WO2012077666A1 - 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法 - Google Patents

血圧情報測定装置および該装置での動脈硬化度の指標の算出方法 Download PDF

Info

Publication number
WO2012077666A1
WO2012077666A1 PCT/JP2011/078155 JP2011078155W WO2012077666A1 WO 2012077666 A1 WO2012077666 A1 WO 2012077666A1 JP 2011078155 W JP2011078155 W JP 2011078155W WO 2012077666 A1 WO2012077666 A1 WO 2012077666A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
reflected wave
pressure waveform
wave
arteriosclerosis
Prior art date
Application number
PCT/JP2011/078155
Other languages
English (en)
French (fr)
Inventor
藤井 健司
小林 達矢
小椋 敏彦
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to CN201180059267.2A priority Critical patent/CN103260503B/zh
Priority to JP2012547866A priority patent/JP5929759B2/ja
Priority to DE112011104312.0T priority patent/DE112011104312B4/de
Publication of WO2012077666A1 publication Critical patent/WO2012077666A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds

Definitions

  • the present invention relates to a blood pressure information measuring apparatus and a method for calculating an index of arteriosclerosis in the apparatus, and in particular, a blood pressure information measuring apparatus for measuring blood pressure information effective for determination of arteriosclerosis and the degree of arteriosclerosis in the apparatus.
  • the present invention relates to an index calculation method.
  • PWV pulse wave velocity
  • cuffs are worn at least at two or more locations such as the upper arm and lower limb, and the pulse wave is measured at the same time, so the pulse wave is measured by the difference in the appearance time of each pulse wave (ejection wave, reflected wave). It can be calculated from the length of the artery between two points wearing a cuff or the like. This time difference is used as Tr (Traveling time to reflected wave) which is another index of arteriosclerosis.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-113593
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-113593
  • An evaluation device is disclosed. Using this device, the heart side pulse wave can be measured while compressing the peripheral side. Thereby, the ejection wave ejected from the heart is separated from the reflected wave from the iliac bifurcation and each part in the artery. Then, the arteriosclerosis degree is determined by calculating the time difference between the peak of the traveling wave component and the reflected wave component and the intensity ratio.
  • Patent Document 2 Japanese translations of PCT publication No. 2009-517140 (hereinafter referred to as Patent Document 2) describes a method of separating ejection waves and reflected waves using estimated values of the blood pressure waveform and blood flow waveform of the aorta. Disclosure. 16 (A) and 16 (B) are diagrams for explaining the method of Patent Document 2, and are blood pressures that are a composite wave of the ejection wave and the reflected wave shown in FIG. 16 (A). As shown in FIG. 16B, the ejection wave (traveling wave in the figure) and the reflected wave are separated from the waveform.
  • the blood pressure waveform of the aorta is measured in the pressure waveform estimated by the transfer function method from the blood pressure waveform measured in the peripheral arteries (radial artery, brachial artery, etc.) of the upper body, or in the carotid artery.
  • a blood pressure waveform is used as an approximate value.
  • the above transfer function method is disclosed in US Pat. No. 5,265,011.
  • the blood flow waveform is shown in the following non-patent document 1 (BE Westerhof et al. Quantification of wave reflection in the human aorta from pressure alone: a proof of principal. Hypertension 2006; 48; 595-601).
  • a triangular waveform having a base from the rise to the notch of the blood pressure waveform and a peak of the cardiac contraction peak is used.
  • the cross-correlation between the ejected wave and the reflected wave separated in this way is calculated, and the time when the correlation is highest is detected as the appearance time difference between the ejected wave and the reflected wave.
  • the appearance time difference between the two waveforms can be accurately detected by the cross-correlation, but when the waveform shapes are different, the error in detecting the appearance time difference is detected. Becomes larger.
  • the blood pressure waveform is deformed while the ejection wave from the heart propagates through the aorta.
  • the manner of deformation varies depending on the condition of the subject, such as the degree of progression of arteriosclerosis. For this reason, the appearance time difference between the ejection wave and the reflected wave may not be accurately detected due to the cross-correlation.
  • FIG. 17 shows Tr calculated from the pulse wave propagation time between two points measured by a conventional PWV measuring device and Tr obtained from the carotid blood pressure waveform actually measured for about 200 subjects. It is a figure which shows the relationship with PWV Tr).
  • the PWV Tr value calculated from the pulse wave velocity between two points of the heart and femoral artery measured using the PWV measuring device and the propagation distance between the two points can be measured using a noninvasive measuring device.
  • the Tr value is considered to be the most accurate Tr value so far.
  • the Tr value obtained from the blood pressure waveform of the carotid artery is obtained by detecting the time difference between the ejection wave and the reflected wave separated using the blood pressure waveform and the triangular blood flow waveform by the above-described cross-correlation method. It was obtained. From the results of FIG. 17, it was found that the Tr value obtained from the blood pressure waveform of the carotid artery was calculated to be longer than the Tr value obtained using the PWV measurement device in many subjects. This result is considered to indicate that there is clearly an error in the time difference between the ejection wave and the reflected wave detected from the carotid artery pulse waveform by the cross-correlation method.
  • a predetermined ratio for example, 10% or 20%
  • the time when the threshold value is reached is reflected.
  • a method for estimating the rising point of a wave is known.
  • 18A and 18B illustrate a method of estimating the rising point of the reflected wave using a threshold value. After separating the ejected wave and the reflected wave from the measured blood pressure waveform of the measured person using the cross-correlation method (FIG. 18A), the maximum amplitude of the reflected wave is made equal to the maximum amplitude of the ejected wave. It expands in the amplitude direction until it becomes (FIG. 18B).
  • the threshold is set to 20%
  • the axial coordinates are estimated as the rising point of the reflected wave
  • Tr is estimated and calculated as the time difference between the rising point of the ejection wave and the rising point of the reflected wave (FIG. 18B).
  • the shape of the blood pressure waveform is not similar to each other and is large as described above, even if the threshold ratio is used as described above, the appearance time difference between the ejection wave and the reflected wave is not accurately detected. There is a case.
  • the present invention has been made in view of such problems, and accurately calculates an index effective for determining the degree of arteriosclerosis by accurately detecting the time difference between the ejection wave and the reflected wave from the blood pressure waveform. It is an object of the present invention to provide a blood pressure information measuring device that can perform and a method for calculating an index of arteriosclerosis in the device.
  • the blood pressure information measurement device is a blood pressure information measurement device that calculates an index of the degree of arteriosclerosis of a subject as blood pressure information, and is attached to a measurement site of the subject.
  • An air bag an adjusting means for adjusting the internal pressure of the air bag, a blood pressure waveform for one beat from a pressure waveform based on the change in the internal pressure of the air bag, and a component of the ejection wave in the blood pressure waveform
  • an arithmetic unit for performing processing for calculating an index of the degree of arteriosclerosis of the subject by specifying the component of the reflected wave.
  • the arithmetic device includes a process for setting a threshold value based on an index that represents a characteristic of the shape of the blood pressure waveform according to the current time when the reflected wave appears in the blood pressure waveform, and the amplitude of the reflected wave is greater than the maximum amplitude of the reflected wave. Executes processing to specify the time point of the amplitude obtained from the threshold value as the rising point of the reflected wave, and to calculate the index of arteriosclerosis based on the rising point of the ejection wave and the rising point of the reflected wave To do.
  • the index representing the shape characteristic of the blood pressure waveform represents the degree of arteriosclerosis of the subject
  • the threshold value is a ratio to the maximum amplitude of the blood pressure waveform
  • the set threshold value is the degree of arteriosclerosis of the subject.
  • the threshold value on the side where the progression is smaller is smaller than the threshold value on the side where the degree of arteriosclerosis is not advanced.
  • the index representing the shape characteristic of the blood pressure waveform is an AI (Augmentation Index) value that is a ratio between the amplitude of the ejection wave and the amplitude of the reflected wave in the blood pressure waveform, and a provisional Tr value obtained from a differential curve of the blood pressure waveform. , And the age of the subject.
  • AI Application Index
  • the blood pressure information measurement device further includes a compression means for compressing the distal side of the measurement site, and the calculation device is based on a change in the internal pressure of the air bag in a state where the distal side of the measurement site is compressed and driven. Then, a process for calculating an index of arteriosclerosis as the blood pressure information of the subject is performed.
  • the measurement site is a subject's neck
  • the arithmetic unit obtains a carotid artery waveform as a blood pressure waveform.
  • a method for calculating an index of arteriosclerosis is a method for calculating an index of arteriosclerosis of a subject as blood pressure information, and a detected air bag attached to a measurement site of the subject
