させるかによって、文字部204から光を射出させるか、文字部204以外から光を射出させるかを切り換えることができる。したがって、本構成によれば、例えば文字部204の点滅が可能なデジタルサイネージとして利用可能な照明装置を実現できる。 In the lighting device 203, light is emitted from the character part 204 depending on which of the two light emitting elements provided on the first end surface 5 c of the light guide 5 is lit, or other than the character part 204. It is possible to switch whether light is emitted from Therefore, according to this structure, the illuminating device which can be utilized as digital signage which can blink the character part 204, for example is realizable.
 なお、本発明の態様における技術範囲は上記実施形態に限定されるものではなく、本発明の態様における趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば上記第1の実施形態では、3個の発光素子を導光体の短手方向(図1のy軸方向)に並べて配置したが、この配置に代えて、複数の発光素子を導光体の厚さ方向(図1のz軸方向)に並べて配置しても良い。
The technical scope in the aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the aspect of the present invention.
For example, in the first embodiment, three light emitting elements are arranged side by side in the short direction of the light guide (y-axis direction in FIG. 1). Instead of this arrangement, a plurality of light emitting elements are arranged in the light guide. May be arranged side by side in the thickness direction (z-axis direction in FIG. 1).
 また、上記実施形態においては、発光素子を導光体の端面に配置した構成を例に挙げて説明したが、これに限らず、発光素子を単品で使用することも可能である。ここで、発光素子の取付面での光の屈折を考える。発光素子の取付面が、屈折率1.5の光透過部材と屈折率1.0の空気層との界面となる場合を考える。例えば、外部の空気層に対して約15°の射出角度で光を取り出したい場合は、凹面ミラーの傾斜角度を約10°に設定する。 In the above embodiment, the configuration in which the light emitting element is disposed on the end face of the light guide has been described as an example. However, the present invention is not limited thereto, and the light emitting element can be used alone. Here, refraction of light on the mounting surface of the light emitting element is considered. Consider a case where the mounting surface of the light emitting element is an interface between a light transmitting member having a refractive index of 1.5 and an air layer having a refractive index of 1.0. For example, when it is desired to extract light at an emission angle of about 15 ° with respect to the external air layer, the inclination angle of the concave mirror is set to about 10 °.
 また、液晶表示装置の全体構成としては、液晶パネルとバックライトとの間に光拡散フィルム、プリズムシート等の光学部材を適宜配置しても良い。これらの光学部材を用いることで、輝度ムラの更なる低減、光の拡散角度や拡散方向の調整等を行うことができる。
 その他、上記実施形態における各種構成要素の形状、寸法、数、配置、構成材料、製造方法等については、上記実施形態で例示したものに限らず、適宜変更が可能である。
Further, as an overall configuration of the liquid crystal display device, an optical member such as a light diffusion film or a prism sheet may be appropriately disposed between the liquid crystal panel and the backlight. By using these optical members, it is possible to further reduce luminance unevenness and adjust the light diffusion angle and direction.
In addition, the shape, size, number, arrangement, constituent material, manufacturing method, and the like of various components in the above embodiment are not limited to those illustrated in the above embodiment, and can be changed as appropriate.
 本発明の態様は、液晶表示装置、その他、発光素子を備えた調光素子を用いて表示を行うことが可能な各種表示装置に利用可能である。 The aspect of the present invention can be used for a liquid crystal display device and other various display devices capable of performing display using a light control element including a light emitting element.
1,121,127,131,133…液晶表示装置(表示装置)、2…液晶パネル(表示素子)、3,137…バックライト(調光素子)、5,135…導光体、6…照明部、7,7a,7b,7c,107、207…発光素子、71,271…パッケージ、71a,271a…凹部、71b,271b…取付面、72,272…凹面ミラー、73…光源、74…反射ミラー、75,275…光透過部材、76…蓋部材、76a…蓋部材の裏面、76b…蓋部材の表面、201,203…照明装置、CL1…凹面ミラーの中心軸(凹面ミラーの中心点と焦点とを結ぶ直線)、CL2…取付面の法線、Pc…凹面ミラーの中心点、Pf…焦点、RA…第1光取出領域、RB…第2光取出領域、RC…第3光取出領域、φ…伝播角度 DESCRIPTION OF SYMBOLS 1,121,127,131,133 ... Liquid crystal display device (display device), 2 ... Liquid crystal panel (display element), 3,137 ... Backlight (light control element), 5,135 ... Light guide, 6 ... Illumination 7, 7a, 7b, 7c, 107, 207 ... light emitting element, 71,271 ... package, 71a, 271a ... recess, 71b, 271b ... mounting surface, 72,272 ... concave mirror, 73 ... light source, 74 ... reflection Mirror, 75, 275 ... light transmitting member, 76 ... lid member, 76a ... back surface of the lid member, 76b ... surface of the lid member, 201,203 ... illuminating device, CL1 ... center axis of the concave mirror (the central point of the concave mirror and Straight line connecting the focal point), CL2 ... normal of the mounting surface, Pc ... center point of the concave mirror, Pf ... focal point, RA ... first light extraction region, RB ... second light extraction region, RC ... third light extraction region. , Φ ... Propagation angle