  • the step of identifying the blood pressure waveform for one beat from the pressure waveform based on the internal pressure change and receiving the input of the internal pressure change, and the index representing the shape characteristic of the blood pressure waveform according to the current position of the reflected wave in the blood pressure waveform Setting a threshold based on the reflected wave, identifying the time when the amplitude of the reflected wave is an amplitude obtained from the maximum amplitude of the reflected wave and the threshold value as a rising point of the reflected wave,
  • a step of calculating an index of the degree of arteriosclerosis based on the rising point of the outgoing wave and the rising point of the reflected wave is executed.
  • the present invention it is possible to accurately detect the difference in appearance time between the ejection wave and the reflected wave from the blood pressure waveform, thereby accurately calculating an index effective for determining the degree of arteriosclerosis.
  • Tr as one of the indices for determining the degree of arteriosclerosis is the time between the appearance time of the ejection wave and the appearance time of the reflected wave that the traveling wave reflects from the bifurcation of the iliac artery and returns Expressed in intervals.
  • PWV calculated from the pulse wave propagation time between two points measured with a PWV measuring device, It is known that there is a correlation with Tr estimated from the arterial pulse waveform.
  • threshold values are determined from ejected waves and reflected waves separated using a blood pressure waveform measured in the carotid artery and a triangular blood flow waveform. It is a figure which shows the relationship between Tr (henceforth estimation Tr) calculated
  • the threshold when the threshold is set to 10% of the amplitude of the reflected wave, the difference between PWV Tr and estimated Tr is small for subjects with short Tr, but PWV Tr and estimated Tr are long for subjects with long Tr. The difference becomes larger.
  • the threshold value when the threshold value is set to 30% of the amplitude of the reflected wave, the difference between PWV Tr and estimated Tr is long for a subject with a long Tr, as opposed to when the threshold value is 10%. Although it is small, the difference between PWV Tr and estimated Tr increases as Tr decreases.
  • the threshold value when the threshold value is 20% of the amplitude of the reflected wave, it is an intermediate result.
  • FIGS. 4 (A) and 4 (B) are diagrams showing specific examples of blood pressure waveforms measured in the carotid artery of a subject with a short Tr and a subject with a long Tr, respectively.
  • the maximum amplitude of each pulse wave is set to “1”, and the ratio of the amplitude to the maximum amplitude over time is shown.
  • 5 (A) and 5 (B) for each blood pressure waveform in FIGS. 4 (A) and 4 (B), the ejection wave (solid line) and the reflected wave (dashed line) are separated using the cross-correlation method.
  • FIG. 6 (A) and 6 (B) expand the reflected wave waveforms of FIGS. 5 (A) and 5 (B) in the amplitude direction until the maximum amplitude is the same as the maximum amplitude of the ejection wave.
  • the ratio of the amplitude of the reflected wave to the amplitude of the ejected wave is larger in the subject with a short Tr.
  • the slope from the appearance of the separated reflected wave to the peak is the steepest at the time of appearance for the subject with a short Tr (FIG. 6A), and gradually decreases as the peak is approached.
  • the slope immediately after the appearance is steep, but thereafter the slope up to about 20% is gentle, and then the slope becomes steep again.
  • a subject with a short Tr estimates a point close to the appearance of the reflected wave as a rising point, and a subject with a long Tr reflects It is considered appropriate to estimate the rising point at a point slightly after the appearance of the wave.
  • Tr is an index of the degree of arteriosclerosis, and it indicates that the arteriosclerosis progresses as the subject with a shorter Tr and the arteriosclerosis does not progress with a longer Tr.
  • Tr is short, that is, when the reflected wave appears early in the blood pressure waveform, the magnitude of the reflected wave in the blood pressure waveform increases, and when Tr is long, that is, when the reflected wave appears slowly in the blood pressure waveform, The size becomes smaller.
  • the inventors of the present invention can reflect a subject with various degrees of arterial stiffness by using a threshold value for determining the rising point of the reflected wave according to the degree of arterial stiffness of the subject.
  • a threshold value for determining the rising point of the reflected wave according to the degree of arterial stiffness of the subject.
  • the rising point of the wave can be estimated more accurately.
  • the degree of arterial sclerosis of the subject for example, the magnitude of the reflected wave appearing in the blood pressure waveform can be used, and a different threshold is set as a threshold for determining the rising point of the reflected wave accordingly. Can be used.
  • the ratio (AI (Augmentation Index) value) between the amplitude of the ejection wave and the amplitude of the reflected wave obtained from the blood pressure waveform can be used.
  • a value representing the magnitude of the reflected wave appearing in the blood pressure waveform a value ⁇ obtained from the following formulas (1) to (3) is determined in accordance with the AI value calculated from the measured blood pressure waveform. Is used as a threshold value ⁇ .
  • the coefficient a and coefficient b in the following equation (2) are based on the relationship between the AI value measured for a large number of subjects in advance and the rising point of the reflected wave, and as the AI value decreases, ⁇ approaches ⁇ 2 and the AI value increases. This is an experimental value determined so that ⁇ approaches ⁇ 1.
  • FIG. 7 is a diagram showing the relationship between the AI value and the threshold value ⁇ obtained from the equations (1) to (3).
  • the value ⁇ 1 is used as the threshold value ⁇
  • the second value whose AI value is smaller than AI1.
  • the threshold value is smaller than AI2
  • the value ⁇ 2 larger than the value ⁇ 1 is used as the threshold value ⁇ .
  • the AI value is set as the threshold value ⁇ . The smaller the value is, the closer to ⁇ 2, and the larger the AI value, the closer to ⁇ 1 is used. Therefore, when the AI value is large (the amplitude of the reflected wave is large), the threshold value ⁇ is set small.
  • the threshold value ⁇ is set large. Will be.
  • a more accurate estimated Tr value is calculated by variably setting the threshold value according to the Al value of the blood pressure waveform measured from the subject.
  • FIG. 8 is a diagram illustrating a specific example of the external appearance of a blood pressure information measurement device (hereinafter abbreviated as a measurement device) 1 according to the embodiment.
  • the measuring device 1 includes a base 2 connected by an air tube 10 and an arm band 9 attached to the upper arm that is a measurement site.
  • a display unit 4 that displays various information including measurement results and an operation unit 3 that is operated to give various instructions to the measuring apparatus 1 are arranged.
  • the operation unit 3 includes a switch 31 that is operated to turn on / off the power source and a switch 32 that is operated to instruct the start of measurement.
  • the armband 9 includes an air bag as a fluid bag for compressing a living body.
  • the air bag includes an air bag 13A that is a fluid bag used to measure blood pressure as blood pressure information, and an air bag 13B that is a fluid bag used to measure pulse waves as blood pressure information.
  • the size of the air bag 13B is, for example, about 20 mm ⁇ 200 mm.
  • the air capacity of the air bag 13B is 1/5 or less compared to the air capacity of the air bag 13A.
  • blood pressure information refers to information related to blood pressure obtained by measurement from a living body, and specifically corresponds to a blood pressure value, a blood pressure waveform (pulse waveform), a heart rate, and the like.
  • FIG. 10 is a block diagram showing a specific example of the configuration of the measuring apparatus 1.
  • measuring apparatus 1 includes an air system 20A connected to air bag 13A through air tube 10, an air system 20B connected to air bag 13B through air tube 10, and a CPU ( Central Processing Unit) 40.
  • the air system 20A includes an air pump 21A, an air valve 22A, and a pressure sensor 23A.
  • the air system 20B includes an air valve 22B and a pressure sensor 23B.
  • the air pump 21A is connected to the drive circuit 26A, and the drive circuit 26A is further connected to the CPU 40.
  • the air pump 21A is driven by a drive circuit 26A that has received a command from the CPU 40, and pressurizes the air bag 13A by sending compressed gas into the air bag 13A.
  • the air valve 22A is connected to the drive circuit 27A, and the drive circuit 27A is further connected to the CPU 40.
  • the air valve 22B is connected to the drive circuit 27B, and the drive circuit 27B is further connected to the CPU 40.
  • the open / close states of the air valves 22A and 22B are controlled by drive circuits 27A and 27B, respectively, which have received a command from the CPU 40.
  • the air valves 22A and 22B maintain or depressurize the pressure in the air bags 13A and 13B, respectively. Thereby, the pressure in air bag 13A, 13B is controlled.
  • the pressure sensor 23A is connected to the amplifier 28A, the amplifier 28A is further connected to the A / D converter 29A, and the A / D converter 29A is further connected to the CPU 40.
  • the pressure sensor 23B is connected to the amplifier 28B, the amplifier 28B is further connected to the A / D converter 29B, and the A / D converter 29B is further connected to the CPU 40.
  • the pressure sensors 23A and 23B detect pressures in the air bags 13A and 13B, respectively, and output signals corresponding to the detected values to the amplifiers 28A and 28B. The output signals are amplified by the amplifiers 28A and 28B, digitized by the A / D converters 29A and 29B, and then input to the CPU 40.
  • the air tube from the air bag 13A and the air tube from the air bag 13B are connected by a 2-port valve 51.
  • the 2-port valve 51 is connected to the drive circuit 53, and the drive circuit 53 is further connected to the CPU 40.
  • the 2-port valve 51 has a valve on the air bag 13A side and a valve on the air bag 13B side, and these valves open and close by being driven by a drive circuit 53 that receives a command from the CPU 40.
  • the memory 41 stores a program executed by the CPU 40.
  • the CPU 40 reads out and executes a program from the memory 41 based on a command input to the operation unit 3 provided on the base 2 of the measuring apparatus, and outputs a control signal according to the execution. Further, the CPU 40 outputs the measurement result to the display unit 4 and the memory 41.
  • the memory 41 stores information about the measurer including at least the age as required. And CPU40 reads the information regarding the said measurer with the execution of a program as needed, and uses it for a calculation.
  • CPU 40 receives an input of a pressure signal from pressure sensor 23B as a function for calculating Tr (estimated Tr) as an index for determining the degree of arteriosclerosis according to the principle described above.
  • the specifying unit 404 obtains a blood pressure waveform for one beat from the input blood pressure waveform, and specifies the rising point, that is, the start point of the blood pressure waveform for one beat as the rising point of the ejection wave. Further, the specifying unit 404 specifies the rising point of the reflected wave in the blood pressure waveform using the threshold value ⁇ .
  • FIG. 11 is a flowchart showing the operation of the measuring apparatus 1.
  • the operation shown in FIG. 11 is started when the measurer presses the switch 32.
  • This operation is realized by the CPU 40 reading a program stored in the memory 41 and controlling each unit shown in FIG.
  • movement with the measuring apparatus 1 is demonstrated using FIG.
  • FIG. 13A shows the time change of the pressure P1 in the air bag 13B
  • FIG. 13B shows the time change of the pressure P2 in the air bag 13A.
  • S3 to S17 attached to the time axis in FIGS. 13A and 13B coincide with the operations of the measurement operation in the measurement apparatus 1 described later.
  • each unit is initialized in CPU 40 in step S1.
  • the CPU 40 outputs a control signal to the air system 20A to start pressurization of the air bag 13A, and measures blood pressure in the pressurization process.
  • the blood pressure in step S3 is measured by an oscillometric method that is performed with a normal sphygmomanometer.
  • the CPU 40 When the blood pressure measurement in step S3 is completed, the CPU 40 outputs a control signal to the drive circuit 53 in step S5 to open both the air bag 13A side valve and the air bag 13B side valve of the 2-port valve 51. . As a result, the air bag 13A and the air bag 13B communicate with each other, a part of the air in the air bag 13A moves to the air bag 13B, and the air bag 13B is pressurized.
  • the pressure P2 in the air bladder 13A increases to a pressure higher than the maximum blood pressure value from the start of pressurization in step S3 until the blood pressure measurement is completed. Thereafter, when the valve of the 2-port valve 51 is opened in step S5, part of the air in the air bag 13A moves to the air bag 13B, and the pressure P2 decreases. At the same time, as shown in FIG. 13A, the pressure P1 in the air bladder 13B rapidly increases. When the pressure P1 and the pressure P2 coincide, that is, when the internal pressures of the air bags 13A and 13B change, the movement of air from the air bag 13A to the air bag 13B ends.
  • step S7 the CPU 40 outputs a control signal to the drive circuit 53 at this time, and closes both valves of the 2-port valve 51 opened in step S5.
  • FIGS. 13A and 13B it is shown that the pressure P1 and the pressure P2 match at the time of step S7.
  • the pressure P2 in step S5 is not significant, and the pressure P1 at the time of step S7.
  • the pressure P2 is higher than the maximum blood pressure value.
  • step S9 the CPU 40 outputs a control signal to the drive circuit 27B and adjusts the pressure P1 in the air bag 13B to a pressure suitable for measuring a pulse wave.
  • the decompression adjustment amount here is preferably about 5.5 mmHg / sec, for example.
  • the pressure suitable for measuring the pulse wave is preferably about 50 to 150 mmH.
  • the CPU 40 performs an operation for extracting a feature point from the blood pressure waveform every time a blood pressure waveform for one beat based on the pressure signal from the pressure sensor 23B is input in step S11. Do.
  • FIG. 12 is a flowchart showing the operation for extracting feature points in step S11.
  • CPU 40 receives a pressure signal from pressure sensor 23B and specifies a blood pressure waveform for one beat.
  • the CPU 40 specifies the start point of the blood pressure waveform for one beat as the rising point of the ejection wave.
  • step S103 the CPU 40 specifies the maximum amplitude of the ejection wave of the blood pressure waveform for one beat and the maximum amplitude of the reflected wave, and calculates the AI value by calculating the ratio thereof.
  • the CPU 40 calculates the threshold value ⁇ used for specifying the rising point of the reflected wave from the maximum amplitude of the blood pressure waveform for one beat from the above-described equations (1) to (1) to (AI) obtained from the AI value obtained from the blood pressure waveform. 3) is stored in advance.
  • the threshold value ⁇ is calculated by substituting the AI value calculated in step S103 into the equation.
  • step S107 the CPU 40 identifies the point in time of reaching the amplitude obtained by multiplying the maximum amplitude of the reflected wave by the threshold value ⁇ in the blood pressure waveform identified in step S101 as the rising point of the reflected wave. Store as feature points.
  • the measurement operation in step S11 is performed by repeating the input of the blood pressure waveform a predetermined number of times (for example, for 10 beats). Meanwhile, the pressure P1 in the air bladder 13B is maintained at a pressure suitable for measuring a pulse wave as shown in FIG. 13A, and the pressure P2 in the air bladder 13A is maintained in FIG. As shown, the pressure is maintained higher than the maximum blood pressure value. Thereby, the peripheral blood-feeding state of the measurement site is maintained.
  • step S15 CPU 40 determines the average value of the repeatedly input values and the specified drive. Tr (estimated Tr) as an index of the degree of arteriosclerosis is calculated using the rising point of the outgoing wave.
  • step S17 the CPU 40 outputs a control signal to the drive circuits 27A and 27B to open the air valves 22A and 22B, thereby releasing the pressure in the air bags 13A and 13B to atmospheric pressure.
  • the pressures P1 and P2 rapidly decrease to atmospheric pressure in the section of step S17.
  • the calculated systolic blood pressure value (SYS), diastolic blood pressure value (DIA), arteriosclerosis index, and measurement results such as the measured pulse wave are displayed on the display unit 4 provided on the base 2. Applied and displayed.
  • FIG. 14 is a diagram showing the relationship between Tr (estimated Tr) calculated by the measuring apparatus 1 and PWV Tr calculated from the pulse wave propagation time between two points measured by a conventional PWV measuring apparatus.
  • the estimated Tr calculated by the measuring apparatus 1 is an ejection wave and a reflected wave separated using a blood pressure waveform and a triangular blood flow waveform measured in the carotid artery using a conventional method. From the relationship between the estimated Tr and the PWV Tr calculated by detecting the time difference with the cross-correlation method (FIG. 17), it can be seen that it is closer to the PWV Tr. That is, it can be seen that the estimated Tr calculated by the measuring apparatus 1 is smaller in difference from the PWV Tr than in FIG.
  • the device 1 of the present invention can calculate the calculated Tr (estimated Tr). It is clear that the error can be made smaller than the conventional method of calculating the pulse wave Tr, and the degree of arteriosclerosis can be determined with high accuracy.
  • the AI value is used as a value representing the magnitude of the reflected wave appearing in the blood pressure waveform as the degree of arterial stiffness of the subject.
  • a value calculated by differentiating the blood pressure waveform is also referred to as “temporary Tr value”.
  • the provisional Tr value calculated by differentiating the blood pressure waveform is a reflected wave such as a point corresponding to the maximum point of the second derivative curve of the blood pressure waveform or a point corresponding to the falling zero cross point of the fourth derivative curve of the blood pressure waveform.
  • the value calculated as the rising point of can be used.
  • the CPU 40 of the measuring apparatus 1 replaces the above-described equations (1) to (3) with equations (1 ′) to (3 ′).
  • ⁇ 1 (differentiation Tr ⁇ Tr_2)
  • temporary Tr ⁇ a ′ + b ′ (Tr — 2 ⁇ differential Tr ⁇ Tr — 1) Equation (2 ′)
  • ⁇ 2 (Tr_1 ⁇ differentiation Tr) Equation (3 ′).
  • FIG. 15 is a diagram showing the relationship between the provisional Tr value and the threshold value ⁇ obtained from the equations (1 ') to (3').
  • the temporary Tr value when the temporary Tr value is larger than the first threshold value Tr1, the value ⁇ 2 is used as the threshold value ⁇ , and the second threshold value is smaller than Tr1.
  • the threshold value is smaller than Tr2, the value ⁇ 1 smaller than the value ⁇ 2 is used as the threshold value ⁇ .
  • the Tr value is set as the threshold value ⁇ . The smaller the value, the closer to ⁇ 1, and the larger the temporary Tr value, the closer to ⁇ 2.
  • the threshold value ⁇ is set large when the temporary Tr value is large, and the threshold value ⁇ is set small when the temporary Tr value is small. become.
  • the estimated Tr value is calculated using the threshold value variably set according to the temporary Tr value.
  • Other configurations of the second embodiment are basically the same as those in the first embodiment.
  • Embodiments of the present invention are not limited to the embodiments described above, for example, based on the fact that arteriosclerosis generally progresses as the age increases and arteriosclerosis does not progress as the age decreases.
  • the age of the subject may be used as the degree.
  • the age of the subject is used as the degree of hardening of the subject's arteries, there is a relationship that the AI value is smaller as the subject's age is higher, so the CPU 40 of the measuring apparatus 1 is similar to the above formulas (1) to (3). , And stores a formula using the age of the subject as a parameter.
  • the relationship between the age of the subject and the threshold value ⁇ obtained from the same formula as the formulas (1) to (3) is similar to the AI value, compared to Ag1 in which the age of the subject is the first threshold value.
  • the value ⁇ 1 is used as the threshold value ⁇
  • the value ⁇ 2 larger than the value ⁇ 1 is used as the threshold value ⁇ .
  • the threshold ⁇ is closer to ⁇ 2 as the age is lower, and the value closer to ⁇ 1 as the age is higher.
  • 1 measuring device 2 substrate, 3 operation unit, 4 display unit, 9 armband, 10 air tube, 13A, 13B air bag, 20A, 20B air system, 21A air pump, 22A, 22B air valve, 23A, 23B pressure sensor, 26A 27A, 27B, 53 drive circuit, 28A, 28B amplifier, 29A, 29B converter, 31, 32 switch, 40 CPU, 41 memory, 51 2-port valve, 100 upper arm, 401 input unit, 402 AI calculation unit, 403 Threshold calculation unit, 404 identification unit, 405 Tr calculation unit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

 測定装置は、測定部位に装着された空気袋の内圧変化の入力を受け付けて、その圧力波形から一拍分の血圧波形を特定する(S101)。その1拍分の血圧波形の駆出波の最大振幅と反射波の最大振幅とを特定し、その比率を算出することでAI値を算出する(S103)。測定装置には、予めAI値としきい値との対応関係が記憶されており、それに基づいて、反射波の立ち上がり点を検出するためのしきい値を算出する(S105)。血圧波形のうち反射波の最大振幅にそのしきい値を乗じて得られる振幅に達した時点を反射波の立ち上がり点とし、Tr算出のための特徴点として特定する(S107)。

Description

血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
 この発明は血圧情報測定装置および該装置での動脈硬化度の指標の算出方法に関し、特に、動脈硬化度の判定に有効な血圧情報を測定する血圧情報測定装置および該装置での動脈硬化度の指標の算出方法に関する。
 従来、動脈硬化度を判定する装置として、心臓から駆出された脈波の伝播する速度(以下、PWV:pulse wave velocity)を調べることによって動脈硬化度を判定する装置が知られている。動脈硬化が進むほどに脈波伝播速度は速くなるので、PWVは動脈硬化度を判定するための有効な指標であり、動脈硬化度の判定の標準的指標として現在まで医療機関等において一般に用いられている。PWV測定装置では、上腕および下肢などの少なくとも2箇所以上においてカフ等を装着して同時に脈波を測定するので、それぞれの脈波(駆出波、反射波)の出現時間差を、脈波を測定するカフ等を装着した2点間の動脈の長さ等から算出することができる。この時間差は、別の動脈硬化度の指標であるTr(Traveling time to reflected wave)として用いられる。
 しかし、上記のPWV測定の実施に必要な設備は高価であり、尚且つ上腕及び下肢などのなどの少なくとも2箇所に脈波を測定するカフ等を装着する必要があるので、家庭で簡便に脈波伝播速度PWVを測定することは難しいという問題がある。そこで、その問題を解決するために、上腕又は頚動脈の脈波のみから動脈硬化度を判定する技術が提案されている。
 上腕の脈波のみから動脈硬化度を判定する技術として、たとえば特開2004-113593号公報(以下、特許文献1)は、脈波測定用カフと末梢側を圧迫する圧迫用カフとを備えた評価装置を開示している。この装置を用いて、末梢側を圧迫しながら心臓側の脈波を測定することができる。これにより、心臓から駆出された駆出波と腸骨動脈分岐部および動脈中の各部位からの反射波とが分離される。そして、進行波成分と反射波成分のピークの時間差と強度比を算出することによって動脈硬化度を判定するものである。
 特許文献1に開示された技術により動脈硬化度を精度よく判定するためには、脈波から反射波の開始点を正確に検出する必要がある。このための方法として、たとえば特表2009-517140号公報(以下、特許文献2)は、大動脈の血圧波形と血流量波形との推定値を用いて駆出波と反射波とを分離する方法を開示している。図16(A)および図16(B)は、特許文献2の方法を説明するための図であって、図16(A)に示された駆出波と反射波との合成波である血圧波形から、図16(B)のように、駆出波(図では進行波)と反射波とを分離する。
 特許文献2の方法において、大動脈の血圧波形としては、上半身の末梢動脈(撓骨動脈や上腕動脈など)において測定される血圧波形から伝達関数法により推定された圧力波形、または頚動脈で測定される血圧波形が近似値として用いられる。上記伝達関数法は、米国特許第5265011に開示されている。また、血流量波形としては、以下の非特許文献1(B.E. Westerhof et al. Quantification of wave reflection in the human aorta from pressure alone: a proof of principle. Hypertension 2006; 48; 595-601)において示されるように、血圧波形の立上りから切痕までを底辺とし心臓収縮ピークを頂点とする三角形状波形が用いられる。特許文献2の方法では、このようにして分離された駆出波と反射波との相互相関が計算され、相関が最も高くなる時間が、駆出波と反射波の出現時間差として検出される。
特開2004-113593号公報 特表2009-517140号公報
B.E. Westerhof et al. Quantification of wave reflection in the human aorta from pressure alone: a proof of principle. Hypertension 2006;48; 595-601
 ところで、上記相互相関法では2つの波形が相互に類似している場合には相互相関により2つの波形の出現時間差を精度よく検出できるが、波形の形状が異なる場合には出現時間差の検出の誤差が大きくなる。血圧波形は心臓からの駆出波が大動脈を伝播する間に変形する。さらに、この変形の仕方が動脈硬化の進行度等、被験者の状態により異なる。そのため、相互相関によって駆出波と反射波との出現時間差が精度よく検出されない場合がある。
 図17は、実際に約200名の被験者について測定した頚動脈の血圧波形から従来技術を用いて求めたTrと従来のPWV測定装置で測定した2点間の脈波伝播時間から算出したTr(以下PWV Trという)との関係を示す図である。PWV測定装置を用いて測定した心臓と大腿動脈との2点間の脈波伝播速度と該2点間の伝播距離とから算出されるPWV Tr値は非侵襲的測定装置を用いて測定可能なTr値としては現在までのところ最も精度が高いTr値であると考えられる。これに対して、上記頚動脈の血圧波形から求めたTr値は、血圧波形と三角形状の血流波形とを用いて分離した駆出波と反射波との時間差を上述の相互相関法により検出して得たものである。図17の結果より、多くの被験者で、上記頚動脈の血圧波形から求めたTr値がPWV測定装置を用いて得られたTr値よりも長く算出されていることが分かった。この結果は、頚動脈の脈波形から相互相関法によって検出した駆出波と反射波の出現時間差には明らかに誤差が存在することを示すと考えられる。
 また、脈波(反射波)の立上り点を決定する方法として、脈波振幅の所定比率(たとえば10%や20%)をしきい値として設定して、当該しきい値に達した時点を反射波の立上がり点として推定する方法が知られている。図18(A),(B)はしきい値を用いて反射波の立ち上がり点を推定する方法を説明する。測定された被測定者の血圧波形から相互相関法を用いて駆出波と反射波を分離(図18(A))した上で、反射波の最大振幅を駆出波の最大振幅と同じになるまで振幅方向に拡大する(図18(B))。仮にしきい値を20%に設定すると、反射波の振幅が反射波の最大振幅(図18(B)では1)にしきい値20%を乗じた振幅(0.2)に達した時点のX軸座標を反射波の立上り点として推定して、Trは駆出波の立上り点と反射波の立上り点の時間差として推定算出される(図18(B))。しかし、前述のように血圧波形の形状が互いに類似せず大きくなっている場合には、上述のようにしきい値の比率を用いても駆出波と反射波との出現時間差が精度よく検出されない場合がある。
 本発明はこのような問題に鑑みてなされたものであって、血圧波形から駆出波と反射波との出現時間差を精度よく検出することによって動脈硬化度の判定に有効な指標を精度よく算出することのできる血圧情報測定装置および該装置での動脈硬化度の指標の算出方法を提供することを目的としている。
 上記目的を達成するために、本発明のある局面に従うと、血圧情報測定装置は血圧情報として被験者の動脈硬化度の指標を算出する血圧情報測定装置であって、被験者の測定部位に装着するための空気袋と、空気袋の内圧を調整するための調整手段と、空気袋の内圧変化に基づいた圧力波形から一拍分の血圧波形を得て、当該血圧波形のうちの駆出波の成分と反射波の成分とを特定して被験者の動脈硬化度の指標を算出する処理を行なうための演算装置とを備える。演算装置は、血圧波形における反射波の出現時点に応じた血圧波形の形状の特徴を表わす指標に基づいてしきい値を設定する処理と、反射波の振幅が、反射波の最大振幅と上記しきい値とから得られる振幅となる時点を反射波の立ち上がり点として特定する処理と、駆出波の立ち上がり点と反射波の立ち上がり点とに基づいて動脈硬化度の指標を算出する処理とを実行する。
 好ましくは、血圧波形の形状の特徴を表わす指標は被験者の動脈硬化の度合いを表わし、しきい値は血圧波形の最大振幅に対する割合であり、設定されるしきい値は、被験者の動脈硬化の度合いが進んでいる側のしきい値の方が、動脈硬化の度合いが進んでいない側のしきい値よりも小さい。
 好ましくは、血圧波形の形状の特徴を表わす指標は、血圧波形における駆出波の振幅と反射波の振幅との比率であるAI(Augmentation Index)値、血圧波形の微分曲線から得られる仮Tr値、および被験者の年齢のうちのいずれかである。
 好ましくは、血圧情報測定装置は測定部位の末梢側を圧迫するための圧迫手段をさらに備え、演算装置は、測定部位の末梢側が圧迫されて駆血された状態での空気袋の内圧変化に基づいて被験者の血圧情報として動脈硬化度の指標を算出する処理を行なう。
 好ましくは、測定部位は被験者の頚であって、演算装置は、血圧波形として頚動脈波形を得る。
 本発明の他の局面に従うと、動脈硬化度の指標の算出方法は血圧情報として被験者の動脈硬化度の指標を算出する方法であって、検出された、被験者の測定部位に装着された空気袋の内圧変化の入力を受け付けて、内圧変化に基づいた圧力波形から一拍分の血圧波形を特定するステップと、血圧波形における反射波の出現時点位置に応じた血圧波形の形状の特徴を表わす指標に基づいてしきい値を設定するステップと、反射波の振幅が、反射波の最大振幅と上記しきい値とから得られる振幅となる時点を、反射波の立ち上がり点として特定するステップと、駆出波の立ち上がり点と反射波の立ち上がり点とに基づいて動脈硬化度の指標を算出するステップとを実行する。
 この発明によると、血圧波形から駆出波と反射波との出現時間差を精度よく検出することができ、それによって動脈硬化度の判定に有効な指標を精度よく算出することができる。
図17と同じ被験者について、測定された反射波の振幅の10%をしきい値として設定して、当該しきい値に達した時点を反射波の立上り点として検出して測定された脈波から推定したTrと、従来のPWV測定装置で測定した2点間の脈波伝播時間から算出したPWV Trとの関係を示す図である。 図17と同じ被験者について、測定された反射波の振幅の20%をしきい値として設定して、当該しきい値に達した時点を反射波の立上り点として検出して測定された脈波から推定したTrと、従来のPWV測定装置で測定した2点間の脈波伝播時間から算出したPWV Trとの関係を示す図である。 図17と同じ被験者について、測定された反射波の振幅の30%をしきい値として設定して、当該しきい値に達した時点を反射波の立上り点として検出して測定された脈波から推定したTrと、従来のPWV測定装置で測定した2点間の脈波伝播時間から算出したPWV Trとの関係を示す図である。 Trが短い被験者(A)と長い被験者(B)との、頚動脈で測定された血圧波形の具体例を示す図である。 図4(A),(B)のそれぞれの血圧波形について、駆出波(実線)と反射波(破線)とを分離して表わした図である。 図5(A),(B)のそれぞれの反射波の波形を、その最大振幅が駆出波の最大振幅と同じになるまで振幅方向に拡大して表わした図である。 AI値としきい値αとの関係式で表わされる、AI値としきい値αとの関係を表わす図である。 実施の形態にかかる血圧情報測定装置(以下、測定装置と略する)の外観の具体例を示す図である。 測定姿勢および腕帯の構成の具体例を示す図である。 測定装置の構成の具体例を示すブロック図である。 測定装置での動作を表わすフローチャートである。 図11のステップS11での特徴点を抽出するための動作を表わすフローチャートである。 測定装置での動作中の、圧迫用空気袋および測定用空気袋内の圧力変化を説明する図である。 測定装置で算出されたTrと、従来のPWV測定装置で測定した2点間の脈波伝播時間から算出されたPWV Trとの関係を示す図である。 血圧波形を微分して算出されるTr値としきい値αとの関係式で表わされる、微分Tr値としきい値αとの関係を表わす図である。 特表2009-517140号公報に開示される大動脈の血圧波形と血流量波形との推定値を用いて駆出波と反射波とを分離する方法を説明するための図である。 従来技術を用いて測定した脈波から求めたTrと従来のPWV測定装置で測定した2点間の脈波伝播時間から算出したPWV Trとの関係を示す図である。 従来技術を用いて血圧波形から固定したしきい値を用いてTrを推定する方法について説明する図である。
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。
 動脈硬化度を判定するための指標の一つとしてのTrは、駆出波の出現時間と進行波が腸骨動脈の分岐部から反射して戻ってくる反射波の出現時間との間の時間間隔で表わされる。たとえば文献London GM et al. Hypertension. 1992 Jul;20(1):10-19.に説明されているように、PWV測定装置で測定した2点間の脈波伝播時間から算出されるPWVと、動脈の脈波形から推定されるTrとの間には相関関係があることが知られている。
 <実施形態1>
 図1、図2、図3は、それぞれ、図17と同じ被験者について、頚動脈において測定された血圧波形と三角形状の血流波形とを用いて分離した駆出波と反射波からしきい値を用いて推定して求めたTr(以下推定Trという)と、従来のPWV測定装置で測定した2点間の脈波伝播時間から算出したTr(以下PWV Trという)との関係を示す図である。
 図1を参照して、しきい値を反射波の振幅の10%とした場合、Trが短い被験者ではPWV Trと推定Trとの差は小さいが、Trが長い被験者ではPWV Trと推定Trとの差が大きくなる。図3を参照して、しきい値を反射波の振幅の30%とした場合、しきい値が10%であるときとは反対に、Trが長い被験者ではPWV Trと推定Trとの差が小さいが、Trが短くなるほどPWV Trと推定Trとの差が大きくなる。図2を参照して、しきい値を反射波の振幅の20%とした場合はこれらの中間の結果である。
 図4(A),(B)は、それぞれ、Trが短い被験者と長い被験者との、頚動脈で測定された血圧波形の具体例を示す図である。図4では、それぞれの脈波の最大振幅を「1」として、時間経過に沿って振幅の最大振幅に対する比率が示されている。図5(A),(B)は、図4(A),(B)のそれぞれの血圧波形について、相互相関法を用いて駆出波(実線)と反射波(破線)とを分離して表わした図である。そして、図6(A),(B)は、図5(A),(B)のそれぞれの反射波の波形を、その最大振幅が駆出波の最大振幅と同じになるまで振幅方向に拡大して表わした図である。
 図5(A),(B)を参照して、駆出波の振幅に対する反射波の振幅の比率は、Trが短い被験者の方が大きいことがわかる。また、分離された反射波の出現時からピークまでの傾きは、Trが短い被験者(図6(A))では出現時での傾きが最も急峻で、ピークに近づくに従い徐々に緩やかになる。これに対し、Trが長い被験者(図6(B))では、出現直後の傾きは急峻であるが、その後20%程度までの傾きは緩やかであり、その後また傾きが急峻になる。そこで、反射波の傾きが最も急峻になる点が反射波の立上り点であると考えると、Trが短い被験者では、反射波の出現時に近い点を立上り点と推定し、Trが長い被験者では反射波の出現時から少し経過した点を立上り点と推定するのが適当と考えられる。
 上述のように、Trは動脈硬化度の指標であって、Trが短い被験者ほど動脈硬化が進み、Trが長いほど動脈硬化が進んでいないことを表わしている。一方で、Trが短い、すなわち血圧波形において反射波が早く現れると血圧波形における反射波の大きさが大きくなり、Trが長い、すなわち血圧波形において反射波の出現が遅いと血圧波形における反射波の大きさが小さくなる。
 以上から、本発明の発明者等は、被験者の動脈の硬化度合いに応じた反射波の立上り点を決定するためのしきい値を用いることで、動脈の硬化度合いのさまざまな被験者に対して反射波の立上り点をより正確に推定できることに想到した。上記の被験者の動脈の硬化度合いとしては、たとえば、血圧波形に現れる反射波の大きさを用いることができ、それに応じて反射波の立上り点を決定するためのしきい値として異なるしきい値を用いることができる。
 上記被験者の動脈硬化の度合いとしては、血圧波形から得られる駆出波の振幅と反射波の振幅との比率(AI(Augmentation Index)値)を用いることができる。上記の血圧波形に現れる反射波の大きさを表わす値として、測定された血圧波形から算出されたAI値に応じて以下の式(1)~(3)から得られる値αを立上り点決定のためのしきい値αとして用いる。なお、下記の式(2)における係数aおよび係数bは予め多数の被験者について測定したAI値と反射波の立上り点との関係から、AI値が小さいほどαがα2に近づき、AI値が大きいほどαがα1に近づくように決定した実験値である。
 α=α2   (AI<AI_2)    …式 (1) 、
 α=AI×a+b    (AI_2≦AI≦AI_1)       …式(2)、
 α=α1   (AI_1<AI)   …式(3)。
 図7は、AI値と式(1)~(3)から得られたしきい値αとの関係を表わす図である。図7に表わされるように、算出されたAI値が第1のしきい値であるAI1よりも大きい場合には、しきい値αとして値α1を用い、AI値がAI1よりも小さな第2のしきい値であるAI2よりも小さい場合には、しきい値αとして、値α1よりも大きい値α2を用い、AI値がAI2からAI1の間である場合には、しきい値αとしてAI値が小さいほどα2に近づき、AI値が大きいほどα1に近づく値を用いる。従って、AI値が大きい場合(反射波の振幅が大)にはしきい値αは小さく設定され、逆にAI値が小さい場合(反射波の振幅が小)にはしきい値αは大きく設定されることになる。このように被験者から測定された血圧波形のAl値に応じてしてしきい値を可変に設定することで、より精度の高い推定Tr値が算出される。
 図8は、実施の形態にかかる血圧情報測定装置(以下、測定装置と略する)1の外観の具体例を示す図である。
 図8を参照して、測定装置1は、エアチューブ10で接続された基体2と測定部位である上腕に装着される腕帯9とを含む。基体2の正面には、測定結果を含む各種の情報を表示する表示部4および測定装置1に対して各種の指示を与えるために操作される操作部3が配される。操作部3は電源をON/OFFするために操作されるスイッチ31、および測定の開始を指示するために操作されるスイッチ32を含む。
 図9(A),図9(B)を参照して、腕帯9は、生体を圧迫するための流体袋としての空気袋を備える。上記空気袋は、血圧情報としての血圧を測定するために用いられる流体袋である空気袋13A、および血圧情報としての脈波を測定するために用いられる流体袋である空気袋13Bとを含む。空気袋13Bのサイズは一例として20mm×200mm程度である。また、好ましくは、空気袋13Bの空気容量は空気袋13Aの空気容量に比べ1/5以下である。
 測定装置1を用いた脈波の測定に際しては、図9(A)に示すように、腕帯9を測定部位である上腕100に巻き回す。その状態でスイッチ32が押下されることで、血圧情報が測定され、血圧情報に基づいて動脈硬化度を判定するための指標が算出される。ここで「血圧情報」とは、生体から測定して得られる、血圧に関連する情報を指し、具体的には、血圧値、血圧波形(脈波波形)、心拍数、などが該当する。
 図10は、測定装置1の構成の具体例を示すブロック図である。
 図10を参照して、測定装置1は、空気袋13Aにエアチューブ10を介して接続されるエア系20A、および空気袋13Bにエアチューブ10を介して接続されるエア系20Bと、CPU(Central Processing Unit)40とを含む。エア系20Aは、エアポンプ21Aと、エアバルブ22Aと、圧力センサ23Aとを含む。エア系20Bは、エアバルブ22Bと、圧力センサ23Bとを含む。
 エアポンプ21Aは駆動回路26Aに接続され、駆動回路26AはさらにCPU40に接続される。エアポンプ21Aは、CPU40からの指令を受けた駆動回路26Aによって駆動されて、空気袋13Aに圧縮気体を送り込むことで空気袋13Aを加圧する。
 エアバルブ22Aは駆動回路27Aに接続され、駆動回路27AはさらにCPU40に接続される。エアバルブ22Bは駆動回路27Bに接続され、駆動回路27BはさらにCPU40に接続される。エアバルブ22A,22Bは、それぞれ、CPU40からの指令を受けた駆動回路27A,27Bによってその開閉状態が制御される。開閉状態が制御されることでエアバルブ22A,22Bは、それぞれ、空気袋13A,13B内の圧力を維持したり減圧したりする。これにより、空気袋13A,13B内の圧力が制御される。
 圧力センサ23Aは増幅器28Aに接続され、増幅器28AはさらにA/D変換器29Aに接続され、A/D変換器29AはさらにCPU40に接続される。圧力センサ23Bは増幅器28Bに接続され、増幅器28BはさらにA/D変換器29Bに接続され、A/D変換器29BはさらにCPU40に接続される。圧力センサ23A,23Bは、それぞれ、空気袋13A,13B内の圧力を検出し、その検出値に応じた信号を増幅器28A,28Bに対して出力する。出力された信号は増幅器28A,28Bで増幅され、A/D変換器29A,29Bでデジタル化された後にCPU40に入力される。
 空気袋13Aからのエアチューブと空気袋13Bからのエアチューブとは2ポート弁51で接続されている。2ポート弁51は駆動回路53に接続され、駆動回路53はさらにCPU40に接続される。2ポート弁51は空気袋13A側の弁と空気袋13B側の弁とを有し、CPU40からの指令を受けた駆動回路53によって駆動されることでそれら弁が開閉する。
 メモリ41にはCPU40で実行されるプログラムが記憶される。CPU40は、測定装置の基体2に設けられた操作部3に入力された指令に基づいてメモリ41からプログラムを読み出して実行し、その実行に従って制御信号を出力する。またCPU40は測定結果を表示部4やメモリ41に出力する。メモリ41には測定結果も記憶される他、必要に応じて、少なくとも年齢を含む測定者に関する情報が記憶される。そしてCPU40は、必要に応じてプログラムの実行に伴って上記測定者に関する情報を読み出して演算に用いる。
 さらに図10を参照して、CPU40は、上述の原理に従って動脈硬化度を判定するための指標としてのTr(推定Tr)を算出するための機能として、圧力センサ23Bからの圧力信号の入力を受け付けて血圧波形を得るための入力部401と、血圧波形からAI値を算出するためのAI算出部402と、上記式(1)~(3)を用いて算出されたAI値から反射波の立ち上がり点を検出するためのしきい値αを算出するためのしきい値算出部403と、血圧波形における反射波の立ち上がり点と駆出波の立ち上がり点とを特定するための特定部404と、血圧波形における駆出波の立ち上がり点および反射波の立ち上がり点の出現時間差から動脈硬化度を判定するための指標としてのTr(推定Tr)を算出するためのTr算出部405とを含む。これらはCPU40が操作部3からの操作信号に従ってメモリ41に記憶されるプログラムを読み出して実行することで主にCPU40に形成される機能であるが、少なくともこれら機能のうちの一部がハードウェア構成で形成されてもよい。
 特定部404は、入力された血圧波形から一拍分の血圧波形を得、その立ち上がり点、つまり、一拍分の血圧波形の開始点を駆出波の立ち上がり点と特定する。また、特定部404は、上記しきい値αを用いて血圧波形における反射波の立ち上がり点を特定する。
 図11は、測定装置1での動作を表わすフローチャートである。図11に示される動作は測定者がスイッチ32を押下することにより開始される。この動作はCPU40がメモリ41に記憶されるプログラムを読み出して図10に示される各部を制御することによって実現されるものである。また、図13を用いて測定装置1での動作中の空気袋13A,13B内の圧力変化を説明する。図13の(A)は空気袋13B内の圧力P1の時間変化を示し、図13の(B)は空気袋13A内の圧力P2の時間変化を示している。図13の(A),(B)で時間軸に付してあるS3~S17は、後述する測定装置1での測定動作の各動作と一致している。
 図11を参照して、動作が開始すると、ステップS1でCPU40において各部が初期化される。ステップS3でCPU40はエア系20Aに対して制御信号を出力して空気袋13Aの加圧を開始し、加圧過程において血圧を測定する。ステップS3での血圧の測定は、通常の血圧計で行なわれているオシロメトリック法による測定が行なわれる。
 ステップS3での血圧の測定が完了すると、ステップS5でCPU40は駆動回路53に制御信号を出力して2ポート弁51の空気袋13A側の弁と空気袋13B側の弁との両方を開放させる。これにより空気袋13Aと空気袋13Bとは連通し、空気袋13A内の空気の一部が空気袋13Bに移動して空気袋13Bが加圧される。
 図13の(B)の例では、上記ステップS3で加圧を開始してから血圧の測定が完了するまで、空気袋13A内の圧力P2は最高血圧値よりも高い圧力まで増加している。その後、上記ステップS5で2ポート弁51の上記弁が開放されることで、空気袋13A内の空気の一部が空気袋13Bに移動して、圧力P2が減少する。同時に、図13の(A)に示されるように、空気袋13B内の圧力P1が急激に増加する。そして、圧力P1と圧力P2とが一致した時点で、つまりこれら空気袋13A,13Bの内圧がつりあった時点で、空気袋13Aから空気袋13Bへの空気の移動が終了する。ステップS7でCPU40は、この時点で駆動回路53に制御信号を出力して、上記ステップS5で開放した2ポート弁51の両弁を閉塞させる。図13の(A),(B)において、ステップS7の時点で圧力P1と圧力P2とが一致していることが示されている。図2(A)に表わされたように空気袋13Bの容量は空気袋13Aの容量と比較して小さいため、圧力P2のステップS5での減少は大幅ではなく、ステップS7の時点で圧力P1と圧力P2とも最高血圧値よりも高い圧力となっている。
 その後、ステップS9でCPU40は駆動回路27Bに制御信号を出力して、空気袋13B内の圧力P1を脈波を測定するのに適した圧力になるまで減圧調整する。ここでの減圧調整量は、たとえば5.5mmHg/sec程度が好適である。また、脈波を測定するのに適した圧力としては50~150mmH程度が好適である。このとき2ポート弁51の両弁が閉塞されているため、図13の(B)に示されるように、空気袋13A内の圧力P2は最高血圧値よりも高い圧力で測定部位の末梢側を圧迫し、駆血状態となっている。
 末梢側が駆血された状態において、ステップS11でCPU40は、圧力センサ23Bからの圧力信号に基づく一拍分の血圧波形が入力されるごとに、その血圧波形から特徴点を抽出するための動作を行なう。
 図12は、ステップS11での特徴点を抽出するための動作を表わすフローチャートである。図12を参照して、ステップS101でCPU40は圧力センサ23Bからの圧力信号を受け付けて、1拍分の血圧波形を特定する。そして、ステップS102でCPU40は、1拍分の血圧波形の開始点を駆出波の立ち上がり点として特定する。
 ステップS103でCPU40は、1拍分の血圧波形の駆出波の最大振幅と反射波の最大振幅とを特定し、その比率を算出することでAI値を算出する。
 CPU40は、1拍分の血圧波形の最大振幅から反射波の立ち上がり点を特定するために用いるしきい値αをその血圧波形から得られるAI値から算出するための上述の式(1)~(3)を予め記憶している。そして、ステップS105で、ステップS103で算出されたAI値をその式に代入することで、しきい値αを算出する。
 ステップS107でCPU40は、ステップS101で特定された血圧波形のうち、反射波の最大振幅にしきい値αを乗じて得られる振幅に達した時点を、反射波の立ち上がり点と特定し、その点を特徴点として記憶する。
 ステップS11の測定動作は、予め規定されている回数(たとえば10拍分)血圧波形の入力を繰り返すことによって行われる。その間、空気袋13B内の圧力P1は図13の(A)に示されるように脈波を測定するのに適した圧力に維持され、空気袋13A内の圧力P2は図13の(B)に示されるように最高血圧値よりも高い圧力に維持されている。これにより、測定部位の末梢側の駆血状態が維持されている。
 上記血圧波形の入力が予め規定されている回数(たとえば10拍分)繰り返されると、(ステップS13でYES)、ステップS15でCPU40は、その繰り返し入力された値の平均値と、特定された駆出波の立ち上がり点とを用いて動脈硬化度の指標としてのTr(推定Tr)を算出する。そして、ステップS17でCPU40は駆動回路27A,27Bに制御信号を出力してエアバルブ22A,22Bを開放させ、空気袋13A,13Bの圧力を大気圧に解放する。図13の(A),(B)の例では、圧力P1,P2は、ステップS17の区間で、大気圧まで急速に減少している。
 算出された最高血圧値(SYS)、最低血圧値(DIA)、動脈硬化度の指標や、測定された脈波などの測定結果は基体2に設けられた表示部4で表示するための処理が施され、表示される。
 図14は、測定装置1で算出されたTr(推定Tr)と、従来のPWV測定装置で測定した2点間の脈波伝播時間から算出されたPWV Trとの関係を示す図である。図14に示されるように、測定装置1で算出された推定Trは、従来の方法を用いて頚動脈において測定された血圧波形および三角形状の血流波形を用いて分離した駆出波と反射波との時間差を相互相関法により検出することで算出される推定TrとPWV Trとの関係(図17)よりも、よりPWV Trに近いものになったことがわかる。すなわち、測定装置1で算出された推定TrはPWV Trとの差が図17におけるよりもより小さくなっていることがわかる。2点間の脈波伝播速度の測定に基づいて算出されるPWV Trが現時点で測定可能な最も精度の高いTr値であるから、本発明の装置1は、算出されるTr(推定Tr)の誤差を従来の脈波Trの算出方法よりも小さくすることができ、精度よく動脈硬化度を判定することができることが明らかである。
 <実施形態2>
 実施態様1では、被験者の動脈の硬化度合いとして血圧波形に現れる反射波の大きさを表わす値としてAI値を用いているが、AI値に替えて、血圧波形を微分して算出される値(以降、この値を「仮Tr値」と称する)を用いて推定することも可能である。
 血圧波形を微分して算出される仮Tr値としては、血圧波形の二次微分曲線の極大点に対応した点や、血圧波形の四次微分曲線の下降ゼロクロス点に対応した点などを反射波の立ち上がり点として算出された値を用いることができる。
 血圧波形を微分して算出される値を仮Tr値として用いる場合には、測定装置1のCPU40は、上述の式(1)~(3)に替えて、式(1’)~(3’)を記憶する、
 α=α1 (微分Tr<Tr_2) …式(1’)、
 α=仮Tr×a’+b’ (Tr_2≦微分Tr≦Tr_1) …式(2’)、
 α=α2 (Tr_1<微分Tr) …式(3’)。
 図15は、仮Tr値と式(1’)~(3’)から得られたしきい値αとの関係を表わす図である。図15に表わされるように、仮Tr値が第1のしきい値であるTr1よりも大きい場合には、しきい値αとして値α2を用い、仮Tr値がTr1よりも小さな第2のしきい値であるTr2よりも小さい場合には、しきい値αとして、値α2よりも小さい値α1を用い、仮Tr値がTr2からTr1の間である場合には、しきい値αとしてTr値が小さいほどα1に近づき、仮Tr値が大きいほどα2に近づく値を用いる。従って、実施例1のAI値の場合とは逆に、仮Tr値が大きい場合にはしきい値αは大きく設定され、仮Tr値が小さい場合にはしきい値αは小さく設定されることになる。このように仮Tr値に応じてして可変に設定されたしきい値を用いて、推定Tr値が算出される。実施形態2のその他の構成は、基本的に実施形態1におけると同様である。
 本発明の実施形態は上述した実施態様に限られるものではなく、例えば、一般に年が高いほど動脈硬化が進み、年齢が低いほど動脈硬化が進んでいないという事実に基づいて、被験者の動脈の硬化度合いとして被験者の年齢を用いてもよい。被験者の動脈の硬化度合いとして被験者の年齢を用いる場合、被験者の年齢が高いほどAI値が小さいという関係があるため、測定装置1のCPU40は、上述の式(1)~(3)と同様の、被験者の年齢をパラメータとした式を記憶する。
 被験者の年齢と式(1)~(3)と同様の式から得られたしきい値αとの関係は、AI値と同様に、被験者の年齢が第1のしきい値であるAg1よりも大きい場合には、しきい値αとして値α1を用い、年齢がAg1よりも小さな第2のしきい値であるAg2よりも小さい場合には、しきい値αとして、値α1よりも大きい値α2を用い、年齢がAg2からAg1の間である場合には、しきい値αとして年齢が低いほどα2に近づき、年齢が高いほどα1に近づく値を用いる。
 以上、本発明の実施の形態について説明したが、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 1 測定装置、2 基体、3 操作部、4 表示部、9 腕帯、10 エアチューブ、13A,13B 空気袋、20A,20B エア系、21A エアポンプ、22A,22B エアバルブ、23A,23B 圧力センサ、26A,27A,27B,53 駆動回路、28A,28B 増幅器、29A,29B 変換器、31,32 スイッチ、40 CPU、41 メモリ、51 2ポート弁、100 上腕、401 入力部、402 AI算出部、403 しきい値算出部、404 特定部、405 Tr算出部。

Claims (6)

  1.  血圧情報として被験者の動脈硬化度の指標を算出する血圧情報測定装置(1)であって、
     空気袋を内包し、被験者の測定部位に巻き付けるためのカフ(9)と、
     前記空気袋の内圧を調整するための空気袋内圧調整手段(20A,20B)と、
     前記空気袋への空気注入及び/又はそこからの空気排出の過程で前記空気袋の内圧の変化を検出するための圧力センサ(23A,23B)と、
     前記圧力センサが検出した前記空気袋の内圧変化に基づいた圧力波形から一拍分の血圧波形を得て、当該血圧波形のうちの駆出波の成分と反射波の成分とを分離し特定して前記被験者の動脈硬化度の指標を算出する処理を行なうための演算装置(40)とを備え、
     前記演算装置は、
     前記血圧波形における前記反射波の出現時点に応じた前記血圧波形の形状の特徴を表わす指標に基づいてしきい値を設定するしきい値設定処理部(403)と、
     前記反射波の振幅が、反射波の最大振幅と前記しきい値とから得られる振幅となる時点を、前記反射波の立ち上がり点として推定する立ち上がり点推定処理部(404)と、を備え、
     前記反射波の推定された立ち上がり点に基づいて前記駆出波と前記反射波の出現時間差を算出して、前記動脈硬化度の指標を算出する処理とを実行する、血圧情報測定装置。
  2.  前記血圧波形の形状の特徴を表わす指標は前記被験者の動脈硬化の度合いを表わし、
     前記しきい値は、前記血圧波形の最大振幅に対する割合であり、前記設定される前記しきい値は、前記被験者の動脈硬化の度合いが進んでいる側のしきい値の方が、動脈硬化の度合いが進んでいない側のしきい値よりも小さい、請求項1に記載の血圧情報測定装置。
  3.  前記血圧波形の形状の特徴を表わす指標は、前記血圧波形における前記駆出波の振幅と前記反射波の振幅との比率であるAI(Augmentation Index)値、前記血圧波形の微分曲線から得られる特徴点に対応した前記血圧波形の位置に基づいて算出される値、および前記被験者の年齢のうちのいずれかである、請求項1または2に記載の血圧情報測定装置。
  4.  前記測定部位の末梢側を圧迫するための圧迫手段をさらに備え、
     前記演算装置は、前記測定部位の末梢側が圧迫されて駆血された状態での前記空気袋の内圧変化に基づいて前記被験者の血圧情報として動脈硬化度の指標を算出する処理を行なう、請求項1~3のいずれかに記載の血圧情報測定装置。
  5.  前記測定部位は前記被験者の頚であって、前記演算装置は、前記血圧波形として頚動脈波形を得る、請求項1~4のいずれかに記載の血圧情報測定装置。
  6.  血圧情報として被験者の動脈硬化度の指標を算出する方法であって、
     検出された、被験者の測定部位に装着された空気袋の内圧変化の入力を受け付けて、前記内圧変化に基づいた圧力波形から一拍分の血圧波形を取得するステップと、
     取得した当該血圧波形のうちの駆出波の成分と反射波の成分とを分離し特定して前記被験者の動脈硬化度の指標を算出するステップとを備え、
     前記算出するステップは、
     前記血圧波形における前記反射波の出現時点に応じた前記血圧波形の形状の特徴を表わす指標に基づいてしきい値を設定するステップと、
     前記反射波の振幅が、反射波の最大振幅と前記しきい値とから得られる振幅となる時点を、前記反射波の立ち上がり点として推定するステップと、
     前記反射波の推定された立ち上がり点に基づいて前記駆出波と前記反射波の出現時間差を算出するステップとを含む、動脈硬化度の指標の算出方法。
PCT/JP2011/078155 2010-12-08 2011-12-06 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法 WO2012077666A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180059267.2A CN103260503B (zh) 2010-12-08 2011-12-06 血压信息测定装置
JP2012547866A JP5929759B2 (ja) 2010-12-08 2011-12-06 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
DE112011104312.0T DE112011104312B4 (de) 2010-12-08 2011-12-06 Blutdruckinformation-Messeinrichtung und Verfahren für das Berechnen des Indexes des Grades der Arteriosklerose mit dieser Einrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010273487 2010-12-08
JP2010-273487 2010-12-08

Publications (1)

Publication Number Publication Date
WO2012077666A1 true WO2012077666A1 (ja) 2012-06-14

Family

ID=46207154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078155 WO2012077666A1 (ja) 2010-12-08 2011-12-06 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法

Country Status (5)

Country Link
US (1) US9119535B2 (ja)
JP (1) JP5929759B2 (ja)
CN (1) CN103260503B (ja)
DE (1) DE112011104312B4 (ja)
WO (1) WO2012077666A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105054918B (zh) * 2015-07-28 2018-05-22 杭州暖芯迦电子科技有限公司 一种基于脉搏反射波传输时间的血压计算方法及血压仪
GB2552455B8 (en) * 2016-06-16 2022-06-15 Digital & Future Tech Limited Blood monitoring
JP7019951B2 (ja) * 2017-03-14 2022-02-16 オムロンヘルスケア株式会社 血圧データ処理装置、血圧データ処理方法、およびプログラム
CN109464138B (zh) * 2018-11-29 2021-09-14 东莞市康助医疗科技有限公司 一种升压式动脉硬度评价方法、***及装置
US20210319098A1 (en) * 2018-12-31 2021-10-14 Intel Corporation Securing systems employing artificial intelligence
TWI692345B (zh) * 2019-02-20 2020-05-01 百略醫學科技股份有限公司 可評估動脈硬化之血壓量測裝置
CN110420014A (zh) * 2019-06-13 2019-11-08 东北大学 基于脉搏波智能分解的可穿戴心血管功能评价***及方法
CN111610805B (zh) * 2020-06-01 2023-10-10 宁波弘讯科技股份有限公司 压装机的压力控制方法、***及装置
CN115886757B (zh) * 2022-11-21 2024-06-21 深圳市捷美瑞科技有限公司 一种测量血压的方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014502A2 (en) * 2007-07-23 2009-01-29 Halcom D.D. Method and system for safety and simple paying with mobile terminal
JP2009517140A (ja) * 2005-12-01 2009-04-30 アトコー メディカル ピーティーワイ リミテッド 脈波伝播速度の推定方法
US20090187110A1 (en) * 2008-01-23 2009-07-23 Voss Gregory I Method for determining a cardiac function
JP2009183316A (ja) * 2008-02-01 2009-08-20 Omron Healthcare Co Ltd 脈波解析装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2565011A (en) 1947-08-14 1951-08-21 Isabelle J Womack Transparent sanitary enclosure
US5265011A (en) 1989-04-03 1993-11-23 Eastern Medical Testing Services, Inc. Method for ascertaining the pressure pulse and related parameters in the ascending aorta from the contour of the pressure pulse in the peripheral arteries
US6616613B1 (en) * 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
JP3621379B2 (ja) * 2002-01-09 2005-02-16 コーリンメディカルテクノロジー株式会社 動脈硬化評価装置
JP3590613B2 (ja) * 2002-01-10 2004-11-17 コーリンメディカルテクノロジー株式会社 振幅増加指数算出装置および動脈硬化検査装置
JP3675764B2 (ja) * 2002-01-18 2005-07-27 コーリンメディカルテクノロジー株式会社 動脈硬化検査装置
JP3587837B2 (ja) 2002-09-27 2004-11-10 コーリンメディカルテクノロジー株式会社 動脈硬化度評価装置
JP4517619B2 (ja) * 2002-12-05 2010-08-04 オムロンヘルスケア株式会社 脈波測定装置
JP5151690B2 (ja) * 2008-05-27 2013-02-27 オムロンヘルスケア株式会社 血圧情報測定装置および指標取得方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517140A (ja) * 2005-12-01 2009-04-30 アトコー メディカル ピーティーワイ リミテッド 脈波伝播速度の推定方法
WO2009014502A2 (en) * 2007-07-23 2009-01-29 Halcom D.D. Method and system for safety and simple paying with mobile terminal
US20090187110A1 (en) * 2008-01-23 2009-07-23 Voss Gregory I Method for determining a cardiac function
JP2009183316A (ja) * 2008-02-01 2009-08-20 Omron Healthcare Co Ltd 脈波解析装置

Also Published As

Publication number Publication date
US9119535B2 (en) 2015-09-01
DE112011104312B4 (de) 2024-07-18
CN103260503B (zh) 2015-05-13
DE112011104312T5 (de) 2013-10-10
US20120172734A1 (en) 2012-07-05
CN103260503A (zh) 2013-08-21
JPWO2012077666A1 (ja) 2014-05-19
JP5929759B2 (ja) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5929759B2 (ja) 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
JP5151690B2 (ja) 血圧情報測定装置および指標取得方法
JP5644325B2 (ja) 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
US6733461B2 (en) Methods and apparatus for measuring arterial compliance, improving pressure calibration, and computing flow from pressure data
US7361148B2 (en) Cuff volumetric pulse wave obtaining apparatus, cuff volumetric pulse wave analyzing apparatus, pressure pulse wave obtaining apparatus, and pressure pulse wave analyzing apparatus
JP5573550B2 (ja) 血圧情報測定装置および血圧情報測定方法
JP5741087B2 (ja) 血圧情報測定装置
JP2003144400A (ja) 自動オシロメトリック装置及び血圧を測定する方法
KR101918577B1 (ko) 혈압계 및 이를 이용한 혈압 측정 방법
JP5493932B2 (ja) 血圧情報測定装置
US20040171941A1 (en) Blood flow amount estimating apparatus
JP2009284965A (ja) 血圧情報測定装置
JP3216029B2 (ja) 循環器機能計測装置
JP2011182968A (ja) 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
US9339196B2 (en) Non-invasive method and device of measuring the real-time continuous pressure of fluid in elastic tube and the dynamic compliance of elastic tube
JP4576114B2 (ja) 生体計測装置
JP2018192234A (ja) 動脈血管の内皮機能検査装置
KR100585848B1 (ko) 말초혈관 혈류 측정을 이용한 비관혈적 혈압 측정 시스템
JP2007313145A (ja) 血管弾性特性測定装置
JP3595593B2 (ja) 血液駆出機能評価装置
JP2011182969A (ja) 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
JP2011182967A (ja) 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
JP5239640B2 (ja) 血圧情報測定装置
RU2698447C1 (ru) Способ определения артериального давления в плече на каждом сердечном сокращении
EP2778643A1 (en) Non-invasive method and device of measuring the real-time continuous pressure of fluid in elastic tube and the dynamic compliance of elastic tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846457

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012547866

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112011104312

Country of ref document: DE

Ref document number: 1120111043120

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846457

Country of ref document: EP

Kind code of ref document: A1