Claims (11)

  1.  発光素子は、導光体に取り付けるための取付面を有し、
     前記発光素子は、
     凹部が形成されたパッケージと、
     前記パッケージの前記凹部に設けられた凹面ミラーと、
     前記凹面ミラーの焦点に配置された光源と、
     を備え、
     前記凹面ミラーの中心点と前記焦点とを結ぶ直線は、前記取付面の法線と斜めに交差している発光素子。
    The light emitting element has an attachment surface for attaching to the light guide,
    The light emitting element is
    A package in which a recess is formed;
    A concave mirror provided in the recess of the package;
    A light source disposed at the focal point of the concave mirror;
    With
    A light-emitting element in which a straight line connecting the center point of the concave mirror and the focal point obliquely intersects the normal of the mounting surface.
  2.  前記直線は、前記光源の光射出面の法線と一致している請求項1に記載の発光素子。 The light-emitting element according to claim 1, wherein the straight line coincides with a normal line of a light emission surface of the light source.
  3.  前記凹面ミラーは、放物面ミラーであり、
     前記直線は、前記放物面ミラーの回転対称軸と一致している請求項1に記載の発光素子。
    The concave mirror is a parabolic mirror;
    The light emitting device according to claim 1, wherein the straight line coincides with a rotational symmetry axis of the parabolic mirror.
  4.  さらに反射ミラーを備え、
     前記反射ミラーは、前記光源が前記凹面ミラーと前記反射ミラーとの間に配置されるように配置され、前記反射ミラーは、前記凹面ミラーと異なる方向に射出された前記光源からの光を、前記凹面ミラーに向けて反射する請求項1に記載の発光素子。
    In addition, with a reflection mirror,
    The reflection mirror is disposed so that the light source is disposed between the concave mirror and the reflection mirror, and the reflection mirror emits light from the light source emitted in a different direction from the concave mirror, The light-emitting element according to claim 1, which reflects toward the concave mirror.
  5.  さらに、前記光源から射出された光を透過する光透過部材を備え、
     前記光源は、前記パッケージの前記凹部に、前記光透過部材によって埋設されており、
     前記光透過部材は、前記取付面を形成している請求項1に記載の発光素子。
    Furthermore, a light transmission member that transmits the light emitted from the light source,
    The light source is embedded in the concave portion of the package by the light transmitting member,
    The light-emitting element according to claim 1, wherein the light transmission member forms the attachment surface.
  6.  さらに蓋部材を備え、
     前記蓋部材は、前記取付面を形成し、
     前記蓋部材は、前記凹部を閉塞するよう配置されている請求項1に記載の発光素子。
    Furthermore, a lid member is provided,
    The lid member forms the mounting surface;
    The light emitting device according to claim 1, wherein the lid member is disposed so as to close the concave portion.
  7.  前記蓋部材の裏面に、前記光源が取り付けられている請求項6に記載の発光素子。 The light-emitting element according to claim 6, wherein the light source is attached to a back surface of the lid member.
  8.  射出する光の量を制御可能な照明部と、
     前記照明部から射出された光が入射され、前記光を内部で全反射させつつ伝播させる導光体とを備え、
     前記導光体は、前記照明部から射出された光が導光体内部で全反射しつつ伝播される間に前記照明部から射出された光を外部に取り出す複数の光取出領域を有し、
     前記複数の光取出領域のうちの少なくとも2つの光取出領域は、前記照明部から射出された光を外部に取り出し可能な入射角範囲が互いに異なり、
     前記導光体は、前記照明部から射出された光を、前記導光体の内部を複数の異なる伝播角度で伝播させるよう構成され、
     前記照明部は、前記導光体に取り付けるための取付面を有する発光素子を備え、
     前記発光素子は、
     凹部が形成されたパッケージと、
     前記パッケージの前記凹部に設けられた凹面ミラーと、
     前記凹面ミラーの焦点に配置された光源と、
     を備え、
     前記凹面ミラーの中心点と前記焦点とを結ぶ直線は、前記取付面の法線と斜めに交差している調光素子。
    An illumination unit capable of controlling the amount of light emitted;
    The light emitted from the illumination unit is incident, and includes a light guide that propagates the light while totally reflecting the light inside,
    The light guide has a plurality of light extraction regions for extracting the light emitted from the illumination unit to the outside while the light emitted from the illumination unit is propagated while being totally reflected inside the light guide.
    At least two light extraction regions of the plurality of light extraction regions have different incident angle ranges in which the light emitted from the illumination unit can be extracted to the outside,
    The light guide is configured to propagate the light emitted from the illumination unit at a plurality of different propagation angles inside the light guide.
    The illumination unit includes a light emitting element having an attachment surface for attachment to the light guide,
    The light emitting element is
    A package in which a recess is formed;
    A concave mirror provided in the recess of the package;
    A light source disposed at the focal point of the concave mirror;
    With
    A dimming element in which a straight line connecting the center point of the concave mirror and the focal point obliquely intersects the normal of the mounting surface.
  9.  前記導光体の端面は、前記光取出領域が設けられた面に対して直交しており、
     前記導光体の端面には、前記発光素子が複数配置されており、
     前記複数の発光素子の各々は、射出された光が前記光取出領域に対して互いに異なる入射角で入射するように、前記直線が前記光取出領域に対して異なる向きになるよう配置されている請求項8に記載の調光素子。
    The end surface of the light guide is orthogonal to the surface on which the light extraction region is provided,
    A plurality of the light emitting elements are arranged on the end face of the light guide,
    Each of the plurality of light emitting elements is arranged so that the straight line is in a different direction with respect to the light extraction region so that the emitted light is incident on the light extraction region at different incident angles. The light control element according to claim 8.
  10.  請求項8に記載の調光素子と、
     前記調光素子から射出される光を用いて表示を行う表示素子と、
     を備えている表示装置。
    A light control device according to claim 8,
    A display element that performs display using light emitted from the light control element;
    A display device comprising:
  11.  請求項8に記載の調光素子を備えている照明装置。 A lighting device comprising the light control element according to claim 8.
PCT/JP2011/078765 2010-12-16 2011-12-13 Light emitting element, light adjusting element, display device, and lighting device WO2012081569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010280263 2010-12-16
JP2010-280263 2010-12-16

Publications (1)

Publication Number Publication Date
WO2012081569A1 true WO2012081569A1 (en) 2012-06-21

Family

ID=46244668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078765 WO2012081569A1 (en) 2010-12-16 2011-12-13 Light emitting element, light adjusting element, display device, and lighting device

Country Status (1)

Country Link
WO (1) WO2012081569A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013892A1 (en) * 2017-07-13 2019-01-17 Applied Materials, Inc. Collimated, directional micro-led light field display
US10256382B2 (en) 2016-12-09 2019-04-09 Applied Materials, Inc. Collimated OLED light field display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251183A (en) * 1989-03-24 1990-10-08 Iwasaki Electric Co Ltd Light-emitting diode lamp
JP2001217466A (en) * 2000-02-03 2001-08-10 Toyoda Gosei Co Ltd Reflection-type light-emitting device
JP2009124055A (en) * 2007-11-16 2009-06-04 Opto Device Kenkyusho:Kk High power ultraviolet light emitting diode
WO2010050489A1 (en) * 2008-10-30 2010-05-06 日本ゼオン株式会社 Light source device and liquid cristal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251183A (en) * 1989-03-24 1990-10-08 Iwasaki Electric Co Ltd Light-emitting diode lamp
JP2001217466A (en) * 2000-02-03 2001-08-10 Toyoda Gosei Co Ltd Reflection-type light-emitting device
JP2009124055A (en) * 2007-11-16 2009-06-04 Opto Device Kenkyusho:Kk High power ultraviolet light emitting diode
WO2010050489A1 (en) * 2008-10-30 2010-05-06 日本ゼオン株式会社 Light source device and liquid cristal display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10256382B2 (en) 2016-12-09 2019-04-09 Applied Materials, Inc. Collimated OLED light field display
CN109983392A (en) * 2016-12-09 2019-07-05 应用材料公司 Collimate LED light field display
US10559730B2 (en) 2016-12-09 2020-02-11 Applied Materials, Inc. Collimated LED light field display
CN109983392B (en) * 2016-12-09 2021-02-23 应用材料公司 Collimated LED light field display
WO2019013892A1 (en) * 2017-07-13 2019-01-17 Applied Materials, Inc. Collimated, directional micro-led light field display
US10490599B2 (en) 2017-07-13 2019-11-26 Applied Materials, Inc. Collimated, directional micro-LED light field display

Similar Documents

Publication Publication Date Title
US9063261B2 (en) Light-controlling element, display device and illumination device
KR102376134B1 (en) Optical systems having variable viewing angles
TWI493253B (en) Front light module
US7690811B2 (en) System for improved backlight illumination uniformity
JPWO2011067911A1 (en) Liquid crystal display
US10352530B2 (en) Lens, light emitting apparatus including the lens, and backlight unit including the apparatus
US9546774B2 (en) Luminous flux control member, light emitting device, and display device
US20120257144A1 (en) Light guiding unit, lighting device, and display device
TWM584524U (en) Viewing angle switchable display device
WO2012161212A1 (en) Planar light-source device and manufacturing method for same, display device, and lighting device
WO2012060266A1 (en) Light-control element, display device, and illumination device
WO2018120508A1 (en) Backlight module and display device
WO2012081569A1 (en) Light emitting element, light adjusting element, display device, and lighting device
TW201514561A (en) Light guide plate, planar light source device, and transmissive image display device
JP5174685B2 (en) Planar light source device and display device using the same
WO2012165474A1 (en) Light-emitting element, photochromic element, display device, and illumination device
TWI421594B (en) Color mixing lens and liquid crystal display device having the same
KR100883659B1 (en) Illuminating apparatus providing polarized light
WO2013081038A1 (en) Light source device, surface light source device, display device and lighting device
WO2013035660A1 (en) Surface light source device, display device, and lighting device
JP2013218826A (en) Light source device, planar light source device, display device, and lighting device
JP2007273090A (en) Light guide plate, manufacturing method of light guide plate, backlight, and liquid crystal display device
JP2010156810A (en) Optical sheet, surface optical source device and display device
JP4606135B2 (en) Liquid crystal display device
WO2012060247A1 (en) Light-control element, display device, and illumination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP